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Summary

Distributed quantum computers hold great promise in the realization of scalable and fault-
tolerant quantum computers. They contain multiple nodes with small quantum devices
that can generate inter-node entanglement. Next to realizing distributed architectures on a
single chip, these systems can be extended to large-scale quantum networks. Connecting
the nodes based on the topology of a quantum error-correction code forms an intuitive
path toward fault tolerance.

Performing error-detectionmeasurements in distributed error-correction codes requires
the generation and consumption of entangled states. We focus on systems that are capable
of generating remote two-qubit entanglement between pairs of connected nodes—i.e., Bell
pairs. Entangled states of higher weight—the so-called Greenberger-Horne-Zeilinger (GHZ)
states—can be generated by fusing Bell pairs. On top of this, the quality of the generated
entangled states can be increased with entanglement distillation. We implement dynamic
programming to generate high-quality GHZ states by fusing and distilling Bell pairs.

The dynamic program allows us to optimize the quality of error-detectionmeasurements
for a specific distributed error-correction code: the (toric) surface code. We numerically
evaluate the performance of this code with noise models based on experimental charac-
terization of diamond color center hardware, including the typical behavior of memory
decoherence in these devices. This leads to the identification of a threshold in the ratio
between entanglement generation and the decoherence rates.

For a two-dimensional error-correction code like the surface code, performing error-
detection over multiple time steps can be reinterpreted as measuring the qubits of a
three-dimensional cluster state. This equivalence enables considering more general three-
dimensional cluster states as fault-tolerant channels that transform the logical qubits of
the underlying error-correction code. We use this idea to investigate distributed logical
memory channels for general types of circuit-level and entanglement noise.

Our results show that efficient generation of high-quality entanglement and strategic
design of error-correction channels are important aspects for developing noise-resilient
distributed quantum computers.
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Samenvatting

Gedistribueerde quantumcomputers bieden een veelbelovend perspectief voor de realisatie
van schaalbare en fouttolerante quantumcomputers. Ze bevatten meerdere modules met
kleine quantumapparaten die onderling verstrengeling kunnen genereren. Naast de rea-
lisatie van gedistribueerde architecturen op een enkele chip kunnen deze systemen ook
worden toegepast op grootschalige quantumnetwerken. Hierbij biedt het verbinden van de
modules volgens de topologie van een quantum-error-correctie-code een intuïtieve weg
naar fouttolerantie.

De detectie van ongewenste fouten in gedistribueerde quantum-error-correctie-codes
vereist het produceren en consumeren van verstrengelde toestanden. We concentreren
ons op systemen die op afstand twee-qubit-verstrengeling, oftewel Bell-paren, kunnen
genereren tussen twee verbonden netwerkmodules. Verstrengeling tussen meer dan twee
qubits, de zogenaamde Greenberger-Horne-Zeilinger-toestanden (GHZ-toestanden), kun-
nen worden gegenereerd door Bell-paren te fuseren. Daarnaast kan met destillatie de
kwaliteit van de geproduceerde verstrengeling worden vergroot. We gebruiken dynamisch
programmeren om hoogwaardige GHZ-toestanden te produceren met fusie en destillatie
van Bell-paren.

Dit dynamische programma maakt het mogelijk om de kwaliteit van error-detectie
te optimaliseren voor een specifieke gedistribueerde error-correctie-code: de (torische)
surface code. We evalueren het prestatievermogen van deze code numeriek met ruismodel-
len die gebaseerd zijn op experimentele karakterisatie van kleurcentra in diamant, inclusief
de typische coherentietijden van qubits in deze systemen. Dit maakt het mogelijk een drem-
pelwaarde te identificeren in de verhouding van de productiesnelheid van verstrengelde
toestanden ten opzichte van de snelheid waarmee decoherentie optreedt.

Voor een tweedimensionale error-correctie-code, zoals de surface code, kan het uit-
voeren van error-detectie in meerdere tijdsstappen ook worden geïnterpreteerd als het
uitmeten van de qubits van een driedimensionale clustertoestand. Deze realisatie maakt
het mogelijk om algemene driedimensionale clustertoestanden te beschouwen als fouttole-
rante kanalen die transformaties uitvoeren op de logische qubits van een onderliggende
error-correctie-code. We gebruiken deze invalshoek om gedistribueerde logische geheugen-
kanalen te onderzoeken, in aanwezigheid van standaard ruis op operaties en verstrengelde
toestanden.

Onze resultaten laten zien dat efficiënte productie van hoogwaardige verstrengeling
en een strategisch ontwerp van error-correctie-kanalen belangrijke aspecten zijn bij de
ontwikkeling van ruisbestendige gedistribueerde quantumcomputers.
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1

1

1
Perspective and overview

In this chapter, we set the stage: we provide a general introduction to clarify the position and
significance of this thesis within the wider landscape of (theoretical) quantum computation.
This allows us to contextualize the content of the thesis at the end of this chapter, where we
briefly describe each chapter. Most of the elementary concepts discussed here are introduced in
more detail in Chs. 2 and 3.



1

2 1 Perspective and overview

1.1 Introduction
Since their introduction throughout the twentieth century and further implementations in
the twenty-first century, computers have changed our lives—both for better and for worse.
All computers that we have today—whether they are PCs, laptops, smartphones, or smart
devices—perform calculations by exploiting classical laws of physics. It is generally believed
that these classical computers will soon be assisted by quantum computers: computers that
use the laws of quantum mechanics to perform calculations.

For example, we have good reason to believe that quantum computers can simulate
quantum mechanical systems themselves more efficiently than the computers we have
today—e.g., simulating atoms and molecules. This could lead to progress in many re-
search fields, from chemistry—e.g., the development of artificial fertilizer, medical drugs, or
batteries—to understanding the physics of superconductivity. Moreover, quantum com-
puting, and quantum(-enhanced) technologies in general, harbor the potential to yield
advantages across other domains, such as, e.g., solving algorithmic problems in optimiza-
tion or database searching, as well as sensing, cryptography, secure communication, and
(secure) time synchronization. It remains to be seen which of these applications prove
to be most fruitful when operated on a quantum computer—this depends both on the
development of quantum computers and their algorithms, as on the further development
of classical computers and algorithms.

Currently, the realization of quantum computers is still in development. Examples of
physical systems that are being investigated are ion traps, superconducting systems (e.g.,
based onmagnetic flux quanta or transmons), color centers in diamond (also known as defect
centers), quantum dots, neutral atoms in optical lattices or flying photons (i.e., light parti-
cles). Where the technology behind classical computers has converged to semiconductor-
based transistors that can be operated with extremely high precision, the development of
their quantum mechanical counterpart is still a dynamic and widespread research field,
split between different candidate physical systems. Currently, each of these systems has its
advantages and disadvantages, and it remains to be seen which system(s) can be adjusted
to work in a setting with a large number of connected, high-precision calculation modules.

By themselves, many of the physical platforms in which quantum computing is being
realized are not big enough for useful calculations. Therefore, at least in the years to
come, one approach to building a full-fledged quantum computer is to rely on “linking”
small quantum computers. For example, the sub-units may be elements mounted on a
photonic chip, or form the nodes of a quantum network on a larger scale [1]. The goal of
such an endeavor is to bundle the power of multiple quantum computers by combining
their strengths and emulate a large-scale quantum computer by letting them perform
calculations together. This approach is known as the distributed or modular path to
quantum computing [2, 3]. The main advantage of the distributed approach is that scaling
up the computer simply becomes a matter of adding more nodes or modules to the network,
without the need to connect newly added modules to all parts of the network.

Next to being small, current quantum computers are also not yet precise enough to
carry out useful calculations. It is expected that this remains to be the case in the years to
come. In the first place, this lack of precision is caused by the operations used to perform
calculations—i.e., the elementary gates. These gates are inherently imperfect and introduce
calculation errors. On top of that, there is the problem that, due to interaction with the
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(classical) environment, quantum states lose their quantum properties as time progresses,
and eventually fall back to states that are purely classical. We call this phenomenon
(memory) decoherence. In current quantum computers, when compared to typical operation
times, time scales in which quantum states lose their coherence are relatively small.

The substantial influence of noise illustrates the importance of quantum error-correction
codes. These codes live by the virtue of redundancy: we typically use a large number
of states to encode the information of a smaller number of logical states—i.e., to store
information collectively and non-locally over all available resources. If unwanted errors
pop up during calculation or storage, we can exploit the code’s redundancy to locate
and correct these errors. In principle, each quantum error-correction code is designed to
address a specific set of errors. For good codes, this set overlaps significantly with the
errors most likely to occur. An implementation of such a code is considered fault-tolerant
if the specific operations used to detect and correct errors (or to change the logical states)
do not introduce new errors that exceed the code’s correction abilities. Fault-tolerant
implementations exhibit so-called error thresholds [4, 5], which characterize the maximum
error probabilities the code can effectively handle. When an error probability remains below
its threshold value, the code mainly encounters error combinations within its designed
scope. However, above the threshold value, errors outside the correctable set become
dominant, leading to logical failures. Overall, a fault-tolerant quantum computer is often
described as one that operates a fault-tolerant error-correction code implementation below
its error thresholds.

Typically, implementing a quantum error-correction code on a distributed quantum
computer requires the creation and consumption of entanglement [6, 7] between the
different nodes or modules. In this paradigm, a joint operation between two modules
requires an entangled Bell pair [8], whereas a joint operation between three ormoremodules
requires entanglement in the form of a Greenberger-Horne-Zeilinger (GHZ) state [9]. We
require this entanglement to be of high quality if we want the operations of our distributed
quantum computer to be of high quality as well. For distributed error correction, in
particular, high-quality entanglement is important to reliably find errors. The need for
high-quality entangled states can be considered a disadvantage of distributed quantum
computers, as entangled states are required for both inter-node operations, and for detecting
local errors with the error-correction code [10–14]. Luckily, we can make use of a concept
known as entanglement distillation [15–17] to improve the quality of entangled states and
relax the minimum requirements for elementary—i.e., “pre-processed”—entanglement.

In this thesis, we consider systems capable of remotely generating entangled links
between pairs of connected nodes. Several physical systems are suitable for generating this
type of entanglement with coherent optical interfaces [18], such as the earlier mentioned
color centers in diamond and ion traps [19, 20]. We primarily focus on color centers in
diamond, which are also known as defect centers. Examples of these centers are nitrogen-
vacancy centers [21–34], silicon-vacancy centers [35–39], and tin-vacancy centers [40–42].

On top of that, we mainly consider a specific error-correction code known as the (toric)
surface code [4, 43]. A distributed implementation of this code requires the consumption
of GHZ states between four network parties. We investigate the best way to generate
a high-quality GHZ state from Bell pairs. To evaluate a specific GHZ generation
protocol in practical situations, we should also take into account the influence ofmemory
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decoherence. This then allows us to investigate the minimal requirements to operate
the distributed toric surface code fault-tolerantly with diamond color centers. We
note that this investigation is limited to diamond color centers that use Bell states as the
most elementary form of entanglement.

In the final part of the thesis, we shift focus to designing alternative error-correction
channels for distributed quantum computers. The motivation behind this research
stems from the identification of a more general version of the (distributed) surface code
channel by representing it as a cluster state [44]. Cluster states form the basis of a quantum
computing paradigm called measurement-based quantum computing [45–47]. Identifying
alternative error-correction channels can be considered as the first step towards tailoring
(distributed) error-correction channels based on particular noise characteristics at play.

1.2 Thesis overview
The first part of this thesis contains three additional introductory chapters. In Ch. 2,
we introduce relevant preliminaries in quantum mechanics, quantum information, and
quantum computing. In Ch. 3, we describe relevant concepts of error-correction codes and
discuss techniques to construct two-dimensional topological surface codes [4, 48, 49] and
three-dimensional fault-tolerant cluster states. In Ch. 4, we discuss experimental control of
nitrogen-vacancy centers and derive analytic models for Bell pairs that can be generated
between two nitrogen-vacancy centers.

In the second part of the thesis, we numerically simulate states that are relevant for
distributed toric surface codes. In Ch. 5, we search for protocols that create and distill GHZ
states from Bell pairs. In Ch. 6, we describe how we operate these protocols in the presence
of memory decoherence. In Ch. 7, we evaluate protocols from Ch. 5 in the presence of
memory decoherence and use them to find noise thresholds for the distributed toric surface
code with diamond color centers.

Subsequently, in Ch. 8, we construct alternative error-correction channels for distributed
quantum computers. These channels arise in the form of fault-tolerant cluster states. We
identify a method for constructing distributed versions of these cluster states and find
noise thresholds for scenarios with non-perfect entangled states and noisy gates and
measurements.

Finally, in Ch. 9, we summarize our findings, contextualize their significance, and
expound on potential areas for future research. Below, we include a more detailed summary
of the main chapters in this thesis:

Ch. 2 We introduce general concepts of quantummechanics. After that, we discuss common
operations in quantum computing, as well as the stabilizer formalism [50]. We briefly
introduce the topic of measurement-based quantum computation. Finally, we focus
on models for describing noise in theoretical and numerical descriptions of quantum
computing.

Ch. 3 We discuss the basic elements of quantum error-correction codes. We zoom in
on topological codes and their most important example: the surface code. We
discuss fault-tolerant cluster states that can be used for measurement-based quantum
computation. Finally, we discuss the main concepts of entanglement distillation and
its relation to error-correction codes.
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Ch. 4 We give an overview of the models used for describing nitrogen-vacancy centers in
diamond. We discuss the experimental characterization of nitrogen-vacancy centers
and introduce models and derivations for the two main protocols that can be used to
generate Bell pairs between two nitrogen-vacancy centers.

Ch. 5 We investigate the creation and distillation of GHZ states out of non-perfect Bell
pair states that are diagonal in the Bell basis. We introduce a common framework
for distillation and fusion of diagonal Bell and GHZ states. Finally, we make use of
a heuristic dynamic programming algorithm to optimize over a large class of GHZ
protocols and compare the performance of these protocols against prior protocols in
situations without decoherence, gate noise, and measurement noise.

Ch. 6 We provide details on how we convert the GHZ protocols from Ch. 5 into a practical
set of instructions, which we call a protocol recipe. This allows us to simulate these
protocols in the presence of gate and measurement noise, and memory decoherence.

Ch. 7 We present numerical simulations for the distributed toric surface code with color
centers in diamond. In these simulations, each data qubit of the code is part of a
separate color center. We use the algorithms of Chs. 5 and 6 to find well-performing
GHZ creation and distillation protocol for each noise configuration considered. We
investigate the effect of memory decoherence and other noise sources. Among other
results, this allows us to identify a threshold in the ratio between entanglement
generation and memory decoherence rates.

Ch. 8 We introduce a method for constructing distributed versions of fault-tolerant cluster
states that can be used for measurement-based quantum computation. We identify
error thresholds for gate, measurement, and network noise in these three-dimensional
cluster states. We show that the high thresholds of non-conventional lattices against
erasure errors—i.e., qubit loss—can be used to relax the quality requirements of
the entangled states. This is because they make it possible to work with a lower
entanglement success rate—i.e., use more steps of entanglement distillation.
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2
Basics ofqantum computing

In this chapter, we introduce general concepts, ideas, and formulations relevant to the field.
To this end, we first introduce general aspects of quantum mechanics. After that, we discuss
common operations in quantum computing, as well as the stabilizer formalism. On top of that,
we briefly introduce the topic of measurement-based quantum computation that is relevant
for Ch. 8. At the end of this chapter, we lay down the groundwork for modeling the main
adversary of our work: noise.
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2.1 Introduction
What today’s computers have in common is that their calculation process obeys classical
mechanics. Therefore, we typically refer to these computers as “classical computers”.
Classical computers perform their calculations with bits that can either be in a first state—
i.e., the 0-state—or in a second state—i.e., the 1-state. All calculations can be decomposed
into a number of logical gates applied to a set of bits of this form. Each of these bits is in a
“fixed” state—i.e., either the 0-state or the 1-state—at each stage of the calculation.

Quantum computers can be considered as more general versions of classical computers.
That is because, the same principle applies to quantum computers, with the important
difference that there is also a quantum mechanical superposition possible between the
0-state and 1-state. This gives rise to a more general version of a bit: a qubit, or quantum
bit. In terms of the 0-state and 1-state of the classical bit, this means that each qubit has a
probability |𝛼|2 of being in the 0-state and a probability |𝛽|2 of being in the 1-state. Here, 𝛼
and 𝛽 are complex numbers. Following the laws of quantum mechanics, upon measuring a
qubit, it will collapse to one of the two states in its superposition. Therefore, one can argue
that measuring a qubit transforms it into a classical bit.

As mentioned in Ch. 1, in this thesis, we focus on so-called distributed implementations
of quantum computers. These implementations consist of multiple small quantum comput-
ers that are connected via entanglement. Entanglement can be considered as one of the
characteristic pillars of quantum mechanics. As introduced more formally in Sec. 2.2.4, an
entangled state arises when it is no longer possible to describe the combined state of two
or more parties in terms of the states of the individual parties. This effect remains when
the parties are separated by a large distance. In some configurations, these parties can even
be considered to be “perfectly correlated”—even to an extent beyond what is possible with
classical mechanics.

At the end of this chapter, we discuss the concept of noise. Here, noise can be considered
as errors appearing on (qu)bits during calculation or storage. Typically, we model noise as
a set of stochastic operations that act on the state: if the influence of noise is minimal, the
probability of such an erroneous operation is small, whereas, in a situation with a lot of
noise, that probability is large. To limit the number of scenarios that can occur as a result
of noise, one typically makes use of a limited set of operations. Limiting the number of
noise scenarios is useful to make analytical or numerical calculations feasible. More often
than not, the operations that describe noise are limited to or can be expressed as Pauli
matrices, which are discussed in Sec. 2.3.2.

Modeling noise with Pauli matrices is convenient because Pauli matrix operations are
common gates in quantum computing. Even more so, Pauli matrices form the basis of the
stabilizer formalism, which allows one to efficiently describe a subset of quantum states—
i.e., the stabilizer states. Making use of the stabilizer formalism is another simplification that
makes calculations more feasible. Calculating the state of a stabilizer state after applying a
Pauli operator is as easy as considering (anti-)commutation rules between the Pauli operator
and the stabilizer operators of the state, which we discuss in Sec. 2.3.2 as well.

It should be mentioned that in practical quantum computers, it is not useful to only
utilize stabilizer states. That is because quantum computers with only stabilizer states offer
only a polynomial advantage over classical computers when it comes to the computational
complexity they can reach [1, 2]. This can be understood by realizing that we only need 2𝑁 2
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classical bits of information to describe an 𝑁 -qubit stabilizer state. To describe an 𝑁 -qubit
general quantum state, however, we need 2𝑁 complex numbers (not taking into account
normalization)—showing that, in general, quantum computers have the potential to solve
a problem in exponentially fewer calculation steps than classical computers. Therefore, in
practical quantum computers, we have to make sure we can also create quantum states
that are not stabilizer states to accomplish universal quantum computing.

A specific class of stabilizer states is formed by the cluster states. These states can be
used for the so-called measurement-based implementation of quantum computing. Here,
we prepare a cluster state that can be used for any purpose. Specific quantum algorithms
can then be implemented by measuring out the qubits of this cluster state. Themeasurement
basis (see Sec. 2.2.3) in which the measurements are applied determines the exact logic of
the calculation. In the measurement-based paradigm, even though the resource states are
stabilizer states, this freedom in the measurement basis allows one to achieve universal
operations.

2.2Quantum mechanics
In this section, we introduce the basics of quantum mechanics. We discuss how qubits are
defined in quantum mechanics (Sec. 2.2.1) and elaborate on density matrices (Sec. 2.2.2),
measurements (Sec. 2.2.3), and entangled states (Sec. 2.2.4).

2.2.1Qubits
A qubit serves as the basis of quantum information. In classical mechanics, states are
always unambiguously defined as a single combination of bits, but in quantum mechanics,
a particle or system can simultaneously be in different states. As discussed in Sec. 2.1,
in its most general form a single qubit can be described as 𝛼 |0⟩+𝛽 |1⟩. Here, 𝛼,𝛽 ∈ ℂ are
complex values that take on the role of probability amplitudes: |𝛼|2 can be considered as the
probability of the qubit being in the classical state |0⟩ and |𝛽|2 as the probability of the qubit
being in the classical state |1⟩. To make sure the probabilities add up to one, |𝛼|2+ |𝛽|2 = 1
should hold. A qubit can be in infinitely many states based on the exact values of 𝛼 and𝛽. Therefore, we typically describe a qubit mathematically as a two-dimensional vector
with complex coefficients—i.e., as a vector in the space ℂ2. In this interpretation, |0⟩ and|1⟩ represent the basis states and we denote vectors with Dirac’s bra-ket notation—i.e., a
quantum state vector labeled 𝜓 is written as |𝜓⟩ and its Hermitian (i.e., conjugate) transpose
as ⟨𝜓| = |𝜓⟩† = (|𝜓⟩∗)𝑇 . Here, |𝜓⟩∗ denotes the complex conjugate of |𝜓⟩. The condition|𝛼|2 + |𝛽|2 = 1 dictates that a valid quantum state |𝜓⟩ is always a normalized vector that
fulfills ⟨𝜓|𝜓⟩ = 1. The normalization condition means that the state of a qubit can be
visualized as a vector on the surface of a sphere. This sphere is commonly referred to
as the Bloch sphere and is depicted in Fig. 2.1a. Interpreting the state of a qubit on the
Bloch sphere is convenient because it makes operations on the qubit more intuitive to
comprehend. We show examples of this in Figs. 2.1b, 2.1c, 2.2a and 2.2b.

We specifically refer to the basis with basis states |0⟩ and |1⟩ as the computational basis.
The most common vectors chosen for the computational basis states are:

|0⟩ ≡ [10] , |1⟩ ≡ [01] . (2.1)
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Figure 2.1: (a) The state of a qubit |𝜓⟩ = 𝛼 |0⟩+𝛽 |1⟩ can be visualized as a vector (or as a point) on the surface of
the Bloch sphere. On this sphere, next to the states |0⟩ and |1⟩, which are often defined as the eigenstates of the
Pauli-𝑍 matrix, the states { |+⟩ , |−⟩} and { |+𝑖⟩ , |−𝑖⟩} on opposite sides of the sphere are typically the eigenstates
of the Pauli-𝑋 and Pauli-𝑌 matrix, respectively. The Pauli matrices are introduced in Sec. 2.3.2 and can be used
to calculate the Bloch sphere coordinates (Tr(𝑋𝜌),Tr(𝑌 𝜌),Tr(𝑍𝜌)) of a state 𝜌. (b) Example of a state on the
Bloch sphere (red dot). The projection of this state on the blue, yellow, or green axis describes the measurement
probabilities for measuring the qubit in the { |0⟩ , |1⟩}, { |+⟩ , |−⟩}, or { |+𝑖⟩ , |−𝑖⟩} basis, respectively. For example,
measuring this state in the yellow { |+⟩ , |−⟩} basis has ≈ 93% probability of resulting in |+⟩ and ≈ 7% probability
of resulting in |−⟩. Measurements are described in Sec. 2.2.3. (c) Example of a different state on the Bloch sphere
(dark red dot). We see that, compared to the state in (b), the relative phase factor 𝑖 in front of |1⟩ leads to a 𝜋/2
rotation around the blue axis. As indicated by the projections on the three colored axes, this phase shift influences
the measurement probabilities for two of the three measurement bases.

Qubits can also be described with another set of orthonormal basis states { |𝜙𝑘⟩ }𝑘 , as, e.g., a
basis defined by the states |+⟩ ≡ (|0⟩+ |1⟩)/√2 and |−⟩ ≡ (|0⟩− |1⟩)/√2. We note that ⟨𝜓|𝜙⟩
represents the inner product between two states |𝜓⟩ and |𝜙⟩ and results in a scalar outcome,
whereas the term |𝜓⟩⟨𝜙| describes a matrix. This principle can be used in combination with a
basis to describe a general matrix in terms of its matrix elements 𝑜𝑖𝑗 as =∑𝑖,𝑗 𝑜𝑖𝑗 |𝜙𝑖⟩⟨𝜙𝑗 |,
where |𝜙𝑖⟩ and |𝜙𝑗 ⟩ are the basis vectors—e.g., the basis vectors of the computational basis.

If we consider a system of multiple qubits, we have to increase the size of the vector
space that describes their states. Each additional qubit doubles the size of the vector space.
If we have multiple qubits that can be separately described as single qubits, their total
quantum state is the tensor product of the individual vectors—denoted by the operator
“⊗”. For example, a two-qubit state can, in the computational basis, be described as a
superposition of the two-qubit basis states |0⟩⊗ |0⟩ ≡ |0⟩⊗2 ≡ |00⟩, |01⟩, |10⟩ and |11⟩. In
general, an 𝑁 -qubit state can be described by a 2𝑁 -dimensional vector in ℂ2𝑁 . Often, we
interpret the “label” of multi-qubit computational basis states as a binary number. This
allows us to switch up notation by alternatively using their decimal representation when
convenient: e.g., for the two-qubit basis states, |00⟩ ≡ |0⟩, |01⟩ ≡ |1⟩, |10⟩ ≡ |2⟩ and |11⟩ ≡ |3⟩.
2.2.2 Density matrix
In a practical situation, we typically need a format that is more general than pure state
vectors to describe quantum states. This is realized by introducing mixed states, or density
matrices. Density matrices are also known as density operators. The density matrix format
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allows us to, e.g., describe statistical ensembles of quantum states. This is useful when the
preparation of a quantum state is not fully known or for a thermal equilibrium at finite
temperatures. Next to that, we can use density matrices to express the state of a quantum
system that is part of a bigger (entangled) system, as we show below.

Formally, an 𝑁 -qubit density matrix 𝜌 is a positive semi-definite matrix of dimensions2𝑁 × 2𝑁 with its trace equal to 1. A positive semi-definite matrix is a matrix with non-
negative eigenvalues, and the trace Tr(𝜌) is the sum of the coefficients on the diagonal of𝜌. These conditions ensure that the density matrix can always be interpreted as a statistical
mixture of pure states 𝜌 =∑𝑠 𝑝𝑠 |𝜓𝑠⟩⟨𝜓𝑠 |—i.e., an ensemble with statistical ambiguity about
which pure state |𝜓𝑠⟩ the system is in, fulfilling 𝑝𝑠 ∈ ℝ, 0 < 𝑝𝑠 ≤ 1 and ∑𝑠 𝑝𝑠 = 1. Every
positive semi-definite matrix is automatically self-adjoint (i.e., Hermitian)—i.e., the density
matrix is equal to its own conjugate transpose: 𝜌† = (𝜌∗)𝑇 = 𝜌. A pure state |𝜓⟩ can be
expressed as 𝜌 = |𝜓⟩⟨𝜓|—i.e., as a density matrix of rank one that is described by a single
vector. Given that for a pure state ⟨𝜓|𝜓⟩ = 1 holds, we see that 𝜌2 = 𝜌 holds for a pure
state, and, therefore, also Tr (𝜌2) = 1. For an 𝑁 -qubit mixed state, however, we always have1/2𝑁 ≤ Tr (𝜌2) < 1. The exact value for Tr(𝜌2) can be used as a measure for the purity of a
quantum state. The mixed state with the lowest purity is the maximally mixed state. For 𝑁
qubits, this state is created from 2𝑁 orthonormal states { |𝜙𝑘⟩ }𝑘 all occurring with the same
statistical probability 1/2𝑁 .

The Bloch sphere representation of Fig. 2.1a can also be used to describe a mixed
single-qubit state: whereas a pure state is represented by a point on the surface of the
sphere, a mixed state can be depicted as a point inside the sphere. This can be understood
by realizing that the Bloch sphere representation of 𝜌 =∑𝑠 𝑝𝑠 |𝜓𝑠⟩⟨𝜓𝑠 | can be determined
with the weighted average over all vectors { |𝜓𝑠⟩}𝑠 on the sphere, using the coefficients{𝑝𝑠}𝑠 as weights. The maximally mixed state corresponds to the point exactly in the middle
of the sphere.

To understand why density operators are useful to express a state that is part of a larger
quantum system, we introduce the partial trace. This operation “traces out” part of a state
we no longer have control or access over and mathematically describes the remainder of
the system in which the traced-out part is “ignored”. The partial trace is related to the
earlier-mentioned trace Tr(𝜌) ≡∑𝑘 ⟨𝜙𝑘 |𝜌 |𝜙𝑘⟩. Here, { |𝜙𝑘⟩ }𝑘 is a basis for the full state 𝜌,
meaning Tr(𝜌) is a sum over the diagonal coefficients of 𝜌 in the { |𝜙𝑘⟩ }𝑘 basis. (Note that it
can be shown that Tr(𝜌) is independent of the exact basis chosen.) The partial trace Tr𝑖 (𝜌),
on the other hand, performs the same operation ∑𝑘 ⟨𝜙(𝑖)𝑘 |𝜌 |𝜙(𝑖)𝑘 ⟩ over a basis { |𝜙(𝑖)𝑘 ⟩ }𝑘 that
only describes a subset 𝑖 of the full multi-qubit system. This results in a smaller density
matrix in which all information about the states of qubit(s) 𝑖 is removed. As a concrete
example, we consider a pure state (|0⟩⊗ |0⟩+ |1⟩⊗ |1⟩)/√2. Tracing out the second qubit
requires taking the trace with partial basis vectors {𝕀⊗ |𝜙𝑘⟩ }𝑘 , where 𝕀 is the 2×2 identity
matrix and { |𝜙𝑘⟩ }𝑘 is a single-qubit basis. This converts the two-qubit pure state to the
single-qubit maximally mixed state ( |0⟩⟨0|+ |1⟩⟨1|)/2.
2.2.3 Measurement
When a quantum state is measured, the state typically collapses to a classical state with
respect to the basis on which the measurement is performed. Typically, measuring a
quantum state is a probabilistic process that changes the state. For example, measuring
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a qubit |𝜓⟩ = 𝛼 |0⟩+ 𝛽 |1⟩ in the computational basis has a probability |𝛼|2 of collapsing
to |0⟩ and a probability |𝛽|2 of collapsing to |1⟩. Instead of measuring individual qubits,
we can also jointly measure multiple qubits. Measuring a general state |𝜓⟩ in a general
orthonormal basis { |𝜙𝑘⟩ }𝑘 has a probability 𝑝𝑘 = | ⟨𝜙𝑘 |𝜓⟩ |2 of collapsing to the basis state|𝜙𝑘⟩. This is the Born rule of quantum mechanics. We show examples of measuring two
specific single-qubit states in different bases in Figs. 2.1b and 2.1c using the Bloch sphere
visualization. These figures indicate how an orthonormal basis can be depicted as an axis
through the Bloch sphere. The measurement probabilities for finding the basis states of
this basis are indicated by the projection of the state onto this axis.

When a measurement causes the state to collapse, the observer—i.e., the entity or
system triggering the measurement—has the possibility to learn the post-measurement state
via a measurement outcome. This outcome is the eigenvalue of the post-measurement
basis state with respect to a (measurement) observable . The involved basis states are
the eigenvectors of the observable. Therefore, instead of stating that we measure an𝑁 -qubit state in a certain basis of ℂ2𝑁 , we can alternatively say that we perform a projective
measurement with an observable that has these basis states as its eigenstates—i.e., we
project the state on one of the basis states. Technically, the observable is a linear map
that maps vectors in ℂ2𝑁 onto each other. To guarantee that its eigenstates form a complete
eigenbasis,  needs to be self-adjoint (i.e., equal to its own conjugate transpose).

There exists an evenmore general representation of a quantummeasurement in terms of
a set ofmeasurement operators {(𝑘)}𝑘 . These operators are also called Kraus operators and
should satisfy∑𝑘((𝑘))†(𝑘) = 1, where 1 is the identity matrix of the same dimensions
as(𝑘). In this general picture, the Born rule becomes more general as well: obtaining the
measurement outcome 𝑚𝑘 has a probability given by 𝑝𝑘 = Tr((𝑘)𝜌 ((𝑘))†). Here, 𝜌 is
the input state before the measurement. Per outcome 𝑚𝑘 , the post-measurement state is
given by 𝜌𝑘 = (𝑘)𝜌((𝑘))†𝑝𝑘 = (𝑘)𝜌((𝑘))†Tr((𝑘)𝜌((𝑘))† ) . (2.2)

As becomes clear in Sec. 2.3.1, the measurement transformation of Eq. (2.2) is a more
general version of the standard transformation of density matrices in quantum mechanics.
Because 𝜌 is assumed to be an ensemble of states 𝜌 =∑𝑠 𝑝𝑠 |𝜓𝑠⟩⟨𝜓𝑠 |, transforming both|𝜓𝑠⟩ and ⟨𝜓𝑠 | requires placing the operation (𝑘) on both sides of 𝜌. On top of that,
for the operations of Sec. 2.3.1, we require Tr(𝜌) = 1 to hold both before and after the
transformation. That is not the case for transformations in quantum measurements, as they
allow us to probabilistically “branch off” into one of the possible operations from {(𝑘)}𝑘 .
For each of the operations (𝑘), dividing the post-measurement state (𝑘)𝜌 ((𝑘))†
with its probability 𝑝𝑘 = Tr((𝑘)𝜌 ((𝑘))†) normalizes the state—i.e., makes sure the
post-measurement state fulfills Tr(𝜌𝑘) = 1.

A projective measurement can be interpreted as a less general version of a quan-
tum measurement with measurement operators {Π(𝑘) }𝑘 that fulfill (Π(𝑘))†Π(𝑘′) = 𝛿𝑘,𝑘′Π(𝑘),
where 𝛿𝑘,𝑘′ is the Kronecker delta. This can be translated in terms of projecting on the
elements of a basis { |𝜙𝑘⟩ }𝑘 via Π(𝑘) = |𝜙𝑘⟩⟨𝜙𝑘 |. It becomes clear that transforming 𝜌 asΠ(𝑘)𝜌 (Π(𝑘))† projects the elements of 𝜌 onto the basis state |𝜙𝑘⟩. Such a measurement
corresponds to measuring with an observable constructed as Π =∑𝑘 𝜆𝑘Π(𝑘). Here, the 𝜆𝑘
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values take on the role of the eigenvalues of the measurement observable Π. Using the
identity Tr(123) = Tr(312), we can understand that the probability of projecting
with Π(𝑘) now simplifies to 𝑝𝑘 = Tr(Π(𝑘)𝜌) = ⟨𝜙𝑘 |𝜌 |𝜙𝑘⟩. For 𝜌 = |𝜓⟩⟨𝜓| a pure state, this
further simplifies to the expression 𝑝𝑘 = | ⟨𝜙𝑘 |𝜓⟩ |2 above. If the eigenvalues 𝜆𝑘 used in the
construction of Π are not unique, obtaining a non-unique eigenvalue during measurement
means the state has not fully collapsed. In that case, the post-measurement state is typically
in a superposition of the eigenstates that carry this degenerate eigenvalue.

2.2.4 Entanglement
Entanglement is one of the most important resources of quantum information and quantum
computing. An entangled system can be defined as a state that can not be described as a
tensor product of the individual states of its subsystems. That is, a two-qubit state |𝜓⟩ is
entangled if there do not exist individual qubit states |𝜙1⟩ and |𝜙2⟩ that fulfill |𝜓⟩= |𝜙1⟩⊗ |𝜙2⟩.
States that can be represented as tensor products of the individual substates are called
separable or product states.

Important examples of two-qubit entangled states are the Bell pairs—also known as
Bell states or Einstein-Podolsky-Rosen (EPR) pairs:

|Φ+⟩ ≡ |00⟩+ |11⟩√2 , |Φ−⟩ ≡ |00⟩− |11⟩√2 ,
|Ψ+⟩ ≡ |01⟩+ |10⟩√2 , |Ψ−⟩ ≡ |01⟩− |10⟩√2 . (2.3)

For more qubits—i.e, for 𝑁 ≥ 3 qubits—a commonly used entangled state is the Greenberger-
Horne-Zeilinger (GHZ) state, defined as |GHZ(𝑁 )⟩ ≡ (|0⟩⊗𝑁 + |1⟩⊗𝑁 )/√2.
2.3Quantum computing
In this section, we introduce the basic concepts of quantum computing. We discuss the
most general version of an operation (Sec. 2.3.1), elaborate on the most common operations
(Secs. 2.3.2, and 2.3.3), introduce the stabilizer formalism (Sec. 2.3.4), and go over the main
ideas of measurement-based quantum computing (Sec. 2.3.5). In the field of quantum
computing, operations are typically depicted in so-called circuit notation—i.e., in the form
of circuit diagrams. In these diagrams, qubits are drawn as horizontal lines moving from
left to right in time. Operations on qubits are illustrated as “boxes”, with the form of the
box and the text in it denoting the type of operation. Examples of circuit diagrams can be
found in Fig. 2.3, 2.4b, and 2.5.

2.3.1 Operations
A quantum state |𝜓⟩ can be transformed into another quantum state |𝜙⟩ with a unitary
operation via |𝜙⟩ = |𝜓⟩. Such an operation, which is often called a gate, is a linear map
that preserves the inner product between states: ⟨𝜓1| † |𝜓2⟩ = ⟨𝜓1|𝜓2⟩ for all |𝜓1⟩ ∈ ℂ2𝑁
and |𝜓2⟩ ∈ ℂ2𝑁 . This requires  † = 1 to hold. Density matrices evolve as 𝜌↦ 𝜌 †
under a unitary transformation  .

As discussed in Sec. 2.2.3, a quantum gate can be regarded as a simpler version of a
quantum measurement. Often, measurements are also classified as “operations”. The most
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Figure 2.2: (a) Intuitive interpretation of the 𝑅𝑋 (𝜃), 𝑅𝑌 (𝛾), or 𝑅𝑍 (𝜑) operators in Eq. (2.5) as a rotation over an
angle 𝜃, 𝛾 , or 𝜑 around the yellow 𝑥-axis, the green 𝑦-axis, or the blue 𝑧-axis in the Bloch sphere, respectively. We
show explicitly how the state |−𝑖⟩ = (|0⟩− 𝑖 |1⟩)/√2 (dark red dot) is transformed to |+𝑖⟩ = (|0⟩+ 𝑖 |1⟩)/√2 (bright
red dot) under a 𝑋 = 𝑖𝑅𝑋 (𝜋) transformation (where the phase factor 𝑖 in 𝑖𝑅𝑋 (𝜋) corresponds to an irrelevant
global phase factor)—i.e., by rotating the state with an angle 𝜋 around the yellow 𝑥-axis. (b) The Hadamard gate
corresponds to a 𝜋 rotation around the purple axis in the Bloch sphere.

general version of a quantum operation is a completely positive trace-preserving (CPTP)
map—also known as a channel. As the name suggests, a channel should preserve Tr(𝜌) = 1
when working on a quantum state. On top of that, such a map should make sure that the
quantum state stays positive semi-definite. Each channel ∶ 𝜌↦∑𝑘(𝑘) 𝜌 ((𝑘))† can
be described by a set of Kraus operators {(𝑘)}𝑘 fulfilling ∑𝑘((𝑘))†(𝑘) = 1. A channel is
an operator working on another operator—this can be either a density matrix or another
channel. For that reason, a channel is sometimes called a superoperator.

If we apply a unitary transformation  right in front of a measurement with measure-
ment operators {(𝑘)}𝑘 , this operation can effectively be incorporated in the measurement,
as long as we are not interested in the basis in which the post-measurement state is defined.
This can be understood by realizing that the measurement statistics, i.e., the probabilities of
finding each of the measurement outcomes 𝑚𝑘 , are the same for measuring with {(𝑘)}𝑘
on a state  𝜌 † as for measuring with { †(𝑘)  }𝑘 on a state 𝜌. This is because the
trace in the denominator of Eq. (2.2) is exactly the same in both scenarios. Therefore, the
only difference between the two scenarios is that the post-measurement states will undergo
a basis transformation  †𝜌𝑘 in the second scenario. In other words, in terms of mea-
surement statistics, applying  and measuring with {(𝑘)}𝑘 is equivalent to measuring{ †(𝑘) }𝑘 . For a projective measurement with measurement operator Π, this simplifies
to transforming the basis vectors { |𝜙𝑘⟩ }𝑘 of Π as { † |𝜙𝑘⟩}𝑘 .
2.3.2 Pauli matrices
The Pauli matrices (or Pauli operators or Pauli gates) play a pivotal role in all of quantum
mechanics and are the most important operations in quantum computing. As unitary
and Hermitian 2×2 matrices with eigenvalues {+1,−1} they represent both measurement
observables and logic gates. In the computational basis, they are defined as follows:

𝑋 ≡ [0 11 0] , 𝑌 ≡ [0 −𝑖𝑖 0 ] , 𝑍 ≡ [1 00 −1] . (2.4)
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Any two Pauli matrices anti-commute, meaning that 𝑃𝑃 ′ = −𝑃 ′𝑃 holds, as long as 𝑃 ≠ 𝑃 ′.
They fulfill 𝑋 2 = 𝑌 2 = 𝑍2 = 𝕀, where 𝕀 is the identity matrix of size 2 × 2. Together with𝕀, the Pauli matrices form the basis for any 2×2 matrix 𝑀 = 𝜆1𝑋 +𝜆2𝑌 +𝜆3𝑍 +𝜆4𝕀. If we
allow the Pauli operators to have prefactors {±1,±𝑖 }, they form a group (1) = ⟨𝑖𝕀,𝑋 ,𝑍⟩:
the one-qubit Pauli group. This can be understood by realizing that 𝑌 = 𝑖𝑋𝑍 holds.

Similar properties hold for multi-qubit Pauli operators on 𝑁 qubits. These are tensor
products of 𝑁 Pauli operators with eigenvalues {+1,−1}. These operators form the basis
for any 2𝑁 ×2𝑁 matrix. They also form a group if we allow prefactors {±1,±𝑖 }: the 𝑁 -qubit
Pauli group (𝑁 ). For an 𝑁 -qubit Pauli operator 𝑃 = 𝑃1⊗𝑃2⊗⋯⊗𝑃𝑁 , we define its weight
as the number of non-identity matrices in the tensor product of 𝑃 . In the full description
of the operator 𝑃 , the index in the subscript typically describes the qubit number the
operator works. Often, we notate operators like this without explicitly mentioning the
tensor product and identity matrices—e.g., 𝑃2𝑃4 instead of 𝕀1⊗𝑃2⊗ 𝕀3⊗𝑃4.

As a logic gate, the Pauli-𝑋 operator flips the state of a qubit in the computational
basis—i.e., it introduces a bit-flip on a qubit. The computational basis states are eigenstates
of the Pauli-𝑍 operator. This means that the Pauli-𝑍 operator leaves the |0⟩ invariant, but
adds a minus sign to the |1⟩ state—i.e., the Pauli-𝑍 operator accomplishes a phase-flip on a
qubit. More generally, we can use the Pauli matrices to define arbitrary rotations:

𝑅𝑋 (𝜃) ≡ 𝑒−𝑖𝜃𝑋/2 = cos(𝜃2)𝕀− 𝑖sin(𝜃2)𝑋 = [ cos(𝜃/2) −𝑖sin(𝜃/2)−𝑖sin(𝜃/2) cos(𝜃/2) ] ,𝑅𝑌 (𝛾) ≡ 𝑒−𝑖𝛾𝑌 /2 = cos( 𝛾2)𝕀− 𝑖sin( 𝛾2)𝑌 = [cos(𝛾/2) −sin(𝛾/2)sin(𝛾/2) cos(𝛾/2) ] ,𝑅𝑍 (𝜑) ≡ 𝑒−𝑖𝜑𝑍/2 = cos(𝜑2)𝕀− 𝑖sin(𝜑2)𝑍 = [𝑒−𝑖𝜑/2 00 𝑒𝑖𝜑/2] .
(2.5)

As indicated in Fig. 2.2a, we can intuitively interpret these operations as rotations around the𝑥-axis, 𝑦-axis, and 𝑧-axis of the Bloch sphere, respectively. The Pauli matrices themselves
are defined as rotations over an angle 𝜋 (up to a global phase factor): 𝑋 = 𝑖𝑅𝑋 (𝜋), 𝑌 = 𝑖𝑅𝑌 (𝜋)
and 𝑍 = 𝑖𝑅𝑍 (𝜋). The rotations of Eq. (2.5) can also be used to parameterize an arbitrary
unitary transformation—e.g., among other possibilities, with  = 𝑒𝑖𝛼 𝑅𝑍 (𝜑)𝑅𝑌 (𝛾)𝑅𝑍 (𝜗) or = 𝑒𝑖𝛼 𝑅𝑍 (𝜑)𝑅𝑋 (𝜃)𝑅𝑍 (𝜗). Here, 𝛼 is again a global phase.

As mentioned earlier, Pauli matrices can also be used as measurement observables. In
Fig. 2.3a, we depict the typical circuit diagram notation of a Pauli measurement on a single
qubit. We note that measuring the Pauli-𝑍 observable is equivalent to a measurement in
the computational basis. The post-measurement states for measuring an 𝑁 -qubit Pauli
operator 𝑃 can be calculated with the projectorsΠ± ≡ 12 (𝕀⊗𝑁 ±𝑃) . (2.6)

Here, Π+ projects on the +1 eigenspace and Π− projects on the −1 eigenspace of 𝑃 . For a
single-qubit Pauli operator 𝑃 , the projectors Π+ and Π− correspond to |𝜙𝑘⟩⟨𝜙𝑘 | for the eigen-
states { |𝜙𝑘⟩ }2𝑘=1 of 𝑃 with eigenvalues +1 and −1, respectively. As discussed in Sec. 2.2.3, a
measurement observable with degenerate eigenvalues does typically not collapse the full
state that is being measured. This is relevant for performing a joint measurement with a
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𝜌 𝑃 𝑚
(a)

𝑃⋮ ⋮𝜌
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ 𝑚

(b)

Figure 2.3: (a) Typical circuit diagram showing the measurement of a single-qubit Pauli observable 𝑃 on a general
quantum state 𝜌. Here, 𝑚 ∈ {+1,−1} depicts the possible measurement outcomes. The two lines coming out of the
measurement operator indicate that the outcome 𝑚 is a classical bit. Therefore, the measurement outcome is
sometimes written in binary notation: 𝑚 ∈ {0,1}. (b) Joint Pauli measurement of a multi-qubit Pauli observable𝑃 on a multi-qubit quantum state 𝜌. The outcome of the measurement is again a classical bit 𝑚. However, this
operation is typically a parity measurement and does not fully collapse the measured state. Therefore, qubits
remain present as vertical lines even after the measurement.

multi-qubit Pauli operator, as such an operator has degenerate eigenvalues +1 and −1. For
example, a joint operator with multiple Pauli-𝑍 matrices only measures the parity of a state
in the computational basis. We show the circuit diagram depiction of a joint measurement
in Fig. 2.3b. In practice, carrying out a joint (i.e., multi-qubit) Pauli measurement is difficult.
Fortunately, there is an indirect way possible to achieve this. Fig. 2.4a shows how a joint
Pauli operator 𝑃 = 𝑃1⊗𝑃2⊗⋯⊗𝑃𝑁 can be measured with the aid of an ancillary qubit
initialized in the |+⟩ state. Fig. 2.4b shows how the same measurement can be achieved non-
locally with the aid of an entangled state if the qubits are part of different network parties.
These methods require controlled-Pauli operators, which are introduced in Sec. 2.3.3.

2.3.3 Other commonqantum gates
In Sec. 2.3.2 and Fig. 2.4 it becomes clear that measuring a (multi-qubit) Pauli operator is
convenient with controlled-Pauli operations. The controlled-not (CNOT, C𝑋 ) operator is
a two-qubit operator that only applies a Pauli-𝑋 on a target qubit if the control qubit is
in the |1⟩ state. The controlled-phase (CPHASE, C𝑍) operator works the same, but with a
Pauli-𝑍 operator. Fig. 2.5 shows how these gates are depicted in circuit notation, as well
as what their matrix representations look like in the computational basis. As with Pauli
operators, we sometimes use the notation C𝑋𝑖,𝑗 and C𝑍𝑖,𝑗 to denote the qubits on which
these two-qubit operators work. Here, by definition, the first qubit is the control qubit
and the second qubit is the target qubit. The C𝑍 and C𝑋 operators can be generalized to
a controlled-Pauli operator C𝑃 and a controlled-unitary operator C that, respectively,
applies a general Pauli gate 𝑃 or a general unitary transformation  if the control qubit is
in the |1⟩ state. A concrete example is the C𝑌 gate depicted in Fig. 2.6a.

In Fig. 2.5, we see how a combination of three C𝑋 gates in series can be used to
interchange the states of two qubits. This combination of gates leads to the SWAP gate.
We use this gate in Fig. 2.8a to construct the main building block of measurement-based
quantum computing. Furthermore, theHadamard gate𝐻 in Fig. 2.5 accomplishes𝐻𝑍𝐻 =𝑋
and 𝐻𝑋𝐻 = 𝑍 . This gate also maps the computational basis states as 𝐻 |0⟩ = |+⟩ and
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𝑃1 𝑃2 ⋱ 𝑃𝑁
|+⟩ ∙ ∙ ∙ 𝑋 𝑚

𝜌
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(a)

𝜈1 𝑃1𝜈2 𝑃2⋮ ⋱𝜈𝑁 𝑃𝑁
𝜈1 ∙ 𝑋 𝑚1𝜈2 ∙ 𝑋 𝑚2⋮ ⋱ ⋮𝜈𝑁 ∙ 𝑋 𝑚𝑁

𝜌
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(b)

Figure 2.4: (a) Circuit diagram for measuring the joint 𝑁 -qubit Pauli operator 𝑃 = 𝑃1⊗𝑃2⊗⋯⊗𝑃𝑁 on a state 𝜌
with the aid of an ancillary qubit initialized in the state |+⟩= (|0⟩+ |1⟩)/√2. The gates in this diagram are two-qubit
controlled-Pauli gates—see Sec. 2.3.3 and Fig. 2.5 for more details. As introduced in Fig. 2.3a, the box at the
right denotes a Pauli-𝑋 measurement with outcome 𝑚 ∈ {+1,−1}. (b) Circuit diagram for the same measurement
with the aid of an ancillary GHZ state |GHZ(𝑁 )⟩ = (|0⟩⊗𝑁 + |1⟩⊗𝑁 )/√2. With this setup, it is possible to measure
the Pauli operator 𝑃 on qubits belonging to 𝑁 parties 𝜈1, 𝜈2,… , 𝜈𝑁 . We call such a measurement a non-local
measurement. Besides the entangled state, this operation requires local operations and classical communication.
The parties find the full measurement outcome 𝑚 =∏𝑁𝑖=1𝑚𝑖 by combining their individual measurement results(𝑚1,𝑚2,… ,𝑚𝑁 ) ∈ {+1,−1}𝑁 . For 𝑁 = 2 parties, the ancillary state simplifies to a Bell state |Φ+⟩.
𝐻 |1⟩ = |−⟩, where the states |+⟩ and |−⟩ are the eigenstates of the Pauli-𝑋 matrix. Since it
allows us to switch between the computational basis (i.e., the Pauli-𝑍 basis) and the equally
useful Pauli-𝑋 basis, the Hadamard gate is an important gate in quantum computing. We
depict the Hadamard gate as a rotation on the Bloch sphere in Fig. 2.2b.

We define a universal gate set as a set of quantum gates able to generate any 2𝑁 ×2𝑁
unitary operation on an 𝑁 -qubit system. A quantum computer in possession of such a
gate set can perform any computational task possible with quantum computing. Several
combinations of gates form a universal gate set. As we saw above, any single-qubit unitary
can, up to a global phase, be generated from the Pauli-𝑋 and Pauli-𝑍 rotations of Eq. (2.5).
However, by themselves, these rotations are not universal, as they can not entangle states—
i.e., qubits that begin as separable states remain separable after these rotations. This gives
some intuition as to why we need to add either the C𝑍 or the C𝑋 gate to obtain a universal
gate set. If we want to generate every 2𝑁 ×2𝑁 unitary exactly up to the global phase, we
also need to add other single-qubit gates to get a universal gate set.

One often-used example of a universal gate set is the set consisting of the Hadamard
gate, the C𝑋 gate, and the so-called 𝑇 gate. The 𝑇 gate can be considered, up to a global
phase, as a Pauli-𝑍 rotation over an angle 𝜋/4:

𝑇 ≡ 𝑒𝑖𝜋/8𝑅𝑍 (𝜋/4) = [1 00 𝑒𝑖𝜋/4] , 𝑆 ≡ 𝑇 2 = [1 00 𝑖] . (2.7)
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C𝑋 = ∙ = ∙𝑋 = ∙𝐻 ∙ 𝐻 = ⎡⎢⎢⎢⎣
1 0 0 00 1 0 00 0 0 10 0 1 0

⎤⎥⎥⎥⎦ ,
C𝑍 = ∙∙ = 𝑍∙ = ∙𝑍 = ∙𝐻 𝐻 = ⎡⎢⎢⎢⎣

1 0 0 00 1 0 00 0 1 00 0 0 −1
⎤⎥⎥⎥⎦ ,

SWAP = ×× = ∙ ∙∙ = ∙∙ ∙ = ⎡⎢⎢⎢⎣
1 0 0 00 0 1 00 1 0 00 0 0 1

⎤⎥⎥⎥⎦ ,𝐻 = 1√2 [1 11 −1] .
Figure 2.5: Controlled-not (C𝑋 ), controlled-phase (C𝑍), SWAP, and Hadamard (𝐻 ) gates, including their matrix
representation in the computational basis.

If we apply the 𝑇 gate two times in succession, we get another often used quantum gate:
the phase gate or 𝑆 gate. This gate is effectively a Pauli-𝑍 rotation over an angle 𝜋/2. The
significance of the 𝑇 gate becomes clear when we realize it is the “missing operation” for
efficiently applying universal operations in the main error-correction schemes discussed in
Ch. 3 and the rest of this thesis. The 𝑆 gate transforms a Pauli-𝑋 matrix into a Pauli-𝑌 matrix
(i.e., 𝑌 = 𝑆𝑋𝑆†) and transforms the eigenstates of Pauli-𝑋 into the Pauli-𝑌 eigenstates |+𝑖⟩ ≡(|0⟩+ 𝑖 |1⟩)/√2 and |−𝑖⟩ ≡ (|0⟩− 𝑖 |1⟩)/√2. All gates that can be generated with combinations
of 𝐻 , C𝑋 , and 𝑆 gates form the so-called Clifford group. This group maps the 𝑁 -qubit Pauli
group (𝑁 ) onto itself—i.e., unitary operators of the 𝑁 -qubit Clifford group either leave
each element of (𝑁 ) invariant or permute the elements of (𝑁 ).

As mentioned in Sec. 2.3.2, two different single-qubit Pauli operators anti-commute.
This has consequences for the commutation relations between quantum computing gates.
We summarize a selection of (anti-)commutation and decomposition relations in Fig. 2.6.

2.3.4 Stabilizer operator
In this thesis, we make extensive use of the stabilizer formalism. This set of techniques
allows one to efficiently describe and study error-correction codes in terms of Pauli opera-
tors, as discussed in more detail in Ch. 3. As becomes clear below and in the next chapter,
the stabilizer formalism is a powerful tool to compactly describe multi-qubit states, as well
as vector spaces of states. This is because, with the stabilizer formalism, it is possible to
describe quantum states by a set of Pauli operators that “stabilize” the states—meaning we
no longer need to describe their full state vector or density matrix.

A stabilizer operator (or stabilizer) of a quantum state |𝜙⟩ is an operator  that verifies |𝜙⟩ = |𝜙⟩—i.e., |𝜙⟩ is an eigenvector of  with eigenvalue +1 and, in consequence, leaves
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(a)𝑃 ′ 𝑃 ′′∙ =

𝑃 ′′ 𝑃 ′∙ 𝑍
(b)
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(d)

∙𝑃 ′ 𝑃 ′′∙ =
∙ ∙𝑃 ′′ 𝑃 ′∙ ∙

(e)𝑆 ∙𝑃 = ∙ 𝑆𝑃 𝑆† ∙𝑃 = ∙ 𝑆†𝑃
(f)𝑆 ∙ = 𝑌 𝑆∙ 𝑍 𝑆† ∙ = 𝑌 𝑆†∙
(g)

Figure 2.6: (a) Decomposition of a C𝑌 gate into a C𝑍 gate, a C𝑋 gate and an 𝑆 gate (or an 𝑆† gate depending on
the order of the C𝑍 and C𝑋 gates). (b) Commutation of a gate 𝑃 ′ ∈ {𝑋,𝑌 ,𝑍} through the target of a gate C𝑃 ′′ for𝑃 ′′ ∈ {𝑋,𝑌 ,𝑍} and 𝑃 ′ ≠ 𝑃 ′′. This commutation relation also holds for 𝑃 ′ and 𝑃 ′′ being anti-commuting multi-qubit
Pauli operators. (c) Commutation of a gate 𝑃 ′ ∈ {𝑋,𝑌 } through the control of a gate C𝑃 ′′ for 𝑃 ′′ ∈ {𝑋,𝑌 ,𝑍}. This
commutation relation also holds for 𝑃 ′ being a multi-qubit Pauli operator with Pauli-𝑋 or Pauli-𝑌 on the qubit that
holds the control of the C𝑃 ′′ gate and/or 𝑃 ′′ being a multi-qubit Pauli operator. (d) Commutation of a C𝑃 ′ gate
and a C𝑃 ′′ gate that overlap with one control and one target, for 𝑃 ′ ∈ {𝑋,𝑌 ,𝑍} and 𝑃 ′′ ∈ {𝑋,𝑌 }. This commutation
relation also holds for 𝑃 ′ being a multi-qubit Pauli operator and/or 𝑃 ′′ being a multi-qubit Pauli operator with
Pauli-𝑋 or Pauli-𝑌 on the qubit that holds the control of the C𝑃 ′ gate. (e) Commutation of a C𝑃 ′ gate and a C𝑃 ′′
gate that overlap on their target qubit, for 𝑃 ′, 𝑃 ′′ ∈ {𝑋,𝑌 ,𝑍} and 𝑃 ′ ≠ 𝑃 ′′. This commutation relation also holds
for 𝑃 ′ and 𝑃 ′′ being anti-commuting multi-qubit Pauli operators. (f) Commutation of an 𝑆 and an 𝑆† gate through
the control of a C𝑃 gate, for 𝑃 ∈ {𝑋,𝑌 ,𝑍}. (g) Commutation of an 𝑆 and an 𝑆† gate through the target of a C𝑋 gate.

|𝜙⟩ invariant. An 𝑁 -qubit pure quantum state has 2𝑁 stabilizer operators. These 2𝑁
operators form the stabilizer group of the state, generated by a subset of 𝑁 independent
operators. All operators in this group stabilize the state. For example, the 𝑁 -qubit GHZ
state |GHZ(𝑁 )⟩ = (|0⟩⊗𝑁 + |1⟩⊗𝑁 )/√2 has a stabilizer group generated by the operators{𝑋1𝑋2…𝑋𝑁 ,𝑍1𝑍2,𝑍2𝑍3,… ,𝑍𝑁−1𝑍𝑁 } . (2.8)

A stabilizer group always includes the identity 1 on all involved qubits but never includes−1. We call the 2𝑁 −1 operators in this group that are not the identity 1 the non-trivial
stabilizers of the state. Typically, we only consider stabilizer operators that are Pauli
operators: we restrict to stabilizer states stabilized by Pauli operators. Each 𝑁 -qubit
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 𝑃⋮ ⋮ =  †𝑃 ⋮ ⋮
(a)𝜌|𝜙⟩ =

𝜌 ∙|𝜙⟩ 
(b)∙ 𝑍

 =
𝑍


(c)

𝑋∙ =
𝑋𝑍

(d)

Figure 2.7: Four situations where the left circuit is equivalent to the circuit on the right. (a) A quantum gate 
before a single-qubit or multi-qubit measurement of Pauli operator 𝑃 can be converted to the same gate applied
after measuring the operator  †𝑃—in other words, the measurement operation has commuted with the gate.
This relation is also discussed at the end of Sec. 2.3.1. (b) The controlled- gate (i.e., the C gate) between a qubit𝜌 and a pure state |𝜙⟩ leaves both states invariant when |𝜙⟩ is stabilized by —i.e., for  |𝜙⟩ = |𝜙⟩. (c) A C𝑖,𝑗 gate
(i.e., a controlled- gate) before a Pauli-𝑍 measurement on qubit 𝑖 can be converted to conditionally applying 
on qubit 𝑗 based on the measurement result—i.e.,  is applied when the measurement result is −1 but  is not
applied when the measurement result is +1. (d) A C𝑋𝑖,𝑗 gate before a Pauli-𝑋 measurement on qubit 𝑗 can be
converted to conditionally applying 𝑍 on qubit 𝑖 based on the measurement result.

stabilizer group then becomes an Abelian (i.e., commutative) subgroup of the full Pauli
group (𝑁 )—i.e., a group in which all operators commute with each other. The Clifford
group, introduced in Sec. 2.3.3, is exactly the group of operators that map Pauli stabilizer
states to other Pauli stabilizer states.

If, instead of 2𝑁 stabilizer operators (i.e., 𝑁 generators), we only use 2𝑀 stabilizers (i.e.,𝑀 < 𝑁 generators) to describe an 𝑁 -qubit state, we do not describe a single state, but a
subspace of 𝐾 = 𝑁 −𝑀 states. In Ch. 3, this principle is used to define error-correction
codes. In an error-correction code, the states in the subspace of the stabilizer operators
become so-called logical states.

We sometimes write  = ⟨𝑔𝑖⟩𝑀𝑖=1 ≡ ⟨𝑔1, 𝑔2,… , 𝑔𝑀 ⟩ to denote that a stabilizer group 
of a state or vector space is generated by the operators {𝑔1, 𝑔2, ..., 𝑔𝑀 }. With the stabilizer
formalism, it is straightforward to update the stabilizer group  = ⟨𝑔𝑖⟩𝑀𝑖=1 after a unitary
operation or Pauli measurement on the involved qubits. A unitary operation  simply
transforms the stabilizer group as  ↦ ⟨ 𝑔𝑖 †⟩𝑀𝑖=1. Furthermore, measuring a Pauli
operator that commutes with all stabilizer operators leads to a deterministic 𝑚 = +1
measurement outcome and does not alter the stabilizer group. On the other hand, measuring
a Pauli operator 𝑃 that anti-commutes with at least one of the stabilizer generators 𝑔 ∈ {𝑔𝑖}𝑀𝑖=1
has 50% probability of giving 𝑚 = +1 and 𝑚 = −1 measurement outcomes. In the list of
post-measurement generator operators, 𝑚𝑃 replaces 𝑔 , whereas all additional generators
that anti-commute with 𝑃 need to be multiplied by 𝑔 .
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2.3.5 Measurement-basedqantum computation
A specific class of stabilizer states is the class of graph states [3]. These states have important
applications in quantum error correction and quantum networks. A graph state is a multi-
qubit stabilizer state for which one can use mathematical graphs (i.e., objects with vertices
and edges) to describe its stabilizer group. Specifically, one can use the graph representation
to define its stabilizer generators. In this representation, qubits in the |+⟩ state are placed
on the vertices of the graph—i.e., qubits individually stabilized by the Pauli-𝑋 operator.
The edges of the graph describe inter-qubit connections realized with C𝑍 gates between
the qubits. As a result of these gates, the Pauli-𝑋 stabilizer operator on each qubit acquires
additional Pauli-𝑍 operators on its neighbors after “commuting through” the C𝑍 gates—see
Fig. 2.6b for more information. More formally, a certain graph 𝐺 = (𝑉 ,𝐸), with 𝑉 its set of
vertices and 𝐸 its set of edges, corresponds to a stabilizer state |𝐺⟩ that is generated by the
operators 𝑋𝑖⨂𝑗∈ℕ𝑖 𝑍𝑗 , for all 𝑖 ∈ 𝑉 . Here, ℕ𝑖 = { 𝑗 ∣ (𝑖, 𝑗) ∈ 𝐸 } is the neighborhood of vertex𝑖 ∈ 𝑉 : the set of vertices that are connected with an edge to vertex 𝑖. Since graph states
can be created by initializing all qubits in the |+⟩ state and applying C𝑍 gates between the
qubits that are connected via an edge, |𝐺⟩ is defined as |𝐺⟩ =∏(𝑖,𝑗)∈𝐸C𝑍𝑖,𝑗 |+⟩⊗|𝑉 |.

When a graph state is based on a graph described on a regular lattice, the correspond-
ing stabilizer states are often referred to as cluster states. These cluster states typically
form the resource states for measurement-based quantum computation (MBQC). This
paradigm can be seen as a counterpart of the circuit-based computation that we see in,
e.g., Figs. 2.3, 2.4, 2.5, 2.6, and 2.7, and is used for protocols like, e.g., blind quantum com-
puting [4, 5]. This protocol allows a client to perform calculations on a remote quantum
computer without revealing any calculation details.

In MBQC, we prepare a graph or cluster state and perform calculations on it by mea-
suring out the qubits of this state. Typically, intermediate corrections based on previous
measurement outcomes are applied to the measurement basis (bases) of the next measure-
ment(s). This is necessary because, in MBQC, a general unitary transformation can only be
achieved if we teleport the state to another qubit during the operation. For example, with
the one-bit teleportation scheme of Fig. 2.8a it is possible to deterministically teleport a state|𝜓⟩ to another qubit, as long as we apply a Pauli-𝑋 correction in case we get a measurement
outcome 𝑚 = −1. The one-bit teleportation circuit can derived from the SWAP gate, using
the equivalent quantum circuits depicted in Figs. 2.7b and 2.7c. Usually, teleportation is
considered in a context where the two-qubit gate in Fig. 2.8a can not be carried out directly,
e.g., because the two involved qubits are not part of the same quantum system [6–8]. In
that situation, we can apply the circuit of Fig. 2.8a two times in succession, where one of
the two-qubit gates is replaced by a Bell pair. However, in the context of MBQC, we take a
different approach and focus on situations where the two-qubit gate can be applied directly.

In the context of graph and cluster states, it is more convenient to work with C𝑍
gates instead of C𝑋 gates. For the one-bit teleportation scheme, this leads to the circuit of
Fig. 2.8b. This scheme works in the same way, apart from the fact that we now teleport𝐻 |𝜓⟩
instead of just the state itself. However, in MBQC, this is not a problem. That is because we
are primarily interested in situations where we teleport a state and simultaneously apply a
unitary  to the state. For a specific unitary  , we can now simply calculate and apply ′ = 𝐻 , and this effectively leads to the application of  , as we see in Fig. 2.8c.

Even more generally, we are interested in a situation where we create a graph state



2

26 2 Basics of qantum computing

|𝜓⟩ × 𝑍|+⟩ × |𝜓⟩ =
|𝜓⟩ ∙ ∙ 𝑍|+⟩ ∙ |𝜓⟩ =

|𝜓⟩ 𝑍|+⟩ ∙ 𝑋 |𝜓⟩
(a)|𝜓⟩ ∙ 𝑋|+⟩ ∙ 𝑋 𝐻 |𝜓⟩

(b)

|𝜓⟩  ∙ 𝑋|+⟩ ∙ 𝑋 𝐻 |𝜓⟩
(c)|𝜓⟩ ∙ 𝑅𝑍 (𝜑) 𝑋|+⟩ ∙ 𝑋 ∙ 𝑅𝑍 (𝜃) 𝑋|+⟩ ∙ 𝑋 ∙ 𝑅𝑍 (𝜗) 𝑋|+⟩ ∙ 𝑋 |𝜓′⟩

(d)

Resource state|𝜓⟩ ∙ 𝑅𝑍 (𝜑) 𝑋 𝑚1 ∙|+⟩ ∙∙ 𝑅𝑍 (𝑚1𝜃) 𝑋 𝑚2 ∙|+⟩ ∙∙ 𝑅𝑍 (𝑚2𝜗) 𝑋 𝑚3 ∙|+⟩ ∙ 𝑍 𝑋 |𝜓′⟩
(e)

Figure 2.8: Building blocks for measurement-based quantum computation (MBQC). The measurement outcomes
obey 𝑚1,𝑚2,𝑚3 ∈ {+1,−1}. Double lines indicate conditional gates: if the (product of the involved) measurement
outcome(s) is +1, this gate is not applied, but for −1, it is applied. (a) One-bit teleportation with a C𝑋 gate. We
use the relation in Fig. 2.5 to express the SWAP gate as three C𝑋 gates. Using the identity in Fig. 2.7b, the firstC𝑋 gate can be removed because 𝑋 |+⟩ = |+⟩; using the identity in Fig. 2.7c, the last C𝑋 gate can be incorporated
in the Pauli-𝑍 measurement on the first qubit. (b) One-bit teleportation with a C𝑍 gate. (c) One-bit teleportation
with an operation on the qubit before teleportation. (d) Teleportation scheme for applying a general unitary = 𝐻𝑅𝑍 (𝜗)𝐻𝑅𝑍 (𝜃)𝐻𝑅𝑍 (𝜑) on a state |𝜓⟩. The final state is |𝜓′⟩ = |𝜓⟩. Because the Pauli-𝑍 rotations in the
decomposition of the unitary commute with the C𝑍 gates of the scheme, they can alternatively be applied right
before the measurements—moreover, they can now be regarded as changing the measurement operator and we
can incorporate them in the measurement operation. (e) The same scheme as (d), but now with the corrections
moved to the end of the circuit, using (anti-)commutation relations of Fig. 2.6. This makes it possible to reframe
the circuit in the context of MBQC. (Anti-)commutation relations change what operators have to be applied and
how the corrections have to be incorporated (based on the measurement outcomes).

and apply  by measuring out the state. To achieve this, we decompose our unitary
as  = 𝐻𝑅𝑍 (𝜗)𝐻𝑅𝑍 (𝜃)𝐻𝑅𝑍 (𝜑), where we ignore the global phase of the operator and
split up the teleportation scheme into three steps [9]. Because each of the three 𝑅𝑍
rotations commutes with the C𝑍 gate, they can now be placed after the C𝑍 gate. As
explained in Sec. 2.3.1, these rotations effectively alter the measurement observable from𝑋 to 𝑅𝑍 (−𝜃)𝑋 𝑅𝑍 (𝜃), and similarly for the other two measurements. The associated circuit
is shown in Fig. 2.8d. Finally, the conditional Pauli-𝑋 corrections can be moved to the end
of the circuit, using the commutation rules 𝑋𝑖C𝑍𝑖,𝑗 = C𝑍𝑖,𝑗 𝑋𝑖𝑍𝑗 (see Fig. 2.6b or Fig. 2.6c)
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|𝜓1⟩ ∙ 𝑋|+⟩ ∙ 𝑋 ∙|+⟩ ∙ 𝑋 ∙ } |𝜓′⟩|𝜓2⟩ ∙ 𝑋
(a)

Resource state|𝜓1⟩ ∙ 𝑋 𝑚1 ∙|+⟩ ∙∙ 𝑋 𝑍|+⟩ ∙∙ 𝑍 𝑋 } |𝜓′⟩|𝜓2⟩ ∙ 𝑋 𝑚2 ∙
(b)

Figure 2.9: (b) Circuit that carries out a C𝑍 gate on two qubits of a MBQC state. This circuit is based on circuit (a),
that applies a C𝑍 gate on two qubits that are teleported with the one-bit teleportation scheme of Fig. 2.8b. The
output state of both circuits is |𝜓′⟩ = C𝑍1,2𝐻 |𝜓1⟩⊗𝐻 |𝜓2⟩.
and 𝑋 𝑅𝑍 (𝜃) = 𝑅𝑍 (−𝜃)𝑋 [10]. This leads to the circuit in Fig. 2.8e. We see that the chain
of C𝑍 gates on the initial states has the form of a graph state. Measuring the first three
qubits in the measurement bases indicated by the rotations that achieve  leads to the
state  |𝜓⟩ on the final qubit of the chain, up to Pauli-𝑍 and Pauli-𝑋 corrections based on
the measurement outcomes.

