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Summary

Dunkelflaute, meaning "dark doldrums" in German, denotes prolonged periods charac-

terized by low wind and solar energy production, attributed to overcast skies and calm

weather conditions. With wind and solar power assuming increasingly crucial roles within

the European energy landscape, these extreme weather conditions (Dunkelflaute events)

pose a significant challenge to grid stability. Addressing this challenge in power produc-

tion, the objective of this dissertation is to comprehensively analyze Dunkelflaute events

and devise both physical and machine learning-based methodologies for their prediction.

The research goal is approached through three key aspects: 1) conducting a statistical

analysis of the frequency, duration, seasonal variations, and associated weather patterns of

Dunkelflaute events to gain insights into their impact and underlying characteristics; 2)

developing diverse strategies for the identification and prediction of these events from both

a modelling and data availability standpoint to enhance predictability; and 3) projecting

future weather patterns under climate change scenarios and investigate the impact of

climate changes on this extreme weather.

The first aspect of the study delves into the statistical analysis and internal features of

Dunkelflaute events within a region encompassing eleven Northern European countries.

Utilizing power production data from Renewables.ninja, as well as actual data from TSOs,

key characteristics such as frequency, duration, and seasonal effects of Dunkelflaute were

identified. Dunkelflaute events were classified based on specific criteria (both wind and

solar capacity factors below 0.2 and duration longer than 1h), leading to the discovery of

5-10 prolonged events lasting more than 1 day in Germany, Norway, and the UK, with

some events enduring up to 5 days. The winter season was found to host the highest

frequency of Dunkelflaute events, with durations ranging from 50 to 100 hours per month.

Using the ERA5 reanalysis dataset, meteorological drivers behind Dunkelflaute events

such as large stationary high-pressure systems and extensive low cloud coverage were

identified. These blocked regimes originating from the extensive high-pressure systems

can disrupt airflow, particularly affecting wind power production in Northern European

countries. Additionally, a simulated grid connection highlighted the importance of system

stability during Dunkelflaute events, emphasizing the potential benefits of interconnecting

European grid systems to mitigate such occurrences.

The second aspect of the study focuses on the identification and prediction of Dunkelflaute

events. The introduction of the WISRnet deep learning framework incorporated a CNN-AE

model for weather pattern downscaling and a region-based k-means model for automating

Dunkelflaute related pattern clustering. Validated with aggregated wind and solar power

production data from Belgium, this strategy showcased promising results. Furthermore, the

application of the WRF model in simulating atmospheric conditions during Dunkelflaute

events demonstrated its effectiveness in predicting wind power production and insolation

changes. Lastly, a LightGBM-based approach was proposed for estimating wind and solar

power production during Dunkelflaute events. With a comprehensive range of input vari-
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ables considered (such as wind speed, insolation, boundary layer height and sensible heat

flux), the LightGBM model surpassed other machine learning models including RF and

XGBoost and physical models like WRF, providing accurate and reliable power production

estimations during Dunkelflaute events.

The third aspect of the study explores the influence of climate change on Dunkelflaute

events. By projecting future weather patterns and simulating various emission scenarios,

enhancements were made to the WISRnet model. This refined model now effectively

clusters projected wind speed and insolation patterns to identify Dunkelflaute events.

It was observed that the frequency of future Dunkelflaute events is greatly influenced

by the different emission scenarios. Specifically, under the negative emission scenario

RCP2.6, Dunkelflaute frequency exhibits a negative trend, while both weak and strong

emission scenarios show positive trends. These results underscore the noticeable impact of

climate change on the occurrence of Dunkelflaute events, highlighting the importance of

integrating climate considerations into future grid planning.

In summary, this dissertation makes a major contribution by enhancing comprehension

of Dunkelflaute events and proposing three distinct identification and prediction method-

ologies: Firstly, the introduction of an unsupervised deep learning framework, WISRnet,

enables effective clustering of Dunkelflaute related patterns and event identification. Sec-

ondly, a WRF model-based approach is employed to emulate atmospheric conditions and

predict Dunkelflaute events. Lastly, a LightGBM-based approach is utilized to estimate

wind and solar power production during Dunkelflaute events, offering accurate and reliable

insights into power generation dynamics during such occurrences.
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Samenvatting

Dunkelflaute, wat "donkere windstiltes"betekent in het Duits, duidt op langdurige perio-

des gekenmerkt door lage wind- en zonne-energieproductie, toegeschreven aan bewolkte

luchten en rustig weer. Met wind- en zonne-energie die steeds crucialere rollen aanne-

men binnen het Europese energielandschap, vormen deze extreme weersomstandigheden

(Dunkelflaute gebeurtenissen) een aanzienlijke uitdaging voor de stabiliteit van het elek-

triciteitsnet. Om deze uitdaging in de stroomproductie aan te pakken, is het doel van

deze dissertatie om Dunkelflaute gebeurtenissen uitgebreid te analyseren en zowel fysieke

als op machine learning gebaseerde methodologieën te bedenken voor hun voorspel-

ling. Het onderzoeksdoel wordt benaderd via drie belangrijke aspecten: 1) het uitvoeren

van een statistische analyse van de frequentie, duur, seizoensvariaties en bijbehorende

weerspatronen van Dunkelflaute gebeurtenissen om inzicht te krijgen in hun impact en

onderliggende kenmerken; 2) het ontwikkelen van diverse strategieën voor de identificatie

en voorspelling van deze gebeurtenissen vanuit zowel een modellerings- als gegevens-

beschikbaarheidsoogpunt om voorspelbaarheid te verbeteren; en 3) het projecteren van

toekomstige weerspatronen onder klimaatveranderingsscenario’s en onderzoeken van de

impact van klimaatverandering op dit extreme weer.

Het eerste aspect van de studie duikt in de statistische analyse en interne kenmerken

van Dunkelflaute gebeurtenissen binnen een regio die elf Noord-Europese landen omvat.

Door gebruik te maken van de energieproductiegegevens van Renewables.ninja, evenals

werkelijke gegevens van TSO’s, werden belangrijke kenmerken zoals frequentie, duur en

seizoenseffecten van Dunkelflaute geïdentificeerd. Dunkelflaute gebeurtenissen werden

geclassificeerd op basis van specifieke criteria (zowel wind- als zonnecapaciteitsfactoren

onder 0,2 en een duur langer dan 1 uur), wat leidde tot de ontdekking van 5-10 langdurige

gebeurtenissen die langer dan 1 dag aanhielden in Duitsland, Noorwegen en het Verenigd

Koninkrijk, waarbij sommige gebeurtenissen tot 5 dagen duurden. Het winterseizoen bleek

de hoogste frequentie van Dunkelflaute gebeurtenissen te hebben, met duur variërend van

50 tot 100 uur per maand. Met behulp van de ERA5-heranalyse dataset werden meteorologi-

sche factoren achter Dunkelflaute gebeurtenissen zoals grote stationaire hogedrukgebieden

en uitgebreide bewolkte luchten geïdentificeerd. Deze geblokkeerde regimes afkomstig

van uitgebreide hogedrukgebieden kunnen de luchtstroom verstoren en met name de

windenergieproductie in Noord-Europese landen beïnvloeden. Daarnaast benadrukte een

gesimuleerde netwerkaansluiting het belang van systeemstabiliteit tijdens Dunkelflaute

gebeurtenissen, waarbij de potentiële voordelen van het koppelen van Europese netwerk-

systemen benadrukt werden om dergelijke gebeurtenissen te verzachten.

Het tweede aspect van de studie richt zich op de identificatie en voorspelling van Dun-

kelflaute gebeurtenissen. De introductie van het WISRnet diep leernetwerkincorporeerde

een CNN-AE model voor het verkleinen van weerspatronen en een op regio gebaseerd

k-means model voor het automatiseren van het clusteren van Dunkelflaute gerelateerde

patronen. Gevalideerd met geaggregeerde wind- en zonne-energieproductiegegevens uit
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België, toonde deze strategie veelbelovende resultaten. Verder toonde de toepassing van

het WRF-model bij het simuleren van atmosferische omstandigheden tijdens Dunkelflaute

gebeurtenissen de effectiviteit ervan aan in het voorspellen van windenergieproductie en

veranderingen in zonnestraling. Ten slotte werd een op LightGBM gebaseerde aanpak

voorgesteld voor het schatten van wind- en zonne-energieproductie tijdens Dunkelflaute

gebeurtenissen. Met een uitgebreid scala aan overwogen invoervariabelen (zoals windsnel-

heid, zonnestraling, grenslaaghoogte en sensibele warmtestroom) overtrof het LightGBM-

model andere machine learning modellen, waaronder RF en XGBoost, en fysische modellen

zoals WRF, met nauwkeurige en betrouwbare schattingen van de energieproductie tijdens

Dunkelflaute gebeurtenissen.

Het derde aspect van de studie onderzoekt de invloed van klimaatverandering op Dun-

kelflaute gebeurtenissen. Door toekomstige weerspatronen te projecteren en verschillende

emissiescenario’s te simuleren, zijn verbeteringen aangebracht in het WISRnet-model. Dit

verfijnde model cluster nu effectief geprojecteerde windsnelheid- en instralingspatronen

om Dunkelflaute gebeurtenissen te identificeren. Er werd opgemerkt dat de frequentie

van toekomstige Dunkelflaute gebeurtenissen sterk beïnvloed wordt door de verschillende

emissiescenario’s. Specifiek vertoont de Dunkelflaute frequentie onder het negatieve emis-

siescenario RCP2.6 een negatieve trend, terwijl zowel zwakke als sterke emissiescenario’s

positieve trends tonen. Deze resultaten benadrukken de merkbare impact van klimaatver-

andering op het voorkomen van Dunkelflaute gebeurtenissen en onderstrepen het belang

van het integreren van klimaatoverwegingen in toekomstige netplanning.

Samenvattend draagt deze dissertatie aanzienlijk bij aan het begrip van Dunkelflaute

gebeurtenissen en stelt drie verschillende methodologieën voor identificatie en voorspelling

voor: Ten eerste maakt de introductie van een ongesuperviseerd diep-leer-raamwerk, WISR-

net, effectieve clustering van Dunkelflaute gerelateerde patronen en gebeurtenisherkenning

mogelijk. Ten tweede wordt een aanpak gebaseerd op het WRF-model gebruikt om atmos-

ferische omstandigheden na te bootsen en Dunkelflaute gebeurtenissen te voorspellen. Ten

slotte wordt een aanpak gebaseerd op LightGBM gebruikt om de productie van wind- en

zonne-energie tijdens Dunkelflaute gebeurtenissen te schatten, waardoor nauwkeurige en

betrouwbare inzichten worden geboden in de dynamiek van energieopwekking tijdens

dergelijke gebeurtenissen.
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1.1 Background & Context
Transitioning to renewable energy sources is a crucial aspect of global efforts to promote

energy sustainability. The Paris Agreement, which was signed in the course of the 21st

Conference of the Parties (COP21) in 2015, marks a significant milestone toward a more

sustainable energy future. The agreement aims to control the increase in global temperature

to 1.5-2°C up above pre-industrial scales and encourage the adoption of renewable and

sustainable economic practices [1, 2]. To support these endeavors, the European Commis-

sion has established the 2030 Framework for Climate and Energy [3] and the European

Green Deal (EGD) [4] (as shown in Fig. 1.1), which seek to reduce greenhouse gas (GHG)

emissions by at least 40% by 2030 and ultimately achieve a net-zero GHG emission economy

by 2050. This transition to renewable sources is a significant step, with the objective of

Europe attaining worldwide leadership in renewable energies [5], with at least 32% re-

newable source share of the whole energy consumption by 2030. This involves significant

investment in wind and solar power parks, with the expectation that they will contribute

at least 80% of electricity production by 2050 [6].

Figure 1.1: European green deal. [4]

In Europe, the use of renewable energy sources has been steadily increasing, with

renewable energy contributing an increasing proportion of the region’s energy consump-

tion. From 2004 to 2018, the share of renewable sources as a fraction of the whole energy

consumption in Europe rose from 9.6% to 18.9% [7]. In 2019, renewable energy accounted

for approximately 20% of energy consumption [8]. This trend continued in 2020, with
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renewable energy sources, particularly wind and solar, generating more electricity (40%)

than fossil fuels (34%) [9, 10]. During this time, the European Union has achieved the sec-

ond largest installed capacity (511.6 GW) of renewable energy globally [11]. A significant

portion of this capacity is derived from wind and solar power, with installed solar power

growing from 71.5 GW in 2012 to 160.4 GW and wind power growing from 97.2 GW to

187.5 GW over the same period. These trends highlight the impressive growth of renewable

energy sources in Europe, particularly wind and solar energy. Offshore wind power, in

particular, has recorded significant growth. Figure 1.2 shows the trends in offshore wind

power growth in Europe for the period 2010–2020.

Figure 1.2: Offshore wind power installed capacity trend during the period 2010–2020. [12]

The North Sea Region (NSR), i.e. the North Sea and that part of north-western Europe

bordering the North Sea, will play a crucial role in the energy transition. The NSR is

energy-intensive due to its relatively dense population and the fact that it accounts for

approximately 60% of the EU’s GDP. Following its previous reliance on the oil and gas

industry [13, 14], the NSR now plans to exploit the considerable potential for various

renewable energy sources to decarbonize the region [15]. For instance, it is expected that

at least 180GW of offshore wind parks will be installed in the NSR to meet the EU’s targets

[16]. This development has also led to several major transmission grid projects, such as

the North Seas Countries’ Offshore Grid Initiative (NSCOGI) in 2010 [17] and the North

Seas Energy Cooperation (NSEC) in 2016 [18], to support the decarbonization plan.

The energy transition in the NSR has already led to a decrease of approximately 10% in

greenhouse gas (GHG) emissions per decade from 1990 to the present. The NSR countries

are committed to advancing this pace even further. They propose even more ambitious

goals than the 40% reduction in GHG emissions (except 35% from Belgium) from 1990 levels

advised by the EU. For example, the goals range from 49% for the Netherlands, 55% for

Germany, 68% for the UK, and 70% for Denmark. By 2050, Belgium, the Netherlands, and

Norway have ambitious plans to achieve 95% reductions in emissions, while Denmark,
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Germany, Sweden, and the UK expect net-zero emissions [19]. To achieve the goals, Fig.

1.3 shows the energy mix for different scenarios in 2050.

Figure 1.3: Primary energy mix in the NSR for selected scenarios in 2050. [19]

1.2 Dunkelflaute
Deploying wind and solar power plants is crucial for the energy transition. Despite the

numerous benefits of these renewable sources, their power production is highly variable

and not fully predictable, which can lead to significant challenges for grid operators. Due

to the increasing penetration of these renewable sources and the decreasing presence

of conventional generators, the electricity grid relies more on the weather and climate

conditions [20, 21, 22, 23]. This intermittency, variability, and limited predictability, can

cause challenges for load balancing and increase the risk of blackouts at the grid scale,

increasing the burden on the grid operator.

The term ’Dunkelflaute’ refers to long periods when both wind and solar energy

production are significantly low due to cloudy and calm weather conditions [24, 25]. It is

derived from the two German terms ’Dunkelheit’ and ’Windflaute’, meaning darkness and

little wind, respectively. It is also known as ’dark doldrums’ and ’wind and solar drought’

in other literature [24, 26, 27]. Dunkelflaute periods of simultaneous low power generation

from wind and solar sources have been reported in many regions, including Europe [28,

29], Japan [26] and Australia [30]. For example, according to reference [31], there was a

Dunkelflaute event between December 12 and 24, 2007, during which renewable generation

was only about one-third of the average. In [32], the climatology of Dunkelflaute events

in Germany between 1979 and 2018 was investigated under the assumption of a 100%

renewable energy scenario. The study found an average of four Dunkelflaute events per

year with a duration of up to nine days. A study from TU Dresden reported that in 2017, a
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Dunkelflaute event persisted for 10 days between January 16 and 27, combined with high

demand [33].

The consequences of Dunkelflaute events can be significant. They have the potential

to cause energy deficits, leading to higher electricity prices and power outages, depending

on the magnitude and conditions of the power system. When Dunkelflaute occurs during

cold weather [29, 34], it can pose a significant threat to the power grid’s security and

balance, potentially causing energy supply breakdowns [35, 36] exacerbating the challenges

associated with higher demand. Consequently, it is necessary to cover the load gap with

flexible generation or imported electricity, which can significantly increase costs. Along

with short-term sudden changes due to ramp events (a sharp change in power within a

short time) [37, 38], Dunkelflaute events can lead to adverse economic effects. For example,

in 2021, Northern Europe countries (including Denmark, Ireland, and the UK) experienced

a significant decrease in wind energy production due to a wind drought. As a result, there

was a sudden increase in demand for electricity generated from natural gas, which led to

higher electricity prices. On March 22nd of 2022, Tokyo was exposed to the threat of a

blackout because of a rise in power demand resulting from snowfall and lower temperatures.

The supply deficiency from solar and the shutdown of a thermal power station further

exacerbated the situation [39].