Since a C𝑍 gate fits directly in the format of the graph state, the same techniques can
be used to perform a C𝑍 gate between two teleported qubits. In Fig. 2.9, we see how we
can perform a C𝑍 gate by measuring out two qubits of a graph state. Together with the
operations of Fig. 2.8, this shows that, if we have the right resource state, we can perform
any quantum operation by carrying out adaptive measurements.

2.4 Noise models
Unfortunately, no quantum computer or quantum operation is perfect—this is exactly what
makes the concept of the density matrix so useful. In Ch. 3, we look extensively at options
to deal with unwanted errors appearing during our calculations. Here, we first introduce
the building blocks for describing and modeling these errors.

We start in Sec. 2.4.1 by going over a set of general noise channels used to describe
noise in quantum computing. The (inevitable) existence of noise in quantum systems is
typically modeled as classical uncertainty on quantum states and channels—i.e., using the
density matrix formalism introduced in Sec. 2.2.2. We use this approach to describe and
classify noisy quantum states in Sec. 2.4.2 and noisy quantum operations in Sec. 2.4.3.

Describing noise on quantum states and operations is another area where the Pauli
operators come in. This is because it is often infeasible to track all possible transformations
that can occur in a quantum state and capture them in a statistical ensemble. Instead, a
typical approach is to approximate noise using only Pauli transformations. In Sec. 2.4.4, we
discuss how a general state or channel can be converted to a representation based on Pauli
operators. This is useful because describing noise with just Pauli errors is often easier than
dealing with the full noise model, while still typically providing a good approximation.
That is because, if the errors occur as arbitrary rotations of the form of Eq. (2.5) and are
described by a homogeneous probability distribution, the average noise channel can be
described as a channel with Pauli errors [11, 12].
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γ = 0

γ = 0 γ = 0.22 γ = 0.44 γ = 0.66 γ = 0.88

γ = 0.22 γ = 0.44 γ = 0.66 γ = 0.88
(a)

(b)

Figure 2.10: (a) Transformation of pure states 𝜌 = |𝜓⟩⟨𝜓| on the Bloch sphere with the general amplitude damping
channelGAD(𝜌,𝛾) for several values of 𝛾 . The original Bloch sphere is printed with grey lines and the states
after the transformation are printed in blue. The yellow point in the middle of the Bloch sphere corresponds to
the maximally mixed state. We see that for 𝛾 = 0 the channel does not transform the states, whereas for 𝛾 → 1 the
channel sends all states to the maximally mixed state. (b) Transformation of pure states 𝜌 = |𝜓⟩⟨𝜓| on the Bloch
sphere with the phase damping channel PD(𝜌,𝛾′) for several values of 𝛾′. The original Bloch sphere is printed
with grey lines and the states after the transformation are printed in green. We see that this channel does not
transform the basis states |0⟩ and |1⟩ themselves: it only removes phase information for a superposition of these
states.

2.4.1 Noise channels
Typically, errors associatedwith noisy operations or states are defined as channels, using the
framework introduced in Sec. 2.3.1 to define their Kraus operators. Alternatively, for some
channels, it is more intuitive to describe directly how they transform the density matrix.
Channels described with Pauli matrices as Kraus operators are known as Pauli channels.
Examples of Pauli channels are the depolarizing channels and the dephasing channel (also
known as the phase damping channel) defined below. We refer to a general Pauli channel
in this thesis with the symbol𝑃 . In Sec. 2.3.2, we discuss how, for qubits defined in the
computational basis, Pauli-𝑋 operators introduce bit-flips and Pauli-𝑍 operators introduce
phase-flips. Since 𝑌 = 𝑖𝑋𝑍 holds, this means that Pauli-𝑌 operators introduce both bit-
flips and phase-flips. As indicated above, most error models use the Pauli operators to
introduce these flips as stochastic errors. They introduce these errors either at random or
after an operation, as discussed in Sec. 2.4.3. For example, the so-called phenomenological
error model introduces independent and identically distributed (i.i.d.) Pauli errors with
probability 𝑝.

Apart from Pauli errors, another common error type used is the erasure error. This
error implies the loss of a qubit—e.g., a photon that is absorbed in a waveguide somewhere
along the way. This loss comes with a “flag” that tells us the qubit is lost—e.g., because we
notice that the photon is no longer there.
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Depolarizing channel. The single-qubit depolarizing channel is defined as

depol1(𝜌,𝛾) ≡ (1− 𝛾)𝜌+ 𝛾3 ∑𝑃∈{𝑋,𝑌 ,𝑍 }𝑃 𝜌𝑃 =(1− 4𝛾3 )𝜌+ 4𝛾3 𝕀2 . (2.9)

The two-qubit depolarizing channel is defined as

depol2(𝜌,𝛾) ≡ (1− 𝛾)𝜌+ 𝛾15 ∑(𝑃,𝑃 ′)(𝑃 ⊗𝑃 ′)𝜌 (𝑃 ⊗𝑃 ′) =(1− 16𝛾15 )𝜌+ 16𝛾15 𝕀⊗24 . (2.10)

For the sum in Eq. (2.10), the operators (𝑃,𝑃 ′) are Pauli operators taken from{𝕀,𝑋 ,𝑌 ,𝑍 }2 \(𝕀,𝕀). Further, both the single-qubit and the two-qubit channels have 0 ≤ 𝛾 ≤ 1.
For 𝛾 = 1, we obtain the maximally mixed state. For the depolarizing channel, the occur-
rence of errors follows a uniform distribution, meaning that all non-trivial Pauli errors are
equally likely to occur.

Dephasing (phase damping) channel. The dephasing channel describes what hap-
pens to a qubit when it loses its phase information as a result of a stochastic phase-flip—i.e.,
a Pauli-𝑍 error. It is defined as:

dephase(𝜌,𝛾) ≡ (1− 𝛾)𝜌+ 𝛾 𝑍 𝜌𝑍. (2.11)

In Ch. 7, we additionally make use of a variant on the dephasing channel, i.e., the phase
damping channel PD(𝜌,𝛾′), that is defined by the Kraus operators

(1)PD = [1 00 √1− 𝛾′] , (2)PD = [0 00 √𝛾′] . (2.12)

This channel is equivalent to the dephasing channel by setting
√1− 𝛾′ = 1−2𝛾 .

(General) amplitude damping channel. The amplitude damping channel is an
example of a channel that is conveniently written in terms of its Kraus operators. It is
commonly used to describe what happens to a state when it naturally relaxes (or decoheres)
to the ground state of a physical system. Typically, this state is labeled as |0⟩. For example,
if our qubit is a photon and we use |1⟩ to define the presence of the photon and |0⟩ to define
its absence. The amplitude damping channel can now be used to describe a channel that
might lead to the loss of our photon. This standard version of the amplitude damping
channel,AD(𝜌,𝛾), is defined by the following Kraus operators:

(1)AD = [1 00 √1− 𝛾] , (2)AD = [0 √𝛾0 0 ] . (2.13)

In principle, it is, however, possible to construct a general amplitude damping channel that
relaxes to any state [13]. Specifically, another useful version of the amplitude damping
channel is the one that relaxes to the maximally mixed state introduced in Sec. 2.2.2. This
channel,GAD(𝜌,𝛾), is defined by the following Kraus operators:

(1)GAD = 1√2 [1 00 √1− 𝛾] , (2)GAD = 1√2 [0 √𝛾0 0 ] ,
(3)GAD = 1√2 [√1− 𝛾 00 1] , (4)GAD = 1√2 [ 0 0√𝛾 0] . (2.14)
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In Fig. 2.10 we show how the channels GAD(𝜌,𝛾) and PD(𝜌,𝛾′) transform states on the
Bloch sphere. If we combinePD(𝜌,𝛾) andGAD(𝜌,𝛾) for the same noise parameter 𝛾 , we
get depol1(𝜌,3𝛾/4).

In the remainder of this thesis, if there is potential for confusion on which qubit(s) a
channel works, we use the notationname,𝑞 to denote a channel defined as “name” working
on qubit(s) 𝑞.
2.4.2 Noisy states
To quantify the noise present on a quantum operation, a quantum channel, or a quantum
state, we typically make use of a fidelity measure. This measure can usually be interpreted
as the probability of achieving a noiseless version of the operation, channel, or state—i.e.,
based on the average influence of the noise source. We define the fidelity 𝐹 between two
quantum states 𝜌 and 𝜌′ as [13, 14]𝐹(𝜌,𝜌′) ≡ (Tr√√𝜌𝜌′√𝜌)2 = (Tr |||√𝜌√𝜌′|||)2 . (2.15)

If one of the two states is a pure state 𝜌′ = |𝜓⟩⟨𝜓|, this definition of the fidelity simplifies to𝐹(𝜌,𝜌′) = ⟨𝜓|𝜌|𝜓⟩.
Sometimes the fidelity is referred to as the “distance” of a quantum object from its ideal

version. There is also another measure to denote the distance between two quantum states𝜌 and 𝜌′: the trace distance. In this thesis, we use the following definition for the trace
distance  [13]:

 (𝜌,𝜌′) ≡ 12Tr√(𝜌−𝜌′)†(𝜌−𝜌′) = 12Tr ||𝜌−𝜌′|| . (2.16)

The fidelity 𝐹(𝜌,𝜌′) can be used to bound the trace distance  (𝜌,𝜌′) via [13]1−√𝐹(𝜌,𝜌′) ≤  (𝜌,𝜌′) ≤√1− 𝐹(𝜌,𝜌′). (2.17)

These inequalities can be useful to estimate the fidelity, as calculating the trace distance is
often computationally easier.

The fidelity and trace distance can be used to, e.g., describe how close a state is to one
of the Bell states of Eq. (2.3). The four Bell states can be used as the basis of any two-qubit
quantum state—i.e., as the so-called Bell basis. Applying a depolarizing channel on, e.g.,
the state |Φ+⟩ gives rise to a state that is diagonal in this basis—i.e., a Bell diagonal state:𝜌𝑝00 ,𝑝01 ,𝑝10 ,𝑝11 ≡ 𝑝00 |Φ+⟩⟨Φ+|+𝑝01 |Ψ+⟩⟨Ψ+|+𝑝10 |Φ−⟩⟨Φ−|+𝑝11 |Ψ−⟩⟨Ψ−| . (2.18)

Here, the coefficients should fulfill 𝑝00 + 𝑝01 + 𝑝10 + 𝑝11 = 1. The coefficient 𝑝00 can be
considered as the fidelity of this state with respect to the ideal state |Φ+⟩. Since |Φ−⟩ =(𝕀⊗𝑍) |Φ+⟩, |Ψ+⟩ = (𝕀⊗𝑋 ) |Φ+⟩, and |Ψ−⟩ = −𝑖(𝕀⊗𝑌 ) |Φ+⟩, we sometimes regard the Bell
pair states |Φ−⟩, |Ψ+⟩, and |Ψ−⟩ as noisy versions of |Φ+⟩. This means that applying a
Pauli channel—as, e.g., a depolarizing or a dephasing channel—on one of the qubits of the
state |Φ+⟩ gives rise to a Bell diagonal state. If a Bell diagonal state has 𝑝01 = 𝑝10 = 𝑝11 =(1−𝑝00)/3, we refer to it as an isotropic Bell state 𝜌𝑝00 . This state is also known as the
Werner state.
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Computational basis 𝑋1𝑋2 𝑍1𝑍2|Φ+⟩ |𝜙00⟩ ( |00⟩+ |11⟩)/√2 +1 +1|Ψ+⟩ |𝜙01⟩ ( |01⟩+ |10⟩)/√2 +1 −1|Φ−⟩ |𝜙10⟩ ( |00⟩− |11⟩)/√2 −1 +1|Ψ−⟩ |𝜙11⟩ ( |01⟩− |10⟩)/√2 −1 −1
Table 2.1: The four Bell states from Eq. (2.3), their alternative descriptions |𝜙𝑠1𝑠2 ⟩ for 𝑠1, 𝑠2 ∈ {0,1}, their represen-
tations in the computational basis, and their relations with respect to the stabilizer operators 𝑋1𝑋2 and 𝑍1𝑍2. For
each state, the labels 𝑠1 and 𝑠2 in |𝜙𝑠1𝑠2 ⟩ indicate that the state is stabilized by (−1)𝑠1𝑋1𝑋2 and (−1)𝑠2𝑍1𝑍2.

In Eq. (2.18), the labeling of the coefficients 𝑝𝑠1𝑠2 is based on the stabilizers of the Bell
states, as indicated in more detail in Table 2.1, with 𝑠1, 𝑠2 ∈ {0,1}. We additionally use the
short-hand notation |𝜙𝑠1𝑠2⟩ to describe Bell states themselves based on the signs of their
stabilizers. A similar notation can be used for states based on different signs of the stabilizer
generators of the GHZ state |GHZ(𝑁 )⟩ = (|0⟩⊗𝑁 + |1⟩⊗𝑁 )/√2. These states form a basis for
any 𝑁 -qubit state, with the basis states defined as the 2𝑁 states |𝜙𝑠1𝑠2𝑠3…𝑠𝑁 ⟩ with stabilizer
generators (−1)𝑠1𝑋1𝑋2…𝑋𝑁 , (−1)𝑠2𝑍1𝑍2, (−1)𝑠3𝑍2𝑍3, … , (−1)𝑠𝑁 𝑍𝑁−1𝑍𝑁 . Here, 𝑠𝑖 ∈ {0,1}
indicates the sign of the stabilizer generator for all 𝑖 ∈ {1,2,… ,𝑁 }. In analogy with the Bell
basis, we refer to this basis as the GHZ basis. It is also known as the cat basis [15]. As an
example, we show the eight basis states of the 3-qubit GHZ basis in Table 2.2. For any 𝑁 ,
the basis state |𝜙00…0⟩ is the main 𝑁 -qubit GHZ state |GHZ(𝑁 )⟩.

In Sec. 2.4.4, we show how any state can be converted to an approximate version that
is diagonal in the Bell or GHZ basis. In this thesis, e.g., in Ch. 5, we use this approach
to efficiently describe the states of noisy Bell and GHZ states generated for distributed
quantum computing. To simplify the expressions of Bell and GHZ diagonal states, we
sometimes use the capital Φ symbol to denote the density matrix corresponding to a Bell
or GHZ basis state—i.e., Φ𝑠1𝑠2…𝑠𝑁 ≡ |𝜙𝑠1𝑠2…𝑠𝑁 ⟩⟨𝜙𝑠1𝑠2…𝑠𝑁 | for a state in the 𝑁 -qubit GHZ basis
and Φ𝑠1𝑠2 ≡ |𝜙𝑠1𝑠2⟩⟨𝜙𝑠1𝑠2 | for states in the Bell basis.

2.4.3 Noisy operations
Noisy operations are usually modeled with a noise channel applied after an ideal version
of the operation. For example, a noisy two-qubit gate  on a state 𝜌 can be modeled with
the two-qubit depolarizing channel: 𝜌↦depol2 ( 𝜌 , 𝛾). Different noise channels can
be applied based on the (characterization of the) physical implementation of the operation.
Just as for noisy states, we can define the fidelity of a noisy quantum channel with its ideal
version. The fidelity of two quantum channels1 and 2 is defined as [13]𝐹(1,2) ≡min|𝜓⟩ 𝐹 (1 ( |𝜓⟩⟨𝜓|) , 2 ( |𝜓⟩⟨𝜓|)) . (2.19)

A common type of noise in all quantum systems is decoherence. This process can be
interpreted as the conversion of quantum states to states that can be described purely by
the laws of classical mechanics—i.e., as the loss of quantum coherence. A state is coherent
if there exists a definite phase relation between the components in its superposition—e.g.,



2

32 2 Basics of qantum computing

Computational basis 𝑋1𝑋2𝑋3 𝑍1𝑍2 𝑍2𝑍3|𝜙000⟩ (|000⟩+ |111⟩)/√2 +1 +1 +1|𝜙001⟩ (|001⟩+ |110⟩)/√2 +1 +1 −1|𝜙010⟩ (|011⟩+ |100⟩)/√2 +1 −1 +1|𝜙011⟩ (|010⟩+ |101⟩)/√2 +1 −1 −1|𝜙100⟩ (|000⟩− |111⟩)/√2 −1 +1 +1|𝜙101⟩ (|001⟩− |110⟩)/√2 −1 +1 −1|𝜙110⟩ (|011⟩− |100⟩)/√2 −1 −1 +1|𝜙111⟩ (|010⟩− |101⟩)/√2 −1 −1 −1
Table 2.2: The basis states |𝜙𝑠1𝑠2𝑠3 ⟩ of the 3-qubit GHZ basis, their representations in the computational basis, and
the stabilizers of the state. The signs 𝑠1, 𝑠2, and 𝑠3 describe the relation of the basis state |𝜙𝑠1𝑠2𝑠3 ⟩ with stabilizer
generators (−1)𝑠1𝑋1𝑋2𝑋3, (−1)𝑠2𝑍1𝑍2, and (−1)𝑠3𝑍2𝑍3.
the states (|0⟩+ |1⟩)/√2 and (|0⟩− |1⟩)/√2 are both coherent states. If this phase relation
is unknown or lost, the state has (partly) decohered. This is accompanied by the loss
of quantum information to the surrounding environment. In practical situations, every
state eventually fully decoheres to a mixed state—i.e., a statistical ensemble—in which the
uncertainties are purely classical. In theory, a system that is completely isolated from its
environment does not experience decoherence. However, for quantum computing purposes,
such a system is not useful, as we can not perform operations on it or read out its outcomes.

We use the channels described in Sec. 2.4.1 to model memory decoherence—i.e., deco-
herence emerging over time on states that are stored in memory. For example, we can
formulate the noise parameter 𝛾 of such a channel as 𝛾 = 1− 𝑒−𝑡/𝑇 , where 𝑡 is the time (start-
ing at 𝑡 = 0) and 𝑇 is the coherence time of the concerning state. In this way, the state does
not experience any decoherence at 𝑡 = 0 (since here 𝛾 = 0) and has fully decohered at 𝑡 = ∞
(since here 𝛾 = 1). More specifically, we introduce a 𝑇1 and 𝑇2 coherence time associated
with the general amplitude damping channel GAD(𝜌,𝛾1) and the phase damping channelPD(𝜌,𝛾2), respectively, with 𝛾1 = 1− 𝑒−𝑡/𝑇1 and 𝛾2 = 1− 𝑒−𝑡/𝑇2 .
2.4.4 Pauli twirling
In Sec. 2.3.4, the stabilizer formalism is introduced as an effective way to describe stabilizer
states: states stabilized by Pauli operators. In quantum error correction, stabilizer states are
important as they simplify the analysis of error-correction codes. Since for applying a Pauli
operator on a stabilizer state one only needs to consider (anti-)commutation relations of the
operator with the stabilizers of the state, Pauli (error) channels (as introduced in Sec. 2.4.1)
are typically relatively easy to incorporate in this analysis. Importantly, channels in which
the Kraus operators can not be described as Pauli operators can be converted to Pauli
channels with a technique called Pauli twirling. This, e.g., allows one to approximately
apply a non-Pauli channel in the stabilizer-based analysis of an error-correction code.
We use Pauli twirling for exactly this purpose in Chs. 7 and 8 of this thesis. In general,
twirling [16] can be applied to both states and channels.
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We first consider twirling a state. We consider an 𝑁 -qubit mixed state 𝜌 and an 𝑁 -qubit
stabilizer group  = ⟨𝑔𝑖⟩𝑁𝑖=1 that stabilizes a pure state |𝜓⟩. Twirling can be applied by
“averaging” 𝜌 over all stabilizer operators of the selected state |𝜓⟩:Tw(𝜌) ≡ 1| | ∑𝑃∈ 𝑃 𝜌𝑃. (2.20)

This leads to a state that can be interpreted as the pure state |𝜓⟩ with a Pauli channel
acting on it. To see this, one first has to use |𝜓⟩ to construct an 𝑁 -qubit basis. This can be
achieved with the so-called destabilizer group [17] of |𝜓⟩. This is a group  = ⟨𝑑𝑖⟩𝑁𝑖=1 that
is directly associated with the stabilizer group  = ⟨𝑔𝑖⟩𝑁𝑖=1 of |𝜓⟩. The destabilizer group has the property that one can identify generators in such a way that each generator 𝑑𝑖
anti-commutes with exactly one generator 𝑔𝑖 of  , but commutes with all other generators𝑔𝑗 for 𝑗 ≠ 𝑖. An orthonormal set of basis states can now be identified as {𝑃 |𝜓⟩}𝑃∈ . This
makes it possible to write 𝜌 in this basis, and implement this in Eq. (2.20):𝜌 = ∑𝑃𝑚 ,𝑃𝑛∈ 𝜆𝑚𝑛𝑃𝑚 |𝜓⟩⟨𝜓|𝑃𝑛,Tw(𝜌) = 1| | ∑𝑃𝑠∈ ∑𝑃𝑚 ,𝑃𝑛∈ 𝜆𝑚𝑛𝑃𝑠𝑃𝑚 |𝜓⟩⟨𝜓|𝑃𝑛𝑃𝑠 = ∑𝑃𝑚∈ 𝜆′𝑚𝑃𝑚 |𝜓⟩⟨𝜓|𝑃𝑚. (2.21)

Here, we have defined 𝜆′𝑚 ≡ 𝜆𝑚𝑚 = ⟨𝜓|𝑃𝑚 𝜌𝑃𝑚 |𝜓⟩. In Eq. (2.21), it is possible to simplify the
expression for Tw(𝜌) because, for each combination 𝑃𝑚 ≠ 𝑃𝑛, exactly half of the operators𝑃𝑠 ∈  commute with 𝑃𝑚 and anti-commute with 𝑃𝑛 (or vice versa), while the other half
(anti-)commute with both 𝑃𝑚 and 𝑃𝑛—i.e., all terms 𝑃𝑚 ≠ 𝑃𝑛 cancel out. We see that the
twirling operation gives rise to a Pauli channel acting on |𝜓⟩. The operation does not alter
the original contribution of |𝜓⟩⟨𝜓| in 𝜌, nor does it alter any of the other contributions
that are diagonal in the {𝑃 |𝜓⟩}𝑃∈ basis—this makes that the operation is trace-preserving.
Therefore, if 𝜌 is, e.g., a noisy version of |𝜓⟩, twirling only changes the terms that are
considered noise contributions in the expression for 𝜌. Moreover, twirling 𝜌 over the
stabilizer group  removes all off-diagonal elements of 𝜌 in the {𝑃 |𝜓⟩}𝑃∈ basis.

Since, as mentioned in Sec. 2.4.2, any two-qubit or multi-qubit quantum state can be
defined using the Bell and GHZ basis, respectively, Pauli twirling can be used to convert
any state into a Bell or GHZ diagonal state. This is because the basis states of the Bell
and GHZ basis can be created with the degenerator groups of |Φ+⟩ and |GHZ(𝑁 )⟩. This
realization plays an important role in entanglement distillation protocols, discussed in
Sec. 3.6, as considering diagonal instead of general states simplifies their analysis.

To produce a Pauli channel approximation of a general channel defined as (𝜌) ∶ 𝜌↦∑𝑘(𝑘) 𝜌 ((𝑘))†, one typically twirls the channel over the full 𝑁 -qubit Pauli
group (𝑁 ) viaTw( (𝜌)) ≡ 1|(𝑁 )| ∑𝑃𝑝∈(𝑁 ) 𝑃𝑝 (𝑃𝑝 𝜌𝑃†𝑝 )𝑃†𝑝 = 1|(𝑁 )| ∑𝑃𝑝∈(𝑁 )∑𝑘 (𝑃𝑝(𝑘)𝑃𝑝)𝜌 (𝑃𝑝(𝑘)𝑃𝑝)†

= ∑𝑃𝑚∈(𝑁 )(∑𝑘 |||𝜉 (𝑘)𝑚 |||2)𝑃𝑚 𝜌𝑃†𝑚.
(2.22)
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Here, the last step makes use of the fact that, as mentioned in Sec. 2.3.2, the 𝑁 -qubit Pauli
group forms a basis for 2𝑁 ×2𝑁 matrices—i.e., each Kraus operator(𝑘) can be decomposed
in terms of Pauli operators via (𝑘) =∑𝑃𝑚∈(𝑁 ) 𝜉 (𝑘)𝑚 𝑃𝑚.

We emphasize that other implementations of twirling are possible as well. However, in
this thesis, we restrict to these two types of Pauli twirling. In practice, twirling can, e.g., be
applied by randomly selecting an operator from the twirl group, applying that operator,
and forgetting the result. However, we should rather interpret it as a theoretical trick that
allows one to transform channels and states into approximate versions that are easier to
apply or analyze.
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3
Quantum error correction

In this chapter, we introduce structures and frameworks that can be used to detect unwanted
errors during quantum computation. We start by going over some of the basic elements of
quantum error-correction codes. We then describe a class of topological codes that can be used
to protect states against Pauli errors and discuss how codes from this class can be used to
realize fault-tolerant universal quantum computing. These codes are relevant in Ch. 7 of this
thesis, where we investigate a distributed implementation of a two-dimensional topological
code known as the surface code. Next, we introduce codes defined on cluster states that can
be used to achieve fault-tolerant versions of measurement-based quantum computation. This
part is relevant to Ch. 8, where we investigate the identification and construction of distributed
error-correction channels of this type. At the end of this chapter, we introduce relevant prior
work on entanglement distillation, which can be used to increase the purity of noisy entangled
states. Next to introducing specific protocols for entanglement distillation, we show how
entanglement distillation can be regarded as an application of quantum error correction.
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3.1 Introduction
In the struggle against unwanted noise sources that torment quantum computers, a lot of
faith is put into quantum error-correction codes. Protecting quantum information with
an error-correction code involves encoding the information. In general, the idea is that a
large number of physical qubits hold a smaller number of encoded logical states. Therefore,
such a code typically uses a large vector space—i.e., a vector space associated with a large
number of qubits—in which only a subset of all possible states is used for calculations. This
allows us to locate and undo at least part of the noise that can occur in our system, as long
as we assume none of the states used for calculation are “too closely” located near each
other in the vector space and the errors only cause small deviations to these states. We
convert these statements to more formal descriptions below.

A stabilizer code [1] is a specific type of quantum error-correction code in which the
logical states—i.e., the states holding the encoded information—are defined with stabilizer
operators. We introduce these codes in Sec. 3.2 and describe how, in general, they can
be initialized and used to correct errors. The first quantum error-correction code was
introduced by Peter Shor in 1995 [2]. More codes followed soon after and continue to
be developed as we speak. Given that error correction was already applied on classical
computers before the first idea of a quantum computer was even brought forward, it is
no surprise that these classical error-correction codes form the basis of many quantum
error-correction codes. We discuss a specific class of codes inspired by classical codes in
Sec. 3.2.4—this class forms a subclass of the stabilizer codes.

Using mathematical ideas and formulations in Sec. 3.3, we introduce a stabilizer code
construction that exploits the topological properties of a two-dimensional lattice in Sec. 3.4.
This construction leads to a promising class of stabilizer codes known as topological codes.
These codes are called “topological” because they protect quantum information over a
“macroscopic” distance on a topological space. Roughly speaking, they encode qubits as the
“holes” of such a space—these holes can also be lattice boundaries. Topological codes have
a large tolerance against errors that, e.g., typically appear when applying a two-qubit gate.
However, in their standard definition, these codes are not able to deal with errors in the
measurements required to locate the errors themselves. Luckily, this can be remedied by
repeating these measurements over multiple (time) layers and comparing the results from
one layer to the next.

If we teleport qubits of a topological code to the next time layer we naturally end up
with a code defined on a structure one dimension higher than the topological code—this
dimension being the time dimension for the original topological code. In Sec. 3.5, this
approach is used to reformulate topological codes as cluster states. Next to the qubits
of the original code, these cluster states contain qubits that perform the error-detection
measurements of the original code, as well as qubits used for teleportation of the code to
other layers. As discussed below, the reconstruction of two-dimensional topological codes
as three-dimensional cluster state channels allows one to identify more error-correction
channels based on general three-dimensional cluster states. Since cluster states are the
main resource of measurement-based quantum computation (MBQC), this directly brings
topological codes to the realm of MBQC. The analysis in Secs. 3.4 and 3.5 includes brief
discussions on how general operations can be performed with these error-correction
structures.
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3.2 Stabilizer error-correction codes
Below, we give a general introduction to the topic of stabilizer (error-correction) codes in
Sec. 3.2.1. Furthermore, in Secs. 3.2.2 and 3.2.3, we discuss how one can initialize a code
and use it to detect and correct errors. In Sec. 3.2.4, we focus on a subclass of stabilizer
codes: the so-called Calderbank-Shor-Steane codes (CSS codes) [3, 4]. The main ideas in
Secs. 3.2.1, 3.2.2, 3.2.3, and 3.2.4 are derived from the textbook by Nielsen and Chuang [5].
In Sec. 3.2.5, we introduce the typical threshold behavior existing in error-correction codes.

3.2.1 Main properties
In Sec. 2.3.4, we introduced the stabilizer formalism as a useful tool to describe (vector
spaces of) quantum states efficiently in terms of operators that stabilize them. If it is
possible to use the stabilizer formalism to describe the logical states of an error-correction
code, we call the code a stabilizer code. A stabilizer code is defined by both its stabilizer
generators and logical operators. The generators produce the stabilizers of the logical
states, whereas the logical operators describe the relation between the logical states. The
stabilizer generators, and all stabilizer operators generated by them, are 𝑁 -qubit operators
that leave the logical states of the error-correction code invariant. A set of generators
of the stabilizer group should always be a set of independent operators—i.e., it should be
impossible to write a generator operator as a product of other generator operators. These
generators, and therefore the stabilizer operators themselves, are all mutually commuting
operators. All stabilizer operators should also commute with the logical operators of the
code. On top of that, the encoded logical operators must mirror the (anti-)commutation
relations of the single-qubit operators they portray—e.g., a pair of logical 𝑋 and logical 𝑍
operators should anti-commute, whereas two distinct logical operators that both have the
function of a Pauli-𝑋 operator should commute.

A code with𝑀 independent stabilizer generators and 𝑁 physical qubits has 𝐾 = 𝑁 −𝑀
free qubit degrees of freedom and encodes 𝐾 logical qubits. We define an ⟦𝑁 ,𝐾,𝑑⟧ stabilizer
code as a code with 𝑁 physical qubits that encodes 𝐾 logical qubits of at least a distance 𝑑
apart from each other. Here, the distance 𝑑 is defined as the minimum weight of the Pauli
operator that brings us from one logical state to another—i.e., the weight of the smallest
(non-identity) logical operator. The distance directly corresponds to the weight of the
smallest undetectable error: a code with distance 𝑑 is capable of detecting errors with a
maximum weight of 𝑑 −1 [6]. If we not only want to detect but also correct the errors,
the restriction on the separation between the logical states becomes even stricter. That is
because logical states that are too close to each other could result in corrections toward
the wrong codewords. Therefore, a code with distance 𝑑 is capable of correcting errors
with a maximum weight of ⌊(𝑑−1)/2⌋.

Because the stabilizer operators leave the code invariant, in the absence of errors,
measuring the stabilizer generators should always lead to 𝑚 = +1 measurement outcomes.
This can be used to detect errors in the code, as, in the presence of errors, some stabilizer
generators lead to 𝑚 = −1 measurement outcomes. The set of obtained stabilizer measure-
ment outcomes is called the error syndrome. By decoding this error syndrome, we can find
(the most likely configuration of) physical errors on the qubits of the code, and correct
them. An error syndrome decoder is a (classical) algorithm that identifies error-correction
operators from an error syndrome.
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Figure 3.1: (a) Encoding a 𝐾 -qubit state |𝜓⟩ into an 𝑁 -qubit logical state |𝜓⟩L. Together with the encoding circuit 𝑈 ,
the (𝑁 −𝐾)-qubit state |𝜙⟩ defines the stabilizer operators of the error-correction code. (b) Realizing the encoded
state |𝜓⟩L by initializing all qubits in a certain state |𝜙′⟩ and measuring the code’s stabilizer operators with the
projector Π𝑔 of Eq. (3.1). See Sec. 3.2.2 in the main text for more details.

3.2.2 Code initialization
As indicated in Sec. 3.2.1, an ⟦𝑁 ,𝐾,𝑑⟧ stabilizer code is fully defined by the 𝑀 = 𝑁 −𝐾
independent operators that generate the code’s stabilizer operators and by the logical 𝑍 and𝑋 operators. We can alternatively define the code by an encoding unitary or encoding circuit𝑈 and the stabilizer generators {𝑔′𝑖 }𝑀𝑖=1 of an “ancillary” state |𝜙⟩ on 𝑀 = 𝑁 −𝐾 qubits. As
depicted in Fig. 3.1a, |𝜙⟩ and 𝑈 can be used to decode a 𝐾 -qubit state |𝜓⟩ over all 𝑁 qubits.
The stabilizer group of this code can be written as ⟨𝑔𝑖 = 𝑈𝑔′𝑖 𝑈†⟩𝑀𝑖=1. Common choices for the
ancillary state are |𝜙⟩ = |0⟩⊗𝑀 and |𝜙⟩ = |+⟩⊗𝑀 , which lead to code stabilizers ⟨𝑈𝑍𝑖𝑈†⟩𝑀𝑖=1
and ⟨𝑈𝑋𝑖𝑈†⟩𝑀𝑖=1, respectively. Typically, the logical 𝑋 and 𝑍 operators of the code are
identified by transforming the single-qubit Pauli-𝑋 and Pauli-𝑍 operators on the qubits of|𝜓⟩ with the encoding circuit 𝑈 : 𝑋 𝑗 = 𝑈𝑋𝑗𝑈† and 𝑍 𝑗 = 𝑈𝑍𝑗𝑈†, where 𝑗 ∈ {1,2,… ,𝐾 } are the
qubits of |𝜓⟩, and 𝑋 𝑗 and 𝑍 𝑗 denote the logical 𝑋 and 𝑍 operators, respectively. This makes
that, e.g., the logical basis states of the computational basis are given by |𝑏⟩L = 𝑈 |𝑏⟩ |𝜙⟩, for𝑏 ∈ {0,1}𝐾 .

An example of an encoding circuit 𝑈 is depicted in Fig. 3.2. This circuit encodes a
version of the five-qubit error-correction code [7]: an error-correction code with 𝑁 = 5 and𝐾 = 1 that protects a logical qubit from arbitrary single-qubit Pauli errors. The stabilizer
generators and logical operators can be identified by moving operators 𝑋𝑖 and 𝑍𝑖 from
left to right through the circuit 𝑈 (i.e., commuting them through the circuit), using the
(anti-)commutation relations of Figs. 2.6b and 2.6c. A suitable encoding circuit 𝑈 to establish
a specific stabilizer code can be identified with an algorithm described by Gottesman [1, 8].
As discussed in Sec. 2.3.4, stabilizer operators are typically associated with Pauli operators.
Therefore, the encoding unitary 𝑈 of a stabilizer code is typically a Clifford circuit: such a
circuit transforms a stabilizer ancillary state |𝜙⟩ to a code with Pauli stabilizer operators.

In some situations, a logical state |𝜓⟩L can be created by initializing the qubits in a
certain state |𝜙′⟩ and measuring the stabilizer generators of the code—i.e., by projecting on|𝜙′⟩ with Π𝑔 = 𝑁−𝐾∏𝑖=1 𝕀⊗𝑁 +𝑔𝑖2 = 𝑁−𝐾∏𝑖=1 𝕀⊗𝑁 +𝑈𝑔′𝑖 𝑈†2 = 12𝑁−𝐾 ∑𝑃∈⟨𝑔𝑖⟩𝑁−𝐾𝑖=1 𝑃. (3.1)
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This procedure is depicted in Fig. 3.1b and works in situations where the initial state |𝜙′⟩ is
an eigenstate of (a representation of) the logical operators that stabilize |𝜓⟩. For example,
if the logical 𝑍 operators of the code are tensor products with just single-qubit Pauli-𝑍
operators, the logical |0⟩L state can be initialized with |𝜙′⟩ = |0⟩⊗𝑁 . Similarly, |+⟩L can
be created with |𝜙′⟩ = |+⟩⊗𝑁 if the logical 𝑋 operators only contain single-qubit Pauli-𝑋
operators. For any stabilizer code it is possible to define logical 𝑍 operators that are tensor
products of single-qubit Pauli-𝑍 operators and single-qubit identity operators [1]. The CSS
codes of Sec. 3.2.4 have the property that, on top of that, also logical 𝑋 operators consisting
of just Pauli-𝑋 operators and single-qubit identities can be identified. If projecting withΠ𝑔 on the initial state |𝜙′⟩ does not produce the desired state |𝜓⟩L, it is always possible to
additionally measure logical operators to initialize the correct logical state. For example,
one can also initialize the state |0⟩L by, next to measuring the stabilizer generators, also
measuring the logical 𝑍 operators {𝑍 𝑗 }𝐾𝑗=1.

In practice, initializing |𝜓⟩L with Π𝑔 requires both measuring the operators 𝑔𝑖 (and
possibly also the logical operators) as well as correcting for𝑚𝑖 =−1measurement outcomes.
In the case of an 𝑚𝑖 = −1 measurement outcome, one needs to apply an operator that anti-
commutes with 𝑔𝑖 but commutes with all other stabilizer operators. The stabilizers of the
ancillary state |𝜙⟩ can be used to identify such an operator. For example, in a situation where𝑔𝑖 is defined as 𝑔𝑖 = 𝑈𝑍𝑖𝑈†, the operator 𝑈𝑋𝑖𝑈† anti-commutes with 𝑔𝑖 and commutes with
all other stabilizer operators. Alternatively, one can choose to simply redefine the stabilizer
code with𝑚𝑖𝑔𝑖 as the stabilizer generators—i.e., using −𝑔𝑖 instead of 𝑔𝑖 in case of an𝑚𝑖 = −1
measurement outcome during initializing. This “software correction” does not influence
the error-correction properties of the stabilizer code. (In case of also measuring logical
operators to initialize a logical state, a −1 measurement outcome should be followed with
either a correction with the corresponding anti-commuting logical operator—e.g., with 𝑋 𝑗
after measuring 𝑍 𝑗 or vice versa—or a redefinition of the logical operator.)

3.2.3 Error correction
As mentioned in Sec. 3.2.1, after initializing the error-correction code, errors can be identi-
fied and localized by measuring the stabilizer generators {𝑔𝑖}𝑀𝑖=1 of the code, for 𝑀 = 𝑁 −𝐾 .
Formally, a set of Pauli errors {𝜀𝑘}𝑘 is correctable if, for all 𝑘 and 𝑘′, the combination𝜀†𝑘 𝜀𝑘′ is either a stabilizer operator or an operator completely outside the centralizer of
the stabilizer group [5]. The centralizer is the group of operators that commute with all

|𝜓⟩
𝑈|+⟩|+⟩|+⟩|+⟩

=

|𝜓⟩ ∙ 𝑌|+⟩ ∙ ∙|+⟩ ∙ ∙|+⟩ ∙ 𝑌 ∙|+⟩ ∙ ∙
Figure 3.2: Encoding circuit 𝑈 for (a version of) the ⟦5,1,3⟧ error-correction code. This representation of the
five-qubit code uses |𝜙⟩ = |+⟩⊗4 as the ancillary state. The associated stabilizer generators are {𝑈𝑋𝑖𝑈†}5𝑖=2 ={𝑋1𝑋2𝑍4𝑍5,−𝑋1𝑍2𝑋3𝑋4, 𝑌1𝑍3𝑋4𝑍5,𝑍2𝑍3𝑍4𝑋5}. The logical 𝑍 and 𝑋 operators are 𝑍 = 𝑈𝑍1𝑈† = 𝑍1𝑍2𝑍4 and𝑋 = 𝑈𝑋1𝑈† = 𝑋1𝑍3𝑍4. Other representations of the five-qubit error-correction code are possible as well, with a
different encoding circuit and/or a different ancillary state |𝜙⟩.
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Figure 3.3: Detecting errors introduced by a noise channel𝑃 by decoding the logical information and measuring
out the stabilizers of the ancillary state |𝜙⟩. For explanatory purposes, we use |𝜙⟩= |+⟩⊗𝑀 as the ancillary state here.
In modeling error-correction codes, it is often assumed that the noise channel𝑃 only introduces Pauli errors—e.g.,
with a depolarizing or a dephasing channel introduced in Sec. 2.4.1. An error syndrome 𝐦 = {𝑚1,𝑚2,… ,𝑚𝑁−𝐾 }
that corresponds to an error 𝜀 in a correctable error set requires applying a correction 𝑈†𝜀†𝑈 . The operation𝑃𝐦 corresponds to the part of 𝑈†𝜀†𝑈 applied on the first 𝐾 qubits, as the state of the 𝑁 −𝐾 ancillary qubits is
irrelevant at this point. If 𝑃 only introduces errors of a correctable error set, one is guaranteed to end up with|𝜓′⟩ = |𝜓⟩.
stabilizer operators. If 𝜀†𝑘 𝜀𝑘′ is in the centralizer, we have that 𝜀𝑘𝑔𝑖𝜀†𝑘 = 𝜀𝑘′𝑔𝑖𝜀†𝑘′ holds for all
stabilizer generators 𝑔𝑖. This means that it is not possible to distinguish between 𝜀𝑘 and𝜀𝑘′ when measuring the generators. This is, however, not a problem if 𝜀†𝑘 𝜀𝑘′ is a stabilizer
operator itself, as in that case correcting with 𝜀†𝑘 after an error 𝜀𝑘′ implements a stabilizer
operator and leaves the code invariant. The five-qubit code depicted in Fig. 3.2 can correct
all single-qubit errors. This means that, for the five-qubit code, each of the errors in the
correctable error set {𝑋𝑖, 𝑌𝑖,𝑍𝑖}5𝑖=1 gives rise to a distinct error syndrome.

One way to measure the code’s stabilizer generators is with the aid of ancillary qubits
and a scheme based on Fig. 2.4a. The benefit of this approach is that an identified error 𝜀𝑘
can be corrected by simply applying 𝜀†𝑘 while the information stays encoded. Alternatively,
we can first decode the logical information and measure the original stabilizers of the
ancillary state |𝜙⟩, as depicted in Fig. 3.3. Identifying a detectable error 𝜀𝑘 now requires a
correction with an operator 𝑈†𝜀†𝑘 𝑈 . This variant can be beneficial in situations where one
wants to end up with a decoded version of the main state—e.g., in entanglement distillation
discussed in Sec. 3.6.

Typically, not all possible errors can be found with an error-correction code. However,
a good error-correction code is usually able to find themost probable errors. In other words,
if the errors that have the highest probability of occurring form a correctable error set of
the code, the code filters these errors out with high probability. In practice, this means we
might introduce logical errors with a small probability in situations where we misidentify
an unlikely error 𝜀𝑗 for a more probable error 𝜀𝑘 from the correctable error set—i.e., if we
apply the wrong correction operation 𝜀†𝑘 , leading, in total, to a logical operator 𝜀†𝑘 𝜀𝑗 without
us realizing. Typically, completely preventing logical errors is impossible: in practical
situations, the best-performing error-correction codes are only able to identify the most
likely errors and reduce the probability of errors accumulating to become a logical operator.

3.2.4 Calderbank-Shor-Steane codes
Defining a stabilizer code by an ancillary state |𝜙⟩ and an encoding circuit 𝑈 often gives
limited insight into the error-correcting properties of the code—as, e.g., the distance of
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the code. Therefore, it is useful to identify sets of stabilizer generators and logical op-
erators that fulfill the (anti-)commutation requirements of a stabilizer code in different
ways. Calderbank-Shor-Steane (CSS) codes combine the error-correcting properties of two
classical codes 1 and 2 into a single quantum error-correction code. These codes form a
subclass of all stabilizer codes.

To construct a general CSS code, we assume that 1 encodes 𝐾1 classical bits, 2 encodes𝐾2 bits, and both 1 and 2 both use a total of 𝑁 bits. We also assume that 1 can correct
errors of at least weight 𝑤, and the same is true for the dual of 2 (denoted by ⟂2 ). The
dual of a code are the codewords that are orthogonal to all codewords of the code—i.e.,
their bitwise inner product with the codewords of the code is zero (modulo 2). We further
require that 2 ⊂ 1 holds. This means that the classical codewords contained in 2 should
be a subset of all codewords that are part of 1. We can now construct an ⟦𝑁 ,𝐾1−𝐾2, 𝑑⟧
quantum stabilizer code with 𝑑 ≥ 2𝑤+1. We define 𝐾1−𝐾2 logical quantum states |𝑥 +2⟩
of our CSS code as |𝑥 +2⟩ ≡ 1√|2| ∑𝑦∈2 |𝑥 +𝑦⟩ . (3.2)

Here, each logical state uses a different codeword 𝑥 ∈ 1. Furthermore, |2| = 2𝐾2 is the
number of codewords in 2. The idea is that we use 2 to split up the codewords of 1
into different cosets. Each coset describes one logical state of our eventual quantum code:
Eq. (3.2) describes how this logical state is a superposition of all states in the coset.

We see that CSS codes are rooted in classical codes. Classical codes are always defined
by either a generator matrix  or, alternatively, a parity matrix . Both matrices contain
entries that are either 0 or 1. For a classical code  of 𝑁 bits that encodes 𝐾 bits (i.e.,
that generates 2𝐾 codewords of length 𝑁 ), the generator matrix  is of size 𝑁 ×𝐾 . This
matrix describes how bit strings 𝑦 ∈ {0,1}𝐾 are encoded into codewords 𝑥 ∈  via matrix
multiplication of the form 𝑥 = 𝑦. The corresponding parity matrix is of size (𝑁 −𝐾)×𝑁 .
The codewords 𝑥 ∈  are defined as the kernel or null space of this matrix—i.e., they fulfill𝑥 = 𝟎, with 𝟎 the all-zero bit string (modulo 2). The columns of  should be linearly
independent, as do the rows of . For the dual ⟂ of a classical code , we have that = 𝑇 holds.

For a CSS code that is constructed from classical codes 1 and 2, the generators of the
stabilizer group can be deduced from the parity matrices of 1 and ⟂2 . That is, each of
the (𝑁 −𝐾1) rows of the parity matrix of 1 represents a stabilizer generator of the code:
this operator is a tensor product on all 𝑁 qubits with an identity on qubit 𝑖 if there is a 0
on position 𝑖 of the row or a Pauli-𝑍 if there is a 1 on position 𝑖. Additionally, we have a
stabilizer generator for each of the 𝐾2 rows of the parity matrix of ⟂2 : a tensor product
with an identity on qubit 𝑖 if there is a 0 on position 𝑖 or a Pauli-𝑋 operator for a 1 on
position 𝑖.

Looking at Eq. (3.2), we can understand that these operators generate the stabilizer
operators of the code. The 𝑍 operators generated by the rows of the parity matrix of 1
result in an inner product of zero when multiplied with codewords 𝑥 ∈ 1, and, therefore,
with all terms of the superposition terms in Eq. (3.2). This means that, for these generators,
the full combination of Pauli-𝑍 operators is sure to give a +1 phase factor for each of the
terms in the superposition of Eq. (3.2).
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For the operators with Pauli-𝑋 terms based on the rows of the parity matrix of ⟂2 ,
this is more difficult to see. However, because  = 𝑇 holds for the dual code, we can,
alternatively, view these operators as being described by the columns of the generator
matrix of 2. We now realize that 𝑋 operators based on the columns of the generator matrix
of 2 generate all codewords of 2. This means that multiplying the states of Eq. (3.2)
with operators generated by these columns only permutes the states in the superposition:
this effectively permutes the terms 𝑦 ∈ 2 in the sum of the expression. Therefore, these
operators leave the logical states invariant as well.

A similar argumentation can be used to realize that the logical 𝑋 operators for the
CSS codewords are associated with columns of the generator matrix 1 of 1 that can
not be described as a linear combination of the columns of the generator matrix 2 of 2.
For a classical code, the columns of the generator matrix can be interpreted as generator
operators of the classical codewords. Since 2 ⊂ 1, it is always possible to write each
column of 2 as a linear combination of the columns of 1. As described above, these
columns take on the role of the stabilizer generators of the CSS codewords. However,
since 1 has more columns than 2, some columns of 1 become generators of the logical
operators for the CSS codewords. This is why the distance of the CSS codewords against
Pauli-𝑋 errors is at least the distance of 1. Next to that, for the CSS codewords, logical 𝑍
operators can be directly associated with rows of the parity matrix2 of 2 that cannot
be expressed as linear combinations of the rows of the parity matrix 1 of 1. Therefore,
since these parity matrix rows are columns in the generator matrix of ⟂2 , the distance of
the CSS codewords against Pauli-𝑍 errors is given by at least the distance against bit-flip
errors in the classical code ⟂2 .

In summary, we see that, for CSS codes, the stabilizer generators are split into a set
of operators that only contain Pauli-𝑍 operators and a set of operators that only contain
Pauli-𝑋 operators. This is exactly how we can identify CSS codes: if is possible to (re)define
the stabilizer and logical operators of the code into operators containing either only Pauli-𝑍
or only Pauli-𝑋 operators, the concerning stabilizer code is a CSS code. In Secs. 3.3 and 3.4
below, we discuss specific examples of CSS codes.

3.2.5 Threshold
As discussed, the idea of an error-correction code is to automatically correct unwanted
errors that appear on the qubits in our code. In practice, the operations required to detect
and correct the errors are not perfect themselves as well—i.e., they, themselves, might
introduce errors. This means that, intuitively, the code’s capability to correct errors depends
on how noisy these error-correction operations are. Generally speaking, if the operations
can be carried out with high fidelity, it is beneficial to increase the code space—i.e., to
increase the number of qubits 𝑁 of the code while keeping the number of encoded states𝐾 constant. In that case, this leads to more successful error correction and a smaller logical
error rate, since this generally increases the distance between the logical states, which
allows the code to address errors of more elaborate size. On the other hand, increasing the
code space gives rise to more complexity when it comes to choosing a suitable correction.
Moreover, if the operations are substantially noisy, increasing the code space typically
introduces more noise than the code can correct, leading to a higher logical error rate.
This shows that there is a “tipping point”, or threshold, for the quality of our operations:
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Figure 3.4: Schematic depiction of an error-correction threshold. Typically, an increase of a certain physical
error probability 𝑝 leads to an increase in the logical error probability. For low physical error probabilities, an
error-correction code often deals better with noise when the number of data qubits 𝑁 of the code is increased,
whereas for high error probabilities, error-correction codes often introduce more logical errors. This behavior
gives rise to a threshold value 𝑝th for the concerning physical error rate: for 𝑝 < 𝑝th, increasing 𝑁 decreases the
probability of a logical error, whereas for 𝑝 > 𝑝th, increasing 𝑁 leads to more logical errors.

keeping the physical error rate of the operations below this threshold means we can reach
arbitrarily small logical error rates by selecting the corresponding size of the code space.

In a situation with multiple sources of noise—e.g., gate noise, measurement noise, and
memory decoherence—we typically do not have a single threshold, but rather a multi-
dimensional landscape of threshold values for each noise source in play. We show a
schematic representation of an error-correction threshold in Fig. 3.4. A specific example of
a calculated threshold can be found in Fig. C.1 in App. C. For a specific implementation
of an error-correction code, the exact value of the threshold depends on, among other
aspects, the circuit chosen to carry out the operations, the type of noise introduced by the
operations, and the error syndrome decoder used. As implied in Ch. 1, it is often beneficial
to choose fault-tolerant implementations for measuring the code’s stabilizers or performing
logical operations—e.g., by using operations that do not convert likely correctable errors
into uncorrectable errors when propagating them through the applied circuits.

3.3 ℤ2 chain complex and homology
In this section, we introduce chain complexes and their associated homologies over the
group ℤ2. We discuss the main idea in Sec. 3.3.1, show an example in three dimensions in
Sec. 3.3.2, and introduce cycles in Sec. 3.3.3. The frameworks introduced here can be used to
construct topological CSS codes. In these codes, cycles represent the stabilizer and logical
operators. We use the basics of this section to construct two-dimensional topological codes
in Sec. 3.4 and three-dimensional cluster states in Sec. 3.5. The main ideas presented in
this section are derived from introductory material by Fujii [9] and Browne [10].

3.3.1 General idea
Homology is sometimes referred to as the study of boundary [10], and allows one to
associate algebraic objects with topological spaces. Later in this chapter, we focus on
stabilizer codes on a lattice and use the homology of the lattice to identify logical operators
of these codes. Since identifying valid combinations of stabilizer and logical operators for
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these codes requires dealing with Pauli operators that either commute or anti-commute, we
are primarily interested in the homology of spaces with elements chosen from the groupℤ2. This group is isomorphic to the set of integers {0,1} with addition modulo 2 as the
group operation and 0 as the identity element.

A chain complex is a sequence of modules connected by boundary operators such that
any two consecutive boundary maps are equal to the zero map. The boundary maps are
(group) homomorphisms: group-structure preserving maps between objects of the same
type—i.e., between so-called chains. These maps tell us how to get from an element in
one module to another in the next module. In our case, the modules are vector spaces 𝐶𝑖
constructed over the field ℤ2, with the index 𝑖 describing the dimension 𝑖 ∈ {0,1,… ,𝐷 } of
the objects in the vector space 𝐶𝑖. Chains are the basic elements of homology. We call
elements of a module 𝐶𝑖 an 𝑖-chain: each 𝑖-chain is an 𝑖-dimensional object in the vector
space 𝐶𝑖. The vector spaces 𝐶𝑖 form a sequence 𝐶𝐷 → 𝐶𝐷−1 →⋯→ 𝐶0. The boundary map𝜕𝑖 ∶ 𝐶𝑖 ↦ 𝐶𝑖−1 describes the boundary of an 𝑖-chain in the vector space one dimension
lower—i.e., it gives us the (𝑖−1)-chain that forms the boundary of that 𝑖-chain.

The dual complex or cochain complex is an associated sequence 𝐶𝐷 → 𝐶𝐷−1 →⋯→ 𝐶0,
such that each 𝐶𝑖 shares the same basis elements { (𝐛𝑖)𝑘 = (𝐛𝐷−𝑖)𝑘 }𝑘 as 𝐶𝐷−𝑖. Chains in the
dual complex are called dual chains or cochains—with, to avoid confusion, the chains in the
original complex sometimes being referred to as primal chains. If we use a matrix represen-
tation to describe the chain complex, we can use the relation between primal and dual vector
spaces to find the relation between primal and dual boundary map operators. Given the𝑚𝑛th matrix element of the boundary operator (𝜕𝑖)𝑚𝑛 describing the map (𝐛𝑖)𝑛 ↦ (𝐛𝑖−1)𝑚,
the corresponding dual boundary describes (𝐛𝑖)𝑛 = (𝐛𝐷−𝑖)𝑛 ↤ (𝐛𝑖−1)𝑚 = (𝐛𝐷+1−𝑖)𝑚 in the
opposite direction. Therefore, (𝜕𝑖)𝑚𝑛 = (𝜕𝐷+1−𝑖)𝑛𝑚 holds, or alternatively𝜕𝑖 = 𝜕𝑇𝐷+1−𝑖. (3.3)

3.3.2 Example in three dimensions
As a specific example, for 𝐷 = 3, a chain complex may be defined on a three-dimensional
lattice  = (𝑄,𝐹 ,𝐸,𝑉 ) with cells (i.e., volumes) 𝑄 = {𝐪𝑘}𝑘 , faces 𝐹 = {𝐟𝑘}𝑘 , edges 𝐸 = {𝐞𝑘}𝑘
and vertices 𝑉 = {𝐯𝑘}𝑘 as basis elements of the 3-chains, 2-chains, 1-chains and 0-chains,
respectively—i.e., as basis elements of the vector spaces 𝐶3, 𝐶2, 𝐶1 and 𝐶0 respectively:𝐶3 𝐶2 𝐶1 𝐶0{𝐪𝑘}𝑘 {𝐟𝑘}𝑘 {𝐞𝑘}𝑘 {𝐯𝑘}𝑘

𝜕3 𝜕2 𝜕1
To construct the full 𝑖-chains, we can assign an integer 0 or 1 to each of the basis elements
of 𝐶𝑖, with a 1 indicating this basis element is part of the chain. For example, a 1-chain, i.e.,
a vector 𝐜1 ∈ 𝐶1, can be expressed as a linear combination of edges 𝐞𝑘 :𝐜1 =∑𝑘 𝑧𝑘𝐞𝑘 ≡ [𝑧0 𝑧1 ⋯]𝑇 , where 𝑧𝑘 ∈ ℤ2. (3.4)

Here, we represent the vector representation relative to the basis 𝐸 = {𝐞𝑘}𝑘 . The coefficients𝑧𝑘 ∈ ℤ2 describe whether an edge is part of the chain or not. In some situations, primarily
in Secs. 3.4.3 and 3.5.4, we conveniently denote the coefficients of 𝐜1 as 𝐜1 ≡ {𝑧𝑘}𝑘 instead



3.3 ℤ2 chain complex and homology

3

47

of using the column vector notation of Eq. (3.4). Similar definitions hold for 0-chains 𝐜0,
2-chains 𝐜2, 3-chains 𝐜3, or 𝑖-chains 𝐜𝑖 over vertices, faces, cells, and 𝑖-dimensional objects,
respectively. A chain does not necessarily have to be a connected selection of 𝑖-dimensional
basis objects. By definition of the vector space, all chains in a vector space form a group.
The group operation is composed of the element-wise addition of two vectors modulo 2.
The inner product 𝐜𝑖 ⋅ 𝐜′𝑖 ≡ 𝐜𝑇𝑖 𝐜′𝑖 is computed as the dot product with addition modulo 2
applied to the pairwise multiplied coefficients. The inner product can be geometrically
interpreted as a basis-independent parity measurement of the “overlap” of two 𝑖-chains.

For chain complexes defined on , boundary operators possess a straightforward
geometric interpretation. A cell 𝐪𝑘 is mapped to the faces {𝐟𝑗 }𝑗 that enclose it, a face 𝐟𝑘 is
mapped to the edges {𝐞𝑗 }𝑗 that constitute its boundary, and an edge 𝐞𝑘 is mapped to the
vertices {𝐯𝑗 }𝑗 on its ends. The boundary map of full 𝑖-chains can be found by taking the
linear combination of boundary maps on the individual basis elements that are part of
the 𝑖-chain. That is because, in a modulo-2 context, boundary operators 𝜕𝑖 ∶ 𝐶𝑖 ↦ 𝐶𝑖−1 are
linear maps that maintain vector addition:𝜕𝑖 (𝐜𝑖+ 𝐜′𝑖) = 𝜕𝑖𝐜𝑖+𝜕𝑖𝐜′𝑖 . (3.5)

As mentioned above, in the definition of a chain complex, two consecutive boundary maps
result in the zero map 𝜕𝑖−1𝜕𝑖 = 0, (3.6)

independent of the choice of 𝐜𝑖.
For the dual chain complex associated with the chain complex of this three-dimensional

lattice, the basis elements are given by dual cells𝑄 = {𝐪𝑘}𝑘 , dual faces 𝐹 = {𝐟𝑘}𝑘 , dual edges𝐸 = {𝐞𝑘}𝑘 and dual vertices 𝑉 = {𝐯𝑘}𝑘 . Here we have that the primal vertices correspond to
dual cells (𝑉 → 𝑄), primal edges correspond to dual faces (𝐸→ 𝐹), primal faces correspond
to dual edges (𝐹 → 𝐸), and primal cells correspond to dual vertices (𝑄→ 𝑉 ), such that:𝐶0 𝐶1 𝐶2 𝐶3{𝐯𝑘}𝑘 {𝐞𝑘}𝑘 {𝐟𝑘}𝑘 {𝐪𝑘}𝑘𝜕1 𝜕2 𝜕3
We see that the associated dual boundaries 𝜕𝑖 ∶𝐶𝑖↦𝐶𝑖−1 map objects in𝐶𝑖 to their boundary
objects in 𝐶𝑖−1. The dual boundaries on  = (𝑉 ,𝐸,𝐹 ,𝑄) exhibit comparable behavior to
their primary counterparts. A dual cell (basis element of 3-cochains) 𝐪𝑘 = 𝐯𝑘 is mapped to
the faces (basis elements of 2-cochains) {𝐟𝑗 }𝑗 that enclose it, which correspond to the primal
edges {𝐞𝑗 }𝑗 incident to 𝐯𝑘 . A dual edge (basis element of 1-cochains) 𝐞𝑘 = 𝐟𝑘 is mapped to
the endpoints {𝐯𝑗 }𝑗 , which are the cells (basis elements of 0-cochains) {𝐪𝑗 }𝑗 adjacent to 𝐟𝑘 .
3.3.3 Cycles and homology groups
In Eq. (3.6) we see that, by definition, applying the boundary map twice in succession
always leads to the zero map. We can call any 𝑖-chain that is the boundary of an (𝑖+1)-chain,
i.e., 𝐜𝑖 = 𝜕𝑖+1𝐜𝑖+1, an 𝑖-boundary. Because Eq. (3.6) holds, we can now understand that any𝑖-boundary does not have a boundary itself, i.e., 𝜕𝑖𝐜𝑖 = 𝜕𝑖𝜕𝑖+1𝐜𝑖+1 = 0. We define an 𝑖-cycle 𝐜𝑖
as such a chain without a boundary: 𝜕𝑖𝐜𝑖 = 0, or, by definition, 𝐜𝑖 ∈ ker𝜕𝑖. Any 𝑖-boundary
is also automatically an 𝑖-cycle, and we can specifically refer to an 𝑖-boundary as a trivial
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𝑖-cycle. An example of a trivial cycle for our three-dimensional lattice  from Sec. 3.3.2 is a
loop 𝐜1 = 𝜕2𝐟𝑘 around a specific face 𝐟𝑘 . We can understand that this is indeed a cycle since
its boundary 𝜕1𝜕2𝐟𝑘 = 0.

Even though all 𝑖-boundaries are automatically 𝑖-cycles, the reverse is not true: it is
possible to have 𝑖-cycles that are not 𝑖-boundaries. That is, there are also non-trivial cycles.
These are cycles 𝐜𝑖 that can not be expressed as the boundary of a chain 𝐜𝑖+1 one dimension
higher—i.e., 𝜕𝑖𝐜𝑖 = 0, but there exists no 𝐜𝑖+1 ∈ 𝐶𝑖+1 that satisfies 𝐜𝑖 = 𝜕𝑖+1𝐜𝑖+1.

By definition, the set of 𝑖-cycles ker𝜕𝑖 forms a group. On top of that, the set of trivial𝑖-cycles (i.e., the set of 𝑖-boundaries) is also a group: we refer to this group as Im𝜕𝑖+1. These
observations provide some intuition for the fact that trivial cycles form a normal subgroup
of all cycles. For each vector space 𝐶𝑖, the quotient group

H𝑖 ≡ ker𝜕𝑖/Im𝜕𝑖+1 (3.7)

can now be used to split up the group of all cycles into equivalence classes. Two chains 𝐜𝑖
and 𝐜′𝑖 are part of the same equivalence class whenever 𝐜𝑖 = 𝐜′𝑖 +𝜕𝑖+1𝐜𝑖+1 holds. This can be
understood by realizing that the full group of cycles ker𝜕𝑖 is split up into multiple cosets:
within one coset, the cycles differ from each other by a trivial cycle, but to go from a cycle
in one coset to a cycle in another coset, we need to add a non-trivial cycle. The groups H𝑖
are called homology groups. Later, in Secs. 3.4.1 and 3.5.1, we define error-correction codes
over a lattice by using trivial cycles as code stabilizers and non-trivial cycles as logical
operators. The size of the homology group then corresponds to the number of logical
qubits in the code.

Dual boundaries share a similar concept as homology, called cohomology. Cohomology
groups are constructed following the same methodology as homology groups, wherein
cycles ker𝜕𝑖 and trivial cycles Im𝜕𝑖+1 are replaced by their dualized counterparts ker𝜕𝑖 andIm𝜕𝑖+1, such that

H𝑖 ≡ ker𝜕𝑖/Im𝜕𝑖+1. (3.8)

3.4 Two-dimensional topological codes
In this section, we analyze how the concepts of Sec. 3.3 can be used to construct topological
error-correction codes on a two-dimensional surface. In Secs. 3.4.1 and 3.4.2, we discuss how
the stabilizer and logical operations of the codes are defined and identified. In Sec. 3.4.3, we
elaborate on the error-correction process without measurement errors. For the surface code,
introduced in Sec. 3.4.4 and the most important example of codes of this type, we discuss
how one can realize logical qubits in Secs. 3.4.5 and 3.4.6, and how universal quantum
computing can be achieved in Sec. 3.4.7. Finally, in Sec. 3.4.8 we return to the error-
correction process—but this time for a situation with measurement errors. Considering
two-dimensional topological codes with measurement errors paves the way to the cluster
state error-correction channels of Sec. 3.5.

3.4.1 Construction
Using two-dimensional chain complexes 𝐶2 → 𝐶1 → 𝐶0, we can construct a topological
stabilizer code on a two-dimensional space ′, by following the following steps:

1. Place qubits on all basis elements of 𝐶1. That is, on each edge 𝐞𝑘 .
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2. Define primal stabilizers as Pauli-𝑍 strings over trivial primal cycles 𝜕2𝐜2.
3. Define dual stabilizers as Pauli-𝑋 strings over trivial dual cycles 𝜕2𝐜2.
4. Define primal (𝑍) and dual (𝑋 ) logical operators as cosets of the homology group H1

and cohomology group H1, respectively.
Since 𝜕2𝐜2 may be decomposed into a sum of cycles around faces as 𝜕2(∑𝑘 𝑧𝑘𝐟𝑘) =∑𝑘 𝑧𝑘(𝜕2𝐟𝑘), we can simply use the set of all faces {𝐟𝑘}𝑘 to generate all primal stabiliz-
ers via 𝑔𝑘 = 𝑍(𝜕2𝐟𝑘). Here, the notation 𝑍(𝐜1) means we apply Pauli-𝑍 operators on qubits
on the edges that are part of the chain 𝐜1. In general, Pauli operators on the qubits of
an 𝑖-chain 𝐜𝑖 are denoted as 𝑃(𝐜𝑖) ≡⨂𝑘 𝑃𝑧𝑘 , where 𝑃 ∈ {𝑋,𝑌 ,𝑍}. Qubits with 𝑧𝑘 = 0 carry
identity, and 𝑧𝑘 = 1 carry 𝑃 . Similarly to primal stabilizers, dual stabilizers over the dual
cycles 𝜕2(∑𝑘 𝑧𝑘𝐯𝑘) can be generated with all vertices {𝐯𝑘}𝑘 via 𝑔𝑘 = 𝑋 (𝜕2𝐯𝑘).
3.4.2 Commutation and independence reqirements
In order to have a valid stabilizer code, all stabilizer operators must commute. For a
topological code constructed as above, we can show that this is the case if 𝐜1 ⋅ 𝐜1 = 0 holds:𝑍 (𝐜1)𝑋 (𝐜1) = (−1)𝐜1 ⋅𝐜1 𝑋 (𝐜1)𝑍 (𝐜1) . (3.9)

Since the stabilizers have 𝐜1 = 𝜕2𝐜2 and 𝐜1 = 𝜕2𝐜2, we have𝐜1 ⋅ 𝐜1 = 𝜕2𝐜2 ⋅𝜕2𝐜2 = (𝜕2𝐜2)𝑇 𝜕2𝐜2 = 𝐜𝑇2𝜕𝑇2𝜕2𝐜2 = 𝐜2 ⋅𝜕𝑇2𝜕2𝐜2 = 0, (3.10)

where the last part holds because Eqs. (3.3) and (3.6) show us that 𝜕1𝜕2 = 𝜕𝑇2𝜕2 = 0 holds.
The required commutability of logical operators with stabilizers can be shown by

realizing that a logical 𝑍 operator 𝑍 𝑗 = 𝑍(𝐜1) only commutes with dual stabilizers 𝑋 (𝜕2𝐜2)
whenever their inner product 𝐜1 ⋅𝜕2𝐜2 = 0. At this point, we note that the following always
holds: 𝐜𝑖 ⋅𝜕𝐷+1−𝑖𝐜𝐷+1−𝑖 = 𝐜𝑖 ⋅𝜕𝑇𝑖 𝐜𝐷+1−𝑖 = 𝜕𝑖𝐜𝑖 ⋅ 𝐜𝐷+1−𝑖. (3.11)

Using 𝐷 = 2 and 𝑖 = 1 in Eq. (3.11), the requirement 𝐜1 ⋅ 𝜕2𝐜2 = 0 can be rewritten to𝜕1𝐜1 ⋅ 𝐜2 = 0. Since 𝐜2 is arbitrary—i.e., the coboundary of each 2-cochain 𝐜2 contains a
stabilizer operator—this equality only holds whenever 𝜕1𝐜1 = 0 holds. This indicates that
logical 1-chains, i.e., the logical 𝑍 operators, must be cycles.

On top of that, logical 𝑍(𝐜1) operators have to be independent of all primal 𝑍 stabilizers.
This means that the 1-cycle 𝐜1 containing the logical operator cannot be a trivial cycle, and
must be part of a coset of the homology group H1 (Eq. (3.7)) as a non-trivial cycle. The
equivalence relation between two 1-chains 𝐜1 and 𝐜′1 in this coset, 𝐜1 = 𝐜′1 +𝜕2𝐜2, means
that the action of the corresponding logical operators 𝑍(𝐜1) and 𝑍(𝐜′1) is the same, since
there is a primal stabilizer 𝑍(𝜕2𝐜2) (logical identity) that relates the two.

In the same way, a logical 𝑋 operator 𝑋 𝑗 = 𝑋 (𝐜1) defined on a logical 1-cochain 𝐜1 only
commutes with primal 𝑍-stabilizers whenever 𝜕1𝐜1 = 0 holds. This cochain can also not
be a trivial cycle. The dual relationship between H1 and H1 ensures that logical operators
appear in pairs (𝑋 𝑗 ,𝑍 𝑗 ) that mutually anti-commute [11].
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3.4.3 Error correction without measurement errors
For topological codes there exists a straightforward correction procedure against error
sets {𝜀𝑘}𝑘 composed of Pauli operators applied simultaneously across many qubits—i.e.,
Pauli strings. An arbitrary string can be described as the product of two chains 𝐜1 and 𝐜1
as 𝑍(𝐜1)𝑋 (𝐜1). To collect the error syndrome, and detect errors, we collect measurement
outcomes 𝐦 = {𝑚𝑘}𝑘 and 𝐦 = {𝑚𝑘}𝑘 by measuring all primal and dual stabilizer generators𝑔𝑘 = 𝑍(𝜕2𝐟𝑘) and 𝑔𝑘 = 𝑋 (𝜕2𝐟𝑘). For notational convenience, we define 𝐦 and 𝐦 over the
field ℤ2 by mapping each of their elements 𝑚𝑘 and 𝑚𝑘 with {+1,−1} ↦ {0,1}. For the
moment, we assume all generators can be measured without measurement errors.

We define the error syndrome as the set of all primal and dual measurement outcomes𝐦
and𝐦. Given that both the error and stabilizer generators are strings of Pauli operators, one
can fully describe the measurement outcomes by deploying (anti-)commutation relations
of Pauli operators. The primal error syndrome chain forms the coboundary of the dual
errors 𝑋 (𝐜1): 𝐦 = 𝜕1𝐜1. This means we can consider 𝐦 as a 0-cochain (or, alternatively, a
2-chain). It also means the syndrome graph constructed with the primal stabilizers 𝑔𝑘 is
defined on the dual of the lattice. On the other hand, the syndrome constructed with the
dual stabilizers 𝑔𝑘 is defined on the primal lattice: the dual syndrome 𝐦 = 𝜕1𝐜1 is a 0-chain
(i.e., a 2-cochain) that forms the boundary of the primal errors 𝑍(𝐜1). We see that with this
construction we find Pauli-𝑋 errors by measuring primal stabilizers 𝑔𝑘 and we find Pauli-𝑍
errors by measuring dual stabilizers 𝑔𝑘 .

To correct the detected errors based on the obtained error syndrome {𝐦,𝐦}, we de-
termine recovery chains 𝐫1 and 𝐫1. The correction can be considered successful if the
sums of error and recovery chains 𝐜1+ 𝐫1 and 𝐜1+ 𝐫1 are trivial cycles: 𝐜1+ 𝐫1 = 𝜕2𝐜2 and𝐜1+ 𝐫𝑖 = 𝜕2𝐜2. If this is the case, the corresponding net operators 𝑍(𝜕2𝐜2) and 𝑋 (𝜕2𝐜2) are
stabilizer operators themselves. On the other hand, if we end up with 𝐜1 + 𝐫1 ≠ 𝜕2𝐜2 or𝐜1+ 𝐫1 ≠ 𝜕2𝐜2, the corresponding net operator is a non-trivial cycle and corresponds to a
logical operator. Occurrences of the recovery procedure that result in a non-trivial cycle
are referred to as a logical error or a logical failure, whereas instances leading to a trivial
cycle lead to logical success. An example of the error-correction process for the surface
code (introduced in Sec. 3.4.4) can be found in Fig. 3.5.

Topological codes in the form of Sec. 3.4.1 can correct more general noise maps if we
take into account linear combinations of the allowed Pauli errors. However, these codes
are not able to also correct against errors in the determination of the error syndrome itself:
they only work if the stabilizer generators {𝑔𝑘}𝑘 and {𝑔𝑘}𝑘 can be perfectly read out, and
m orm do not flip with respect to their actual values. In Sec. 3.4.8, we consider how the
scheme can be adapted to also deal with errors in measuring {𝑔𝑘}𝑘 and {𝑔𝑘}𝑘 .
3.4.4 Surface code
The surface code is a widely-used example of a two-dimensional topological code. For this
code, we typically work with a square lattice. The primal 𝑍 string stabilizer generators are
described by boundaries of all faces 𝐟𝑘 of the lattice, and are often referred to as plaquette or
face stabilizers. The dual𝑋 string stabilizer generators are associated with the coboundaries
of all vertices 𝐯𝑘 of the lattice and are often referred to as star or vertex stabilizers.

In a situation with periodic boundary conditions, the two-dimensional lattice can be
placed on a torus. This version of the surface code is often called the toric surface code, or
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Figure 3.5: Schematic overview of the error-correction process for the toric surface code—introduced in Sec. 3.4.4
and Fig. 3.6. Unknown Pauli errors that appear on the physical data qubits can be tracked and corrected by
measuring the stabilizer generators and decoding the resulting error syndrome {𝐦,𝐦}. The unknown errors and
the correction can still lead to a logical error—in this example, we unknowingly apply the logical operator 𝑍2 of
Fig. 3.6, as well as a stabilizer operator that leaves the code invariant.

simply the toric code. We depict the toric surface code schematically in Fig. 3.6. For the
toric code, the weight of all stabilizer generators is four—i.e., we have to measure stabilizer
operators consisting of four non-identity Pauli operators to obtain the error syndrome.
The toric code encodes two logical states. This can be understood by realizing that the
rank of the (co)homology groups H1 and H1 is equal to two for this lattice with periodic
boundary conditions. For both the primal and the dual lattice, non-trivial 1-(co)cycles can
be identified as 1-(co)chains going from top to bottom and from left to right in the lattice.
These chains have no boundary because, due to the periodic boundary conditions, they
enter the lattice at the opposite side where they disappear: they “wrap” around the holes
of the torus. Alternatively, we can count the number of independent stabilizer generators
to realize that the toric code should have logical qubits. This is because multiplying all
plaquette or multiplying all star generators gives rise to the identity operator. Therefore,
to have an independent set of generators, we need to leave out one plaquette and one star
operator. Because each generator defines one-fourth of a qubit, and each qubit is part of four
generators, this means that the code space has two free qubit degrees of freedom—these
correspond to two encoded logical qubits.

This changes if we consider a square lattice that does not have periodic boundary
conditions. The weight of the stabilizer generators on the border is now three or, for the
generators in the corner, two. This version of the surface code, which is generally referred
to as the planar surface code, has only one set of logical operators. This is because there is
now only one non-trivial cycle on both the primal and dual lattice: a non-trivial 1-cycle
terminating at the top and bottom border of the primal lattice and a non-trivial 1-cocycle
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Figure 3.6: Schematic overview of the toric surface code. This code encodes two logical qubits with multi-qubit
logical operators 𝑋 1,2 and 𝑍1,2: the first qubit has 𝑋 1 (𝑍1) as its logical 𝑋 (𝑍) operator, whereas the second qubit
has 𝑋 2 (𝑍2) as its logical 𝑋 (𝑍) operator. The code’s stabilizer generators are four-qubit operators surrounding
every face (𝑔𝑘 = 𝑍(𝜕2𝐟𝑘)) and every vertex (𝑔𝑘 = 𝑋 (𝜕2𝐯𝑘)) of the lattice. A schematic depiction of the error-
correction process for the toric code can be found in Fig. 3.5.
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terminating at the left and right border for the dual lattice—or the other way around. We
explore this version in more detail in Sec. 3.4.5.

3.4.5 Smooth and rough lattice boundaries
To better understand how non-trivial cycles terminate at the boundary of a lattice, we
have to introduce the concept of smooth and rough lattice boundaries. In the following,
we often explicitly refer to “lattice boundaries” to describe the border of the lattice, to
avoid confusion with the boundary map and the 𝑖-boundary chains of the chain complex.
The toric surface code, or any other topological code with periodic boundary conditions,
contains a closed surface. As soon as we open up the surface—i.e., as soon as we introduce
holes in the surface—we introduce either a smooth or a rough lattice boundary.

Normally, i.e., in the bulk of a lattice, an edge is adjacent to two vertices—i.e., the
boundary map of every single edge is a set of two vertices at each endpoint of the edge.
For the edges at a smooth lattice boundary, this is still the case. The only difference here is
that the vertices on the lattice boundary are connected to a smaller number of edges than
in the bulk, as the edges that cross the boundary are no longer there. For a rough lattice
boundary, on the other hand, this is different. Here, the vertices on the boundary stay
adjacent to the same number of edges, but the edges at the boundary are only connected
to one vertex: they are “dangling”, as the other endpoint of these edges is beyond the
boundary. We see that, when creating a lattice boundary, we have the option to either
create it by removing edges (resulting in a smooth boundary) or by removing vertices
(resulting in a rough boundary). If we create a smooth boundary on the primal lattices,
this automatically leads to a rough boundary on the dual lattice—and vice versa.

We can now also understand better how a 1-chain can be boundaryless (i.e., a cycle) if
it is a connected string of edges going from one rough lattice boundary to another rough
lattice boundary. This is because the edges at the endpoints of this chain have only one
vertex in their boundary map. Together with the boundary maps of the other edges in the
string, the full boundary map disappears. It is important to mention that this only leads to a
non-trivial cycle if there is a smooth lattice boundary in between the two rough boundaries
at which the chain terminates: the chain has to begin and end at different rough boundaries.
If this is not the case, and the chain begins and ends at the same rough boundary, the
string can be created from stabilizer operators—i.e., the chain is a trivial cycle. Therefore,
for the planar surface code, there are only logical states encoded if we have at least four
alternating regions with smooth and rough boundaries around the boundary of the lattice.

3.4.6 Distance and holes
Above, we defined the distance of the code as the minimum weight of its logical operators.
If the surface code is defined on an 𝐿×𝐿 square lattice, the minimum weight of each of its
logical 𝑍 and 𝑋 operators is always a string that goes straight from top to bottom, or from
left to right. Therefore, for such a lattice, the distance of the surface code is 𝐿.

This changes if we punch holes in the stabilizer structure of the code that are not
lattice boundaries. These holes can be created by “switching off” a (small) set of connected
stabilizer generators. This leads to a hole-shaped border in the middle of the surface.
Because this opens up one qubit degree of freedom, introducing such a hole realizes an
additional logical qubit. The hole can either have a smooth boundary on the primal lattice
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or a rough boundary on the primal lattice. In the case of a hole with a smooth boundary on
the primal lattice, the introduction of the new logical state can be understood by realizing
that there is now a new non-trivial 1-cycle that “wraps around” the hole and can not be
constructed from the remaining primal stabilizers. On the dual lattice, there are additional
non-trivial 1-cocycles that terminate at the rough boundary of the hole. In the case of a
hole with a rough boundary on the primal lattice, the roles of the primal and dual lattice
are reversed. The distance of such a surface with a hole is determined by the weight of
the smallest non-trivial cycle: either the smallest weight of the cycles terminating at two
rough boundaries or the minimum weight of the non-trivial cycle wrapped around the hole
(i.e., the circumference of the hole). It is possible to create more holes and introduce more
logical qubits. In the numerical simulations presented in this thesis, we do not consider
this type of logical qubit introduced by opening up holes in the lattice.

3.4.7 Universalqantum computing
As discussed in Sec. 2.3.3, a universal set of logical gates requires more operations than just
the logical 𝑍 and logical 𝑋 gates. How other logical gates are accomplished depends on
the specific realization of logical qubits. The two main implementations for defining qubits
with the surface code are either as multiple lattice patches—since each planar surface code
with lattice boundaries contains one logical qubit—or as multiple (combinations of) holes
in a single lattice—as discussed in Sec. 3.4.6. Below, we discuss the main approaches to
realizing universal computation with these logical structures. We start with the concept of
transversality: the most straightforward way of carrying out logical operations in error-
correction codes. On top of that, we consider the injection of magic states in the code,
which is another approach to implementing logical operations.

Transversal gates
In general, a logical gate is an operation that transforms the state of a logical qubit in the
same way as the “normal” version of that gate transforms a non-encoded qubit. Typically,
the most efficient way to implement a logical gate is as a so-called transversal gate. A
logical gate on a single logical qubit is said to be transversal if its implementation consists
of a tensor product of single-qubit operations—a tensor product that also preserves the
code space. This is beneficial, as it guarantees that local errors stay local and do not spread
out. We already saw examples of transversal logical gates as the logical 𝑍 and logical 𝑋
gates of topological codes. For a logical gate on two qubits, transversality allows the use
of two-qubit gates between physical qubits of both code spaces. For two logical qubits
that are part of identical copies of a CSS code, a transversal C𝑋 gate can be achieved by
applying individual C𝑋 gates between all physical qubits of the two codes. On top of that,
for a self-dual CSS code, a transversal Hadamard gate can be carried out by applying a
single-qubit Hadamard to all qubits of the code. A self-dual CSS code is a CSS code in
which for each 𝑋 -type stabilizer there is a 𝑍-type stabilizer on the same set of qubits as the𝑋 -type stabilizer and each logical 𝑋 operator is paired and anti-commutes with a logical𝑍 operator that operates on the same qubits. Since the surface code is not self-dual and
two encoded qubits do not necessarily have to be identical, other methods for carrying
out transversal C𝑋 and 𝐻 gates are developed—we discuss them below for the two main
surface code implementations.
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Logical operations for main surface code implementations
Let us first consider the implementation where logical qubits are different holes in the
surface of a single lattice. For this configuration, we typically combine two holes with
a single type of boundary—i.e., either a rough or a smooth primal boundary—as a single
qubit. This configuration is discussed, e.g., in Refs. [10, 12]. Holes can be grown, shrunk,
and moved around by switching stabilizer operators on and off, and adjusting the stabilizer
operators on the boundary of the hole accordingly—i.e., with code deformation. Depending
on the type of boundary, the qubit’s logical 𝑋 and logical 𝑍 operators correspond to the
circumference of one of the two holes and the multi-qubit operator that terminates by
going from one hole to the other. It can be shown [10, 12] that, for one combined hole
qubit with rough boundaries and another combined hole qubit with smooth boundaries, a
logical C𝑋 gate can be achieved by moving one of the holes through the space in between
the two holes of the other qubit: a process known as braiding. On top of that, we can use
the one-bit teleportation scheme of Fig. 2.8a to teleport the logical state of one type of qubit
to another type—i.e., a qubit with rough boundaries to a qubit with smooth boundaries and
vice versa—ensuring we can always perform a C𝑋 gate between any two qubits.

For logical qubits defined as planar lattices, a logical C𝑋 operation can be achieved
with lattice surgery [13]. This comprises merging the lattices of two qubits into a single
planar qubit, as well as splitting a single lattice qubit into two new planar qubits. If merging
takes place between two rough (smooth) boundaries, it is equivalent to measuring the
logical 𝑋 1𝑋 2 (𝑍1𝑍2) operator of the two planar qubits involved, where 𝑋 𝑗 (𝑍 𝑗 ) is the
logical 𝑋 (logical 𝑍) operator of the 𝑗th logical qubit. In this implementation, a logical C𝑋
operation can be achieved with a series of merging and splitting operations on three planar
qubits—i.e., the control qubit, the target qubit, and an ancillary planar qubit.

For both implementations, the logical Hadamard gate can be achieved in a transversal
“spirit”—i.e., applying 𝐻 on the individual qubits of our lattice almost produces a logical
Hadamard on the logical qubits. More specifically, this operation transforms all 𝑍-type
stabilizers to 𝑋 -type stabilizers and vice versa—i.e., 𝑍-type stabilizers are now associated
with vertices of the lattice and 𝑋 -type stabilizers correspond to the faces of the lattice.
It also transforms each logical 𝑍 operator into a logical 𝑋 operator that terminates at
different lattice boundaries compared to the logical 𝑋 operator before the operation—and
vice versa for each logical 𝑋 operator. The standard surface code stabilizer structure can be
reestablished by shifting the qubits in the lattice by half a unit cell in both the horizontal
and vertical direction [10]. This operation, however, also transforms all smooth boundaries
into rough boundaries and vice versa. This makes it understandable that the new logical 𝑋
and logical 𝑍 operators terminate at different lattice boundaries after the transformation. If
required, the original boundaries can be restored with code deformation—this also results
in the logical 𝑋 and logical 𝑍 operators terminating at the same lattice boundary as before
the operation. Alternatively, specifically for a logical qubit represented by a (combination
of) hole(s) in the lattice, a change in the type of its lattice boundary can be undone by
teleporting the state onto a different logical qubit with the other boundary type [10]. If the
lattice has multiple hole qubits, a logical Hadamard transformation can be achieved on an
isolated qubit by switching off stabilizers around the qubit and switching them back on
after the full transformation [12].
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Logical operations via (magic) state injection
It is clear that, for both surface code qubit implementations, we can carry out a logical
Hadamard and a logical C𝑋 gate in an efficient manner. As discussed in Sec. 2.3.3, this
means that implementing a logical 𝑇 gate gives rise to a universal gate set. Unfortunately,
introducing the 𝑇 gate is not straightforward, and can not be done transversally. This is a
direct consequence of the Eastin-Knill theorem [14], which dictates that no quantum error-
correction code can perform all gates required for a universal logical gate set transversally.
Luckily, it is possible to indirectly implement a gate missing from the universal gate set
by applying a transversal operation between the main code and an encoded version of a
specific state [10, 15, 16]. Fig. 3.7a shows how this concept can be used to implement a𝑍 gate [10]. This circuit is a variation on the most general one-bit teleportation scheme
of Fig. 2.8a. Because 𝑍 is a Pauli-𝑍 rotation that—when acting on the control qubit—
commutes with the C𝑋 gate, we can construct this circuit from Fig. 2.8a. To realize that this
works, suppose we multiply the output of Fig. 2.8a with 𝑍 . Because this gate commutes
with the C𝑋 gate, we can move it to the left—and instead multiply |+⟩ with this gate—for
the 𝑚 = +1 scenario. For the 𝑚 = −1 scenario, we have to adjust the correction accordingly.
Converting the correction to 𝑍 𝑋 †𝑍 makes sure that 𝑍 is always, effectively, applied
after the correction (since the 𝑍 operation before the correction cancels against the  †𝑍
part of the correction operator).

The 𝑇 gate is a specific example of the more general 𝑍 rotation. To carry out the
circuit of Fig. 3.7a, it is important that we can logically carry out the correction operation𝑍 𝑋 †𝑍 in our error-correction code. For the 𝑇 gate, this requires the implementation of
logical Pauli-𝑌 and 𝑆 gates, as 𝑇𝑋𝑇 † = 𝑒−𝑖𝜋/4𝑌 𝑆 holds [10]. Alternatively, the logical 𝑇 gate
can be performed with the circuit in Fig. 3.7b, which, among other steps, requires a joint𝑍𝑍 measurement on the two logical qubits and also a possible correction with a logical 𝑆
gate [17]. Unfortunately, for the main surface code implementations, one needs a similar
indirect method to carry out a logical 𝑆 gate—i.e., by utilizing an encoded 𝑆 |+⟩ state. Using
the approach of Fig. 3.7a, this requires correction with a logical Pauli-𝑌 gate, as 𝑆𝑋𝑆† = 𝑌
holds. A logical 𝑆 gate can also be carried out with the circuit depicted in Fig. 3.7c. This
circuit exploits the commutation relation between C𝑋 and 𝑆: similar as how the relationC𝑋𝑖,𝑗 𝕀𝑖𝑍𝑗 = 𝑍𝑖𝑍𝑗 C𝑋𝑖,𝑗 describes what happens when we commute a Pauli-𝑍 gate through
the target of a C𝑋 gate, the relation C𝑋𝑖,𝑗 𝕀𝑖𝑆𝑗 = 𝑆𝑖𝑆𝑗 C𝑍𝑖,𝑗 C𝑋𝑖,𝑗 describes commuting an 𝑆
gate through the target of a C𝑋 gate.

Finally, one needs to prepare the ancillary logical states 𝑍 |+⟩ to carry out these
indirect logical gates—i.e., the states 𝑇 |+⟩ and 𝑆 |+⟩ = |+𝑖⟩ for the logical gates discussed
above. Since these states allow one to implement operations that do not have a transversal
representation, these states are often referred to as magic states. Preparing logical versions
of magic states can typically not be done efficiently and requires, e.g., initializing the state
on a single qubit (or a small number of qubits) and increasing the distance of the state to a
full logical qubit [12]. This procedure is often referred to as magic state injection. A single-
qubit ancillary magic state 𝐻 |𝜓⟩ can also be injected with, e.g., the one-bit teleportation
scheme of Fig. 2.8b. For 𝑍 𝑗 = 𝑃1⊗⋯⊗𝑃𝑁 the logical 𝑍 operator of the logical qubit, this
requires initializing the logical qubit in |+⟩L, applying a controlled-(𝑃𝑖) gate between 𝐻 |𝜓⟩
and qubit 𝑖 of the logical qubit for all 𝑖 ∈ {1,2,… ,𝑁 }, and measuring the ancillary state in
the Pauli-𝑋 basis. Here, a −1 measurement outcome requires a correction with 𝑋 𝑗 on



3.4 Two-dimensional topological codes

3

57

|𝜓⟩ 𝑍 ∙
𝑍 |+⟩ ∙ 𝑍𝑋 †𝑍 𝑍 |𝜓⟩

(a)|𝜓⟩ ∙ 𝑇 𝑇 |𝜓⟩𝑇 |+⟩  𝑍 𝑋 =
|𝜓⟩ 𝑍𝑍 𝑆 𝑍 𝑇 |𝜓⟩𝑇 |+⟩ 𝑋∙ ∙

(b)|𝜓⟩ ∙ 𝑆 𝑆 |𝜓⟩𝑆 |+⟩ 𝑌 𝑆 |+⟩ =
|𝜓⟩ ∙ ∙ 𝑆 |𝜓⟩𝑆 |+⟩ ∙ 𝑆 |+⟩

(c)

Figure 3.7: (a) Quantum circuit for implementing the (logical) gate 𝑍 on a general (logical) state |𝜓⟩ via an
ancillary state 𝑍 |+⟩ [10]. Here, 𝑍 ≡ 𝑅𝑍 (𝜑) and  †𝑍 ≡ 𝑅𝑍 (−𝜑) denote Pauli-𝑍 rotations. (b) Alternative circuit
for implementing the (logical) gate 𝑇 on a general (logical) state |𝜓⟩ [17]. Here, for the circuit on the left, = 𝑒−𝑖𝜋/4𝑌 𝑆 = 𝑒−𝑖𝜋/4𝑆𝑋 , such that the state 𝑇 |+⟩ is the +1 eigenstate of . Therefore, the C gate on the left
has no effect (see Fig. 2.7b), just as the Pauli-𝑍 and Pauli-𝑋 measurements on the bottom qubit do not influence
the state of the top qubit. The C gate can be converted to a C𝑋 gate, a C𝑆 gate, and 𝑇 † on the top qubit (which
cancels against 𝑇 ). Using the identity in Fig. 2.7c, the C𝑆 gate in front of the Pauli-𝑍 measurement on the bottom
qubit is converted to a correction with 𝑆 after the measurement. Using the identity in Fig. 2.7a, the Pauli-𝑍
measurement on the bottom qubit is then commuted through the C𝑋 gate, resulting in the joint 𝑍𝑍 measurement
on both qubits. Finally, using the identity in Fig. 2.7d, the C𝑋 gate before the Pauli-𝑋 measurement on the
bottom qubit is converted to a correction with 𝑍 after the measurement. (c) Alternative circuit for implementing
the (logical) gate 𝑆 on a general (logical) state |𝜓⟩ [12]. The state 𝑆 |+⟩ = |+𝑖⟩ is the +1 eigenstate of the Pauli-𝑌
operator. This C𝑌 gate can be used to remove the 𝑆 gate after converting it to a C𝑋 and a C𝑍 gate using the
identity in Fig. 2.6a. The (logical) C𝑍 gate in the circuit on the right can be converted to a C𝑋 gate surrounded by
Hadamard gates using the equality shown in Fig. 2.5.

the logical qubit, completing the injection of the magic state as |𝜓⟩L on the logical qubit.
Typically, magic state injection leads to a noisy version of the requested logical state. Using
distillation, producing multiple copies of this noisy logical state allows one to improve the
fidelity of one of these states by consuming the other copies [12, 16]. We discuss this in
more detail in Sec. 3.6.1.

3.4.8 Error correction with measurement errors
In Sec. 3.4.3, we discuss how general two-dimensional topological codes can correct errors
in a situation where the stabilizer generators {𝑔𝑘}𝑘 and {𝑔𝑘}𝑘 can be measured without
measurement errors. We mentioned that, in situations with measurement errors, their
error-correction properties vanish. Here, we discuss how this is typically remedied.

Intuitively, the inability to detect errors in a situation with measurement errors can be
understood by realizing that the error syndromesm andm are 0-cochains and 0-chains, as
explained in Sec. 3.4.3. If a stabilizer measurement flips because of an error, we are not able
to detect this with a topological code, since such an error only shows up at that specific
location. Ideally, we would like the stabilizer measurements to form the (co)boundary of a
chain in a vector space one dimension higher (lower). In that way, we make sure that each
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surface code data qubit
gk stabilizer (mk = +1)
gk stabilizer (mk = –1)
gk stabilizer (mk = +1)
gk stabilizer (mk = –1)

tim
e

Figure 3.8: Schematic overview of the error-correction process for the surface code in a scenario with measurement
errors. Primal {𝑔𝑘}𝑘 (i.e., plaquette) and dual {𝑔𝑘}𝑘 (i.e., vertex) stabilizer generators are measured repeatedly in
multiple time layers. The error syndrome now becomes a three-dimensional graph that is no longer based on
individual 𝑚𝑘 = −1 or 𝑚𝑘 = −1 stabilizer outcomes. Instead, stabilizer outcomes 𝑚(𝑡)𝑘 or 𝑚(𝑡)𝑘 in a certain time layer𝑡 are only added to the syndrome graph if their sign differs from the measurement outcome of the same stabilizer
in the previous time layer. In the figure, this is indicated by the vertical red and blue lines drawn between the
time layers.

stabilizer borders multiple objects itself. Because, in that situation, stabilizer measurement
flips show up in more than one place, errors in them also show up as strings with a
boundary and can be captured. This indicates why it is necessary to resort to a different
approach or code construction for achieving fault tolerance against stabilizer measurements.
Alternative code constructions that offer resilience against stabilizer measurement errors
are introduced in Sec. 3.5 with three-dimensional cluster states.

On top of that, a typical solution for the measurement error problem with topological
codes themselves consists of consecutive measuring the stabilizer operators over multiple
time layers before starting the decoding process. This gives rise to the collection {𝐦(𝑡),𝐦(𝑡)}𝑡
over multiple time layers 𝑡. The idea is that, for constructing the final error syndrome,
only measurement outcomes that are different from the outcome of the same stabilizer
operator in the previous time layer are included in the syndrome. This procedure is depicted
schematically in Fig. 3.8. For two-dimensional codes, this method transforms the error
syndrome into a three-dimensional syndrome graph. Including more time layers into the
error syndrome generally leads to more resilience against measurement errors, but also
to more computational complexity in decoding the error syndrome. In Ch. 7, we use this
method to deal with noisy stabilizer measurements of the surface code.
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qubit on edge
lattice edge
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Figure 3.9: A primal and dual stabilizer generator for a three-dimensional cluster state as defined in Sec. 3.5.1. The
primal generator 𝑋 (𝐟𝑘)𝑍(𝜕2𝐟𝑘) is associated with the highlighted face on the left of the figure. The dual generator𝑋 (𝐞𝑘)𝑍(𝜕2𝐞𝑘) is associated with the highlighted edge on the right of the figure. Stabilizer generators associated
with the other faces and edges are not shown explicitly.

3.5 Three-dimensional cluster states
In this section, we discuss the construction and error-correction process of fault-tolerant
cluster states in three dimensions. Just as in Sec. 3.4, we make use of the mathematical
formalism introduced in Sec. 3.3. As outlined in Sec. 3.5.2, these cluster states can be seen
as a generalization of fault-tolerant channels created over time with the two-dimensional
codes of Sec. 3.4. This means that one can not only regard these cluster states as fault-
tolerant resource states for MBQC but also as more general fault-tolerant channels that
transport or operate on logical information. In Secs. 3.5.1 and 3.5.3, we elaborate on
constructing the stabilizers of the cluster state and the general procedure for introducing
a logical subspace. Additionally, we spend a few words on how the cluster state error
syndrome is constructed in Sec. 3.5.4 and how error correction is performed (and can be
compared to topological codes) in Sec. 3.5.5.

3.5.1 Cluster state construction
We make use of three-dimensional chain complexes 𝐶3 → 𝐶2 → 𝐶1 → 𝐶0 to construct a
cluster state on a three-dimensional space ′′, by following the following steps:

1. Place qubits on all basis elements of 𝐶2 and 𝐶2, i.e., on each face 𝐟𝑘 and each edge 𝐞𝑘
of the lattice.

2. For each face 𝐟𝑘 , primal stabilizer generators are defined as 𝑔𝑘 = 𝑋 (𝐟𝑘)𝑍(𝜕2𝐟𝑘). These
operators generate stabilizer operators 𝑋 (𝐜2)𝑍(𝜕2𝐜2) for each 2-chain 𝐜2 ∈ 𝐶2.

3. For each edge 𝐞𝑘 , dual stabilizers are defined as 𝑔𝑘 = 𝑋 (𝐞𝑘)𝑍(𝜕2𝐞𝑘). These operators
generate stabilizer operators 𝑋 (𝐜2)𝑍(𝜕2𝐜2) for each 2-cochain 𝐜2 ∈ 𝐶2.

We depict an example of a primal and dual stabilizer generator associated with a single face𝐟𝑘 and edge 𝐞𝑘 in Fig. 3.9. Each stabilizer generator carries a Pauli-𝑋 operator on some face
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(edge) qubit and Pauli-𝑍 operators on its direct neighbors on the (dual) boundary. This
stabilizer composition is commonly associated with graph or cluster states—as introduced
in Sec. 2.3.5. We note that, as discussed in more detail in Sec. 3.5.3, encoding logical
information in the cluster state requires realizing a logical subspace by “switching off”
some of the stabilizers.

3.5.2 Foliation of two-dimensional topological codes
In Sec. 3.4.8, we discuss how one can correct errors with topological codes in the presence
of measurement noise: this is typically achieved by measuring stabilizer generators over
multiple time layers. In this section, we explain how collecting syndrome measurements
over multiple layers bears a close resemblance to constructing a three-dimensional clus-
ter state in the form of Sec. 3.5.1. The analogy arises by foliating the two-dimensional
topological in a third dimension [18, 19].

In Fig. 3.10, we depict the main idea of foliation for the (toric) surface code introduced
in Sec. 3.4.4. We start with the surface code defined on the green qubits and focus on a
situation in which stabilizer generators are measured over multiple layers. We split up
primal stabilizers {𝑔𝑘}𝑘 and dual stabilizers {𝑔𝑘}𝑘 in alternating time layers. (Note that these
are the stabilizers of the topological codes as defined in Sec. 3.4.1, and not the cluster state
stabilizers introduced in Sec. 3.5.1.) At this point, we introduce the circuit of Fig. 2.4a to
measure these stabilizers with ancillary qubits initialized in the |+⟩ state: red qubits for
the primal stabilizers {𝑔𝑘}𝑘 and blue qubits for the dual stabilizers {𝑔𝑘}𝑘 . Since the primal
stabilizer generators are Pauli-𝑍 strings and the dual stabilizers are Pauli-𝑋 strings, we can
restrict to using C𝑍 gates, as long as we place Hadamard gates on the green data qubits
between the time layers—i.e., for switching between primal and dual stabilizers.

So far, the procedure completely resembles measuring stabilizers in the presence of
measurement errors as discussed in Sec. 3.4.8: the green data qubits of the code are the
same (physical) qubits in all layers. However, we can switch to a situation in which the
states of the data qubits are teleported from one layer to the next. If we use the one-bit
teleportation scheme with a C𝑍 gate depicted in Fig. 2.8b, we get the required Hadamard
gates “for free”. This leads to the structure depicted in Fig. 3.11. Neglecting the states of the
green data qubits in the bottom layer for the moment, all qubits in the resulting structure
are initialized in the |+⟩ state, and we only use C𝑍 gates between the qubits. This means
we are dealing with a cluster state. Moreover, the placement of the qubits and C𝑍 gates
on the underlying lattice is completely in agreement with the definition of Sec. 3.5.1. We
elaborate on the role of the green data qubits in the bottom layer in Sec. 3.5.3.

3.5.3 Commutation reqirements and logical subspace
To realize that the stabilizers in Sec. 3.5.1 commute, we can show that if two adjacent primal
and dual stabilizers overlap with their Pauli-𝑋 and Pauli-𝑍 operators, this is always on
an even number of qubits. More specifically, since Eq. (3.11) shows that 𝐜2 ⋅𝜕2𝐜2 = 𝜕2𝐜2 ⋅ 𝐜2,
one can understand that the overlap of the 𝑋 -part of a primal stabilizer with the 𝑍-part of
a dual stabilizer is always equal to the overlap of the 𝑍-part of the primal stabilizer with
the 𝑋 -part of the same dual stabilizer.

The cluster states constructed with the description of Sec. 3.5.1 do not contain logical
operators. This is because these cluster states are fully defined states—i.e., there is no
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Figure 3.10: Initial steps of the foliation process of the two-dimensional surface code into a three-dimensional
cluster state that is able to deal with stabilizer measurement errors. Primal {𝑔𝑘}𝑘 (red dots) and dual {𝑔𝑘}𝑘 (blue
dots) stabilizers are measured with ancillary qubits using the circuit of Fig. 2.4a and added to different time layers
in a repetitive and alternating fashion. Hadamard gates are placed in between the time layers on the data qubits
(green dots) to switch between the primal and dual stabilizers. In Fig. 3.11, the Hadamard gates are replaced with
C𝑍 gates to construct the cluster state.
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Fig. 3.10

|𝜓⟩ ∙ 𝑋|+⟩ ∙ 𝑋 𝐻 |𝜓⟩

C𝑍 gate

Figure 3.11: Continuation of Fig. 3.10. The one-bit teleportation scheme of Fig. 2.8b—printed here above the
arrow—is used to replace the Hadamard gates between the time layers with C𝑍 gates. The step includes adding a
new qubit in the |+⟩ qubit for each data qubit in every layer: in Fig. 3.10, the data qubits in each layer are the
same physical qubits, whereas here, the states of the data qubits are teleported from one layer to the next. The
result is a cubic cluster state. As mentioned in Sec. 3.5.2, the byproduct 𝐻 gate of the teleportation scheme is used
to switch between the plaquette stabilizers {𝑔𝑘}𝑘 (red dots) and vertex stabilizers {𝑔𝑘}𝑘 (blue dots). The one-bit
teleportation scheme contains a Pauli-𝑋 correction in case of an 𝑚 = −1 measurement. We discuss the role of this
correction for the error-correction process in Sec. 3.5.5.
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Figure 3.12: Interpretation of Fig. 3.11 as a fault-tolerant cluster state channel. With this cluster state, the logical
qubits encoded on the green data qubits of the cluster state’s bottom layer can be transported to the pink qubits
of the top layer by measuring out all green and yellow qubits in the Pauli-𝑋 basis. The measurement outcomes
are used to construct the error syndrome graph according to the procedure described in Sec. 3.5.4.
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Figure 3.13: Fault-tolerant cluster state channel based on a two-dimensional topological code constructed with
the hexagonal lattice. For this two-dimensional lattice, the {𝑔𝑘}𝑘 plaquette stabilizer generators are of weight six,
whereas the {𝑔𝑘}𝑘 vertex stabilizers are of weight three. The coloring of the different types of qubits and the C𝑍
gates is identical to the coloring in Fig. 3.12. Measurements on the green and yellow qubits are used to construct
an error syndrome graph according to the procedure of Sec. 3.5.4.

logical code space. To introduce logical operators, we need to remove some of the stabi-
lizer operators. This is usually done by introducing lattice boundaries and switching off
stabilizers on these boundaries. An intuitive example of how this works is found in the
foliated surface code of Sec. 3.5.2. Here, the code’s data qubits in the bottom time layer are
not stabilized by cluster state stabilizers, but by the original surface code stabilizers. This
provides intuition on how a general cluster state of Sec. 3.5.1 can be used as a fault-tolerant
channel: by removing cluster state stabilizer generators on at least one of the boundaries
of the lattice and initializing a topological code there. In Fig. 3.12, we show a more explicit
example of the foliated surface code as a fault-tolerant cluster state channel.

From Figs. 3.10, 3.11, and 3.12, it becomes clear that, for the surface code, foliation
leads to a cluster state defined on a cubic lattice that can be used to transport logical qubits
encoded with the surface code. It should be mentioned that one can apply foliation to
any two-dimensional topological code constructed according to Sec. 3.4.1. For example, in
Fig. 3.13, a fault-tolerant cluster state channel is constructed from a topological code defined
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Figure 3.14: Cluster state based on the diamond lattice according to the definition of Sec. 3.5.1. Qubits (initialized
in the |+⟩ state) are placed on the edges (top left) and faces (bottom left) of the lattice. C𝑍 gates are added between
each face qubit and the edge qubits of the corresponding face (bottom left). On the left side of the figure, we see
individual unit cells of the diamond lattice. On the right side, we see a crystal constructed from four unit cells. In
the unit cells on the left, 𝑏 denotes the bond-degree of the lattice: the number of elements in the coboundary map
of a lattice vertex. Furthermore, 𝑣 denotes the valence of the lattice: the number of elements in the boundary
map of a lattice face. For the diamond lattice, 𝑏 = 4 and 𝑣 = 6. For a self-dual lattice—like the cubic lattice and the
diamond lattice—𝑏 also equals the number of elements in the boundary map of each three-dimensional lattice cell,
whereas 𝑣 equals the number of elements in the coboundary map of each edge. A self-dual lattice is a lattice for
which the dual lattice is identical to the primal lattice—i.e., for which both the number of elements of the vector
spaces and the boundary maps between the vector spaces are the same in the primal and dual chain complexes.
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on a two-dimensional hexagonal lattice. However, foliating two-dimensional codes into
three-dimensional cluster states only gives rise to a subclass of three-dimensional cluster
states. For example, in Fig. 3.14, we see a cluster state constructed on a diamond lattice—a
lattice that can not be constructed by foliating a two-dimensional lattice. Therefore, fault-
tolerant channels based on cluster states constructed with Sec. 3.5.1 can be regarded as more
general versions of topological error-correction channels in which the time dimension is
replaced by a third spatial dimension. However, a better statement would be that, for these
three-dimensional cluster states, the role of time and space is no longer fixed, but can be
interpreted as more fluid. That is because cluster states can be initialized and measured in
arbitrary directions over time. A concrete example is so-called interleaving in fusion-based
quantum computation [20], which bears many resemblances to the measurement-based
architectures considered here.

For a general three-dimensional cluster state, logical operators can be introduced as
non-trivial (co)cycles on lattice boundaries. Multiplying these logical operators with face
stabilizers of the lattice in the direction opposite to the logical operator gives rise to so-
called correlation surfaces ormembranes. These surfaces are versions of the logical operators
that span from one lattice boundary to another and terminate at these boundaries. We
exemplify the identification of correlation surfaces in Fig. 3.15. The cluster state can be
interpreted as a channel that transports (or operates on) logical information encoded in a
topological code. In this interpretation, the correlation surfaces describe how the code’s
logical operators are mapped from one lattice boundary to another on the other side of the
lattice.

In this thesis, we solely focus on cluster states that serve as memory channels. More
explicitly, we do not specifically consider logical operators, but rather think of logical
operators conceptually as chains moving from one side of the lattice to the other in all
three dimensions. We note that fault-tolerant cluster state channels that apply logical
operators can be constructed with more elaborate correlation surfaces that connect logical
representations of different operators on both sides of the channel. More details about this
approach can be found in Fujii [9], and Bombín et al. [21].

3.5.4 Error syndrome construction
For the cluster states of Sec. 3.5.1, we can construct the primal (dual) error syndrome by
measuring the qubits on the faces (edges) in the Pauli-𝑋 basis. For each face 𝐟𝑘 (edge 𝐞𝑘),
this leads to a measurement outcome 𝑚𝑘 ∈ {+1,−1} (𝑚𝑘 ∈ {+1,−1}). Error syndromes are
constructed from measurement outcomes in the following way:

1. For each cell 𝐪𝑘 , we produce a primal error syndrome 𝜇𝑘 as the product of mea-
surement outcomes of the qubits that lie on its boundary: 𝜇𝑘 = ∏𝐟𝑗∈𝜕3𝐪𝑘 𝑚𝑗 . By
doing this, we classically produce syndrome outcomes 𝜇𝑘 for the stabilizer operators𝑠𝑘 ≡∏𝐟𝑗∈𝜕3𝐪𝑘 𝑔𝑗 = 𝑋 (𝜕3𝐪𝑘)𝑍(𝜕2𝜕3𝐪𝑘) = 𝑋 (𝜕3𝐪𝑘). It can be seen that the operators 𝑠𝑘
are stabilizer operators of the code by realizing that the Pauli-𝑍 operators of the 𝑔𝑗
generators at the faces on the boundary of 𝐪𝑘 cancel against each other.

2. For each dual cell 𝐪𝑘 (i.e., vertex 𝐯𝑘), we produce a dual error syndrome𝜇𝑘 =∏𝐞𝑗∈𝜕3𝐯𝑘 𝑚𝑗 . The syndrome represents the measurement outcome of the stabi-
lizer 𝑠𝑘 ≡∏𝐞𝑗∈𝜕3𝐯𝑘 𝑔 𝑗 = 𝑋 (𝜕3𝐯𝑘).
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Figure 3.15: Correlation surfaces for a logical 𝑍 (right) and a logical 𝑋 (left) operator of a cubic cluster state. These
surfaces describe how a logical operator is transported from one lattice boundary to another—in this case, from
the gray faces at the bottom layer of the cluster state to the gray faces at the top layer. (Top figures) On the gray
faces of the bottom boundary, we introduce a surface code. In the top left figure, the non-trivial cycles that form
logical 𝑍 operators on the surface code boundary directly become logical 𝑍 operators of the full fault-tolerant
cluster state. For the surface code’s logical 𝑋 operators in the top right figure, we need to add Pauli-𝑍 gates
on connected faces to make sure the logical 𝑋 operators commute with all remaining cluster state stabilizers.
(Bottom figures) The logical operators are multiplied with stabilizers of a connected set of faces (left) and edges
(right) in the bulk of the cluster state. This is done to create alternative representations of the logical operators
that connect the two lattice boundaries: the correlation surfaces. Note that the set of edges constructed from
the logical 𝑋 operator forms a set of connected faces in the dual lattice. For convenience, periodic boundary
conditions are used in the two horizontally drawn directions. As a result, many Pauli gates in the stabilizers
cancel during the construction of the correlation surfaces, and two logical qubits appear on the surface codes
introduced on the gray boundaries—here we depict the logical 𝑍 and logical 𝑋 operators of different qubits.
On top of that, in this figure, just as in Figs. 3.12 and 3.13, logical subspaces are created by switching off dual
cluster state stabilizers on a primal lattice boundary—i.e., by creating a smooth boundary on the primal lattice.
However, one can alternatively create a logical subspace in a different way—e.g., by switching off primal stabilizer
generators on a dual lattice boundary and creating a rough boundary on the primal lattice. Alternatively, logical
subspaces can be created by introducing holes in the cluster state stabilizer framework, similarly to the holes
introduced in the two-dimensional surface code—see Sec. 3.4.6 and Ref. [9] for more details.
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This procedure implements the collection of stabilizer measurements into higher-
dimensional objects (as discussed earlier in Sec. 3.4.8). Note that in the absence of errors,
all error syndromes produce outcomes 𝜇𝑘 = +1 and 𝜇𝑘 = +1, even though the individual
measurement outcomes𝑚𝑘 and𝑚𝑘 are likely to contain many −1 values. The full syndrome
graphs are constructed as 𝝁 = {𝜇𝑘}𝑘 and 𝝁 = {𝜇𝑘}𝑘 , where we define 𝝁 and 𝝁 over ℤ2 by
mapping their elements with {+1,−1}↦ {0,1}.

Since all cluster state qubits are measured in the Pauli-𝑋 basis, it is sufficient to restrict
to errors that appear as Pauli-𝑍 errors prior to measurement. Because such an error is
equivalent to a probabilistic 𝑍 gate before an𝑋 -basis measurement, this model also includes
measurement errors. Just as for the two-dimensional code of Sec. 3.4.1, the error-correction
procedure is able to deal with error sets composed of Pauli strings. Since qubits sit on
edges (i.e., objects in 𝐶1 = 𝐶2) and faces (i.e., objects in 𝐶2 = 𝐶1) of the lattice, without loss
of generality, we can describe an arbitrary error as 𝑍(𝐜1)𝑍(𝐜1). The primal error syndrome𝝁 = {𝜇𝑘}𝑘 = 𝜕1𝐜1 is a graph on the dual lattice formed by the coboundary of the dual error
chain 𝑍(𝐜1)—i.e., the coboundary of all Pauli-𝑍 errors on qubits that sit on the faces of the
graph. The dual syndrome graph is constructed on the primal lattice with the syndrome
checks 𝝁 = {𝜇𝑘}𝑘 . This is the boundary 𝝁 = 𝜕1𝐜1 of the primal error chain 𝑍(𝐜1)—i.e., the
boundary of all Pauli-𝑍 errors on the edge qubits.

3.5.5 Error correction
Given error syndrome outcomes 𝝁= 𝜕1𝐜1 and 𝝁= 𝜕1𝐜1 constructed from an error𝑍(𝐜1)𝑍(𝐜1),
error correction now consists of using an error syndrome decoder on the syndrome {𝝁,𝝁}
to identify recovery chains 𝐫1 and 𝐫1 such that 𝜕1(𝐫1+ 𝐜1) = 0 and 𝜕1(𝐫1+ 𝐜1) = 0—i.e., the
sum of recovery and error chains form cycles in the corresponding chain complex. We
identify a logical failure whenever decoding introduces a logical 𝑋 and/or logical 𝑍 error
across the channel. For, e.g., logical subspaces as defined according to Fig. 3.15, a logical
error occurs whenever the sum of a recovery and error chain forms a non-trivial cycle. In
such a situation, a logical failure can be observed with the aid of the correlation surfaces:
if the sum of a recovery and error chain anti-commutes with the correlation surface of
the associated logical 𝑍 (𝑋 ) operator, a logical 𝑋 (𝑍) failure occurs. A chain of Pauli-𝑍
operators anti-commutes with a correlation surface if it crosses the correlation surface an
odd number of times.

Because, in this work, we do not explicitly consider cluster states with logical subspaces,
we simply define a logical error as an odd number of crossings of 𝐫1 + 𝐜1 and/or 𝐫1 + 𝐜1
through a two-dimensional plane in any of the three spatial dimensions of the lattice. This
approach corresponds to evaluating the fault tolerance of a cluster state as a pure quantum
memory, as discussed in Sec. 3.5.3—it exclusively assesses the state’s ability to protect
logical information and not, e.g., its ability to encode logical information or operate on it.

Just as in general for three-dimensional cluster states, the syndrome graph can be
regarded as a generalization of the two-dimensional error syndrome measured over time.
As explained in Sec. 3.4.8, for a two-dimensional code that experiences measurement errors,
we collect measurement outcomes {𝐦(𝑡),𝐦(𝑡)}𝑡 by repeating stabilizer measurements over
multiple time layers 𝑡. The error syndrome is then built up from stabilizer measurements
that change outcome from one layer to the next. For a foliated two-dimensional code,
this gives rise to the procedure described in Sec. 3.5.4 to construct the error syndrome
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graph. The difference between the cluster state syndrome construction in Sec. 3.5.4 and the
non-foliated two-dimensional error syndrome is that the measurement outcomes of qubits
on connected faces in vertical directions are also included in the cluster state syndrome.
This is necessary to correctly deal with the Pauli-𝑋 corrections of the one-bit teleportation
scheme—see Fig. 3.11 for more details. Since, in the cluster state, qubits are teleported
further before these corrections are applied, their influence shows up in the construction
of the error syndrome.

As indicated with Figs. 3.12 and 3.13, in practical situations, we measure most of
the cluster state qubits before decoding the syndrome graph. In situations like this, the
identified Pauli-𝑍 recovery chains 𝐫1 and 𝐫1 can typically not be applied verbosely, since
the qubits on which they are supposed to be applied are no longer part of the cluster state.
To find alternative versions of 𝐫1 and 𝐫1 that can be applied, one has to consider the details
of the exact implementation of the cluster state as a fault-tolerant channel. For example, if
the qubits are measured from bottom to top—like in Figs. 3.12 and 3.13—a version of 𝐫1 (𝐫1)
can be found by multiplying the chain with edge (face) generators of the original cluster
state in the upwards direction.

As mentioned above, evaluating whether or not a recovery chain leads to a logical
error does not in itself require translating the recovery operator to an operator on a set of
qubits that are still part of the remaining cluster state. Instead, we can simply check for
anti-commutation with the correlation surfaces of the logical operators. This is because, on
qubits relevant to determine (anti-)commutation—i.e., qubits on elements of 𝐶1 (𝐶2)—the
correlation surfaces of logical 𝑋 (logical 𝑍) operators exclusively apply Pauli-𝑋 operators.
Since the qubits of the cluster state are measured in the Pauli-𝑋 basis, this makes the
correlation surfaces valid representations of the logical operators both before and after
(part of the) cluster state qubits are measured out.

This naturally leads to a more thorough analysis of the role of Pauli-𝑋 errors in the
cluster state. At first glance, it seems that Pauli-𝑋 errors are undetectable since all qubits
are measured in the Pauli-𝑋 basis. This is true for errors that happen right before the
measurements—i.e., after the full cluster state is constructed. This situation is completely
identical to Pauli-𝑋 errors on ancillary qubits used to measure the stabilizer operators of a
two-dimensional topological code—e.g., right before measuring the red and blue qubits in
Fig. 3.10. On top of that, Pauli-𝑋 errors occurring on qubits in |+⟩ before the C𝑍 gates are
applied are also undetectable. This can be understood by realizing that, even though the
C𝑍 gates cause these errors to propagate as Pauli-𝑍 errors to neighboring edges or faces,
this never leads to a flip in the syndrome outcome of a full vertex or cell—the propagated
Pauli-𝑍 gates are always bound to flip an even number of measurements in each (dual)
cell. This is, of course, what should happen, since states initialized in |+⟩ are stabilized
by Pauli-𝑋 . In other words, Pauli-𝑋 errors that appear before the C𝑍 gates are applied
become stabilizers of the cluster state. We conclude that, in the situations considered so
far, Pauli-𝑋 errors are indeed undetectable but also harmless.

On the contrary, Pauli-𝑋 errors that appear in the middle of constructing the cluster
state are both harmful and detectable—albeit indirectly detectable. If the Pauli-𝑋 error
appears on a qubit after at least one (but not all) C𝑍 gates on that qubit are applied, the
propagated Pauli-𝑋 chain does flip vertex or cell syndrome outcomes. Such an error does
not become a stabilizer operator of the code but continues as a chain of Pauli-𝑍 errors. This
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chain is detectable by the error-correction process. Furthermore, Pauli-𝑋 errors appearing
on qubits that are not measured—i.e., the qubits on the final surface layer of a cluster state
channel—are harmful and undetectable. This is no different from errors occurring after the
last round of stabilizer measurements for two-dimensional channels. Finally, also Pauli
errors appearing on the initial surface layer of the cluster state, i.e., the qubits not initialized
in |+⟩, lead to the same vulnerable situation as in the two-dimensional case.

3.6 Entanglement distillation
In (distributed) quantum computing, we want the fidelity of (entangled) states to be high
for the calculations to be performed with high precision. There is a remedy for increasing
the quality of non-perfect or low-fidelity states by making use of distillation—also known
as purification. Typically, in the context of quantum computing, distillation is defined as
the use of local operations and classical communication to convert multiple quantum states
into a smaller number of states with higher fidelity. In this section, we discuss the main
ideas of distillation, including the first and most important distillation protocols, and share
general remarks on more recent work on distillation. For most of this section, we focus
on performing entanglement distillation (i.e., specifically distilling entangled quantum
states), as this is important in the context of distributed quantum computation. These ideas
serve as the basis for the entanglement distillation operations used in Ch. 5 and onwards.
However, we start in Sec. 3.6.1 by discussing the distillation of general quantum states.
This is relevant in the context of magic state distillation discussed in Sec. 3.4.7.

In general and in essence, all distillation protocols use quantum error-correction codes to
detect errors in quantum states. However, instead of correcting these errors, some protocols
simply discard the post-measurement state if an error is detected. These protocols only use
the error-detection properties of an error-correction code or deploy a pure error-detecting
code altogether—i.e., a code that is only able to detect errors and cannot correct them since
different (equally likely) errors result in the same error syndrome. Discarding the state in
case errors are detected introduces a probabilistic success factor in the distillation protocols.
Below, we distinguish two types of distillation: distillation based on stabilizer measurements
and distillation purely based on error correction. On top of that, we consider distillation of
states shared between two parties (i.e., bipartite distillation protocols) as well as distillation
of states shared between more than two parties (i.e., multipartite distillation protocols).
Bipartite protocols with stabilizer measurements are discussed in Sec. 3.6.2 and bipartite
protocols based on error-correction codes in Secs. 3.6.3 and 3.6.4. Multipartite protocols
with stabilizer measurements are considered in Sec. 3.6.7 and multipartite distillation
with error correction in Sec. 3.6.8. Furthermore, we include a few words on two other
bipartite distillation protocols in Secs. 3.6.5 and 3.6.6, and introduce the generation and
distillation of GHZ states with Bell pairs in Sec. 3.6.9. In Sec. 3.6.4, we show how distillation
based on stabilizer measurements forms a subclass of distillation based on error correction,
classifying both types of distillation as different sides of the same coin. In all parts of this
section we extensively use ideas and concepts from Secs. 2.3.4, 3.2.2, and 3.2.3. With the
exception of the analysis in Sec. 3.6.5, we assume that the distillation protocols work on
non-perfect input states with perfect gates and measurements, while qubits do not (further)
decohere over time. This means that the analyses only provide estimations for how the
protocols work—i.e., in reality, these protocols are less effective.
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Figure 3.16: Distillation of a state |𝜓⟩ ≡ 𝑇 |+⟩ with an ⟦𝑁 ,𝐾,𝑑⟧ stabilizer code that encodes a single logical
qubit—i.e., 𝐾 = 1. The state |𝜙⟩ is the (𝑁 −𝐾)-qubit ancillary state and 𝑈 is the encoding circuit of the code—see
Fig. 3.1a and Sec. 3.2.2 for more information. The protocol encodes half of the Bell pair created by the C𝑋 gate
between the top two qubits. The stabilizer code should be chosen such that the operator  that determines|𝜓⟩ = 𝑇 |+⟩ has a transversal logical representation  =1⊗2⊗⋯⊗𝑁 in the code. The measurement
operators 𝑃1, 𝑃2, … , 𝑃𝑁 are based on the logical 𝑋 operator 𝑋 = 𝑃1⊗𝑃2⊗⋯⊗𝑃𝑁 .
3.6.1 Distillation of general states
First, we focus on the distillation of general quantum states. Bravyi and Kitaev [16] propose
distilling a state |𝜓⟩ by initializing the logical version |𝜓⟩L of this state with a quantum
error-correction code. This approach is only efficient as a distillation protocol for certain
combinations of states, error-correction codes, and the initialization procedure. In the first
place, using an encoding circuit 𝑈 on |𝜓⟩ is ineffective, as this carries over all errors in |𝜓⟩
to the logical state |𝜓⟩L. More effective is initializing |𝜓⟩L by measuring the generators of
the error-correction code on an initial state |𝜙′⟩—i.e., by projecting with Π𝑔 in the language
of Sec. 3.2.3 and Fig. 3.1b. This method can be combined with discarding the logical state if,
e.g., certain generator measurements indicate errors. For example, a strategy could be to
only keep the final state if all measurements produce 𝑚𝑖 = +1. This is an efficient strategy
if observing 𝑚𝑖 = +1 for all stabilizer measurements guarantees that the most probable
errors are expelled from the logical state. In their paper, Bravyi and Kitaev show a specific
example with the five-qubit error-correction code introduced in Sec. 3.2.3: after initializing
all five qubits in an eigenstate of 𝑒𝑖𝜋/4𝑆𝐻 (which has a transversal logical representation in
the five-qubit code), measuring 𝑚𝑖 = +1 with the generators of the five-qubit code prevents
single-qubit Pauli errors from ending up in the logical state. If required, the distilled logical
state |𝜓⟩L can be converted back to |𝜓⟩ by applying a decoding circuit 𝑈†. If the initial state|𝜙′⟩ consists of multiple copies of the state |𝜓⟩ that is to be distilled, this method can be
used to recursively distill a state |𝜓⟩ in multiple rounds. In Secs. 3.6.3 and 3.6.8 we discuss
how this protocol is applied in the context of entanglement distillation.

Raussendorf et al. [22] and Fowler et al. [12] propose the protocol in Fig. 3.16 for
distilling general states. The idea of this protocol is to distill a state |𝜓⟩ = 𝑇 |+⟩, for 
a single-qubit unitary transformation. In this protocol, the final state |𝜓⟩ is initialized by
encoding and measuring out one qubit of a Bell pair with an error-correction code that has as a transversal logical representation of  . Encoding one qubit of a Bell pair with the
encoding circuit 𝑈 of an error-correction code leads to

|Φ+⟩↦ |0⟩⊗ |0⟩L+ |1⟩⊗ |1⟩L√2 = |+⟩⊗ |+⟩L+ |−⟩⊗ |−⟩L√2 ≡ |Φ+⟩1L . (3.12)
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It can be understood that applying the transversal logical operation  on the logical qubit
of the state in Eq. (3.12) leads to [23, 24](𝕀⊗ ) |Φ+⟩1L = ( 𝑇 ⊗1) |Φ+⟩1L . (3.13)

A more general version of this relation comes back below in Eq. (3.16). The relation in
Eq. (3.13) shows that measuring the logical 𝑋 operator on the logical qubit now leads to 𝑇 |+⟩ on the first qubit when |+⟩L is observed or 𝑇 |−⟩ = 𝑇𝑍 |+⟩ in case of finding |−⟩L.
If instead of  𝑇 |+⟩ the state  𝑇𝑍 |+⟩ is produced, this typically requires correcting the
state with  𝑇𝑍 ∗. Before measuring the logical qubit, stabilizer measurements can be
applied to filter out errors. Since the logical 𝑋 operator is a tensor product of single-qubit
Pauli operators, one can individually measure the qubits of the logical state and use this
to classically construct both the state of the logical qubit in the 𝑋 basis and, possibly, the
parity of one or more stabilizer operators of the code. This makes it possible to discard the
full state in case stabilizers with 𝑚𝑖 = −1 are observed.

For a diagonal matrix in the computational basis we have 𝑇 = and the protocol
distills a state |𝜓⟩ =  |+⟩. In that case, the correction operator  𝑇𝑍 ∗ simplifies to
the Pauli-𝑍 operation. Fowler et al. show two specific examples of the protocol for a
diagonal matrix : using the 7-qubit Steane code (which has a transversal 𝑆 gate) to distill𝑆 |+⟩ and using the 15-qubit Reed-Muller code (with transversal 𝑇 ) to distill 𝑇 |+⟩. This
makes it understandable that this protocol is mostly suitable for distilling magic states, as
discussed in Sec. 3.4.7. The same applies to the protocol of Bravyi and Kitaev, although
their protocol also has applications for distilling general states. Other circuit variations
for magic state distillation are summarized in Kubica [25]. In the context of magic state
distillation, all physical qubits of the distillation protocols become logical qubits, and the
protocols produce magic states |𝜓⟩L. The use of logical qubits typically means that the
indirect method discussed earlier in Sec. 3.4.7 and Fig. 3.7 is required to apply the gates 𝑖
in Fig. 3.16—i.e., performing these gates requires magic states themselves. This is exactly
how magic state distillation with Fig. 3.16 is applied recursively: by using distilled magic
states |𝜓⟩L from previous rounds to perform the logical operations 𝑖 in the current round,
producing a new |𝜓⟩L state with higher fidelity.

3.6.2 Bipartite two-to-one stabilizer protocols
We now make the transition to the distillation of entangled states. We start this topic by
considering two protocols that use a Bell pair to measure a stabilizer operator on a second
Bell pair with the circuit of Fig. 2.4b. For mixed states, the first distillation protocol of this
type was introduced by Bennett, Brassard, Popescu, Schumacher, Smolin, and Wootters
in 1996 [26]. We typically refer to this protocol as the BBPSSW protocol. The protocol
consumes a noisy version of the |Φ+⟩ state to distill a second noisy version of |Φ+⟩ by using
the first Bell pair to non-locally measure the 𝑍1𝑍2 parity of the second Bell pair. The analysis
of the protocol typically assumes both copies start out as isotropic states—see Sec. 2.4.2 for
more information. Since |Φ+⟩ is stabilized by the operator 𝑍1𝑍2 (see Table 2.1), this means
that the components stabilized by −𝑍1𝑍2 in the density matrix are removed if we find
measurement outcome𝑚=+1. This typically increases the fidelity of the post-measurement
state. However, there is also a probability we end up with measurement outcome 𝑚 = −1.
In this case, we have projected on the space −𝑍1𝑍2 and removed components stabilized by
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𝑍1𝑍2, such as our main component |Φ+⟩⟨Φ+|. This essentially destroys our entangled state:
it means we have to regenerate our states and retry the distillation protocol from the start.
This is a common feature in most, but not all, distillation protocols: they are probabilistic,
and obtaining the wrong measurement outcome means we have to throw the state away
and start over.

The DEJMPS protocol—named after its inventors Deutsch, Ekert, Jozsa, Macchiavello,
Popescu, and Sanpera [27]—is similar to the BBPSSW protocol. For this protocol, instead
of isotropic states, one assumes the Bell pairs are the more general Bell diagonal states.
By non-locally measuring other stabilizers next to 𝑍1𝑍2 and including local rotations, the
protocol is able to exploit non-uniformity in the coefficients of the Bell diagonal states—see
Eq. (2.18). This can be understood by realizing that both |Φ+⟩ and |Ψ+⟩ are stabilized by𝑋1𝑋2; both |Φ+⟩ and |Φ−⟩ are stabilized by 𝑍1𝑍2; and both |Φ+⟩ and |Ψ−⟩ are stabilized by−𝑌1𝑌2. For each of these three combinations, the other two Bell states are stabilized by
minus one times these operators. This means that, along with |Φ+⟩, performing distillation
by measuring one of these operators also amplifies one other unwanted coefficient. In
the DEJMPS protocol, the two-qubit operator {𝑋1𝑋2,𝑍1𝑍2,−𝑌1𝑌2} that is measured using
the scheme of Fig. 2.4b is chosen based on the smallest unwanted coefficient in the Bell
diagonal state that is being distilled.

On top of that, if we use an ancillary state of the form of Eq. (2.18) to carry out the
distillation measurement, the DEJMPS protocol uses single-qubit rotations to permute
the coefficients 𝑝01, 𝑝10 and 𝑝11 of the ancillary state. This is done to additionally only
highlight the smallest unwanted coefficient in the ancillary state. Whereas the circuit of
Fig. 2.4b carries out the distillation measurement perfectly for an ancillary state |Φ+⟩ =(|00⟩+ |11⟩)/√2, this changes if, instead, a noisy version of this state is used. In that case,
the joint Pauli operator is only measured approximately. For example, if we use |Φ−⟩ instead
of |Φ+⟩ as the ancillary state, we measure −𝑃1𝑃2 instead of 𝑃1𝑃2 on our main state, for𝑃 ∈ {𝑋,𝑍, 𝑖𝑌 }. An overview of all versions of bipartite 𝑋1𝑋2, 𝑍1𝑍2, and −𝑌1𝑌2 measurements
with isotropic states can be found in Table 3.1.

Table 3.1 shows that with two Bell states of the form of Eq. (2.18), no matter what
Pauli operator {𝑋1𝑋2,𝑍1𝑍2,−𝑌1𝑌2 } is measured, there is always “leakage” of one of the
main |Φ+⟩⟨Φ+| coefficients to the noisy part of the post-measurement state. In the DEJMPS
protocol, leakage from the main state is minimized by choosing the measurement operator{𝑋1𝑋2,𝑍1𝑍2,−𝑌1𝑌2 } based on which of the { |Ψ+⟩⟨Ψ+| , |Φ−⟩⟨Φ−| , |Ψ−⟩⟨Ψ−| } coefficients of the
main state is the smallest—since this coefficient is combined with the |Φ+⟩⟨Φ+| coefficient
of the ancillary state for each of these operators. Leakage from the ancillary Bell state
is reduced by rotating the ancillary Bell state in such a way that its smallest coefficient
is the one associated with |Ψ+⟩⟨Ψ+|—since this coefficient is always combined with the|Φ+⟩⟨Φ+| coefficient of the main state for any of the three operators. This rotation can, e.g.,
be achieved with 𝐻1𝐻2 to permute the |Ψ+⟩⟨Ψ+| and |Φ−⟩⟨Φ−| coefficients, with 𝑆†1 𝑆2 to
permute the |Ψ+⟩⟨Ψ+| and |Ψ−⟩⟨Ψ−| coefficients, or with 𝑅†1𝑅2 to permute the |Ψ−⟩⟨Ψ−| and|Φ−⟩⟨Φ−| coefficients, where 𝑅 ≡ 𝑅𝑋 (𝜋/2) = 𝑆†𝐻𝑆†.
3.6.3 Bipartite distillation with error-correction codes
The protocols of Sec. 3.6.2 can be generalized to a larger class of distillation protocols using
ideas and concepts from error-correction codes. For the following analysis, we assume two
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|𝜓⟩m = |𝜓⟩ |Φ+⟩m |Ψ+⟩m |Φ−⟩m |Ψ−⟩m|Φ+⟩a 𝑋1𝑋2 on |𝜓⟩ ✓ → |Φ+⟩m ✓ → |Ψ+⟩m (*) ✗ → |Φ−⟩m ✗ → |Ψ−⟩m|Ψ+⟩a 𝑋1𝑋2 on 𝑋2 |𝜓⟩ ✓ → |Ψ+⟩m (*) ✓ → |Φ+⟩m ✗ → |Ψ−⟩m ✗ → |Φ−⟩m|Φ−⟩a −𝑋1𝑋2 on |𝜓⟩ ✗ → |Φ+⟩m ✗ → |Ψ+⟩m ✓ → |Φ−⟩m ✓ → |Ψ−⟩m|Ψ−⟩a −𝑋1𝑋2 on 𝑋2 |𝜓⟩ ✗ → |Ψ+⟩m ✗ → |Φ+⟩m ✓ → |Ψ−⟩m ✓ → |Φ−⟩m
|𝜓⟩m = |𝜓⟩ |Φ+⟩m |Ψ+⟩m |Φ−⟩m |Ψ−⟩m|Φ+⟩a 𝑍1𝑍2 on |𝜓⟩ ✓ → |Φ+⟩m ✗ → |Ψ+⟩m ✓ → |Φ−⟩m (*) ✗ → |Ψ−⟩m|Ψ+⟩a 𝑍1𝑍2 on 𝑍2 |𝜓⟩ ✓ → |Φ−⟩m (*) ✗ → |Ψ−⟩m ✓ → |Φ+⟩m ✗ → |Ψ+⟩m|Φ−⟩a −𝑍1𝑍2 on |𝜓⟩ ✗ → |Φ+⟩m ✓ → |Ψ+⟩m ✗ → |Φ−⟩m ✓ → |Ψ−⟩m|Ψ−⟩a −𝑍1𝑍2 on 𝑍2 |𝜓⟩ ✗ → |Φ−⟩m ✓ → |Ψ−⟩m ✗ → |Φ+⟩m ✓ → |Ψ+⟩m
|𝜓⟩m = |𝜓⟩ |Φ+⟩m |Ψ+⟩m |Φ−⟩m |Ψ−⟩m|Φ+⟩a −𝑌1𝑌2 on |𝜓⟩ ✓ → |Φ+⟩m ✗ → |Ψ+⟩m ✗ → |Φ−⟩m ✓ → |Ψ−⟩m (*)|Ψ+⟩a −𝑌1𝑌2 on 𝑖𝑌2 |𝜓⟩ ✓ → − |Ψ−⟩m (*) ✗ → |Φ−⟩m ✗ → − |Ψ+⟩m ✓ → |Φ+⟩m|Φ−⟩a 𝑌1𝑌2 on |𝜓⟩ ✗ → |Φ+⟩m ✓ → |Ψ+⟩m ✓ → |Φ−⟩m ✗ → |Ψ−⟩m|Ψ−⟩a 𝑌1𝑌2 on 𝑖𝑌2 |𝜓⟩ ✗ → − |Ψ−⟩m ✓ → |Φ−⟩m ✓ → − |Ψ+⟩m ✗ → |Φ+⟩m

Table 3.1: Description of performing the circuit of Fig. 2.4b for 𝑁 = 2 to non-locally measure 𝑋1𝑋2 (top part of the
table), 𝑍1𝑍2 (middle part) and −𝑌1𝑌2 (bottom part) on a main state (labeled “m”) using ancillary Bell states |Φ±⟩a
and |Ψ±⟩a. The first column denotes the operator that is effectively measured on a general quantum state |𝜓⟩
when using each of the ancillary states. The four columns on the right describe what happens for a distillation
protocol that measures these operators on a noisy Bell state of the form of Eq. (2.18), and post-selects on a +1
measurement outcome. Here, a mark “✓” means the state is kept in case of a successful measurement outcome,
whereas “✗” means the combination of states is removed. The state printed after the arrow describes how the
main state is transformed by the operation. No matter what Pauli operator is measured, there is always “leakage”
of the two main coefficients (i.e., the coefficients associated with |Φ+⟩m,a) to one of the unwanted coefficients (the
coefficients that are part of the noise)—these scenarios are marked with “(*)”. Performing rotations to minimize
this leakage is one of the key ingredients in the DEJMPS entanglement distillation protocol.
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parties 𝐴 and 𝐵 share 𝑁 non-perfect Bell pairs between them of the form(𝕀⊗𝑁 ⊗𝑃) |Φ+𝑁 ⟩ , where |Φ+𝑁 ⟩ ≡ 1√2𝑁 ∑𝑥∈{0,1}𝑁 |𝑥⟩𝐴⊗ |𝑥⟩𝐵 . (3.14)

Here, |Φ+𝑁 ⟩ describes 𝑁 perfect Bell pairs shared between party 𝐴 and 𝐵—this state is often
referred to as the maximally entangled state. Furthermore, 𝑃 denotes a noise channel
consisting of Pauli errors. Based on the discussion in Sec. 2.4.2, one can understand that a
tensor product of 𝑁 Bell diagonal states can be written in the form of Eq. (3.14).

We first consider a scenario in which (by assumption) party 𝐴 creates 𝑁 perfect Bell
pairs locally before sending one qubit of each pair to party 𝐵—e.g., with teleportation. In
this scenario, the noise channel𝑃 is the result of physically sending half of the qubits
from 𝐴 to 𝐵. It means that 𝐴 has access to the qubits before the noise channel acts and
can apply an ⟦𝑁 ,𝐾,𝑑⟧ stabilizer code to protect the qubits from this noise. We discuss in
Sec. 3.2.2 how a logical state can be initialized by measuring the code’s stabilizer generators
on one of the eigenstates of (a representation of) the logical operators that stabilize the
target logical state—i.e., by projecting with Π𝑔 in Eq. (3.1). 𝐾 logical Bell pairs are stabilized
by 𝑋 𝑗 ⊗𝑋 𝑗 and 𝑍 𝑗 ⊗𝑍 𝑗 for 𝑗 ∈ {1,2,… ,𝐾 }, where the operators 𝑋 𝑗 and 𝑍 𝑗 are the logical 𝑋
and logical 𝑍 operators of the code, respectively. In this situation, projecting with Π𝑔 ⊗Π𝑔
on |Φ+𝑁 ⟩ automatically realizes 𝐾 encoded Bell pairs regardless of the exact stabilizer code
used. This is because, in that case, the following holds, for 𝑃 ∈ {𝑋,𝑍} and 𝑠𝑗 ∈ {+,−}:𝑠𝑗 (𝑃 𝑗 ⊗𝑃 𝑗)(Π𝑔 ⊗Π𝑔) |Φ+𝑁 ⟩ = 𝑠𝑗√2𝑁 ∑𝑥∈{0,1}𝑁 (Π𝑔𝑃 𝑗 |𝑥⟩)𝐴⊗(Π𝑔𝑃 𝑗 |𝑥⟩)𝐵= (Π𝑔 ⊗Π𝑔) |Φ+𝑁 ⟩ . (3.15)

This can be understood by realizing that a logical operator 𝑃 𝑗 of a stabilizer code is a
tensor product of single-qubit Pauli operators. First, single-qubit Pauli-𝑋 operators in 𝑃 𝑗
shuffle around the terms 𝑥 ∈ {0,1}𝑁 simultaneously for both the 𝐴 and 𝐵 terms, which
leaves the full superposition state invariant. Second, single-qubit Pauli-𝑍 operators in 𝑃 𝑗
acting on 𝑥 ∈ {0,1}𝑁 possibly introduce a minus sign, but the minus signs of the two parties
always cancel against each other. Last, Pauli-𝑌 operators have the property 𝑌 = 𝑖𝑋𝑍 , so
they might introduce an overall minus sign for all 𝑥 ∈ {0,1}𝑁 . This minus sign is captured
with 𝑠𝑗 = (−1)𝑛𝑗 , where 𝑛𝑗 is the number of Pauli-𝑌 operators in 𝑃 𝑗 . In situations where(Π𝑔 ⊗Π𝑔 ) |Φ+𝑁 ⟩ is stabilized by −𝑃 𝑗 ⊗𝑃 𝑗 instead of +𝑃 𝑗 ⊗𝑃 𝑗 , we technically initialize a
logical version of |Φ−⟩, |Ψ+⟩, or |Ψ−⟩, but this has no influence on the error-correction
properties of the code. The CSS stabilizer codes of Sec. 3.2.4 always lead to 𝑠𝑗 = +1 for all𝑃 𝑗 .