1.3 Climate Change
The urgency of mitigating climate change has led to ambitious plans to promote the use

of renewable energy sources. However, this shift towards renewables could make the

energy system more sensitive to climate variability. While renewable energies are essential

for mitigating climate change, their dependency on weather and climate makes them

vulnerable to changes in these factors [40]. Climate change can affect both long-term

averages and short-term extremes of wind and solar weather conditions, which can directly

affect the related renewable production [41, 42, 43, 44]. This vulnerability could affect not

only the mean production of renewable energy but also its temporal stability. Previous

research, which used climate projection methods, has predicted that 10%–20% power in

Europe will change with the climate in the 21st century [45, 46, 43]. Therefore, it is crucial

to address the challenges posed by climate change to renewable energy production in order

to ensure a sustainable and reliable energy future.

Several studies have analyzed the effect of climate change on wind and solar power

production in Europe. According to past research, the impact of climate change on the

mean production of wind and solar power is negative but limited, and the reductions are

projected to be between 0-10% in different scenarios [40, 43, 44, 47]. A declining trend

in near-surface wind speeds and wind power generation is indicated in large regions

throughout Europe (with the exception of the region close to the Black Sea) [48]. Offshore

wind energy production is projected to slightly decrease in most regions in Northern

Europe and significantly decrease in the Mediterranean (except for the sea areas close to

the southwest Iberian Peninsula) [49]. According to the medium greenhouse gas emission

scenario in [50], surface solar radiation in Europe is projected to increase in central and

southern Europe but decrease in northern and eastern areas. It was observed that the most

significant reductions in solar PV supply would be experienced in Northern European

countries. However, the overall average change in PV production in Europe is expected to
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be small, albeit that significant changes could occur at the country level.

The frequency of Dunkelflaute events is also likely to vary with climate change as re-

search has indicated that related weather variables like precipitation and typhoon intensity

will be affected [26]. A Dunkelflaute event which occurred in 2012 was used to simulate

the 2030 future scenario, which found that the requirement for backup energy will increase

by 71% [34]. Research to investigate the impact of climate changes on Dunkelflaute events

is still limited, while assessing this effect is important for maintaining the supply-demand

balance of grid systems. As renewable energy sources continue to play a crucial role in

the transition to a low-carbon economy, ensuring the resilience of the power system to

climate change-related challenges like Dunkelflaute events is a pressing research priority.

1.4 ResearchQuestions
To handle the risks from Dunkelflaute events, we propose to gain further scientific in-
sights into historic and future Dunkelflaute events and explore reliable prediction
approaches for these events. A set of research sub-questions are studied:

Q1. What is the frequency, duration, driver, and spatial coherence of Dunkelflaute in

Northern Europe?

Q2. Can we automatically identify Dunkelflaute events using publicly available meteo-

rological data instead of limited power data?

Q3. Can we reliably model and predict Dunkeflaute events using a contemporary

mesoscale model?

Q4. Canwe reliably estimate Dunkeflaute events using contemporarymachine-learning

methods? How is their performance compared with mesoscale models?

Q5. What will Dunkelflaute be like in the future in the context of climate change?

1.5 Dissertation Outline
This dissertation addresses the proposed research questions and outlines various approaches

to investigate the phenomenon of Dunkelflaute, including climatological analysis, physi-

cal modeling, and machine learning. The following chapters address the corresponding

research sub-questions step by step.

In Chapter 3, a climatological study provides initial statistical insight into Dunkelflaute

events in eleven countries surrounding the North and Baltic Sea regions. Meteorological

and power production datasets for multiple years were utilized to quantify various statistics

related to Dunkelflaute events and identified their underlying meteorological drivers. In

addition, the weather patterns associated with these events, based on surface pressure and

cloud cover, were also analyzed. By assuming an interconnected EU-11 power system, the

effect of aggregating production over a wide area was also investigated.

In Chapter 4, an unsupervised deep learning framework named WISRnet was proposed

to identify Dunkelflaute events throughmeteorological datasets. A CNN-based autoencoder

was used to downscale the wind speed and insolation patterns, which are further fed to

a k-means clustering model. This research successfully linked Dunkelflaute events with

WISRnet-derived clusters and realized their identification without any power data.
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In Chapter 5, a simulation of a Dunkelflaute event off the coast of Belgiumwas conducted

using a mesoscale model, namely the Weather Research and Forecasting (WRF) model. To

validate the accuracy of the model, a wide range of meteorological data sets (from such as

floating lidars, radiosondes, and weather stations) and measured power production data

were used. This research also provided additional insights regarding the WRF model’s

reliability in capturing Dunkelflaute events.

In Chapter 6, the capability of a machine learning model, LightGBM, was first demon-

strated for estimating wind and solar power production during Dunkelflaute periods.

Through multi-location and multi-variable modeling, this research provided not only pre-

cise estimation but also quantified the importance of various meteorological features in

the prediction.

In Chapter 7, Dunkelflaute events were investigated through three future scenarios

with different emission levels using the unsupervised deep learning framework, WISRnet,

to cluster the events. Important insights into the relationship between Dunkelflaute and

climate change were gained.

In Chapter 8, findings and suggestions for future research are summarised and discussed.
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2.1 Meteorological Studies

2.1.1 Meteorological characteristics of Dunkelflaute

The scientific field of energy meteorology has expanded rapidly in response to the knowl-

edge required concerning the relationship between climate and energy production-demand

balance. Experts have played a vital role in this interdisciplinary field by investigating the

impact of meteorological variability on energy generation and consumption, examining

the potential effects of future climate change, and studying the seasonal predictability

of energy-associated features. To better understand the variability of renewable energy

generation and its drivers, it is essential to examine broad-scale synoptic weather patterns

(WPs) that influence the evolution of local factors. Previous research has suggested that

fluctuations in renewable energy are influenced by weather variability at different spatial

and temporal scales, which involves the development of large-scale WPs [1, 2, 3].

Many researchers have investigated weather patterns related to low renewable power

production. According to studies such as [4] for Germany and [5] for Europe, low renewable

production events may be attributed to the presence of high-pressure systems (as shown

in Fig. 2.1). These systems, which are referred to as blocking conditions, are characterized

by high surface pressure, reduced winds, and cold and foggy weather during winter. These

cloudy conditions are different from the usual blue sky accompanied by high surface

pressure. In this condition, wind and solar power generation in Central Europe may

experience subpar output, as highlighted in [2, 3]. For the four-weather regime classification

developed in [6, 7, 8], the negative phase of the North Atlantic Oscillation (NAO), strongly

associates with the Greenland Blocking weather regime, is correlated with cold and weak

wind conditions [9, 2, 10]. This regime is linked to a reduction in energy production

and an increase in energy demand across Europe. In a study focused on winter days, [3]

investigated low wind energy output in Europe and discovered that the lowest wind power

capacity factor (CF) for Germany occurred along with the European blocking weather

regime, with a negative wind speed anomaly contributing to this effect. [11] reported a

connection between energy compound events (ECEs) and weather regimes in Germany,

with a higher frequency of occurrences during the European and Greenland Blocking

weather regimes. These blocked regimes pose a high risk to adjacent countries located near

the North and Baltic Seas, as they could face up to 50% underproduction. Furthermore, the

study found that the odds of ECEs increase under the presence of blocked regimes, leading

to widespread impacts across multiple European countries.
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Figure 2.1: Cloud cover and wind speed anomalies associated with a high-pressure system during a period of low

renewable energy production. [4]

Research focusing on Dunkelflaute events shows similar findings. According to [12,

4], Dunkelflaute can be classified by Grosswetterlagen, which is a system that categorizes

circulation patterns in Europe using 29 different weather types that focus on regional

conditions. It has been found that the most frequent pattern for Dunkelflaute in Germany

is "Grosswetterlage GWL9," which is represented by a high-pressure system over Central

Europe and has similar characteristics to the European Blocking weather regime. The wind

speed and cloud cover anomaly composite plots in Fig. 2.1 can explain this weather pattern

well. In [13] three blocking weather regimes were identified that were most frequently

associated with Dunkelflaute, namely European Blocking (22%), Scandinavian Blocking

(15%), and Greenland Blocking (14%). The most frequent pattern for Dunkelflaute was

also found to be a high-pressure system over Germany and Central Europe, associated

with the European Blocking weather regime. Dunkelflaute periods caused by Greenland

Blocking are considered cold Dunkelflaute, with temperatures up to 4 °C colder than the

30-day running climatology, which leads to an increase in electricity demand for electrical

heating. Such increased demand during periods of lower-than-normal power output by

renewable energy sources puts a strain on the energy system. Additionally, it was found that

Dunkelflaute can occur not only when high pressure prevails but also in conditions where

Germany is situated between pronounced weather systems elsewhere. Notably, the most

critical cold Dunkelflaute periods occur predominantly during the Greenland Blocking

weather regime. In [14], research was carried out on the link between meteorological

drivers and extreme residual load (RL) events in Japan. They used self-organizing maps

(SOM) to classify WPs and found that these extreme RL events leading to energy shortage

were strongly influenced by certain WPs. In particular, high RL mostly resulted from WPs

with a strong pressure gradient, which causes cold air to come from the north. However,

the increase in variable renewable energy resulted from cloudy and windless WPs are

usually caused by southern coastal extratropical cyclones. [15] also explored the synoptic

WPs correlated with "dark doldrums" in Japan, using SOM to classify WPs. They found that

the frequent occurrence of dark doldrums was connected with four specific WPs, which
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were produced by the interchange of rain fronts and cold air intrusion. These WPs have

expanded cloud cover and calm wind.

In addition to WPs, other meteorological characteristics of Dunkelflaute have also

been investigated, such as the seasonal dependency and the Dunkelflaute duration. [13]

reported that Dunkelflaute occurs mainly in autumn and winter in Germany. During

these seasons, there is low mean solar capacity factor due to low solar radiation, and

thus Dunkelflaute events are mainly the result of periods of low-wind duration. These

findings were consistent with the studies of [12, 4]. [4] further observed that all shortfall

events happened in these seasons regardless of the event duration, with most of the events

occurring in January (7 to 8 events out of 20 occur in this month), as shown in Fig. 2.2.

According to [13], the duration of Dunkelflaute events associated with weather regimes is

quite long, particularly for Greenland Blocking weather regimes, with an average of 19

days. [12] also studied Dunkelflaute in Germany from 1995 to 2015 and identified 23 wind

events lasting at least 48 hours. The identification was based on capacity factors below

certain threshold values. Longer events were less frequent, with around 6 events lasting

more than 96 hours.

Figure 2.2: Number of shortfall events per month from 1995 to 2015 in Germany. [4]

2.1.2 Forecasting Dunkelflaute
Since Dunkelflaute events have a close relationship with weather regimes, it is possible

to use weather regimes as a predictor, which can identify both the probability and dura-

tion of a potential Dunkelflaute event. Various methods have been suggested to forecast

Dunkelflaute events, as well as energy supply and demand, including grid-point-based

and pattern-based methods [16, 17]. The former utilizes grid-point surface meteorological

forecasts to predict relevant power quantities, while the latter assigns the large-scale atmo-

spheric flow to a pre-identified circulation pattern, and estimates surface impact in two

steps. [17] have shown that grid-point forecasts have higher accuracy for short lead times
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(days 0-10), while pattern-based methods show greater accuracy for extended lead times

(day 12+).

With the results of [13], combined with those of [18] indicating that surface weather

is influenced by weather regimes, and the promising skill of using weather regimes in

sub-seasonal to seasonal forecasting, weather regime forecasts are essential for energy

system operators to prepare for multi-day supply shortages. However, according to [19,

20], the blocking-type weather regimes have lower intrinsic predictability, particularly

over Europe, which can result in lower forecast skill. The limitations might also arise

from the difficulties that models face in accurately capturing the underlying physical

processes, which vary with different spatial scales, such as latent heat release in meso–scale

and synoptic-scale systems [21, 22]. These errors affect the prediction of transition into

blocking-type regimes, which further contribute to lower forecast skill [23, 24]. To enhance

the sub-seasonal predictability of blocking, it is necessary to investigate the blocking

dynamics on sub-seasonal temporal scales in the future, as suggested by [18].

2.2 Power forecasting: from physical models to big
data

Accurate power forecasting is a critical task in the renewable energy sector, especially

for sources like solar and wind that are subject to variability due to weather patterns.

To address this challenge, a variety of approaches have been developed, which have

been broadly categorized into four branches: physical approaches, statistical approaches,

artificial intelligence strategies, and hybrid approaches [25, 26, 27].

Numerical weather prediction (NWP) models are widely used in power forecasting,

particularly for wind power. These models use physical and mathematical equations to

simulate the atmosphere’s behavior and predict meteorological variables, such as wind

speed, temperature, and air pressure [28]. While NWP models are primarily proposed

to predict weather conditions over extensive regions, their results can be aggregated to

derive predictions of wind and solar power. Many researchers have reviewed the use of

global and regional NWP models, as well as the commercial and operational systems for

predicting wind power production [29, 30], and more effective hybrid models have been

proposed [31]. While NWP models can provide accurate predictions, several issues have

become troublesome for the applications. Firstly, the computational burden dramatically

increases due to the high physical complexities [32]. Physical models usually require a

large quantity of weather variables that must be available during calculation, which is

unrealistic for many scenarios. Secondly, the prediction error accumulates with time since

achieving an absolutely accurate solution to the partial differential equations in NWP

models is impossible [33, 34]. Due to these drawbacks, it is necessary to develop new

approaches with low cost and general availability.

Statistical models for power prediction are mathematical approaches based on regres-

sion assumptions and parameter optimization using big data. In wind power forecasting,

statistical models are commonly used to forecast wind speed based on time-series data [30].

Various statistical methods such as an autoregressive model [35], exponential smoothing

[36], and autoregressive integrated moving average [37, 38] have been developed to op-

timize the model parameters and enhance forecasting stability. However, these models
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rely on assumptions regarding the data distributions and are not suitable for nonlinear

time series forecasting [25]. To improve prediction accuracy, non-linear statistical models

have been developed, including non-linear autoregression with exogenous input [39],

multiple-kernel relevance vector regression [40], and Bayesian-based adaptive robust multi-

kernel regression [41]. Although plenty of approaches have been proposed, the accuracy

of traditional statistical models has been limited by their ability in extracting data features.

2.3 Machine Learning (ML)
2.3.1 ML in earth and atmospheric science
Machine learning (ML) has become a popular approach to identify extreme weather events.

It refers to a branch of artificial intelligence that utilizes large datasets to identify intricate

patterns and generate tailored predictions or decisions [42, 43]. Over the past decade,

machine learning has seen unprecedented growth in many scientific domains, including

the Earth system sciences. Due to the Earth system’s nonlinear and chaotic behavior,

learning complex nonlinear dynamics from data is a promising approach for accurate

modeling. The European Centre for Medium-Range Weather Forecasts (ECMWF), for

example, has accumulated hundreds of petabytes of Earth-system-related data in its archive

[44]. Geosciences have undergone a major transformation with the advent of big data and

numerous geoscience data banks have been produced, providing potential for geoscientists

to apply machine learning for accurate modeling of the state and evolution of the Earth

system [45]. Additionally, recent activities have resulted in newly-generated data resources

with consistently high quality and high spatio-temporal resolutions, e.g., few-kilometer

and hourly resolution (or better) for Europe [12].

These advancements have made long-term, gridded meteorological data readily avail-

able in the public domain, which has allowed for the application of many machine-learning

methods that are a natural fit for the problems encountered in geoscience applications.

There has been a wide range of machine learning applications across all components of

Earth system models, as well as across the entire workflow of weather and climate predic-

tion models [44]. The specific applications encompass the atmosphere and atmospheric

chemistry [46, 47], ocean [48], land surface, sea ice, land ice [49], severe weather [50] and

for all the processes of weather and climate prediction models [51, 52, 53].

One specific application of ML in geosciences is classification and pattern recognition.

For instance, [54] employed a deep convolutional neural network (CNN) to classify tropical

cyclones, atmospheric rivers, and weather fronts to detect these extreme events. Assisted

by a Bayesian approach, the ML system achieved high classification accuracy, ranging

from 89% to 99%. In regions lacking labeled data, a 3D convolutional auto-encoder was

applied by [55] to enhance the identification of extreme climate events. [56] proposed a

deep learning strategy using generative adversarial networks and convolutional neural

networks, which presents high efficiency in weather pattern classification for PV power

forecasting.

Time-series analysis is another typical application, which is used to analyze the internal

relationships between geoscience variables and future weather conditions. By analyzing his-

torical data on temperature, precipitation, and other meteorological variables, researchers

can use time-series models to predict future trends and patterns. For example, [57] proposed
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a temporal convolutional neural (TCN) network-based approach, which forecasts weather

variables (including pressure, temperature, and humidity) using time-series data with low

prediction errors. In addition, by analyzing the contribution of variables to the prediction,

researchers can further obtain the relationship between input and prediction variables [58].

Machine learning algorithms have also been proven useful in addressing specific chal-

lenges within the geoscience domain. An example of this is the reconstruction of missing

values in climate datasets, which is a task that can be accomplished using Convolutional

Neural Network (CNN)-based algorithms. A study by [59] demonstrated the effective-

ness of this approach in reconstructing missing values in global climate datasets like

HadCRUT4. Another example is learning from unlabeled data which is inconvenient to

handle by researchers. ML approaches like semi-supervised and unsupervised learning

can help alleviate the dependence on labels. For instance, [60] investigated the application

of semi-supervised learning with a self-training-based label propagation method, which

demonstrated superior performance to supervised learning approaches.

2.3.2 ML in power forecasting

Machine learning (ML) has gained widespread popularity as a promising technique for

power forecasting [61]. The primary advantage of ML over traditional statistical methods

is its capability to process massive amounts of data, extract useful features, and generate

accurate predictions. Power forecasting, which involves predicting energy demand and

production, relies heavily on historical data of weather conditions and energy usage. ML

models can be trained using these data to capture the complex relationships between

energy production, weather patterns, and other relevant factors. Many review papers have

conducted comprehensive comparisons and summaries of the ML methods for wind and

solar forecasting [62, 63, 64, 65, 66, 67, 68].

Deep learning is a branch of ML, which has been adopted as a favored methodology

in power forecasting, given its capacity to capture intricate patterns in data and deliver

precise predictions. Deep neural networks, in particular, are based on mirroring the hierar-

chical configuration of the human brain. In comparison with traditional machine learning

methods, deep learning obviates the requirement for complicated feature engineering, em-

powering the model to learn directly from unprocessed data. In power forecasting, existing

NN-based approaches have demonstrated superiority. For example, [69] employed artificial

neural networks (ANNs) to predict the wake effects on a wind farm, which yielded highly

encouraging results. In addition, ANNs are one of the most accurate machine-learning

algorithms for forecasting photovoltaic (PV) solar power output. Both single-algorithm

and multiple-algorithm studies have shown that ANNs consistently produce high-accuracy

forecasts for PV solar power output and are more effective than other tested ML algorithms

[70, 71, 72]. Fig. 2.3 shows an example architecture of an ANN.
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Figure 2.3: Structure of an ANN for solar power prediction. [70]

A Convolutional Neural Network (CNN) is a powerful deep learning approach that

has been used in power forecasting. It can extract spatial and temporal features from

input data, which can then be used to make predictions about future energy production

or consumption. One approach utilizing CNNs is demonstrated by [73] (architecture

shown in Fig. 2.4), decomposing input data into multiple frequencies with a wavelet

transform and then predicting each frequency with a deep CNN. Another approach is to

incorporate weather images as inputs, thereby capturing useful weather information and

enhancing power forecasting [74]. CNNs have also evolved to improve power forecasting

performance. For instance, an efficient deep CNN has been developed in [75] with an

enhanced regression output layer. An improved residual-based deep CNN was proposed in

[76], which outperformed multiple previous deep learning networks for power forecasting.

Figure 2.4: Structure of a CNN for wind power prediction. [73]

Long Short-Term Memory (LSTM) is another important deep learning algorithm used

in power forecasting due to its ability to model long-term dependencies. The LSTM cells

can transmit and preserve information through the temporal dimension, and are therefore

useful in time-series forecasting. However, training an LSTM can be time-consuming and

may result in low prediction accuracy. To improve the performance of LSTMs, researchers



References

2

19

have proposed various modifications. For instance, additional CNNs were utilized by

[77] to extract variable features and the LSTM is applied for wind power forecasting.

[78] introduced a new LSTM-based model, which improves the forget gate function and

activation function. Additionally, a shared weight LSTM model was proposed to handle

the time-consuming issue and reduce the tuning parameters [79].

In addition to deep learning approaches, various decision tree (DT)-based models have

evolved to enhance the predictability of wind power production. These models, such as

random forest (RF), extra trees, extreme gradient boosting (XGB), and gradient boosted

regression trees (GBRTs), are based on ensemble learning and multivariate regression

techniques. Among these models, GBRTs have received increased attention due to their

promising forecasting ability, stability, and ease of implementation [80]. Recent studies have

demonstrated the effectiveness of tree-based ensemble methods in predicting renewable

energy [81, 82, 83]. For example, for PV solar power output, the DT algorithm outperforms

other machine learning techniques like an ANN and a RF [84, 85]. Furthermore, [86] has

shown better solar power forecasting performance using the XGB algorithm than other

ML techniques including the RF algorithm. These studies suggest that decision-tree-based

models have a promising future in renewable energy forecasting.
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3
A Brief Climatology of
Dunkelflaute Events

Surrounding the North and
Baltic Sea Areas

In the coming decades, the European energy system is expected to become increasingly reliant
on non-dispatchable generation such as wind and solar power. Under such a renewable energy
scenario, a better characterization of the extreme weather condition ‘Dunkelflaute’, which can
lead to a sustained reduction of wind and solar power, is important. In this paper, we report
findings from the very first climatological study of Dunkelflaute events occurring in eleven
countries surrounding the North and Baltic Sea areas. By utilizing multi-year meteorological
and power production datasets, we have quantified various statistics pertaining to these events
and also identified their underlying meteorological drivers. It was found that almost all periods
tagged as Dunkelflaute events (with a length of more than 24 h) are in November, December,
and January for these countries. On average, there are 50–100 h of such events happening
in each of these three months per year. The limited wind and solar power production during
Dunkelflaute events is shown to be mainly driven by large-scale high-pressure systems and
extensive low-cloud coverage. Even though the possibility of simultaneous Dunkelflaute events
in neighboring countries can be as high as 30–40%, such events hardly occur simultaneously in
all the eleven countries. Through an interconnected EU-11 power system, the mean frequency
of Dunkelflaute drops from 3–9% for the individual countries to approximately 3.5% for the
combined region, highlighting the importance of aggregating production over a wide area to
better manage the integration of renewable energy generation.

This chapter is partly based on � Li, B., Basu, S., Watson, S. J., and Russchenberg, H. W. (2021). A brief climatology
of dunkelflaute events over and surrounding the North and Baltic Sea areas. Energies, 14(20), 6508. [1].
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3.1 Introduction
In the near future, wind and solar power production are projected to contribute an increas-

ingly higher proportion to Europe’s energy mix. By 2030, renewable energy is expected to

contribute up to one-third of the European total energy demand [2, 3], and this fraction will

double by 2050 [4]. The North and Baltic Sea areas and bordering countries will account for

a considerable share of this renewable generation capacity [5, 6, 7]. For an energy system

that will become increasingly reliant on highly variable generation dominated by wind and

solar sources, power production will become increasingly dependent on meteorological

variability [8, 9, 10, 11]. Certain weather patterns can lead to adverse power production,

e.g., a sustained period (multi-day) of extremely low power production [12, 9, 13], particu-

larly during high demand periods [14, 15, 16]. It is important to characterize as well as to

quantify the predictability of weather patterns leading to such extreme deficits for power

grids to effectively balance supply and demand.

In this paper, we discuss one such unfavorable weather phenomenon which can lead to

low levels of wind and solar power production, dubbed ‘Dunkelflaute’ [17, 18], primarily

characterized by calm winds and overcast conditions. Over the past few years, several

Dunkelflaute events have been reported in the Netherlands [19, 20], Belgium [21, 22], and

Germany [23, 24], which required major intervention from the system operators, including

demand-side management, reserve power deployment, and electricity imports from other

countries to prevent power shortages. Previous studies of Belgian and Dutch Dunkelflaute

events were documented in [17, 18], which was the first time the capabilities of mesoscale

modeling were evaluated to simulate and forecast Dunkelflaute events.

With an increasing share of renewable generation in power systems, there is a pressing

need for a detailed characterization of Dunkelflaute events across a wider range of countries.

Unfortunately, the handful of case studies discussed in the previous papers do not provide

any climatological information on this phenomenon. To fill this void, in this study, we

consider eleven countries surrounding the North and Baltic Sea areas. We analyze thirty-

two years of power production and meteorological data to quantify various basic statistics

(e.g., frequency distributions) related to the Dunkelflaute events which have durations

longer than one day. We believe that these statistics might be of use in the design of

next-generation power grid systems, and in turn, reduce the adverse impacts of future

Dunkelflaute events on electricity generation and transmission.

Recently, research has been carried out on the deployment of wind and solar energy

in the power grid in terms of temporal variability [25, 26] and the correlation between

output [27] and flexibility requirements [28, 29] for several countries. Widén [27] found a

negative correlation between wind and solar power generation, which suggested that the

combined deployment of wind and solar energy in the power system can help to balance

temporal variability [10, 30, 31]. However, the mix fails to tackle extreme variations lasting

for several days or even longer and calls for additional flexible resources [12, 32, 33]. To

study persistent low renewable power production and high shortfall scenarios, van der

Wiel et al. [13] focused on the 1-in-10-year extreme production events and emphasized

their importance in future system design. However, to the best of our knowledge, none of

these studies focused on the detailed characterization of Dunkelflaute periods, which is

the sole purpose of the present study. Here, we quantify the temporal persistence of the

Dunkelflaute events, and also document their seasonal variations and other traits. With
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the increasing shares of variable renewable energy generation, such statistical information

is critically important for flexibility in power systems.

Previous research has shown that meteorological conditions and their variability have

a strong impact on energy-related parameters and thus influence wind and solar power

supply [10, 11, 9, 8]. Large-scale weather patterns have a significant impact on surface

conditions [34, 35, 36], e.g., blocked regimes and related high-pressure systems are known

to be associated with low wind power production [13, 37, 38, 39, 40]. Aside from their

impact on wind speed, synoptic-scale circulations can also significantly affect cloud cover

and hence surface solar radiation [41, 42, 43, 44, 45] and solar power production [46, 13].

Li et al. [17] mentioned that in the meteorology literature, Dunkelflaute is typically

known as anticyclonic gloom [47, 48]. It is associated with extremely weak wind, persistent

high-pressure systems, and overcast conditions with stratus or stratocumulus clouds. In the

present study, we further advance our understanding of Dunkelflaute events by creating

climatological (anomaly) maps of several meteorological variables (e.g., cloud base height).

From these maps, it also becomes evident that the Dunkelflaute events do not occur at

the same time in all the countries surrounding the North and Baltic Sea areas. Results

from spatial correlation analysis further lend support to this fact. Given these findings, we

surmise that it may be possible to significantly reduce the adverse effects of Dunkelflaute via

grid interconnection between all these countries. In this context, we provide rudimentary

results, as in-depth analysis on grid interconnection is beyond the scope of the present

study.

This chapter is organized as follows. In Section 3.2, we describe the power production

and meteorological data utilized. We then quantify basic statistics and identify meteo-

rological drivers of Dunkelflaute events in Sections 3.3 and 3.4, respectively. In Section

3.5, an assessment is made of the benefit of an interconnected grid, by simulating the

interconnection of smaller regions into a larger power system. Finally, conclusions and

prospective future work are discussed in Section 3.6.

3.2 Data and Methods
3.2.1 Simulated Power Production Data
Staffell and Pfenninger developed an open-source tool, called Renewables.ninja [49, 50],

to investigate the electricity supply in Britain [26]. In this research, we utilize this model

to explore Dunkelflaute characteristics for eleven countries bordering the North and Baltic

Sea areas (see Figure 4.8), since these offshore areas and bordering countries account for a

very considerable share of current and future European renewable generation capacity [39].

Besides, certain multi-national power grid schemes have been proposed for this region [6,

51], which are relevant for our analysis of interconnection effects (discussed later). Please

note that we have excluded Latvia and Estonia from our analysis because they have very

limited renewable energy capacity. To be specific, in 2016, Latvia and Estonia had installed

solar energy generation capacities of 0.69 and 11.04 MW, respectively [52]. Hence, the

eleven countries studied here are Belgium (BE), Germany (DE), Denmark (DK), Finland

(FI), France (FR), Ireland (IE), Lithuania (LT), The Netherlands (NL), Norway (NO), Poland

(PL), Sweden (SE), and the United Kingdom (UK).
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North Sea

Baltic Sea

Netherlands

Belgium

United KingdomIreland

Germany

Poland

Denmark

Norway
Sweden

Finland

Lithuania

wind: 4,692; 
solar: 5,646

wind: 6,235; 
solar: 1,300

wind: 2,474;  
solar: 391
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wind: 24,665;  
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Figure 3.1: The eleven countries studied in the research bordering the North and Baltic Sea areas. For each

country, the wind and solar capacities (MW) for the year of 2020 are listed, respectively [53].

The Renewables.ninja tool [50, 49] is used to provide hourly wind and solar capacity

factors (CF) aggregated nationally for 32 years (1985–2016). The hourly wind and solar

capacity factors are based on the meteorological data from the MERRA-2 reanalysis dataset.

Reanalysis data have been widely used to simulate wind and solar power production

because of their extensive coverage and availability. The Renewables.ninja tool uses the

Virtual Wind Farm model to convert wind speed data at different heights to wind power

output [49], while irradiance and temperature data are used tomodel solar power production

utilizing the Global Solar Energy Estimator model, as illustrated in [50]. Compared with

other models covering multiple countries [12, 54, 55], the Renewables.ninja tool has been

calibrated using actual power production data, and has been proven to be quite accurate

for Europe [26, 39].

The Renewables.ninja tool provides wind and solar capacity factors using weather data

for the period 1985–2016 by simulating all operating wind and solar farms in ‘current’

locations as of 2016. The installed capacity of wind farms for 2016 for the eleven countries

used in this study can be obtained from the Renewables.ninja dataset. The installed solar

capacity for each country was obtained from IRENA statistics [52]. Capacity factors

were converted to national generation potential by making use of the respective installed

capacities in each country.
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3.2.2 Validation of Simulated Power Production Data
In this section, we use measured power production data from the transmission system

operators (TSOs) [56] to validate the capacity factors generated from the Renewables.ninja

tool. Since the installed capacities used by the Renewables.ninja tool are constant based on

the values as of December 2016, we used Belgian measured power production and installed

capacity data for 2016 to validate the modeled data. It should be noted that the installed

capacities of wind and solar power in Belgium were unchanged during 2016. Aggregated

historical power production and installed capacity data are provided by the various TSOs

(e.g., Elia for Belgium, TenneT, 50 Hertz, Amprion, and TransnetBW for Germany, and

Energinet for Denmark). The Belgian power data have a sampling rate of 15 min, but we

aggregated these to an hourly level to be consistent with the modeled capacity factor data.

The wind and solar power production values have been normalized to their respective

nominal capacities to obtain capacity factors. Scatter plots are shown in Figure 3.2 to

compare the modeled wind and solar capacity factors with measured data from the TSO.

Overall, the modeled capacities were reproduced quite well with Renewables.ninja data,

though there was a small deviation at the higher end of the wind power capacity factor

plot. Nonetheless, most of the values show a good correlation.
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Figure 3.2: Bi-variate histograms of modeled and actual wind (left panel) and solar (right panel) power capacity
factors (CF) for 2016 in Belgium.

3.2.3 Reanalysis Data
To analyze the variability of meteorological conditions during Dunkelflaute events, the

popular ERA5 reanalysis dataset was used (from ECMWF, the European Centre for Medium-

RangeWeather Forecasts [57]). ERA5 employs a horizontal grid size of 31 km and consists of

hourly data. For this work, the same temporal coverage as provided by the Renewables.ninja

tool (32 years, 1985–2016) was used. In our previous work, the ERA5 dataset has been

shown to rather accurately characterize Dunkelflaute events [17], including reproducing

vertical profiles and time series of various meteorological variables. In the present study,

we utilized air pressure at mean sea level, cloud base height, and low cloud cover from the

ERA5 dataset.
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3.3 Characteristics of Wind and Solar Power Gen-
eration during Dunkelflaute

TakingGermany, Norway, and the UK as examples, Figure 3.3 shows the annual frequency of

Dunkelflaute events defined using percentage capacity factor and time duration thresholds.

In this figure, the capacity factor (CF) is defined as the fraction ofwind and solar photovoltaic

(PV) power production normalized by the respective installed capacity of wind and PV

generation, where the fractions are the same for each. For example, a CF threshold value

of 10% implies a capacity factor threshold of 10% for wind and 10% for PV. The number

of Dunkelflaute events per year is noticeably decreased by reducing the capacity factor

threshold or increasing the length of duration, since both conditions provide a more

rigorous test for what constitutes a Dunkelflaute event.

For example, there are approximately 5–10 cases that are longer than one day each year

in Germany for a threshold of 20% of capacity, with the most persistent events lasting for

4–5 days. These types of long-lasting Dunkelflaute events can challenge the grid operator

when balancing supply and demand and may require the procurement of power from

neighboring countries at a relatively high market price. In contrast, for a capacity threshold

of 10%, there are hardly any cases lasting longer than two days, since one long-lasting

event can be split into several shorter cases once there are a few samples having capacity

factors larger than 10%.
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Figure 3.3: The frequency of Dunkelflaute events for Germany (left panel), Norway (middle panel), and the UK

(right panel) respectively, using different thresholds for capacity factor and time duration. The underlying data,

spanning the years of 1985 to 2016, were generated by the Renewables.ninja tool.

When only considering prolonged periods of low wind power generation in Great

Britain [9] (i.e., not accounting for PV generation), there are about 5–6 low wind production

cases annually using a 5% CF threshold and persistence of longer than one day. Since the

definition of a Dunkelflaute event includes both low wind and solar power production, the

results in Figure 3.3 show a lower frequency of occurrence than that seen in [9]. It can also

be seen that the number of events tagged as Dunkelflaute events does not vary much for

the three different countries.

For the remainder of this paper, we have chosen to classify an event as a Dunkelflaute

event if wind and solar CFs both fall below a specific threshold of 20% during a particular

60 min period, which means both wind and PV power production being lower than 20%

of their respective capacities. It should be noted that although it can be expected that

there is no or little solar power production after sunset and before sunrise, calm nighttime
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conditions are of significance from the point of view of system balancing, and therefore

are included in this climatological analysis.