In Fig. 3.17, we see a general distillation circuit associated with this scenario. This
protocol was introduced by Glancy et al. [28] and Wilde et al. [24]. The result of Glancy
et al. shows that initializing logical Bell states by measuring the stabilizer generators of a
stabilizer code on the state of Eq. (3.14) can itself also be considered as part of the distillation
process. This is because, in this specific situation, a subset of code generators are always
automatically part of the original stabilizer group of |Φ+𝑁 ⟩. This means that the combined
measurement result for this subset can be used to detect errors—i.e., incorrect measurement
parities during the initialization process indicates the presence of errors.
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Figure 3.17: General protocol to distill 𝐾 Bell pairs out of 𝑁 Bell pairs with an ⟦𝑁 ,𝐾,𝑑⟧ error-correction code in a
scenario where a Pauli channel𝑃 corresponds to the noise associated with physically sending half of the qubits
to the other party. As shown in the main text, logical Bell pairs can be initialized with the projector Π𝑔 . On top of
that, projecting with 𝕀⊗𝑁 ⊗Π𝑔 on the qubits of one of the two parties is equivalent to projecting with Π𝑇𝑔 ⊗Π𝑔
on both parties. Alternatively, instead of encoding with Π𝑔 ⊗Π𝑔 or 𝕀⊗𝑁 ⊗Π𝑔 = Π𝑇𝑔 ⊗Π𝑔 on |Φ+𝑁 ⟩, encoding can
be achieved by only initializing the first 𝐾 pairs in the maximally entangled state |Φ+𝐾 ⟩ and initializing the
other 𝑀 = 𝑁 −𝐾 pairs in |+⟩⊗2𝑀 , after which the encoding circuit 𝑈 ⊗𝑈 is applied—see Fig. 3.1 for more details.
Measuring the qubits of the top party is only necessary if these qubits also acquire noise. The correction with𝑃𝐦 based on the measurement outcomes 𝐦 = {𝑚1,𝑚2,… ,𝑚𝑁−𝐾 } works the same as in Fig. 3.3. This distillation
protocol is reminiscent of a protocol proposed by Glancy et al. [28] and Wilde et al. [24].
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On top of that, Fig. 3.17 indicates that measuring the stabilizer generators on the qubits
of one of the parties is sufficient to initialize the code on the qubits of both parties. This is
possible because, for a maximally entangled state |Φ+𝑁 ⟩ and a general operation  on 𝑁
qubits, we have [23, 24] ( ⊗ 𝕀⊗𝑁 ) |Φ+𝑁 ⟩ = (𝕀⊗𝑁 ⊗ 𝑇 ) |Φ+𝑁 ⟩ . (3.16)

Since Π𝑔 is a projector, Π𝑔Π𝑔 = Π𝑔 holds, and therefore (Π𝑔 ⊗ 𝕀⊗𝑁 ) |Φ+𝑁 ⟩ = (Π𝑔 ⊗Π𝑇𝑔 ) |Φ+𝑁 ⟩.
The Pauli operators fulfill 𝑋 𝑇 = 𝑋 , 𝑍𝑇 = 𝑍 , and 𝑌 𝑇 = −𝑌 , so the first party initializing a
code by projecting with Π𝑔 automatically initializes a code on the second party with the
projector Π𝑇𝑔 = 𝑁−𝐾∏𝑖=1 𝕀⊗𝑁 + 𝑠𝑖𝑔𝑖2 . (3.17)

Here, {𝑔𝑖}𝑁−𝐾𝑖=1 are the stabilizer generators of the code and 𝑠𝑖 = (−1)𝑛𝑖 , where 𝑛𝑖 represents
the number of Pauli-𝑌 operators in a specific generator 𝑔𝑖. We note that just as in the
discussion for encoding logical Bell pairs or initializing a logical state bymeasuring stabilizer
generators in general, possible minus signs in front of the stabilizer operators do not
influence the error-correction properties of the code. On top of that, CSS codes always
have 𝑠𝑖 = +1 for each stabilizer generator 𝑔𝑖, and therefore always satisfy Π𝑇𝑔 = Π𝑔 .
3.6.4 Bilocal Clifford protocols
We continue with a distillation scenario in which the two parties generate 𝑁 noisy Bell
pairs between each other in a direct fashion. Even though we can still model these Bell
pairs with the expression of Eq. (3.14), the difference with the previous scenario is that the
parties can no longer encode the Bell pairs before the noise channel acts. Luckily, we can
make use of Eq. (3.16) to effectively apply an error-correction code before the noise channel
is applied. We depict the associated general protocol in Fig. 3.18. We interpret Fig. 3.18 as
applying 𝑈 on the qubits of the second party before𝑃 acts—the actual situation where
the first party applies 𝑈 𝑇 after the noise channel is equivalent by Eq. (3.16). Because, in
the notation of Sec. 3.2.2 and Fig. 3.1a, we decode the qubits of the second party with the
second half of |Φ+𝑁−𝐾 ⟩ as the ancillary state |𝜙⟩, encoding with 𝕀⊗𝑁 ⊗𝑈 transforms the
code’s stabilizers as⟨𝑋𝑖⊗𝑋𝑖,𝑍𝑖⊗𝑍𝑖⟩𝑁−𝐾𝑖=1 ↦ ⟨𝑋𝑖⊗𝑈𝑋𝑖𝑈†,𝑍𝑖⊗𝑈𝑍𝑖𝑈†⟩𝑁−𝐾𝑖=1 . (3.18)

Here, for 𝑃 ∈ {𝑋,𝑍}, the operators 𝑃𝑖⊗𝑃𝑖 denote applying 𝑃 on the 𝑖th qubits of the ancillary
states of party 𝐴 and 𝐵. It becomes clear that measuring the qubits of the last 𝑀 = 𝑁 −𝐾
pairs in the Pauli-𝑋 basis after decoding with 𝑈† means we only collect the error syndrome
for code generators {𝑋𝑖⊗𝑈𝑋𝑖𝑈†}𝑀𝑖=1—i.e., we only measure half of the generators. This,
however, still allows us to use the full functionality of the error-correction code, as we
assume𝑃 only acts on half of the qubits of our Bell pairs: this scheme fully complies with
an ⟦𝑁 ,𝐾,𝑑⟧ error-correction code based around {𝑋𝑖}𝑀𝑖=1 as the generators of its ancillary
state |𝜙⟩ prior to encoding—i.e., with the ancillary state |𝜙⟩ = |+⟩⊗𝑀 . If we restrict to using
a stabilizer error-correction code in this distillation protocol, the circuit 𝑈 is a Clifford
circuit—as explained in Sec. 3.2.2. This is why this class of distillation protocols is sometimes
referred to as (𝑁 -to-𝐾 ) bilocal Clifford protocols [29].
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Figure 3.18: General protocol to distill 𝐾 Bell pairs out of 𝑁 Bell pairs with an ⟦𝑁 ,𝐾,𝑑⟧ error-correction code in a
scenario where a Pauli channel𝑃 corresponds to noise associated with directly generating non-perfect Bell
pairs between the two involved parties. The two parties apply 𝑈 𝑇 ⊗𝑈†, where 𝑈 is the encoding circuit of the
error-correction code, before measuring the qubits of the last 𝑁 −𝐾 pairs in the Pauli-𝑋 basis. The relation in
Eq. (3.16) means that the operation 𝑈 𝑇 ⊗ 𝕀⊗𝑁 is equivalent to applying 𝕀⊗𝑁 ⊗𝑈 before the noise channel. The
correction with 𝑃𝐦 based on the measurement outcomes 𝐦 = {𝑚′1𝑚1,𝑚′2𝑚2,… ,𝑚′𝑁−𝐾𝑚𝑁−𝐾 } works the same as in
Fig. 3.3. We here have to combine the measurement results 𝑚′𝑖 ∈ {+1,−1} and 𝑚𝑖 ∈ {+1,−1} because the𝑀 = 𝑁 −𝐾
Bell pairs that form the ancillary state |𝜙⟩ in the notation of Fig. 3.1a are stabilized by ⟨𝑋𝑖⊗𝑋𝑖⟩𝑀𝑖=1—as well as by⟨𝑍𝑖⊗𝑍𝑖⟩𝑀𝑖=1, but this information is lost after the measurements. This type of distillation protocol is formalized
and extensively evaluated in Refs. [29–31].
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1 𝑈†2 𝑋 =
1 𝑃2  ∙ 𝑋

(a)

1 𝑃 ′2⋮𝑁 −1𝑁  ∙ 𝑋
(b)

Figure 3.19: (a) Main decoding circuit associated with one step of the DEJMPS distillation protocol, for  ∈ ⟨𝐻,𝑆⟩
and 𝑃 ∈ {𝑋,𝑌 ,𝑍}. Using this circuit as 𝑈 𝑇 ⊗𝑈† in the standard bilocal Clifford distillation protocol of Fig. 3.18
corresponds to measuring the 𝑃∗⊗𝑃 parity non-locally with the aid of the measured Bell pair, as shown earlier
in Fig. 2.4b. In the context of using 𝑈 𝑇 ⊗𝑈† in Fig. 3.18, the ∗2 ⊗2 rotation leaves the |Φ+⟩⟨Φ+ | state invariant
and does not influence the noiseless contribution to the full non-local measurement. (b) Extension of the DEJMPS
decoding circuit as a non-local parity measurement on multiple qubits with an (𝑁 −1)-qubit Pauli operator 𝑃 ′.

As explained in Sec. 3.2.3, typically error-correction codes are not able to find all
possible errors, but good codes can detect the most probable errors. If we assume that
the 𝑁 non-perfect Bell pairs of Eq. (3.14) are Bell diagonal states of the form of Eq. (2.18),
the most likely errors are single-qubit Pauli errors. This makes it understandable that the
five-qubit error-correction code of Fig. 3.2 works relatively well in combination with, e.g.,
the protocol of Fig. 3.18 as a five-to-one distillation protocol. That is because, with this
error-correction code, all single-qubit Pauli errors can be identified. If the fidelity of the
initial Bell diagonal states is high enough, this protocol is able to deterministically increase
the (average) fidelity of the distilled Bell pair [31].

Since quantum error-correction codes are not able to identify single-qubit Pauli errors
for 𝑁 < 5, there are also no distillation protocols with a smaller 𝑁 that can uniquely
identify all single-qubit errors in Bell diagonal states. This is why, in distillation, error
correction is often paired with probability. For example, if we find a syndrome outcome 𝐦
that could be caused by several errors with the same probability of occurring, we could
simply decide to discard the post-measurement state, generate the entangled states again,
and retry the distillation protocol. In this way, we can describe the BBPSSW and DEJMPS
protocols as distillation protocols with 𝑁 = 2 and 𝐾 = 1 of the form of Fig. 3.18. For
example, one round of the DEJMPS protocol carries out 𝑈 𝑇 ⊗𝑈† with 𝑈† = C𝑃2,12, where𝑃 ∈ {𝑋,𝑍,𝑌 } and ∈ ⟨𝐻,𝑆⟩, as depicted in Fig. 3.19a. This protocol only declares success in
case the full measurement outcome is 𝐦 = {𝑚′1𝑚1 = +1}—i.e., in case no detectable errors
are identified. At each of the two parties, the DEJMPS protocol carries out a controlled-𝑃
operator with 𝑃 a single-qubit Pauli operator on the qubits of one other Bell pair. Instead,
the measured Bell pair can also be used to measure a multi-qubit Pauli operator 𝑃 ′ as a
non-local parity measurement on the qubits of multiple Bell pairs. This generalization is
depicted in Fig. 3.19b.

On top of that, it is possible to run these protocols in a concatenated fashion by con-
suming multiple Bell pairs to perform multiple non-local parity measurements in series—
examples of concatenated-DEJMPS protocols can be seen in Figs. 3.21a and 3.21b. Since
every Clifford circuit 𝑈† can be written as a combination of C𝑋 , 𝐻 , and 𝑆 gates, every𝑁 -to-𝐾 bilocal Clifford distillation protocol of the form of Fig. 3.18 can in fact be inter-
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1
𝑈†

…2 …⋮𝑖−1 …𝑖 𝑋𝑖+1 …⋮𝑁 −1 …𝑁 …
=

1 𝑃 ′
rem

…2 …⋮ ⋮ ⋮𝑖−1 …𝑖 𝑖 ∙ ∙ 𝑋𝑖+1 𝑃 ′′ …⋮ ⋮ ⋮𝑁 −1 …𝑁 …
Figure 3.20: Adapting a decoding circuit 𝑈† in such a way that it can be interpreted as using an ancillary state
(i.e., qubit 𝑖) to non-locally measure a Pauli operator on the remaining states. To realize the form on the right,
we make use of the relations in Fig. 2.6a to decompose C𝑌 gates into C𝑋 and C𝑍 gates, and the commutation
relations of Figs. 2.6b-2.6g to move gates to the left or the right. We also use the relation between 𝐻 gates and C𝑍
and C𝑋 gates as presented in Fig. 2.5 to move 𝐻 gates on qubit 𝑖 to the right of the circuit. Using these relations,
single-qubit rotations on qubit 𝑖 are moved to the far left of the circuit as 𝑖 ∈ ⟨𝐻𝑖, 𝑆𝑖⟩, so that, after this part,
there are no more single-qubit rotations on qubit 𝑖. We move C𝑃 gates—for 𝑃 ∈ {𝑋,𝑌 ,𝑍}—that have their control
on qubit 𝑖 to the left of the circuit as well, so that we end up with a controlled-(𝑃 ′⊗𝑃 ′′) operation here. On the
right of the circuit, we are left with rem that contains all two-qubit gates that do not have their control on qubit𝑖, plus possible single-qubit rotations on qubits 𝑗 ≠ 𝑖. The intermediate part rem, however, is also not allowed to
have gates C𝑌 with the target on qubit 𝑖—these gates have to be decomposed into a C𝑍 gate and a C𝑋 gate using
Fig. 2.6a, after which the C𝑍 gate has to be moved to the C𝑃 ′⊗C𝑃 ′′ part of the circuit. This guarantees that the
block rem commutes with the Pauli-𝑋 measurement on qubit 𝑖. In the context of using 𝑈 𝑇 ⊗𝑈† for a bilocal
Clifford distillation protocol of Fig. 3.18, the rotation ∗𝑖 ⊗𝑖 always leaves the main Bell pair state |Φ+⟩⟨Φ+ |
invariant—possibly while rotating noise contributions. Measuring the qubits 𝑖 at both parties in the Pauli-𝑋 basis
after 𝑈 𝑇 ⊗𝑈† is therefore equivalent to measuring 𝑃∗⊗𝑃 for 𝑃 ≡ 𝑃 ′⊗ (𝑖𝑋𝑖†𝑖 )⊗𝑃 ′′ = 𝑈𝑋𝑖𝑈†.
preted as a concatenation of 𝑁 −𝐾 non-local parity measurements with multi-qubit Pauli
operators. To analyze what operator is measured with a circuit 𝑈 𝑇 ⊗𝑈† with respect to
a specific Bell pair labeled as 𝑖, we have to reconfigure 𝑈† according to Fig. 3.20—i.e., by
moving gates that do not commute with the Pauli-𝑋 measurement on the qubits of the𝑖th Bell pair to the beginning and by collecting all single-qubit rotations on qubits 𝑖 in
front of all two-qubit gates. This decomposition is necessary because gates associated with
measurements on other Bell pairs can influence the operator measured with the 𝑖th Bell pair.
We clarify this with an example of a concatenated-DEJMPS protocol depicted in Fig. 3.21a.
Here, we see three rounds of the DJEMPS protocol, without ancillary rotations—i.e., with4 =3 =2 = 𝕀. Intuitively, one would think that this circuit measures −𝑌3⊗𝑌3, 𝑋2⊗𝑋2,
and 𝑍1⊗𝑍1 in three consecutive rounds—i.e., by measuring the qubits of Bell pair 4, 3, and 2
in the Pauli-𝑋 basis, respectively, after the C𝑃 gates to the other Bell pairs. However, since
the first non-local measurement on Bell pair 4 influences the second non-local measurement
on Bell pair 3, the second round actually measures 𝑋2𝑍4⊗𝑋2𝑍4 instead of 𝑋2⊗𝑋2. This can
also be understood by realizing that 𝑋4 or 𝑌4 errors before the circuit acquire 𝑌3 operators
after the gates of the first round, which can be detected with the Pauli-𝑋 measurement on
the qubits of Bell pair 3. This shows that the parity measurement in a certain round of a
concatenated bilocal Clifford protocol could be influenced by previous rounds.

To exemplify the requirement in Fig. 3.20 to move all single-qubit rotations on qubit𝑖 to the far left of the circuit, we slightly modify the concatenated-DEJMPS protocol of
Fig. 3.21a by adding a rotation2 = 𝐻2 before the third round. As can be seen in Fig. 3.21b,
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1 𝑈†2 𝑋3 𝑋4 𝑋 =

1 ∙2 ∙ 𝑋3 𝑌 ∙ 𝑋4 ∙ 𝑋 =

1 ∙2 ∙ 𝑋3 ∙ ∙ 𝑋4 ∙ ∙ ∙ 𝑆 𝑋 =

1 ∙ ∙2 ∙ 𝑋3 𝑌 ∙ ∙ 𝑋4 ∙ 𝑋
(a)1 𝑈†2 𝑋3 𝑋4 𝑋 =

1 ∙2 𝐻 ∙ 𝑋3 𝑌 ∙ 𝑋4 ∙ 𝑋 =

1 ∙2 𝐻 ∙ ∙ ∙ 𝑋3 ∙ 𝑌 𝑋4 ∙ ∙ 𝑋
(b)

Figure 3.21: (a) Example of three concatenated rounds of the DEJMPS protocol of Fig. 3.19, without ancillary
rotation (4 =3 =2 = 𝕀). As explained in Fig. 3.20 and the main text, identifying what non-local measurement
is carried out with Bell pair 𝑖 requires moving two-qubit gates with the control on qubit 𝑖 to the front of the
circuit. This is shown here explicitly for the Bell pairs on qubits 4, 3, and 2, respectively. (b) Variation on the three
concatenated rounds of the DEJMPS protocol example shown in (a). The rotation2 = 𝐻2 in the third round now
makes that the non-local measurement with Bell pair 2 measures 𝑍1𝑍3𝑍4⊗𝑍1𝑍3𝑍4 instead of 𝑍1⊗𝑍1.
this modification means the third round now measures 𝑍1𝑍3𝑍4⊗𝑍1𝑍3𝑍4 instead of 𝑍1⊗𝑍1,
since the additional 𝐻 gate makes Pauli-𝑋 and Pauli-𝑌 errors on qubits 3 and 4 detectable
with a Pauli-𝑋 measurement on qubit 2.

We emphasize that the operators measured non-locally with a circuit 𝑈 𝑇 ⊗𝑈† directly
overlap with the stabilizer operators of the error-correction code associated with an encod-
ing circuit 𝑈 . For example, for the five-qubit error-correction code of Fig. 3.2, we show in
Fig. 3.22 how the stabilizer operator associated with the third qubit can be identified by
rewriting the decoding circuit in the form of Fig. 3.20. Whereas, as discussed in Sec. 3.2.2,
it might be easier to identify stabilizer operators by commuting operators 𝑋𝑖 through𝑈 , the process described here explains why every bilocal Clifford protocol is, in fact, a
concatenation of non-local measurements. Since 𝑁 Bell pairs |Φ+𝑁 ⟩ are stabilized by 𝑃∗⊗𝑃 ,
for 𝑃 an 𝑁 -qubit Pauli operator 𝑃 ∈ ⟨𝑋𝑖,𝑍𝑖⟩𝑁𝑖=1, this also directly gives an intuition why
Clifford circuits are suitable to use for a distillation protocol in the form of Fig. 3.18. More
details regarding the evaluation, identification, and classification of (well-performing)
bilocal Clifford protocols can be found in Krastanov et al. [30], Zhao et al. [32], Jansen et
al. [29], and Goodenough et al. [31].

3.6.5 Double selection protocol
The double selection protocol is a three-to-one distillation protocol based on two concate-
nated rounds of the BBPSSW or DEJMPS protocol that is often more effective than BBPSSW
and DEJMPS themselves. This protocol was introduced by Fujii and Yamamoto [33].
Whereas, e.g., two rounds of the DEJMPS protocol could consist of 𝑈† = C𝑃2,1C𝑍3,23—
where we have fixed the gate C𝑃3,2 = C𝑍3,2 between pair 3 and 2, and removed the rotation2 = 𝕀 on pair 2 before applying C𝑃2,1—the idea of double selection is to swap the gatesC𝑍3,2 and C𝑃2,1 in scenarios like this, and apply 𝑈† = C𝑍3,2C𝑃2,13 instead. From the
perspective of noiseless gates, this leads to the same error-correction code, since these
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1
𝑈†2 𝑋3 𝑋4 𝑋5 𝑋

=

1 𝑌 ∙2 ∙ ∙ 𝑋3 ∙ ∙ 𝑋4 ∙ 𝑌 ∙ 𝑋5 ∙ ∙ 𝑋
=

1 𝑌2 ∙ ∙ ∙ 𝑋3 𝑍 ∙ ∙ ∙ 𝑋4 ∙ ∙ 𝑋5 ∙ ∙ 𝑋
Figure 3.22: Example to show that the non-local measurements with the 𝑈 𝑇 ⊗𝑈† protocol of Fig. 3.18 are built up
from the stabilizer operators of the error-correction code associated with encoding circuit 𝑈 . For the decoding
circuit of the five-qubit error-correction code, the non-local measurement of 𝑋1𝑍2𝑋4⊗𝑋1𝑍2𝑋4 by measuring the
Bell pair on qubit 3 in the Pauli-𝑋 basis aligns with the stabilizer −𝑋1𝑍2𝑋3𝑋4 of the code, as presented in the
caption of Fig. 3.2. In this comparison, the Pauli-𝑍 rotation on qubit 3 effectively converts the 𝑋3 measurement
into a −𝑋3 measurement.

two-qubit gates commute. However, if the gates are noisy, exchanging C𝑍3,2 and C𝑃2,1 has
the advantage that noise originating from C𝑍3,2 does no longer propagate to the first Bell
pair [33, 34], which is the distilled Bell pair that is kept after measuring the second and
third Bell pair. More specifically, exchanging the two-qubit gates means the probability of
noise on the first Bell pair decreases at the expense of an increase in the noise probability
on the third Bell pair. However, this is still beneficial, as noise on the third pair has a higher
probability of being detected since this Bell pair is measured out.

The main idea of double selection can be expanded to general bilocal Clifford distillation
protocols. Here, the main idea is the same: changing the order of the two-qubit gates to
minimize the propagation of noise to the states that are not measured out. For four-to-
one distillation protocols, specifically, this approach leads to a class of protocols that are
sometimes referred to as triple selection [30]. Strictly speaking, changing the order of the
gates means these protocols can no longer be regarded as stabilizer distillation protocols.
However, they do still fall within the framework of a bilocal Clifford protocol of the form
of Fig. 3.18. The main idea of double selection shows that the analysis in Sec. 3.6.4 is not
the full story in scenarios with noisy gates. An example of the double selection distillation
protocol (with3 = 𝕀) can be found in Block B.1 of Fig. 3.28.

3.6.6 Hashing protocol
The hashing protocol [23] distills a set of perfect Bell pairs in a (hypothetical) situation
where the initial number of Bell pairs goes to infinity (𝑁 → ∞). Using the short-hand
notation |𝜙00⟩ ≡ |Φ+⟩, |𝜙01⟩ ≡ |Ψ+⟩, |𝜙10⟩ ≡ |Φ−⟩, and |𝜙11⟩ ≡ |Ψ−⟩ introduced in Sec. 2.4.2,
we can associate each term in the density matrix of 𝑁 Bell diagonal states with a classical
bit string of 2𝑁 bits:

𝜌 = ( ∑𝑠1 ,𝑠2∈ℤ2𝑝′𝑠1𝑠2Φ𝑠1𝑠2)⊗⋯⊗( ∑𝑠2𝑁−1 ,𝑠2𝑁 ∈ℤ2𝑝′𝑠2𝑁−1𝑠2𝑁Φ𝑠2𝑁−1𝑠2𝑁)= ∑𝑠1 ,𝑠2 ,…,𝑠2𝑁 ∈ℤ2𝑝𝑠1𝑠2…𝑠2𝑁Φ𝑠1𝑠2 …Φ𝑠2𝑁−1𝑠2𝑁 . (3.19)

Here, Φ𝑖𝑗 ≡ |𝜙𝑖𝑗 ⟩⟨𝜙𝑖𝑗 | and 𝑝𝑠1𝑠2…𝑠2𝑁 ≡ 𝑝′𝑠1𝑠2𝑝′𝑠3𝑠4 …𝑝′𝑠2𝑁−1𝑠2𝑁 . Performing a distillation protocol
typically gives us information on these classical bits—i.e., assuming all of the 22𝑁 combina-
tions are present in the initial density matrix of Eq. (3.19), consuming one of the 𝑁 Bell
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pairs in one round of distillation typically “rules out” half of the terms. For example, for
just a single Bell diagonal state, measuring 𝑋1𝑋2 on its two qubits tells us whether the
first classical bit is 0 or 1, measuring 𝑍1𝑍2 tells us whether the second bit is 0 or 1, and
measuring −𝑌1𝑌2 tells us whether the parity of these two bits is 0 or 1. This principle is
the main ingredient of the hashing protocol. Specifically, it makes use of the fact that, for
infinite copies of a certain Bell diagonal state, many of the probabilities 𝑝𝑠1𝑠2…𝑠2𝑁 associated
with a certain state Φ𝑠1𝑠2 …Φ𝑠2𝑁−1𝑠2𝑁 vanish—meaning that the exact state Φ𝑠1𝑠2 …Φ𝑠2𝑁−1𝑠2𝑁
can be found without identifying all 2𝑁 classical bits.

To understand how this works, we first realize that, before measuring out a Bell pair,
one can apply bilocal two-qubit gates between this Bell pair and other Bell pairs to “mix”
the classical bits of the measured-out pair with bits of other Bell pairs. In this scenario,
we consume one Bell pair to measure the parity of a general number of classical bits from
the 2𝑁 bit string describing the 𝑁 Bell diagonal states. This can be achieved with the
bilocal controlled-𝑃 gates used in the DEJMPS protocol, for 𝑃 ∈ {𝑋,𝑍, 𝑖𝑌 }. For example,
for two Bell diagonal states with terms |𝜙𝑠1𝑠2𝜙𝑠3𝑠4⟩⟨𝜙𝑠1𝑠2𝜙𝑠3𝑠4 |, measuring out the qubits of
the first Bell pair in the Pauli-𝑋 basis after applying bilocal C𝑋1,3 and C𝑋2,4 gates to the
other pair determines the 𝑠1⊕𝑠3 parity—this corresponds to the first block in Table 3.1.
Furthermore, using C𝑍1,3 and C𝑍2,4 gates instead determines 𝑠1⊕𝑠4, whereas with C𝑖𝑌1,3
and C𝑖𝑌2,4 gates we obtain the 𝑠1⊕𝑠3⊕𝑠4 parity—these are the second and third blocks
in Table 3.1, respectively. If one instead measures the qubits of the measured-out Bell
pair in the Pauli-𝑍 basis (𝑖𝑌 basis), 𝑠1 is replaced by 𝑠2 (replaced by 𝑠1⊕𝑠2) in the parity
combinations of each of these three scenarios—alternatively, one can use the 𝐻1𝐻2 and𝑆†1 𝑆2 rotations of Sec. 3.6.2 on the measured-out Bell pair to include a different combination
of its classical bits. This shows that with bilocal {C𝑋,C𝑍,C𝑖𝑌 } gates one can simply add
bits from another Bell pair to the full parity measurement.

Moreover, applying bilocal two-qubit gates to even more Bell pairs before measuring
makes it possible to include any combination of bits from the 2𝑁 bit string into the parity
measurement. This exactly describes the hashing protocol: starting with 𝑁 Bell pairs, the
protocol performs 𝑟 rounds of parity measurements, where in each round, a random parity
of the (remaining) classical bits is determined. Given that we can maximally perform 𝑁
rounds, whereas (on average) each round only provides us with one bit of information,
this protocol is not useful for general input states. However, it does become useful in a
scenario where one has many copies of the same input (Bell diagonal) state. That is because,
with 𝑝′𝑠1𝑠2 the mixed state coefficients of a single copy 𝜌input, as 𝑁 becomes bigger and
bigger, more and more weight of the probability distribution 𝑝𝑠1𝑠2…𝑠2𝑁 is shifted to strings𝑠1𝑠2… 𝑠2𝑁 that contain 𝑁𝑝′00 times the bit combination 00, 𝑁𝑝′01 times the combination 01,𝑁𝑝′10 times 10, and 𝑁𝑝′11 times 11. On the other hand, probabilities 𝑝𝑠1𝑠2…𝑠2𝑁 associated
with other bit strings become smaller and smaller. For example, assuming 𝑝′00 < 1 holds,
the probability associated with {𝑠1, 𝑠2,… , 𝑠2𝑁 } = {0,0,… ,0} goes to zero as 𝑁 →∞.

This means that the problem is simplified to figuring out which of all possible strings
with the most likely distribution of 00, 01, 10, and 11 combinations is the correct one. The
set of strings with all permutations of the most likely distribution is often referred to as
the typical string set. The size of the typical string set determines how many rounds 𝑟 of
the hashing protocol we have to perform, and is given by2−𝑁∑𝑠1 ,𝑠2∈ℤ2 𝑝′𝑠1𝑠2 log2 𝑝′𝑠1𝑠2 . (3.20)
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This indicates that strings in the typical set only contain 𝑟 = −𝑁∑𝑠1 ,𝑠2∈ℤ2 𝑝′𝑠1𝑠2 log2𝑝′𝑠1𝑠2 bits
of information—explaining why this is the number of rounds 𝑟 required to find the exactΦ𝑠1𝑠2 …Φ𝑠2𝑁−1𝑠2𝑁 state. Given that, after the full protocol, one is left with 𝑁 − 𝑟 remaining
Bell pairs, the hashing rate [23] of a Bell diagonal state with mixed state coefficients 𝑝′𝑠1𝑠2
is given by lim𝑁→∞(𝑁 − 𝑟)/𝑁 = 1+∑𝑠1 ,𝑠2∈ℤ2 𝑝′𝑠1𝑠2 log2𝑝′𝑠1𝑠2 . This rate corresponds to one
minus the von Neumann entropy of the input state 𝜌input.
3.6.7 Multipartite two-to-one stabilizer protocols
Even though more research has been done on bipartite distillation protocols, there is also
substantial work on multipartite distillation protocols. Most of these proposals are based
on probabilistic, non-local measurements of the target state’s stabilizer operators. In this
section, we consider a situation with 𝑀 network parties that each have one qubit of an𝑀-qubit state distributed over the parties. In this context, the most obvious—and for this
thesis most relevant—state is the GHZ state |GHZ(𝑀)⟩, but other states are considered
as well. We are interested in distillation protocols where multiple copies of the 𝑀-qubit
states are available, and a small number of them are consumed with local operations (and
classical communication channels) to increase the fidelity of the remaining states. Just
as for Bell pair distillation, these protocols are typically probabilistic, as they involve
post-selecting on certain measurement outcomes. We start in this section by analyzing
two-to-one distillation that can be used in a recurrence protocol. In the next section, we
consider 𝑁 -to-𝐾 distillation protocols with an ⟦𝑁 ,𝐾,𝑑⟧ stabilizer code.
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Figure 3.23: Two protocols introduced by Murao et al. [35]. The notation |GHZ(4)2 ⟩ and |CSS(4)2 ⟩ indicates two
copies of a 4-qubit GHZ or CSS state shared among 4 network parties, with the parties having one qubit of each
state. In both protocols, the parties carry out local C𝑋 gates between the qubits of the two states. (a) Measuring
the second state—i.e., the state containing the control qubits of the C𝑋 gates—reveals information about the signs
of all combined 𝑋 -type stabilizer operators between the two states. More details can be found in the main text.
Murao et al. refer to this protocol as “P1”. (b) Measuring the first state—i.e., the state containing the target qubits
of the C𝑋 gates—reveals information about the signs of the combined 𝑍-type stabilizer operators between the
two states. Murao et al. refer to this protocol as “P2”.
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Stabilizer protocols for GHZ and CSS states
In Fig. 3.23, we depict two protocols that can be considered the multipartite version of the
DEJMPS protocol from Sec. 3.6.2. Here, C𝑋 gates are applied locally between the qubits
of the two 𝑀-qubit states, and one of the two states is measured out. Both protocols in
Fig. 3.23 are introduced by Murao et al. [35]. We first analyze the protocols for GHZ states,
using the GHZ basis notation of Sec. 2.4.2, with basis states |𝜙𝑠1 ,𝑠2 ,…,𝑠𝑁 ⟩ as stabilizer states of
the operators (−1)𝑠1𝑋1𝑋2…𝑋𝑁 , (−1)𝑠2𝑍1𝑍2, (−1)𝑠3𝑍2𝑍3, . . . , (−1)𝑠𝑁 𝑍𝑁−1𝑍𝑁 . By considering
how Pauli-𝑋 and Pauli-𝑍 operators commute through C𝑋 gates, we can understand that
the C𝑋 gates in the protocols of Fig. 3.23 accomplish the following for two GHZ basis
states: |𝜙𝑠1 ,𝑠2 ,𝑠3 ,…,𝑠𝑁 ⟩⊗ |𝜙𝑠1 ,𝑠2 ,𝑠3 ,…,𝑠𝑁 ⟩↦ |𝜙𝑠1 ,𝑠2⊕𝑠2 ,𝑠3⊕𝑠3 ,…,𝑠𝑁⊕𝑠𝑁 ⟩⊗ |𝜙𝑠1⊕𝑠1 ,𝑠2 ,𝑠3 ,…,𝑠𝑁 ⟩ (3.21)

We see that this transfers the information about the sign of the 𝑋1𝑋2…𝑋𝑁 stabilizer of the
first state (i.e., the target of the C𝑋 gates) to the second state (i.e., the control of the C𝑋
gates). At the same time, the information about the signs of the second state’s 𝑍𝑍 stabilizers
ends up at the first state. This means that if we now measure the qubits of the second state
in the Pauli-𝑋 basis (as shown in Fig. 3.23a), we no longer get information about the sign
of its own 𝑋1𝑋2…𝑋𝑁 stabilizer but about the parity of the 𝑋1𝑋2…𝑋𝑁 stabilizers of the two
states together. Similarly, we can measure the qubits of the first state in the Pauli-𝑍 basis
(as shown in Fig. 3.23b) to get information about the combined signs of the 𝑍𝑍 stabilizers
of both states. We note that this is just an alternative perspective from how the non-local
measurement in Fig. 2.4b works—e.g., we see that the 𝑋1𝑋2…𝑋𝑁 measurement on the first
state is exactly a non-local measurement in the style of Fig. 2.4b.

For the same reasons as with, e.g., the DEJMPS protocol, this method is useful as a
distillation protocol because it allows one to “filter out” relatively large coefficients in
the GHZ basis density representation of a combined state. For example, using the short-
hand notation Φ𝑖1𝑖2…𝑖𝑁 ≡ |𝜙𝑖1𝑖2…𝑖𝑁 ⟩⟨𝜙𝑖1𝑖2…𝑖𝑁 |, 𝐬 ≡ (𝑠2,… , 𝑠𝑁 ) and 𝐬 ≡ (𝑠𝑁+2,… , 𝑠2𝑁 ), two GHZ
diagonal states involved in the protocol transform in the following way after the C𝑋 gates:∑𝑠1 ,𝑠2 ,…,𝑠2𝑁 ∈ℤ2𝑝𝑠1 ,𝐬𝑝𝑠𝑁+1 ,𝐬 Φ𝑠1𝐬Φ𝑠𝑁+1𝐬 ↦ ∑𝑠1 ,𝑠2 ,…,𝑠2𝑁 ∈ℤ2𝑝𝑠1 ,𝐬⊕𝐬𝑝𝑠1⊕𝑠𝑁+1 ,𝐬 Φ𝑠1𝐬Φ𝑠𝑁+1𝐬. (3.22)

Here, 𝐬⊕ 𝐬 is element-wise addition modulo 2. If we now, e.g., measure the qubits of the
second state in the Pauli-𝑋 basis and post-select on states with 𝑠𝑁+1 = 0, i.e., states stabilized
by (−1)𝑠𝑁+1𝑋1𝑋2…𝑋𝑁 = +𝑋1𝑋2…𝑋𝑁 , we only leave terms with coefficients 𝑝𝑠1 ,𝐬⊕𝐬𝑝𝑠1 ,𝐬 in
the density matrix. Since we assume the GHZ diagonal states to be noisy versions of Φ0𝟎
with 𝑝0,𝟎 as the highest coefficient, this means post-selecting on 𝑠𝑁+1 = 0 removes relatively
high coefficients 𝑝0,𝟎𝑝1,𝐬 and 𝑝1,𝐬⊕𝐬𝑝0,𝟎. Typically, this increases the contribution of 𝑝0,𝟎Φ0𝟎
in the mixture.

As indicated in Fig. 3.23, this protocol can also be applied to the more general class
of CSS states [36]. A CSS state is essentially a CSS stabilizer code, as introduced in
Sec. 3.2.4, that encodes zero logical qubits. In other words, it is an 𝑁 -qubit state with 𝑁
stabilizer generators that fulfill the CSS formalism: each generator is either purely 𝑋 -type
or purely 𝑍-type. The GHZ state is a specific example of a CSS state. The two-to-one
stabilizer distillation protocols for CSS states are identical to the GHZ distillation protocol—
i.e., they require applying C𝑋 gates between the qubits of the two states. Measuring
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the qubits holding the C𝑋 control in the Pauli-𝑋 basis (Fig. 3.23a) allows the network
parties to classically reconstruct the parity for each 𝑋 -type stabilizer of the two CSS states.
Alternatively, measuring the qubits holding the C𝑋 target in the Pauli-𝑍 basis (Fig. 3.23b)
allows the parties to find the combined sign for each 𝑍-type stabilizer.
Stabilizer protocols for two-colorable graph states
Both GHZ states and CSS states are locally equivalent to graph states with a chromatic
number of two [37, 38]. We introduce graph states in Sec. 2.3.5; the chromatic number (or
chromatic index) of a graph describes how many colors are required to assign a color to
each vertex without two or more adjacent vertices having the same color. The similarities
between GHZ states, CSS states, and graph states led to the realization that the protocols of
Fig. 3.23 can be extended to graph states. Initially, Dür, Aschauer, and Briegel [36] extended
the protocols to the two-colorable graph states that are locally equivalent to GHZ and CSS
states. Later, Kruszynska et al. [39] extended them to general graph states—i.e., graph states
with any chromatic number.

To analyze the distillation of graph states, we define another basis: the graph state
basis [36]. As discussed in Sec. 2.3.5, each qubit 𝑖 in the graph (i.e., each vertex) is associated
with a stabilizer generator 𝑋𝑖⨂𝑗∈ℕ𝑖 𝑍𝑗 , where ℕ𝑖 is the neighborhood of the vertex 𝑖.
This allows us to define basis states |𝜓𝑠1𝑠2…𝑠𝑁 ⟩ that, for 𝑖 ∈ {1,2,… ,𝑁 }, are stabilized by(−1)𝑠𝑖𝑋𝑖⨂𝑗∈ℕ𝑖 𝑍𝑗 for a specific 𝑁 -qubit graph 𝐺. Moreover, we assume 𝐺 has a chromatic
number 𝑘 and add each index 𝑠𝑖 to one of the lists 𝐬1, 𝐬2, . . . , 𝐬𝑘 based on the color of the 𝑖th
qubit in the graph. This defines basis states |𝜓𝐬1 ,𝐬2 ,…,𝐬𝑘 ⟩.

As indicated in Fig. 3.24a, GHZ states are specifically two-colorable graph states with
Hadamard gates applied to one of the colors of the graph (i.e., to the color associated with
the leaves of the graph). The same is true for CSS states. This makes it intuitive that
converting the protocols of Fig. 3.23 to a two-to-one distillation protocol on two-colorable
graph states requires applying C𝑋 gates in one direction between the graph states for
qubits in one color, but in the other direction for qubits of the other color. This is because,
compared to the GHZ and CSS distillation protocols, the Hadamard gates flip the C𝑋 gates
between one of the two colors.

The two-to-one distillation protocol for two-colorable graph states is shown schemati-
cally in Fig. 3.24b [36, 40]. The combination of C𝑋 gates depicted here transforms the basis
states of two graph states as|𝜓𝐬1 ,𝐬2⟩⊗ |𝜓𝐬1 ,𝐬2⟩↦ |𝜓𝐬1 ,𝐬2⊕𝐬2⟩⊗ |𝜓𝐬1⊕𝐬1 ,𝐬2⟩ , (3.23)

where 𝐬𝑖 ⊕ 𝐬𝑖 is again element-wise addition modulo 2. After this combination of C𝑋
gates, measuring, e.g., the qubits of the second state allows one to learn the parity 𝐬1⊕ 𝐬1.
Specifically, this requires measuring the qubits of the first color (i.e., the color associated
with qubits in 𝐬1) in the Pauli-𝑋 basis, and the qubits of the second color (i.e., the color
associated with qubits in 𝐬2) in the Pauli-𝑍 basis. Classically communicating the mea-
surement results then allows the 𝑁 parties to reconstruct the second state’s stabilizers(−1)𝑠𝑖𝑋𝑖⨂𝑗∈ℕ𝑖 𝑍𝑗 associated with just the first color—i.e., for 𝑠𝑖 ∈ 𝐬1. Consequently, just as
with Eq. (3.22) above, these measurement results can be used to post-select on states that
fulfill 𝐬1⊕ 𝐬1 = 𝟎 and filter out contributions with relatively high coefficients in a classical
mixture of diagonal states in this graph state basis.
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Figure 3.24: (a) A GHZ state |GHZ(3)⟩ on the top, |GHZ(4)⟩ on the right, and |GHZ(5)⟩ on the left, depicted as
two-colorable graph states. Any GHZ state can be represented as a star graph, with Hadamard gates applied
to the leaves of the graph. (b) Schematic depiction of the two-to-one distillation protocol for two-colorable
graph states |𝜓𝐬1 ,𝐬1 ⟩ and |𝜓𝐬1 ,𝐬2 ⟩ [36, 40]. After applying C𝑋 gates in different directions between the two colors,
stabilizer information is transferred between the two states. In the terminology of the main text and Eq. (3.23),𝐬1 = (𝑠1, 𝑠3), 𝐬2 = (𝑠2, 𝑠4), 𝐬1 = (𝑠1, 𝑠3), and 𝐬2 = (𝑠2, 𝑠4), so that the C𝑋 gates between the qubits of the two colors
lead to 𝐬2 ↦ 𝐬2⊕ 𝐬2 and 𝐬1 ↦ 𝐬1⊕ 𝐬1. The joint stabilizers can be measured by consuming one of the two states.
For the green state on the left, this requires measuring the qubits of 𝐬1 in the Pauli-𝑍 basis and the qubits of 𝐬2 in
the Pauli-𝑋 basis. For the red state on the right, this requires measuring the qubits of 𝐬1 in the Pauli-𝑋 basis and
the qubits of 𝐬2 in the Pauli-𝑍 basis.

Stabilizer protocols for general graph states
For GHZ states, CSS states, and two-colorable graph states, applying C𝑋 gates between
two copies of the same state always results in new stabilizer states with the same general
stabilizer structure—i.e., it only “mixes” the signs of the states’ stabilizers. Unfortunately,
this no longer holds for basis states based on 𝑘-colorable graph states with 𝑘 > 2: applyingC𝑋 gates between two copies of these states changes the graphs themselves and requires a
different graph state basis after the operation. This is not useful for distillation, as we want
our distilled state to keep the same stabilizer structure. In general, next to transferring
information about the signs of the stabilizers between the two basis states, applying aC𝑋 gate between two graph states adds or removes edges in or between these states.
Specifically, as indicated in Fig. 3.25a, a C𝑋𝑖,𝑗 gate creates an edge between qubit 𝑖 and all
neighboring qubits of qubit 𝑗 , or removes such an edge in case it was already there before
the operation.

In the protocols discussed above with C𝑋 gates—i.e., the protocols for GHZ states, CSS
states, and two-colorable graph states—the graph transformations induced by the C𝑋 gates
happen to cancel each other out. Whereas this is no longer the case for 𝑘-colorable graph
states, Kruszynska et al. [39] realized that it is still possible to distill a 𝑘-colorable graph
state |𝐺⟩ with a specific two-colorable variant of this state as the ancillary state. We include
a schematic depiction of their protocol in Fig. 3.25b. The main idea is that, in a single
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Figure 3.25: (a) Graph state transformation for applying a C𝑋𝑖,𝑗 gate between the qubits labeled 𝑖 and 𝑗 [39]. TheC𝑋 gate adds edges between the control qubit and the neighbors of the target qubit—or removes these edges
if they were present prior to the C𝑋 gate. (b) Schematic depiction of the two-to-one distillation protocol for a𝑘-colorable graph state |𝐺⟩ = |𝜓𝐬1 ,𝐬2 ,𝐬3 ⟩with a two-colorable ancillary graph state |𝐺1⟩ = |𝜓𝐬1 ,𝐬2 ⟩ [39]. This protocol
measures the combined signs of the stabilizers associated with the first color of the 𝑘-colorable graph. For the
graph states, a similar notation as in Fig. 3.24 is used. In the terminology of the main text and Eq. (3.23), we
now have 𝐬1 = (𝑠1, 𝑠4), 𝐬2 = (𝑠2, 𝑠5), 𝐬3 = (𝑠3), and similarly for the ancillary graph on the right. The two-colorable
graph 𝐺1 is the graph 𝐺 with removed edges between colors 2 and 3—i.e., between all colors that are not the
main color. Using this two-colorable variant as the ancillary state ensures that the C𝑋 graph transformations
of (a) cancel against each other. After the C𝑋 gates, the parties measure the ancillary state with measurement
operators indicated in the figure. Classical communication of the measurement results then allows them to learn
the combined signs 𝐬1⊕ 𝐬1 = (𝑠1⊕𝑠1, 𝑠4⊕𝑠4).
round of the protocol, the parity of the graph state stabilizers associated with one of the
colors 𝑖 ∈ {1,2,… , 𝑘} is determined. This requires an ancillary two-colorable state |𝐺𝑖⟩ with
all edges between colors 𝑗1 ∈ {1,2,… , 𝑘} and 𝑗2 ∈ {1,2,… , 𝑘} removed for 𝑖 ≠ 𝑗1 and 𝑖 ≠ 𝑗2, but
with edges between the qubits of color 𝑖 and qubits of the other colors in place. In Fig. 3.25b,
we show a specific 𝑘 = 3 example with the two-colorable graph 𝐺1 corresponding to the
first color of the three-colorable graph 𝐺. It can be understood that, using a two-colorable
ancillary state of this type, C𝑋 gates with the main 𝑘-colorable state again cancel against
each other and only mix the signs of the stabilizer operators. As indicated in Fig. 3.25b,
obtaining information about the combined signs 𝐬𝑖⊕ 𝐬𝑖 of the stabilizers associated with
color 𝑖 requires measuring the ancillary state’s qubits of color 𝑖 in the Pauli-𝑋 basis and
measuring the other qubits of the ancillary state in the Pauli-𝑍 basis.

Interestingly, the required two-colorable ancillary state |𝐺𝑖⟩ can be produced with the
same C𝑋 gate procedure between two regular versions of the main 𝑘-colorable graph state|𝐺⟩ [39]. This is shown schematically in Fig. 3.26. In this situation, applying C𝑋 gates
between two states |𝐺⟩ transforms the graphs—i.e., the edge transformations of Fig. 3.25a
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Figure 3.26: Schematic depiction of generating the two-colorable graph state |𝐺𝑖⟩ required for distilling a 𝑘-
colorable graph state |𝐺⟩. We show the example with 𝑖 = 1 for a specific graph state |𝐺⟩. The graph states are based
on a similar notation as in Fig. 3.24b. After applying the C𝑋 gates in the indicated directions, all edges between
colors 𝑗1 and 𝑗2 for 𝑖 ≠ 𝑗1 and 𝑖 ≠ 𝑗2 are removed in the graph state on the left—i.e., the dashed green edges in the
figure. On top of that, edges between the two graph states are created—i.e., the dashed red edges. Measuring the
qubits of the state on the right with the indicated measurement operators removes these edges between |𝐺𝑖⟩ and|𝐺⟩ and allows the parties to learn the combined signs 𝐬𝑖⊕ 𝐬𝑖. For qubits of colors 𝑗 ≠ 𝑖, the measurement results
determine the final stabilizers of the state on the left. This is because, since measuring the qubits on the right
directly removes the edges between the two graphs, the signs of the stabilizers of colors 𝑗 ≠ 𝑖 in the left state
stay dependent on the measurement outcomes on colors 𝑗 ≠ 𝑖 on the right. For the specific example shown here,
these stabilizer operators acquire the signs 𝑠′2 = 𝑠2⊕𝑠2⊕𝑚3, 𝑠′3 = 𝑠3⊕𝑠3⊕𝑚2⊕𝑚5, and 𝑠′5 = 𝑠5⊕𝑠5⊕𝑚3 after all
operations, where 𝑚2,𝑚3,𝑚5 ∈ {0,1} are the measurement outcomes on the indicated qubits on the right.

do no longer cancel. Specifically, as indicated in Fig. 3.26, the C𝑋 gates now leave the
two graph states entangled but also produce |𝐺𝑖⟩ in one of the states. It can be understood
that measuring the other state |𝐺⟩ with Pauli-𝑋 on the qubits of color 𝑖 and Pauli-𝑍 on the
other qubits removes the inter-state edges. Moreover, this also still allows the parties to
learn the combined signs 𝐬𝑖⊕ 𝐬𝑖 of the stabilizers associated with color 𝑖. Therefore, as a
recurrence protocol, this protocol is most effective as a three-to-one distillation protocol.
Applying this protocol iteratively allows one to measure the stabilizers associated with
different colors of the main graph state.

Since the recurrence protocols discussed in this section use the same principles as the
bipartite recurrence protocols, it is not surprising that they can be employed as hashing
protocols similar to the bipartite hashing protocol of Sec. 3.6.6. The original protocols by
Murao et al. in Fig. 3.23 have been extended to a multipartite hashing protocol by Maneva
and Smolin [41], with further improvements and extensions to two-colorable graph states
introduced by other authors [37, 38, 42, 43]. Heber and Plesch [44] show that using the
protocol by Murao et al. to distill multipartite states is more efficient than locally producing
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Figure 3.27: Schematic depiction of a multipartite entanglement distillation protocol considered by Glancy et
al. [28]. Here, |GHZ(4)𝑁 ⟩ refers to 𝑁 copies of a |GHZ(4)⟩ state—see Eq. (3.24) for more details. The operation Π𝑔
refers to the 4 parties locally measuring the stabilizers of a stabilizer code. For the |GHZ(4)𝑁 ⟩ state, measuring
the stabilizers of an ⟦𝑁 ,𝐾,𝑑⟧ CSS code initializes 𝐾 logical GHZ states. Glancy et al. show that the protocol
also works for other combinations of initial state |𝜓(4)𝑁 ⟩ and stabilizer codes—see the main text for more details.
Furthermore, here we show the protocol for 𝑁 copies of a 4-qubit state, but the same protocol can be extended to𝑁 copies of an 𝑀-qubit state.

multipartite states and teleporting these states to other parties with purified Bell pairs.
Riera-Sàbat et al. [45] consider multipartite recurrence protocols with high-dimensional
entangled qudit ancillary states. A review of all early multipartite (and bipartite) distillation
protocols can be found in Dür and Briegel [46].

3.6.8 Multipartite distillation with error-correction codes
Just as in the bipartite case (as discussed in Secs. 3.6.3 and 3.6.4), we can also more directly
apply quantum error-correction codes to multipartite distillation. Fig. 3.27 shows a scenario
with 𝑁 copies of an 𝑀-qubit entangled state. The states are distributed over 𝑀 parties,
with each party having one qubit of each state. Each party then locally applies an ⟦𝑁 ,𝐾,𝑑⟧
error-correction code on their qubits by measuring the stabilizer generators of the code—i.e.,
by projecting with Π𝑔 from Eq. (3.1).

The protocol of Fig. 3.27 is considered in seminal work by Glancy et al. [28]. Wemention
their work in Sec. 3.6.3 above in relation to a less general version with 𝑁 Bell pairs. They
analyze what combinations of states and codes work for encoding 𝑁 copies of a shared 𝑀-
qubit state by locally measuring the generators of an ⟦𝑁 ,𝐾,𝑑⟧ stabilizer code. Specifically,
they consider three types of states and codes: CSS, CSS-𝐻 , and general. We introduce CSS
codes and CSS states in Sec. 3.2.4 and the first part of Sec. 3.6.7, respectively. CSS-𝐻 states
(codes) are CSS states (codes) that are invariant under Hadamard transformations on all
qubits—i.e., the stabilizers (and logical operators) of these states (codes) do not change when
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Hadamard gates are applied on all qubits, but a logical 𝑍 operator might transform to a
different logical 𝑋 operator as the one it anti-commutes with. (This makes CSS-𝐻 codes the
more general version of the self-dual CSS codes discussed in Sec. 3.4.7.) Glancy et al. show
that the protocol of Fig. 3.27 works for the combination of CSS-𝐻 states with general
stabilizer codes. Since Bell pairs are CSS-𝐻 states, this explains why the Bell pair protocol
of Sec. 3.6.3 works for all stabilizer codes. Moreover, the authors show that CSS states can
be encoded by measuring the generators of CSS codes, and general states can be encoded
with CSS-𝐻 codes. For these combinations of states and stabilizer codes, similarly as for
the protocol in Sec. 3.6.3, a subset of code stabilizers is already present before initialization
as stabilizer operators of the 𝑁 shared copies of the𝑀-qubit state. Therefore, the results of
the generator measurements for encoding can be used to detect errors in the initial states.

To apply these results in a more concrete setting, we consider the protocol with 𝑁
copies of an 𝑀-qubit GHZ state shared among 𝑀 network parties. Since the GHZ state
is a CSS state, it can be encoded with the generators of a CSS code. To show this, we use
a similar notation as in Eq. (3.14) for 𝑁 copies of Bell pairs, and write the full state of 𝑁
copies of the 𝑀-qubit GHZ state as

|GHZ(𝑀)𝑁 ⟩ ≡ 1√2𝑁 ∑𝑥∈{0,1}𝑁 |𝑥⟩1⊗ |𝑥⟩2⊗⋯⊗ |𝑥⟩𝑀 = 1√2𝑁 ∑𝑥∈{0,1}𝑁 |𝑥⟩⊗𝑀 . (3.24)

Just as in the bipartite scenario, we can show that the stabilizer operators of the logical
GHZ states stabilize Π⊗𝑀𝑔 |GHZ(𝑀)𝑁 ⟩, i.e., the state after each party projects their 𝑁 qubits on
the eigenspace of the stabilizer code. Specifically, for every logical combination of 𝑋 𝑗 and𝑍 𝑗 operators of the stabilizer code, the stabilizers of the logical GHZ states are generated
by 𝑋 𝑗 ⊗⋯⊗𝑋 𝑗 = 𝑋⊗𝑀𝑗 on the qubits of all parties and 𝑍 𝑗𝑍 𝑗 on the qubits of two of the
involved parties. These logical operators transform the encoded state in the following way:

𝑋⊗𝑀𝑗 Π⊗𝑀𝑔 |GHZ(𝑀)𝑁 ⟩ = Π⊗𝑀𝑔 1√2𝑁 ∑𝑥∈{0,1}𝑁 (𝑋 𝑗 |𝑥⟩)⊗𝑀 .
(𝑍⊗2𝑗 ⊗1)Π⊗𝑀𝑔 |GHZ(𝑀)𝑁 ⟩ = Π⊗𝑀𝑔 1√2𝑁 ∑𝑥∈{0,1}𝑁 (𝑍 𝑗 |𝑥⟩)⊗2⊗ |𝑥⟩⊗(𝑀−2) . (3.25)

In the second expression, 1 = 𝕀⊗𝑁 (𝑀−2) is the identity operation on all qubits of the last𝑀 −2 parties. We only show one of the 𝑍 𝑗𝑍 𝑗 logical stabilizers, but the same argument
holds for the other 𝑀 −1 logical operators of the type 𝑍 𝑗𝑍 𝑗 . Eq. (3.25) indicates why CSS
codes are required for the encoded state to be a valid representation of 𝐾 logical GHZ
states—at least for 𝑀 an odd number. The logical 𝑋 (𝑍) operators in CSS codes are purely𝑋 -type (𝑍-type). For such a logical operator 𝑍 𝑗 , the term 𝑍 𝑗 |𝑥⟩ on the second line of
Eq. (3.25) always results in ± |𝑥⟩, with a possible minus sign canceling out against the
second 𝑍 𝑗 |𝑥⟩ term in the expression. For a purely 𝑋 -type operator 𝑋 𝑗 , the term 𝑋 𝑗 |𝑥⟩ only
shuffles around the terms 𝑥 in the sum over 𝑥 ∈ {0,1}𝑁 . Therefore, for CSS codes, both
expressions in Eq. (3.25) result in Π⊗𝑀𝑔 |GHZ(𝑀)𝑁 ⟩. On the other hand, for a non-CSS code,𝑋 𝑗 can (additionally) have Pauli-𝑍 or Pauli-𝑌 operators. In that case, for 𝑀 an odd number,
the terms 𝑋 𝑗 |𝑥⟩ produce inconsistent prefactors in the full superposition sum of |𝑥⟩ over𝑥 ∈ {0,1}𝑁 after the transformation.
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Similar to the Bell pair protocol discussed in Sec. 3.6.3, the multipartite protocol dis-
cussed here is mostly relevant in situations where one party generates and encodes all
states, and (the most dominant source of) noise is caused by teleportation of the states to
the other 𝑀 −1 parties. The bilocal Clifford protocols of Sec. 3.6.4, which are also suitable
in a scenario where the states are directly generated between the parties, do unfortunately
not convert straightforwardly to the multipartite situation. In the first place, this is because
it is less convenient to express (multiple copies of) a GHZ diagonal state as a Pauli channel
acting on the state in Eq. (3.24)—i.e., not as convenient as the format used in Eq. (3.14) for
Bell pairs. That is because, producing the GHZ basis states out of the main state |GHZ(𝑀)⟩
requires, e.g., Pauli-𝑍 gate on the qubit of the first party and Pauli-𝑋 gates on the qubits of
the other 𝑀 −1 parties. Next to that, the bipartite transpose relation in Eq. (3.16) does not
directly hold with, e.g., |GHZ(𝑀)𝑁 ⟩ as the entangled state. This is also why, contrary to the
bipartite situation, one party encoding its qubits with Π𝑔 in Fig. 3.27 does not automatically
initialize the same stabilizer code on the other parties.

Even though a multipartite version of the transpose relation of Eq. (3.16) is more
challenging to derive than the bipartite version, Rengaswamy et al. [47] managed to
identify it for GHZ states. For the protocol of Fig. 3.27 with |GHZ(𝑀)𝑁 ⟩ for𝑀 = 3, they show
that one party initializing an ⟦𝑁 ,𝐾,𝑑⟧ code results in a ⟦2𝑁 ,𝐾,𝑑′⟧ code on the qubits of
the other two parties. Consequently, if the ⟦𝑁 ,𝐾,𝑑⟧ code of the first party is a CSS code,
initialization of the second party with this ⟦𝑁 ,𝐾,𝑑⟧ code automatically implements the
same ⟦𝑁 ,𝐾,𝑑⟧ on the qubits of the remaining party. If this ⟦𝑁 ,𝐾,𝑑⟧ code is not a CSS code,
applying a diagonal Clifford transformation on the third party’s qubits after initialization
by the first two parties also implements the code on the third party.

The work of Glancy et al. has inspired other (multipartite) distillation protocols—e.g., a
protocol for stabilizer state breeding by Hostens et al. [48]. Breeding is related to hashing: it
focuses on how many (pre-distilled) perfect copies of a state are required in the asymptotic
limit to convert a (larger) number of noisy initial copies into (near-)perfect copies.

3.6.9 GHZ creation and distillation with Bell pairs
In this thesis, we are specifically interested in protocols that generate GHZ states by
combining Bell pairs and performing distillation with either Bell pairs or the created GHZ
states. Here, we introduce prior work on this protocol class and its operations. In Ch. 5 we
consider creating GHZ states from Bell pairs with Block C.1 in Fig. 3.28. This operation
is inspired by the approach of Block C.2 in Fig. 3.28, introduced by Nickerson [34] to
generate |GHZ(4)⟩ by using a Bell pair |Φ+⟩ to non-locally measure 𝑍1𝑍3, 𝑍1𝑍4, 𝑍2𝑍3, or𝑍2𝑍4 on the state |Φ+⟩⊗ |Φ+⟩—i.e., by using the circuit of Fig. 2.4b to combine three Bell
pairs into a 4-qubit GHZ state. Furthermore, the use of Bell pairs as efficient resources for
the distillation of multipartite entangled states, as discussed in, e.g., Ch. 5 of this thesis, is
also recognized in work by Krastanov, Sanchez de la Cerda, and Narang [49]. Conceptually,
deploying Bell pairs in this context is related to creating [50] and distilling [51] entangled
states with Bell state measurements, even though the specific operations differ.

For each GHZ generation protocol with Bell pairs, we identify two parameters. The first
one is the minimum number of Bell pairs 𝐾 required to create the GHZ state. This number
indicates the amount of distillation taking place in the protocol, and we sometimes use it
in this thesis to directly indicate the number of distillation steps used in a protocol—see
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Sec. 6.2 for more details. The second parameter is the maximum number of qubits per node necessary to generate the GHZ state.
Nickerson et al. [52, 53] introduce five protocols for generating weight-4 GHZ states

from Bell pairs. Expedient and Stringent are the result of a brute-force search over pro-
tocols following a concrete multi-step structure [52]. In Sec. 5.4 and Fig. 5.2, we depict
simplifications of these protocols for a situation without gate noise. In Fig. 3.29, we show a
representation of the full circuit diagram for the Expedient protocol, using the short-hand
notation of Fig. 3.28. The protocol first generates and distills Bell pairs between neighboring
nodes in one direction of the network. Subsequently, it generates and distills Bell pairs
between neighbors in the other direction, after which it simultaneously combines the Bell
pairs into a GHZ state and performs distillation by non-locally measuring a 𝑍𝑍 stabilizer
operator of the GHZ state. If none of the distillation steps fail, the Expedient protocol uses𝐾 = 22 Bell pairs. The Stringent protocol has the same overall structure as Expedient, but
applies more distillation steps, and uses a minimum of 𝐾 = 42 Bell pairs.

The Expedient and Stringent are designed to only use = 3 qubits per node to generate
the GHZ state—i.e., one qubit to hold the final GHZ state, and two qubits to store inter-
mediate states. In Ref. [53], Nickerson et al. introduce another protocol with  = 3 that
uses 𝐾 = 8 Bell pairs to generate a weight-4 GHZ state: the Basic protocol. On top of that,
they introduce the Medium and Refined protocols. These protocols follow the same overall
structure as the Basic protocol, but use  = 4 and  = 5 qubits per node, respectively, and
a minimum of 𝐾 = 16 and 𝐾 = 40 Bell pairs.
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Figure 3.28: Legend for the short-hand symbols and notation used in Figs. 3.29 and 6.2. Blocks A.1 and A.2
contain versions of the DEJMPS distillation protocol of Sec. 3.6.2. Block B.1 describes versions of the double
selection distillation protocol of Sec. 3.6.5. Block B.2 describes a four-to-one distillation protocol based on three
concatenated steps of the DEJMPS protocol. The distillation protocols used in these blocks are of the probabilistic
kind, where success is only declared in case of coinciding measurement outcomes on the two qubits of the same
pair. In case of a non-coinciding measurement combination, the distillation operation fails, and the protocol
returns to the indicated failure reset level (abbreviated as “frl”). In Blocks B.1 and B.2, the SWAP gates are added in
anticipation of later chapters in this thesis—see Sec. 4.1 for more details. These SWAP gates are not fundamental
elements of these protocols and can be circumvented in systems with more operational freedom compared to
the systems we consider. Lastly, Blocks C.1 and C.2 describe operations that combine Bell or GHZ states to
create bigger entangled states. Block C.1 is the fusion operation of Chs. 5 and 7. Block C.2 can be used to
perform a non-local Pauli measurement of the form of Fig. 2.4b. The block is, e.g., able to transform two Bell pairs(|00⟩+ |11⟩)/√2⊗ (|00⟩+ |11⟩)/√2 into a GHZ state (|0000⟩+ |1111⟩)/√2 by using a third Bell pair to measure 𝑍𝑍
on two qubits from the different Bell pairs—e.g., 𝑍1𝑍3, 𝑍1𝑍4, 𝑍2𝑍3, or 𝑍2𝑍4.
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Figure 3.29: Schematic representation of the Expedient entanglement generation protocol [52]. The protocol
combines Bell pairs into a weight-4 GHZ state and performs distillation along the way. More information about
the notation in these diagrams can be found in Fig. 3.28. The red arrows denote failure reset levels and describe
to where in the protocol we have to reset in case of a failed distillation attempt. Depending on where in the
circuit the distillation steps occur, failure of a step means the entire protocol has to start from scratch, or only a
specific branch of the protocol has to be carried out again. Depending on how many distillation steps fail during
execution, this protocol uses a minimum of 22 Bell pairs to generate the GHZ state. In these circuits, just as
in Fig. 3.28, SWAP gates are included to comply with later chapters in this thesis. These SWAP gates are not
fundamental elements of the Expedient protocol.



3

96 3Quantum error correction

References
[1] D. Gottesman, Stabilizer Codes and Quantum Error Correction. Doctoral thesis, Cali-

fornia Institute of Technology, Pasadena, California, United States, May 1997.

[2] P.W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Physical
Review A, vol. 52, pp. R2493–R2496, Oct. 1995.

[3] A. R. Calderbank and P.W. Shor, “Good quantum error-correcting codes exist,” Physical
Review A, vol. 54, pp. 1098–1105, Aug. 1996.

[4] A. Steane, “Multiple-particle interference and quantum error correction,” Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
vol. 452, pp. 2551–2577, Jan. 1997.

[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[6] J. Preskill, Lecture Notes: Physics 219/Computer Science 219 Quantum Computation.
California Institute of Technology, Pasadena, United States of America, 2006.

[7] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, “Perfect quantum error correcting
code,” Physical Review Letters, vol. 77, pp. 198–201, July 1996.

[8] A. Mondal and K. K. Parhi, “Quantum circuits for stabilizer error correcting codes: A
tutorial,” IEEE Circuits and Systems Magazine, vol. 24, no. 1, pp. 33–51, 2024.

[9] K. Fujii, Quantum Computation with Topological Codes: From Qubit to Topological
Fault-Tolerance, vol. 8 of SpringerBriefs in Mathematical Physics. Singapore: Springer,
2015.

[10] D. Browne, Lectures on Topological Codes and Quantum Computation. University of
Innsbruck, Innsbruck, Germany, June 2014.

[11] M. Newman, L. A. de Castro, and K. R. Brown, “Generating fault-tolerant cluster states
from crystal structures,” Quantum, vol. 4, p. 295, July 2020.

[12] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards
practical large-scale quantum computation,” Physical Review A, vol. 86, p. 032324, Sept.
2012.

[13] D. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, “Surface code quantum computing
by lattice surgery,” New Journal of Physics, vol. 14, p. 123011, Dec. 2012.

[14] B. Eastin and E. Knill, “Restrictions on transversal encoded quantum gate sets,” Physical
Review Letters, vol. 102, p. 110502, Mar. 2009.

[15] E. Knill, Fault-Tolerant Postselected Quantum Computation: Schemes. arXiv: quant-
ph/0402171, Feb. 2004.

[16] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal Clifford gates
and noisy ancillas,” Physical Review A, vol. 71, p. 022316, Feb. 2005.



References

3

97

[17] A. G. Fowler and C. Gidney, LowOverhead QuantumComputation Using Lattice Surgery.
arXiv: 1808.06709 [quant-ph], Aug. 2019.

[18] A. Bolt, G. Duclos-Cianci, D. Poulin, and T. M. Stace, “Foliated quantum error-
correcting codes,” Physical Review Letters, vol. 117, p. 070501, Aug. 2016.

[19] N. Nickerson and H. Bombín, Measurement Based Fault Tolerance beyond Foliation.
arXiv: 1810.09621 [quant-ph], Oct. 2018.

[20] H. Bombín, I. H. Kim, D. Litinski, N. Nickerson, M. Pant, F. Pastawski, S. Roberts, and
T. Rudolph, Interleaving: Modular Architectures for Fault-Tolerant Photonic Quantum
Computing. arXiv: 2103.08612 [quant-ph], Mar. 2021.

[21] H. Bombín, C. Dawson, R. V. Mishmash, N. Nickerson, F. Pastawski, and S. Roberts,
“Logical blocks for fault-tolerant topological quantum computation,” PRX Quantum,
vol. 4, p. 020303, Apr. 2023.

[22] R. Raussendorf, J. Harrington, and K. Goyal, “Topological fault-tolerance in cluster
state quantum computation,” New Journal of Physics, vol. 9, p. 199, June 2007.

[23] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state
entanglement and quantum error correction,” Physical Review A - Atomic, Molecular,
and Optical Physics, vol. 54, no. 5, pp. 3824–3851, 1996.

[24] M. M. Wilde, H. Krovi, and T. A. Brun, “Convolutional entanglement distillation,” in
2010 IEEE International Symposium on Information Theory, pp. 2657–2661, June 2010.

[25] A. M. Kubica, The ABCs of the Color Code: A Study of Topological Quantum Codes as
Toy Models for Fault-Tolerant Quantum Computation and Quantum Phases Of Matter.
Doctoral thesis, California Institute of Technology, Pasadena, California, United States,
2018.

[26] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, andW. K.Wootters,
“Purification of noisy entanglement and faithful teleportation via noisy channels,”
Physical Review Letters, vol. 76, pp. 722–725, Jan. 1996.

[27] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum
privacy amplification and the security of quantum cryptography over noisy channels,”
Physical Review Letters, vol. 77, no. 13, pp. 2818–2821, 1996.

[28] S. Glancy, E. Knill, and H. M. Vasconcelos, “Entanglement purification of any stabilizer
state,” Physical Review A, vol. 74, p. 032319, Sept. 2006.

[29] S. Jansen, K. Goodenough, S. de Bone, D. Gijswijt, and D. Elkouss, “Enumerating all
bilocal Clifford distillation protocols through symmetry reduction,” Quantum, vol. 6,
p. 715, May 2022.

[30] S. Krastanov, V. V. Albert, and L. Jiang, “Optimized entanglement purification,” Quan-
tum, vol. 3, p. 123, Feb. 2019.



3

98 3Quantum error correction

[31] K. Goodenough, S. de Bone, V. Addala, S. Krastanov, S. Jansen, D. Gijswijt, and
D. Elkouss, “Near-term 𝑛 to 𝑘 distillation protocols using graph codes,” IEEE Journal
on Selected Areas in Communications, vol. 42, pp. 1830–1849, July 2024.

[32] X. Zhao, B. Zhao, Z. Wang, Z. Song, and X. Wang, “Practical distributed quantum
information processing with LOCCNet,” npj Quantum Information, vol. 7, pp. 1–7,
Nov. 2021.

[33] K. Fujii and K. Yamamoto, “Entanglement purification with double selection,” Physical
Review A, vol. 80, p. 042308, Oct. 2009.

[34] N. Nickerson, Practical Fault-Tolerant Quantum Computing. Doctoral thesis, Imperial
College London, London, United Kingdom, 2015.

[35] M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entan-
glement purification protocols,” Physical Review A - Atomic, Molecular, and Optical
Physics, vol. 57, no. 6, pp. R4075–R4078, 1998.

[36] W. Dür, H. Aschauer, and H. J. Briegel, “Multiparticle entanglement purification for
graph states,” Physical Review Letters, vol. 91, Sept. 2003.

[37] E. Hostens, J. Dehaene, and B. De Moor, “Hashing protocol for distilling multipartite
Calderbank-Shor-Steane states,” Physical Review A, vol. 73, p. 042316, Apr. 2006.

[38] K. Chen and H.-K. Lo, Multi-Partite Quantum Cryptographic Protocols with Noisy GHZ
States. arXiv: quant-ph/0404133, Apr. 2008.

[39] C. Kruszynska, A. Miyake, H. J. Briegel, and W. Dür, “Entanglement purification
protocols for all graph states,” Physical Review A, vol. 74, p. 052316, Nov. 2006.

[40] K. Goyal, A. McCauley, and R. Raussendorf, “Purification of large bicolorable graph
states,” Physical Review A, vol. 74, p. 032318, Sept. 2006.

[41] E. N. Maneva and J. A. Smolin, “Improved two-party and multi-party purification
protocols,” Contemporary Mathematics, vol. 305, pp. 203–212, 2002.

[42] H. Aschauer, W. Dür, and H.-J. Briegel, “Multiparticle entanglement purification for
two-colorable graph states,” Physical Review A, vol. 71, no. 1, p. 012319, 2005.

[43] K. H. Ho and H. F. Chau, “Purifying Greenberger-Horne-Zeilinger states using degen-
erate quantum codes,” Physical Review A, vol. 78, p. 042329, Oct. 2008.

[44] M. Huber and M. Plesch, “Purification of genuine multipartite entanglement,” Physical
Review A, vol. 83, p. 062321, June 2011.

[45] F. Riera-Sàbat, P. Sekatski, A. Pirker, and W. Dür, “Entanglement purification by
counting and locating errors with entangling measurements,” Physical Review A,
vol. 104, no. 1, p. 012419, 2021.

[46] W. Dür and H. J. Briegel, “Entanglement purification and quantum error correction,”
Reports on Progress in Physics, vol. 70, pp. 1381–1424, Aug. 2007.



References

3

99

[47] N. Rengaswamy, N. Raveendran, A. Raina, and B. Vasić, “Entanglement purification
with quantum LDPC codes and iterative decoding,” Quantum, vol. 8, p. 1233, Jan. 2024.

[48] E. Hostens, J. Dehaene, and B. De Moor, “Stabilizer state breeding,” Physical Review A,
vol. 74, p. 062318, Dec. 2006.

[49] S. Krastanov, A. Sanchez de la Cerda, and P. Narang, “Heterogeneous multipartite
entanglement purification for size-constrained quantum devices,” Physical Review
Research, vol. 3, no. 3, p. 033164, 2021.

[50] D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,”
Physical Review Letters, vol. 95, p. 010501, June 2005.

[51] V. Kuzmin, D. Vasilyev, N. Sangouard, W. Dür, and C. Muschik, “Scalable repeater
architectures for multi-party states,” npj Quantum Information, vol. 5, no. 1, pp. 1–6,
2019.

[52] N. H. Nickerson, Y. Li, and S. C. Benjamin, “Topological quantum computing with a
very noisy network and local error rates approaching one percent,” Nature Communi-
cations, vol. 4, p. 1756, Dec. 2013.

[53] N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, “Freely scalable quantum
technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links,”
Physical Review X, vol. 4, p. 041041, Dec. 2014.





4

101

4
Hardware models for

diamond color centers

In this chapter, we discuss all aspects of our model for color centers in diamond. The model
specifically focuses on nitrogen-vacancy centers, but most elements apply to other color centers
as well. We briefly discuss how a nitrogen-vacancy center is operated in the lab. We discuss
how memory decoherence is modeled and how the model parameters are characterized. We
elaborate on typical time scales for operations and how we model operation noise. We introduce
the single-click and double-click entanglement generation protocols and look at their individual
steps. We cover typical noise sources that complement these steps and derive mixed states
and success probabilities for the Bell pairs created with these protocols. We place the Bell pair
models in a scientific context by comparing them to related research. The full nitrogen-vacancy
center model introduced in this chapter is used in the simulations of Chs. 6 and 7.
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4.1 Introduction
In this thesis, we are interested in distributed quantum computers: multiple remote quantum
computing nodes that are linked up with entangled states. The distributed approach is
particularly promising for systems that host native mechanisms to create entanglement
at multiple length scales—i.e., both within and between nodes. This naturally leads us to
systems with an optical interface. The research in this thesis is conducted with a specific
optically-mediated system type in mind: color centers in diamond lattices. Such color
centers arise when two neighboring carbon atoms are replaced by the combination of a
replacement atom and a vacancy. The centers host long-lived electron spins that exhibit
coherent optical transitions, enabling their use as a communication qubit. This qubit is
used to create entanglement with other nodes. On top of that, it can address up to tens
of proximal nuclear 13C spins occurring in the host material [1–3]. These nuclear spins
can be used as local processing qubits—e.g., as a memory to store and manipulate quantum
states [4]. Hereafter, in the context of diamond color centers, we refer to such spins as
memory qubits. Both our model and the description below are specifically catered towards
the nitrogen-vacancy (NV) color center, but other color centers—e.g., the tin-vacancy (SnV)
or the silicon-vacancy (SiV) center—work similarly.

In this chapter, we present typical operation and coherence times for two types of NV
center devices. We label these device types as natural abundance and isotopically purified,
where these names refer to the relative fraction of 13C nuclear spins in the diamond lattice
(which is predominantly made up of spinless 12C atoms). Here, the isotopically purified
devices are engineered to have a 0.01% concentration of 13C spins, whereas the natural
abundance devices have a 1.1% concentration. An important feature for a distributed
processor is the ability of the memory qubits to preserve their state while inter-node
entanglement is generated. Bradley et al. [5] show that isotopically purified NV center
devices can store a quantum state over 105 optical entanglement attempt repetitions.
Compared to samples with natural abundance, the 13C spins have a weaker coupling to
their color centers. This occurs because their spin bath is more dilute, positioning the
nuclear spin at a greater average distance 𝑟 away from the electron spin, while dipolar
coupling decreases with 1/𝑟3. This increases coherence times during optical entanglement
generation by several orders of magnitude but also leads to longer time scales for carrying
out intra-node logic gates. In natural abundance NV center devices, a quantum state can
typically be stored over 103 entanglement attempt repetitions [2], while single-qubit gates
on the memory qubits are typically ≈ 13 times faster and two-qubit gates are typically≈ 50 times faster than in isotopically purified samples. Further research into isotopically
engineered diamond color centers is ongoing. This will likely lead to a better understanding
of the trade-off between the memory qubit concentration and the associated operation
times and decoherence rates.

4.2 Nitrogen-vacancy center model
In this section, we present an overview of the nitrogen-vacancy model used in this thesis.
The models and model parameters are predominantly based on experimental character-
ization and observation of the NV center by Pompili et al. [2] and Bradley et al. [4, 5].
Experiments were performed on NV centers at temperatures of 3.7 and 4 K.
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4.2.1 Electronic properties and operation
The NV center can generally occupy one of two charge states: the negative charge state NV−
and the neutral charge state NV0. The NV− electron spin is formed by two unpaired electron
spins, resulting in a spin triplet with the spin-𝑧 projection quantum number 𝑚𝑠 ∈ {−1,0,1}.
NV0 occurs when one of these electrons is removed, resulting in a single-electron spin-1/2
system with 𝑚𝑠 ∈ {−1/2,1/2}. For both charge states, the ground and first excited states
lie within the diamond band gap, preventing charge transfer to the diamond lattice—i.e.,
ensuring that the electrons stay localized around the NV center. Therefore, the charge
states behave optically like atoms in a vacuum and can host coherent optical transitions.
Unfortunately, the NV0 ground state has a significant spin-orbit coupling and a fast orbital
relaxation process [6]. This impedes the spin qubit and makes it difficult to use it as a
stable spin state.

On the other hand, the NV− state has a stable ground-state spin qubit and hosts both a
long-lived spin qubit and good optical transitions. Specifically, this state can be used to
take on the role of communication qubit. By deploying either a magnetic field or lattice
strain, the 𝑚𝑠 = −1 level can be split from the 𝑚𝑠 = +1 level. The 𝑚𝑠 = 0 level is often used
to define the “bright” |↑⟩ ≡ |0⟩ state of the electron qubit, while the 𝑚𝑠 = −1 state is often
used as the “dark” |↓⟩ ≡ |1⟩ state. This is because, upon excitation with a laser pulse, an NV
center in the |0⟩ state transitions to the corresponding excited state before falling back to|0⟩, emitting a photon in the process. This is in contrast to exciting an NV center in |1⟩,
as this has a substantial probability (> 40% per cycle at 4K [7]) to decay non-radiatively
into a metastable state. Here, it remains for a few hundred nanoseconds before decaying
non-radiatively to either |0⟩ or |1⟩. This means that, upon continuous optical excitation, the
NV center is automatically spin-pumped to the |0⟩ state. This technique is used to initialize
an NV center in the |0⟩ state.

Transitions between all involved energy levels follow selection rules—i.e., spin and
polarization are conserved. These rules can be used to read out the electron state by
evaluating the center’s spin-dependent fluorescence [8]. The selection rules can also be
exploited to only excite the |0⟩ qubit state. This requires the use of a short—i.e., 2 ns [8]—
spin-selective laser pulse that is resonant with the |0⟩→ |𝑒⟩ transition, with |𝑒⟩ an optically
excited state with the same spin projection as |0⟩. The typical lifetime of |𝑒⟩ is 20 ns, and
upon decaying back to |0⟩, a photon will be emitted. By first bringing the NV center into a
superposition state (|↑⟩+ |↓⟩)/√2 with microwave Rabi oscillations—typically taking tens
of nanoseconds [7]—an entangled state (|↑ 1⟩+ |↓ 0⟩)/√2 between the electron state and
the state of the reflected photon can be created [8]. The presence of the photonic state now
makes it possible to generate entanglement between the electronic states of two remote
centers, as we discuss below.

Apart from using the communication qubit for realizing inter-node entanglement, it can
also be used to manipulate the states of 13C atoms in its immediate vicinity. This involves
microwave or radio-frequency (RF) pulses to couple the state of the communication qubit
with specific carbon atoms in its surroundings. Using this technique, we can either change
the state of the memory qubit—i.e., perform a single-qubit gate—or alter the states of both
the communication and the corresponding memory qubit—i.e., perform a two-qubit gate.

Unfortunately, stochastic ionization can convert the NV− state to the NV0 state. Since
the electron-spin state is used to control the 13C spins, ionization accordingly dephases
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the 13C states. As such, the coherence times of the NV center memory—as discussed in
Sec. 4.2.4—are currently limited by these ionization effects. Bradley et al. [5] propose a
method to mitigate ionization-induced memory dephasing by actively recharging the NV0
state. They show how ionization and recharging can be performed with minimal loss in
fidelity in the state of a 13C spin in an isotopically engineered device with reduced memory
qubit concentration. This marks an important avenue for future research.

4.2.2 Entanglement creation protocols
The generation of Bell pairs between two color centers is modeled as a probabilistic process
with a success probability 𝑝link and time 𝑡link per attempt. In Sec. 4.3, we construct an
analytic model to calculate 𝑝link and the Bell pair density matrix after success, both for the
single-click (i.e., the single-photon) [9] entanglement protocol and for the double-click (i.e.,
the two-photon) [10] entanglement protocol. The double-click protocol is also sometimes
referred to as the Barrett-Kok protocol. These are the most popular entanglement protocols
used with NV centers. Other diamond color centers allow for other entanglement protocols,
e.g., protocols based on photonic scattering and reflection, using emitters that are strongly
coupled to a waveguide or a cavity [11]. This works because, for such an emitter, the center
can become completely reflective or transmissive based on the electron state. We do not
consider scattering-based protocols in this thesis.

Both the single-click and double-click protocols are based on bringing the electron
qubit of both parties in a superposition√𝛼 |0⟩+√1−𝛼 |1⟩, where 𝛼 is the bright-state
population. Subsequently, at both parties, the bright state |0⟩ is excited, creating (local)
entanglement between the electron spin and a single photonic state. The photonic states
of both parties are then used in two incoming arms of a 50:50 beam splitter. The two
outcoming arms of the beam splitter are fed into photon detectors. If the two photonic
states are indistinguishable—i.e., they have the same frequency (distribution) and arrive
at the same time—the beam splitter erases the which-path information of the photons.
Observing a single photon in one of the two detectors after the beam splitter entangles
the electron qubits of the two parties. Observing zero or two photons means the protocol
has failed. Failure requires re-initializing the electron states at both sides, re-exciting these
states, and performing a new iteration of photon detection after the beam splitter. This
process is repeated until only one of the detectors clicks. For the single-click protocol, 𝛼
is chosen small—typically around 10% or smaller. How small 𝛼 should be chosen exactly
depends on the requirements: increasing 𝛼 leads to higher fidelity of the final state, but
decreases the success probability, whereas decreasing 𝛼 has the opposite effect. Specifically,
to first order, the success probability 𝑝link is given by 2𝜂ph𝛼, whereas the fidelity follows1−𝛼. The parameter 𝜂ph is introduced in Sec. 4.2.3 and denotes the probability that an
emitted photon is detected in the experimental setup.

It can be difficult to control the phase of the two photons: uncertainty in the length of
the paths of the two photons before arriving at the beam splitter leads to phase uncertainty
and reduces the fidelity of the final entangled state. This problem is remedied with the
double-click protocol. This is essentially two successful rounds of the single-click protocol
applied in succession, with a bit-flip on the electron states of both parties in between the
two rounds. This bit-flip means that the influence of phase uncertainty from the first round
cancels against the phase uncertainty of the second round. Because of the bit-flip, the
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double-click protocol no longer allows us to trade in fidelity for success probability by
varying the bright space population 𝛼: both the success probability and fidelity now peak
at 𝛼 = 1/2.

In the analytic model presented in Sec. 4.3, we introduce the following five noise sources:
the preparation fidelity of the initial spin-photon state 𝐹prep, the probability of an excitation
error 𝑝EE, a parameter 𝜆 based on the standard deviation of the phase uncertainty due to
the path-length difference between the two arms (all modeled as dephasing channels on
the involved qubits), the photon indistinguishability 𝜇 for each Bell state measurement (i.e.,
Hong-Ou-Mandel visibility), and the total photon detection probability 𝜂ph in each arm
(modeled with an amplitude damping channel).

For the double-click protocol, we assume the phase uncertainty to not be relevant and
set 𝜆 = 1. The parameters 𝐹prep, 𝑝EE and 𝜇 affect the fidelity 𝐹link of the Bell pair state of the
double-click protocol, whereas the parameter 𝜂ph limits the success probability 𝑝link of a
single entanglement attempt. For the single-click protocol, the fidelity 𝐹link is additionally
influenced by 𝜂ph and 𝜆, and 𝑝link depends on the indistinguishability 𝜇. In Sec. 4.2.3, we
discuss these noise sources in more detail.

4.2.3 Noise during entanglement generation
To achieve a more realistic representation of the entangled states generated between
diamond color centers with the single-click and double-click protocols, we include several
noise sources in our model. In this section, we discuss these sources and present values
used for these noise parameters in prior research models in Table 4.2. In Table 4.1, we
summarize typical values gathered from Table 4.2. In Sec. 4.3 below, we explicitly apply
these noise sources.

State preparation errors. The first noise source included is the preparation fidelity𝐹prep of the electron state superposition between |0⟩ and |1⟩. Since a depolarizing channel
introduces both amplitude and phase damping of a quantum state, it can be considered as
the most “harmful” channel. Therefore, it makes sense to use the depolarizing channel to
model noise that is not yet (fully) parameterized. This argument caused Coopmans et al. [12]
to use this channel to describe electron state preparation. However, typically, NV centers
mostly experience dephasing noise. Therefore, instead, in Refs. [13, 14], the dephasing
channel is used to model electron state preparation. Because using the dephasing channel
is more convenient, we also apply the dephasing channel to model state preparation errors.

Photon excitation errors. Next to that, we include noise caused by the excitation
error probability 𝑝EE. This parameter describes the probability that, in case of a successful
(i.e., heralded) entanglement attempt, an extra undetectable photon is emitted by one of
the centers. This can, e.g., be a photon that is emitted during the excitation pulse, before a
second photon that is emitted after the pulse is eventually detected: a process known as
double excitation. On top of that, at every excitation event, there is a small possibility that
the non-resonant |1⟩ level is excited, leading to an extra photon with a different frequency.
In both situations, typically, the extra photon is lost to the environment, giving rise to a
dephasing channel on the electron-photon state. In general, we can reduce the probability
of double excitation by decreasing the length of the excitation pulse. This, however, leads
to an increase in the probability of exciting |1⟩. Prior NV entanglement models only took
into account the double-excitation probability 𝑝DE, as it is generally believed that the
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probability of an off-resonant excitation is negligible for NV centers. This is because the
polarization of the light pulse only leads to a weak driving field on transitions close to
the main (bright state) transition, and other transitions are sufficiently far off-resonant.
The double-excitation probability in NV centers is estimated between 4% and 7% [1, 2].
In Table 4.2, we show an overview of values used for the double-excitation probability in
prior NV entanglement models.

In systems where the probability of exciting the dark state is more pronounced, it can
be beneficial to design the excitation pulse to induce a 𝜋 rotation on the main transition,
but a full 2𝜋 rotation on the closest unwanted transition. Tiurev et al. [15] created a model
that, based on the energy difference between the main transition and the closest unwanted
transition, allows one to estimate 𝑝EE—i.e., both the double-excitation probability and the
probability of exciting this unwanted transition. Their model shows that, typically, the
larger the energy difference is between the two transitions, the smaller 𝑝EE becomes.

Photon phase uncertainty. As mentioned in Sec. 4.2.2, as a result of a difference in
path lengths of the two incoming arms, the single-click protocol typically suffers from
a phase uncertainty between the photons of both parties. Following prior research, we
model this with a third dephasing channel with channel parameter 𝜆. This parameter is
calculated from the standard deviation 𝜎phase of the phase instability via [13, 14]

𝜆 ≡ 12(1+ 𝐼1(𝜎−2phase)𝐼0(𝜎−2phase)) . (4.1)

Here, 𝐼0 and 𝐼1 are modified Bessel functions of the zeroth and first order. This noise source
is only included in the single-click model and is neglected for the double-click model. A
previously found phase instability in NV centers of 14.3◦ [1] corresponds to 𝜆 ≈ 0.984.

Photon detection probability. Apart from suffering a phase error, photons can also
get lost on the way to the detector. We make use of the parameter 𝜂ph to describe the
total photon detection probability per entanglement attempt. The parameter 𝜂ph can be
interpreted as the probability that a diamond color center in the state |0⟩ emits a resonant
photon that is detected by a photon detector after the beam splitter. More specifically, as
we discuss in more detail below, it can be considered as the product of the total collection
efficiency of the NV center with the probability that a photon is emitted in the detection
time window and in the zero-phonon line. The photon detection probability only influences
the success probability of the entanglement protocols.

A diamond color center in the |0⟩ state does not always emit a photon with the right
frequency when excited with a spin-selective laser pulse. That is because transitions
between the ground and excited states can either occur resonantly—i.e., in the zero-phonon
line (ZPL)—or off-resonantly—i.e., in the so-called phonon side band (PSB). In the latter
scenario, we end upwith both a photon and a phonon—i.e., a lattice vibration. Only resonant
transitions without lattice vibrations are useful for entanglement creation between two
diamond color centers since phonons associated with PSB photons dephase rapidly and
the photons arriving at the beam splitter should be indistinguishable. Unfortunately, for
NV centers, the probability 𝑝ZPL of a ZPL photon emission is approximately only 3%. This
induces a bottleneck for the success probability of the entanglement scheme. Other losses
hinder the success probability similarly. For example, a ZPL photon still has to be “captured”
by the fiber or waveguide that brings it to the beam splitter—an effect that can be hindered
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by internal reflection between diamond and air. This is included in the model with the
collection efficiency probability 𝑝col. On top of that, such a fiber can absorb a successfully
collected photon on the way to the beam splitter. For this, we implement the transmission
probability 𝑝trans = 10−𝑙fiber𝛾trans/10. Here, 𝑙fiber is the length of the fiber, and 𝛾trans is its
attenuation loss in dB per unit length. Furthermore, at the detector level, there is a finite
probability 𝑝det that a photon falling on the detector actually leads to a click: the detector
efficiency. Finally, after exciting the state |0⟩, it takes an unknown time before a photon is
emitted: assuming a Poisson distribution with a characteristic lifetime 𝜏, the probability
of emission after a time 𝑡 after excitation is given by 𝑝emission = 1− exp(−𝑡/𝜏). However,
because we cannot wait indefinitely, we have to select a time window 𝑡w in which we accept
photons in our detectors. This window usually starts slightly after the excitation pulse to
make sure light from the pulse itself is not detected. We define 𝑝tw as the probability that a
photon is emitted during the time window used. The total photon detection probability 𝜂ph
can now be defined as the product of all these terms: 𝜂ph = 𝑝ZPL𝑝col𝑝trans𝑝det𝑝tw. Because
we consider distributed quantum computers and assume small fiber lengths, we neglect
the influence of 𝑝trans in our model.

Photon indistinguishability. The realization that it is not exactly known when
emitted photons arrive at the beam splitter indicates that it is important to include a
parameter 𝜇 describing how indistinguishable photons arriving at the beam splitter are. We
call this parameter the indistinguishability or (Hong-Ou-Mandel) visibility. As mentioned
above, the information on where a detected photon came from is only perfectly deleted after
the beam splitter if the photons arriving are completely indistinguishable. For completely
indistinguishable photons, the Hong-Ou-Mandel effect occurs: a photon at both input
arms of the beam splitter will both end up in the same output arm after the beam splitter.
Distinguishable photons, on the other hand, can still end up in different arms. Aspects that
can reduce indistinguishability are, e.g., differences in the central frequency, spectral width,
or temporal position of the photonic wave packets.

Detector dark counts. Apart from a photon detector failing to detect a photon, there is
also a probability 𝑝DC that a detector clicks without a (diamond color center) photon being
present. We call such events dark counts. They can occur from detector malfunctioning as
well as the detection of stray photons from the environment. If we assume the probability
of a dark count is governed by the Poisson distribution, a dark count rate of 𝑓DC and a
time window length 𝑡w lead to a probability 𝑝DC = 1− exp(−𝑡w𝑓DC). We note that, in the
simulations presented in this thesis, we neglect dark counts. This is because we consider
regimes in which dark counts become negligible.

4.2.4 Decoherence and dynamical decoupling
In our simulation model, qubits decohere with both generalized amplitude damping (GAD)
and phase damping (PD) noise, as defined in Sec. 2.4.1. The GAD channel decoheres to
the maximally mixed state (|0⟩⟨0|+ |1⟩⟨1|)/2. We assign 𝑇1 coherence times to the GAD
channel and 𝑇2 coherence times to the PD channel, with 𝛾 = 1− 𝑒−𝑡/𝑇1 and 𝛾 = 1− 𝑒−𝑡/𝑇2 ,
respectively. Decoherence of the electron qubit is governed by 𝑇 1eidle and 𝑇 2eidle coherence
times. For the memory qubits, we use different coherence times 𝑇 1nlink and 𝑇 2nlink during
optical entanglement creation (which always happens via the electron qubit), and 𝑇 1nidle and𝑇 2nidle when the node is idling. Typical values for these coherence times with state-of-the-art
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NV center setups are presented in Table 4.1. In this table, we include values for both the
natural abundance samples and the isotopically purified samples.

Characterization of the decoherence model and the associated coherence times was
achieved in the laboratory by monitoring the drop in probability of detecting Pauli matrix
eigenstates at 𝑡 > 0 after preparing the state at 𝑡 = 0. For the 𝑇1 time, the |0⟩ and |1⟩ states
were used, and the expectation value ⟨𝑍⟩ of a measurement in the Pauli-𝑍 basis was
determined after several delay times—the relaxation time 𝑇1 can then be determined from
the observed exponential drop in the expectation value. With the |+⟩ and |−⟩ states and the
expectation ⟨𝑋 ⟩ for measurement in the Pauli-𝑋 basis, and with |+𝑖⟩ and |−𝑖⟩ and ⟨𝑌 ⟩, the𝑇2 time of our model could be determined. For these four states, the observed exponential
decay 𝑇dec corresponds to the 𝑇2 time of our model via 1/𝑇2 = 1/𝑇1−2/𝑇dec.

As mentioned in Sec. 4.2.1, the model presented here is based on the NV− state, which
corresponds to the communication qubit as a spin-1 state with spin projection quantum
number 𝑚𝑠 ∈ {−1,0,1}. Stochastic ionization can convert the NV− state to the NV0 state
with 𝑚𝑠 ∈ {−1/2,1/2}. This effect limits the coherence times in the NV center. In our
model, we do not specifically include ionization, but simply absorb its influence in the 13C
coherence times presented here.

Next, to mitigate decoherence from quasi-static noise processes in diamond color center
experiments, dynamical decoupling (DD) is typically interleaved into gate sequences on both
the electron and nuclear spins [4]. The main idea of DD is to limit the effect of decoherence
with 𝜋-pulses that periodically flip the state to average out unwanted coupling between
the system and the environment. The coherence times used in this thesis are achieved
in NV center spin registers with dynamical decoupling [4]. Gate operations can only
be performed in between two consecutive DD pulses—i.e., at the refocusing point of the
qubit spins involved in the operations. We define the center-to-center time of consecutive
refocusing points as 𝑡DD = 𝑡pulse+2𝑛DD𝑡link, where 𝑡pulse is the time of a 𝜋-pulse, 𝑡link is the
duration of a single Bell pair generation attempt, and 𝑛DD is a fixed number of Bell pair
generation attempts. We assume that all memory qubits of a node are decoupled with the
same decoupling sequence.

We solve the following optimization problem to determine 𝑛DD—i.e., to determine the
waiting time between two 𝜋-pulses:

𝑛DD(𝑝link) = min𝑛′∈ℤ+ lim→∞ ∑𝑖=1 ∑𝑗=1 𝑝(𝑖)link𝑝(𝑗)link𝑡(𝑖,𝑗)𝑛′ . (4.2)

Here, we perform the minimization for 𝑛′ as a member of the positive integers ℤ+.
The goal is to minimize 𝑛′ over the average completion time of generating two Bell
pairs in parallel, where we also wait for both nodes to finish their DD sequences.
Here, 𝑝(𝑖)link = 𝑝link(1−𝑝link)𝑖−1 and 𝑝(𝑗)link = 𝑝link(1−𝑝link)𝑗−1 denote the probabilities of ob-
taining entanglement generation success at exactly the 𝑖th and 𝑗th attempt. Further,𝑡(𝑖,𝑗)𝑛′ = ⌈max(𝑖, 𝑗)/(2𝑛′)⌉(2𝑛′𝑡link+ 𝑡pulse) is the effective time of performing the required en-
tanglement attempts in this specific scenario, where ⌈max(𝑖, 𝑗)/(2𝑛′)⌉ describes how many
DD sequences are required for these attempts and 2𝑛′𝑡link+ 𝑡pulse describes the time of one
DD sequence. To solve Eq. (4.2) in a practical setting, it suffices to take a large number
for instead of letting it go to infinity. Because finding 𝑛DD in this way only minimizes
the waiting and refocusing time during entanglement generation in two nodes, and not
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Bell pair model input

Protocol Single-click𝐹prep 0.99𝑝EE 0.04𝜇 0.9𝜆 0.984𝜂ph 0.0046
Bell pair model output𝑝link 0.0001𝐹link 0.8966

Operation durations

1.1% 0.01%𝑡link 6 𝜇s𝑡meas 4 𝜇s𝑡e𝑋,𝑌 0.14 𝜇s𝑡n𝑋,𝑌 1.0 ms 13 ms𝑡e𝑍,𝐻 0.1 𝜇s𝑡n𝑍,𝐻 0.5 ms 6.5 ms𝑡C𝑍,C𝑋,C𝑖𝑌 0.5 ms 25 ms𝑡SWAP 1.5 ms 75 ms

Operation noise𝑝g 0.01𝑝m 0.01

Decoherence

1.1% 0.01%𝑇 1nidle 300 s𝑇 1nlink 0.03 s 1.2 s𝑇 1eidle 300 s𝑇 2nidle 10 s𝑇 2nlink 7.5 ms 1.2 s𝑇 2eidle 1.0 s𝑡pulse 1.0 ms 13 ms𝑛DD 500 2500

Table 4.1: Typical parameters for the state-of-the-art NV center hardware, for both the natural abundance sample
(1.1% 13C concentration) and the isotopically purified sample (0.01% 13C concentration). Time scales for the
natural abundance sample are characterized by Pompili et al. [2]. Time scales for the isotopically purified sample
are based on Bradley et al. [4, 5]. The Bell pair model parameters are based on the sources in Table 4.2.

the waiting time during the other operations, this process typically does not lead to the
optimal 𝑛DD.
4.2.5 Operation times and noise
We assume that all operations take a finite amount of time. Typical time durations in state-
of-the-art NV center devices can be found in Table 4.1. Time scales for gates are based on
microwave and radio-frequency pulses for single-qubit gates on the electron and 13C qubits,
respectively. Time scales for two-qubit gates are based on phase-controlled radiofrequency
driving of the carbon spins interleaved with dynamical decoupling sequences on the
electron state, following the scheme described by Bradley et al. [4, 16].

We consider a gate set consisting of the Pauli gates {𝑋,𝑌 ,𝑍}, the Hadamard gate, the
C𝑋 gate, the C𝑍 gate, and the C𝑖𝑌 gate. These are not the native gates of the NV center,
but their true gate set can be compiled into the gate set used here without additional costs
in terms of two-qubit gates [17]. We assume single-qubit gates to be noiseless, while noise
in two-qubit gates is modeled with a depolarizing channeldepol2(𝜌,𝑝g) as introduced in
Eq. (2.10).

Measurements are restricted to measuring (single-qubit) electron qubits in the Pauli-𝑍
basis. Measuring in the Pauli-𝑋 basis is achieved with an additional Hadamard gate. We
model imperfect measurements by introducing a probability 𝑝m that the measurement
projects onto the opposite eigenstate of the measured operator.
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[18] [1] [13] [14] [2] [12] [19] [20]
Single-click ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Double-click ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓𝐹prep - - 0.99 0.99 - 0.99‡ - -𝑝DE - 0.04 - 0.04 0.06 0.06 0.06 0.06𝜎phase (rad) - 0.25∗ 0.25∗ 0.25∗ 0.26∗ 0.35 0.37∗ 0.21𝜆 - 0.984∗ 0.984∗ 0.984∗ 0.983∗ 0.97∗ 0.965∗ 0.989∗𝑝ZPL 0.03 - 0.46† 0.46† - 0.46† - 0.03𝑝col - - 0.49† 0.0042 - 0.0126 - -𝑝det - - 0.8 0.8 - 0.8 - -𝑝tw - - 0.44 - - - - -𝜂ph 0.003 0.00042(1) 0.0793∗ 0.0037∗ 0.00044 0.0046 0.00052 0.00051𝜇 0.72(3) 0.90(2) - 0.9 0.90 0.9 - 0.90𝑓DC (Hz) - 20 10 20 - 1 10 -𝑡w (ns) - 25 5 - - 25 15 -𝑝DC 2.5 ⋅10−6 5 ⋅10−7 5 ⋅10−8 - 1.5 ⋅10−7 2.5 ⋅10−8 1.5 ⋅10−7 1.5 ⋅10−7
Table 4.2: Parameters and parameter values used in literature to describe the Bell pair state created between
two nitrogen-vacancy centers. Highlighted columns are parameters that are used in the model described in
this chapter—non-highlighted rows indicate auxiliary parameters used to calculate the highlighted parameters,
according to Sec. 4.2.3. Values accompanied with “∗” are converted to the convention and channel type as
presented in Sec. 4.3.1. If multiple values are listed in the source, the most optimal one is presented here. Photon
detection probabilities 𝜂ph are calculated without transmission loss if the required information was given in the
source. Enhanced zero-phonon line probabilities 𝑝ZPL and collection probabilities 𝑝col accompanied with “†”
assume nitrogen-vacancy centers in (micro)cavities. The preparation fidelity accompanied with “‡” corresponds
to a depolarizing channel, whereas the model of this chapter uses a dephasing channel.
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4.3 Bell pair model
In this section, we derive analytic expressions for the success probabilities and density
matrices of the single-click and double-click entanglement protocols. These protocols
can be used to create Bell pairs between two diamond color centers. We use the general
description of the protocols as discussed in Sec. 4.2.2 and apply the noise sources introduced
in Sec. 4.2.3. Our single-click model combines different elements from NV center single-
click models for large-scale networks [1, 2, 12–14, 18]. More elaborate versions of the
single-click and double-click models can be found in Refs. [19, 20].

4.3.1 Electron-photon state
We denote the state during different stages of the protocol with |𝜓(𝑚)𝑞 ⟩ or 𝜌(𝑚)𝑞 , where 𝑞
describes the qubit(s) on which the state is defined, and 𝑚 labels the current stage of the
protocol. Both parties 𝑖 ∈ {𝐴,𝐵} begin with the electron spin qubit “e𝑖” in superposition:|𝜓(1)

e𝑖 ⟩ =√𝛼𝑖 |↑⟩+√1−𝛼𝑖 |↓⟩ =√𝛼𝑖 |0⟩+√1−𝛼𝑖 |1⟩ . (4.3)

Here, we have used the convention |↑⟩ ≡ |0⟩ and |↓⟩ ≡ |1⟩ to convert the electron spin state
to the computational basis. Generating entanglement between parties 𝐴 and 𝐵 is possible
by exciting both electron spin states: on both sides, the component |↑⟩ in the superposition
produces a photon, whereas |↓⟩ stays dark. We model this by adding a photonic state |0⟩
labeled with “p𝑖” to |𝜓(1)

e𝑖 ⟩ and applying exc,𝑖 = 𝑋e𝑖 C𝑋e𝑖 ,p𝑖 𝑋e𝑖 to this state:|𝜓(2)
e𝑖 ,p𝑖⟩ =exc,𝑖 (√𝛼𝑖 |00⟩+√1−𝛼𝑖 |10⟩) =√𝛼𝑖 |01⟩+√1−𝛼𝑖 |10⟩ . (4.4)

Before we apply noise to these states and perform a Bell measurement with them, we
combine them into a single state. This is the combined state before the photonic excitation:|𝜓(1)

e𝐴 ,e𝐵 ⟩ = |𝜓(1)
e𝐴 ⟩⊗ |𝜓(1)

e𝐵 ⟩ =√𝛼𝐴𝛼𝐵 |00⟩+√𝛼𝐴(1−𝛼𝐵) |01⟩+√(1−𝛼𝐴)𝛼𝐵 |10⟩+√(1−𝛼𝐴)(1−𝛼𝐵) |11⟩ . (4.5)

This state can be written as a density matrix 𝜌(1)e𝐴 ,e𝐵 = |𝜓(1)
e𝐴 ,e𝐵 ⟩⟨𝜓(1)

e𝐴 ,e𝐵 |. For convenience, in the
following, we use a general 4×4 density matrix for this state—i.e., 𝜌(1)e𝐴 ,e𝐵 =∑(𝑖,𝑗)∈ℤ24 𝜆𝑖𝑗 |𝑖⟩⟨𝑗 |
instead of the specific state in Eq. (4.5). Here, 𝜆𝑖𝑗 are general components of this density
matrix and ℤ24 = {0,1,2,3}2. The advantage of this approach is that we can more easily
apply the same protocol twice for the double-click protocol. To excite our state 𝜌(1)e𝐴 ,e𝐵 , we
add photonic registers in state |0⟩, and apply exc,𝐴 and exc,𝐵 to this expanded state:𝜌(2)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 = (exc,𝐴⊗exc,𝐵)(𝜌(1)e𝐴 ,e𝐵 ⊗ |00⟩⟨00|)(exc,𝐴⊗exc,𝐵) . (4.6)

To include non-perfect state preparation, we add dephasing channels on the electron
qubits. We also add dephasing channels on the two photonic qubits to include the effect of
excitation errors. During excitation, a second photon can be created, and this leads to de-
phasing because this photon leaks to the environment—i.e., if that occurs, the environment
“learns” something about the electron state(s).𝜌(3)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 =dephase,e𝐵 (dephase,e𝐴 (𝜌(2)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 ,1− 𝐹prep) ,1− 𝐹prep) ,𝜌(4)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 =dephase,p𝐵 (dephase,p𝐴 (𝜌(3)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 , 𝑝EE2 ) , 𝑝EE2 ) . (4.7)
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Here, 𝐹prep is the preparation fidelity and 𝑝EE is the probability of obtaining an extra photon
due to an excitation error. For one of the parties, we add another dephasing channel on the
photonic qubit to describe phase uncertainty as a result of pathlength difference:𝜌(5)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 =dephase,p𝐴 (𝜌(4)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 ,1−𝜆) . (4.8)

It should be noted that, for the final expression, there is no difference between dephasing
the photon or electron qubit at one side—this is because they are completely correlated.

Finally, we include an amplitude damping channel on both sides to introduce the
possibility of losing a photon that was originally there—this can be either due to the photon
being emitted in the PSB, the photon being absorbed on the way to the detector, or the
detector failing to register the photon. With 𝜂𝑖 the total probability of losing the photon at
side 𝑖, this gives rise to𝜌(6) ≡ 𝜌(6)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 =AD,p𝐵 (AD,p𝐴 (𝜌(5)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 , 𝜂𝐴) , 𝜂𝐵) . (4.9)

This is the state arriving at the beam splitter.

4.3.2 Bell state measurement
The next step of the entanglement generation protocol is to perform a Bell measurement on
the photons from side 𝐴 and 𝐵—i.e., a measurement in the Bell basis. Because, on each side,
the photon is correlated with the electron spin state, this is effectively a Bell measurement
on the electron states of both sides. The measurement is typically accomplished with
a 50:50 beam splitter and photon detectors behind the beam splitter. If we have photon
detectors that can distinguish between one ormore photons being detected simultaneously—
i.e., so-called photon-number-resolving detectors—the measurement operators of this full
measurement operation are as follows [14]:

(00) = 𝕀⊗2⊗ |00⟩⟨00| ,
(10) = 𝕀⊗2⊗ 12√2

⎡⎢⎢⎢⎢⎣
0 0 0 00 √1+√𝜇+√1−√𝜇 √1+√𝜇−√1−√𝜇 00 √1+√𝜇−√1−√𝜇 √1+√𝜇+√1−√𝜇 00 0 0 0

⎤⎥⎥⎥⎥⎦ ,
(01) = 𝕀⊗2⊗ 12√2

⎡⎢⎢⎢⎢⎣
0 0 0 00 √1−√𝜇+√1+√𝜇 √1−√𝜇−√1+√𝜇 00 √1−√𝜇−√1+√𝜇 √1−√𝜇+√1+√𝜇 00 0 0 0

⎤⎥⎥⎥⎥⎦ ,
(11) = 𝕀⊗2⊗√1−𝜇√2 |11⟩⟨11| ,
(20) = 𝕀⊗2⊗√1+𝜇2 |11⟩⟨11| ,
(02) = 𝕀⊗2⊗√1+𝜇2 |11⟩⟨11| .

(4.10)

These operators describe the different scenarios of the detectors clicking. For example,
getting no click corresponds to the post-measurement state (00)𝜌(6)((00))†/𝑝00, where
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𝑝00 =Tr((00)𝜌(6)((00))†) is the probability of this scenario occurring. In these equations,𝜇 describes how indistinguishable the two photons from both sides are. For example, if they
have a different frequency, a different phase, or arrive at different times, the photons are
not completely indistinguishable. Setting 𝜇 = 1 corresponds to perfect indistinguishability:
in that case(11) disappears and we end up with(10) = 𝕀⊗2⊗ |Ψ+⟩⟨Ψ+|,(01) = 𝕀⊗2⊗|Ψ−⟩⟨Ψ−|, and(20) =(02) = 𝕀⊗2⊗ (|11⟩⟨11|)/√2. This indicates how, following the Hong-
Ou-Mandel effect, two indistinguishable photons always end up in the same arm after
a beam splitter. It also indicates how getting a single click in one of the two detectors
corresponds to performing a Bell measurement on the photonic states—getting zero or two
detector clicks leads to a state that is not entangled. In such a situation, we have to try
again.

There are several modifications possible to make the Bell measurement more realistic.
For example, most photon detectors are not photon-number-resolvent. This means that they,
e.g., can not distinguish the photonic states |10⟩ and |20⟩. We can adapt our measurement
operators in the following way to account for this:

′(00) =(00),
′(10) =(10)+(20),
′(01) =(01)+(02),
′(11) =(11). (4.11)

On top of that, we can include the effects of detector dark counts. If 𝑝DC denotes the
probability of a dark count, we can modify our measurement operators according to

′′(00) =′(00),
′′(10) = (1−𝑝DC)′(10)+√𝑝DC(1−𝑝DC)′(00),
′′(01) = (1−𝑝DC)′(01)+√𝑝DC(1−𝑝DC)′(00),
′′(11) = (1−𝑝DC)′(11)+√𝑝DC(1−𝑝DC)′(01)+√𝑝DC(1−𝑝DC)′(10)+𝑝DC′(00).

(4.12)

4.3.3 Single-click state
With the measurement operators of Eq. (4.12), we can now investigate the post-
measurement states for getting a single click with these measurement operators: if we
observe a single click in either of the detectors (i.e., with the other detector not clicking),
we declare success. This comes down to measurement outcomes 𝑘 = 10 and 𝑘 = 01, leading
to the following post-measurement states:𝜌(7a)e𝐴 ,e𝐵 = 1𝑝10Trp𝐴 ,p𝐵 (′′(10)𝜌(6)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 (′′(10))†) ,𝜌(7b)e𝐴 ,e𝐵 = 1𝑝01Trp𝐴 ,p𝐵 (′′(01)𝜌(6)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 (′′(01))†) . (4.13)

Here, we have traced out the photonic state with a partial trace, since these states are no
longer relevant after the measurement. In these expressions, the measurement probabilities
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𝑝10 and 𝑝01 are given by𝑝10 = Tr(′′(10)𝜌(6)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 (′′(10))†) ,𝑝01 = Tr(′′(01)𝜌(6)e𝐴 ,e𝐵 ,p𝐴 ,p𝐵 (′′(01))†) , (4.14)

The success probability of the protocol is given by 𝑝succ ≡ 𝑝10+𝑝01. Specifically, this gives
rise to the following post-measurement states in case of success:

𝜌(7a,7b)e𝐴 ,e𝐵 = 1𝑝succ ⎡⎢⎢⎢⎣
𝑝↑↑𝜆00 (𝑝𝐴+𝑝𝐴)𝜆11 ±𝜙√𝑝𝐴𝑝𝐵𝜆12±𝜙√𝑝𝐴𝑝𝐵𝜆21 (𝑝𝐵 +𝑝𝐵)𝜆22 𝑝✗𝜆33

⎤⎥⎥⎥⎦ ,𝑝succ = 𝑝↑↑𝜆00+(𝑝𝐴+𝑝𝐴)𝜆11+(𝑝𝐵 +𝑝𝐵)𝜆22+𝑝✗𝜆33.
(4.15)

Here, we have used the probabilities defined in Table 4.3, together with the following
short-hand parameters: 𝑝↑↑ ≡ 𝑝𝐴𝐵 +𝑝𝐴𝐵 +𝑝𝐴𝐵 +𝑝𝐴𝐵,𝜙 ≡ √𝜇(2𝐹prep−1)2(2𝜆−1)(1−𝑝EE)2. (4.16)

We can fill in the specific values 𝜆𝑖𝑗 of the state 𝜌(1)e𝐴 ,e𝐵 of Eq. (4.5) to get the final result
of the single-click protocol. If the set-ups at sides 𝐴 and 𝐵 are symmetric, and there
is reason to assume that 𝛼 ≡ 𝛼𝐴 = 𝛼𝐵 and 𝜂ph ≡ 𝜂𝐴 = 𝜂𝐵 hold, we end up with 𝜆00 = 𝛼2,𝜆11 = 𝜆12 = 𝜆21 = 𝜆22 = 𝛼(1−𝛼), 𝜆33 = (1−𝛼)2, 𝑝𝐴 = 𝑝𝐵 and 𝑝𝐴 = 𝑝𝐵. The post-measurement
states in a case of success then simplify to:𝜌(7a,7b)e𝐴 ,e𝐵 = 1𝑝succ(𝛼2𝑝↑↑ |00⟩⟨00|+𝛼(1−𝛼)((1±𝜙)𝑝𝐴+𝑝𝐴) |Ψ+⟩⟨Ψ+|

+𝛼(1−𝛼)((1∓𝜙)𝑝𝐴+𝑝𝐴) |Ψ−⟩⟨Ψ−|+(1−𝛼)2𝑝✗ |11⟩⟨11|),𝑝succ = (𝑝↑↑−2𝑝𝐴−2𝑝𝐴+𝑝✗)𝛼2+2(𝑝𝐴+𝑝𝐴−𝑝✗)𝛼+𝑝✗.
(4.17)

We see that this gives rise to a noisy version of the state |Ψ+⟩ for outcome 𝑘 = 10, and to a
noisy version of the state |Ψ−⟩ for outcome 𝑘 = 01, both with fidelity given by

𝐹 (sc)link ≡ 𝛼(1−𝛼)((1+𝜙)𝑝𝐴+𝑝𝐴)𝑝succ . (4.18)

In a situation in which detector dark counts can be neglected, the single-click Bell pair
state, for a measurement outcome 𝑘 = 10, simplifies to𝜌(sc) = 𝐹 (sc)+ |Ψ+⟩⟨Ψ+|+ 𝐹 (sc)− |Ψ−⟩⟨Ψ−|+(1− 𝐹 (sc)+ − 𝐹 (sc)− ) |00⟩⟨00| ,𝐹 (sc)± = 1𝑝(sc)link (1±𝜙)𝜂ph𝛼(1−𝛼),𝑝(sc)link = 2𝜂ph𝛼+ 𝜂2ph𝛼2 𝜇−32 . (4.19)
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Here, 𝐹 (sc)+ ≡ 𝐹 (sc)link denotes the fidelity with respect to the target Bell pair state |Ψ+⟩. Further-
more, the parameter 𝑝(sc)link corresponds to the success probability 𝑝succ of a single attempt
with this protocol.

4.3.4 Double-click state
As mentioned in Sec. 4.2.2, the double-click protocol essentially consists of two successful
rounds of single-click, with bit-flips on the two electron qubits in between the rounds. To
derive the post-measurement state upon two successful rounds, we can now directly use
the state of Eq. (4.15) as the input coefficients 𝜆𝑖𝑗 of the successful post-measurement state
after the second iteration of the protocol. This is possible because we used a general state𝜌(1)e𝐴 ,e𝐵 =∑(𝑖,𝑗)∈ℤ24 𝜆𝑖𝑗 |𝑖⟩⟨𝑗 | as the input combined electron state of the single-click protocol.
Because of the bit-flip in between the rounds, we have to interchange the elements |00⟩⟨00|↔|11⟩⟨11|, |01⟩⟨01|↔ |10⟩⟨10| and |01⟩⟨10|↔ |10⟩⟨01| of the state 𝜌(7a,7b)e𝐴 ,e𝐵 to get the 𝜆𝑖𝑗 coefficients
of the successful state in the second round. We assume that this bit-flip can be executed
with perfect fidelity. This gives rise to the following double-click post-measurement state
in case of a single click:

𝜌(8a,8b)e𝐴 ,e𝐵 = 1𝑝′succ ⎡⎢⎢⎢⎣
𝑝↑↑𝑝✗𝜆33 (𝑝𝐴+𝑝𝐴)(𝑝𝐵 +𝑝𝐵)𝜆22 ±𝜙2𝑝𝐴𝑝𝐵𝜆21±𝜙2𝑝𝐴𝑝𝐵𝜆12 (𝑝𝐴+𝑝𝐴)(𝑝𝐵 +𝑝𝐵)𝜆11 𝑝↑↑𝑝✗𝜆00

⎤⎥⎥⎥⎦ ,𝑝′succ = 𝑝↑↑𝑝✗(𝜆00+𝜆33)+ (𝑝𝐴+𝑝𝐴)(𝑝𝐵 +𝑝𝐵)(𝜆11+𝜆22).
(4.20)

Here, 𝑝′succ denotes the success probability of the entire protocol—i.e., the probability of
a single click in both rounds. State 𝜌(8a)e𝐴 ,e𝐵 corresponds to the post-measurement state
if the same detector clicks in both rounds, whereas 𝜌(8b)e𝐴 ,e𝐵 is what we get if a different
detector clicks in the two rounds. Furthermore, the 𝜆𝑖𝑗 coefficients in Eq. (4.20) represent
the coefficients of the initial 𝜌(1)e𝐴 ,e𝐵 state—i.e., before the first round of the protocol. For the
double-click protocol, there is no longer a trade-off between fidelity and success probability,
and both peak for 𝛼 = 𝛼𝐴 = 𝛼𝐵 = 1/2. If we use the explicit input state of Eq. (4.5) with this
bright-space population, we end up with 𝜆𝑖𝑗 = 1/4 for all 𝜆𝑖𝑗 . This means that the states in
Eq. (4.20) can be written as

𝜌(8a,8b)e𝐴 ,e𝐵 = 14𝑝′succ(𝑝↑↑𝑝✗ (|00⟩⟨00|+ |11⟩⟨11|)+((𝑝𝐴+𝑝𝐴)(𝑝𝐵 +𝑝𝐵)±𝜙2𝑝𝐴𝑝𝐵) |Ψ+⟩⟨Ψ+|+((𝑝𝐴+𝑝𝐴)(𝑝𝐵 +𝑝𝐵)∓𝜙2𝑝𝐴𝑝𝐵) |Ψ−⟩⟨Ψ−|),𝑝′succ = 𝑝↑↑𝑝✗ +(𝑝𝐴+𝑝𝐴)(𝑝𝐵 +𝑝𝐵)2 .
(4.21)

Here, we note that, unlike what we had for the single-click state of Eq. (4.17), expressing
the successful post-measurement double-click state in terms of a noisy Bell pair state does
not require symmetry in the noise parameters 𝜂𝐴 and 𝜂𝐵. It is clear that this gives rise to a
noisy version of the state |Ψ+⟩ if the same detector clicks in both rounds of the protocol,
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and to a noisy version of |Ψ−⟩ if different detectors click—both with fidelity

𝐹 (dc)link ≡ (𝑝𝐴+𝑝𝐴)(𝑝𝐵 +𝑝𝐵)+𝜙2𝑝𝐴𝑝𝐵4𝑝′succ . (4.22)

In a situation that allows for neglecting detector dark counts, the double-click Bell pair
state simplifies to 𝜌(dc) = 𝐹 (dc)link |Ψ+⟩⟨Ψ+|+(1− 𝐹 (dc)link ) |Ψ−⟩⟨Ψ−| ,𝐹 (dc)link = 12(1+𝜙2),𝑝(dc)link = 𝜂2ph2 . (4.23)

Here, we have assumed 𝜂ph ≡ 𝜂𝐴 = 𝜂𝐵. Furthermore, 𝑝(dc)link denotes the success probability𝑝′succ.
4.3.5 Entanglement protocol selection
For the models derived in Secs. 4.3.3 and 4.3.4, the exact values of the model parameters
determine whether the single-click protocol or the double-click protocol gives better results.
For a fixed set of parameter values, the double-click protocol gives rise to a fixed Bell pair
state and success probability, whereas the single-click protocol has a free parameter in the
bright-state population 𝛼. This allows one to trade in a higher state fidelity for a lower
success probability, and vice versa. It also allows one to identify parameter value regimes in
which one of the two protocols is objectively the better choice. For example, we can define𝛼eq as the value of 𝛼 that leads to 𝑝(sc)link = 𝑝(dc)link for a situation without dark counts—i.e., with
Eqs. (4.19) and (4.23). If, for that value 𝛼eq, we have 𝐹 (sc)link > 𝐹 (dc)link , the single-click protocol
is the best option.

This is the case for the state-of-the-art parameter set in Table 4.1, as we get𝑝(dc)link ≈ 1 ⋅10−5 and 𝐹 (dc)link ≈ 0.852with the double-click protocol. With our single-click model,
using 𝛼eq ≈ 0.00115, we get a state with higher fidelity: 𝐹 (sc)link ≈ 0.905. We note that setting𝛼 this low is typically not possible in practical situations. However, for this parameter set,
also for higher values of 𝛼 the single-click model produces better success probabilities and
fidelities than the double-click model. For the success probability and fidelity printed in
Table 4.1, we have used a higher value for 𝛼, leading to one order of magnitude higher
success probability and slightly lower Bell pair fidelity.
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Probability Ph. 𝐴 Ph. 𝐵 DC𝑝𝐴 (1−𝑝DC)2𝜂𝐴 ✓ ✗ ✗𝑝𝐵 (1−𝑝DC)2𝜂𝐵 ✗ ✓ ✗𝑝𝐴 2𝑝DC(1−𝑝DC)(1− 𝜂𝐴) ✓ ✗ ✓𝑝𝐵 2𝑝DC(1−𝑝DC)(1− 𝜂𝐵) ✗ ✓ ✓𝑝𝐴𝐵 1+𝜇2 (1−𝑝DC)2𝜂𝐴𝜂𝐵 ✓ ✓ ✗𝑝𝐴𝐵 (1−𝑝DC)2𝜂𝐵(1− 𝜂𝐴) ✓ ✓ ✗𝑝𝐴𝐵 (1−𝑝DC)2𝜂𝐴(1− 𝜂𝐵) ✓ ✓ ✗𝑝𝐴𝐵 2(1−𝑝DC)𝑝DC(1− 𝜂𝐴)(1− 𝜂𝐵) ✓ ✓ ✓𝑝✗ 2(1−𝑝DC)𝑝DC ✗ ✗ ✓

Table 4.3: Scenarios leading to only one detector clicking in the Bell measurement of Sec. 4.3.2. The columns
“Ph. 𝐴” and “Ph. 𝐵” describe the presence of a photon in the two incoming modes of the beam splitter. In these
columns, the symbol “✓” denotes that the photon is present and arrives at the beam splitter, whereas “✓” indicates
the photon is present (i.e., came out of the diamond color center) but got lost on the way to the detector. The
symbol “✗” indicates the photon did not come out of the diamond color center. The column “DC” denotes whether
the registered click was a dark count (“✓”) or not (“✗”). The probability 𝑝𝐴𝐵 is included because we assume the
detectors are not photon-number-resolvent: two indistinguishable photons at both input modes of the beam
splitter always end up in the same output mode. Furthermore, we notice that five out of these nine scenarios give
rise to a single click, but correspond to either zero or two photons being involved in the measurement: only 𝑝𝐴,𝑝𝐵 , 𝑝𝐴 and 𝑝𝐵 contribute to a successful Bell measurement.
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5
Creating and distilling
multipartite GHZ states

with Bell pairs

The distribution of high-quality GHZ states is at the heart of many quantum communication
tasks, ranging from extending the baseline of telescopes to secret sharing. GHZ states also
play an important role in error-correction architectures for distributed quantum computation,
where Bell pairs can be leveraged to create an entangled network of quantum computers. In
this chapter, we investigate the creation and distillation of GHZ states out of non-perfect Bell
pairs over quantum networks. In particular, we introduce a heuristic dynamic programming
algorithm to optimize over a large class of protocols that create and distill GHZ states. All
protocols considered use a common framework based on measurements of non-local stabilizer
operators of the target state (i.e., the GHZ state), where each non-local measurement consumes
another (non-perfect) entangled state as a resource. The new protocols outperform previous
proposals for scenarios without decoherence and local gate noise. Furthermore, the algorithms
can be applied to find protocols for any number of parties and any number of entangled pairs
involved.

This chapter is based on S. de Bone, R. Ouyang, K. Goodenough, and D. Elkouss, “Protocols for creating and
distilling multipartite GHZ states with Bell pairs,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–10,
Dec. 2020.
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5.1 Introduction
As discussed in Sec. 1.1, the promise of distributed quantum computing lies in the possibility
of building a quantum computer without the difficulty of engineering a large multi-qubit
device. In exchange, the feasibility of such a networked device critically relies on the
availability of high-fidelity entanglement. This is because entanglement is required for the
realization of multi-qubit operations between different quantum computers. In particular,
entangled states are necessary for performing error-detection measurements in error-
correction codes executed with distributed quantum computers.

Using error correction for fault-tolerant quantum computation relies on encoded data.
To correct or track the errors in the encoded data, it is necessary to periodically perform
joint measurements on different qubits. If the whole encoded state lies in a single quantum
device, these joint measurements can be performed by applying the appropriate multi-qubit
operations and measuring an ancilla qubit. However, in distributed implementations the
joint measurements become non-local. The ingredient that enables joint measurements
are GHZ states. By consuming an 𝑁 -qubit GHZ state it is possible to perform a non-local
measurement between 𝑁 parties. The challenge of distributed quantum computation
is to produce GHZ states at a fast enough rate and with high enough fidelity to enable
fault-tolerant quantum computation.

Creating GHZ states is experimentally challenging. A simple protocol for creating an𝑁 -qubit GHZ state consists of fusing 𝑁 −1 Bell pairs. However, the fidelity of the GHZ
state degrades exponentially with 𝑁 . This problem can be overcome by more complicated
protocols that distill either the input Bell pairs or any of the intermediate states of a
protocol. This generally improves the fidelity of the final GHZ state but comes at the price
of consuming a larger number of Bell pairs.

Some of the physical platforms with a coherent optical interface for generating remote
entanglement mentioned in Sec. 1.1 have already demonstrated the generation of long-lived
remote entanglement [1] and even distillation [2]. However, the rate at which entanglement
can be produced is slower than the gate times. In consequence, the rate at which GHZ states
are produced becomes the bottleneck for the performance of distributed quantum computer
implementations [3]. Moreover, while our motivation stems from distributed quantum
computation, efficient GHZ generation has direct application in several other applications
including secret sharing [4], anonymous transmission [5], clock synchronization [6], and
extending the baseline of telescopes [7].

The goal of our research is to minimize the number of Bell pairs necessary to produce
high-fidelity GHZ states. We do this by searching the protocol space for creating GHZ
states out of Bell pairs. The difficulty of the problem is that given a number of parties
and a number of input Bell pairs, the number of possible protocols is very large: it grows
super-exponentially with these parameters. Our approach to deal with the large number of
protocols is therefore to take the heuristic approximation that optimal protocols for some
number of copies of a GHZ state are composed of optimal protocols for a smaller number
of copies or parties. This heuristic leads to a dynamic program.

As became clear in Sec. 3.6, distillation is currently better understood in the bipartite
case than in the multipartite case. In the bipartite case, it is even known that some protocols
achieve an optimal trade-off between rate and fidelity [8]. In the context of a distributed
implementation of the surface code, Nickerson et al. [9] optimized a family of protocols
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for generating four-partite GHZ states out of noisy Bell pairs. To facilitate experimental
feasibility, the GHZ distillation protocols require three qubits per node. The number of
possible protocols in this family, while large, is still brute-force tractable. Subsequent work
optimized a similar family of protocols in the presence of loss [3]. We introduced the
protocols from Refs. [3, 9] in Sec. 3.6.9. We leave the extension of our approach to more
realistic settings with loss for Chs. 6 and 7. In this chapter, in contrast with Ref. [9], we
are interested in more general protocols that minimize the number of Bell pairs consumed
independently of the size of the required quantum register. This different ansatz is justified
by recent experimental progress with multi-qubit registers [10].

In Secs. 5.2 and 5.3, we introduce the formalism and building blocks of the GHZ
generation protocols considered. In Sec. 5.4, we show that existing GHZ generation
protocols are included in our search space. In Sec. 5.5, we present our dynamic program.
In Sec. 5.6, we show the performance of the best GHZ creation protocols found. Finally, we
draw our conclusions in Sec. 5.7.

5.2 Bell and GHZ diagonal states
Here, we introduce the notation and definitions used in the rest of this chapter, together
with our model for states. We use the 𝑁 -qubit GHZ basis introduced in Sec. 2.4.2, with
basis states |𝜙𝑠1𝑠2𝑠3…𝑠𝑁 ⟩ defined by the signs of the stabilizer generators (−1)𝑠1𝑋1𝑋2…𝑋𝑁 ,(−1)𝑠2𝑍1𝑍2, (−1)𝑠3𝑍2𝑍3, … , (−1)𝑠𝑁 𝑍𝑁−1𝑍𝑁 , for 𝑠𝑖 ∈ {0,1} for all 𝑖 ∈ {1,2,… ,𝑁 }. As discussed
in Sec. 2.4.2, we use the capital Φ symbol to denote the density matrix corresponding to a
basis state—i.e., Φ𝑠1𝑠2…𝑠𝑁 ≡ |𝜙𝑠1𝑠2…𝑠𝑁 ⟩⟨𝜙𝑠1𝑠2…𝑠𝑁 |. For 𝑁 = 2, the GHZ basis reduces to the Bell
basis, which is also introduced in Sec. 2.4.2.

We restrict our attention to states that do not contain off-diagonal elements in the Bell
basis—the so-called Bell diagonal states. This restriction does not reduce the applicability of
our methods, because any bipartite qubit state can be transformed to a Bell diagonal state
with the same fidelity via the Pauli twirling method of Eqs. (2.20) and (2.21) in Sec. 2.4.4, a
procedure that relies on local operations and classical communication. On top of that, the
operations introduced in Sec. 5.3 take Bell diagonal states to other Bell diagonal states or
to states that are diagonal in the GHZ basis, allowing us to restrict our attention to just
Bell and GHZ diagonal states. For 𝑁 parties 𝜈1, 𝜈2, … , 𝜈𝑁 we write these states as:

𝜌𝜈1𝜈2…𝜈𝑁 = ∑(𝑠1 ,𝑠2 ,…,𝑠𝑁 )∈{0,1}𝑁𝑝𝑠1𝑠2…𝑠𝑁Φ𝑠1𝑠2…𝑠𝑁 . (5.1)

Unless otherwise stated, in the remainder we use the term “state” to denote both Bell
diagonal states and GHZ diagonal states, and call the 𝑝𝑠1𝑠2…𝑠𝑁 elements in Eq. (5.1) the
“coefficients” of the state. We use the shorthand |GHZ(𝑁 )⟩ for |𝜙00…0⟩ when we need to
explicitly denote the number of qubits of the state. The fidelity 𝐹 ≡ ⟨GHZ(𝑁 )|𝜌|GHZ(𝑁 )⟩
provides a measure of the closeness between a general 𝑁 -qubit state 𝜌 and the pure
state |GHZ(𝑁 )⟩. For diagonal density matrices in the Bell or the GHZ basis, the fidelity
equals the value of the 𝑝00…0 coefficient. We define 𝐹Bell as the fidelity of a Bell diagonal
state |GHZ(2)⟩ = |Φ+⟩ and 𝐹GHZ or 𝐹 (𝑁 )

GHZ as the fidelity of an 𝑁 -qubit GHZ diagonal state|GHZ(𝑁 )⟩.
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Figure 5.1: The fusion operation allows merging Bell diagonal states and GHZ diagonal states that overlap at one
of the network parties. This party applies the operation depicted below the arrows, followed by local Pauli gate
corrections that depend on the measurement outcome—this correction is not depicted here but can be observed
in, e.g., Fig. 6.2. In our implementation, 𝜌Bell is a state of the form of Eq. (5.1) on two parties (i.e., for 𝑁 = 2 parties)
and 𝜌(𝑁 )GHZ is a state of the form of Eq. (5.1) on 𝑁 parties. The fusion operation is included as Block C.1 in Fig. 3.28.

5.3 Operations on Bell and GHZ diagonal states
This section discusses two operations on Bell and GHZ diagonal states: fusion operations,
that merge two states, and distillation operations, that consume one state to improve the
fidelity of another state.

5.3.1 Fusion
The fusion operation merges two states. The operation takes an 𝑁1-qubit state and an𝑁2-qubit state that overlap in one network node, in the sense that this node holds (at least)
one qubit of each state. The fusion operation consists of a C𝑋 gate between one qubit of
each state, a measurement in the Pauli-𝑍 basis of the target qubit (see Fig. 5.1) and local
Pauli gate corrections to the qubits of the other state. If the two qubits involved are qubit 𝑖
of the 𝑁1-qubit state and qubit 𝑗 of the 𝑁2-qubit, we say that we are fusing the 𝑁1-qubit
state at qubit 𝑖 with the 𝑁2-qubit state at qubit 𝑗 . This results in a new (𝑁1+𝑁2−1)-qubit
state. The fusion operation is deterministic.

5.3.2 Non-local stabilizer measurements
A non-local stabilizer measurement also involves two states: a main state and an ancillary
state. The ancillary state is consumed to measure a stabilizer operator on the main state.
In the context of a distillation scheme, the stabilizer operator is one of the stabilizers
of some target state. Then, the non-local stabilizer measurement can be understood as
an error-detection scheme, as discussed in Sec. 3.6.2. An 𝑚 = +1 outcome projects the
state into the corresponding eigenspace compatible with the target state, while an 𝑚 = −1
outcome projects the state into the corresponding eigenspace orthogonal to the target state.
For this reason, the state is kept when the measurement outcome is 𝑚 = +1 and discarded
otherwise.

In Fig. 2.4b on page 21, we see a quantum circuit that measures a joint Pauli operator𝑃1𝑃2…𝑃𝑁 with the aid of an 𝑁 -qubit state |GHZ(𝑁 )⟩ = (|0⟩⊗𝑁 + |1⟩⊗𝑁 )/√2. The qubits of
the ancillary state are measured individually in the Pauli-𝑋 basis, and the network parties
use classical communication to calculate the full measurement outcome. Whereas the



5.4 GHZ generation protocols

5

125

non-local measurement of the stabilizer in Fig. 2.4b is perfect, in practical situations the
ancillary state is noisy and the operation is only carried out approximately.

The 𝑁 -qubit GHZ state |GHZ(𝑁 )⟩ has three different types of stabilizers: 𝑍𝑍 stabilizers
of weight 2, combinations of 𝑍𝑍 operators of weight 𝑀 (where 𝑀 ≤ 𝑁 is always an even
number), and operators of weight 𝑁 consisting of combinations of 𝑋1𝑋2…𝑋𝑁 and any
number of the 𝑍𝑍 operators. Measuring the latter type non-locally requires another 𝑁 -
qubit ancillary state. The 𝑍𝑍 operators can be measured with a Bell pair as an ancillary
state. For combinations of 𝑍𝑍 operators of higher weight𝑀 ≤ 𝑁 , a GHZ state of weight𝑀
is required.

5.4 GHZ generation protocols
Many GHZ creation and distillation protocols can be described by combining the operations
from Sec. 5.3. In particular, fusion operations create larger multipartite states and non-local
stabilizer measurements can be used to increase the fidelity of the main state. As an example,
in the following, we include the Expedient and Stringent protocols from Nickerson et al. [9]
for creating and distilling a GHZ state shared by 𝑁 = 4 network parties. We introduced
these protocols in Sec. 3.6.9. In Fig. 5.2, we include a schematic representation of both
protocols. For the Expedient protocol, compared to Fig. 3.29, we now assume that all gates
are noiseless, which allows us to revert the double selection protocol to two rounds of
distillation in the form considered in this chapter—see also Sec. 3.6.5 for more information.
For both protocols, the first part consists of non-local measurements involving all qubits on
two opposite sides of the network: to distill Bell pairs between qubits 𝑎 and 𝑏, and between
qubits 𝑐 and 𝑑 in Fig. 5.2. In Fig. 5.2, this part consists of steps 1 and 2 for Expedient,
and steps 1 to 8 for Stringent. The two distilled Bell pairs are stored, and the protocols
continue with several rounds of non-local measurements to distill two new Bell pairs in the
perpendicular direction (between qubits 𝐴 and 𝐶, and between qubits 𝐵 and 𝐷 in Fig. 5.2).
These are steps 3 and 4 for Expedient, and steps 9 to 11 for Stringent. After that, the four
Bell pairs are fused into a 4-qubit GHZ state: this is step 5 for Expedient and step 12 for
Stringent in Fig. 5.2. The protocols end by repeating the distillation steps for a Bell pair
between qubits 𝐵 and 𝐷 and between 𝐴 and 𝐶. Finally, these distilled Bell pairs are used to
perform two 𝑍𝑍 non-local measurements on the 4-qubit GHZ state.

In total, the Expedient protocol consumes a minimum of 𝐾 = 22 Bell pairs. As is clear
from Fig. 5.2 and the description above, the Stringent protocol has the same main structure
as the Expedient protocol but consumes a minimum of 𝐾 = 42 Bell pairs. The additional
Bell pairs are used to increase the fidelity of the states that take part in the fusion step,
as well as to increase the fidelity of the Bell pairs used to perform the final 𝑍𝑍 non-local
measurements on the 4-qubit GHZ state.
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5.5 Dynamic programs to optimize GHZ generation
In this section, we discuss several algorithms to optimize GHZ generation. In particular, we
consider the problem of probabilistically generating an 𝑁 -qubit GHZ state with maximum
fidelity 𝐹GHZ starting from 𝐾 isotropic Bell pairs with fidelity 𝐹Bell:

𝜌𝐴𝐵 = 𝐹BellΦ00+ ∑(𝑠1 ,𝑠2)≠(0,0)1− 𝐹Bell3 Φ𝑠1𝑠2 . (5.2)

We do not restrict the number of qubits that the 𝑁 nodes need to hold, and we also do not
restrict their connectivity.

Ideally, we would consider all possible ways of distributing the Bell pairs over the
network parties, and all possible combinations of the operations from Sec. 5.3. Unfortu-
nately, the number of these combinations grows super-exponentially in 𝑁 (see Ref. [11]
for a similar argument). This makes a brute-force approach infeasible for relevant val-
ues of (𝑁 ,𝐾)—in particular for the protocols described in Sec. 5.4: (𝑁 ,𝐾) = (4,22) and(𝑁 ,𝐾) = (4,42). For this reason, similar to the approaches in Refs. [11, 12] for Bell pair
distribution in the context of quantum repeater chains, we propose heuristic dynamic
programs for optimizing the distribution of GHZ states.

The dynamic programs reduce the complexity of the optimization and enable finding
good protocols for large values of 𝑁 and 𝐾 . However, the output is not necessarily optimal.
In the following, we first describe a simple dynamic program for optimizing GHZ generation.
Next, we build on this description to present a randomized version of the dynamic program.

5.5.1 Base dynamic program
The dynamic program takes as input the problem parameters 𝑁 ,𝐾,𝐹Bell and a buffer size𝑁buf . The parameters specify the size of the final 𝑁 -qubit GHZ state, the number of Bell
pairs 𝐾 , their fidelity 𝐹Bell and the number of protocols 𝑁buf to store at each intermediate
step of the algorithm—i.e., for each combination of the number of Bell pairs and GHZ state
size. The pseudo-code of this algorithm can be found in Alg. 1.

The algorithm begins with (𝑛,𝑘) = (2,1) and proceeds iteratively combining the solu-
tions for smaller values of 𝑛 and 𝑘 until (𝑛,𝑘) = (𝑁 ,𝐾). More precisely, for each value of(𝑛,𝑘) the algorithm combines the protocols found for smaller values of (𝑛,𝑘) in all possible
ways to perform either a non-local measurement or to fuse the states, evaluates the fidelity
of the resulting state for each combination, and stores the 𝑁buf protocols that achieve
the largest fidelity. For (𝑛,𝑘) = (2,1), the algorithm stores a Bell pair with fidelity 𝐹Bell.
Subsequently, the algorithm increases 𝑘 to (𝑛,𝑘) = (2,2) and it continues increasing 𝑘, until(𝑛,𝑘) = (2,𝐾). At that point, 𝑛 is increased by one, and 𝑘 is reset to 𝑛−1. This process
continues until 𝑁 and 𝐾 are reached.