Figure 3.4 shows the frequency distribution of the length of events classified as

Dunkelflaute for Belgium, Germany, and Denmark comparing modeled data from Re-

newables.ninja and the actual power production data from the TSOs. The frequency peaks

at a duration between 12 and 24 h with a similar distribution for the three countries. There

is good agreement between the two data sources, although there is an overestimation of

the peak frequency for Germany using the Renewables.ninja data.
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Figure 3.4: Frequency distribution of modeled (ninja) and actual (TSO) Dunkelflaute durations for Belgium (left
panel), Germany (middle panel), and Denmark (right panel). The modeled data, spanning the years of 1985 to

2016, were generated by the Renewables.ninja tool. Actual power production data from the TSOs are for the years

2015-18.

Figure 3.5 shows the average monthly hours of Dunkelflaute events for the eleven

countries based on the Renewables.ninja data. We included only those events lasting

for more than one day and plotted the total number of hours per month. As seen in

the left panel of Figure 3.5, there is clearly a common distribution of the annual cycle of

Dunkelflaute events for the different countries. Notably, almost all of the Dunkelflaute

events lasting more than one day are predominantly present during the extended winter

period (October–February). In fact, the occurrence of Dunkelflaute events mainly peaks in

November, December, and January, during each of which there are 50–100 h of such events

per year. One exception is in Sweden, with a larger magnitude of more than 150 h for the

three months. The overall distribution is similar when using the measured (TSO) data in

Belgium, Germany, and Denmark for 2015–2018 (refer to the right panel of Figure 3.5),

though we can see a relatively larger magnitude of Dunkelflaute hours in January for the

4-year actual production data.
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Figure 3.5: The left panel shows the monthly variation of Dunkelflaute hours per year for eleven countries over

the North Sea and Baltic Sea based on the Renewable.ninja data. The right panel is similar but using actual

production data from the TSOs to identify Dunkelflaute in Belgium (BE), Germany (DE), and Denmark (DK) for

2015–2018. We only account for the Dunkelflaute events longer than one day.

3.4 Meteorological Drivers
Dunkelflaute is shown to be associated with near-calm and stratus and/or

stratocumulus-covered conditions driven by a high-pressure system [17]. We used hourly

values of mean sea level pressure and cloud cover data from ERA5 for the Dunkelflaute

periods during 1985–2016 to investigate how periods of Dunkelflaute are correlated with

these variables. Spatial anomaly maps were created and averaged for those periods when

Dunkelflaute events were prevalent. These Dunkelflaute periods were identified using

the Renewable.ninja tool, as described before. Taking four representative countries of

Denmark, Poland, Sweden, and the UK as examples, we analyzed the pressure and cloud

cover maps to determine the weather factors giving rise to Dunkelflaute events for these

countries.

3.4.1 Pressure
During Dunkelflaute periods (see top row of Figure 3.6), an extensive high-pressure system

is clearly prevalent. The specific location, size, and magnitude of the system vary for indi-

vidual events and countries. For example, during periods of Dunkelflaute in Denmark (top

row, first column), Poland, and Sweden (top row, second and third columns, respectively),

pressure in the Scandinavian area and Central Europe is higher than in the surrounding

areas respectively, while for the UK (top row, fourth column), a high-pressure center is

located over most of the North Sea area. Overall, the extended high surface pressure area

developed over the four countries shows a slack pressure gradient, leading to a much lower

surface wind speed in the individual countries. This is likely to lead to much lower levels

of wind power production over an extended area.

These results are in agreement with previous studies, that show that large-scale high-

pressure systems influence local weather and can further negatively affect both available

wind and solar power generation [46, 40, 13]. These studies showed that such high-pressure

systems are not associated with clear skies, but instead thick and extensive cloud cover,

which are very characteristic of Dunkelflaute events (i.e., anticyclonic gloom weather [58,

59]). This will be discussed further in the next section. Amongst the various synoptic-scale

weather phenomena which have been shown to strongly affect wind power generation

in western Europe [60, 61, 62, 37], blocking of high-pressure systems (and the absence of
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westerly airflow into Europe) can result in extended periods of low production and periods

of Dunkelflaute [40, 37, 38, 39].

3.4.2 Cloud
Overcast sky with extensive low cloud cover is very characteristic of anticyclonic gloom

weather. As seen in the maps of the mean cloud base height (CBH), when a Dunkelflaute

event occurs, the height drops below 600 or even 400 m in the North and Baltic Sea areas

and adjacent countries (second row of Figure 3.6). The third row of Figure 3.6 shows maps

of the CBH anomaly calculated by subtracting the overall monthly mean CBH values from

the mean values observed during periods of Dunkelflaute. Extensive areas of negative

CBH anomaly (i.e., reduced CBH) are clearly seen over the four countries during periods

of Dunkelflaute, with values of between approximately −500 and −100 m (third row of

Figure 3.6).

Low-level cloud is an important element that strongly influences radiative features

and local weather [63, 64, 65]. Over the North Sea, the low-level cloud is predominantly

comprised of stratus, stratocumulus, and fog [66], consistent with the cloud cover types

observed during anticyclonic gloom [17]. Several studies [67, 68, 69, 70] have shown that

synoptic conditions in the North Sea area frequently give rise to extensive stratocumulus

clouds. For example, stratocumulus over the North Sea with a cloud top at 800 m and base

at 400 m was observed by Nicholls [69], driven by a near stationary anticyclone located

west of Ireland. Moderate winds with little shear were observed, which is also the case for

nocturnal stratocumulus over the UK [67, 68, 70]. CBH for another five cases observed in

the stratocumulus-topped boundary layer in the North Sea by Nicholls and Leighton [70]

were all lower than or almost equal to 1000 m.

The high albedo of these low stratocumulus clouds can considerably reduce the incom-

ing radiative flux at the surface. As described in [71, 64, 72, 73], there is approximately a

40–50% reduction of surface solar radiation during the presence of stratus or stratocumulus

clouds in comparison with cloud-free regions. The combination of lower than normal solar

radiation over the regions of interest and shorter day lengths in winter (during which

most Dunkelflaute events occur) indicates that total daily energy production from solar

farms will be limited during periods of extensive stratocumulus. Furthermore, it should

be noted that the occurrence of stratocumulus clouds mentioned above is associated with

high-pressure systems, especially over the sea [71, 64, 70]. This is consistent with the

observations in the previous section based on the top row of Figure 3.6.

Extensive coverage of low clouds (lower than approximately 2 km) also plays an

important role in surface weather on the synoptic scale. The fourth row of Figure 3.6

suggests that low cloud cover (LCC) averaged for Dunkelflaute periods is around 0.7–0.9,

which is significantly higher than the monthly mean LCC. This can be seen in the anomaly

maps in the fifth row of Figure 3.6, where the mean overall LCC is subtracted from the

mean LCC during Dunkelflaute events. Warren et al. [66] also found that LCC is about 0.7

when stratocumulus clouds occur over the North Sea. Positive anomaly values of LCC of

around 0.1 to 0.3 are clear in the bottom row of Figure 3.6 for Dunkelflaute events occurring

in Denmark, Poland, Sweden, and the UK.
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Figure 3.6: Map of mean sea level pressure (MSLP, top row), cloud base height (CBH, second row), CBH anomaly

(third row), low cloud cover (LCC, fourth row), and LCC anomaly (bottom row) during Dunkelflaute periods

in Denmark (left column), Poland (middle-left column), Sweden (middle-right column), and the UK (right
column), respectively. Anomaly maps were created by subtracting the monthly mean values from mean values

when Dunkelflaute occurs.
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3.5 Spatial Correlation and Grid Connection
In this section, we quantify the spatial correlation of Dunkelflaute occurrences in eleven

different European countries bordering the North and Baltic Sea areas. We used a binary

flag (0 or 1) to represent non-Dunkelflaute and Dunkelflaute events (lasting more than one

day) respectively, in individual countries, and calculated the Pearson correlation coefficient

between each pair of the eleven countries. Although this metric is normally used for real

numbers, it is also suitable for binary variables [74].

As shown in Figure 6.1, the correlation coefficients for Dunkelflaute events occurring

in neighboring countries are about 0.3–0.4, with a peak magnitude of 0.5–0.6 for the

Netherlands and Belgium, and Denmark and Sweden. This suggests that Dunkelflaute

events can happen simultaneously over a relatively large area covering several countries.

On the other hand, it is clear that Dunkelflaute periods are less correlated for those countries

relatively far away from each other. Taking the UK as an example, whenDunkelflaute occurs

there, there is a considerably lower probability of simultaneous Dunkelflaute occurrence

in the Northern and central parts of Europe, such as in Finland and Poland.
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Figure 3.7: Correlation coefficients of Dunkelflaute occurrences between eleven European countries.

From Figure 6.1, we can conclude that Dunkelflaute events rarely occur simultaneously

in all eleven countries considered. Several multi-national power grid schemes have been

proposed in Europe to benefit from integrated systems, such as the North Sea Offshore

Grid project, which is expected to connect offshore renewable energy resources around

the North Sea area [6], and the Baltic Energy Market Interconnection Plan, linking nine

countries surrounding the Baltic Sea [51]. Therefore, it is interesting to consider what

benefit can be gained from an interconnected European system of the eleven countries of

interest studied here regarding the occurrence of Dunkelflaute events.

Figure 3.8 shows the reduction in the frequency of Dunkelflaute events (duration of

longer than one day) for the eleven individual countries compared to an interconnected

system where the wind and PV generation are pooled. The mean frequency of Dunkelflaute

(marked as a black horizontal line) is decreased from 3–9% for the individual countries to

approximately 3.5% when interconnected. Furthermore, the maximum frequency (marked

as a blue ‘+’ symbol) is about 6.5% if power systems are interconnected, whereas individual

countries can have frequency extremes of 6–14% of Dunkelflaute events. Pooling wind
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and PV generation through interconnection would seem to benefit most of the countries

studied, especially Sweden and the Netherlands. The exceptions are Norway and the UK,

where there seems to be only marginal or no benefit for these countries.

The right panel of Figure 3.8 provides further evidence for the benefits of interconnect-

ing countries into a large power system. Taking four countries: Germany, Norway, Sweden,

and the UK, as an example, we can see a reduction in the frequency of Dunkelflaute events

for the larger interconnected power system, especially for those events that last for several

consecutive days.

Figure 3.8: Left panel: frequency boxplot of Dunkelflaute events (longer than a day) for individual countries

and where wind and PV generation are pooled in an interconnected system of eleven countries (labeled as ‘All’).

Right panel: frequency distribution of Dunkelflaute events for four representative countries (Germany (DE),

Norway (NO), Sweden (SE), and the UK) and an interconnected system (labeled as ‘All’). The frequency for the

interconnected system is given by gray bars, while the frequency for the four individual countries is shown in

color as a deviation from the magnitude of the interconnected system.

As illustrative examples, we used two Dunkelflaute events to quantify the benefits that

can be gained through the interconnection into a larger power system of eleven countries

(see Figure 3.9). The Dunkelflaute periods are marked as shaded gray regions under the

curves. The first event occurred almost simultaneously in Ireland and the UK during late

November of 2007, as shown in the left panels of Figure 3.9. The underproduction of wind

and solar power lasted for about three days, and the positive effects of an interconnected

system are clearly shown by leveling the capacity factor for the entire system, especially

the wind CF, and alleviating the impacts of the Dunkelflaute events in the two countries.

The second Dunkelflaute event is depicted in the right panel of Figure 3.9. During the

early part of November 2013, Denmark and Sweden experienced Dunkelflaute episodes. If

operational, the interconnected system (labelled as ’All’) would have been able to increase

the capacity factors of both wind and solar and circumvent the Dunkelflaute events. In

the literature, other benefits of interconnected systems have been demonstrated, including

a relative reduction in wind power variability [75, 76, 77] and a reduction in flexibility

requirements [12, 78].
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Figure 3.9: Time series of wind capacity factor (top panel) and solar capacity (bottom panel) during two cases of

Dunkelflaute, which occurred in Ireland (IE), the UK (left panel), Denmark (DK), and Sweden (SE, right panel),
respectively. The wind and solar CF are shown for the individual countries and an interconnected system of

eleven countries (labeled as ‘All’). The Dunkelflaute periods are demarcated by shaded gray regions. Different

shades correspond to different countries.

3.6 Concluding Remarks
A climatological analysis of Dunkelflaute events was carried out for eleven countries

bordering the North and Baltic Sea areas. Utilizing a wind and PV capacity factor threshold

of 20%, we can conclude that substantial periods of Dunkelflaute lasting for at least a day

occur each year. For example, there were approximately 2–10 events (duration of longer

than one day) each year in three of the exampled countries, Germany, Norway, and the

UK, and similar frequencies were also found in the other eight countries. Notably, there

were a few cases lasting three or even five days. The largest frequency of Dunkelflaute

events was seen in November, December, and January.

These events were shown to be typically characterized by near stationary large-scale

high-pressure systems and extensive low cloud coverage, with a lower than average cloud

base height. This confirms the association of the Dunkelflaute events and blocked regimes

arising from the extensive high pressure, which can obstruct the westerly airflow into

Europe and further result in the underproduction of wind energy in the neighboring

countries. Furthermore, the occurrence of expansive low-level clouds was shown to be

another characteristic of Dunkelflaute events, which further corroborates the previous

finding that the high-pressure ridges between frontal systems are associated with the

occurrence of stratocumulus clouds in mid-latitudes [71, 64]. Due to the relatively low

solar radiation and shorter day lengths in winter (during which most Dunkelflaute events



3

403 A Brief Climatology of Dunkelflaute Events Surrounding the North and Baltic Sea Areas

occur), the limited solar energy production during the events can thus be well-explained.

Lastly, it was found that the correlation coefficients of Dunkelflaute events for neigh-

boring countries were moderate (approximately 0.3–0.4). Simple analysis revealed that an

interconnected power system where wind and PV generation are pooled can decrease the

occurrence of Dunkelflaute events considerably. Our findings, albeit preliminary, can be of

importance for reducing the risk of black-outs or the necessity for backup energy demands

and costs to maintain system stability, especially for high renewable penetration in the

near future.
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4
Automated Identification of

‘Dunkelflaute’ Events

As wind and solar power play increasingly important roles in the European energy system,
unfavourable weather conditions, such as ‘Dunkelflaute’ (extended calm and cloudy periods),
will pose ever greater challenges to transmission system operators. Thus, accurate identification
and characterization of such events from open data streams (e.g., reanalysis, numerical weather
prediction, and climate projection) are going to be crucial.
In this study, we propose a two-step, unsupervised deep learning framework (named WISRnet)
to automatically encode spatial patterns of wind speed and insolation, and subsequently,
identify Dunkelflaute periods from the encoded patterns. Specifically, a deep convolutional
neural network (CNN)-based autoencoder (AE) is first employed for feature extraction from
the spatial patterns. These two-dimensional CNN-AE patterns encapsulate both amplitude
and spatial information in a parsimonious way. In the second step of the WISRnet framework,
a variant of the well-known k-means algorithm is used to divide the CNN-AE patterns in
region-dependent meteorological clusters.
For the validation of theWISRnet framework, aggregated wind and solar power production data
from Belgium are used. Using a simple criterion from published literature, all the Dunkelflaute
periods are directly identified from this six year-long dataset. Next, each of these periods is
associated with a WISRnet-derived cluster. Interestingly, we find that the majority of these
Dunkelflaute periods are part of only five clusters (out of twenty five). We show that in lieu of
proprietary power production data, the WISRnet framework can identify Dunkelflaute periods
from public-domain meteorological data. To further demonstrate the prowess of this framework,
it is deployed to identify and characterize Dunkelflaute events in Denmark, Sweden, and the
UK.

This chapter is partly based on� Li, B., Basu, S., and Watson, S. J. (2022). Automated Identification of “Dunkelflaute”
Events: A Convolutional Neural Network–Based Autoencoder Approach. Artificial Intelligence for the Earth Systems,
1(4), e220015. [1].
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4.1 Introduction
With wind and solar power becoming major contributors to the European energy system,

it is crucial to identify and characterize extreme weather events, which may significantly

affect power production. Simultaneous low levels of wind and solar power production

during Dunkelflaute events are causing increasing concern [2, 3, 4, 5, 6]. These events

occur several times each year, predominately during winter months, in northern European

countries and sometimes last for several days [5]. They can challenge transmission system

operators in terms of balancing supply and demand of electricity. Therefore, a reliable way

to identify, characterize, and eventually forecast Dunkelflaute events becomes a necessity.

One of the first peer-reviewed studies on Dunkelflaute was conducted by [6]. They

investigated the capability of contemporary mesoscale models to simulate Dunkelflaute

events. In a follow-up study [5], they documented a brief climatology of Dunkelflaute

events for countries surrounding the North and Baltic seas. They utilized aggregated power

production data for the identification of Dunkelflaute cases. Owing to their proprietary

nature, renewable power production data are often not easily accessible for research.

Furthermore, due to the young age of the renewable energy industry, only a limited amount

of historical power production data are available frommost countries. In contrast, long-term

(ranging from mid-1800 to 2100), gridded meteorological data (e.g., reanalysis, numerical

weather forecast, and climate projection) are readily available in the public domain. In the

present study, we develop a machine learning (ML)-based approach which can ingest these

types of open data streams, and in turn, can automatically identify Dunkelflaute events.