We would like to stress that this is a heuristic approach and, in general, it does not
lead to the optimal algorithms. This can be observed in Fig. 5.3. We plot the fidelity of the
produced 𝐹GHZ with respect to the fidelity 𝐹Bell of the input Bell pairs. The fidelity of the
produced 𝐹GHZ is not always monotonically increasing. Moreover, as we increase the size
of the buffer 𝑁buf the program tends to find better protocols. However, lines with different
values of 𝑁buf cross, highlighting the suboptimality of the output.
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Algorithm 1: Base dynamic program to optimize GHZ generation.

Data: Number 𝑁 of qubits of final GHZ state
Number 𝐾 of isotropic Bell pairs of final GHZ state
Fidelity 𝐹Bell of the isotropic Bell pairs
Number 𝑁buf of protocols stored in buffer per step

Result: Protocol to create an 𝑁 -qubit GHZ state out of 𝐾 isotropic Bell pairs
1 for {(𝑛,𝑘) |𝑛 ⩽ 𝑁 , 𝑘 ⩽ 𝐾, 𝑘 ⩾ 𝑛−1} do
2 # Try all non-local measurement combinations.
3 for stabilizer ∈ {stabilizers of |GHZ(𝑛)⟩ } do
4 𝑛′ ← weight of stabilizer
5 for 𝑘′ ∈ [𝑛′−1, 𝑘−𝑛+1] do
6 Measure stabilizer on stored (𝑛,𝑘− 𝑘′) state consuming the stored(𝑛′, 𝑘′) state. Store new state if fidelity is higher than at least one of

the existing (𝑛,𝑘) states. If more than 𝑁buf states are stored at (𝑛,𝑘),
remove the one with lowest fidelity.

7 # Try all fusion combinations.
8 for 𝑛2 ∈ [2, 𝑛−1] do
9 𝑛1 ← 𝑛−𝑛2+1

10 for 𝑘2 ∈ [𝑛2−1, 𝑘−𝑛+1] do
11 𝑘1 ← 𝑘− 𝑘2
12 for (𝑖, 𝑗) ∈ [1, 𝑛1] × [1, 𝑛2] do
13 Fuse stored states (𝑛1, 𝑘1) at qubit 𝑖 and (𝑛2, 𝑘2) at qubit 𝑗 . Store new

state if fidelity is higher than at least one of the existing (𝑛,𝑘)
states. If more than 𝑁buf states are stored at (𝑛,𝑘), remove the one
with lowest fidelity.

14 return stored (𝑁 ,𝐾) state with highest fidelity
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5.5.2 Randomized version of the dynamic program
The base dynamic algorithm allows for optimizing GHZ generation for moderate sizes.
Unfortunately, even if faster than brute force, it still scales exponentially with the size of
the GHZ state, and, for fixed GHZ size, it scales quadratically with the size of the buffer. In
this section, we discuss a randomized version of the base dynamic program. This algorithm
scales to larger GHZ sizes and, in practice, finds better protocols.

The randomized algorithm takes an additional parameter compared to the base dynamic
algorithm. This is the temperature 𝑇temp, used to decide whether or not to keep intermediate
protocols. The randomized algorithm has the same two loops over (𝑛,𝑘) as the base one.
It has an outer loop over the GHZ state size 𝑛 starting from 𝑛 = 1 to 𝑁 and an inner loop
over the number of Bell pairs starting from 𝑘 = 𝑛−1 to 𝐾 . The two algorithms differ in
how they construct the pool of protocols for (𝑛,𝑘).

Similar to the base algorithm, the randomized algorithm fills a pool of 𝑁buf protocols
for each combination of (𝑛,𝑘). For 1 ≤ 𝑖 ≤ 𝑁buf , the algorithm chooses between non-local
measurement or fusion with probability one-half. It then selects uniformly at random a
stabilizer to perform a non-local measurement or a fusion scheme to implement. Both the
non-local measurement and the fusion scheme combine two smaller states. The parameters
are singled out by the scheme choice: (𝑛,𝑘− 𝑘′) and (𝑛′, 𝑘′) for the non-local measurement
or (𝑛−𝑛′+1, 𝑘− 𝑘′) and (𝑛′, 𝑘′) for fusion. Finally, the two states are chosen uniformly at
random from the 𝑁buf states stored.

The 𝑖th slot of the pool of 𝑁buf states is filled with certainty with the new state if either
it is the first state (i.e., 𝑖 = 1) or it achieves a higher fidelity than the previous protocol.
If these conditions are not met, the new state can still probabilistically be accepted with
probability 𝑒Δ𝐹GHZ/𝑇temp , where Δ𝐹GHZ is the fidelity resulting from the new protocol minus
the fidelity resulting from the previous protocol. If the value for 𝑇temp is set at a high value,
states with a lower fidelity than the fidelity of the previous protocol are more likely to be
accepted. If the new protocol is not stored, the 𝑖th slot is filled with the (𝑖−1)th state. This
approach means that protocols that lead to a high 𝐹GHZ end up in multiple buffer slots and
are therefore more likely to be randomly selected at larger values of (𝑛,𝑘).

For the randomized algorithm, the value for the buffer size 𝑁buf is usually set signifi-
cantly larger than the value for 𝑁buf in the standard algorithm. This can be understood by
realizing that the standard version of the dynamic algorithm visits all allowed combinations
of states at smaller (𝑛,𝑘), whereas the randomized version visits exactly 𝑁buf combinations
at each (𝑛,𝑘).

In the following, we investigate the effect of the configuration parameters, the buffer
size 𝑁buf and the temperature 𝑇temp, on the performance of the algorithm. In particular, we
fix (𝑁 ,𝐾) = (4,42) and evaluate the fidelity of the final GHZ state as a function of the input
Bell pair fidelity. We show the results in three plots in Fig. 5.4. From top to bottom, the
temperatures are fixed to 𝑇temp = 1 ⋅10−5, 𝑇temp = 0.1, and 𝑇temp = 1. In each plot, we show
four lines corresponding to four different buffer sizes 𝑁buf ∈ {1,10,50,200}. We see that, in
general, a lower temperature gives better results. This can be understood by realizing that
for low temperatures, states with higher fidelity are more likely to be stored in many slots
of the buffer. This also indicates that fidelity is a good measure for determining the quality
of a protocol as a building block for a larger protocol.
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Figure 5.3: Fidelity of the final 4-qubit GHZ as a function of the input Bell pair fidelity for a fixed number of
input Bell pairs 𝐾 = 42. We plot (black solid line, gray solid line, and dashed black line) the results of the base
dynamic program with a buffer size 𝑁buf ∈ {1,2,3} for each input Bell pair fidelity. We compare the results to the
fidelity achieved by two fixed protocols for all input Bell pair fidelities (dashed red line and dotted blue line). The
fixed protocols correspond with the protocols that the base dynamic program found for 𝑁buf = 1, 𝐹Bell = 0.832 and𝑁buf = 3, 𝐹Bell = 0.8. They achieve approximately the convex hull of the individual protocols found by the base
dynamic program with 𝑁buf = 1,𝑁buf = 3 respectively.
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different fixed temperatures; from top to bottom 𝑇temp = 1 ⋅10−5, 𝑇temp = 0.1, and 𝑇temp = 1.
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Figure 5.5: Fidelity achieved by the protocols from the base and random dynamic programs as a function of the
number of Bell pairs. The fidelity of the input Bell pairs is fixed to 𝐹Bell = 0.9. From top to bottom, each set of four
lines corresponds to GHZ size 𝑁 = 4,3,2. The lines labeled “base program” indicate the best protocols found by
the base dynamic algorithm for different buffer sizes 𝑁buf . The black solid line indicates the best protocol found
by the random variant. For the base algorithm, we used buffer sizes 𝑁buf ∈ {1,2,3}. For the random algorithm,
we ran the algorithm 44 times, with 18 different temperatures (between 𝑇temp = 1 ⋅10−5 and 𝑇temp = 9 ⋅10−4) per
iteration and 𝑁buf = 200.
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5.5.3 Comparison between the dynamic programs
We end the discussion of the dynamic programs by comparing the output of the base
dynamic program against the randomized version. In Fig. 5.5, we compare the best results
with (𝑁 ,𝐾) = (4,42) of the base dynamic program against the randomized program. For
the parameters chosen, the randomized dynamic program outperforms the base dynamic
program.

5.6 Results
In this section, we use the dynamic algorithms to find good GHZ creation protocols. First,
we investigate how the different variants of the dynamic program discussed in Sec. 5.5
compare with each other and what the optimal parameter configurations are. Then, we use
the programs to investigate scenarios of interest. Given the importance of the surface code,
we start with studying the distribution of 4-qubit GHZ states. Next to that, we explore how
the quality of the GHZ state for the best protocols scales with the number of parties 𝑁 .
The source code of the dynamic algorithm can be found online [13].

5.6.1 Comparison with existing protocols for 4 parties
First, we investigate protocols for 𝑁 = 4. In Fig. 5.6 we compare the best protocols that our
dynamic algorithms find for parameters (𝑁 ,𝐾) = (4,14), (𝑁 ,𝐾) = (4,22) and (𝑁 ,𝐾) = (4,42)
with the Expedient and Stringent protocols from Nickerson et al. [9]. The figure shows the
infidelity (one minus the fidelity) of the output GHZ state as a function of the fidelity of
the input Bell pairs. We see that under the conditions considered here, the new protocols
create higher-quality GHZ states with the same or even with a smaller number of Bell
pairs. On the other hand, while Expedient and Stringent require  = 3 qubits per node,
these protocols typically require more qubits per node. For example, the (𝑁 ,𝐾) = (4,14)
protocol found with our dynamic program requires that two of the nodes have four qubits,
as can be seen in Fig. 5.7. The best (𝑁 ,𝐾) = (4,22) protocol found by the random dynamic
program can be performed if all four nodes have four qubits (see Fig. 5.7), and the best(𝑁 ,𝐾) = (4,42) found can be achieved with  = 5 (see Fig. 5.7).

Let us now investigate to which degree the new protocols achieve these higher fidelities
consuming a smaller amount of resources. We note that 𝐾 represents theminimum number
of Bell pairs needed to generate a GHZ state. These protocols are probabilistic, and the
success probability depends on the fidelity of the states, going from one if the states are
perfect to zero if the measured state is a minus-one eigenstate of one of the measurement
operators. If the protocol fails at some step, the step needs to be run again from the
beginning. This means that the average number of Bell pairs might be different from 𝐾 .

A related figure of merit that might be more relevant in practice is the average number
of entanglement generation steps. For this, we assume that network nodes can generate a
Bell pair deterministically with one other node over some unit time step. Hence different
pairs of nodes can generate entanglement in parallel over some unit time step. For instance,
the two left nodes in Fig. 5.7 can generate entanglement in parallel to the right nodes.
If the duration of the time step is qualitatively larger than the gate time, the number
of entanglement generation time steps represents to first-degree approximation of the
duration of the protocol.
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Figure 5.6: Comparison between the Expedient and Stringent protocols [9] (see Fig. 5.2), and the best algorithms
found with the dynamic programs for (𝑁 ,𝐾) = (4,14), (𝑁 ,𝐾) = (4,22) and (𝑁 ,𝐾) = (4,42). The protocols are
found with the randomized version of the dynamic program, using the settings and parameters discussed in
Fig. 5.5. The blue lines show the average number of Bell pair generation steps for each of the protocols (𝑦-axis on
the right). To calculate this metric we take the creation of one Bell pair as one time step, and neglect the duration
of all other elements of the protocols. The averages are calculated by executing the protocols 105 times for each
fidelity.
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Figure 5.7: Protocols for creating and purifying a 4-qubit GHZ diagonal state out of 14, 22, and 42 Bell diagonal
states shared between 4 network parties, found with the randomized version of the dynamic program presented
in this chapter. See Fig. 5.2 for more information about the notation.
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pair fidelity 𝐹Bell = 0.9 and 𝐾 = 80. The protocols are found with the randomized version of the dynamic program,
using the settings and parameters discussed in Fig. 5.5.

We find that 𝐾 serves as a good indicator of the average number of entanglement
generation steps. We see in Fig. 5.6 that lower values of 𝐾 correspond with a lower average
number of generation steps. Moreover, minimizing 𝐾 leads to a reduction in the average
number of generation steps. Interestingly, the average number of generation steps of
Stringent and Expedient cross with some of the new protocols. In particular, Stringent—a(4,42) protocol—crosses with the new (4,42) protocol, and Expedient—a (4,22) protocol—
crosses with the new (4,22) protocol. The reason for this is the higher symmetry in the
structure of Expedient and Stringent (see Fig. 5.2). In particular, they use the same number
of Bell pairs at opposite sites of the network, whereas the new protocols contain small
asymmetries in this respect. For very high input fidelities the success probabilities of all
distillation steps are close to one, leading to a lower average number of entanglement
generation steps.

5.6.2 Results for a large number of parties
In this section, we investigate the trade-offs between the number of parties and the number
of Bell pairs for 𝑁 > 4.

First, for a fixed number of Bell pairs, we investigate how the GHZ fidelity drops as
we increase the number of parties. In particular, we fix 𝐾 = 80 and vary 𝑁 from 𝑁 = 2 to𝑁 = 8. In Fig. 5.8 we show the fidelity 𝐹GHZ of the final 𝑁 -qubit GHZ state as a function of𝑁 for a fixed Bell pair fidelity 𝐹Bell = 0.9. We see that even for this high number of input
pairs, the output fidelity drops sharply with the number of parties.

Second, we invert the question and investigate how many Bell pairs are necessary to
achieve a fixed target GHZ fidelity 𝐹GHZ = 0.999565 for a different target number of parties.
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program in all our attempts. The protocols are found with the randomized version of the dynamic program, using
the settings and parameters discussed in Fig. 5.5.

This is the best 𝐹GHZ found for an (8,80) GHZ state with the random dynamic program in
all attempts. In Fig. 5.9, we show the number of Bell pairs 𝐾 with fidelity 𝐹Bell = 0.9 needed
to create an 𝑁 -qubit GHZ state with fidelity 𝐹GHZ ≥ 0.999565. We observe that, for the
available data, the number of pairs scales roughly linearly with the number of parties.

5.7 Conclusion
In this chapter, we search for protocols that generate high-fidelity GHZ states out of
non-perfect Bell pairs. The goal is to minimize the number of Bell pairs for creating a
high-quality GHZ state. We do this by using a dynamic program to search the protocol
space, allowing two types of operations: fusion and distillation.

We find protocols that, in situations without gate and memory noise, distill GHZ states
with higher fidelity compared to previously known protocols. Compared to previous
research [9], the protocols found require roughly half the number of pairs to achieve a
similar fidelity. Out of the different algorithm variants that we implement, the randomized
version finds the best protocols in most regimes. For 𝑁 = 2 to 𝑁 = 8 parties involved, we
investigate how the fidelity of the final GHZ state decreases by increasing the number of
parties with a fixed number of pairs (𝐾 = 80) and calculate how many Bell pairs are needed
for the distribution of an 𝑁 -qubit GHZ state of a fixed fidelity. Our programs can be used
to find protocols for an arbitrary number of parties and entangled states involved.

GHZ states are required for implementing error-correction codes in distributed quantum
computing. The distributed implementation of codes beyond the surface code has not been
thoroughly explored. However, the case for the surface code in distributed implementations
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is weaker [14], as richer connectivities than direct neighbors can be achieved with relative
ease. Our tools open the door to implementations of alternative quantum error-correction
codes that require high-quality GHZ states of weights different than four.

Whereas these results are promising, they do not quantify the precise effect on the
noise threshold for distributed implementations of the surface code. In Ch. 6, we evaluate
how a subset of the new protocols behaves in more realistic scenarios by converting them
to a set of instructions. In Ch. 7, we present a follow-up of the search for GHZ protocols
including noise and loss. For the situation considered here, increasing the number of Bell
pairs to perform additional distillation steps always increases the fidelity of the final states.
This is no longer the case for scenarios that include memory decoherence or gate noise.
Hence, as becomes clear in Ch. 6, for noisy settings, the quality of the memory determines
whether including more distillation steps leads to an increase in the fidelity of the final
state.
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6
Simulating GHZ protocols in

the presence of memory
decoherence

In this chapter, we introduce a novel heuristic approach designed to optimize the performance
of GHZ creation and distillation protocols under memory decoherence. Introducing limiting
coherence times as a prominent noise factor makes it imperative to integrate realistic operation
times into simulations and incorporate strategies for operation scheduling. Our methodology
converts GHZ protocols from Ch. 5 into a practical set of instructions—demonstrating, through
simulations, the production of GHZ states of higher quality than with previously known
protocols. This advancement contributes to the field of distributed quantum computing by
addressing the need for high-quality entanglement required for operations between different
quantum computers.

This chapter is based on S. de Bone and D. Elkouss, “GHZ distillation protocols in the presence of decoherence,”
ACM SIGMETRICS Performance Evaluation Review, vol. 51, no. 2, pp. 81-83, Oct. 2023.
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6.1 Introduction
As discussed in Sec. 5.1, combining a distributed quantum computerwith an error-correction
code requires entangled states to perform the syndrome measurements that detect errors.
For the standard distributed surface code, with each data qubit in a different quantum
computer, we require |GHZ(4)⟩ = (|0⟩⊗4+ |1⟩⊗4)/√2 states. In such a system, one GHZ
state is generated and consumed per parity and measurement cycle. In Secs. 3.6.9 and 5.4,
we discuss protocols introduced by Nickerson et al. [1, 2] to generate GHZ states in this
context. In the absence of memory decoherence, these protocols produce high-quality GHZ
states. However, their large number of distillation steps makes them less useful in practical
devices with limited coherence times [3]. Therefore, there is a need for GHZ protocols that
perform better in realistic scenarios.

In Sec. 5.3, we introduce techniques to construct abstract GHZ protocols from fusion and
distillation operations. These protocols can be carried out in multiple ways. In particular,
the ordering of the operations can have a strong effect on their performance in the presence
of decoherence. Here, we present a method for converting GHZ distillation protocols
into a set of ordered instructions. We couple this method with GHZ protocols found
with the dynamic program for GHZ creation in Sec. 5.5 and show that, in the presence
of memory decoherence, the resulting GHZ states have higher fidelities than previously
known protocols.

6.2 Binary tree protocols
We consider GHZ creation protocols over 𝑁 parties in a network: the network nodes {𝜈(𝑖)}𝑁𝑖=1.
The protocols are constructed with the methods of Alg. 1 in Sec. 5.5 and can be represented
as a directed binary tree. In Fig. 6.1a, we show a graphical depiction of the binary tree
corresponding to the Modicum protocol. Each node in a binary tree is either created from
zero or two direct children of the graph. At the top of the binary tree, we find the operation
that creates the final GHZ state. At each non-leave node, there is either a fusion or a
distillation operation and at the leaves of the tree, we find the elementary links {𝑒𝑖}𝐾𝑖=1.
These are the Bell pairs created between two of the network nodes. The elementary links
do not have children. The fusion operations {𝑓𝑖}𝑖=1 and distillation operations {𝑑𝑖}𝑖=1 in the
tree each have two children. We consider distillation as a probabilistic operation that only
succeeds if the measurement outcome is 𝑚 = +1. In case of an outcome 𝑚 = −1, we reapply
all operations in sub-tree of the operation 𝑑 ∈ {𝑑𝑖}𝑖=1—i.e., 𝑑 itself and all operations below
it. More information about the specific operations applied for fusion and distillation can be
found in Sec. 5.3.

Each binary tree satisfies+ =𝐾 −1, where,  and 𝐾 are the number of distillation
operations, fusion operations, and elementary links, respectively. Since creating a weight-𝑁
GHZ state requires a minimum of 𝑁 −2 fusion operations working on 𝑁 −1 elementary
links, all additional fusion operations create entangled states used for distillation purposes.
Therefore, we use 𝐾 (the number of elementary links in a binary tree) as a proxy for the
amount of distillation that takes place in a GHZ protocol.
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SWAP qubits [A, 1] [A, 2] and qubits [B, 1] [B, 2].
SUBSYSTEM CD (1 entanglement link):
CREATE LINK between qubits [C, 1] and [D, 1].
SWAP qubits [C, 1] [C, 2] and qubits [D, 1] [D, 2].

Time step 2:
SUBSYSTEM AC (1 entanglement link):
CREATE LINK between qubits [A, 1] and [C, 1].
(R1) FUSE by measuring qubits [A, 1] and keeping 

qubits [A, 2]. 
(R2) FUSE by measuring qubits [C, 1] and keeping 

qubits [C, 2]. 
SUBSYSTEM BD (1 entanglement link):
CREATE LINK between qubits [B, 1] and [D, 1].
(R3) DISTILL operation Z 2 

Z 4 by measuring qubits [B, 1] 
and [D, 1], and keeping qubits [B, 2] and [D, 2]. 

EVALUATE the success of R3 based on R1 ⊕ R2 ⊕ R3.
CORRECT qubit [C, 2] with operator X conditioned on 

R1 ⊕ R2.
CORRECT qubit [D, 2] with operator X conditioned on

R1 ⊕ R2.

(a) (c)(b)

Figure 6.1: (a) Binary tree with 𝐾 = 4 found with the dynamic program of Sec. 5.5. (b) Identified time steps for the
operations in this binary tree. (c) Identified protocol recipe for this binary tree. A schematic circuit representation
of this protocol can be found in Fig. 6.2.
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Figure 6.2: Schematic representation of the Plain and Modicum protocols that create weight-4 GHZ states. More
information about the notation in these diagrams can be found in Fig. 3.28. The Plain protocol consumes 3 Bell
pairs to create the GHZ state and performs no distillation. On the other hand, Modicum performs one round of
distillation after the GHZ state is created and uses a minimum of 4 Bell pairs (depending on how many distillation
attempts fail). The red arrow in the Modicum protocol denotes a failure reset level: it describes to where in the
protocol we have to reset in case the distillation attempt fails. As mentioned earlier in Figs. 3.28 and 3.29, SWAP
gates are included to satisfy the hardware restrictions of Sec. 4.1. In other situations, using these SWAP gates can
possibly be avoided.
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6.3 Protocol recipe construction
In the presence of memory decoherence, the order in which the operations are applied
can have a strong impact on the performance. Therefore, we convert the binary tree of a
GHZ creation protocol to a protocol recipe. This is a set of instructions that describes what
specific operations have to be applied on what qubits of the network nodes. In this section,
we include a condensed description of the algorithm we use to create a protocol recipe. In
Secs. A.1.1 and A.1.2 of App. A, we discuss this algorithm in more detail. In Fig. 6.1, we
depict the translation of a protocol given by a binary tree (Fig. 6.1a) into a set of time steps
(Fig. 6.1b) and finally into a protocol recipe (Fig. 6.1c).

6.3.1 Operation identification and ordering
The first step of the protocol recipe construction consists of ordering the generation of the
elementary links of the binary tree. For this, we follow a recursive approach. We start at the
top of the tree. At each step, we select the sub-tree with the largest size, choosing the left
one in case of ties. When we reach an elementary link at one of the leaves of the tree, we add
this link to an ordered list with elementary links, together with all other non-overlapping
elementary links that can be carried out simultaneously. For each elementary link 𝑒 that
we add to the list, we check if the parent operation 𝑝 of 𝑒 can be applied. A parent can be
applied if both of its children are contained in the list of operations. If 𝑝 can be applied, we
add 𝑝 to the list after 𝑒. Then we check if the parent of 𝑝 can be applied; if it can be added,
we add it after 𝑝, etc.

At this stage of constructing the protocol recipe, we make use of several physically-
inspired assumptions based on the systems considered in Ch. 4. For example, we assume a
single communication qubit 𝑐(𝑗) per node 𝜈(𝑗) that can be used to perform operations and a
fixed number of memory qubits {𝑚(𝑗)𝑞 }𝑞 that can be used to store states. We also assume that
a node can only be involved in one entanglement operation at a time, and entanglement
can only be created between two communication qubits. For this reason, SWAP gates are
necessary to free up the communication qubits. For example, for a typical 2-to-1 Bell pair
distillation step in the style of the DEJMPS distillation protocol [4] discussed in Sec. 3.6.2,
we first create a Bell pair between two communication qubits 𝑐(1) and 𝑐(2), we swap them
to the memory qubits 𝑚(1)1 and 𝑚(2)1 , create a new Bell pair between communication qubits𝑐(1) and 𝑐(2) and then carry out the distillation circuit. If distillation succeeds, this leads to
a distilled Bell pair on memory qubits 𝑚(1)1 and 𝑚(2)1 . If we want to further use this distilled
Bell pair as an ancillary state in a later operation, we typically have to swap it back to the
communication qubits. Specifically, this means that for each operation included in the list
mentioned in the previous paragraph, we include a set of instructions that are physically
possible with the target hardware.

More details about the ordering and identification of all required operations can be
found in Sec. A.1.1 of App. A.

6.3.2 Operation scheduling
Once all operations are listed, we schedule them. The schedule of operations consists of a
series of time steps, with each time step divided into different time blocks. The time blocks
are created such that they can be executed in parallel in different, non-overlapping parts of
the network. We schedule the operations by looping over the list of operations, and, for
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each operation 𝑜, we check if 𝑜 can be placed in an existing time block. This is possible
if the network nodes in which 𝑜 operates overlap with the network nodes in which the
other operations of the time block operate. If it is not possible to add 𝑜 to an existing
time block, we create a new one. At the end of each time step, we add all required fusion
corrections, as well as distillation operations that need to be evaluated at the end of the
time step. The result is a structure that we refer to as the protocol recipe. An example of a
protocol recipe can be found in Fig. 6.1c. A detailed description of the algorithm used for
scheduling operations can be found in Sec. A.1.2 of App. A.

6.4 Protocol recipe simulation
In this section, we sketch the logic for the efficient simulation of a protocol recipe in the
form of Sec. 6.3. More details about the implementation can be found in Sec. A.2 of App. A.

The GHZ creation protocols considered are probabilistic. To avoid situations in which
they do not finish within the coherence time, we impose a GHZ cycle time after which
the GHZ protocol is aborted. To be able to deal with memory decoherence and the cycle
time, we assign an internal time variable to each network node. At the end of each time
step, we synchronize the time in all nodes. This corresponds to the protocol only moving
to the next time step when all operations in the current time step are finished. On top of
that, if the GHZ state is successfully created before the GHZ cycle time, we add memory
decoherence until the GHZ cycle time is reached. We use the GHZ cycle time in Ch. 7 but
not in the results of Sec. 6.5.

During normal execution of a protocol recipe, we say that we are in execution mode. If,
in execution mode, a distillation operation is unsuccessful, the target state of the distillation
operation has to be recreated from scratch. In that case, we have to track back to an earlier
stage in the protocol: the failure reset level. If the failure reset level is part of the same time
block as where the distillation failure occurred, we can simply try to recreate the state
without notifying the nodes outside the time block. If this is not the case, and we have to
move back to an earlier time step, all network nodes are notified, and the protocol resets to
the earlier time step. This process also involves removing all states that “sit in the way”
for recreating the failed state—i.e., that use memory qubits required for regenerating this
state. On the other hand, all states on memory qubits that are not needed are kept, so that,
when we return to the point where the distillation failure occurred, these states can be
used in the remainder of the protocol. This also includes distillation operations that are
only partially carried out.

If it is necessary to move back to an earlier time step after a distillation failure, we
first store the time 𝑡fail at which the full measurement outcome was known and enter
reconstruction mode. In this mode, we (re)apply all operations in this time step until 𝑡fail
is reached—i.e., if they were already simulated before the distillation operation failed, we
make sure all probabilistic operations get the same outcome as in the original execution.
This is done to make sure operations in all time blocks of this time step are carried out
until 𝑡fail. We then re-initialize execution mode and move back to the failure reset level
associated with the failed distillation operation(s) to reconstruct the failed state(s).

As soon as we have successfully reconstructed these state(s), we proceed with the rest
of the protocol. This means that, in execution mode, we always have to make use of a data
structure that indicates which operations need to be carried out, and which operations



6.5 Results and discussion

6

147

10 1 100 101

Time (s)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

G
H

Z
 s

ta
te

 fi
de

lit
y

Plain (K = 3)

Modicum (K = 4)

Septimum (K = 7)

Basic (K = 8)

Decimum (K = 10)

Duodecum (K = 12)

Expedient (K = 22)

Figure 6.3: Average completion time and average GHZ state fidelity for a selection of GHZ creation protocols
with 𝑁 = 4, using the circuit simulator from Refs. [3, 5], the hardware models from Ch. 4, and the parameter
values introduced in Table 4.1 for the isotopically purified NV center sample. Full markers correspond to a success
probability of 𝑝link = 10−4 per Bell pair entanglement attempt, whereas open (and faded) markers correspond
to a boosted success probability of 𝑝link ≈ 10−2 per attempt. For the 𝑝link ≈ 10−2 data, we use the same Bell pair
entanglement model and parameter values, but with 𝜂ph = 0.4472 and 𝑛DD = 195. (We refer to Sec. 4.2.4 for more
details about the parameter 𝑛DD.) Horizontal error bars show the distribution of the completion time (68.2%
confidence interval). Each data point is based on a total of 105 Monte Carlo simulations.

need to be skipped. This is necessary to correctly deal with the recreation of states that
suffered from failed distillation earlier in the execution process. For example, after moving
back to a failure reset level, only operations needed for recreating the state of the failed
distillation step have to be reapplied.

6.5 Results and discussion
In this section, we simulate three protocol recipes in the form of Sec. 6.3 by executing
them according to the algorithm described in Sec. 6.4. We execute these protocols using an
open-source simulator [3, 5]. Since we are interested in protocols for measuring the parities
of a distributed surface code, we simulate GHZ generation protocols for 𝑁 = 4. In Fig. 6.3,
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we show the average GHZ fidelity and completion time of a selection of protocols for the
hardware models and parameters of the isotopically purified NV center sample introduced
in Ch. 4. We show the results for the state-of-the-art Bell pair parameters of Table 4.1.
These parameters lead to a success probability per entanglement attempts of 𝑝link = 10−4
and a Bell pair fidelity 𝐹link ≈ 0.90 with the single-click entanglement protocol of Eq. (4.19).
Next to that, we also show results for a boosted success probability of 𝑝link ≈ 10−2, achieved
by increasing the photon detection probability to 𝜂ph = 0.4472.

In Fig. 6.3, we include a total of seven GHZ generation protocols. These include the
earlier introduced Modicum, Expedient [1], and Basic [2] protocols, as well as the Plain
protocol. The Plain protocol contains no distillation steps: it fuses three Bell pairs into a
four-qubit GHZ state. Circuit diagrams for the Plain and Modicum protocols can be found
in Fig. 6.2. More information about the Expedient and Basic protocols can be found in
Secs. 3.6.9 and 5.4. The remaining three protocols in Fig. 6.3 are found with the dynamic
protocol for the GHZ protocol search in Ch. 7: the Septimum protocol is introduced in
Fig. 7.3, and the Decimum and Duodecum protocols are introduced in App. D.

We observe that the new protocols from the dynamic program coupled with the recipe
construction heuristic outperform prior protocols in the parameter regimes considered.
In Ch. 7, we investigate whether the increased GHZ fidelities that we report in Fig. 6.3
are sufficient to operate the distributed surface code below its noise thresholds. We also
optimize over protocols created with the dynamic program of Sec. 5.5 by making use of
the algorithms described in Secs. 6.3 and 6.4 and the open-source circuit simulator [3, 5].
Even though this route is not further explored in this thesis, we repeat that both the
dynamic program from Sec. 5.5 as the methods described in this chapter can be applied
to a general number of network nodes 𝑁 . This opens the door for simulating distributed
error-correction codes beyond the square surface code.
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7
Distributed surface code

with memory decoherence

In the search for scalable, fault-tolerant quantum computing, distributed quantum computers
based on color centers in the diamond lattice are promising candidates. These systems can
be realized with photonic channels connecting closely-collocated color centers. We present
numerical simulations of a memory channel using the distributed toric surface code, where each
data qubit of the code is part of a separate color center, and the error-detection performance
depends on the quality of four-qubit GHZ states generated between the centers. In this chapter,
we quantitatively investigate the effect of decoherence and evaluate the advantage of GHZ
creation protocols tailored to the level of decoherence. We do this by applying our framework
with models developed from experimental characterization of nitrogen-vacancy centers, as
discussed in Ch. 4. For diamond color centers, coherence times during entanglement generation
are orders of magnitude lower than coherence times of idling qubits and represent a limiting
factor. Our model predicts error probability thresholds for gate and measurement reduced by
at least a factor of four compared to prior models which neglected decoherence. We also find
a threshold of 4 ⋅102 in the ratio between the entanglement generation and the decoherence
rates, setting a benchmark for experimental progress.

This chapter is based on  S. de Bone, P. Möller, C.E. Bradley, T.H. Taminiau, and D. Elkouss, “Thresholds for the
distributed surface code in the presence of memory decoherence,” AVS Quantum Science, vol. 6, no. 3, p. 033801,
July 2024.
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7.1 Introduction
As discussed in Ch. 3, fault tolerance is naturally achieved in distributed quantum computers
by establishing their connectivity according to the architecture of a topological error-
correction code. In this chapter, we investigate such a systemwith the diamond color centers
from Ch. 4 as the nodes of the distributed quantum computer. We combine these centers
into a fault-tolerant quantum computer by employing memory qubits of the available
nodes as data qubits of the toric surface code. We emphasize that the obtained insights are
more general and that our simulation tools allow for implementing error models based on
general hardware implementations.

In Ch. 3 we explain how error-correction codes hold a smaller number of logical
states with many physical qubits, and unwanted errors can be identified and corrected
by measuring the stabilizer operators of the code. For such a system, fault tolerance goes
hand-in-hand with the existence of thresholds for local sources of error: if one manages to
keep the error sources at play below their threshold values, one can make the logical error
rate arbitrarily small by increasing the code space of the error-correction code.

The toric code has a depolarizing phenomenological error probability threshold of
approximately 10% to 11% [1]. This error model assumes that all qubits of the code are part
of the same quantum system, stabilizer measurements can be carried out perfectly, and
the qubits experience depolarizing noise in between the stabilizer measurement rounds. A
more precise analysis with a circuit-level error model yields error probability thresholds
between 0.9% and 0.95% [2]. In this model, the stabilizer measurement circuit is simulated
with noisy gates and measurements and it is implicitly assumed that the connectivity of
the system allows direct two-qubit gates between adjacent qubits of the code topology.
Therefore, this error model corresponds to a monolithic architecture.

If one wants to implement the toric code in a network setting, where every data qubit
of the code is part of a separate network node, the stabilizer operators can be measured
with the aid of four-qubit GHZ states. These GHZ states can be created by fusing three or
more Bell pairs created between the involved nodes. Nickerson et al. [2, 3] analyzed the
distributed toric code in this setting. They included protocols with a relatively large number
of entanglement distillation steps that create high-quality GHZ states from imperfect Bell
pairs. They found thresholds for the local qubit operations between 0.6% and 0.82% [2]—i.e.,
slightly below the monolithic thresholds. In their threshold calculations, Nickerson et
al. do not explicitly consider circuit operation times and do not include qubit memory
decoherence during entanglement creation—i.e., the notion that the quality of the code’s
data qubits decays over time. However, in current physical systems of interest, decoherence
during entanglement creation typically constitutes a large source of error. For state-of-
the-art NV centers, coherence times during optical Bell pair generation are one to two
orders of magnitude lower [4–6] than estimated by Nickerson et al. The influence of this
decoherence is further increased by the reality that success probabilities per optical Bell
pair generation attempt currently fall significantly short of unity [7, 8].

Therefore, next to the errors in operations and in entangled states considered in Refs. [2,
3], decoherence of quantum states over time emerges as the third primary source of noise
for accurate assessment of distributed quantum computing systems. The influence of
memory qubit decoherence during entanglement creation can be captured with the link
efficiency 𝜂∗link [9]. This parameter quantifies the average number of entangled pairs that
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Figure 7.1: (a) Schematic impression of a diamond color center—also known as a diamond defect center. The
communication qubit is used to generate Bell pairs and to perform gates on the available qubits in the diamond
color center. Out of all carbon spin memory qubits available, one is selected as the data qubit of the code. The
other available memory qubits are used to store intermediate entangled states during the GHZ creation process.
(b) Schematic impression of how a network of diamond color centers can be used to realize a surface code on a4×4 square lattice. Each center holds one data qubit of the error-correction code on one of its memory qubits.
GHZ states are generated to measure the stabilizer operators of the code, resulting in an error syndrome of +1
and −1 stabilizer measurement outcomes. (c) Stabilizer operators are measured consecutively in different time
layers. A flip in stabilizer measurement outcome from one layer to the next is registered. The three-dimensional
error syndrome that is created in this way is fed to an error syndrome decoder to locate errors.
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can be generated within the coherence times.
To investigate the influence of the coherence times, we develop a time-tracking simu-

lator and implement realistic operation durations. Additionally, considering the pivotal
role of the operation order in this new scenario, we formulate a strategy for scheduling
operations. We find that, with realistic operation and coherence times, the thresholds with
the GHZ generation protocols of Refs. [2, 3] disappear. In this chapter, we investigate the
quantitative impact of memory decoherence and optimize over GHZ generation protocols
with less distillation that can overcome this. For a range of different coherence times during
entanglement generation, we find two-qubit gate error and measurement error probability
thresholds for diamond color centers up to 0.24%. We find that fault tolerance is reachable
with 𝜂∗link ≈ 4 ⋅ 102. This improves on the prior results of 𝜂∗link = 2 ⋅ 105 for the idealized
time scale estimates of Nickerson et al. [2]. However, this link efficiency is still above the
state-of-the-art hardware reaching up to 𝜂∗link ≈ 10 [9].

In the remainder of this chapter, Sec. 7.2 describes GHZ creation and distillation proto-
cols necessary for the distributed surface code. Consequently, in Sec. 7.3, we present the full
cycle of stabilizer measurements of the surface code. In Sec. 7.4, we describe error models
that allow us to investigate a specific hardware implementation in the distributed surface
code setting: diamond color centers. Finally, in Sec. 7.5, we investigate the parameter
regimes necessary for fault tolerance with these error models.

7.2 GHZ generation protocols revisited
As mentioned in Sec. 7.1, the stabilizer operators of a distributed quantum error-correction
code can be measured by consuming GHZ states. In the following, we discuss protocols
that create GHZ states by combining Bell pairs. We summarize prior work in Sec. 7.2.1.
In Sec. 7.2.2, we discuss our method for generating GHZ protocols. This method is an
extension on the dynamic program introduced in Sec. 5.5.

7.2.1 Prior GHZ protocols
In Secs. 3.6.7, 3.6.8 and 3.6.9, we discussed prior work on the generation and distillation of
GHZ states. Here, we focus on protocols that combine Bell pairs into a four-qubit GHZ
state and discuss seven of them, following earlier discussions in Secs. 3.6.9, 5.4 and 6.5.
Below, 𝐾 denotes the minimum number of Bell pairs required to generate the GHZ state
and  indicates the maximum number of qubits necessary per network node.

First, we consider the Plain protocol (𝐾 = 3,  = 2) and the Modicum (𝐾 = 4,  = 2)
protocol introduced in Ch. 6. These protocols create a GHZ state with no distillation or
only a single distillation step, respectively. The Plain protocol is the simplest protocol
for creating a GHZ state from Bell pairs; it fuses three Bell pairs into a four-qubit GHZ
state without any distillation. The Modicum protocol uses a fourth Bell pair to perform
one round of distillation on the GHZ state. Circuit diagrams for the Plain and Modicum
protocols can be found in Fig. 6.2. On top of that, we consider five GHZ protocols found by
Nickerson et al. in the context of distributed implementations of the toric code: Expedient
(𝐾 = 22,  = 3) and Stringent (𝐾 = 42,  = 3) from Ref. [2], and Basic (𝐾 = 8,  = 3),
Medium (𝐾 = 16,  = 4) and Refine (𝐾 = 40,  = 5) from Ref. [3]. More information about
these protocols can be found in Secs. 3.6.9 and 5.4.
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Figure 7.2: (a) Example of the fusion operation applied in the dynamic program of Alg. 2. Fusion can be applied
on any two states |GHZ(𝑁1)⟩ and |GHZ(𝑁2)⟩ that overlap in one or more network nodes. (b) Examples of the
distillation operation of Alg. 2. Distillation consists on using one state of the form |GHZ(𝑁1)⟩ to measure a
stabilizer of |GHZ(𝑁2)⟩—this could, e.g., be the operator 𝑋1𝑋2…𝑋𝑁2 , or 𝑍1𝑍2.
7.2.2 Dynamic program to optimize GHZ generation
In this section, we present a method for optimizing GHZ creation with realistic noise
models. We focus on creating GHZ states of the form |GHZ(𝑁 )⟩ = (|0⟩⊗𝑁 + |1⟩⊗𝑁 )/√2,
where 𝑁 ∈ {2,3,4} represents the number of parties. For convenience, we use the notation|GHZ(2)⟩ to describe the state of a Bell pair.

We use a dynamic program based on the dynamic program of Sec. 5.5 to optimize over
the space of GHZ protocols. This program generates GHZ protocols by fusing Bell pairs to
create GHZ states and distilling Bell or GHZ states by consuming other ancillary Bell pairs
or GHZ states. Fig. 7.2 depicts the two building blocks—these elements are introduced in
Sec. 5.3. Distillation involves the use of an ancillary state to non-locally measure a stabilizer
of the main Bell or GHZ state. In this process, local control-Pauli gates between ancillary
and main state qubits are followed by individual measurements of the ancillary state qubits
in the Pauli-𝑋 basis. Obtaining an even number of −1 measurement outcomes marks a
successful distillation attempt. If distillation fails, the post-measurement state is discarded
and (part of) the protocol has to be carried out again. Fusion is executed to create GHZ
states out of Bell pairs and to create a larger GHZ state. A state of the form |GHZ(𝑁1)⟩ can
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be fused with a state |GHZ(𝑁2)⟩ by applying a C𝑋 gate between one qubit of both states
and measuring out the target qubit in the Pauli-𝑍 basis. Obtaining a +1 measurement
outcome results in the state |GHZ(𝑁1+𝑁2−1)⟩. A −1measurement outcome leads to the same
state after local Pauli-𝑋 corrections.

In Alg. 2, we present a schematic, pseudo-code version of the dynamic program we
used to generate and evaluate GHZ protocols in this chapter. This algorithm is an expanded
version of Alg. 1 in Sec. 5.5. In this algorithm, each protocol is created with either a fusion
or a distillation operation that combines two smaller GHZ protocols encountered earlier in
the search. The protocols created in this fashion can be depicted with a directed binary
tree graph. An example graph is given in Fig. 7.3a. For the distillation steps in the binary
tree diagrams, we consume the state on the right to distill the state on the left.

Each binary tree corresponds to multiple inequivalent protocols depending on the
time ordering of the steps. As introduced in Ch. 6, we define a protocol recipe as a set of
instructions for implementing the protocol. The recipe includes the ordering of operations
and state generation. An example of a protocol recipe can be seen in Fig. 7.3c. This step
was not required in previous research on distributed surface codes, as the noise models
used in previous research did not include memory decoherence. Without a notion of time,
the execution order of the tree’s branches is irrelevant.

As can be seen in Fig. 7.3, the conversion to a protocol recipe contains SWAP gates.
These gates are required to match the connectivity constraints of our example hardware
model—see Secs. 4.1 and 7.4 for more details. The SWAP gates should therefore not
be considered as fundamental elements of these protocols and can be circumvented or
neutralized in hardware systems with more operational freedom. We implement SWAP
gates as three C𝑋 gates.

Whereas we did not optimize over the conversion from binary tree to protocol recipe,
we considered two heuristics to limit the influence of decoherence and SWAP gates. To
limit decoherence, we prioritize creating larger branches of the tree. Here, a branch is
defined as an element of the binary tree (i.e., an operation in the GHZ protocol) including all
elements that (in)directly point towards it. The size of the branch is the number of elements
it contains. Because, generally speaking, creating small branches is faster than creating
large branches, this heuristic aims to minimize waiting times for completed intermediate
branches of the GHZ protocol. The SWAP gate count can be limited by making sure a Bell
pair that is consumed in a distillation step is the last state to be generated. This prevents
the protocol from having to swap this state back and forth between the memory. For this
reason, if two branches have equal size, we prioritize creating the left branch over the right
one. We discuss a concrete example of this approach in Sec. 6.3.1.

In constructing the protocol recipe, we first use these heuristics to determine the order
in which the elementary Bell pairs are generated—i.e., the leaves of the binary tree. By
following this order, we then check for each Bell pair if other Bell pairs in non-overlapping
network nodes can be generated simultaneously. Here, we prioritize based on proximity in
the binary tree. We include instructions for distillation, fusion, and SWAP operations at
the earliest possible point of execution. This approach gives rise to a unique conversion
from binary tree to protocol recipe. More detailed descriptions of the protocol recipe
construction and execution procedure can be found in Ch. 6 and App. A.

While this dynamic program explores a large class of protocols, not all of the seven
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Algorithm 2: Base dynamic program for GHZ protocols search.

Data: Number 𝑁 of qubits of final GHZ state
Minimum number 𝐾 of Bell pairs used for final GHZ state
Set 𝑉 with model parameters used for protocol evaluation
Number 𝑁buf of protocols stored in buffer per step
Number 𝑁 (so) of Monte Carlo shots used per protocol

Result: Protocols to create 𝑁 -qubit GHZ states by using a minimum of 𝐾 Bell
pairs.

1 for {(𝑛,𝑘) |2 ⩽ 𝑛 ⩽ 𝑁 , 𝑛−𝑁 +𝐾 ⩾ 𝑘 ⩾ 𝑛−1} do
2 # Try all non-local measurement combinations.
3 for stabilizer ∈ {stabilizers of |GHZ(𝑛)⟩ } do
4 𝑛′ ← weight of stabilizer
5 for 𝑘′ ∈ [𝑛′−1, 𝑘−𝑛+1] do
6 for (𝑝1,𝑝2) ∈ [1,𝑁buf] × [1,𝑁buf] do
7 1 ← protocol 𝑝1 in buffer at (𝑛,𝑘− 𝑘′)
8 2 ← protocol 𝑝2 in buffer at (𝑛′, 𝑘′)
9 Construct binary tree protocol new that measures stabilizer on 1

by consuming 2
10 Construct protocol recipe new and evaluate quality over 𝑁 (so)

iterations times using 𝑉
11 Store protocol if average performance is better than worst protocol

in buffer

12 # Try all fusion combinations.
13 for 𝑛2 ∈ [2, 𝑛−1] do
14 𝑛1 ← 𝑛−𝑛2+1
15 for 𝑘2 ∈ [𝑛2−1, 𝑘−𝑛+1] do
16 𝑘1 ← 𝑘− 𝑘2
17 for (𝑝1,𝑝2) ∈ [1,𝑁buf] × [1,𝑁buf] do
18 1 ← protocol 𝑝1 in buffer at (𝑛1, 𝑘1)
19 2 ← protocol 𝑝2 in buffer at (𝑛2, 𝑘2)
20 for (𝑖, 𝑗) ∈ [1, 𝑛1] × [1, 𝑛2] do
21 Construct binary tree protocol new by fusing 1 at qubit 𝑖 and2 at qubit 𝑗
22 Construct protocol recipe new and evaluate quality over 𝑁 (so)

iterations using 𝑉
23 Store protocol if average performance is better than worst

protocol in buffer
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(b)

Time step 1:
SUBSYSTEM AB (2 entanglement links):
CREATE LINK between qubits [A, 1] and [B, 1].
SWAP qubits [A, 1] [A, 2] and qubits [B, 1] [B, 2].
CREATE LINK between qubits [A, 1] and [B, 1].
DISTILL operation X 1 

X 2 by measuring qubits [A, 1] 
and [B, 1], and keeping qubits [A, 2] and [B, 2]. 

SUBSYSTEM CD (2 entanglement links):
CREATE LINK between qubits [C, 1] and [D, 1].
SWAP qubits [C, 1] [C, 2] and qubits [D, 1] [D, 2].
CREATE LINK between qubits [C, 1] and [D, 1].
DISTILL operation X 1 

X 2 by measuring qubits [C, 1] 
and [D, 1], and keeping qubits [C, 2] and [D, 2]. 

Time step 2:
SUBSYSTEM AD (2 entanglement links):
CREATE LINK between qubits [D, 1] and [A, 1].
SWAP qubits [D, 1] [D, 3] and qubits [A, 1] [A, 3].
CREATE LINK between qubits [D, 1] and [A, 1].
DISTILL operation X 1 

X 2 by measuring qubits [D, 1] 
and [A, 1], and keeping qubits [D, 3] and [A, 3]. 

SWAP qubits [A, 1] [A, 3] and qubits [D, 1] [D, 3].
(R1) FUSE by measuring qubits [A, 1] and keeping 

qubits [A, 2]. 
(R2) FUSE by measuring qubits [D, 1] and keeping 

qubits [D, 2]. 
SUBSYSTEM BC (1 entanglement link):
CREATE LINK between qubits [B, 1] and [C, 1].
(R3) DISTILL operation Z 1 

Z 2 by measuring qubits [B, 1] 
and [C, 1],  and keeping qubits [B, 2] and [C, 2]. 

EVALUATE the success of R3 based on R1 ⊕ R2 ⊕ R3.
SUBSYSTEM CD:
CORRECT qubit [C, 2] with operator X conditioned on 

R1 ⊕ R2.
CORRECT qubit [D, 2] with operator X conditioned on

R1 ⊕ R2.

(c)

Figure 7.3: (a) Binary tree with 𝐾 = 7 found with the dynamic program of Alg. 2: the Septimum protocol. In this
directed graph, the top vertex represents the final state. Each vertex describes how its corresponding state is
created from a fusion or distillation operation involving its two children. At the leaves of the graph, we find the
elementary links: the Bell pairs. (b) We split the binary tree into multiple time steps that describe the order in
which the protocol is carried out. The subtree involving the links between nodes 𝐶 and 𝐷 is identified as the
part that we want to carry out first, since it is the left part of the largest branch of the binary tree. The subtree
involving links between 𝐴 and 𝐵 is added to time step 1, as it can be carried out in parallel. (See Sec. 7.2.2 for more
information.) (c) The timed binary tree is converted to an explicit set of operations: a protocol recipe. Here, we add
necessary SWAP gates, conditional corrections for fusion operations, and evaluations of distillation operations.
We also add instructions for distillation failure (not printed here). During the execution of this protocol, the
system waits until all branches of a time step are completed before continuing to the next time step. We identify
that this protocol recipe uses a maximum of  = 3 qubits per network node.
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Figure 7.4: Measurement of a weight-4 stabilizer operator 𝑃⊗4 of the toric surface code, both for a monolithic and
a distributed implementation. Here, 𝑃 ∈ {𝑋,𝑍} denotes both types of the stabilizer generators of the toric surface
code—i.e., the operators 𝑔𝑘 and 𝑔𝑘 in Fig. 3.6. In the monolithic version, the generators can be measured with an
ancillary qubit initialized in the |+⟩ state. In the distributed version, each stabilizer measurement requires the
generation of an ancillary GHZ state between the nodes involved in the stabilizer measurement.

protocols that we introduced in the previous section can be generated. This is because, to
suppress calculation time, the program limits distillation steps to operations that use an
ancillary entangled state to non-locally measure a stabilizer operator of the main state,
in a sequential manner. The protocols Refined, Expedient, and Stringent, however, make
use of the double selection distillation block that does not directly fit into this stabilizer
distillation framework, as elaborated in Sec. 3.6.5.

7.3 Distributed toric surface code
In this section, we discuss the steps of a distributed toric code and our approach for its
simulation. We first address details regarding our distributed surface code implementation
in Sec. 7.3.1. After that, we focus on simulation details and settings in Sec. 7.3.2.

7.3.1 Distributed toric code implementation
In the toric surface code, data qubits are placed on the edges of an 𝐿×𝐿 lattice with periodic
boundary conditions. It encodes two logical qubit states. The stabilizers of the code come in
two forms: the product of Pauli-𝑋 operators on the (four) qubits surrounding every vertex
of the lattice, and the product of Pauli-𝑍 operators on the four qubits surrounding every
face (or plaquette) of the code. We introduce the surface code more formally in Sec. 3.4.4
and show a schematic representation of the toric surface code and the error-correction
process in Figs. 3.5 and 3.6.

For the distributed implementation, we consider a network topology with node con-



7

160 7 Distributed surface code with memory decoherence

nectivity matching the connectivity of the toric code lattice. We present a schematic
impression in Fig. 7.1. Each data qubit of the toric code is placed in a separate network
node—i.e., in a separate diamond color center. The nodes have access to local memory
qubits to create and store entangled links between them. Entangled links can be used to
create four-qubit GHZ states, as described in Sec. 7.2, which are then consumed to measure
the stabilizers of the code. Fig. 7.4 shows a depiction of the procedure. The outcomes of
the stabilizer measurements, i.e., the error syndrome, are fed to a decoder to estimate the
underlying error pattern. In this chapter, we consider an implementation by Hu [10, 11] of
the Union-Find [12] error decoder.

We point out that we simulate the toric surface code as a logical quantum memory, and
do not consider its resilience against, e.g., logical operations or operations required for
initializing logical information. This means we restrict the study to the code’s ability to
protect general logical states. We opted for the toric surface code over the planar surface
code (i.e., the surface code with lattice boundaries) because, on top of the weight-4 stabilizer
operators in the bulk, the planar code has lower-weight stabilizers at its boundaries. For
distributed implementations, measuring these lower-weight stabilizers requires additional
entanglement protocols. This makes simulating the planar code more complicated. Studies
reveal that the introduction of boundaries typically has a limited effect on the code’s
threshold values, yet it is likely to result in a slower suppression of the logical error rates
below these thresholds [13].

7.3.2 Simulation process
We split the simulation of the distributed toric code into two levels: simulation of the toric
code’s stabilizer measurements with the aid of GHZ states and simulation of 𝐿 rounds of
stabilizer measurements of the code itself.

The first level characterizes the stabilizer measurement. To this aim, we use Monte
Carlo simulation to construct the (average) Choi state associated with using the protocol’s
GHZ state to measure the plaquette or star stabilizer operator on half of the maximally
entangled state. Exploiting channel-state duality, the Choi state from each iteration is
converted to a superoperator describing the stabilizer measurement channel. A formal
introduction on channel characterization with a maximally entangled state can be found in
Ref. [14]. The superoperator construction is described in detail in App. B and schematically
illustrated in Fig. 7.5a.

The second level is a toric code simulator that takes as noise model the average super-
operator obtained in the first level. Following previous research [2], we consider a stabilizer
measurement cycle consisting of two rounds of plaquette stabilizer measurements and two
rounds of star stabilizer measurements. This is because the constraint that each network
node only has one single communication qubit in our example hardware model makes
it impossible to simultaneously generate entanglement for overlapping stabilizers—see
Secs. 4.1 and 7.4 for more details. By splitting the full cycle up into four rounds, each
color center becomes part of exactly one stabilizer measurement per round. This process is
schematically depicted in Fig. 7.5b. We note that a different hardware model could require,
or benefit from, a different scheduling of the stabilizer measurements as the one used here.

Due to entanglement distillation steps in the GHZ creation protocol, GHZ generation
is probabilistic. To fix the duration of the rounds we impose a GHZ cycle time 𝑡GHZ: if GHZ
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Figure 7.5: Calculation process for error probability threshold simulations of the distributed surface code. This
process is called for each specific protocol recipe and parameter set combination. The full calculation consists of
two levels of Monte Carlo simulations: (a) the calculation of the superoperators  (𝑃)

success and  (𝑃)
fail , for 𝑃 ∈ {𝑋,𝑍},

and (b) the surface code simulations using these superoperators.
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generation is not successful within this time, it aborts. In that case, the corresponding
stabilizer operator can not be measured. This information could be given to the decoder in
the form of an erasure symbol. However, to leverage existing decoders, we opt to duplicate
the last measured value of the stabilizer. This choice is suboptimal and better thresholds
could be expected for decoders that can handle erasures and noisy measurements.

The GHZ cycle time is a free parameter that we explore in Sec. 7.5. Based on these
results, we derived a heuristic-driven approach for selecting a suitable GHZ cycle time for
a specific protocol at a specific set of error probabilities. As one expects, protocols with
more distillation steps 𝐾 take (on average) longer to finish. This means that, compared to
a protocol with a smaller 𝐾 , they require a longer 𝑡GHZ to reach the same GHZ completion
probability 𝑝GHZ. However, because decoherence plays a larger role at a higher 𝑡GHZ, we
typically see that the threshold values obtained with protocols with higher 𝐾 peak at a
lower GHZ completion probability. This becomes clear in Figs. 7.9 and 7.10, where we plot
how the threshold values change when using different GHZ cycle times for four protocols
with varying 𝐾 . To find 𝑡GHZ, we first identify an adequate GHZ completion probability
as 𝑝(aim)GHZ = (100.2−𝐾/10)% using the protocol-specific parameter 𝐾 . On top of that, we
use prior knowledge for a rough estimate 𝑝(est)th of the value of the threshold. We then
determine the distribution of the protocol’s duration at the error probability 𝑝(est)th , by
running it without a GHZ cycle time. Finally, using this distribution, we determine 𝑡GHZ by
selecting a time at which at least a fraction 𝑝(aim)GHZ of the iterations finishes.

To model GHZ generation failures, at the first simulation level, we construct two
separate average superoperators per stabilizer type: a successful superoperator success for
iterations where the GHZ state is created within 𝑡GHZ, and an unsuccessful superoperator fail for iterations where the GHZ could not be created. Both superoperators incorporate
the influence of decoherence up to the cycle time on the code’s data qubits.

7.4 Diamond color center model
In this chapter, we make extensive use of the models and parameters introduced in Ch. 4.
This means that we model decoherence and dynamical decoupling according to Sec. 4.2.4.
Wemodel gates andmeasurements according to Sec. 4.2.5 and wemodel Bell pair generation
according to the descriptions and derivations in Secs. 4.2.2, 4.2.3, and 4.3. We assign an
operation time to all operations and list the operation times in Table 7.1. We neglect the
influence of classical communication times, as we consider distances between network
nodes to be relatively small, but include synchronization of network nodes when classical
communication is required.

We assume that each diamond color center only possesses a single communication qubit.
Within each node, we assume that measurements are only possible on its communication
qubit, and local (i.e., intra-node) two-qubit gates always require the communication qubit to
be the control qubit. These requirements mean we have to use SWAP gates to measure the
state of a memory qubit or to use amemory qubit as the control of a two-qubit gate, as can be
seen in Fig. 7.3. Last, we assume that a Bell pair between two centers can only be generated
between the communication qubits of the two centers. We note that, in general, one could
design (combinations of) diamond color center nodes with multiple communication qubits.
Whereas this limits the number of SWAP gates required for distillation, it gives rise to extra
requirements on the memory robustness of the communication qubits.
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On top of that, we assume that the diamond color centers used in this chapter contain
a natural abundance of carbon memory qubits (1.1%). This means that we trade off lower
coherence times during entanglement generation for faster gates. This choice was made
because it is believed that in future systems entanglement success rates are required to be
several orders of magnitude higher than current state-of-the-art. In those regimes, fewer
entanglement attempts are required and the influence of decoherence during entanglement
generation becomes smaller. It is believed that one then benefits more from having the
faster operations that samples with natural concentrations of 13C atoms offer. This decision
was also made because Bradley et al. [9] found an idling memory coherence time of 10
seconds in isotopically purified samples, which is too low for running the GHZ creation
protocols described in this thesis with these samples. This coherence time—comparable to
those achieved in natural abundance devices [15]—was limited predominantly by other
impurities in the diamond, but the expected linear scaling of the coherence time with the
isotopic concentration remains to be demonstrated in future work. In regimes with high
entanglement success rates, the time duration of the GHZ creation protocols is almost
solely described by the duration of the two-qubit C𝑍 , C𝑋 , C𝑖𝑌 , and SWAP gates, which are≈ 50 slower for the isotopically purified samples. Thus, the operation time of any protocol
also takes ≈ 50 time longer with isotopically purified samples. Equivalent performance for
isotopically purified samples would require that 𝑇 2nidle also increases by a factor of 50—i.e.,
from 10 seconds to 500 seconds.

Next to the state-of-the-art parameter set for the natural abundance NV center of
Ch. 4, we also introduce a “near-future” diamond color center parameter set. The Bell
pair parameter values of this set are based around 𝐹prep = 0.999, 𝑝EE = 0.01, 𝜇 = 0.95, 𝜆 = 1
and 𝜂ph = 0.4472. Sec. 4.3.5 shows that the single-click protocol is the best option for the
state-of-the-art parameter set. For the near-future set, the double-click model becomes
favorable with 𝑝(dc)link ≈ 0.1 and 𝐹 (dc)link ≈ 0.953. Setting 𝛼 to get the same success probability
with single-click now only leads to 𝐹 (sc)link ≈ 0.873. Technically, it is possible to reach slightly
higher fidelities for this parameter set with single-click, but this gives rise to success
probabilities that are unusable in combination with the coherence times considered in this
chapter. We list the parameter values used in this chapter in Table 7.1.

The link efficiency 𝜂∗link, introduced in Sec. 7.1, is defined in terms of the model parame-
ters 𝑝link, 𝑡link, 𝑇 1nlink and 𝑇 2nlink as𝜂∗link ≡ 2𝑝link𝑡link((𝑇 1nlink)−1+(𝑇 2nlink)−1) . (7.1)

7.5 Results
In this section, we investigate the sensitivity of the distributed toric surface code perfor-
mance with respect to several physical parameters of the diamond color center hardware
model. In particular, we investigate the influence of two-qubit gate and measurement noise,
the entanglement success probability, the coherence times during entanglement generation,
and the quality of the generated Bell pairs on the noise thresholds. The threshold values𝑝th are determined with fits of the logical success rates versus the lattice size (𝐿) and local
two-qubit gate and measurement error rate (𝑝g = 𝑝m). The details of the fitting procedure
can be found in App. C.
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State-of- Fig. 7.6 Fig. 7.7 Fig. 7.8
the-art [9, 15]

Bell pair model input
Protocol Single-

click [16]
Double-click [17]𝐹prep 0.99 [7, 18] 0.999𝑝EE 0.04 [8] 𝑝EE(𝑓𝜙) 0.01𝜇 0.9 [8, 19] 0.95𝜆 0.984 [8, 20] 1𝜂ph 0.0046 [21] 0.4472 𝜂ph(𝑓𝜂)

Bell pair model output𝑝link 0.0001 0.1 𝑝link(𝑓𝜂)𝐹link 0.8966 𝐹link(𝑓𝜙) 0.9526
Operation durations𝑡link 6 ⋅10−6 s𝑡meas 4 ⋅10−6 s𝑡e𝑋,𝑌 0.14 ⋅10−6 s𝑡n𝑋,𝑌 1.0 ⋅10−3 s𝑡e𝑍,𝐻 0.1 ⋅10−6 s𝑡n𝑍,𝐻 0.5 ⋅10−3 s𝑡C𝑍,C𝑋,C𝑖𝑌 0.5 ⋅10−3 s𝑡SWAP 1.5 ⋅10−3 s

Decoherence𝑇 1nidle 300 s𝑇 1nlink 0.03 s [19] 0.3 s 0.03𝑓dec s 0.3 s𝑇 1eidle 300 s𝑇 2nidle 10 s𝑇 2nlink 0.0075 s [19] 0.075 s 0.0075𝑓dec s 0.075 s𝑇 2eidle 1.0 s𝑡pulse 1.0 ⋅10−3 s𝑛DD 500 18 Eq. (4.2)

Link efficiency—see Eq. (7.1)𝜂∗link 2 ⋅10−1 2 ⋅103 200𝑓dec 𝜂∗link(𝑓𝜂)
Operation noise𝑝g 0.01 Threshold𝑝m 0.01

Table 7.1: Simulation parameters used. The parameters are introduced in Ch. 4 and Sec. 7.4. More details on
the values used for scaling parameters 𝑓dec, 𝑓𝜙 and 𝑓𝜂, as well as the relations used for 𝑝EE(𝑓𝜙), 𝐹link(𝑓𝜙), 𝜂ph(𝑓𝜂),𝑝link(𝑓𝜂) and 𝜂∗link(𝑓𝜂), can be found in the captions of the respective figures.
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7.5.1 Current state-of-the-art parameter set
Let us first consider a parameter set inspired by state-of-the-art NV center hardware (the
first column of Table 7.1). The operation times in this set are based on typical time scales
in nitrogen-vacancy centers with a natural 13C concentration [9, 15, 19]—see Ch. 4 for
more details. The Bell pair parameter values are a collection of the best parameters in
current NV center literature—see the first column of Table 7.1 for relevant citations. In the
following, we explicitly refer to this parameter set as the “state-of-the-art” parameter set.
As discussed in more detail in Sec. 4.3.5, for this set the single-click entanglement protocol
outperforms the double-click protocol.

We did not find a noise threshold for the state-of-the-art parameter set—neither with the
existing GHZ protocols of Sec. 7.2.1 nor when optimization over GHZ protocols discussed
in Sec. 7.2.2. We identify two main limitations. The first one is the link efficiency: in this
regime, the average entanglement generation times are longer than coherence times during
entanglement generation—i.e., 𝜂∗link < 1. On top of that, the Bell pair fidelity is relatively
low. A low Bell pair fidelity requires complex distillation protocols to achieve high-quality
GHZ states. This, in turn, magnifies the impact of decoherence.

7.5.2 Near-term parameter sets
As expected, further experimental progress and improved fidelities are required for fault-
tolerant quantum computation. In the remainder of this section, we characterize two key
parameters that drive the code performance in this regime. These findings can be used to
guide future hardware development. Specifically, we investigate the effect of improving
the Bell pair fidelity and the link efficiency.

Sensitivity to Bell pair fidelity
First, we investigate the influence of the Bell pair fidelity by using a near-future setting
parameter set—see the second column in Table 7.1. Compared to the state-of-the-art
parameter set of Sec. 7.5.1, in this set coherence times during entanglement creation and the
photon detection probability are one and two orders of magnitude higher, respectively. The
double-click entanglement protocol now gives rise to the best combination of entanglement
success probability and Bell pair fidelity, as explained in more detail in Sec. 7.4. This means
that these near-future parameters allow for an increase in the link efficiency by four
orders of magnitude compared to the state-of-the-art parameter set of Sec. 7.5.1—see
Eqs. (4.19), (4.23), and (7.1).

In our Bell pair model, several parameters contribute to the infidelity of the Bell pair
states similarly—i.e., through the parameter 𝜙 of Eq. (4.16) that captures all dephasing noise
of the model. To investigate the sensitivity of the performance with respect to the Bell pair
fidelity, we vary the influence of dephasing by scaling the probability of double-excitation
probability and off-resonant excitation errors. These are considered one of the leading
error sources in present experiments [22]. We show the results in Fig. 7.6. In this figure,
the bottom of the horizontal axis indicates the Bell pair fidelity; the top indicates the
corresponding excitation error probability.

We find 𝑝g = 𝑝m thresholds between 𝑝th = 0.0066(25)% for 𝐹link ≈ 0.78 and 𝑝th =0.193(4)% for 𝐹link ≈ 0.96. Interestingly, the minimum fidelity for which we find a threshold,𝐹link ≈ 0.78, is lower than the state-of-the-art Bell pair fidelity demonstrated with both the
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Figure 7.6: Toric surface code error probability thresholds found for 𝑝g = 𝑝m, at various Bell pair fidelities𝐹link (see Table 7.1 for the parameter values). For all points on the horizontal axis of this plot, we have set𝜇 = 0.95 and 𝐹prep = 0.999, and varied the excitation error probability 𝑝EE. This leads to different values for
the parameter 𝜙 that describes the fidelity of the Bell pairs (see Sec. 4.3). For 𝑓𝜙 ∈ {0,1,2,3,4,5,6,7,8}, we use𝑝EE(𝑓𝜙) = 1− (𝜙(𝑓𝜙)/(√𝜇(2𝐹prep −1)2))1/2, with 𝜙(𝑓𝜙) = 0.72+0.03𝑓𝜙. In case of similar performance for the best
protocols found in the GHZ optimization, we show the protocol with the lowest 𝐾 value. This value is printed
above the blue markers.
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Figure 7.7: Toric surface code error probability thresholds found for 𝑝g = 𝑝m, at various values of the coherence
times during entanglement generation 𝑇 1nlink(𝑓dec) = 0.03𝑓dec seconds and 𝑇 2nlink(𝑓dec) = 0.0075𝑓dec seconds. The𝑓dec factors considered are printed on the top horizontal axis of the plot. The other simulation parameters are
in the third column of Table 7.1. The corresponding link efficiency is 𝜂∗link(𝑓dec) = 2𝑓dec ⋅ 102. In case of similar
performance for the best protocols found in the GHZ optimization, we show the protocol with the lowest 𝐾 value.
This value is printed above the blue markers. Point (∗) shows calculations for a scenario without decoherence.
Point (‡) shows calculations for a scenario without decoherence and with noiseless SWAP gates.

single-click and double-click protocols [7, 22]. This is possible because the link efficiency
allows performing several distillation steps. We find different optimal protocols as a func-
tion of the Bell pair fidelity. In particular, we find that the optimal protocols require more
distillation steps as we reduce the Bell pair fidelity, ranging from 𝐾 = 12 for 𝐹link ≈ 0.78 to𝐾 = 7 for 𝐹link ≈ 0.96. We find lower thresholds as we decrease the Bell pair fidelity since
the more complex distillation protocols amplify the effect of decoherence and require more
gates. Furthermore, since existing GHZ creation protocols either have a small number
(𝐾 ≤ 8) or many (𝐾 ≥ 16) distillation steps, we can understand why the new protocols with𝐾 ∈ {10,11,12} outperform them in this regime.

Sensitivity to the link efficiency
Second, we investigate the influence of the link efficiency for near-future parameter values.
In particular, we make use of a Bell pair fidelity 𝐹link ≈ 0.95—close to the highest value in
the previous subsection—and we investigate two options for varying the link efficiency.

First, we vary the link efficiency by varying the coherence times during entanglement
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Figure 7.8: Toric surface code error probability thresholds found for 𝑝g = 𝑝m, at various values of the total photon
detection probability 𝜂ph. This parameter takes on values 𝜂ph(𝑓𝜂) = √2 ⋅100.0625𝑓𝜂−0.8125, for 𝑓𝜂 ∈ {0,1,2,3,5}. With
the double-click protocol, this gives rise to 𝑝link(𝑓𝜂) = 100.125𝑓𝜂−1.625 and 𝜂∗link(𝑓𝜂) = 0.002 ⋅100.125𝑓𝜂+5.375. The other
simulation parameters are in the fourth column of Table 7.1. In case of similar performance for the best protocols
found in the GHZ optimization, we show the protocol with the lowest 𝐾 value. This value is printed above the
blue markers.

generation. For this investigation, which we report in Fig. 7.7, we use the parameter set
of the third column of Table 7.1. In this set, we use a high photon detection probability𝜂ph = 0.4472, leading to an optical entanglement success probability of 𝑝link = 0.1. The𝑝g = 𝑝m threshold values vary between 𝑝th = 0.020(8)%with coherence times corresponding
to 𝜂∗link = 4 ⋅102 and 𝑝th = 0.240(9)% for coherence times corresponding to 𝜂∗link = 2 ⋅105. For
coherence times corresponding to 𝜂∗link = 3 ⋅102 and lower, we did not find thresholds. At
the other end of the spectrum, we evaluate the thresholds in an idealized modular scenario:
in particular, in the absence of decoherence and with perfect SWAP gates (the last two
points on the horizontal axis of Fig. 7.7). The last point corresponds to a scenario similar to
the one analyzed in Ref. [2]. We report a similar threshold value. For the Stringent protocol,
the difference of 𝑝th = 0.775% reported in Ref. [2] and 𝑝th = 0.601(29)% found here can be
attributed to the choice of the error-syndrome decoder and a reduced number of syndrome
measurement cycles.