In recent years, ML algorithms have been widely used in many fields for learning

intricate structures from large datasets [7, 8]. For example, in the field of earth science, ML

has been proven useful in numerous applications, such as cloud image classification [9, 10],

land surface classification [11], ozone profile shape estimation [12], weather prediction [13,

14, 15, 16], etc. Moreover, ML techniques have shown their potential for identifying certain

types of prominent weather patterns like tropical cyclones, fronts, and atmospheric rivers

in large climate datasets [17, 18]. To the best of our knowledge, the present study is the

first ML-based study of the Dunkelflaute phenomenon.

The rest of the paper is organized as follows. In Section 2, we discuss a few ML

algorithms which are relevant for the proposed WISRnet framework. The datasets used

in the numerical experiments are described in Section 3. In Section 4, we delve into

the WISRnet framework. Clustering and validation results are documented in Section 5

followed by a summarized discussion in Section 6. In-depth technical details and various

sensitivity studies are reported in five appendices.

4.2 Overview of Relevant Machine Learning Algo-
rithms

Machine learning refers to the automatic extraction of useful information or the learning

of a specific task from given input data [19]. It has two basic forms: supervised and

unsupervised learning. Supervised learning utilizes known inputs and corresponding

labeled ground truth data [20]. In contrast, unsupervised learning discovers groups of

items in the data using unlabelled instances [21]. In this research, given the unavailability of

labeled data, we use an unsupervised method for the purpose of Dunkelflaute identification.



4.2 Overview of Relevant Machine Learning Algorithms

4

49

In the atmospheric science literature, several unsupervised clustering methods, in-

cluding k-means, hierarchical clustering, and self-organizing maps, have been used for

classification of synoptic weather patterns [22, 23, 24, 25, 26]. In addition, they have been

found useful in explaining trends in extreme temperatures [27] and facilitating weather

forecasts [28, 29, 30]. They are also popular for identifying extreme weather patterns [31,

32, 33], wind power prediction [34, 35], and other meteorological applications [36, 37, 38].

In parallel to classical unsupervised ML approaches, in recent years, supervised convo-

lutional neural networks (CNNs) have demonstrated their strengths in pattern classification.

They have achieved excellent results in object detection and pattern recognition [39, 7].

CNNs can automatically learn and extract representative features from multi-dimensional

datasets, such as images and videos. They achieve high accuracy in classifying complex

geophysical patterns, like clouds [10], ice crystal [40], land surface type [11], and volcano

deformation [41]. These examples show the benefits of supervised CNN. However, labeled

datasets are often not available for various applications [41, 33]. Thus, it is necessary to

investigate the capability of CNNs implemented in an unsupervised manner. Recently,

unsupervised CNNs have been used for classifying cloud organizations [42]. In another

application [43], it has been utilized for creating flood inundation maps from synthetic

aperture radar images.

Instead of unsupervised learning, a handful of recent studies exploited a new ML

paradigm called self-supervised learning [44, 45]. In this approach, the labels are auto-

matically generated either by a separate pre-trained model [46] , or via common image

transformations [47].

Clustering large datasets with high-dimensional feature vectors is a challenging task.

The feature vectors may be nonlinear and/or non-stationary; for geophysical problems,

they often exhibit multiscale behaviors. Various types of noise are also omnipresent. In

some cases, the smaller scales may not be very relevant for the global characterizations.

Under these circumstances, brute-force learning and clustering of the high-dimensional

feature vectors may lead to overfitting and reduced generalization. To circumvent this

problem, a type of unsupervised neural network, known as an autoencoder [48, 49, 50], can

be first employed. Autoencoders do not require any labels as their sole objective is to extract

important features from high-dimensional inputs. They map the inputs to outputs via

encoding with minimal loss of information. In atmospheric science literature, a few studies

have clustered weather patterns and extremes using CNN-based AE algorithms [18, 33, 51]

and produced promising results. In this study, we develop a new CNN–AE architecture to

automatically compress spatial wind speed and insolation patterns into low-dimensional

encoded patterns. More technical information on an AE is provided in Appendix A.

The encoded CNN-AE patterns are then clustered via the k-means algorithm. Since

Dunkelflaute events are geographically localized phenomena, their clustering should ac-

count for spatial information. Thus, we make use of a geographically-dependent k-means

algorithm. In principle, more advanced clustering techniques (e.g., self-organizing maps)

can be utilized instead of k-means; however, we opted for this well-known approach for its

simplicity. Advantages and disadvantages of various clustering algorithms can be found

in [31].
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4.3 Description of Datasets
The performance of deep learning models typically (with some exceptions) depend on the

availability of high-quality training data. In-situ wind speed and insolation data are often

collected at sparse locations; the data records are usually short in duration, and might

suffer from temporal discontinuities. The measurements are also susceptible to terrain

effects (e.g., shadowing) and measurement errors. In order to avoid these issues, in this

proof-of-concept study, we use the ERA5 reanalysis dataset from the European Centre for

Medium Range Weather Forecasts [52]. This global reanalysis has the highest temporal

(hourly) and spatial resolution (∼31 km) amongst its contemporaries. More importantly,

in previous Dunkelflaute research [5, 6], this dataset was shown to be very reliable for

capturing numerous traits of Dunkelflaute events.

In this study, we use hourly wind speed data from 100 m above ground level (AGL)

and downward short-wave radiation flux (insolation) at the surface. The time-period of

interest is from year 2009 to year 2018. For both the variables, the sample size is 86,904. We

concentrate our analysis over the North Sea and neighbouring countries given the massive

amount of ongoing and proposed wind farm installations in this region. Specifically, our

domain of interest covers the region 46.75° to 62.5° north and -12° to 19.75° east (consisting

of 64 × 128 latitude-longitude grid points). An illustrative example of a Dunkelflaute event

is shown in Figure 5.4. This event occurred on January 16
th
, 2017 over Belgium and caused

a significant drop in renewable power generation [53].

Figure 4.1: Spatial fields of 100-m wind speed (left panel) and downwelling shortwave radiation (insolation) at the

surface (right panel) at 12 UTC on January 16
th
, 2017. On this day, a Dunkelflaute event occurred over Belgium

causing a large shortfall in renewable power generation.

For the validation of our proposed clustering framework, we use aggregated wind and

solar power production data from Belgium. These datasets along with information on

installed capacity were provided by the Belgian system operator Elia (https://www.elia.be).

The selected validation period is from 2013 to 2018 since the aggregated power production

data is only available from 2013. We aggregate the measured power data from a sampling

rate of 15 min to 60 min to be consistent with the hourly meteorological data from the

ERA5 dataset. In [5], a particular sample is tagged as a Dunkelflaute event if both wind and

solar power production fall below the threshold of 20% of their respective capacities during

that 60 min period. They reported that Dunkelflaute events lasting more than one day
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predominantly occur during the extended winter period (October-February). In the present

work, for validation, we also use the same definition for labeling samples as Dunkelflaute

or non-Dunkelflaute.

4.4 Methodology
4.4.1 Overview of the WISRnet framework
The deep learning (DL) architecture used to clusterweather patterns and identify Dunkelflaute

events is shown in Figure 7.1. Henceforth, we refer to our framework as the WISRnet

(WInd and SolaR network). For the training process, wind speed and insolation data are

separately input into the CNN-AE model which ‘learns’ weather patterns. The encoder part

of the CNN-AE consists of seven convolutional layers that encode the input characteristics.

The last layer of the encoder (i.e., the encoded pattern) is sometimes called a bottleneck

layer. Commonly, a 1-D fully connected (FC) layer is used as a bottleneck layer. However,

2-D encoded patterns can be easily projected to the underlying geographical map and then

convolved with a spatially varying weight matrix (e.g., a 2-D Gaussian kernel). As a result,

the 2-D patterns are well suited to identify features with spatial relationships. For this

reason, in this study, we use a 2-D bottleneck layer.

In the literature, the decoder part of an AE is often just a mirror image of the encoder [54,

55]. However, there are exceptions. For example, [51] employed an asymmetric AE (named

CapsNets) to predict the occurrence of cold and heat waves. Here, we use two FC layers

and five convolutional layers in the decoder part to reconstruct input weather patterns.

In contrast to the convolutional layers, the FC layers lose spatial information due to the

flattening operation. However, their inclusion in the WISRnet architecture is justified as

they clearly improve the overall quality of the reconstructed fields (more information is

provided in Appendix B).

The accuracy of the CNN-AE model is assessed by comparing the input and the corre-

sponding reconstructed patterns. Root-mean-squared error is used as a loss function.

The encoded patterns, resulting from respective wind speed and insolation inputs,

are first normalized, and then, convolved with a 2-D Gaussian kernel. The center of the

Gaussian kernel is prescribed based on the country of interest. For example, the geophysical

center of Belgium (Latitude: 51.547
◦
N and longitude: 4.610

◦
E) is chosen as the kernel center,

when we are identifying Dunkelflaute events in and around Belgium. Next, the convolved

patterns are clustered using the k-means algorithm.

4.4.2 First Step of the WISRnet Framework: Spatial Pattern
Extraction

Wind speed and insolation values are inputted to the CNN-AE model in the form of a 64 ×
128 longitude-latitude grid (see Figure 5.4). Two CNN-AE models with different weights

are trained for wind speed and insolation, respectively as depicted in Figure 7.1. There

are seven convolutional layers in the encoding part with 4, 8, 16, 32, 256, 32, and 1 filter,

respectively. Each convolution filter has a kernel size of 3 × 3 and zero padding is applied

to keep the size constant in each layer. All layers are followed by a rectified linear unit

(ReLU) activation function to introduce nonlinearity to the CNN-AE model [56]. For the

first three convolutional layers, max-pooling (MP) with a kernel size of 2 × 2 and stride of 1
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Figure 4.2: Schematic of the proposed WISRnet framework.

is used to effectively halve the dimensions of the data to enhance learning efficiency, while

the last four layers are connected directly without pooling layers. The CNN-AE outputs

a two-dimensional encoded pattern (aka the bottleneck layer) of dimensions 16 × 8 for

both wind speed and insolation. Please refer to Appendix B regarding the accuracy of the

CNN-AE model.

As mentioned earlier, we use an asymmetric CNN-AE framework. In the decoding part,

there are two FC layers with 1024 and 2048 neurons followed by four convolutional layers.

The number of filters used in the convolutional layers is 32, 16, 8, 4, 1, respectively; and

there are three up-sampling layers between the layers to ultimately return to the input

dimensions.

To evaluate the performance of the CNN-AE model, the ERA5 data are divided into

three sets; where the first 80% of the samples are chosen for the training set, the following

10% of samples for the validation set, and the last 10% as the test set. The samples are

contiguous in each set to avoid any information leakage across sets. The kernel filters

are used for extracting characteristics, and they are updated using the back-propagation

method. The adaptive moment estimation (Adam) is utilized as the optimizer [57]. The

maximum number of epochs is set to 100 with a batch size of 128, and the validation loss is

estimated after each epoch. The hyperparameters, including kernel size, number of filters,

number of convolutional layers, and learning rate are optimised in terms of the lowest
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validation loss and the highest accuracy in the reconstruction of the input fields. There is

no visual evidence of overfitting in learning curves; furthermore, the application of dropout

regularization did not improve the overall results. Please refer to Appendix B for further

details.

4.4.3 Second Step of theWISRnet Framework: Weather Pat-
tern Clustering

In [5], we reported that the correlation of Dunkelflaute occurrences in nearby areas de-

creases with increasing distance. Thus, we do not cluster the weather patterns for a specific

country; rather, we use a spatially varying weight matrix for the entire domain of interest.

First, the two encoded patterns (corresponding to wind speed and insolation fields) from

the CNN-AE are standardized by subtracting the overall mean and normalized by overall

standard deviations. Then, these normalized values are convolved with the following

Gaussian kernel:

𝑓 (𝑥,𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦
𝑒
−[

(𝑥−𝜇𝑥 )2

2𝜎2𝑥
+ (𝑦−𝜇𝑦 )2

2𝜎2𝑦 ]
(4.1)

where 𝜇𝑥 and 𝜇𝑦 are the coordinates of the geographical center of interest. The variables 𝜎𝑥
and 𝜎𝑦 are related to region of influence in the 𝑥 (longitudinal) and 𝑦 (latitudinal) directions,

respectively. Their prescribed values depend on the size of the country of interest. For an

area the size of Belgium, a value of 1 was used for both 𝜎𝑥 and 𝜎𝑦 .
The k-means algorithm [58] is used to cluster the convolved CNN-AE patterns into 25

weather clusters. As discussed in Appendix C, we have found that 25 clusters are appropriate

for the convergence of k-means clustering and identifying the most characteristic features

of wind speed and insolation patterns.

Before discussing the results, we would like to emphasize that our region-dependent

clustering technique is important for reducing the total number of clusters. Without this

technique, the difference between Dunkelflaute in different countries will be difficult to

distinguish with only twenty five clusters; please refer to Appendix D for more details.

In Appendix E, we use self-organizing map (SOM) as a baseline to cluster weather

patterns and compare its results with the proposed WISRnet framework.

4.5 Results
4.5.1 Feature Extraction
Figure 4.3 shows an illustrative example from the validation set of an original (left), encoded

(middle) and reconstructed (right) map of the wind speed and insolation fields. The encoded

maps can be seen to capture the main features of wind speed and insolation maps, e.g.,

higher encoded values corresponding to higher wind speed or insolation. In addition, the

CNN-AE patterns have similar spatial distributions as the original ones, which means

that the location information is not lost. The reconstructed map is used to evaluate the

performance of the CNN-AE. As seen in the illustrative example in Figure 4.3, the original

wind speed and insolation field are reproduced well. For the entire validation set, the root

mean squared errors between the original and the reconstructed values are 0.78 m s
−1

and

24.62 W m
−2

for the wind speed and insolation, respectively. Since the wind speed and

solar radiation in the whole dataset can go up to about 44.57 m s
−1

and 1010.85 W m
−2
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with the average of 7.77 m s
−1

and 123.46 W m
−2
, respectively, the errors are moderately

low.

Figure 4.3: An illustrative example from the validation dataset of the original (left), encoded (middle) and

reconstructed (right) maps of the wind speed (top panel) and insolation (bottom panel) fields from the CNN-AE.

This is a randomly selected example (16 UTC on May 14
th
, 2018), and not a Dunkelflaute case.

4.5.2 Weather Pattern Clustering
In Figure 7.2, we show the clustering results of the CNN-AE patterns with the Gaussian

weighting kernel centred on Belgium. For each of the 25 clusters, mean wind speed and

insolation anomalies are calculated based on the 10-year mean values for all clusters.

Different clusters exhibit different magnitudes and extent of wind speed and insolation

with a clear focus over Belgium. From visual inspection, the clusters C2, C9, C12, C18, and

C23 are most closely related to periods of simultaneous low wind speed and insolation over

Belgium. These clusters (henceforth Top 5 clusters) seem to be the most suitable candidates

for identifying cases of Dunkelflaute and will be analysed in the next section.

To illustrate how well the clusters capture the characteristics of individual events, in

Figure 4.5, we show two randomly selected events for each of the Top 5 clusters associated

with periods of Dunkelflaute. Actual values of wind speed and insolation are shown. For

all ten events, low wind speeds and low levels of insolation are apparent over Belgium.

4.5.3 Identification and Verification
In Table 4.1, we examine how frequently Dunkelflaute events actually occur for each cluster

and what fraction of events are Dunkelflaute events in each cluster based on actual Belgian

wind and solar power generation data for the period 2013 to 2018. We classify a particular

event as a Dunkelflaute event if both wind and solar power production fall below the



4.5 Results

4

55

Wind Speed

Insolation

Wind Speed

Insolation

Wind Speed

Insolation

Wind Speed

Insolation

Wind Speed

Insolation

Figure 4.4: Anomalies of wind speed and insolation based on the 10-year mean for the 25 clusters (C1–C25) using

the CNN-AE patterns. The Gaussian kernel is centred on Belgium.

threshold of 20% of their respective capacities [5]. Dunkelflaute periods are then matched

to the appropriate cluster for that period. In the table, the DF time ratio is calculated as

the ratio of Dunkelflaute events in each cluster to the total number of Dunkelflaute events.

The events lasting longer than 12 hours or 24 hours are labeled as ‘> 12 h’ and ‘> 24 h’,

respectively. The label ‘All’ is used in Table 4.1) to denote all events. The top five clusters in

terms of DF time ratio are shown in bold. We would like to emphasize that these same five

clusters were visually identified earlier as suitable candidates for identifying Dunkelflaute

events. These five clusters account for 75% of all Dunkelflaute events greater than 12 hours,

69% of all such events greater than 24 hours, and 68% for all the events.

The mean wind and solar power capacity factors (CF) for each of the 25 clusters are

also listed in Table 4.1. The capacity factor is defined as the fraction of wind and solar

power production normalized by their respective installed capacities. For the C9, C12, and

C23 clusters, the mean capacity factors are especially low, with values less than 10% for

both wind and solar power. The mean solar power capacity factors for the C2 and C18

clusters are equally low, while wind power capacity factors for them are slightly higher.

To further illustrate the correlation of Dunkelflaute events to specific clusters, the

fraction of Dunkelflaute events as a ratio of total events in each cluster, named Positive
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Figure 4.5: Two randomly selected events for each of the Top 5 clusters associated with periods of Dunkelflaute.

Actual values (i.e., not anomalies) of wind speed and insolation are shown and the clusters are based on the

CNN-AE patterns with the Gaussian kernel centred on Belgium.

Ratio, is shown in Table 4.1. This ratio is simply calculated by dividing the number of hourly

Dunkelflaute samples by the total number of samples in a specific cluster. It can be seen

that over 90% of the events in clusters C9, C12 and C23 are Dunkelflaute events. This would

suggest that these clusters are a reliable indicator of whether an event is a Dunkelflaute

event. Clusters C2 and C18 are a less reliable indicator but nonetheless indicate a high

probability of an event being a Dunkelflaute event. Some level of incorrect clustering can

be explained by overestimation of the magnitude of insolation in the ERA5 reanalysis [59,

60], especially for the cloudy days which are of interest for this work.

The Top 5 clusters all have mean capacity factors lower than 20%, which is exactly

the threshold for defining Dunkelflaute. Thus, associating these clusters to Dunkelflaute

events is rather straightforward. However, for three other clusters (C10, C20, and C21),

such an inference cannot be drawn in a conclusive manner. These clusters have mean

capacity factors marginally higher than the threshold of 20%. They also include a handful

of Dunkelflaute events. Specifically, for Dunkelflaute events longer than 12 hours, the

clusters C10, C20, and C21 have DF time ratio of 8%, 3%, and 3%, respectively. At the

same time, they have positive ratio of only 25%, 32%, and 25%, respectively. Thus, if these

clusters are identified as Dunkelflaute clusters, there will be a large number of false positive

samples. In this study, we favored missing out on a few events instead of including too

many non-Dunkelflaute events in our analysis.

Figure 4.6 shows the frequency of the capacity factors for the Top 5 Dunkelflaute

clusters, as well as the plots for the 95
th
percentile values for wind and solar power. It is

clear that approximately 95% of the samples clustered in the C9, C12, and C23 clusters have

capacity factors lower than 25%. While for the C2 and C18 clusters, most values lies within
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Table 4.1: The correlation between periods of Dunkelflaute based on Belgian wind and solar power data and the

clustered wind speed and insolation data between 2013 and 2018.

Cluster DF Time Ratio Mean Actual CF Positive Ratio Number of Samples
>12 h >24 h All Wind Solar >12 h >24 h All

C1 0 0 0 0.6223 0.3070 0 0 0.0029 690

C2 0.1701 0.1630 0.1654 0.1293 0.0138 0.5969 0.1715 0.8110 3773
C3 0.0383 0.0517 0.0590 0.2929 0.0097 0.1405 0.0568 0.3026 3609

C4 0 0 0 0.7786 0.0344 0 0 0 237

C5 0.0030 0.0040 0.0025 0.0279 0.4732 0.0331 0.0132 0.0380 1209

C6 0.0016 0.0025 0.0018 0.2240 0.4413 0.0148 0.0070 0.0232 1420

C7 0.0047 0.0093 0.0081 0.4580 0.0177 0.0219 0.0128 0.0521 2880

C8 0 0 0 0.7245 0.0370 0 0 0 1526

C9 0.1727 0.1600 0.1378 0.0595 0.0146 0.8822 0.2452 0.9846 2590
C10 0.0751 0.0887 0.1017 0.2338 0.0126 0.2547 0.0903 0.4828 3898

C11 0.0100 0.0123 0.0152 0.2949 0.2068 0.0770 0.0286 0.1645 1714

C12 0.1958 0.1539 0.1726 0.0986 0.0141 0.7397 0.1744 0.9118 3503
C13 0.0026 0.0048 0.0028 0.1332 0.4684 0.0233 0.0127 0.0340 1499

C14 0.0003 0 0.0005 0.3510 0.4407 0.0046 0 0.0104 862

C15 0.0162 0.0245 0.0250 0.3741 0.0191 0.0645 0.0291 0.1393 3331

C16 0 0 0.0002 0.6418 0.0278 0 0 0.0020 2006

C17 0.0005 0.0017 0.0017 0.5503 0.0233 0.0026 0.0026 0.0115 2700

C18 0.1259 0.1411 0.1379 0.1800 0.0106 0.4180 0.1405 0.6405 3986
C19 0.0009 0.0012 0.0016 0.4637 0.2702 0.0102 0.0043 0.0247 1174

C20 0.0340 0.0322 0.0302 0.0592 0.2429 0.3189 0.0907 0.3955 1411

C21 0.0329 0.0315 0.0362 0.1053 0.2329 0.2469 0.0709 0.3808 1762

C22 0 0 0 0.7862 0.0316 0 0 0 987

C23 0.0857 0.0761 0.0641 0.0362 0.0521 0.8873 0.2363 0.9280 1278
C24 0.0022 0.0035 0.0020 0.0681 0.5155 0.0197 0.0095 0.0251 1472

C25 0.0275 0.0376 0.0335 0.1879 0.2108 0.1872 0.0768 0.3198 1939

about 40% capacities, confirming these clusters as less reliable indicators of Dunkelflaute

events. Besides, as shown in Table 4.1, the mean wind power capacity factors for four out

of these five Dunkelflaute clusters are larger than the mean solar power capacity factors,

resulting in the relatively smaller values for the 95
th
percentile for insolation.
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Figure 4.6: Normalized frequency of capacity factor for the Top 5 clusters associated with Dunkelflaute events.

Aggregated power production data for the years 2013–2018 (data source: https://www.elia.be) are used for the

analysis. From top left to bottom right the clusters are: C2, C9, C12, C18, and C23. Dashed lines represent the

95
th
percentile values for wind and solar power.
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Figure 4.7: Time series of wind and solar energy production during January 2017 (data source: data source:

https://www.elia.be). In the top six panels, the shaded gray regions represent the Dunkelflaute periods identified

by the C2, C9, C12, C18, C23 clusters, respectively and all these periods combined (marked as ‘Top 5’). In the

bottom panel, the Dunkelflaute time is demarcated by a gray shade if both wind and solar power production fall

below the threshold of 20% of their respective capacities using Elia data. This plot is used for validation.
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Taking an actual Dunkelflaute case as an example, Figure 4.7 shows the aggregated

wind and solar power production data for January 2017 [6]. Belgium experienced a total of

nine days of Dunkelflaute in January 2017, during which flexibility options including more

electricity generation from natural gas and additional power imports from neighboring

countries were taken to circumvent the situation. The Dunkelflaute periods clustered in

the individual five clusters identified previously (C2, C9, C12, C18, C23) and all these five

clusters together (marked as ‘Top 5’) are marked as shaded gray regions in the top six panels

of Figure 4.7. High correlation is seen between the Dunkelflaute periods based on actual

power data (bottom panel of Figure 4.7) and the clustered wind speed and insolation data

in Top 5 clusters. Each of the Top 5 clusters identified some segments of the Dunkelflaute

event.

4.5.4 Identification of Dunkelflaute for Other European
Countries

Denmark Germany UK

Figure 4.8: Anomalies of wind speed (top panel) and insolation (bottom panel) for weather patterns clustered as

Dunkelflaute centered over Denmark (left panel), Germany Sweden (middle panel), and the UK (right panel).

The proposed WISRnet framework can also be applied to other countries to identify

Dunkelflaute periods. Here, we utilize the framework for three additional countries: Den-

mark, Germany Sweden, and the UK. Anomalies of wind speed and insolation for the most

representative clusters identified as Dunkelflaute are shown in Figure 4.8 for each of the

three countries. Areas of anomalously low wind speed and insolation are clearly shown

centred on the three countries of interest.

Taking Denmark as an example, the mean wind speed and insolation anomalies for

25 clusters are shown in Figure 4.9. The clustered patterns clearly focus on Denmark and

several clusters are characteristic of Dunkelflaute periods, i.e., C1, C21, and C24. For these

three clusters, low wind speeds and insolation are present over Denmark and surrounding

areas, covering a considerable part of the North Sea. It is also clear that negative anomalies
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of insolation extend over almost the entire domain.

Wind Speed

Insolation

Wind Speed

Insolation

Wind Speed

Insolation

Wind Speed

Insolation

Wind Speed

Insolation

Figure 4.9: Similar to Fig. 7.2, except that the clustering algorithm is centered over Denmark.

4.6 Concluding Remarks
This paper is the first to demonstrate the capability of a machine learning-based framework

(named WISRnet) for identifying Dunkelflaute events using public-domain wind speed

and insolation data (e.g., reanalysis datasets). The crucial elements of the WISRnet are the

CNN-AE architecture to extract the two-dimensional features from gridded weather data

and the region-dependent k-means clustering. The combination of these elements enables

the WISRnet to identify location-specific Dunkelflaute patterns. High accuracy is achieved

when extracting encoded spatial patterns. Most importantly, excellent correspondence is

seen between observed Dunkelflaute periods and those tagged as such using the WISRnet

approach. Even though most of the present study has been focused on Belgium, the

applicability of the WISRnet for other countries has also been briefly illustrated.

We believe that the clustering of Dunkelflaute events can be improved by including

other types of meteorological data (e.g., satellite observations). In addition to wind speed

and insolation, several other variables (e.g., mean sea level pressure, cloud base height,

low cloud cover) are closely related to Dunkelflaute events [5]. The inclusion of some of
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these variables might also enhance the overall performance of the WISRnet. Furthermore,

other clustering methods (e.g., SOM) and other spatial weighting algorithms may be more

effective than our current approach. We hope to experiment with some of these alternatives

in our future work.

The WISRnet framework, with minor adjustments, can be used in conjunction with

various climate projection datasets (e.g., CMIP5). By doing so, one will be able to quantify

the impacts of climate change on the characteristics of the Dunkelflaute events. It is

needless to say that any statistically significant trend in the Dunkelflaute events will be of

critical importance for the designing and planning of next-generation power systems.

4.7 Appendix
4.7.1 Appendix A: Autoencoder
An autoencoder comprises of an encoder part and a decoder part. The encoding process

transforms the input patterns to the bottleneck layer with compressed amplitude and

spatial information. For a given input dataset 𝑥 ∈ 𝐑𝑑
, a hidden layer in the encoder can be

written as follows:

𝑧 = 𝑓 (𝑥) = 𝜑(𝑊𝑒𝑥 +𝑏1). (4.2)

Here an encoder 𝑓 (∙) uses the activation function 𝜑(∙) to introduce the nonlinearity. When

𝑧 ∈ 𝐑𝑠
,𝑊𝑒 ∈ 𝐑𝑠×𝑑

and 𝑏1 ∈ 𝐑𝑠
are the weight matrix and bias value given to the input features,

respectively. Here 𝑑 and 𝑠 refer to the size of inputted and encoded patterns, respectively.

Then the decoder recreates the input patterns by mapping the encoded patterns back

to the input features as follows.

𝑦 = 𝑔(𝑧) = 𝜙(𝑊𝑑𝑧 +𝑏2), (4.3)

where 𝑔(𝑧) indicates the mapping process between the hidden layer and the outputted

features, and 𝜙(∙) denotes the decoding activation function. 𝑊𝑑 ∈ 𝐑𝑑×𝑠
and 𝑏2 ∈ 𝐑𝑑

repre-

sents the weight matrix and bias term of the decoder. The reconstruction uses trainable

parameters 𝜃 = {𝑊𝑒 ,𝑊𝑑 , 𝑏1, 𝑏2}. The goal of the autoencoder is to output the features 𝑦 to

be close to the input information 𝑎 to the maximum extent. It can be achieved through

training by minimizing a loss function:

𝐽 (𝜃) =∑
𝑥
𝐿(𝑥,𝑦) =∑

𝑥
𝐿(𝑥,𝑔(𝑓 (𝑥))), (4.4)

where 𝐿 represents the loss function which is used to measure the reconstruction error. A

regularization term can also be added to avoid overfitting. The minimization of the error

term is usually implemented by stochastic gradient descent.

4.7.2 Appendix B: Convolutional Neural Network (CNN)
The CNN used here is developed using the Tensorflow-Keras library [61, 62]. We have

trained a number of CNNs including the symmetric architecture and asymmetric archi-

tecture of autoencoder, and several representatives are listed in the table 4.2. The best

symmetric algorithms we trained, named CNN3-FC1, has three convolutional layers with

8, 16, and 32 filters, respectively. The final feature map is flattened first and then connected
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to a dense layer that fully connected with 128 neurons. Regarding the asymmetric autoen-

coder algorithm, three representative structures, called Asym-CNN5, Asym-CNN7, and

Asym-CNN10, use 5, 7, and 10 convolutional layers in the encoding part, respectively. The

convolutional layers of Asym-CNN5 and Asym-CNN10 have 4, 8, 256, 32, 1 filters and 4, 8,

16, 32, 64, 128, 256, 256, 32, 1 filters, respectively. The Asym-CNN7 architecture is depicted

in Figure 7.1. For these four CNNs, all the filters in the convolutional layers have a kernel

size of 3 × 3 and the first three convolutional layers are all followed by a ReLU activation

function and a max-pooling layer. The max-pooling layer uses a kernel size of 2 × 2 and a

stride of 1. For the decoding part, CNN3-FC1 is the reverse structure of its encoder. The

decoder structures for the other three have the same number of layers as their encoding

counterpart, specifically, two fully-connected layers and 3, 5, and 8 convolutional layers,

respectively.

Table 4.2: The RMSE between the input and the reconstructed patterns for nine different CNN-AE architectures.

Learning Rate Dropout FC layer Wind Speed (m/s) Insolation (W/m2)
RMSE - - 1st layer train validation test train validation test

CNN3-FC1 0.001 - 1024 0.76 0.76 0.80 24.85 33.50 26.59

Asym-CNN5 0.001 - 1024 0.80 0.81 0.85 22.12 25.45 24.27

Asym-CNN7 0.0005 - 1024 0.78 0.78 0.82 21.09 24.88 23.40

Asym-CNN7 0.001 - 1024 0.78 0.78 0.81 21.26 24.62 23.06
Asym-CNN7 0.005 - 1024 4.47 4.48 4.52 193.74 191.82 200.13

Asym-CNN7 0.001 0.5 1024 1.36 3.42 3.39 39.26 109.59 113

Asym-CNN7 0.001 0.25 1024 1.13 1.95 1.96 30.31 61.82 62.76

Asym-CNN7 0.001 - 128 0.98 0.97 1.02 26.03 28.22 26.97

Asym-CNN10 0.001 - 1024 4.47 4.49 4.52 23.16 25.83 29.12

The RMSE between the input and the reconstructed wind speed and insolation patterns

for training, validation and test sets for selected runs are listed in Table 4.2. Though the

results of CNN3-FC1 is competitive, the application of symmetric architecture leads to

a 1-D encoder and is not suitable for the 2-D clustering algorithm. We also investigated

the influence of other hyperparameters like the number of convolutional layers (from 2

to 10), the number of filters (for example, 4, 8, 16 filters for the first convolutional layer),

and the kernel size (3 × 3 to 7 × 7) of convolutional filters on the overall performance. It is

found that the performance of an algorithm with less than 7 convolutional layers is not as

satisfactory while using more than 7 convolutional layers can overfit the results. Overall,

the best accuracy is from Asym-CNN7 (refer to Table 4.2).

The maximum number of epochs is set to 100 with a batch size of 128, and the accuracy

performance is estimated after each epoch. The learning curves are shown in the two

panels of Figure 4.10 which illustrated the change of loss with epochs for wind speed and

insolation patterns using Asym-CNN7. It is found that after 60 epochs, the decrease of

RMSE of wind speed and insolation patterns tends to be relatively negligible for validation

sets.

A few sensitivity runs are performed with the Asym-CNN7 architecture to quantify

the impacts of: (i) learning rate, (ii) dropout, and (iii) number of neurons in the fully

connected (FC) layers. The best result with Asym-CNN7 is achieved with a learning rate of

0.001. For a larger learning rate (e.g., 0.005), the RMSE increases dramatically, while for a

smaller learning rate (e.g., 0.0005), there is no further improvement in performance. To

investigate the influence of regularization, a dropout rate of 0.5 and 0.25 is added to the
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Figure 4.10: Examples of learning curves for wind speed (left panel) and insolation patterns (right panel). Loss is

measured as RMSE between the input and the reconstructed wind speed and insolation patterns.

FC layers sequentially. With increasing dropout rates, the RMSE values increase. Thus,

dropout is not deemed to be an effective regularization strategy for this particular problem.

In order to quantify the importance of the FC layers, an additional sensitivity run was

performed. In this run, the number of neurons in the two FC layers are decreased to 128

and 256, respectively. In contrast, in the default case, these FC layers have 1024 and 2048

neurons, respectively. It is evident from Table 4.2 that the RMSE of reconstruction increases

considerably with the reduction of the neurons in the FC layers. In other words, the FC

layers with sufficient complexity are needed to recreate the wind speed and insolation

patterns accurately.

4.7.3 Appendix C: K-means Clustering
A clustering approach groups all the objects into some subsets of similar wind speed

and insolation patterns. k-means clustering algorithm is widely used for its capability in

clustering a great number of objects. It employs the squared error criterion of similarity

which turns out to work well with a diversity of clusters [63]. The squared error function

in a cluster is calculated as the sum of squares of the distance between the patterns in each

cluster and the cluster center as follows.