We now verify that, in this regime, similar thresholds can instead be found by varying
the link efficiency via the entanglement generation rate. Specifically, we vary the entangle-
ment success probability by adjusting the total photon detection probability 𝜂ph. For this
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investigation, which we report in Fig. 7.8, we use the parameter set in the fourth column of
Table 7.1. This set contains coherence times during entanglement generation that are ten
times higher than the state-of-the-art coherence times of Sec. 7.5.1 [19]. We find 𝑝g = 𝑝m
thresholds between 𝑝th = 0.035(4)% for a photon detection probability corresponding to𝜂∗link ≈ 4.7 ⋅ 102 and 𝑝th = 0.181(4)% for a photon detection probability corresponding to𝜂∗link = 2 ⋅103. At photon detection probability corresponding to 𝜂∗link ≈ 3.6 ⋅102 and lower,
we are not able to find threshold values.

The second investigation gives rise to a similar required link efficiency (𝜂∗link ≈ 4.7 ⋅102)
as the first investigation (𝜂link ≈ 4 ⋅ 102). The small difference can be attributed to the
slightly larger influence of the idling coherence time 𝑇 2nidle in a scenario with a smaller
entanglement rate. This shows that the link efficiency captures the key trade-off between
cycle duration and decoherence rate, even when experimental overhead such as dynamical
decoupling is accounted for. Furthermore, we find that the parameter set used determines
which GHZ protocol works the best. However, for a large range of parameters close to
the state-of-the-art set, one protocol with 𝐾 = 7 performs the best. We call this protocol
Septimum and detail it in Fig. 7.3. In particular, this protocol is (one of) the best-performing
protocol(s) at 𝐹link ≈ 0.96 in Fig. 7.6, in the range 5 ⋅ 102 ⪅ 𝜂∗link ⪅ 2 ⋅ 103 in Fig. 7.7, and in
the range 6.3 ⋅102 ⪅ 𝜂∗link ⪅ 1.1 ⋅103 in Fig. 7.8. We identify four additional well-performing
protocols found with our dynamic program in App. D.

7.5.3 GHZ cycle time sensitivity
In the following, we investigate the sensitivity of threshold values to the GHZ cycle time
and the associated GHZ completion probability. We present the results in Fig. 7.9. In
this figure, we see a clear dependence of the optimal GHZ completion probability on
protocol complexity. In particular, protocols that take longer to finish (i.e., protocols with
more distillation steps) peak at lower GHZ completion probabilities than those that finish
faster, due to their increased susceptibility to decoherence. We see that for a protocol
with relatively small 𝐾 , GHZ cycle times that correspond to GHZ completion probabilities
between 99.2 and 99.8% give rise to the highest threshold values in the parameter regimes
considered here, whereas protocols with a large 𝐾 peak at GHZ completion probabilities
between approximately 92.5 and 98.5%.

We notice that, for some GHZ protocols, noise thresholds are found at relatively low
GHZ completion probabilities of 90% and lower. This behavior can be directly attributed
to the decoder heralding failures in the GHZ generation: as mentioned in Sec. 7.3.2, we
utilize the stabilizer outcome from the previous time layer if a GHZ protocol does not finish
within the GHZ cycle time, as opposed to naively performing the stabilizer measurement
with the state produced by an unfinished GHZ protocol.

These results show that thresholds can strongly vary on the GHZ cycle time. For
computational reasons, except for the results in this subsection, we do not optimize over
the GHZ cycle time. Instead, we use a heuristic method to select this time based on the 𝐾
value of each protocol. We describe this method in Sec. 7.3.2.
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Figure 7.9: Dependence of toric surface code error probability thresholds for 𝑝g = 𝑝m on GHZ completion
probability 𝑝GHZ. The dependence is plotted for four protocols with a varying number of distillation steps 𝐾 . Each
data point is calculated with a different GHZ cycle time 𝑡GHZ. The GHZ completion probability is the probability
for a protocol to finish within 𝑡GHZ. In Fig. 7.10, we plot the threshold values against the specific 𝑡GHZ times used
to achieve these results.



7.5 Results

7

171

0.02 0.03 0.04
GHZ cycle time tGHZ (s)

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Er
ro

r 
pr

ob
ab

ili
ty

 th
re

sh
ol

d 
p g=p m

 (%
)

Septimum (K = 7) at link = 8 102 in Fig. 7.7

0.04 0.06 0.08 0.10
GHZ cycle time tGHZ (s)

0.01

0.02

0.03

0.04

0.05

New protocol (K = 14) at Flink 0.828 in Fig. 7.6

0.04 0.06 0.08 0.10
GHZ cycle time tGHZ (s)

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Er
ro

r 
pr

ob
ab

ili
ty

 th
re

sh
ol

d 
p g=p m

 (%
)

Expedient (K = 22) at link = 2 105 in Fig. 7.7

0.075 0.100 0.125 0.150 0.175
GHZ cycle time tGHZ (s)

0.07

0.08

0.09

0.1

0.11

0.12

Refined (K = 40) at link = 2 105 in Fig. 7.7

91
.0

93
.2

95
.3

96
.9

98
.0

98
.6

99
.2

99
.4

99
.6

99
.8

99
.9

99
.9

9

99
.9

99

GHZ completion probability pGHZ (%)

91
.1

95
.4

96
.5

97
.8

98
.6

99
.0

99
.3

99
.5

99
.6

99
.8

99
.9

7

99
.9

91

99
.9

97

GHZ completion probability pGHZ (%)

84
.1

87
.5

89
.8

91
.5

93
.0

94
.5

95
.3

96
.2

97
.3

98
.0

98
.4

98
.8

99
.0

99
.5

99
.7

99
.9

5
99

.9
8

GHZ completion probability pGHZ (%)

83
.8

  
86

.6
  

90
.8

  
92

.6
  

94
.1

  

95
.3

  
96

.2
  

97
.2

  
98

.1
  

98
.7

  

99
.2

  
99

.3
  

99
.5

  

99
.9

  

GHZ completion probability pGHZ (%)

GHZ cycle time dependence on the surface code threshold

Figure 7.10: Dependence of surface code error probability thresholds for 𝑝g = 𝑝m on GHZ cycle time 𝑡GHZ.
Each 𝑡GHZ gives rise to probability 𝑝GHZ that a protocol has to finish within 𝑡GHZ: for each 𝑡GHZ, the associated
probabilities are printed on the top 𝑥-axis of each plot. In Fig. 7.9, we directly plot the threshold values against𝑝GHZ for the same four protocols.
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7.6 Discussion: feasibility of parameter sets
The previous section shows that the state-of-the-art parameter set is above the threshold.
We identified two apparent drivers for this behavior: the Bell pair fidelity and the link
efficiency. The sensitivity investigation shows that with a high link efficiency, the require-
ments on the Bell pair fidelity are modest, while even with a high Bell pair fidelity a high
link efficiency is still necessary.

Let us first discuss the experimental feasibility of the minimum link efficiency 𝜂∗link ⪆ 4 ⋅102 found in Fig. 7.8. First of all, the link efficiency can be increased by either increasing the
coherence times of the data and memory qubits, or by increasing the entanglement success
probability—or with a combination of both. In the previous section, we find thresholds
with a high success probability (𝑝link = 0.1) and a modest increase in the coherence times.
However, we also find that with high coherence times during entanglement generation
(ten times higher than the state-of-the-art [19]) and Bell pair fidelities of 𝐹link ≈ 0.95, the
total photon detection probability needs to fulfill 𝜂ph ⪆ 0.2 (Fig. 7.8). This is a factor fifty
above the state-of-the-art parameter value.

The total photon detection probability is the product of multiple probabilities (see
Sec. 4.2.3). Present network experiments utilizing NV centers are particularly limited by
two of these: the probability of emitting in the zero-phonon-line (ZPL, ≈ 3% [23]) and
the total collection efficiency (≈ 10− 13% [7, 19]). Both values are expected to increase
by Purcell enhancement of the NV center emission, for example with the use of optical
microcavities [24, 25] or nanophotonic devices [26]. However, even with such devices,
the feasibility remains unclear. For microcavities, predicted ZPL emission and collection
probabilities are of the order 10 to 46% [24, 25] and 49% [18], respectively. Moreover, the
successful integration of Purcell-enhanced and optically-coherent NV centers in nanopho-
tonic devices remains an open research challenge due to the detrimental effects of surface
charges [27].

This realization has led to an increased interest in other color centers in the diamond
lattice, as, e.g., SiV and SnV color centers [28]. These centers have higher intrinsic emission
probabilities into the ZPL—for SnV centers this is reportedly in the area of 60% [29],
whereas SiV centers approximately emit 70 to 80% into the ZPL [30]. Additionally, the
inversion symmetry of SnV and SiV centers makes them less susceptible to proximal
charges, facilitating integration into nanophotonic devices. Nanophotonic structures offer
advantages over microcavities, such as stronger cooperativities enabled by the small mode
volumes [31], and reduced sensitivity to vibrations of the cryostat hosting the emitter [24].
A disadvantage of SnV and SiV centers over NV centers is the fact that they need to
be operated at lower temperatures [32] or under high strain [33, 34] to achieve similar
coherence times.

Additionally, these alternative trajectories provide opportunities for “direct” GHZ
generation schemes, where a GHZ state is created without Bell pair fusion [35, 36]. Contrary
to the photon-emission-based Bell pair generation with NV centers, these direct GHZ state
generation schemes could be based on the transmission or reflection of photons. Since, for
nodes with a single communication qubit, SWAP gates are unavoidable when performing
fusion, getting rid of SWAP gates during GHZ state generation could relax the requirements
for, e.g., the link efficiency and the photon detection probability.



7.7 Conclusion

7

173

7.7 Conclusion
In this chapter, we investigate the influence of decoherence and other noise sources on
a fault-tolerant distributed quantum memory channel with the toric code. For this, we
developed an open-source package that optimizes GHZ distillation for distributed stabilizer
measurements and quantifies the impact of realistic noise sources [37]. This simulator can
be considered an extension of the simulator used in Ch. 6. The GHZ protocols found with
the package of Ref. [37] are compatible with a second open-source package that calculates
logical error rates of the (distributed) surface code [11].

We focus our attention on a specific set of noise models inspired by diamond color
centers. We first observe that state-of-the-art nitrogen-vacancy center hardware does not
yet satisfy the thresholds. A parameter-sensitivity analysis shows that the main driver of
the performance is the link efficiency, giving a benchmark for future experimental efforts.
The photon detection probability of state-of-the-art hardware appears to represent the
main challenge for operating the surface code below threshold. Sufficient photon detection
probabilities could be achieved with the help of Purcell enhancement of NV center emission,
or using other color centers such as silicon-vacancy centers or tin-vacancy centers. Other
color centers also pave the way for schemes that directly generate GHZ states between the
communication qubits of more than two nodes—i.e., without fusing Bell pairs [35, 36].

With our detailed noise models, we find threshold values up to 0.24%. This is three
to four times lower than prior thresholds found with less-detailed models. Similarly, the
optimal distillation protocols have a small number of distillation steps compared to prior
work. For a large parameter regime of parameters, a protocol consuming a minimum of
seven Bell pairs is optimal. Its experimental demonstration would be an important step for
showing the feasibility of this approach for scalable quantum computation.

We perform a thorough optimization of GHZ distillation protocols. However, further
improvements in other elements of the distributed architecture could partially bridge the
gap with the performance of monolithic architectures. For instance, the surface code
decoder could model unfinished GHZ distribution rounds as erasure noise. The conversion
of binary trees to protocol recipes can be optimized and Bell pair distribution could be
scheduled dynamically. On top of that, since our software allows for the implementation
of general hardware models, further research could focus on analyzing and understanding
a broad range of physical systems in the distributed context. In addition to exploring
alternative hardware systems, it would be intriguing to implement a more in-depth model
of the system’s micro-architecture.
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8
Fault-tolerant cluster
states for distributed

qantum computing

In this chapter, we introduce a method to construct fault-tolerant MBQC architectures and
numerically estimate their performance over various types of networks. This makes it possible
to construct fault-tolerant cluster states in the context of distributed quantum computation. We
gauge error thresholds of the architectures with an efficient stabilizer simulator to investigate
the resilience against both circuit-level and network noise. We show that an architecture based
on the diamond lattice outperforms the conventional cubic lattice for both monolithic (i.e.,
non-distributed) and distributed implementations. Moreover, the high erasure thresholds of
non-cubic lattices can be exploited further in a distributed context, as their performance may
be boosted through entanglement distillation by trading in entanglement success rates against
erasure errors during the error-decoding process. These results highlight the significance of
lattice geometry in the design of fault-tolerant measurement-based quantum computing on a
network, emphasizing the potential for constructing robust and scalable distributed quantum
computers.

This chapter is based on the manuscript Y. van Montfort, S. de Bone, and D. Elkouss, Fault-tolerant structures
for measurement-based quantum computation on a network, arXiv: 2402.19323 [quant-ph], Feb. 2024.
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8.1 Introduction
Large-scale quantum computation with low error probabilities requires handling noise in a
correct and efficient manner—one would like to fault-tolerantly transmit, store, and process
quantum information with quantum computing hardware. As discussed in Ch. 3, quantum
error-correction encompasses methods to achieve fault tolerance from faulty hardware.
Topological error-correction codes, including surface codes, are a promising avenue to
achieve this goal, as these codes have high error thresholds against local errors, and only
require nearest-neighbor interactions between qubits in a two-dimensional layout.

As discussed in Sec. 3.4.8 and Ch. 7, surface codes achieve fault tolerance by repeatedly
combining measurement outcomes of consecutive rounds of stabilizer measurements.
Geometrically, the addition of a time dimension to a two-dimensional syndrome graph
creates a three-dimensional structure, that may be interpreted as a noisy quantum channel
that propagates logical information in the direction of time. For example, the conventional
surface code may be constructed from qubits on a square lattice, but its corresponding
decoding graphs are three-dimensional cubic lattices. As discussed in Sec. 3.5.2, foliation is
a method to transform any surface code to a three-dimensional cluster state that forms the
resource for fault-tolerant MBQC, with the same geometry as the corresponding logical
quantum channel of the surface code [1, 2]. Although foliated codes can be interpreted as
having replaced time with another spatial dimension, the resulting cluster states can be
initiated and consumed in different directions as time progresses, lifting the rigid duality
of time and space in surface codes—we elaborate on this idea in Sec. 3.5.3.

However, foliation does not exhaust all possible fault-tolerant cluster states—i.e., there
are non-foliated three-dimensional cluster states that cannot be constructed from a two-
dimensional surface code. We study these types of lattices because they may produce
higher fault-tolerant error thresholds compared to conventional surface codes, at least
when assuming simple combinations of independent and identically distributed (i.i.d.)
single-qubit and measurement errors [3]. In practice though, non-foliated lattices do
not necessarily produce higher error thresholds, because faulty operations during cluster
state preparation and measurement typically introduce highly-coupled and non-identically
distributed errors. Both the complexity of the error decoder (through the syndrome graph)
and the complexity of the error model (through the quantum circuit) eventually determine
the error threshold.

In general, the valence 𝑣 of the qubits in the cluster state provides a good indicator for
the complexity of the error model, with lower valencies corresponding to smaller circuits
and fewer coupled errors. Similarly, the bond-degree 𝑏 of the vertices in the error syndrome
graph proxies the complexity of the error decoder, with lower bond-degrees yielding
syndromes that encode more information about the locations of errors surrounding the
syndrome. Here, the valence 𝑣 and bond-degree 𝑏 are defined as the valency of vertices and
edges in the syndrome graph, respectively, and are introduced in Fig. 3.14 for the diamond
lattice. Unfortunately, these quantities suffer a trade-off in three-dimensional space [3].

Nickerson and Bombín [3] confirm that the threshold against erasure noise is primarily
determined by the bond-degree 𝑏 and the resilience against erasure noise is a good indicator
of the performance under phenomenological noise. Because these results do not take
into account the influence of the qubit valence 𝑣, and because state-of-the-art hardware is
currently not capable of realizing large cluster states that can achieve sufficiently low logical
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error probabilities, some research has focused its attention on modular implementations of
fault-tolerant MBQC states [4–6]. The entire cluster state is prepared from resource states
that are generated by small, separate devices, and entangling operations between devices
create the entanglement to encode the entire cluster state. Several physical systems are
suitable for modular MBQC architectures via optical interfaces [7].

In this chapter, we explore fault-tolerant cluster states under more realistic noise
models compared to previous investigations [3]. This brings their realization in MBQC
closer to reality. We numerically estimate fault-tolerant thresholds of previously proposed
cluster states [3] for both monolithic (i.e., non-distributed) and distributed implementations.
We use an efficient stabilizer simulator and the Union-Find decoder [8] to evaluate the
performance of our architectures. In our distributed noise models, we consider circuit-level
noise during state preparation, measurement noise of single-qubit measurements, and
network noise between nodes introduced by qubits prepared in the GHZ basis. On top of
that, we investigate the first step towards including entanglement distillation for one of
the distributed cluster states considered and find that including distillation is particularly
effective in the context of measurement-based fault tolerance. This is due to the high
erasure-type error thresholds of non-foliated lattices that may shield against probabilistic
entanglement generation resulting from distillation.

In this chapter, we make extensive use of chain complex concepts discussed in Sec. 3.3.
We also use Sec. 3.5, where, following the ideas brought forward by Fujii [9], these concepts
are combined to construct topologically protected cluster states with the aid of the ℤ2
chain complex. In Sec. 3.5.4, the error-correction process for three-dimensional cluster
states is discussed. These introductions are used in Sec. 8.2 below to construct distributed
cluster states. We also use Sec. 8.2 to introduce our numerical methods. In Sec. 8.3 we
present the results of the numerical simulations, and in Sec. 8.4 we conclude.

8.2 Methods
Here, we are interested in crystalline cluster states built up from cellulations of flat three-
dimensional space. There are various methods to find such structures. Two approaches
that have previously been used are the splitting procedures on a known (foliated) structure,
such as the cubic cluster state [3], and an algebraic approach based on combinatorial
tiling theory [10]. We briefly discuss the former method below and show some of the
lattices found with this method in Fig. 8.1. Although we have not used the latter method
to construct new cluster states, we emphasize that the zoo of fault-tolerant cluster states
merits further investigation under the noise models considered here.

Below, we first discuss an extension of the concepts of the chain complex as discussed
in Sec. 3.3. By adding indices that describe translational symmetry, we can use the chain
complex to describe unit cells of a lattice that generate a full lattice. We discuss this method
in Sec. 8.2.1. In Sec. 8.2.2, we describe the cell-vertex splitting operation of Nickerson and
Bombín [3] in the context of this unit cell complex—this allows us to transform unit cells that
describe three-dimensional lattices. In Sec. 8.2.3, we define a face-edge splitting operation
that allows us to replace cluster state qubits with entangled states or Bell measurements.
In Sec. 8.2.4, we introduce the noise models used for circuit-level and network noise and
describe our method for generating entanglement in a distributed cluster state. In Sec. 8.2.5,
we discuss how we use the stabilizer formalism to model and transfer Pauli errors in
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Cubic:

qubit on edge
/ qubit on face

lattice guideline

/
lattice edge

CZ gate

Double-edge cubic:Diamond:

Figure 8.1: Cluster states obtained through splitting. The cubic cluster state can be created by foliating the
standard toric surface code. The diamond cluster state is obtained through two splits of the primal and dual
vertex in the cubic unit cell. The complex is regular and self-dual, with each face connected to six edges. The
double-edge cubic cluster state is obtained through multiple simple splits of primal and dual vertices. Each face is
“double”-sided, supporting two different qubit that are connected to eight surrounding edges.

the circuits that we use to construct and measure cluster states, and we elaborate on the
numerical aspects of our model and simulations.

8.2.1 Unit cell complex
The unit cell complex is the set of basis elements (atoms) together with their boundary
relations (bonds) in the crystal that forms a block with translation symmetry along the
sides of the unit cell. We use theMiller index notation with square brackets [𝑎𝑏𝑐] or [𝐫] for a
translation 𝐫 ≡ 𝑎𝑥𝐱+𝑎𝑦𝐲+𝑎𝑧𝐳 along the lattice vectors 𝐱, 𝐲 and 𝐳 that form the sides of the
unit cell. Negative indices are denoted in the usual way as [𝑎𝑥𝑎𝑦𝑎𝑧] or [𝐫] for a translation𝐫 ≡ −𝑎𝑥𝐱−𝑎𝑦𝐲−𝑎𝑧𝐳. The construction of the unit cell complex follows from the choice
of lattice vectors. The subset of basis elements { (𝐛𝑖)𝑘 }𝑘 in 𝐶𝑖 that are equivalent under
translations 𝐫 is mapped to a single quotient element 𝐪𝑖, which serves as a basis vector
for a new vector space 𝑄𝑖 over ℤ2. Similarly, the boundary relation between elements(𝐛𝑖)𝑛 and (𝐛𝑖−1)𝑚 is mapped to a relation to their quotient elements (𝐪𝑖)𝑛 and (𝐪𝑖−1)𝑚 in the
form of a quotient boundary map 𝜕[𝐫]𝑖 ∶ 𝑄𝑖 ↦ 𝑄𝑖−1. Because some of the boundary relations
are present between elements across two unit cells (such as a face with boundary edges
from adjacent unit cells), quotient boundaries have a Miller index [𝐫] that represents the
translation 𝐫 required to jump to its neighboring unit cell. Intracellular boundaries are
encoded by 𝜕[0]𝑖 , whilst intercellular boundaries are encoded by 𝜕[𝑎𝑥𝑎𝑦𝑎𝑧]𝑖 for a non-zero
translation 𝐫 ≡ 𝑎𝑥𝐱+𝑎𝑦𝐲+𝑎𝑧𝐳. A more detailed description of the quotient boundaries in
the unit cell complex can be found in Sec. E.1 of App. E.

Given a unit cell complex, an embedding is a map that takes each 𝑄𝑖 and the quotient
maps 𝜕[𝐫]𝑖 to a crystalline chain complex 𝐶3 → 𝐶2 → 𝐶1 → 𝐶0, with lattice dimensions given



8.2 Methods

8

183

by the embedding. For a periodic lattice of 𝑁cells ≡ 𝑁𝐱 ×𝑁𝐲 ×𝑁𝐳 unit cells along the 𝐱, 𝐲,
and 𝐳 lattice directions, respectively, vector spaces of chains take the form𝐶𝑖 = 𝑄⊕𝑁cells𝑖 = 𝑄𝑖⊗𝐿′. (8.1)

Here, 𝐿′ ≡ ℤ⊕𝑁cells2 is an 𝑁cells-dimensional vector space over ℤ2. The 𝑁cells basis vectors of𝐿′ represent the lattice points, such that linear combinations in 𝐿′ may be associated with
the subset of lattice points that have non-zero coefficients. Intuitively, the embedding is
realized by repeating the unit cell elements𝑄𝑖 over each lattice point given by a displacement
vector 𝐫. We formalize this process in Sec. E.2 of App. E.

8.2.2 Cell-vertex splitting
The cell-vertex splitting procedure of Nickerson and Bombín [3] can be phrased in terms of
the unit cell complex introduced in Sec. 8.2.1. A visual example of a split in two dimensions
can be seen in Sec. E.2 of App. E: splitting each face of the square lattice in Fig. E.1a
diagonally results in the triangular lattice shown in Fig. E.1b. The cell-vertex splitting
operation splits a vertex (i.e., a dual cell) of the lattice. This creates a new lattice with a
lower bond-degree 𝑏. Here, we review the general case of an 𝑛-split in three dimensions,
with a simple split following from the case 𝑛 = 1. Importantly, the splitting number 𝑛 alone
is not sufficient to uniquely characterize a split: one should also specify the new boundary
relations between split vertices and edges. We denote the split vertex with 𝐯0. The recipe
for an 𝑛-split is then as follows:

1. Let 𝐸′ = {(𝐯𝑗 ,𝐯0) ∣ 𝐯𝑗 ∈ℕ0 } be the set of incident edges on 𝐯0 with neighborhoodℕ0. Choose 𝑛 disjoint subsets 𝐸′𝑖 ∈ 𝐸′ (𝑖 = 1,2,… , 𝑛) that will each connect to a new
vertex.

2. Create 𝑛 new vertices 𝐯𝑖, and connect each 𝐯𝑖 to the incident edges 𝐸′𝑖 . The 𝐯0 vertex
connects to the remaining edges 𝐸′0 = 𝐸′ ⋃𝑖𝐸′𝑖 , which might be the empty set.

3. Create 𝑛 new edges 𝐞𝑖 = (𝐯𝑖,𝐯0). The corresponding boundary relations are encoded
in 𝜕[0]1 of the unit cell complex with Miller index [0].

4. Fix the remaining boundary maps 𝜕[𝐫]2 . That is, for each 𝐯𝑖 and ∀𝐫, calculate the dual
boundary 𝐜2 ≡∑𝐩 𝜕[𝐩]2 𝜕[𝐫−𝐩]3 𝐯𝑖. By the zero map conditions (Eq. (E.2) in Sec. E.1 of
App. E), the right-hand side should be zero. That is, we connect faces 𝐟𝑗 ∈ 𝐜2 to the
newly created edge 𝐞𝑖 with Miller index 𝐫.

8.2.3 Face-edge splitting
The cell-vertex splitting procedure described in Sec. 8.2.2 changes both the number of
syndromes and the connectivity between syndromes in the syndrome graph. We can define
an additional splitting operation on faces (dual edges) of such a complex, keeping the
fault-tolerant properties of the corresponding quantum channel intact, but changing the
underlying structure of the cluster state. We discuss this operation in this section. This
operation splits the edges and faces of a lattice and allows one to distribute a fault-tolerant
cluster state over multiple parties. Such a split essentially separates the information that is
obtained by measuring a single qubit of the cluster state into a multi-qubit measurement
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…
1 1 2 2 𝑁 − 1 𝑁 − 1 𝑁

X X X

Figure 8.2: A subgraph of 2𝑁 − 1 qubits. Qubits marked primed indices are measured in the Pauli-𝑋 basis.
Unmeasured qubits are connected arbitrarily to the rest of the graph. If one assumes that every measurement
outcome 𝑚 = +1, the unmeasured qubits are initialized in an 𝑁 -partite Bell/GHZ state.

on two or more new qubits. The face-edge split decreases the individual connectivity of
the qubits introduced by the split: they all have a lower number of connections than the
original qubit.

Usually, a cluster state as described in Sec. 3.5 is constructed with the aid of C𝑍 gates
on qubits initialized in the |+⟩ state. Alternatively, one may replace C𝑍 gates with other
entangling operations that lead to the same stabilizer states. Consider the subgraph of a
graph state as in Fig. 8.2. Qubits at odd positions are marked with integers 𝑖 ∈ {1,2,… ,𝑁 }
and their right neighbors at even positions with a primed index 𝑖′ ≠ 𝑁 ′. In this graph,
odd qubits have an arbitrary number of neighbors, whereas even qubits only neighbor the
two odd qubits on either side. After measuring the even qubits 𝑖′ in the Pauli-𝑋 basis, the
post-measurement 𝑚𝑖′ = +1 graph state stabilizers are

⟨𝑋1′ ,𝑋2′ ,… ,𝑋𝑁−1′ , 𝑁∏𝑖=1 (𝑋𝑖 ∏𝑗∈ℕ(𝑖)𝑍𝑗), 𝑍1𝑍2,𝑍2𝑍3,… ,𝑍𝑁−1𝑍𝑁 ⟩. (8.2)

Here, ℕ(𝑖) = { 𝑗 ∣ (𝑖, 𝑗) ∈ 𝐸 } are the qubits connected to the odd qubit 𝑖 outside the subgraph
depicted in Fig. 8.2. The disentangled measured qubits play no further role in the graph
state stabilizers. In practice, one may replace these “virtual” qubits with measurement out-
comes 𝑚 = +1 and initialize the unmeasured qubits in the state stabilized by Eq. (8.2)—the
resulting state is the same. In constructing graph states, C𝑍 gates transform an𝑋 -type stabi-
lizer ∏𝑁𝑖=1𝑋𝑖 ↦∏𝑁𝑖=1(𝑋𝑖∏𝑗∈ℕ(𝑖)𝑍𝑗 ), whilst leaving the 𝑍-type stabilizers untouched. This
means that we can alternatively initialize the odd qubits 𝑖 as an 𝑁 -qubit |GHZ(𝑁 )⟩ state sta-
bilized by ⟨∏𝑁𝑖=1𝑋𝑖,𝑍1𝑍2,𝑍2𝑍3,… ,𝑍𝑁−1𝑍𝑁 ⟩, before applying the C𝑍 gates to qubits outside
the subgraph. If 𝑁 = 2, one can initialize with the bipartite Bell pair state ⟨𝑋1𝑋2,𝑍1𝑍2⟩.

The above procedure shows how the subgraph in Fig. 8.2 need not be initialized through
C𝑍 gates, so long as there is a protocol that can create |GHZ(𝑁 )⟩. Our new splitting
procedure on faces produces subgraphs like Fig. 8.2 in a systematic way. Importantly, the
closed-cell stabilizers of the cluster state stay intact on the split geometry.

Like a cell-vertex split, a face-edge split subdivides an existing face into two or more
parts, adding new edges to separate the newly created faces. We give an example of this
procedure on a square in Fig. 8.3. The newly created edges each support an additional qubit,
always laying adjacent to two faces. Therefore, the subgraph supported by split edges and
faces is a chain in the form of Fig. 8.2. We may replace the cluster state supported by the𝑁 connected faces with an 𝑁 -partite GHZ state. Because the removed qubits correspond
to “virtual” 𝑚 = +1 measurement outcomes, their even parity plays no further role in the
evaluation of error syndromes.

We can extend this procedure to both the primal and dual complex, producing GHZ
states on both faces and edges. An example based on the cubic cluster state is given
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Figure 8.3: Face splitting on a square. (a) Without a split, the square represents a monolithic cluster state without
distributed entanglement. The corresponding circuit of |+⟩ state initialization, C𝑍 gates, and Pauli-𝑋 basis
measurement is also drawn. (b) A hybrid approach. The distributed face qubit is split over two parties represented
by two faces, forming a bipartite GHZ or Bell state. The parity check is performed through two bilocal C𝑍 gates
of each face to its neighboring qubits and two local measurements. (c) A fully distributed approach. A face is split
into four parties that share a GHZ state. Each party performs a single C𝑍 gate to its neighbor and performs a
measurement.

in Fig. 8.4. Starting from a monolithic architecture, a full 4-partite split of primal faces
produces an architecture with nodes containing five qubits on a single edge and each of
the adjacent split faces. Nodes are entangled with one another by GHZ states on every
face. We may perform the same procedure for dual faces (primal edges), further reducing
the number of qubits in each node to two.

We do not consider this in the rest of this chapter but note that, instead of initializing
the qubits introduced by a face-edge split as an entangled state and measuring them
individually, one can alternatively initialize these qubits regularly in |+⟩ and measure them
out with a joint (Type-II) fusion measurement [11–13]. This provides one with a method to
transform (fault-tolerant) cluster states into so-called fusion networks that form the basis of
fusion-based quantum computing [6].

8.2.4 Circuit-level and network noise
In this section, we describe the noise models used for monolithic and distributed threshold
calculations. For the monolithic simulations, the entire cluster state is built from |+⟩ state
preparation, followed by C𝑍 gates between every connected face-edge pair in the cluster
state, concluded with a Pauli-𝑋 basis measurement of every qubit. In this model, we do not
consider the effects of memory decoherence. For circuit-level noise, the following noise
sources are included:

1. Noisy state preparation as a classical mixture (1−𝑝p) |+⟩⟨+|+𝑝p |−⟩⟨−|. That is, ap-
plying a phase-flip error on |+⟩ with probability 𝑝p.
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no face split 4× primal face split 4× primal and 
dual face split

Figure 8.4: Face-edge splitting on a cubic cell. Starting from the left, a monolithic cluster state is transformed
into a distributed cluster state by a four-partite split for each of its faces (see also Fig. 8.3). Performing the same
procedure for dual faces (primal edges) produces a cluster state that is fully distributed, where each network node
contains two cluster state qubits.

2. Two-qubit depolarizing noise following every C𝑍 gate, as described by Eq. (2.10).
We use 𝑝g as the parameter describing two-qubit gate noise.

3. Classical bit-flips following every Pauli-𝑋 basis measurement: a measurement
outcome 𝑚 is flipped to −𝑚 with probability 𝑝m. The corresponding noisy mea-
surement channel takes on the form ̃±(𝜌) = (1−𝑝m)Π±𝜌Π±+𝑝mΠ∓𝜌Π∓, whereΠ±(𝜌) ≡ |±⟩⟨±| are the desired projectors onto the Pauli-𝑋 basis.

For the entangled states used in the distributed simulations, we assume that parties
have shared access to Bell pairs in the isotropic form

𝜌𝑝n = (1−𝑝n) |Φ+⟩⟨Φ+|+ 𝑝n3 |Φ−⟩⟨Φ−|+ 𝑝n3 |Ψ+⟩⟨Ψ+|+ 𝑝n3 |Ψ−⟩⟨Ψ−| . (8.3)

We refer to 𝑝n as the parameter that describes “network noise”. In this chapter, we do not
take into account specific physical systems. We justify using isotropic states by noting that
a depolarizing channel (i.e., the most general noise channel) converts a perfect Bell pair
state to an isotropic state. Additionally, isotropic states can be considered a general proxy
for non-perfect Bell pairs, because every Bell pair state can be twirled into an isotropic
state using local operations and classical communication.

To generate GHZ states from these Bell pairs, we use the straightforward method based
on local parity measurements [14]. Fundamentally, a GHZ state can be created from Bell
pairs by a local projective measurement of the 𝑍𝑍 parity between two halves of two pairs
shared by multiple parties. The circuits to create a 3-partite GHZ from two Bell pairs and a4-partite GHZ state from three Bell pairs are drawn schematically in Fig. 8.5.

We note that the circuits in Fig. 8.5 do not include distillation. Better quality GHZ states
can typically be generated if the Bell pairs used to carry out the projective measurement
are pre-distilled, or if GHZ states are distilled after creation. This, however, introduces
a probabilistic factor to the GHZ creation protocols, which leads to higher numerical
complexity in simulating the circuits.
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Figure 8.5: Fusion circuits for weight-3 and weight-4 GHZ states. In each of the circuits, Bell pairs are fused
through the application of local C𝑋 gates and a subsequent 𝑍 basis measurement of the target bits. The conditional
bit-flips ensure that GHZ states have the desired form |0…0⟩+ |1…1⟩.
8.2.5 Numerical tools and considerations
To decode error syndrome graphs, we have implemented a version of the Union-Find
decoder. This decoder is particularly attractive given its almost-linear time complexity
and ease of implementation for both Pauli and erasure errors. Despite being a sub-optimal
decoder, the phenomenological threshold for the cubic cluster state (2.6%) is close to that
of the Minimum-Weight Perfect-Matching decoder (2.9%) [3], which is in turn not far from
the optimal threshold (3.3%) [15]. Furthermore, since the Union-Find decoder is maximum-
likelihood over the erasure channel (due to its built-in peeling decoder [16]), we expect
this performance gap to shrink further over noisy channels that are a combination of Pauli
and erasure errors. We have specifically implemented the “weighted-growth” version of
the Union-Find decoder, as introduced in the original Union-Find manuscript [8]. Our
implementation can be found in the repository of Ref. [17].

Error models per unit cell are constructed with a circuit simulator. Unit cells are defined
according to the description in Sec. 8.2.1, together with the splitting methods of Secs. 8.2.2
and 8.2.3. The simulator is implemented as a classical efficient stabilizer simulator. Per
operation, the simulator applies a full error channel as a series of Pauli operators, ending
with a measurement in the 𝑁 -qubit Pauli basis. The choice for Pauli noise is justified in
these simulations because the input states are (convex combinations of) stabilizer states,
the operation noise is typically Pauli noise, and measurement noise is described by classical
bit-flips. In App. F, we describe the details of constructing an error channel. Pauli twirling
a state at the end of a series of non-Clifford operations is equivalent to Pauli twirling the
individual operations before applying them. This allows us to also use the simulator in
situations where one is interested in the Pauli-twirled version of the full error channel—in
that case, it suffices to twirl the individual channel components before applying them.

The calculated error models are used to sample errors in Monte Carlo style on qubits
of the full crystalline cluster state. These cluster states are constructed from the associated
unit cell complex according to the crystal embedding procedure described in Sec. E.2 of
App. E. Per Monte Carlo sample, we decode the syndrome graph and assign a logical
failure whenever there is a logical error for a single pair of logical 𝑋 and 𝑍 operators of
the channel—see Sec. 3.5.5 for more details. Error thresholds are determined with fits of
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the logical error probabilities versus the lattice size (𝐿) and a (set of) noise parameter(s)—in
App. C we discuss this process in more detail.

8.3 Results
The results are organized into three parts, where the noise models become increasingly
complex. A summary of the most important thresholds found can be found in Fig. 8.6.
Secs. 8.3.1 and 8.3.2 provide thresholds for various geometries under a phenomenological
noise model. In these sections, we reproduce earlier-known results and investigate the
influence of a lattice boundary. For the phenomenological noise model, cluster states based
on lattices that have a lower bond-degree 𝑏 are more resilient against errors. However,
these cluster states typically require more two-qubit gates to construct. This aspect is not
regarded by the phenomenological noise model.

To investigate the trade-off between noise resilience and noise introduced by con-
structing the cluster state, we investigate scenarios with circuit-level and network noise
in Secs. 8.3.3 and 8.3.4. Sec. 8.3.3 discusses numerical thresholds for monolithic (i.e., non-
distributed) architectures. These results are compared with the circuit-based error models
for cluster states on a distributed network in Sec. 8.3.4. In the last part of this section, in
Sec. 8.3.5, we investigate how the GHZ success probability of distributed networks can
be traded off against a higher erasure probability to achieve fault tolerance against larger
infidelity of the entangled states used.

8.3.1 Phenomenological thresholds
Before considering more realistic noise models, we first numerically evaluate erasure and
phenomenological thresholds for several known lattices, which were constructed using cell-
vertex splitting. These are the cubic (𝑏= 6, 𝑣 = 4), diamond (𝑏= 4, 𝑣 = 6), triamond (𝑏= 3, 𝑣 =10), and double-edge cubic (𝑏 = 3 on average, 𝑣 = 8) cluster states. We go beyond the results
in Ref. [3] by determining fault-tolerant regions against erasure and phenomenological
errors. The results are depicted in Fig. 8.7. We consider a phenomenological error model.
It corresponds to perfect state preparation of the cluster state followed by measurements
that fail to report (i.e., erase) an outcome with probability 𝑝e or flip the outcome with
probability 𝑝m, both of which are i.i.d. In Fig. 8.7, we estimate a fault-tolerant region for
the erasure probability and bit-flip probability. Data points of the fault-tolerant regions are
calculated by sweeping over both error probabilities while keeping their ratio fixed. We use
a different constant of proportionality at each data point on the fault-tolerant boundary.

The isolated thresholds found for both types of noise are included in Fig. 8.6a. These
threshold values are slightly higher than those reported in Ref. [3]. This can be attributed
to a different implementation of the Union-Find decoder—see Sec. 8.2.5 for more details.
Because phenomenological noise does not take into account higher error probabilities
that arise with increasingly complex preparations of a cluster state, a fairer comparison is
made by weighing each qubit error probability with the cluster state valency 𝑣, producing
i.i.d. noise with probabilities 𝑣𝑝e and 𝑣𝑝g. This is called the weighted phenomenological error
model in Ref. [3]. Because the cubic, diamond, double-edge cubic, and triamond lattices
are regular with valency 𝑣 ∈ {4,6,8,10} on all qubits respectively, weighted thresholds may
be calculated from unweighted thresholds by simply dividing by 𝑣.
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Figure 8.6: Overview of the threshold values found in our study, for different lattices and noise models considered.
(a) Summary of numerical thresholds for bit-flip and erasure-type phenomenological noise models of the four
lattices described in this work. (b) Differences of estimated threshold values for the same lattices and error models
as in (a) with boundaries, expressed in percentage points (p.p.). (c) Monolithic thresholds are gauged against
circuit-level errors with a common error probability as defined in Secs. 8.2.4 and 8.3.3, and similarly for distributed
thresholds gauged under only circuit-level noise. Network thresholds are obtained from the model as defined in
Sec. 8.2.4. For the monolithic thresholds, we show only the highest threshold value found with alternative gate
orderings (see Sec. 8.3.3 in the main text for details). Numbers above the bars indicate the threshold, with 95%
confidence intervals around the value indicated as error bars and as decimals in parentheses.
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(b) Thresholds 𝑝m,th under pure bit-flip noise as a function of cluster state valency. From left to right is the cubic,
diamond, double-edge cubic, and triamond lattice. We provide thresholds with and without lattice boundaries—see
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valency. (d) Thresholds 𝑝e,th under pure erasure noise. Results agree with known percolation thresholds for the
given lattices. (e) Thresholds 𝑝e,th/𝑣 under pure weighted erasure noise.
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Figure 8.8: Sub-threshold logical error probability scaling of cubic, diamond, double-edge (d.e.) cubic, and triamond
lattices with and without boundaries for phenomenological bit-flip (top row) and erasure (bottom row) noise
models. Data for periodic conditions has round markers with a dashed line. Although the thresholds are minimally
affected, sub-threshold error probabilities of any lattice with a rough and smooth boundary are about 1.5 to 2
times the probability for the same lattice under periodic boundary conditions.

8.3.2 Phenomenological thresholds with boundaries
The lattices considered above repeat periodically in all three spatial directions. It may
be difficult to prepare such a cluster state if we take into account the connectivity of the
qubits. We gauge how the performance of a cluster state is affected by the introduction of
boundaries, under the same phenomenological noise model of both bit-flips with probability𝑝m and erasure errors with probability 𝑝e. Each lattice is introduced to a smooth boundary
along the 𝑥 = 0 plane, and a rough boundary along the 𝑦 = 0 plane. For the smooth boundary,
we remove elements of the correlation surface defined by a dual logical membrane and its
closure and introduce a boundary on the remaining dangling edges in the dual complex.
The rough boundary is introduced in the same way, by swapping primal and dual notions.

In Figs. 8.6b and 8.7b-e, we show how the threshold values for the phenomenological
and erasure noise models change with the introduction of the boundaries. The results show
that differences in the phenomenological bit-flip threshold values are insignificant. For the
erasure thresholds, only the cubic and double-edge cubic lattices are slightly affected. The
results indicate that the introduction of boundaries affects the thresholds only minimally, at
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least for the lattices and noise models considered here. However, we found that boundaries
do impose significantly weaker sub-threshold scaling. The sub-threshold scaling is the rate
at which the logical error probability is suppressed below the threshold. Fig. 8.8 shows that
boundaryless architectures have a favorable error probability suppression that is about 50
to 100% as effective as the same architecture with boundaries. These results are consistent
with recent work, where it was also shown that the introduction of boundaries leaves the
threshold nearly invariant, but negatively impacts error rate scaling by roughly the same
factor [18].

8.3.3 Monolithic thresholds
To compare distributed thresholds against monolithic implementations of the same geome-
try, we first benchmark monolithic architectures with the circuit-level noise models from
Sec. 8.2.4. Below, we set all probabilities 𝑝p = 𝑝g = 𝑝m ≡ 𝑝o equal (see Sec. 8.2.4 for the
definition of the parameters), and sweep a threshold over the value of 𝑝o. What remains is
a specification of the ordering of C𝑍 gates in the circuits, since pure C𝑍 gates commute,
whereas their noisy versions do not. Because no qubit can interact with two C𝑍 gates
simultaneously, a valid ordering may be extracted from an edge coloring of the correspond-
ing 𝜕2 boundary map of the cluster state. This graph is bipartite by definition. Therefore,
the chromatic index (i.e., the minimum number of colors needed for an edge-coloring)
equals the maximum degree of any vertex in the graph—i.e., the maximum valency 𝑣 of
the cluster state [19]. The cubic, diamond, double-edge cubic, and triamond lattices are all
regular, and so their chromatic indices are 4, 6, 8, and 10, respectively.

For a chromatic index 𝑖 and a given coloring, there are 𝑖! different ways to order the
edges and thus the C𝑍 gates. Rotational and reflection symmetries of the cubic cluster
state imply that there are only two colorings that correspond to a unique sequence of gates:
a “(counter)clockwise” sequence going around a face, and a “zigzag” sequence jumping to
opposite sides first. For diamond, double-edge-cubic and triamond lattices, the number
of orderings quickly explodes as 6! = 720, 8! ≈ 4×104 and 10! ≈ 3.6×106 (not taking into
account symmetries). We have not included an exhaustive search of all orderings and their
corresponding thresholds up to symmetries, but only investigate a subset of orderings.

Monolithic thresholds with the (counter)clockwise orderings are shown in Fig. 8.9. An
overview of all monolithic thresholds is included in Fig. 8.6c. For the cubic lattice, a zigzag
ordering of C𝑍 gates slightly outperforms the (counter)clockwise ordering. The diamond
lattice outperforms a cubic cluster state, whereas the double-edge cubic lattice drops in
performance for the orderings considered. In all cases, (counter)clockwise orderings of
the gates (at least in the primal complex) tend to produce lower thresholds than orderings
that skip multiple edges at a time. We can intuitively understand this by considering
that a single Pauli-𝑋 error on a face qubit spreads through all subsequent C𝑍 gates as
correlated Pauli-𝑍 errors to neighboring edge qubits. In a (counter)clockwise ordering, the
Pauli-𝑍 errors produce a single strand that wraps around the face. In a zigzag orientation,𝑍 error strings can form disconnected chains, such that a single Pauli-𝑋 error produces
multiple syndrome pairs on different sides of the face. Initial numerical analysis shows
that (counter)clockwise orderings indeed seem to result in, on average, longer error strings.
The triamond lattice was gauged for a single ordering due to its complexity and performed
poorly.
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Figure 8.9: Monolithic thresholds 𝑝o,th for specific gate orderings. The thresholds are calculated with, for the
cubic and diamond unit cell, a straightforward order of C𝑍 gates according to a “(counter)clockwise” coloring of
the diagram on the right (see arrows in the diagram for the cubic lattice). We omit details on (counter)clockwise
orderings for the double-edge cubic and triamond lattice. Gates of a single color are performed simultaneously for
all unit cells in the lattice. Each data point constitutes 50000 samples. Error bars of the logical error probability
are given as 95% confidence intervals but are too small to be discernible in most cases. The threshold value is
highlighted with a 95% confidence interval based on its least-squares estimate of a second-order polynomial of
the logical error probability around the threshold value—see App. C for details.
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In the limiting case that all gate errors are Pauli-𝑍 errors, the relative impact of gate
order disappears, and thresholds coincide with the weighted phenomenological thresholds
considered above. In Ref. [10], Newman et al. consider an error model that, after each C𝑍
gate, applies an 𝑋 -type error on a (primal) face qubit with probability 𝑝𝑋 and a 𝑍-type error
on a (primal) edge qubit with probability 𝑝𝑍 . Their results show that the best-performing
lattice in terms of threshold moves from higher to lower valency as Pauli-𝑋 errors start to
dominate. Our results show a similar tendency under depolarizing gate noise for the higher
valent double-edge cubic lattice and triamond lattices when compared to the lower valent
cubic and diamond lattices. We can summarize this finding by stating that as the cluster
state valency increases, depolarizing noise incurs a larger cost on the threshold value.
Under these noise models, there exists an optimal threshold resulting from a trade-off
between the complexity of the geometry of the cluster state, and the structure of the noise
created by the circuit. Noise bias is one example where this trade-off may be abused, by
taking advantage of the architecture of the cluster state in either primal or dual lattice
structures.

The monolithic cluster state thresholds do not compete with surface code monolithic
thresholds, which are estimated at 0.90% and 0.95% under the same noise model [20].
It should be noted that the numbers for all non-cubic lattices provided here are likely
sub-optimal, as we have only gauged the performance for a subset of C𝑍 gate orderings.
Nevertheless, estimates show that cluster states defined on the diamond lattice can out-
perform the cubic cluster state in the presence of circuit-level noise. For cluster states
with even higher valencies, the cost of initialization negatively impacts the value of the
threshold, consistent with the results under weighted phenomenological noise models.
These results warrant further optimizations of the gate orderings and comparisons with
other lattices.

8.3.4 Distributed thresholds
In this section, we investigate thresholds for distributed implementations of the cluster
states. We use the face-edge splitting operation of Sec. 8.2.3 to split faces of the cubic,
diamond, and double-edge cubic lattices. The cubic lattice is gauged for two different splits:
one along the diagonals, producing network nodes with six cluster qubits in a ring and
entangled through Bell pairs, and one on the entire face, producing 2-qubit nodes that
are entangled through 4-partite GHZ states. Both these architectures also appear in the
context of fusion-based quantum computation in Bartolucci et al. [6]. The structure of the
diamond lattice is more intricate, and we produce two different architectures that contain
only weight-3 GHZ states (the 4-ring) and a mixture of Bell pairs and weight-3 GHZ states.
Architectures for the double-edge cubic lattice resemble the cubic lattice: the first contains
only Bell pairs, whilst the other shares weight-4 GHZ states. All architectures are drawn
schematically in Fig. 8.10.

In the distributed model, we set 𝑝p = 𝑝g ≡ 𝑝o. On top of that, we use entangled states to
connect the cluster states that are separated by the splits. For these states, we assume that
nodes can prepare isotropic states with fidelity 1−𝑝n and that GHZ states are generated
with the protocols of Fig. 8.5. In the absence of network links, this circuit-level model
reduces to the model discussed in Sec. 8.3.3. Using this physical model, we numerically
establish thresholds for the distributed lattices introduced above. In the same way as
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Figure 8.10: Distributed architectures for various lattices, obtained through splitting the faces of the monolithic
cluster state. A single-face split leads to a Bell pair, whereas an 𝑛-split produces a GHZ state. They form connected
components that are distinct nodes in a distributed network. We identify six different architectures: two each for
the cubic, diamond, and double-edge cubic lattices. The left column shows purely monolithic cluster states. In
the middle column, cluster states are initialized with Bell pairs on every face and edge, except for the diamond
lattice that also contains 3-qubit GHZ states. Architectures in the right column are initialized with 4-qubit GHZ
states for the cubic and double-edge cubic lattices, and 3-qubit states for the diamond lattice. Architectures in the
middle column tend to have larger nodes than those in the right column.
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Figure 8.11: Fusion-based thresholds for the six distributed architectures of the cubic, diamond, and double-edge
cubic lattices. The circuit-level noise parameter 𝑝o and network error probability 𝑝n are both swept to estimate a
fault-tolerant region over thresholds of both parameters. Simulation details can be found in the main text.

phenomenological bit-flip and erasure thresholds, we estimate fault-tolerant regions for
error probabilities 𝑝o and 𝑝n. The results are shown in Fig. 8.11 and in the overview of
Fig. 8.6c.

These results show that network error probability thresholds for both the 2-node and
6-ring cubic designs are similar. Even though higher-valent GHZ states tend to produce
lower-quality stabilizers, we suspect that the superior performance of the 2-node design
against network errors 𝑝n may be due to the size of its node. Because the 2-node architecture
has only a single C𝑍 gate per node, errors spread to only one adjacent qubit, as opposed to
the 6-ring architecture that moves such an error to two adjacent qubits. Despite the more
significant propagation of errors, the 6-ring architecture has a higher threshold against
gate and measurement errors (the probability 𝑝o) than the 2-node design. Most likely, this
is because measurement errors have a higher influence in the 2-node architecture, which
has more qubits. Both diamond architectures outperform the cubic lattice by a factor of
roughly two in the network error probability threshold. This result is promising, especially
considering that the depolarizing thresholds also outperform cubic architectures, as was
already the case for the monolithic thresholds discussed above.

For the double-edge cubic architectures, network error probability thresholds drop again.
Nevertheless, the 4-ring design with GHZ states outperforms the bigger 12-node design,
which we may explain in the same way as in the cubic case: in the 4-ring lattice, errors
propagate to fewer neighboring qubits compared to the 12-node architecture. An important
difference with the cubic lattices is that the 4-ring design benefits enough from the lower
error spreading to outperform the 12-node design under pure gate and measurement noise,
despite the additional qubit measurements in the 4-ring implementation.

Thresholds for the circuit-level noise probability 𝑝o,th of these architectures are not
optimal, due to the way that the ordering of C𝑍 gates affects the threshold. We find that,
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for all architectures considered, the values for 𝑝o,th without network noise are similar to
the monolithic thresholds. Similar to the earlier analysis of distributed designs, comparing
distributed to monolithic architectures involves trading off less error propagation in the
distributed architectures versus fewer measurement errors in the monolithic architecture.

8.3.5 Trade-off GHZ success and erasure probability
The results in the previous sections indicate that fault tolerance can be achieved with
network error probabilities below ∼ 2%—i.e., with Bell pair fidelities above ∼ 98%. This
condition is challenging from an experimental perspective. Fortunately, it is possible to
boost the fidelity of entanglement before cluster state preparation through entanglement
distillation. In this process, we model distillation failures as erasures on the corresponding
qubit(s) and use a suitable decoder to deal with these qubit erasures. A suitable decoder
is a decoder that can jointly correct errors and erasures—such as the Union-Find decoder.
Phenomenological erasure thresholds can be roughly one order of magnitude higher than
bit-flip error thresholds, so one may reasonably expect that trading in failed distillation at-
tempts for higher-quality links is worth the cost. We make this argument more quantitative
in Fig. 8.12, using the cubic 6-ring architecture as an example. In this architecture, every
Bell pair is successfully heralded with probability 1−𝑝e and network error probability𝑝n, and discarded with probability 𝑝e. The fault-tolerant region is simulated in the same
way as before, this time sweeping over the network and erasure error probabilities, where
circuit-level noise is not taken into account—i.e., 𝑝o is set to 𝑝o = 0.

We can apply entanglement distillation to distill each Bell pair used in the cluster state
by consuming multiple Bell pairs with initial fidelity 𝐹n = 1−𝑝n. The distillation protocols
we plot in Fig. 8.12 are (concatenated versions of) the DEJMPS protocol [21] (see Sec. 3.6.2)
and the 5-to-1 bilocal Clifford distillation protocol of Sec. 3.6.4 based on the ⟦5,1,3⟧ error-
correction code of Fig. 3.2. The output infidelities (on the 𝑝n axis) and failure rates (on the𝑝e axis) of these distillation protocols are shown in the graph for two different values of
the initial fidelity 𝐹n. Here, the output infidelity is one minus the output fidelity and the
failure rate is one minus the success probability of the distillation protocol. For the bilocal
Clifford protocol, the (closed) data point on the bottom right of the two curves corresponds
to a variant where, per Bell pair, only coinciding measurement outcomes are accepted.
The data point on the top left of each curve corresponds to a variant where one accepts
all measurement outcomes. Intermediate data points are protocols that accept a subset of
non-coinciding measurement results. One can reach even more combinations of output
infidelities and failure rates by using interpolation of two protocols [22]. This approach
balances (or “mixes”) the success probabilities and output fidelities of two protocols with a
classical coin shared between the two parties. The coin outputs heads with probability 𝑟
and tail with 1− 𝑟 , and the parties apply one of the two distillation protocols based on the
outcome of the coin. For two protocols with success probabilities 𝑝1 and 𝑝2 and with output
fidelities 𝐹1 and 𝐹2 this leads to a new protocol with success probability 𝑝succ = 𝑟𝑝1+(1−𝑟)𝑝2
and output fidelity (𝑟𝑝1𝐹1+(1− 𝑟)𝑝2𝐹2)/𝑝succ.

It is clear that there is a trade-off for distillation between fidelity and success probability.
Importantly, we can directly link this trade-off to the trade-off between erasure and network
error probability—this makes it possible to move the state into the fault-tolerant region.
For the distillation protocols considered, the first crossing with this region happens for an
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Figure 8.12: Trade-off between erasure and network error probability. The fault-tolerant region of the six-ring
architecture is drawn (gray), where entangling links have a network error probability 𝑝n and an independent
probability 𝑝e to fail. Gates and measurements are assumed to be noiseless. A failed link causes the edge to be
erased—in the absence of network errors, we obtain the phenomenological erasure threshold of the cubic lattice.
The colored lines reflect infidelities and failure rates of entanglement distillation protocols that use identical
copies of an isotropic state with initial fidelity 𝐹n to distill a single Bell pair with higher fidelity—i.e., with lower
network error probability. Distillation may bring a non-fault-tolerant architecture into the fault-tolerant regime.
Data marked with triangles correspond to concatenated DEJMPS (“cDEJMPS”) distillation protocols [21], where
the numbers indicate how many Bell pairs are used to distill the final state. Data marked with colored circles is
based on a bipartite Clifford distillation protocol that consumes five Bell pairs. This protocol is printed in Fig. 3.18,
where, in this case, we use the encoding circuit of the error-correction code of Fig. 3.2 as the transformation 𝑈 .
Line segments between data points of the distillation protocols correspond to the interpolation of protocols on
both sides of these segments—see the main text for more details.
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initial network error probability of 𝑝n ≈ 5%, which is a five-fold increase of the approximate
6-ring threshold value of 1% without distillation. These results are particularly promising
for the diamond architecture, where both the network error threshold of roughly 2% and
the erasure threshold of 40% are higher than the cubic lattice.

8.4 Conclusion
In this chapter, we provide several tools and numerical analyses to explore fault-tolerant
measurement-based quantum computing architectures built from smaller units, in the
context of modular, distributed, or networked computing. This is achieved with a method
that allows us to distribute a fault-tolerant cluster state over multiple parties. This method
augments the splitting procedure of previous work by Nickerson and Bombín [3]. In the
distributed context, the resulting states lead to entanglement in the form of a Bell or GHZ
state, such that existing methods for state generation and distillation can be used to design
a fault-tolerant architecture.

The performance of various three-dimensional cluster state architectures is studied
through numerical evaluation of their fault-tolerant thresholds, which quantify the proba-
bilities of specific sources of error below which fault-tolerant computation is possible. We
find that the diamond lattice outperforms the traditional cubic cluster state for monolithic
architectures suffering standard noise models—i.e., the noise models described in Sec. 8.2.4.
It should be mentioned that even better results may be achieved with different permuta-
tions of the entangling C𝑍 gates during cluster state preparation. In the cases we have
considered, (counter)clockwise orderings of C𝑍 gates tend to produce lower thresholds.

Furthermore, we gauge the performance of the same lattices in a distributed setting.
For designs based on the cubic lattice, error thresholds of the network noise are around1%. We consider two different designs of distributed cluster states defined on top of a
diamond lattice, which outperform cubic thresholds roughly by a factor of two. Using a
cubic architecture, we show how entanglement distillation may bring a non-fault-tolerant
design into the fault-tolerant regime by trading in network noise for erasure errors in the
cluster state. Combined with favorable erasure thresholds of the diamond lattice, these
results indicate that distributed fault-tolerant cluster states may outperform topological
error-correction codes, and warrant additional numerical simulations of these distributed
networks in the presence of entanglement distillation.

There are several potential avenues for further investigation. On the one hand, our
circuit-based qubit error models are limited to depolarizing and erasure-type noise, and it is
interesting to estimate fault-tolerant thresholds for models that more accurately represent
errors in state-of-the-art quantum hardware. Furthermore, it would be interesting to
consider protocols that cannot be described as a simple sequence of instructions, but contain
dependencies and branches that split based on intermediate decisions—as, e.g., protocols
that contain entanglement distillation. Previous results in the field apply pre-calculated
error models (i.e., quantum channels) on a unit cell level, and randomly sample from the
error model during Monte Carlo threshold calculations [20, 23]. This is possible because
the fault-tolerant protocol consists of identical rounds that are applied over time, where
each round is split up and grouped into multiple sub-rounds that act on disjoint subsets of
qubits, so that the entire protocol may be simulated as distinct sections that are separated
in both space and time. This is not necessarily the case for the three-dimensional cluster
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states that we consider here, in which case the entire cluster state should be simulated at a
global level, i.e., without pre-calculating error models of individual sections [24].

As an alternative to measurement-based quantum computation, it is possible to consider
fusion-based quantum computation [6]. This paradigm combines a low circuit depth with
the topological features of cluster states. The fundamental operations in fusion-based
quantum computation are resource-state generation and fusion measurements. Fault-
tolerant fusion-based architectures rely heavily on resilience against erasure errors, and
the structures considered in this work are a natural candidate to consider in this alternative
framework of computation.
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9
Conclusions and outlook

In this chapter, we summarize the main results of the research presented in this thesis. On top
of that, we list improvements and additions to this work. Lastly, we provide an overview of
interesting future research directions.
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9.1 Summary of results
Creation and distillation of GHZ states. The first part of the contributions relates to the
creation and distillation of GHZ states. We use a heuristic dynamic programming algorithm
to identify protocols that create GHZ states out of non-perfect Bell pairs. In each stage
of the algorithm, a new protocol is created by combining two well-performing protocols
identified at earlier stages. The GHZ generation protocols produced by this algorithm can
therefore be represented as directed binary trees. The elementary Bell pairs used in the
protocol are always located on the leaves of the tree. The intermediate nodes of the tree
contain either entanglement fusion or entanglement distillation operations. The fusion
operation creates an entangled state of higher weight from two smaller-weight states that
overlap in a network node. The distillation operations consume an entangled state to
non-locally measure a stabilizer operator of the target state.

The dynamic program can be used to create GHZ states of arbitrary weight. However,
we are specifically interested in weight-4 GHZ states because of their use in the distributed
toric surface code. At this stage, our goal is to minimize the minimum number of Bell pairs
needed to create a GHZ state of a specific fidelity. Compared to previously known GHZ
generation protocols, the new weight-4 protocols produce GHZ states with higher output
fidelities and require roughly half the number of Bell pairs to achieve a similar fidelity in a
scenario without memory decoherence and operation noise. We consider two variants of
the dynamic program: a standard variant and a randomized variant. In most regimes, the
randomized version finds the best GHZ protocols.

Evaluating GHZ generation protocols in the presence of memory decoherence.
We use another heuristic approach to convert binary tree protocols generated by the
dynamic program into a protocol recipe—i.e., a practical set of ordered instructions. We
develop an open-source circuit simulator to evaluate GHZ protocols and protocol recipes in
the presence of memory decoherence, gate noise, and measurement errors. The simulator
can be utilized with general hardware models. We use this simulator to evaluate protocol
recipes for the use-case of realistic nitrogen-vacancy center hardware that suffers memory
decoherence. We show that, under these conditions, protocol recipes generated by the
dynamic programming algorithm use lower completion times to produce GHZ states with
higher fidelities compared to previously known protocols. One of the best-performing
protocols is a protocol that uses a minimum of four Bell pairs to generate a weight-4 GHZ
state. We refer to this protocol as the Modicum protocol.

Calculating error thresholds for the distributed surface code in the presence
of memory decoherence. We adapt an existing surface code simulator to perform
stabilizer measurements with more general superoperator channels. This makes it possible
to simulate the non-local measurement of the code’s stabilizers with the aid of weight-4
GHZ states. Measuring the code’s stabilizer in such a way represents a scenario where
each data qubit of the surface code is part of a separate network node. We combine this
simulator with the standard variant of the dynamic program and the circuit simulator. This
enables us to optimize over GHZ generation protocols used to non-locally measure the
stabilizers of the distributed surface code for a hardware model of choice. This, in turn,
makes it possible to calculate error probability thresholds for the distributed surface code
for a specific combination of a hardware model and a GHZ protocol. We limit ourselves to
calculating thresholds for a logical memory channel over 𝐿 time layers with the Union-Find
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error syndrome decoder, where 𝐿×𝐿 is the size of the surface code lattice.
We use these methods with hardware models based on realistic nitrogen-vacancy

centers, but find that it is not possible to operate state-of-the-art nitrogen-vacancy center
devices below their error thresholds—i.e., at the moment, these nitrogen-vacancy centers
introduce more errors than the code can correct for. We calculate toric surface code
thresholds with models that represent more optimistic diamond color center hardware
and find a threshold of 4 ⋅102 in the ratio between entanglement generation and memory
decoherence rates. This is more than one order of magnitude above state-of-the-art. We
identify that improving the entanglement generation rate with better photon detection
probabilities seems to be the main challenge in obtaining hardware that can be operated
fault-tolerantly. Our analysis shows that we approach fault tolerance in state-of-the-art
hardware for photon detection probabilities 50 times higher than state-of-the-art and
up to one order of magnitude improvement in coherence times during entanglement
generation. A GHZ generation protocol consuming a minimum of seven Bell pairs is the
best-performing protocol in a large number of regimes considered. We refer to this protocol
as the Septimum protocol.

Fault-tolerant cluster states for distributed quantum computing. The surface
code memory channel, with time as the third dimension, can be converted to a fault-tolerant
cubic cluster state. This opens the door for considering fault-tolerant cluster state channels
based on other three-dimensional lattices. By splitting the edges and faces of the lattice
on which the cluster state is defined, we introduce a method to distribute the qubits of a
large cluster state over multiple network parties connected by entanglement. This method
extends on an approach by Nickerson and Bombín for constructing new three-dimensional
lattices by splitting edges and cells of the cubic lattice. We present a stabilizer simulator
for evaluating logical error rates for (distributed) cluster states defined on a general lattice.

With this simulator, we show that for cluster states based on four different three-
dimensional lattices, the diamond lattice has the highest thresholds under a standard
circuit-level noise model. This model applies depolarizing noise for every C𝑍 gate used to
construct the cluster state and incorporates bit-flip errors while measuring out the cluster
state qubits. Additionally, we find that distributed versions of the diamond lattice have
the highest thresholds against both standard circuit-level and network noise, where we
also consider noise on Bell and GHZ states. These calculations do not include memory
decoherence. For a distributed variant of the cubic cluster state, we analyze how a lower
GHZ success probability can be exchanged for a higher erasure probability. By exploiting
this trade-off, we can achieve fault tolerance with lower elementary entanglement fidelities.

9.2 Future work
Generating and evaluating GHZ generation protocols. The circuit simulator we use
to evaluate GHZ generation protocols in the presence of operation noise and memory
decoherence makes use of density matrix calculations. This means that, typically, using
this simulator to calculate the average GHZ state is a time-consuming affair. A concrete
proposal to make these calculations faster is the use of the stabilizer formalism to track
states during protocol simulation—even more concretely, this can be achieved by combining
this circuit simulator with our cluster state simulator, in which the stabilizer formalism
is implemented. Faster evaluation of GHZ protocols can be beneficial since it means the
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dynamic program can consider more protocols in the same amount of time. A calculation
speed-up also makes using the randomized dynamic program more feasible in situations
with operation noise and memory decoherence. The randomized variant gives better results
in most of the scenarios without operation noise. However, because the standard dynamic
program is faster, we currently restrict to the standard variant in all scenarios that include
operation noise and memory decoherence.

An alternative approach for generating well-performing GHZ protocols could be found
by employing reinforcement-learning techniques to identify protocols or optimize over
the space of GHZ protocols [1–3]. Less drastically, alternative GHZ protocols can be
generated with the existing dynamic programming algorithm if one also includes distillation
operations that can not be represented as non-local stabilizer measurements. We include
possible extensions with this type of distillation in Sec. 3.6 of this thesis—specifically, they
are introduced Secs. 3.6.3 and 3.6.4 and Refs. [4–6] for the bipartite case and in Sec. 3.6.8
and Ref. [4] for the multipartite case.

Further possibilities for improvement can be found in the scheduling of GHZ creation
protocols. For example, the starting time of operations can be optimized to increase the
probability of parallel branches finishing at the same time. On top of that, during the
execution of a protocol, it might be beneficial to implement a dynamic strategy that re-
evaluates the best execution plan after each failed distillation attempt. These optimizations
can possibly be achieved with artificial intelligence.

Interpret failed distillation attempts as erasure errors. Both for the distributed
surface code and for fault-tolerant cluster states, it is possible to interpret failed distillation
attempts as lost qubits—i.e., as qubit erasures. This requires using an error syndrome
decoder able to decode erased qubits, like the Union-Find decoder. This approach weakens
the restrictions for the minimum fidelity of entangled states, as resilience against erasure
allows us to probabilistically increase entanglement fidelities by incorporating more steps
of entanglement distillation. In this thesis, we investigate a straightforward example of the
distributed cubic cluster state, but it would be interesting to also incorporate this trade-off
in other distributed cluster state architectures and the distributed surface code.

Distributed surface code implementations. There are alternative implementations
possible for the distributed surface code. For example, one could think of variants that
use more than one data qubit per node—e.g., more than one data qubit per diamond color
center [7]. Another variant worth investigating is a version where nodes measure stabilizer
operators through ancillary nodes that do not hold data qubits themselves. In this variant,
C𝑍 and C𝑋 gates are carried out non-locally—i.e., with the aid of Bell pairs—to measure
the code’s stabilizer—similarly to how, in a monolithic architecture, stabilizers can be
measured with ancillary qubits in |+⟩. Next to that, promising results have been obtained
with the so-called 𝑋𝑍𝑍𝑋 variant of the surface code [8] and it would be interesting to
investigate this code in a distributed context. Given its high resilience against dephasing
noise, which is typically the most prominent noise source in diamond color centers, this
code is particularly interesting for implementations with diamond color center hardware.
Lastly, it is important to study the performance of time-efficient error syndrome decoders
for distributed error-correction codes. This is because, in practical realizations with large
lattice sizes, error syndromes must be decoded within the cycle time of one round of
error-detection measurements to prevent additional errors caused by memory decoherence.
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Distributed error-correction codes with diamond color centers. Our tools can
be readily employed in future scenarios with further experimental advancements in dia-
mond color centers reaching higher photon detection probabilities. This possibly includes
combining nitrogen-vacancy centers with microcavities, or further characterization of
tin-vacancy and silicon-vacancy nanophotonic devices. Additionally, the use of tin-vacancy
centers or silicon-vacancy centers unlocks the possibility of generating GHZ states directly
with photon scattering or transmission, without the need to fuse Bell pairs [9]. Initial
numerical investigations show this approach is likely to boost surface code thresholds, as
it seems to reduce the influence of noisy and time-consuming SWAP gates [7].

Fault-tolerant cluster states for distributed quantum computing. For the research
on fault-tolerant cluster states, one remaining open question considers the optimal order
of noisy C𝑍 gates applied during cluster state construction. This question is relevant for
the construction of general graph and cluster states.

Next to that, follow-up research could focus on expanding the functionalities of the
simulator, by, e.g., implementing non-deterministic logic during Monte Carlo simulations.
This makes it possible to explicitly include entanglement distillation in these simulations—
both for distilling the Bell pairs and GHZ states that connect the cluster states as for
distilling the cluster states themselves with the methods discussed in Sec. 3.6.7. Additionally,
the implementation of more detailed noise models, such as, e.g., memory decoherence,
could further catalyze interesting research. That is because this makes it possible to
better investigate scenarios where the (distributed) cluster state is split into different
time-separated slabs or blocks, and where one relies on keeping qubits “alive” between
consecutive time steps—similarly to how data qubits of the surface code are kept alive over
different time layers. This applies to qubits that sit on the boundary of time layers as well
as qubits that are teleported to the next layer in the original cluster state. For example, this
idea could be used to “exfoliate” the (distributed) diamond cluster state into (non-identical)
two-dimensional time slabs. Partitions that contain even smaller cluster state blocks are
also imaginable, resulting in situations in which space and time are no longer associated
with exclusive dimensions of the full cluster state. This line of research is particularly
interesting since fault-tolerant channels that use fewer qubits seem more realistic in the
near future.

The implementation of more realistic noise models naturally facilitates comparisons
between different hardware suitable for distributed cluster state implementation. Next to
diamond color centers, this includes combinations of matter-based qubits and photons in the
context of fusion-based quantum computation [10]. In fusion-based quantum computing,
the entangled states of distributed cluster states can be directly replaced by (type-II) fusion
measurements.