𝑒2 =
𝐾
∑
𝑗=1

𝑛𝑗
∑
𝑖=1

∥ 𝐱𝑖,𝑗 −𝐜𝑗 ∥2 (4.5)

where 𝑥𝑖,𝑗 is the 𝑖th sample in the 𝑗 th cluster. There are 𝐾 clusters in total and each cluster

has a centroid, e.g. 𝑐𝑗 for the 𝑗 th cluster.
The clustering begins with a random partition and then assigns the samples to the

closest cluster centroid by measuring the data similarity and distance between the samples

and the cluster centers. Here the centroid is the mean value of the patterns in each

cluster. Subsequently, the cluster centers are recomputed, and the reassignment continues

until there is no additional reduction of squared point-to-centroid distance after several

iterations.
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The number of clusters 𝐾 is specified a priori and will influence the performance of the

criterion function. In this study, we use two competing approaches to estimate the optimal

value of 𝐾 .

First, we calculate inertia [64] to denote how well the data is clustered by k-means by

summing the squared distances of samples to their closest cluster center. In the left panel

of Figure 4.11, it can be seen that the K value of 20 to 30 is optimal with low inertia, and

there is little improvement of squared distance when the number of clusters is larger than

30.

Next, the Davies-Bouldin index is used [65]; refer to the right panel of Figure 4.11.

This index is defined as the average similarity of each cluster with the cluster most similar

to it. Thus, the smaller magnitude of the index means that clusters are better separated,

leading to better clustering. According to Figure 4.11 (right panel), the Davies-Bouldin

index fluctuates somewhat erratically. There is a minimum corresponding to 2 clusters. For

higher number of clusters, there is a general decreasing trend. However, it is not possible

to estimate an optimal value of 𝐾 from this plot. Hence, based on the inertia calculations,

we opt for 𝐾 = 25.
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Figure 4.11: The change of inertia (left panel) and Davies–Bouldin index (right panel) vary as a function of the

number of clusters.

4.7.4 AppendixD: K-meansClusteringwithout using aGaussian
kernel

The region-dependent clustering technique aims to cluster weather patterns with a focus

on a region or country of interest. A Gaussian kernel is used for convolution. In order to

quantify the importance of this kernel, we document additional K-means clustering results

in Figure 4.12. In this computation, we do not use a Gaussian kernel. This figure should be

compared against Figure 7.2 where a Gaussian kernel is utilized. According to Figure 4.12,

it is clear that several clusters (e.g., C3, C6, C21) represent simultaneous low wind speed

and low insolation conditions. However, the spatial patterns are rather diffused instead of

focused on a specific country.
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Figure 4.12: Anomalies of wind speed and insolation based on the 10-year mean for the 25 clusters (C1–C25)

using the CNN-AE patterns. The Gaussian kernel is not included in the clustering technique.
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Table 4.3: The positive ratio in each cluster based on Belgian wind and solar power data and the clustered wind

speed and insolation data using SOM between 2013 and 2018. Here we include all events regardless of the duration.

Cluster S1 S2 S3 S4 S5 S6 S7 S8 S9

Positive Ratio 0.7112 0.3125 0.3556 0.0063 0.0017 0.3195 0.0620 0.2352 0.1551

Cluster S10 S11 S12 S13 S14 S15 S16 S17 S18

Positive Ratio 0.0840 0.7868 0.5177 0.5013 0.1134 0.0271 0.7017 0.6470 0.4068

Cluster S19 S20 S21 S22 S23 S24 S25

Positive Ratio 0.1068 0.0200 0.6520 0.4806 0.1323 0.0523 0.0282

4.7.5 Appendix E: Self-Organizing Map
Self-organizing map (SOM) is a popular unsupervised machine learning approach and was

originally developed by Kohonen [66, 67]. A SOM can extract nonlinear patterns from

data, and as such, is more powerful than commonly used linear approaches (e.g., principal

component analysis, empirical orthogonal functions). The SOM-based classifcations have

been widely used in the atmospheric science field [27, 68, 69, 70, 71, 72]. In this appendix,

we use SOM as a baseline to cluster wind speed and insolation patterns and compare its

results with the WISRnet framework.

Before training a SOM network, wind speed and insolation data are first normalized and

then concatenated together. The MiniSom package [73], is employed here with a 5 ×5 SOM
grid. The total number of nodes in this grid determines the number of resulting clusters.

Since our WISRnet framework uses 25 clusters, we use the same number of clusters with

SOM. The learning rate of 0.01, neighborhood size of 1, and a high number of iterations of

1,000,000 are used in SOM implementation.

In Table 4.3, we examine the fraction of Dunkelflaute events as a ratio of total events in

each cluster (Positive Ratio) based on actual Belgian wind and solar power generation data

for the period 2013 to 2018. The top five clusters (S1, S11, S16, S17, and S21) in terms of

positive ratio are shown in bold. It can be seen that approximately 70% of the events in

clusters S1, S11, and S16 are Dunkelflaute events and there is a positive ratio of around

65% for S17 and S21. The clustering results using SOM are reasonably good; however, it

underperforms compared to the WISRnet. In the case of WISRnet, there are three clusters

with a positive ratio larger than 90%; one cluster above 80% and one at 64%.

The performance of the SOM approach may be improved by coupling it with a K-means

clustering approach in conjunction with a Gaussian kernel-based convolution. Such an

approach is beyond the scope of the present study.

References
[1] Bowen Li, Sukanta Basu, and Simon JWatson. “Automated Identification of “Dunkelflaute”

Events: A Convolutional Neural Network–Based Autoencoder Approach”. In: Artifi-
cial Intelligence for the Earth Systems 1.4 (2022), e220015.

[2] Frank Meinke-Hubeny et al. “Energy transition in Belgium–Choices and costs”. In:

EnergyVille in Opdracht van Febeliec: Genk, Belgium (2017).

[3] D Wetzel. “Die „Dunkelflaute “bringt Deutschlands Stromversorgung ans Limit”.

In: Die Welt “vom 6 (2017). https://www.welt.de/wirtschaft/article161831272/Die-



4

68 4 Automated Identification of ‘Dunkelflaute’ Events

Dunkelflaute-bringt-Deutschlands-Stromversorgung-ans-Limit.html. Accessed De-

cember 18, 2021., p. 2017.

[4] Bowen Li et al. “Quantifying the predictability of a ‘Dunkelflaute’event by utiliz-

ing a mesoscale model”. In: Journal of Physics: Conference Series. Vol. 1618. 6. IOP
Publishing. 2020, p. 062042.

[5] Bowen Li et al. “A brief climatology of dunkelflaute events over and surrounding

the North and Baltic Sea areas”. In: Energies 14.20 (2021), p. 6508.

[6] Bowen Li et al. “Mesoscale modeling of a “Dunkelflaute” event”. In: Wind Energy
24.1 (2021), pp. 5–23.

[7] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), pp. 436–444.

[8] Ian Goodfellow et al. Deep learning. Vol. 1. 2. MIT press Cambridge, 2016.

[9] Cunzhao Shi et al. “Deep convolutional activations-based features for ground-based

cloud classification”. In: IEEE Geoscience and Remote Sensing Letters 14.6 (2017),

pp. 816–820.

[10] Jinglin Zhang et al. “CloudNet: Ground-based cloud classification with deep con-

volutional neural network”. In: Geophysical Research Letters 45.16 (2018), pp. 8665–
8672.

[11] Congcong Li et al. “Comparison of classification algorithms and training sample

sizes in urban land classification with Landsat thematic mapper imagery”. In: Remote
sensing 6.2 (2014), pp. 964–983.

[12] Jian Xu et al. “A novel ozone profile shape retrieval using full-physics inverse learning

machine (FP-ILM)”. In: IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 10.12 (2017), pp. 5442–5457.

[13] Amy McGovern et al. “Using artificial intelligence to improve real-time decision-

making for high-impact weather”. In: Bulletin of the American Meteorological Society
98.10 (2017), pp. 2073–2090.

[14] Gregory R Herman and Russ S Schumacher. “Money doesn’t grow on trees, but

forecasts do: Forecasting extreme precipitation with random forests”. In: Monthly
Weather Review 146.5 (2018), pp. 1571–1600.

[15] Stephan Rasp and Sebastian Lerch. “Neural networks for postprocessing ensemble

weather forecasts”. In: Monthly Weather Review 146.11 (2018), pp. 3885–3900.

[16] João Trevizoli Esteves, Glauco de Souza Rolim, andAntonio Sergio Ferraudo. “Rainfall

prediction methodology with binary multilayer perceptron neural networks”. In:

Climate Dynamics 52.3 (2019), pp. 2319–2331.

[17] Yunjie Liu et al. “Application of deep convolutional neural networks for detecting

extreme weather in climate datasets”. In: arXiv preprint arXiv:1605.01156 (2016).

[18] Evan Racah et al. “Semi-supervised detection of extreme weather events in large

climate datasets”. In: arXiv preprint arXiv:1612.02095 (2016).

[19] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.



References

4

69

[20] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. “Supervised machine learning: A

review of classification techniques”. In: Emerging artificial intelligence applications
in computer engineering 160.1 (2007), pp. 3–24.

[21] Stefano Zanero and Sergio M Savaresi. “Unsupervised learning techniques for an

intrusion detection system”. In: Proceedings of the 2004 ACM symposium on Applied
computing. 2004, pp. 412–419.

[22] Xinhua Cheng and John M Wallace. “Cluster analysis of the Northern Hemisphere

wintertime 500-hPa height field: Spatial patterns”. In: Journal of atmospheric sciences
50.16 (1993), pp. 2674–2696.

[23] DR Fereday et al. “Cluster analysis of North Atlantic–European circulation types

and links with tropical Pacific sea surface temperatures”. In: Journal of Climate 21.15
(2008), pp. 3687–3703.

[24] Susmitha Joseph et al. “Can El Niño–Southern Oscillation (ENSO) events modulate

intraseasonal oscillations of Indian summer monsoon?” In: Journal of Geophysical
Research: Atmospheres 116.D20 (2011).

[25] Ming Bao and John MWallace. “Cluster analysis of Northern Hemisphere wintertime

500-hPa flow regimes during 1920–2014”. In: Journal of the Atmospheric Sciences 72.9
(2015), pp. 3597–3608.

[26] AK Sahai et al. “A bias-correction and downscaling technique for operational ex-

tended range forecasts based on self organizing map”. In: Climate dynamics 48.7-8
(2017), pp. 2437–2451.

[27] Daniel E Horton et al. “Contribution of changes in atmospheric circulation patterns

to extreme temperature trends”. In: Nature 522.7557 (2015), pp. 465–469.

[28] Laura Ferranti, Susanna Corti, and Martin Janousek. “Flow-dependent verification

of the ECMWF ensemble over the Euro-Atlantic sector”. In: Quarterly Journal of the
Royal Meteorological Society 141.688 (2015), pp. 916–924.

[29] Robert Neal et al. “A flexible approach to defining weather patterns and their ap-

plication in weather forecasting over Europe”. In: Meteorological Applications 23.3
(2016), pp. 389–400.

[30] Sonja Totz et al. “Winter precipitation forecast in the European and Mediterranean

regions using cluster analysis”. In: Geophysical Research Letters 44.24 (2017), pp. 12–
418.

[31] Richard Grotjahn et al. “North American extreme temperature events and related

large scale meteorological patterns: a review of statistical methods, dynamics, mod-

eling, and trends”. In: Climate Dynamics 46.3 (2016), pp. 1151–1184.

[32] Nicolas Vigaud et al. “Multiscale variability in North American summer maximum

temperatures and modulations from the North Atlantic simulated by an AGCM”. In:

Journal of Climate 31.7 (2018), pp. 2549–2562.

[33] Ashesh Chattopadhyay, Pedram Hassanzadeh, and Saba Pasha. “Predicting clustered

weather patterns: A test case for applications of convolutional neural networks to

spatio-temporal climate data”. In: Scientific reports 10.1 (2020), pp. 1–13.



4

70 4 Automated Identification of ‘Dunkelflaute’ Events

[34] Lei Dong et al. “Wind power day-ahead prediction with cluster analysis of NWP”.

In: Renewable and Sustainable Energy Reviews 60 (2016), pp. 1206–1212.

[35] Kejun Wang et al. “Deep belief network based k-means cluster approach for short-

term wind power forecasting”. In: Energy 165 (2018), pp. 840–852.

[36] John J Cassano et al. “Predicted changes in synoptic forcing of net precipitation in

large Arctic river basins during the 21st century”. In: Journal of Geophysical Research:
Biogeosciences 112.G4 (2007).

[37] Nathaniel C Johnson, Steven B Feldstein, and Bruno Tremblay. “The continuum of

Northern Hemisphere teleconnection patterns and a description of the NAO shift

with the use of self-organizing maps”. In: Journal of Climate 21.23 (2008), pp. 6354–
6371.

[38] Sukyoung Lee and Steven B Feldstein. “Detecting ozone-and greenhouse gas–driven

wind trends with observational data”. In: Science 339.6119 (2013), pp. 563–567.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. “Imagenet classificationwith

deep convolutional neural networks”. In: Advances in neural information processing
systems 25 (2012), pp. 1097–1105.

[40] Haixia Xiao et al. “Classification of ice crystal habits observed from airborne Cloud

Particle Imager by deep transfer learning”. In: Earth and Space Science 6.10 (2019),
pp. 1877–1886.

[41] Nantheera Anantrasirichai et al. “Application of machine learning to classification of

volcanic deformation in routinely generated InSAR data”. In: Journal of Geophysical
Research: Solid Earth 123.8 (2018), pp. 6592–6606.

[42] L Denby. “Discovering the importance of mesoscale cloud organization through unsu-

pervised classification”. In: Geophysical Research Letters 47.1 (2020), e2019GL085190.

[43] Xin Jiang et al. “Rapid and large-scale mapping of flood inundation via integrating

spaceborne synthetic aperture radar imagery with unsupervised deep learning”. In:

ISPRS Journal of Photogrammetry and Remote Sensing 178 (2021), pp. 36–50.

[44] Longlong Jing and Yingli Tian. “Self-supervised visual feature learning with deep

neural networks: A survey”. In: IEEE transactions on pattern analysis and machine
intelligence 43.11 (2020), pp. 4037–4058.

[45] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. “Revisiting self-supervised

visual representation learning”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2019, pp. 1920–1929.

[46] Bo Peng et al. “Urban Flood Mapping With Bitemporal Multispectral Imagery Via a

Self-Supervised Learning Framework”. In: IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 14 (2020), pp. 2001–2016.

[47] DiegoAcuña-Escobar,Monserrate Intriago-Pazmiño, and Julio Ibarra-Fiallo. “Weather

Recognition Using Self-supervised Deep Learning”. In: International Conference on
Smart Technologies, Systems and Applications. Springer. 2022, pp. 161–174.

[48] Geoffrey E Hinton and Richard S Zemel. “Autoencoders, minimum description length,

and Helmholtz free energy”. In: Advances in neural information processing systems 6
(1994), pp. 3–10.



References

4

71

[49] Evan Racah et al. “Extremeweather: A large-scale climate dataset for semi-supervised

detection, localization, and understanding of extreme weather events”. In: Advances
in neural information processing systems 30 (2017).

[50] Ganggang Dong et al. “A review of the autoencoder and its variants: A comparative

perspective from target recognition in synthetic-aperture radar images”. In: IEEE
Geoscience and Remote Sensing Magazine 6.3 (2018), pp. 44–68.

[51] Ashesh Chattopadhyay, Ebrahim Nabizadeh, and Pedram Hassanzadeh. “Analog

forecasting of extreme-causing weather patterns using deep learning”. In: Journal of
Advances in Modeling Earth Systems 12.2 (2020), e2019MS001958.

[52] Hans Hersbach et al. “The ERA5 global reanalysis”. In: Quarterly Journal of the Royal
Meteorological Society 146.730 (2020), pp. 1999–2049.

[53] VRT. Belgi𝑒 telde negen dagen Dunkelflaute in januari. https://www.vrt.be/
vrtnws/nl/2017/02/24/belgie_telde_negendagendunkelflauteinjanuari-
1-2900900/. Accessed January 26, 2022. 2017.

[54] Marc’Aurelio Ranzato et al. “Unsupervised learning of invariant feature hierarchies

with applications to object recognition”. In: 2007 IEEE conference on computer vision
and pattern recognition. IEEE. 2007, pp. 1–8.

[55] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep convolu-

tional encoder-decoder architecture for image segmentation”. In: IEEE transactions
on pattern analysis and machine intelligence 39.12 (2017), pp. 2481–2495.

[56] Forest Agostinelli et al. “Learning activation functions to improve deep neural

networks”. In: arXiv preprint arXiv:1412.6830 (2014).

[57] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[58] Stuart Lloyd. “Least squares quantization in PCM”. In: IEEE transactions on informa-
tion theory 28.2 (1982), pp. 129–137.

[59] Bilal Babar, Rune Graversen, and Tobias Boström. “Solar radiation estimation at high

latitudes: Assessment of the CMSAF databases, ASR and ERA5”. In: Solar Energy 182

(2019), pp. 397–411.

[60] Yesi Sianturi, Marjuki, and Kwarti Sartika. “Evaluation of ERA5 and MERRA2 reanal-

yses to estimate solar irradiance using ground observations over Indonesia region”.

In: AIP Conference Proceedings. Vol. 2223. 1. AIP Publishing LLC. 2020, p. 020002.

[61] Martın Abadi et al. “Tensorflow: A system for large-scale machine learning”. In: 12th
{USENIX} symposium on operating systems design and implementation ({OSDI} 16).
2016, pp. 265–283.

[62] Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd, 2017.

[63] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. “Data clustering: a review”.

In: ACM computing surveys (CSUR) 31.3 (1999), pp. 264–323.