9.3 Outlook
Looking further into the future, from the viewpoint of theoretical research, it could be
fruitful to recast cluster state channels as so-called subsystem codes [11, 12]. In such a
code, some of the operators that would otherwise be used as stabilizer operators or logical
operators stay unused. These operators are then referred to as gauge (check) operators,
and we say that they describe gauge qubits. This concept can be used to design a code
in which the stabilizer measurements can be constructed by classically combining lower-
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weight parity measurements—similar to how the error syndrome is constructed for cluster
state channels. Among other proposals, this idea has been used to transform surface
codes into subsystem surface codes with weight-three parity measurements [13]. Related
to this idea, a promising implementation with weight-two parity measurements is the
Floquet code [14–16]. This code is similar to a dynamically changing version of the two-
dimensional hexagonal toric code. A disadvantage of this approach is the increase in the
number of measurement operations, which introduces more errors. Another disadvantage
of introducing gauge qubits is that, typically, this leads to an increase in the qubit overhead—
i.e., the number of physical qubits required to encode logical information with the code.

Both the concepts of subsystem codes [17] and the earlier-mentioned 𝑋𝑍𝑍𝑋 surface
code [8] can be used to tailor an error-correction code based on noise characteristics—i.e.,
by optimizing error correction based on existing noise biases in the hardware [18, 19].
Generalizing non-foliated cluster state channels under biased noise is a natural next step in
this line of research [20]. In general, fault-tolerant cluster states could play an important
role in designing tailor-made error-correction channels, as “time exfoliation/partitioning”
could help in making these channels more practical.

Further generalization of three-dimensional cluster state channels in the direction of
so-called low-density parity-check (LDPC) codes [21, 22] may lead to even more fruitful
results. The error-correction codes considered in this thesis show a vanishing decoding
rate 𝐾/𝑁 as 𝑁 →∞. However, recent years saw the development of similar codes with
constant decoding rates. A code with a constant decoding rate has the property that
expanding the size of the code (and thus increasing its number of physical qubits 𝑁 ) leads
to a proportional increase in the number of encoded logical qubits 𝐾—i.e., it has a lower
qubit overhead. Some of the constant-rate LDPC codes discovered also have favorable
scaling with respect to the distance of the code—e.g., their distance scales as a function of√𝑁 [23, 24] or as a function of 𝑁 [25]. Unfortunately, it turns out that these codes lose
their two-dimensional [26] and nearest-neighbor characteristics: typically, the better the
properties of these codes, the more long-range the interactions between the data qubits
become, if one were to place them on a two-dimensional lattice [27]. Luckily, from the
perspective of diamond color centers, more complex connectivities are not problematic,
since entanglement between remote centers can—in principle—be realized with photonic
links. With ion trap modules, long-range photonic connections are also possible [28]. Just
as for the surface code and cluster state channels, the existence of efficient error syndrome
decoders remains an open question for constant-rate LDPC codes.

On top of that, further theoretical research is necessary on realizing logical operators
and universal quantum computing with fault-tolerant distributed channels [29, 30]. In an
ideal scenario, to prevent local errors from spreading out, we would perform all logical
operations transversally. This means we do not have to resort to methods such as magic
state distillation. However, according to the Eastin-Knill theorem, codes that can do all
gates transversally do not exist. This is another area where the use of the subsystem
formalism is beneficial since subsystem codes can be used to perform gauge fixing [31, 32].
The idea of gauge fixing is that, during operation, one moves encoded information between
different quantum error-correction codes that together hold a universal set of transversal
logical gates. Switching between different codes can be achieved by (temporarily) adding
or removing gauge operators to the set of stabilizer operators of the code. An example
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of a topological code that can perform universal logical gates with gauge fixing is the
three-dimensional gauge color code [33, 34].

Possibly in combination with these advancements in error-correction code design, it
would be interesting to bolster numerical simulations with noise models that (at least
schematically) resemble more precise hardware implementations—i.e., noise models based
on detailed engineering efforts of distributed quantum computers. This could, e.g., be based
on a photonic chip with integrated diamond color centers connected with waveguides.
Future noise models should feature the characteristics of such an architecture and the
imperfections and heterogeneities therein. This direction brings along challenges, as in our
current two-level numerical implementation it is, e.g., not straightforward to implement
cross-talk between different nodes. However, perhaps it is not strictly necessary to simulate
these architectures with the same level of detail as we did in Ch. 7. Eventually, one could
argue that it is not that important what the exact value of the threshold is, as long as we have
a rough idea of its order of magnitude and the logical error rates that can approximately be
reached at certain error probabilities and lattice sizes. That is because, in practice, we want
to run these codes significantly below the threshold in order to reach low logical error
rates without having to resort to enormous code sizes. As such, only the most prominent
noise sources should arguably be included in numerical investigations of this kind.

From a pure experimental perspective, it would be exciting to perform demonstrations
of either distributed error-correction codes or (one of) their ingredients. For example, an
experimental demonstration of the Modicum or Septimum GHZ generation protocol would
constitute an important milestone in realizing practical fault-tolerant distributed quantum
computing.
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A
Protocol recipe

construction and simulation

A.1 Algorithm for protocol recipe construction
In Sec. 6.3, we discuss the main principles of the algorithms used to construct a protocol
recipe from a binary tree GHZ generation protocol. Here, we elaborate on some additional
details of these algorithms.

A.1.1 Algorithm for operation identification and ordering
Using terminology from Ch. 6, we define 𝑛𝑜 ⊆ {𝜈(𝑖)}𝑁𝑖=1 as the subset of network nodes in
which an operation 𝑜 takes place. For each elementary link operation 𝑒 ∈ {𝑒𝑖}𝐾𝑖=1 considered,
we identify the set 𝔼𝑒 ⊂ {𝑒𝑖}𝐾𝑖=1, that for 𝑒′ ∈ 𝔼𝑒 fulfills 𝑛𝑒′ ∩𝑛𝑒 = ∅, where ∅ is the empty set.
The operations in 𝔼𝑒 are all elementary link operations that can be carried out simultane-
ously with 𝑒. We store 𝑒 and the operations in 𝔼𝑒 together as a set 𝑠𝑒 in the list 𝑙link. The
elementary links 𝑒 are ordered with the recursive binary tree approach of Sec. 6.3.1.

Consequently, we identify a list 𝑙′link with subsets of link generation operations that
can be carried out simultaneously. For each element 𝑜 ∈ 𝑙link, we identify a subset 𝑠𝑜 of
link generation operations that can be carried out simultaneously with 𝑜. This subset can
only contain one operation per node in the network—i.e., there can, e.g., be only one link
generation operation in 𝑠𝑜 that involves network node 𝐴, one link generation operation
that involves network node 𝐵, etc.. The operation 𝑜 is, itself, also part of 𝑠𝑜. The identified
subset 𝑠𝑜 is added to 𝑙′link. Each operation in 𝑙link is only added to one subset of 𝑙′link.

Next, we create a list of operations 𝑙ops that contains all operations that need to be
carried out—i.e., not just the elementary link operations considered so far. This list is
created by looping over the subsets 𝑠𝑜 ∈ 𝑙′link and by keeping track of the nodes’ qubit
occupancy during the operations that we add to 𝑙ops (to identify the qubits on which the
operations should take place). For each subset 𝑠𝑜 ∈ 𝑙′link, the link generation operations𝑜 ∈ 𝑠𝑜 are added to 𝑙ops. Subsequently, for each 𝑜 ∈ 𝑠𝑜, we check if we can perform its direct
parent operation 𝑝 in the binary tree. This operation 𝑝 is either a distillation operation
or a fusion operation. We check if, at this point, both direct children of 𝑝 are contained



A

214 A Protocol recipe construction and simulation

in 𝑙ops. If this is the case, we add 𝑝 to 𝑙ops, and move on to the direct parent of 𝑝 and do
the same—until we stumble upon a parent node that does not have its two direct children
contained in 𝑙ops yet. For each operation added to 𝑙ops, we first check if it is necessary to
free up the communication qubits of the involved nodes, or swap back a state to the nodes’
communication qubits. If one of those steps is necessary, we add SWAP gate operations to𝑙ops before the actual operation. For each fusion operation added to 𝑙ops, we add information
about what correction operations we need to perform in case of an odd measurement result.
By default, this is a Pauli-𝑋 operator on all qubits of the right child in the tree that are not
part of the network node in which the fusion operation takes place—so, e.g., for a fusion
operation between qubits in nodes 𝐴𝐵𝐶 and 𝐶𝐷𝐸, this is a Pauli-𝑋 operator on the qubits
in nodes 𝐷 and 𝐸.
A.1.2 Algorithm for operation scheduling
In this section, we describe how we group the operations in the list 𝑙ops into different
time steps {𝑠(𝜏)}𝜏 and, for each time step 𝑠(𝜏), a set of time blocks {𝑏(𝜏)𝑖 }𝑖. Every time block𝑏 ∈ {𝑏(𝜏)𝑖 }𝑖 has an associated subset 𝑛𝑏 of network nodes in which its operations are carried
out. The time blocks are created by looping over the operations 𝑜 ∈ 𝑙ops, for which we
identify the subset 𝑛𝑜 of network nodes in which operations of 𝑜 take place:

1. We start at the last time step at this stage of construction process—i.e., the time step𝑠(𝜏′) labeled with 𝜏′ ← |{𝑠(𝜏)}𝜏 |. In case |{𝑠(𝜏)}𝜏 | = 0 holds, we create time step 𝑠(1) and
set 𝜏′ ← 1.

2. We check if there is a time block 𝑏 ∈ {𝑏(𝜏′)𝑖 }𝑖 that fulfills 𝑛𝑜 ⊆ 𝑛𝑏.
a. If this is the case, we add 𝑜 to this time block 𝑏, select the next operation in 𝑙ops

and move to step 1.
b. If that is not the case, we check if there is at least one time block 𝑏 ∈ {𝑏(𝜏′)𝑖 }𝑖 that

fulfills 𝑛𝑜 ∩𝑛𝑏 ≠ ∅.
i. If this is the case, we create or move to the next time step 𝑠(𝜏′+1) and create

a new time block 𝑏′′ in time step 𝑠(𝜏′+1). We set 𝑛𝑏′′ ← 𝑛𝑜, add 𝑜 to 𝑏′′, select
the next operation in 𝑙ops and move to step 1.

ii. If that is not the case, we must have that 𝑛𝑜 ∩𝑛𝑏 = ∅ holds for all 𝑏 ∈ {𝑏(𝜏′)𝑖 }𝑖.
If 𝜏′ > 1 holds, we decrease 𝜏′ by one and move back to the start of step 2.
If 𝜏′ = 1 holds, we create a new time block 𝑏′ in time step 𝑠(1), set 𝑛𝑏′ ← 𝑛𝑜,
add 𝑜 to 𝑏′, select the next operation in 𝑙ops and move to step 1.

To every time step 𝑠(𝜏), we add a list 𝑙(𝜏)corr of fusion corrections and a list 𝑙(𝜏)eval of distillation
operations that need to be applied and evaluated after the time step. Fusion operators need
corrections when their full measurement outcome is odd. Typically, each correction is not
applied in the nodes where the fusion operation itself takes place. Because the nodes in
which the correction has to be applied are typically part of a different time block of the
time step, we collect all fusion corrections and delay them until the end of a time step.
Sometimes, fusion corrections influence the outcome of distillation measurements. This
can occur if the fusion correction in a different time block does not commute with one of
the measurements of the distillation operation. If this is the case, the success or failure of a
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distillation operation cannot be determined in the time block itself. In that case, we also
delay the decision on whether or not distillation was successful to the end of a time step,
where all fusion measurement outcomes are available. Similarly, it can occur that a fusion
correction is altered by operations applied between its associated fusion operation and the
end of the time step. We use standard commutation rules to modify these corrections (and
their dependencies) in the instructions contained in 𝑙(𝜏)corr.

In more technical terms, the above is achieved by using a standard format for adding
fusion correction operations that are newly added to time step 𝑠(𝜏) in the list 𝑙(𝜏)corr—see the
end of Sec. A.1.1 for this standard format. This is possible since, by default, every operation
is always added to the end of a time block. Every time we add a new operation 𝑜 to one of
the time blocks of a certain time step 𝑠(𝜏′), we have to evaluate its influence on the existing
fusion corrections in 𝑙(𝜏′′)corr for all time steps 𝑠(𝜏′′) in the range 𝜏′ ≤ 𝜏′′ ≤ |{𝑠(𝜏)}𝜏 |. If 𝑜 is a
distillation operation that does not commute with at least one fusion correction in 𝑙(𝜏′′)corr
for 𝜏′ ≤ 𝜏′′ ≤ |{𝑠(𝜏)}𝜏 |, 𝑜 is added to 𝑙(𝜏′′′)eval and the non-commuting fusion operation(s) are
added to the outcomes required to determine the success of 𝑜. Here, 𝑠(𝜏′′′) corresponds to
the latest time step in the range 𝜏′ ≤ 𝜏′′′ ≤ |{𝑠(𝜏)}𝜏 | that contains fusion corrections that do
not commute with the distillation operation 𝑜.
A.2 Algorithm for protocol recipe simulation
In this section, we expand on the description in Sec. 6.4 regarding protocol recipe simulation.
The implementation discussed below includes Alg. 3 for identifying all operations that
need to be reapplied in case of a failed distillation operation.

A.2.1 General description
In Sec. 6.4, wemention that we have tomake use of a structure that keeps track of operations
that should be skipped while executing the protocol recipe. This is because recreating a
state after a failed distillation operation typically only requires reapplying a subset of all
operations prior to the failed distillation operation. Specifically, we use two objects for
this task: 𝑙recreate and 𝑙clear. During protocol recipe execution, we only apply operations
contained in the last object of 𝑙recreate, and skip all other operations that we encounter. The
structure 𝑙clear contains information on when the last object in 𝑙recreate can be removed—e.g.,
if we have successfully recreated a state with a distillation operation that failed at an earlier
stage of the protocol, we remove the associated object from 𝑙recreate. The second-to-last
object in 𝑙recreate then becomes the last object and determines which operations are executed
and skipped. At the start of the simulation process, the structure 𝑙recreate is empty—with an
empty 𝑙recreate all operations are applied.

In reconstruction mode, we deterministically reapply all time blocks {𝑏(𝜏′)𝑖 }𝑖 in this time
step 𝑠(𝜏′) until they reach time 𝑡fail. Note that, because a distillation operation contains a set
of operations that need to be carried out locally in the network nodes—and not necessarily
simultaneously in all nodes—it could occur that a full distillation operation is only executed
partially before 𝑡fail occurs. If this is the case, we typically finish the rest of the operation
when we reach this stage in the protocol again after fully recreating the failed state. Every
time we enter reconstruction mode, an empty list 𝑙skip is initialized. In this list, we collect
all operations in the time step that are skipped because they fall outside the time 𝑡fail.
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Algorithm 3: Pseudo-code used to identify the failure-reset-level and a list of
operations that need to be re-applied in case of a failed distillation attempt.

Data: List 𝑙d of operations that need to be re-applied
Dictionary 𝛿qubits with states currently stored on qubits
Binary tree of the protocol
Protocol recipe

Result: Failure-reset-level of operations in 𝑙d
List of operations that have to be reapplied

1 𝑙reset ← ∅
2 while 𝑙d ≠ ∅ do
3 for 𝑜 ∈ 𝑙d do
4 Add 𝑜 to 𝑙reset
5 Add all children of 𝑜 to 𝑙reset
6 Add all parents of 𝑜 that are currently present in 𝛿qubits to 𝑙reset, including

all their children in the binary tree
7 Identify all operations 𝑙occ that sit on qubits in 𝛿qubits that need to be empty if

we want to reapply the operations in 𝑙reset
8 𝑙d ← 𝑙occ
9 Identify the first operation 𝑜frl ∈ 𝑙reset in the protocol recipe

10 return 𝑜frl, 𝑙reset.

When, in reconstruction mode, the end of the time step is reached, we calculate a list𝑙reset with all operations that have to be reapplied because of failed operation(s) in the last
time step. This list is calculated using Alg. 3. It contains all operations in the sub-trees of
the failed distillation operation(s). On top of that, it can occur that one or more of their
parents are also executed at this point. In that case, these parents also need to be reapplied
to recover the state at the end of this time step. To evaluate what parent operations need
to be reapplied, we keep track of a “real-time” dictionary 𝛿qubits that describes what binary
tree states currently sit on which network node qubits—i.e., what operations in our original
binary tree are successfully created at the current stage of the protocol recipe execution.
On top of that, we also add all operations in 𝑙skip to 𝑙reset, but we exclude SWAP operations
that act on states not contained in 𝑙reset. Lastly, we also make sure to recreate states that are
present on network node qubits that need to be empty to reapply the operations in 𝑙reset:
these states—including their sub-trees and (possibly) parents—are also added to 𝑙reset. We
define the failure reset level as the operation 𝑜frl ∈ 𝑙reset that appears first in the protocol
recipe. We add 𝑙reset to the end of 𝑙recreate and store information in 𝑙clear that tells us we can
remove this list from 𝑙recreate as soon as we reach the end of this time step again. After
that, we tell the algorithm to go back to operation 𝑜frl in the protocol recipe and continue
normal execution from there.
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A.2.2 Step-by-step description
Below, we present a more precise description of the execution of a protocol recipe in
the presence of a GHZ cycle time 𝑡GHZ. We denote the “local” time in a network node𝜈 ∈ {𝜈(𝑖)}𝑁𝑖=1 by 𝑡𝜈.

1. We set 𝑡𝜈 ← 0 in all nodes 𝜈 ∈ {𝜈(𝑖)}𝑁𝑖=1. We create empty structures 𝑙recreate and 𝑙clear.
We select execution mode.

2. We select 𝜏′ ← 1 and select the time step 𝑠(𝜏′). We set 𝑖← 1 and select the time block𝑏(𝜏′)𝑖 of this time step 𝑠(𝜏′).
3. We select the first operation 𝑜 in time block 𝑏(𝜏′)𝑖 .

4. The operation 𝑜 is only applied if it is contained in the last list of 𝑙recreate or if 𝑙recreate is
empty. Without loss of generality, we assume that 𝑜 performs operations in network
nodes 𝑛𝑜 = {𝜇(𝑜)𝑗 }𝑗 with 𝑡𝜇(𝑜)1 ≤ 𝑡𝜇(𝑜)2 ≤…, for 𝜇(𝑜)𝑗 ∈ {𝜈(𝑖)}𝑁𝑖=1.

a. If, for any of the involved nodes 𝜇 ∈ 𝑛𝑜, 𝑡𝜇 ≥ 𝑡GHZ holds after 𝑜 would have
taken place, the operations of 𝑜 in node 𝜇 are not executed, and we “switch off”
node 𝜇, as it has now reached the GHZ cycle time. If all nodes 𝜈 ∈ {𝜈(𝑖)}𝑁𝑖=1 have
reached the GHZ cycle time, the full protocol is aborted.

b. If the operation creates an entangled link between network nodes 𝜇 ≡ 𝜇(𝑜)1 and𝜇′ ≡ 𝜇(𝑜)2 , we set 𝑡𝜇 ← 𝑡𝜇′ .
c. If we are in reconstruction mode, we check if 𝑡𝜇 ≥ 𝑡fail holds for all of the

involved nodes 𝜇 ∈ 𝑛𝑜. If that is the case, we skip (part of) the operation 𝑜 in
node 𝜇 and add 𝑜 to 𝑙skip.

d. We carry out 𝑜 in the nodes 𝜇 ∈ 𝑛𝑜 that are not yet switched off and (in case we
are in reconstruction mode) have not yet reached 𝑡fail. We add the time it takes
to perform this operation to 𝑡𝜇 of the involved network node 𝜇.

e. As long as 𝑜 is the last element of 𝑙clear, we remove the last elements of 𝑙clear
and 𝑙recreate.

f. If 𝑜 is a distillation operation and its success can be evaluated here, we do so:
i. If the distillation operation succeeds, we proceed as if nothing happened.
ii. If the distillation operation fails, we calculate 𝑙reset and 𝑜frl for just the

operation 𝑜 using the version of 𝛿qubits at the current stage of the protocol
and Alg. 3.

iii. In case of a failed distillation operation, if 𝑜frl is an operation in the same
time block 𝑏(𝜏′)𝑖 as 𝑜, we add 𝑜 at the end of 𝑙clear and add 𝑙reset at the end of𝑙recreate. We then set 𝑜← 𝑜flr and move back to the start of step 4.

iv. In case of a failed distillation operation, if 𝑜frl is in a different time block as𝑏(𝜏′)𝑖 , and we are not in reconstruction mode, we set 𝑡fail to the time when
the full measurement result of 𝑜 was known. We create a list 𝑙fail and add 𝑜
to this list. The list 𝑙fail contains failed distillation operations in the current
instance of reconstruction mode. We set 𝑙skip to the empty list. We reset𝑙recreate, 𝑙clear and 𝛿qubits to their values at the start of this time step 𝑠(𝜏′),



A

218 A Protocol recipe construction and simulation

set 𝑖← 1 to select the first time block 𝑏(𝜏′)𝑖 of this time step 𝑠(𝜏′). We enter
reconstruction mode and move back to step 3.

v. In case of a failed distillation operation, if 𝑜frl is in a different time block
as 𝑏(𝜏′)𝑖 , and we are already in reconstruction mode, we check if 𝑜 is in 𝑙fail.
If that is the case, we proceed as if nothing happened. If that is not the
case and the time at which the full measurement result of 𝑜 was known is
smaller than 𝑡fail, we reset 𝑡fail to this earlier time, add 𝑜 to 𝑙fail, reset 𝑙recreate,𝑙clear and 𝛿qubits to their values at the start of this time step 𝑠(𝜏′), set 𝑖← 1
to select the first time block 𝑏(𝜏′)𝑖 of this time step 𝑠(𝜏′), and move back to
step 3. If 𝑜 is not in 𝑙fail, but the time at which the full measurement result
of 𝑜 was known exceeds 𝑡fail, we add 𝑜 to 𝑙fail and proceed as if nothing
happened.

If 𝑜 is not the last operation in 𝑏(𝜏′)𝑖 , we select the next operation in 𝑏(𝜏′)𝑖 as the new
operation 𝑜 and move back to start of step 4. If 𝑜 is the last operation in 𝑏(𝜏′)𝑖 and𝑖 < |{𝑏(𝜏′)𝑗 }𝑗 | holds, we increase 𝑖 by one and move back to step 3. If 𝑜 is the last
operation in 𝑏(𝜏′)𝑖 and 𝑖 = |{𝑏(𝜏′)𝑗 }𝑗 | holds, we move to step 5.

5. We have reached the end of the time step 𝑠(𝜏′). As long as this time step is the last
element of 𝑙clear, we remove the last objects of 𝑙clear and 𝑙recreate. Subsequently, if
we are not in reconstruction mode, we move to step 6. Otherwise—i.e., if we are in
reconstruction mode—we add this time step at the end of 𝑙clear. On top of that, we
calculate 𝑙reset and 𝑜frl with Alg. 3, using 𝑙fail as the list of operations in Alg. 3. Lastly,
we add each operation 𝑜′ ∈ 𝑙skip to 𝑙reset as well. Here, we exclude operations 𝑜′ ∈ 𝑙skip
that are SWAP gates swapping a state not contained in 𝑙reset. We enter execution
mode, set 𝑜← 𝑜frl, and move back to step 4.

6. We evaluate the full results of distillation operations 𝑜′′ ∈ 𝑙(𝜏′)eval. Here, if 𝑙recreate is not
empty, we skip distillation operations that are not part of the last element of 𝑙recreate.

a. As soon as one distillation operation 𝑜′′ fails, we add this location in the protocol
recipe at the end of 𝑙clear, calculate 𝑙reset and 𝑜frl with Alg. 3 for just operation𝑜′′, and add 𝑙reset at the end of 𝑙recreate. We set 𝑜← 𝑜frl and move back to step 4.

b. If all distillation evaluations succeed, we move to step 7.

7. We evaluate and carry out the fusion corrections in 𝑙(𝜏′)corr.
8. If 𝜏′ < |{𝑠(𝜏)}𝜏 | holds, we increase 𝜏′ by one, set 𝑖 ← 1, set 𝑡𝜈 ←max𝜈′ 𝑡𝜈′ for all𝜈,𝜈′ ∈ {𝜈(𝑖)}𝑁𝑖=1, and move to step 3. If 𝜏′ = |{𝑠(𝜏)}𝜏 | holds, we set 𝑡𝜈 ←max𝜈′ 𝑡𝜈′ for

all 𝜈,𝜈′ ∈ {𝜈(𝑖)}𝑁𝑖=1 and stop the protocol.
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B
Superoperator calculation

and convergence

B.1 Superoperator calculation
In this section, we describe how we calculate the superoperator that we use in the surface
code simulations. Separately calculating a superoperator has the advantage that it breaks
up the process of calculating GHZ state creation from the threshold simulations: this
drastically decreases the complexity of the full calculation.

Following earlier work by Nickerson et al. [1, 2], we assume that only Pauli errors
occur on the data qubits during the toric code simulations. This simplifies the simulation,
as every stabilizer measurement now deterministically measures either +1 or −1, and
measurement results can be calculated by simply considering commutativity between Pauli
errors and the stabilizer operators. In most situations, the stochastic Pauli error model
can be considered as a good approximation for coherent errors described by continuous
rotations [3]. On top of that, since the nuclear spin qubits (i.e., the memory qubits) of NV
centers have no states to leak to, it is believed that a depolarizing channel (i.e., Pauli noise)
is a good approximation for noise on these qubits.

Our characterization of the toric code stabilizer measurements is carried out with
density matrix calculations that do include more general errors. To align these calculations
with the toric code calculations themselves, the stabilizer measurement channel is twirled
over the Pauli group [4–6]. This makes sure the superoperators describing the channel only
contain Pauli errors. Each superoperator is constructed via the channel’s Choi state—i.e.,
by using the GHZ state created by the concerning protocol to non-locally perform the
stabilizer measurement on half of the maximally entangled state.

To explain this process in more detail, we consider the states |Ψ±⟩ that follow from
projecting half of the maximally entangled state |Ψ⟩ on the +𝑃⊗4 and −𝑃⊗4 subspaces with
projectors Π± = (𝕀⊗8±𝑃⊗4⊗ 𝕀⊗4)/2. Here, 𝑃 ∈ {𝑋,𝑍} describes the two types of stabilizer
measurements of the toric code, and |Ψ⟩ is the eight-qubit maximally entangled state
describing the four data qubits of the code. We also define states |Ψ(𝑚)± ⟩ that describe Pauli
errors 𝑃𝑚 ∈ {𝕀,𝑋 ,𝑌 ,𝑍}⊗4 occuring on the first half of |Ψ±⟩ after the projection with Π±. We



B

220 B Superoperator calculation and convergence

define the these states in the following way:

|Ψ⟩ = 1√24 24−1∑𝑗=0 |𝑗⟩⊗ |𝑗⟩ ,
|Ψ±⟩ = 𝕀⊗8±𝑃⊗4⊗ 𝕀⊗4√2 |Ψ⟩ ,|Ψ(𝑚)± ⟩ = (𝑃𝑚⊗ 𝕀⊗4) |Ψ±⟩ .

(B.1)

Later in the analysis, we only consider the subset of Pauli operators 𝑃𝑚 that lead to
orthogonal states |Ψ(𝑚)± ⟩, i.e., we only use 𝑃𝑚 that make sure we have⟨Ψ(𝑚)𝑠 |Ψ(𝑛)𝑠′ ⟩ = 𝛿𝑚𝑛𝛿𝑠𝑠′ , (B.2)

with (𝑠, 𝑠′) ∈ {+,−}2. We call this subset  ⊆ {𝕀,𝑋 ,𝑌 ,𝑍}⊗4.
We define two versions of the full noisy stabilizer measurement channel: +, which

projects with Π+, and −, which projects with Π−:
𝑠(𝜌) =∑𝑖 (𝑖)𝑠 Π𝑠𝜌Π𝑠((𝑖)𝑠 )†. (B.3)

Here, 𝑠 ∈ {+,−}. The Kraus operators (𝑖)𝑠 describe the noise on the data qubits. Each of
them can be decomposed into Pauli matrices:

(𝑖)𝑠 = ∑𝑃𝑞∈{𝕀,𝑋 ,𝑌 ,𝑍}⊗4 𝜉 (𝑖)𝑠,𝑞𝑃𝑞 . (B.4)

Using this decomposition, the channel’s Choi state can be expressed in the following way:𝜌Choi =∑𝑠 (𝑠⊗ 𝕀⊗4)(|Ψ⟩⟨Ψ|)=∑𝑠 ∑𝑖 ∑𝑃𝑞 ,𝑃𝑞′ 𝜉 (𝑖)𝑠,𝑞(𝜉 (𝑖)𝑠,𝑞′)∗ |Ψ(𝑞)𝑠 ⟩⟨Ψ(𝑞′)𝑠 | . (B.5)

We now focus on 𝜌Choi as the post-measurement state for stabilizer measurement outcome+1. The influence of noise can cause measurement errors, meaning 𝜌Choi can contain terms
projected with Π−. One can extract coefficients 𝑝(𝑚)𝑠 from 𝜌Choi by constructing the states|Ψ(𝑚)𝑠 ⟩ from Pauli operators 𝑃𝑚 ∈  via:𝑝(𝑚)𝑠 = ⟨Ψ(𝑚)𝑠 |𝜌Choi|Ψ(𝑚)𝑠 ⟩ =∑𝑖 |||𝜉 (𝑖)𝑠,𝑚|||2. (B.6)

These are the coefficients of the Pauli operators that act as the stabilizer measurement
channel’s Kraus operators after the channel is twirled over the Pauli group—see Sec. 2.4.4
for more details.

We see that this procedure gives us the probabilities required to construct the su-
peroperator of the channel. If 𝜌Choi is constructed by preparing the post-measurement
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state according to a +1 measurement outcome, the coefficients 𝑝(𝑚)+ give rise to the Pauli
errors 𝑃𝑚 ∈  without a measurement error on the stabilizer measurement, whereas the
coefficients 𝑝(𝑚)− describe Pauli errors 𝑃𝑚 accompanied with a measurement error. If 𝜌Choi
is constructed with a −1 measurement outcome, the role of 𝑝(𝑚)+ and 𝑝(𝑚)− is inverted, but
the parameter values themselves are the same.

The stabilizer fidelity is defined as the coefficient 𝑝(𝑚)𝑠 corresponding to 𝑃𝑚 = 𝕀⊗4⊗ 𝕀⊗4
(i.e., no errors on the data qubits) and no stabilizer measurement error. In our search for
well-performing GHZ creation protocols, a good reason for comparing two protocols by
using the stabilizer fidelity over, e.g., the GHZ state fidelity is the fact that the surface code
data qubits undergo more decoherence for protocols that take longer to finish. This aspect
of the optimization problem is not taken into account if we just use the GHZ fidelity to
compare the protocols.

B.2 Convergence of the average superoperator
The construction of a superoperator that we use in the surface code simulator requires
averaging over a large number of Monte Carlo simulations. In this section, we investigate
the convergence of the average superoperator over an increasing number of Monte Carlo
samples. In Fig. B.1, we calculate the average Choi state 𝜌Choi over 3 ⋅ 105 Monte Carlo
iterations and calculate the trace distance of this state with the average Choi state 𝜌(𝑖)Choi
after a smaller number of 𝑖 iterations. As explained in more detail below, this figure suggests
that, after 105 Monte Carlo samples, errors in the average superoperator elements are on
the order of 10−4.

For 𝑠 ∈ {+,−} and 𝑃𝑚 ∈  , the superoperator used in threshold simulations is calculated
as the average  = {𝑝(𝑚)𝑠 }𝑠,𝑚 of the individual superoperators  = {𝑝(𝑚)𝑠 }𝑠,𝑚 calculated with
the method of Sec. B.1. Alternatively, this average superoperator can be constructed by
calculating the average Choi state 𝜌Choi, as defined in Sec. B.1, and using Eq. (B.6) to
calculate {𝑝(𝑚)𝑠 }𝑠,𝑚 from this average Choi state.

The trace distance  (𝜌,𝜌′) between two densitymatrices 𝜌 and 𝜌′ is defined in Eq. (2.16).
For an operator  with eigenvalues 0 ≤ 𝜉𝑗 ≤ 1, we can show that the following holds [7]:|||Tr((𝜌−𝜌′))||| ≤  (𝜌,𝜌′). (B.7)

This means that, for 𝜌(𝑖)Choi after a certain iteration 𝑖,  (𝜌Choi,𝜌(𝑖)Choi) provides an upper bound
on the difference between the superoperator  (𝑖) after iteration 𝑖 and the superoperator 
after the full number of iterations. This is because, for the difference in the elements of 
and  (𝑖), the following holds:Δ𝑝(𝑚)𝑠 = ||| ⟨Ψ(𝑚)𝑠 |𝜌Choi|Ψ(𝑚)𝑠 ⟩− ⟨Ψ(𝑚)𝑠 |𝜌(𝑖)Choi|Ψ(𝑚)𝑠 ⟩|||= |||Tr(|Ψ(𝑚)𝑠 ⟩⟨Ψ(𝑚)𝑠 |(𝜌Choi−𝜌(𝑖)Choi))|||≤  (𝜌Choi,𝜌(𝑖)Choi) . (B.8)

Calculating  (𝜌Choi,𝜌(𝑖)Choi), therefore, gives us information about the convergence of the
average superoperator elements after 𝑖 iterations.
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Figure B.1: Convergence of the trace distance between 𝜌Choi (the average Choi state after 3 ⋅ 105 Monte Carlo
iterations) and 𝜌(𝑖)Choi (the average Choi state after 𝑖 iterations). We track changes in the trace distances by varying𝑖 on the 𝑥-axis of the plot. For each data point, we add on the order of 100 new iterations to 𝜌(𝑖)Choi. In the plot, we
include five GHZ protocols with a varying number of distillation steps 𝐾 . We only include Choi states based on𝑋⊗4 stabilizer measurements and exclude iterations that did not finish within the GHZ cycle time 𝑡GHZ.
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In our simulations, as shown schematically in Fig. 7.5, the superoperator {𝑝(𝑚)𝑠 }𝑠,𝑚 is
subsequently used in a second level of Monte Carlo simulations that emulates the operation
of the surface code with this specific superoperator. In App. C, we discuss how, for a
specific {𝑝(𝑚)𝑠 }𝑠,𝑚, the statistical uncertainty in the Monte Carlo simulations of the surface
code leads to uncertainty in the calculated threshold value.
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C.1 Regression model
In this section, we describe how we determine threshold values for the toric surface code
considered in Ch. 7 and the fault-tolerant cluster states of Ch. 8. This involves varying one
or more of the error probabilities. The fitting procedure described below is implemented
with the optimize.curve_fit function of the SciPy package [1] for Python in Ch. 7 and
the minimize function of the LMFIT package [2] for Python in Ch. 8.

For each combination of error probabilities 𝑝, we calculate an average superoperator
or noise channel using the methods described in Apps. B and F. At a specific 𝑝, we then
use Monte Carlo simulations to calculate the logical success probability 𝑟 of the toric
surface code for multiple lattice sizes 𝐿. The logical error probability is defined as 1− 𝑟 . We
denote the observed logical success probability of a certain input combination (𝑝𝑖,𝐿𝑖) by 𝑟𝑖.
We make use of 𝑛C to describe the total number of input combinations: {(𝑝𝑖,𝐿𝑖)}𝑛C𝑖=1. For
a single (𝑝𝑖,𝐿𝑖) combination, the logical success probability is defined as the number of
error-correction iterations 𝑀𝑖 that do not induce a logical error divided by the full number
of error-correction iterations 𝑁𝑖. In this context, 𝑁𝑖 can be considered as the number of
Monte Carlo iterations used for surface code calculations for a certain (𝑝𝑖,𝐿𝑖) and the
exact hardware configuration used. We assume that the uncertainty in the observed logical
success probabilities is described by the binomial distribution. This means that the standard
deviation can be estimated via

𝜎𝑖 = √ 𝑟𝑖(1− 𝑟𝑖)𝑁𝑖 , where 𝑟𝑖 = 𝑀𝑖𝑁𝑖 . (C.1)

We see that a logical success probability 𝑟𝑖 determined with a higher number of iterations𝑁𝑖 generally has lower uncertainty compared to a probability determined with a lower
number of iterations.

optimize.curve_fit
minimize
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Following Wang et al. [3], we fit the logical success probabilities {𝑟𝑖}𝑖 or the logical error
probabilities {1− 𝑟𝑖}𝑖 with either the model

𝑟 ≡ �̂�+ �̂�(𝑝− �̂�th)𝐿1/�̂� + 𝑐(𝑝− �̂�th)2𝐿2/�̂� + �̂�𝐿−1/𝜁 , (C.2)

or with the model 𝑟 ≡ �̂�+ �̂�(𝑝− �̂�th)𝐿1/�̂� + 𝑐(𝑝− �̂�th)2𝐿2/�̂� . (C.3)

The model of Eq. (C.3) can be considered a simplified version of the model of Eq. (C.2) with
less fitting parameters. Specifically, we use Eq. (C.2) for the fits in Ch. 7 and Eq. (C.3) for
the fits in Ch. 8. Using one of these models, we find estimates {𝑟𝑖}𝑖 of the logical success
probabilities for all input combinations {(𝑝𝑖,𝐿𝑖)}𝑖. For a certain (𝑝𝑖,𝐿𝑖), the residual �̂�𝑖 is
defined as the difference between the observed logical success probability and the estimated
value: �̂�𝑖 = 𝑟𝑖− 𝑟𝑖. Values for the fitting parameters �̂�, �̂�, 𝑐, �̂�th, �̂�, (�̂�, and 𝜁 ) are found by
identifying their (local) minimum with respect to the sum of the “weighted” squared
residuals. This sum is defined in the following way:

 ≡ 𝑛C∑𝑖=1 ( �̂�𝑖𝜎𝑖)2 = 𝑛C∑𝑖=1 ( 𝑟𝑖− 𝑟𝑖𝜎𝑖 )2. (C.4)

We see that this approach makes sure that residuals of data points that are determined
with high uncertainty (i.e., with a high standard deviation 𝜎𝑖) are given less priority in the
least-squares fit than data points with low uncertainty.

C.2 Weighted least-sqares fitting procedure
To understand how the confidence intervals in the values of the fitting parameters are
determined, we delve a bit deeper into how one could determine fitting parameters for a non-
linear regression like Eq. (C.2). In line with convention, we denote our input configuration
as 𝑖 = (𝑝𝑖,𝐿𝑖), and we write 𝑟𝑖 as 𝑟𝑖 = 𝑓 (𝛽,𝑖). Here, the function 𝑓 is the function of
Eqs. (C.2) or (C.3), and 𝛽 = (�̂�, �̂�, 𝑐, �̂�, �̂�th, �̂�, 𝜁 ) or 𝛽 = (�̂�, �̂�, 𝑐, �̂�th, �̂�) describes the converged
values for the fitting parameters after the optimization. We define 𝑛P = 7 for Eq. (C.2) or𝑛P = 5 for Eq. (C.3) as the number of fitting parameters of the model. Furthermore, we
use the notation 𝛽(𝑡) to indicate the fitting parameter values at a certain step 𝑡 during the
optimization. We can now write 𝑟𝑖 = 𝑓 (𝛽(𝑡),𝑖)+ 𝜖(𝑡)𝑖 for each 𝑡. Here, the residuals also
contain the superscript (𝑡) to denote that they depend on the exact values of 𝛽(𝑡).

Finding the least-squares fit is now achieved with the Gauss-Newton algorithm [4, 5].
This method is a variant of Newton’s method for finding the minimum of a non-linear
function. We start with a guess 𝛽(1) for the fitting parameter values. These values are
then iteratively updated by using the fact that we want to minimize the parameter of
Eq. (C.4) until they converge. To go from a certain 𝛽(𝑡) to a new improved version 𝛽(𝑡+1),
we write a new estimation 𝑟𝑖 = 𝑓 (𝛽(𝑡+1),𝑖)+ 𝜖(𝑡+1)𝑖 in terms of the old fitting parameter
values 𝛽(𝑡). In the expression with 𝛽(𝑡+1), we Taylor expand 𝑓 (𝛽(𝑡+1),𝑖) around 𝛽(𝑡), and
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neglect the second and higher order terms:

𝑟𝑖 ≈ 𝑓 (𝛽(𝑡),𝑖)+ 𝜕𝑓𝜕𝛽1 |||||(𝛽(𝑡) ,𝑋𝑖)(𝛽(𝑡+1)1 −𝛽(𝑡)1 )+…
+ 𝜕𝑓𝜕𝛽𝑛P |||||(𝛽(𝑡) ,𝑋𝑖)(𝛽(𝑡+1)𝑛P −𝛽(𝑡)𝑛P )+ 𝜖(𝑡+1)𝑖 . (C.5)

Here, 𝛽1 is the first fitting parameter, 𝛽2 the second, etc. The vertical lines next to the
derivatives indicate that, after taking the derivatives, the functions must be evaluated at
the old values (𝛽(𝑡),𝑖).

At this point, we recognize that we can express the full system of equations of
Eq. (C.5) as a matrix equation—i.e., for each input and output combination of 𝑖 and𝑟𝑖 as a row of this equation. To this end, we put the fitting parameter values at step 𝑡
of the optimization process into a 𝑛P × 1 column vector 𝜷(𝑡). For our model, we have𝜷(𝑡) = [𝑎(𝑡) 𝑏(𝑡) 𝑐(𝑡) 𝑑(𝑡) 𝑝(𝑡)th 𝜅(𝑡) 𝜁 (𝑡)]𝑇 or 𝜷(𝑡) = [𝑎(𝑡) 𝑏(𝑡) 𝑐(𝑡) 𝑝(𝑡)th 𝜅(𝑡)]𝑇 . We
do the same for the values of {𝑖}𝑖 and {𝜖(𝑡)𝑖 }𝑖, and write them as 𝑛C ×1 column vectors 
and 𝝐(𝑡), respectively. On top of this, we define 𝚫𝜷(𝑡+1) as 𝚫𝜷(𝑡+1) = 𝜷(𝑡+1) −𝜷(𝑡). These
parameters tell us how the new values for 𝜷(𝑡+1) depend on the old values 𝜷(𝑡). The full
system of equations of Eq. (C.5) can now be written as [4, 5]𝝐(𝑡+1) = 𝝐(𝑡)− 𝑱 (𝑡)𝚫𝜷(𝑡+1). (C.6)

In Eq. (C.6), we have used that 𝑟𝑖−𝑓 (𝛽(𝑡),𝑖) = 𝜖(𝑡)𝑖 . Furthermore, the matrix 𝑱 (𝑡) is an 𝑛C ×𝑛P
matrix that contains the derivatives of 𝑓 with respect to the fitting parameters, evaluated
at 𝛽(𝑡) and the inputs {𝑖}𝑖. More specifically, the 𝑗th column of 𝑱 (𝑡) contains derivatives
with respect to 𝛽𝑗 , and the 𝑖th row of 𝑱 (𝑡) contains these derivatives evaluated at the input𝑖. This matrix is also known as the Jacobian matrix.

The quantity that we want to minimize can now be expressed in terms of 𝝐(𝑡+1). To
realize this, we define a diagonal matrix containing the variances of the observed values 𝑟𝑖
as 𝚺 = diag(𝜎21 ,𝜎22 ,… ,𝜎2𝑛C). This allows us to reformulate as

 = (𝝐(𝑡+1))𝑇𝚺−1𝝐(𝑡+1)= (𝝐(𝑡)− 𝑱 (𝑡)𝚫𝜷(𝑡+1))𝑇𝚺−1(𝝐(𝑡)− 𝑱 (𝑡)𝚫𝜷(𝑡+1)). (C.7)

To minimize  with respect to 𝚫𝜷(𝑡+1), one sets 𝜕/𝜕𝚫𝜷(𝑡+1) to zero. After expanding
the brackets and taking the partial derivative, we end up with an expression that we can
solve for 𝚫𝜷(𝑡+1). This results in [5]𝚫𝜷(𝑡+1) = ((𝑱 (𝑡))𝑇𝚺−1𝑱 (𝑡))−1(𝑱 (𝑡))𝑇𝚺−1𝝐(𝑡). (C.8)

This expression tells us how to get from the existing 𝜷(𝑡) fitting parameter values to a
new set of values 𝜷(𝑡+1) by using the Jacobian evaluated at the old 𝜷(𝑡), the matrix 𝚺 that
describes the uncertainty in the observations, and the residuals {𝜖(𝑡)𝑖 }𝑖 associated with the
old 𝜷(𝑡). The new values 𝜷(𝑡+1) generally lead to a lower value for  . In deriving the



C

228 C Fitting procedure threshold plots

expression of Eq. (C.8), when taking the partial derivative with respect to 𝚫𝜷(𝑡+1), we have
assumed that 𝑱 (𝑡) does not depend on 𝚫𝜷(𝑡+1). For a general non-linear regression like
Eqs. (C.2) and (C.3), this assumption is incorrect. It is exactly the incorrectness of this
assumption that makes that, for a non-linear regression model, the least-squares fitting
parameters have to be found iteratively. The technique is borrowed from linear regressions,
where the Jacobian is independent of the fitting parameters, and only one iteration is
required to find the least-squares fit.

As a final note, we emphasize that including the full covariance matrix for the observed
quantities as 𝚺, if this information is available, leads to the same equations.

C.3 Uncertainty in fitting parameter values
The idea of the fitting procedure is that, after sufficient iterations 𝑡 ≫ 1, 𝜷(𝑡+1) describes the
final (converged) parameter values �̂�. Of course, in theory, in the limit 𝑛C →∞, the fitting
parameter values �̂� would converge to the true values, which we indicate with 𝜷 or 𝛽. We
can use a Taylor expansion procedure similar to the one executed in Eqs. (C.5), (C.6), and
(C.8) to, up to first order errors, express �̂� in terms of the true set of values 𝜷. This leads to�̂� ≈ 𝜷+(𝑱 𝑇𝚺−1𝑱)−1𝑱 𝑇𝚺−1𝝐. (C.9)

Here, 𝝐 describes the true residuals 𝜖𝑖 = 𝑟𝑖− 𝑓 (𝛽,𝑖), i.e., the residuals with respect to the
true values of the fitting parameter. Furthermore, 𝑱 indicates the Jacobian evaluated with
the calculated values �̂�. To get Eq. (C.9), one has to assume that, for the final 𝜷(𝑡+1) = �̂� of
the optimization procedure, �̂� = 𝜷(𝑡), 𝑱 = 𝑱 (𝑡) and �̂� = 𝝐(𝑡) hold—i.e., the system of equations
has fully converged.

Strictly speaking, in the limit 𝑛C →∞, we have �̂� = 𝜷 and �̂� does not have a distribution,
since 𝜷 contains constant values. For finite 𝑛C, however, we can argue that �̂� does have a
distribution, and we use the last term of Eq. (C.9) to estimate the uncertainty in the fitting
parameters �̂�. This estimation again involves the assumption that 𝑱 is a constant matrix,
and does not depend on the fitting parameters. The correctness of this assumption depends
on how close the model is to a linear regression. Under this assumption for 𝑱 , we can
make use of the fact that, for a general constant matrix 𝑨, the variance of 𝑨 is given by
Var(𝑨) = 𝑨Var()𝑨𝑇 . Together with the assumption that Var(𝝐) can be estimated by
Var(𝝐) = 𝚺, the covariance matrix of �̂� can be expressed as [4, 5]

Var(�̂�) ≈ (𝑱 𝑇𝚺−1𝑱)−1. (C.10)

The fact that we have a good idea of the uncertainties {𝜎𝑖}𝑖 of the observed {𝑟𝑖}𝑖 means
that we are able to estimate the quality of the obtained fit. For a good fit, we expect the
uncertainty in the observed {𝑟𝑖}𝑖 to match the uncertainty in the true residuals {𝜖𝑖}𝑖 and the
uncertainty in the residuals {�̂�𝑖}𝑖 of the fitting model. After all, in that case, the observed
variance would be perfectly described by the theoretically expected variance. This means
that the quality of the fit can be evaluated with the reduced chi-squared metric, which is
defined as 𝜒 2𝜈 ≡ 𝜈 = 1𝜈 𝑛C∑𝑖=1 ( 𝑟𝑖− 𝑟𝑖𝜎𝑖 )2. (C.11)
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Figure C.1: Example of a threshold plot for the Septimum protocol, including a 95% confidence interval calculated
with the method described in Sec. C.3.

Here, 𝜈 = 𝑛C−𝑛P describes the number of degrees of freedom of the fitting model. A 𝜒 2𝜈
value of approximately one corresponds to the variance in the observations matching the
variance of the residuals. On the other hand, 𝜒 2𝜈 < 1 indicates that the uncertainty of the
model is too small to describe the data (indicating that the number of fitting parameters
might be too large), whereas 𝜒 2𝜈 > 1 indicates that the model does not describe the data
well enough.

For the fits in this thesis, we are predominantly interested in the fitting parameter �̂�th
that indicates the threshold value of a certain configuration. We find that the regression
model of Eq. (C.2) works relatively well in a close range around the true threshold value
(see, e.g., Fig. C.1). If using data over a larger range of 𝑝 values, we would typically find
fits with 𝜒 2𝜈 > 1. In those situations, to make sure the uncertainty in our threshold value
estimation �̂�th would contain the true value, we assumed that the standard deviation in
the {𝑟𝑖}𝑖 values was not given by {𝜎𝑖}𝑖, but instead, was scaled up by the constant, positive
factor 𝜒𝜈. This means we estimate Var(𝝐) = 𝜒 2𝜈𝚺 and

Var(�̂�) = 𝜒 2𝜈(𝑱 𝑇𝚺−1𝑱)−1, if 𝜒 2𝜈 > 1. (C.12)

If one is in possession of Var(�̂�), the standard deviation of the least-squares fitting parameter
value �̂�th can be obtained from the square root of the corresponding diagonal element in
Var(�̂�). One can then calculate confidence intervals for the fitting parameters by identifying
with what factor the standard deviations should be multiplied to ensure the requested
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level of confidence. For this, we made use of the probability distribution 𝑓PD of Student’s𝑡-distribution:
𝑓PD(𝑡ci) ≡ Γ′(𝜈)(1+ 𝑡2ci𝜈 )−(𝜈+1)/2,

Γ′(𝜈) ≡ ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝜈−1)(𝜈−3)⋯5 ⋅32√𝜈(𝜈−2)(𝜈−4)⋯4 ⋅2 , if 𝜈 > 1 even,(𝜈−1)(𝜈−3)⋯4 ⋅2𝜋 √𝜈(𝜈−2)𝜈−4)⋯5 ⋅3 , if 𝜈 > 1 odd.

(C.13)

The 𝑡-distribution has mean 0 and variance 1 and converges to the normal distribution for𝜈→∞. However, smaller degrees of freedom 𝜈 give rise to heavier tails that describe larger
error ranges. Specifically, confidence intervals can be calculated by finding the 𝑡ci factor
that corresponds to the confidence interval of choice for the distribution of Eq. (C.13): for a
confidence interval of 𝐼ci, we find the corresponding 𝑡ci via ∫ 𝑡ci−𝑡ci 𝑓PD(𝜏)d𝜏 = 𝐼ci. In the plots
in this thesis, we show 95% confidence intervals. For large 𝜈 and a confidence interval of𝐼ci = 95%, we have 𝑡ci ≈ 1.96. Smaller values of 𝜈 lead to 𝑡ci values that are slightly bigger.
In Fig. C.1, we see an example of a threshold plot with a 95% confidence interval in the
value found for the threshold fitting parameter.
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D
Best-performing GHZ
generation protocols

At the end of Sec. 7.5.2, we discuss the Septimum protocol (depicted in Fig. 7.3): a GHZ
generation protocol found with the dynamic program of Sec. 7.2.2 that gives rise to the
highest thresholds for the simulation parameters used in several segments of Figs. 7.6, 7.7
and 7.8. In this appendix, we identify four additional GHZ generation protocols that perform
the best in multiple segments of the figures in Sec. 7.5.2: the protocols Sextimum, Decimum,
Undecum, and Duodecum. We depict the timed binary trees of these four protocols in
Figs. D.1, D.2, and D.3, and provide more information on their performance in Table D.1.
All four protocols are found with the dynamic program of Sec. 7.2.2 for the simulation
model and parameters used in Sec. 7.5.2. The associated protocol recipes used with these
protocols can be found in the repository of Ref. [1].

𝐾  Fig. 7.6 Fig. 7.7 Fig. 7.8

Sextimum 6 3 [4 ⋅102,5 ⋅102] 4.7 ⋅102
Septimum 7 3 0.96 [5 ⋅102,2 ⋅103] [6.3 ⋅102,1.1 ⋅103]
Decimum 10 3 [0.9,0.93] [2 ⋅103,2 ⋅105] 2 ⋅103
Undecum 11 3 [0.85,0.9]
Duodecum 12 4 [0.78,0.82]

Table D.1: Details about the GHZ generation protocols depicted in Figs. 7.3, D.1, D.2, and D.3. These protocols are
found with the dynamic program of Sec. 7.2.2. The numbers 𝐾 and  denote the minimum number of Bell pairs
and the maximum number of qubits per node required to generate the GHZ state, respectively. The last three
columns of the table denote locations or ranges on the 𝑥-axes of Figs. 7.6, 7.7 and 7.8 in which these protocols are
either the best-performing protocol or one of the best-performing protocols.
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Figure D.1: Timed binary trees of two well-performing protocols in the Bell pair fidelity and the link efficiency
sensitivity studies of Sec. 7.5.2. Clarification on the notation can be found in Fig. 7.3.
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Figure D.2: Timed binary tree of a well-performing protocol in the Bell pair fidelity and the link efficiency
sensitivity studies of Sec. 7.5.2. Clarification on the notation can be found in Fig. 7.3.



D

234 D Best-performing GHZ generation protocols

Duodecum protocol

T
im

e 
st

ep
 1

T
im

e 
st

ep
 2

AB

AB

AB

AB

𝑖𝑌1𝑖𝑌2

𝑖𝑌1𝑖𝑌2

𝑋  1𝑋  2

CD

CD

CD

CD

𝑖𝑌ଵ𝑖𝑌ଶ

𝑖𝑌1𝑖𝑌2

𝑋  1𝑋  2

BC

BC

BC

BC

𝑖𝑌1𝑖𝑌2

𝑖𝑌ଵ𝑖𝑌ଶ

𝑋  1𝑋  2

BCD

ABCD

Figure D.3: Timed binary tree of a well-performing protocol in the Bell pair fidelity and the link efficiency
sensitivity studies of Sec. 7.5.2. Clarification on the notation can be found in Fig. 7.3.



References

D

235

References
[1] S. de Bone, P. Möller, and D. Elkouss, “Data/software underlying the

publication: Thresholds for the distributed surface code in the presence
of memory decoherence.” 4TU.ResearchData, https://doi.org/10.4121/
708d4311-49b1-4ec2-b3cb-292d267df6be, Jan. 2024.

https://doi.org/10.4121/708d4311-49b1-4ec2-b3cb-292d267df6be
https://doi.org/10.4121/708d4311-49b1-4ec2-b3cb-292d267df6be




E

237

E
Quotient boundaries in unit

cell complex and crystal
embeddings

E.1Quotient boundaries in unit cell complex
By the prescription in Sec. 8.2.1, the unit cell complex is described as a sequence of vector
spaces

𝑄3 𝑄2 𝑄1 𝑄0,𝜕[𝐫]3 𝜕[𝐫]2 𝜕[𝐫]1
with each 𝑄𝑖 over the field ℤ2 and with quotient boundaries 𝜕[𝐫]𝑖 ∶ 𝑄𝑖 ↦ 𝑄𝑖−1. Similar to
the equivalence between 𝐶𝑖 and 𝐶𝐷−𝑖, we define 𝑄𝑖 ≅ 𝑄𝐷−𝑖. One may verify that the dual
quotient boundaries 𝜕[𝐫]𝑖 ∶ 𝑄𝑖 ↦ 𝑄𝑖−1 are related to primal boundaries as

𝜕[𝐫]𝑖 = (𝜕[𝐫]𝐷+1−𝑖)𝑇 . (E.1)

Importantly, the translation vector 𝐫 is also reversed to 𝐫. By dualizing boundary maps of
unit cell complex directly, one may construct a representation of the dual unit cell without
redefining it from the dual crystal. The zero map conditions 𝜕𝑖−1𝜕𝑖 = 0 take the form of∑𝑝 𝜕[𝐩]𝑖−1𝜕[𝐫−𝐩]𝑖 = 0 ∀𝐫. (E.2)

The proof is given in Sec. E.2.
It is convenient to represent the underlying unit cell complex as a labeled graph, which

is essentially a sparse representation of its boundaries as arcs and basis elements as nodes.
(We use nomenclature nodes and arcs for such a graph, to make the distinction between
vertices and edges of the chain complex.) Every basis element (𝐪𝑖)𝑛 ∈ 𝑄𝑖 is mapped to a
node 𝑞𝑖,𝑛, with two nodes 𝑞𝑖,𝑛 →[𝐫] 𝑞𝑖−1,𝑚 connected by an [𝐫]-labelled arc if the 𝑚𝑛th matrix
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element of the quotient boundary 𝜕[𝐫]𝑖 equals one. The maps 𝜕[𝐫]𝑖 thus form the biadjacency
matrices between the nodes of 𝑄𝑖 and 𝑄𝑖−1. We note that this description, including its
labeling, resembles the vector method for describing three-periodic networks as a quotient
graph [1], except that the nodes of our quotient graph also represent higher-dimensional
elements in a chain complex, such as edges, faces, and cells for a three-dimensional complex.
Examples of the square, triangular, and cubic lattice are given in Fig. E.1.
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Figure E.1: Unit cell complexes as a labeled graph. Unlabeled edges correspond to a Miller index containing only
zeros. (a) A square lattice. There is one face, two edges, and one vertex. The face 𝐟 is connected twice to both𝐞𝑥 and 𝐞𝑦 within ([00]) and outside ([01] and [10], respectively) the unit cell. Because the complex is self-dual,
similar relationships hold for its vertex 𝑣. (b) A triangular lattice. This lattice can be created by splitting the faces
of the square lattice: per unit cell, the triangular lattice has one extra face and one extra edge compared to the
square lattice. From the asymmetry in the quotient boundary maps it is clear that this lattice is not self-dual. (c) A
cubic lattice. Per unit cell, there is one cell 𝐪; three faces 𝐟𝑥 , 𝐟𝑦 , and 𝐟𝑧 ; three edges 𝐞𝑥 , 𝐞𝑦 , and 𝐞𝑧 ; and one vertex 𝐯.
E.2 Crystal embeddings
In Fig. E.2, we show an intuitive interpretation of how the vector spaces 𝐶𝑖 of the full
crystalline chain complex are constructed with the vector spaces 𝑄𝑖 of the unit cell complex
of Sec. E.1. To construct the boundary maps 𝜕𝑖 of the full crystal from the quotient boundary
maps 𝜕[𝐫]𝑖 , we let 𝜕(𝐧,𝐦)𝑖 ∶ 𝐶𝑖 ↦ 𝐶𝑖−1 be the boundary map that applies 𝜕[𝐧−𝐦]𝑖 from cell 𝑄(𝑚)𝑖
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to cell 𝑄(𝑛)𝑖−1 and is zero everywhere else:𝜕(𝐧,𝐦)𝑖 = 𝜕[𝐧−𝐦]𝑖 ⊗𝑒𝑛𝑚. (E.3)

Here, 𝑒𝑛𝑚 ∶ 𝐿′ ↦ 𝐿′ is a matrix unit, i.e., a matrix with a one at indices 𝑛,𝑚 and zero
elsewhere. Then the boundary maps of the embedding are given as a sum𝜕𝑖 =∑𝑚,𝑛 𝜕(𝐧,𝐦)𝑖 =∑𝑚,𝑛 (𝜕[𝐧−𝐦]𝑖 ⊗𝑒𝑛𝑚) . (E.4)

Because most 𝜕[𝐧−𝐦]𝑖 are zero, we can substitute 𝐫 = 𝐧−𝐦 and sum 𝐫 only over the non-zero
maps 𝜕[𝐫]𝑖 , leading to

𝜕𝑖 =∑𝑚,𝑟 (𝜕[𝐫]𝑖 ⊗𝑒𝑚+𝑟 ,𝑚) =∑𝑟 𝜕[𝐫]𝑖 ⊗(∑𝑚 𝑒𝑚+𝑟 ,𝑚) . (E.5)

In the second equality, the sum over 𝐦 may be carried over to the right by distributivity of
the tensor product over addition. This last term is a permutation matrix with a single one
in each row and column; it represents a translation of a lattice point 𝐦 to 𝐦+ 𝐫. Denote
this term as 𝐿𝐫 ≡∑𝑚 𝑒𝑚+𝑟 ,𝑚, such that the embedding is given as𝜕𝑖 =∑𝐫 𝜕[𝐫]𝑖 ⊗𝐿𝐫. (E.6)

Intuitively, the crystal boundary is formed by “gluing” the boundaries between the unit cells𝑄(𝐦)𝑖 and 𝑄(𝐦+𝐫)𝑖−1 at lattice points 𝐦 and 𝐦+ 𝐫 according to the map 𝜕[𝐫]𝑖 , and repeating this
process for every non-trivial quotient boundary map. The zero map conditions for quotient
boundaries (Eq. (E.2)) follow trivially. Because matrix units multiply as 𝑒𝑖𝑗 𝑒𝑘𝑙 = 𝛿𝑗𝑘𝑒𝑖𝑙 , the
multiplication of two permutation matrices𝐿𝐩𝐿𝐪 =∑𝑚,𝑛 𝑒𝑚+𝑝,𝑚𝑒𝑛+𝑞,𝑛 =∑𝑚,𝑛 𝛿𝑚,𝑛+𝑞𝑒𝑚+𝑝,𝑛=∑𝑛 𝑒𝑛+𝑝+𝑞,𝑛 = 𝐿𝐩+𝐪 (E.7)

represents the sum of their translations. Combining this result with the embedded bound-
aries (Eq. (E.6)) directly, the composition of two maps equals

𝜕𝑖−1𝜕𝑖 =∑𝑝,𝑞 𝜕[𝐩]𝑖−1𝜕[𝐪]𝑖 ⊗𝐿𝐩+𝐪 =∑𝑟 (∑𝑝 𝜕[𝐩]𝑖−1𝜕[𝐫−𝐩]𝑖 )⊗𝐿𝐫, (E.8)

where we have substituted 𝐫 = 𝐩+𝐪 in the last equality. This map is the zero map if and
only if the term in brackets is zero for all 𝐫, which is exactly the result stated in Eq. (E.2).

The above recipe for a crystal embedding may be expressed as a composition of direct
products between two graphs, given the following correspondences:

1. The matrix 𝜕[𝐫]𝑖 is the biadjacency matrix of the subgraph 𝐺[𝜕[𝐫]𝑖 ] of the unit cell
complex induced by edges with label [𝐫]. This definition is consistent with the graph
description given in Sec. E.1.
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Figure E.2: Abstract interpretation of how the full crystalline chain complex is created out of the unit cell complex
introduced in Sec. E.1. (a) We use the example of the unit cell of the square lattice—see Fig. E.1 for more details.
(b) As described in Sec. 8.2.1 of the main text, we use an 𝑁cells-dimensional vector space 𝐿′ ≡ ℤ⊕𝑁cells2 with as the
basis vectors the lattice positions of the lattice. (c) The vector spaces 𝐶𝑖 of the full crystalline chain complex are
realized with the graph product between 𝐿′ and the vector spaces 𝑄𝑖 of the unit cell complex. The full boundary
maps 𝜕𝑖 are constructed from the quotient boundary maps 𝜕[𝐫]𝑖 according to Eq. (E.5).

2. The matrix 𝐿𝐫 is the biadjacency matrix of the subgraph of the lattice 𝐺′[𝐿𝐫] induced
by edges that translate each lattice point by 𝐫. That is, each lattice point is represented
by a node 𝐦 and connected by an arc to the translated node 𝐦+ 𝐫.

The tensor products 𝜕[𝐫]𝑖 ⊗𝐿𝐫 inside the embedding (Eq. (E.6)) are direct products of
the corresponding edge-induced subgraphs 𝐺[𝜕[𝐫]𝑖 ] ×𝐺′[𝐿𝐫]. The sum over labels 𝐫, which
adds together adjacency matrices of the products modulo 2, composes the edge sets of the
corresponding graphs as a disjunctive union. In this way, the entire crystal complex may
be constructed directly as a graph from a given unit cell and a lattice of arbitrary size.
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F
Characterization of noisy

channels

The general process in the simulations of Ch. 8 can be described as an 𝑁 -qubit quan-
tum circuit  composed of Clifford operations, ending in a projective Pauli basis mea-
surement 𝐦(𝜌) = Π𝐦𝜌Π𝐦 with measurement projectors Π𝐦 ≡∏𝑚𝑘∈𝐦Π𝑚𝑘 for outcomes𝐦 = {𝑚1,𝑚2,… 𝑚𝑙} of (part of) the evolved state. For the sake of completeness, we also
assume that the circuit operates on an ancillary input system 𝐴 with a stabilizer state |𝜓⟩.
Such a circuit might represent an entanglement distillation circuit, operating on a mixed
Bell pair 𝜌 and an ancillary Bell pair to distill it with. Alternatively, it can represent the
action of a measurement-based fault-tolerant channel, where 𝜌 is the input code space, |𝜓⟩
is the state of all ancillary qubits in the channel,  represents the C𝑍 gates of the cluster
state and 𝐦 is the final Pauli-𝑋 measurement of every ancillary qubit. The output code
space is then (up to normalization) given by 𝐦(𝜌).

We consider three sources of noise, depicted schematically in Fig. F.1. First of all,
noisy ancillary input may not be a pure stabilizer state |𝜓⟩, but a mixture 𝜌𝐴 of possibly
non-stabilizer states. Second, the circuit  consists of imperfect operations, which we
assume as ideal operations followed by a mixture of Pauli gates. Lastly, the projection 𝐦
may produce a “wrong” outcome �̃�, which we model as a perfect operation 𝐦 followed
by classical bit-flips on 𝐦.

Arbitrary noisy ancillary input states 𝜌𝐴 that differ from the noiseless input |𝜓⟩ cannot
be simulated efficiently. If, on the other hand, 𝜌𝐴 may somehow be decomposed as a Pauli
channel 𝑃 acting on |𝜓⟩, the Pauli operators may be pushed through the circuit in the
same way as Pauli noise coming from imperfect gates. The key idea is to pre-process 𝜌𝐴 by
twirling with the stabilizers 𝑃 (𝑠) ∈  . Here,  is the stabilizer group describing the state|𝜓⟩, with associated destabilizer group  . In Sec. 2.4.4 it is shown that this allows us to
write the state Tw(𝜌𝐴) after twirling state 𝜌𝐴 as

Tw(𝜌𝐴) = 1| | ∑𝑃 (𝑠)∈ 𝑃 (𝑠) 𝜌𝐴 𝑃 (𝑠) = ∑𝑃 (𝑘)∈ 𝜆′𝑘 𝑃 (𝑘) |𝜓⟩⟨𝜓|𝑃 (𝑘) =𝑃 (|𝜓⟩⟨𝜓|) . (F.1)
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𝐦 = {𝑚ଵ, 𝑚ଶ, … , 𝑚𝑙}

𝜌

𝜌𝐴 ⋮

A B

in out

̃ 
̃𝐦

̃𝐦

Figure F.1: A noisy channel that can be characterized efficiently, given that 𝜌𝐴 is a convex combination of stabilizer
states, ̃ is the ideal circuit  with Pauli noise, and ̃𝐦 are ideal projectors followed by classical bit-flips on
the outcome 𝐦. Under suitable assumptions of the noise models used, the ̃𝐦 operation may be expressed as a
mixture of the ideal 𝐦 and Pauli operations.

Here, the prefactors 𝜆′𝑘 are given by 𝜆′𝑘 = 𝜆𝑘𝑘 = ⟨𝜓|𝑃 (𝑘) 𝜌𝐴 𝑃 (𝑘) |𝜓⟩. This shows how we can
approximate a noisy ancillary input state 𝜌𝐴 as a mixture of the ideal state |𝜓⟩ that is
depolarized by a Pauli channel 𝑃 . In the same way, we can twirl non-Pauli noisy pro-
cesses occurring during the application of the Clifford circuit to a Pauli form. Operators{𝑃 (𝑠)}𝑠 can now be propagated through the circuit  , forming another set of Pauli strings{𝑃 (𝑠) = 𝑃 (𝑠) †}𝑠 . Each Pauli operator 𝑃 (𝑠) that appears after  can each be split into a
string 𝑃 (𝑠)𝐵 appearing on the ancillary 𝐵 system and a string 𝑃 (𝑠)out appearing on the output sys-
tem as 𝑃 (𝑠) ≡ 𝑃 (𝑠)𝐵 ⊗𝑃 (𝑠)out. The string 𝑃 (𝑠)𝐵 commutes with some projectors Π𝑚𝑘𝑃 (𝑠)𝐵 = 𝑃 (𝑠)𝐵 Π𝑚𝑘
(where 𝑚𝑘 ∈𝐦), but anti-commutes with others as Π𝑚𝑘′𝑃 (𝑠)𝐵 = 𝑃 (𝑠)𝐵 Π−𝑚𝑘′ . We summarize
both cases as a commutation relationΠ𝐦𝑃 (𝑠)𝐵 = 𝑃 (𝑠)𝐵 Π𝐦⊙𝐦𝑠 , where𝐦𝑠 ∈ {+1,−1}|𝐦| is a string
of errors that represents the bit-flips due to the individual commutation relations above
and ⊙ corresponds to the element-wise product.

One can now derive an expression for the noisy operation ̃𝐦 as a mixture of ideal
operations with the addition of probabilistic Pauli strings:

̃𝐦(𝜌) =∑𝑠 𝑝𝑠𝑃 (𝑠)out𝐦⊙𝐦𝑠 (𝜌)𝑃 (𝑠)out. (F.2)

The noisy channel ̃𝐦 is a mixture of ideal operations 𝐦⊙𝐦𝑠 and Pauli noise, with
the mixture arising due to classical bit-flips 𝐦𝑠 that act on 𝐦. Because we assumed each
operation 𝐦 to be efficiently simulatable, the mixture can also be simulated efficiently.

On top of that, to account for faulty measurements, we assume that each projector Π𝑚𝑘
has a fixed probability 𝑝m of reporting the wrong outcome �̃�𝑘 ≡ −𝑚𝑘 , such that the noisy
measurement channel ̃𝑚𝑘 is given by a mixture

̃𝑚𝑘 (𝜌) = (1−𝑝m)Π𝑚𝑘𝜌Π𝑚𝑘 +𝑝mΠ−𝑚𝑘𝜌Π−𝑚𝑘 . (F.3)

For all measurement outcomes 𝐦 = {𝑚1,𝑚2,… 𝑚𝑙} this corresponds to the channel

̃𝐦(𝜌) =∑𝑠 𝑝𝑓Π𝐦⊙𝐦𝑓 𝜌Π𝐦⊙𝐦𝑓 ,𝑝𝑓 ≡ (𝑝m)ℎ𝑓 (1−𝑝m)𝑙−ℎ𝑓 , (F.4)

where ℎ𝑓 corresponds to the number of −1 terms in 𝐦𝑓—i.e., the Hamming weight in case
we interpret 𝐦𝑓 as a binary bit string. The additional mixing of measurement outcomes
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does not change the form of the noise channel as in Eq. (F.2) but introduces additional
terms 𝐦⊙𝐦𝑠⊙𝐦𝑓 with prefactors that reflect the probability of applying a particular
configuration of measurement errors:

̃𝐦(𝜌) =∑𝑠,𝑓 𝑝𝑠𝑝𝑓 𝑃 (𝑠)out𝐦⊙𝐦𝑠⊙𝐦𝑓 (𝜌)𝑃 (𝑠)out. (F.5)
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