[64] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

https://www.vrt.be/vrtnws/nl/2017/02/24/belgie_telde_negendagendunkelflauteinjanuari-1-2900900/
https://www.vrt.be/vrtnws/nl/2017/02/24/belgie_telde_negendagendunkelflauteinjanuari-1-2900900/
https://www.vrt.be/vrtnws/nl/2017/02/24/belgie_telde_negendagendunkelflauteinjanuari-1-2900900/


4

72 4 Automated Identification of ‘Dunkelflaute’ Events

[65] David L Davies and Donald W Bouldin. “A cluster separation measure”. In: IEEE
transactions on pattern analysis and machine intelligence 2 (1979), pp. 224–227.

[66] Teuvo Kohonen. “The self-organizing map”. In: Proceedings of the IEEE 78.9 (1990),

pp. 1464–1480.

[67] Teuvo Kohonen. “Essentials of the self-organizing map”. In: Neural networks 37
(2013), pp. 52–65.

[68] Jennifer Francis and Natasa Skific. “Evidence linking rapid Arctic warming to mid-

latitude weather patterns”. In: Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 373.2045 (2015), p. 20140170.

[69] Masamichi Ohba, Shinji Kadokura, and Daisuke Nohara. “Impacts of synoptic circu-

lation patterns on wind power ramp events in East Japan”. In: Renewable Energy 96

(2016), pp. 591–602.

[70] Peter B Gibson et al. “On the use of self-organizing maps for studying climate

extremes”. In: Journal of Geophysical Research: Atmospheres 122.7 (2017), pp. 3891–
3903.

[71] Paul C Loikith, Benjamin R Lintner, and Alex Sweeney. “Characterizing large-scale

meteorological patterns and associated temperature and precipitation extremes over

the northwestern United States using self-organizing maps”. In: Journal of Climate
30.8 (2017), pp. 2829–2847.

[72] Bedassa R Cheneka, Simon J Watson, and Sukanta Basu. “Associating Synoptic-Scale

Weather Patterns with Aggregated Offshore Wind Power Production and Ramps”.

In: Energies 14.13 (2021), p. 3903.

[73] Giuseppe Vettigli. MiniSom: minimalistic and NumPy-based implementation of the
Self Organizing Map. 2018. url: https://github.com/JustGlowing/
minisom/.

https://github.com/JustGlowing/minisom/
https://github.com/JustGlowing/minisom/


5

73

5
Mesoscale modeling of a

‘Dunkelflaute’ event

In the near future, wind and solar generation are projected to play an increasingly important
role in Europe’s energy sector. With such fast-growing renewable energy development, the
presence of simultaneous calm wind and overcast conditions could cause significant shortfalls
in production with potentially serious consequences for system operators. Such events are
sometimes dubbed ‘Dunkelflaute’ events and have occurred several times in recent history.
The capabilities of contemporary mesoscale models to reliably simulate and/or forecast a
Dunkelflaute event are not known in the literature. In this paper, a Dunkelflaute event near
the coast of Belgium is simulated utilizing the Weather Research and Forecasting (WRF) model.
Comprehensive validation using measured power production data and diverse sets of meteoro-
logical data (e.g., floating lidars, radiosondes, weather stations) indicates the potential of WRF
to reproduce and forecast the boundary layer evolution during the event. Extensive sensitiv-
ity experiments with respect to grid-size, wind farm parameterization, and forcing datasets
provide further insights on the reliability of the WRF model in capturing the Dunkelflaute
event.

This chapter is partly based on � Li, B., Basu, S., Watson, S. J., and Russchenberg, H. W. (2021). Mesoscale modeling
of a “Dunkelflaute” event. Wind Energy, 24(1), 5-23. [1].
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Under various energy transition scenarios, a rapid growth in renewable energy gen-

eration can be foreseen, leading to a more sustainable energy system in Europe. In order

to fulfill the target of 40% greenhouse gas emission reduction by 2030 (compared to the

emission level of 1990), it is projected that a significant share (≈ 32%) of the total energy

consumption in Europe will be from renewable sources by 2030[2]. This share could be

as high as ≈ 66% by 2050[3]. In order to meet these ambitious targets, the North Sea

region will play an increasingly important role. By the year 2045, an offshore wind energy

installation of around 180 GW in the region is expected [4]. Belgium’s massive investment

in the renewable energy sector, including offshore wind farms over the North Sea, indicates

that a complete shut-down of nuclear power plants by 2025 is attainable [5]. As far as the

Netherlands is concerned, the roll-out of offshore wind farms is anticipated to expand at

a rate of 1 GW per year up until 2030[6]. By 2050, an aggregated 75 GW installation of

offshore wind farms is planned.

Unlike fossil fuel-based energy sources, some of the renewable energy sources (espe-

cially, wind and solar) strongly rely onmeteorological conditions. As such sources of energy

play a larger role in electricity networks, this presents an increasing challenge in terms of

balancing supply and demand. Therefore, it is important to increase our understanding and

forecasting capability of certain weather phenomena which can result in adverse renewable

energy production from a system operator perspective. Such advanced knowledge and

tools will further support the continuing growth of renewables in the foreseeable future.

In this paper, we focus on one such weather phenomenon called ‘Dunkelflaute’ as it is

rapidly becoming a major concern for the renewable energy community [7]. The word

Dunkelflaute was coined by combining two German words ‘Dunkelheit’ (darkness) and

‘Windflaute’ (little wind) to describe heavy overcast skies and weak wind conditions. These

meteorological events can last from a few hours to a few consecutive days. It is needless to

say that under the influence of such a meteorological condition, little or no wind and solar

energy can be produced.

On the 30th April 2018, an unexpected Dunkelflaute event occurred over the southern

part of the North Sea and caused a large imbalance in renewable power generation and

overall consumption. Given the acuteness of the situation, TenneT – the main transmission

system operator for Germany and the Netherlands – had to issue an emergency alert in

the Netherlands [8, 9]. The crisis could not be avoided by simple load management or

by making use of reserve power; instead, a substantial amount of electricity had to be

imported from neighboring countries at high market price.

This Dunkelflaute event was not an isolated episode. As a matter of fact, over the past

few years, several Dunkelflaute events occurred in Belgium[10, 11, 12, 13], Germany[7, 14,

15, 16], and other neighboring countries. Some of them caused significant impacts on the

power grids and electricity markets. There is no reason to believe that the occurrences

of Dunkelflaute will subside in the future. Instead, with the ever increasing penetration

of renewables in the power grid, the (negative) impacts of Dunkelflaute events will likely

become more and more detrimental.

As a first step towards better forecasting of Dunkelflaute events, in this study, we

investigate a recent Dunkelflaute event which occurred in Belgium. We analyze a diverse

suite of observational datasets for detailed characterization. We evaluate the performance

of a state-of-the-art mesoscale model, called the Weather Research and Forecasting (WRF)



5.1 Dunkelflaute: A Meteorological Perspective

5

75

model[17, 18], in capturing this event. The organization of this paper is as follows. In Section

2, we briefly provide the meteorological background of the Dunkelflaute phenomenon.

The selected case study is discussed in Section 3. The observational datasets and our

atmospheric modeling framework are described in Sections 4 and 5, respectively. The

simulated results along with in-depth analysis are documented in Section 6. At the end, we

summarize our findings and elaborate on potential future research in this arena. A brief

climatology of Dunkelflaute events in Belgium is documented in Appendix A.

5.1 Dunkelflaute: A Meteorological Perspective
The word Dunkelflaute does not exist in the vocabulary of meteorologists. Instead, they

commonly refer to this phenomenon as the “anticyclonic gloom” [19, 20]. There are also

localized names to describe this dull and drab weather phenomenon. For example, in the

dialect of Lincolnshire, UK, it is known as moäky or moke[21].
One of the earliest references to anticyclonic gloom can be found in a sublime arti-

cle by Captain C. K. M. Douglas[22]. Exactly one hundred years ago, he conducted a

comprehensive study on cloud characterization using aerial photography and stated:

“It is not generally realised that when the sky is covered with a gloomy

canopy of cloud, with the inevitable smoky haze over towns and for a con-

siderable distance to leeward, one has only to ascend about a mile in order

to enter a region with clear blue sky above, and a sea of white billowy cloud

underneath, which stretches in all directions to a distant horizon which stands

out sharply owing to the perfect visibility.

...

In winter the sky is very frequently overcast with a single sheet of low cloud

varying in thickness from 500 to 2000 feet. This type of cloud is very character-

istic of anticyclonic weather. There may be several days or a week of overcast

sky, a state of affairs described by Mr. W. H. Dines as anticyclonic gloom.”

Over the years, our overall understanding of anticyclonic gloom has been steadily

increasing. We now know that it is characterized by a high pressure system, extensive

stratus and/or stratocumulus cloud cover, strong subsidence inversion, near-calm wind,

low surface temperature, and possibly foggy nights[23, 24]. We are also aware of the fact

that anticyclonic gloom is predominantly a winter-time phenomenon. Although, it can

happen during the summer months under appropriate synoptic meteorological conditions

and sea state, e.g. Galvin[25].

In spite of basic characterizations, more detailed knowledge (e.g., radiation and heat

budgets, dynamical evolution and dissipation) pertaining to anticyclonic gloom is severely

lacking in the atmospheric science literature. For example, after the (inconclusive) studies

by Priestley and Swinbank[26] and Robinson[27] around 1950, we have not come across

any follow-up publication on heat budgets of anticyclonic gloom. In the era of advanced

instrumentation (including remote-sensing) and cutting-edge numerical modeling (e.g.,

large-eddy simulation), such a critical knowledge-gap should not exist.

In this context, it is important to note that there have been several comprehensive

modeling studies[28, 29, 30] probing both stratus- and stratocumulus-topped boundary

layers. However, to the best of our knowledge, none of these studies focused on the weak
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wind (or calm) regime – a necessary ingredient for the genesis of anticyclonic gloom. It

is the sole purpose of the present study to investigate this specific regime using the WRF

model.

5.2 Description of Case Study
In January 2017, Belgium experienced a total of nine days of Dunkelflaute (anticyclonic

gloom) [10, 11, 12, 13]. During these days, due to gentle breeze and overcast conditions, the

energy production from wind and solar farms were far below their rated values. To further

aggravate the situation, a nuclear power plant malfunctioned at the same time. Several

measures, including more electricity generation from natural gas, additional power imports

from neighbouring countries, and other flexibility options were undertaken to handle this

acute problem[31]. Modeling by Elia of a similar extended period of low renewable energy

generation (wind and PV) under a future 2040 scenario indicated that there could be an

overall shortage of more than 1000 GWh of energy [11] which would be difficult to fill

with existing storage technology.

The aggregated wind (onshore and offshore) and solar power production data for

Belgium are publicly available from Elia (http.elia.be) – the transmission system

operator in Belgium. The production data for the month of January 2017 are shown Fig. 5.1.

In lieu of any objective (quantitative) criterion in the literature, here, we define a period as

Dunkelflaute when onshore wind, offshore wind, and solar power generation all fall below

10% of their respective nominal capacities. These periods are marked as lightly shaded

grey regions in Fig. 5.1. The weak wind conditions, occurring during nighttime hours (no

solar power generation), are demarcated by a darker shade. In this paper, we focus on two

of these Dunkelflaute periods: January 15–17 and January 22–25.

The surface analyses for January 15th and January 25th are shown on the top panel

of Fig. 5.2. It is clear that the Azores high was present in the eastern Atlantic on January

15th. At the same time, over the North Sea region, the gradients of surface pressure were

relatively strong and were conducive to adequate wind power generation (see top-panel of

Fig. 5.1). In the following days, a stronger anticyclone (high pressure center) developed

over continental Europe and moved slowly eastward. At its peak, it reached an impressive

magnitude of 1042 hPa (not shown). On and around January 25th, the anticyclone was

located over Germany. Given the vast expanse of the high pressure regions (refer to top-

right panel of Fig. 5.2), the pressure gradients were rather slack and led to extremely calm

wind conditions. It is needless to say that neither the onshore nor the offshore wind farms

in Belgium produced any energy on that day.

During both Dunkelflaute events of January 15th–17th and January 22th–25th, the

southern part of the North Sea was overcast with thick clouds (bottom panels of Fig. 5.2),

resulting in very little solar radiation reaching the surface. As shown in the bottom panel

of Fig. 5.1, the solar energy production was virtually negligible during these Dunkelflaute

periods.

Even though it is completely out of the scope of the present study, we would like to

point out that the atmospheric circulation patterns over continental Europe were very

unusual during January 2017 (refer to Appendix B). They caused extreme cold and violent

storms at various places resulting in numerous deaths[32]. From that perspective, these

Dunkelflaute events were far less sinister in nature.

http.elia.be
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Figure 5.1: Time series of wind energy (top panel) and solar energy (bottom panel) production during January

2017 (data source: Elia.be). The daytime Dunkelflaute periods are represented with lightly shaded grey regions.

The weak wind conditions, occurring during nighttime hours (no solar power generation), are demarcated by a

darker shade. If two grey regions are separated by no more than one hour, they have been merged together.
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Figure 5.2: Synoptic weather maps for January 15th (top-left panel) and January 25th (top-right panel) of

2017. Source: http://www.wetterzentrale.de/. MODIS satellite-based reflectance maps for Jan-

uary 15 (bottom-left panel) and January 25th (bottom-right panel) of 2017. Source: https://worldview.
earthdata.nasa.gov.

http://www.wetterzentrale.de/
https://worldview.earthdata.nasa.gov
https://worldview.earthdata.nasa.gov
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5.3 Description of Observational Datasets
During January 2017, Belgium had only three operational offshore wind farms, C-Power,

Northwind, and Belwind I, with a combined capacity of 712 MW. These wind farms and

their associated wakes can be seen in the left panel of Fig. 5.3. In this paper, we have used

aggregated power production data from these wind farms in conjunction with solar farms

to characterize the Dunkelflaute phenomenon. The temporal granularity of these datasets

is 15 minutes. Note that these data have been post-processed by Elia to account for missing

data or other data anomalies[33, 34].

Figure 5.3: Left panel: synthetic aperture radar (SAR) image of Belgian offshore wind farms (source: Google Earth

Engine); middle panel: image of the SEAWATCH wind lidar buoy located at Borssele Wind Farm Zone (BWFZ,

source: BWFZ Project and Site Description); right panel: image of Lichteiland Goeree (LEG, source: DNV-GL[35]).

In addition to the power production data, we use meteorological data from several

offshore and onshore locations. First of all, we make use of several lidar-based wind datasets

which are publicly available via TNO (fomerly ECN, the Energy Research Center of the

Netherlands). Floating lidars (middle panel of Fig. 5.3), as well as lidars on fixed platforms

(right panel of Fig. 5.3) were utilized to collect wind data. At Borssele Wind Farm Zone

(BWFZ) and Hollandse Kust Zuid (HKZ), SEAWATCH floating lidar systems (equipped

with ZX, formerly ZephIR, 300S lidars) were deployed by Fugro. These lidars provided

wind profiling data for 10 heights between 30 m and 200 m above mean sea level (MSL).

The temporal resolution of all the wind time-series is 10 min.

The wind dataset from BWFZ has only a handful of missing samples. These measure-

ments were validated against a cup-anemometer at Vlakte van de Raan wind station and

were found to be of high quality[36, 37]. In the HKZ region, two floating lidars were taking

wind measurements at locations called HKZA and HKZB. Unfortunately, due to intermit-

tent transmission failures, the wind dataset from HKZA has several gaps. The lidar at

HKZB did not suffer from a similar data-loss problem. In fact, the wind data at HKZB were

strongly correlated with conventional anemometer-based data from Lichteiland Goeree

(LEG) and EuroPlatform (EPL) stations attesting to its high quality[38, 39]. At LEG and

EPL platforms, ZX wind lidars were also deployed and measured at several heights (from

90 m to 315 m) every 10 minutes[40, 41]. The locations of BWFZ, HKZ, LEG, EPL, and the

offshore wind farms can be seen in the left panel of Fig. 5.4.

Next, measurements from the Stabroek automated weather station (AWS) are utilized

in this study. This AWS is operated by the Royal Meteorological Institute (RMI) of Belgium

and its location can be seen in the left panel of Fig. 5.4. The recorded shortwave radiation

data have a temporal resolution of 10 minutes[42].
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Lastly, sounding datasets from three land-based stations (Herstmonceux, Norderney,

and EDZE Essen, locations shown in the right panel of Fig. 5.4), are utilized for the char-

acterization of the vertical structure of the atmosphere during the Dunkelflaute periods.

These datasets are provided by the University of Wyoming[43] and contain vertical profiles

of wind speed, potential temperature, and several other meteorological variables.

5.4 Model Setup
The Weather Research and Forecasting (WRF) model (version 3.9.1.1), is employed here

to simulate the atmospheric conditions associated with the aforementioned Dunkelflaute

event. A total of six different simulations are performed by varying large-scale forcing

data and physical parameterizations; see Table 5.1 for details. The first five simulations

start at 00 UTC on January 14th, 2017, and last for a total of 14 days. The last simulation

(called WRF–GFS+) is initialized at 00 UTC of January 21st. Model output are saved every

10 minutes.

All the simulations utilize 51 vertical levels with nonuniform grid spacing with the

top of the model reaching approximately 16 km from the surface. The lowest grid level is

approximately at 8 m from the surface and there are 18 levels in the lowest 1 km of the

model atmosphere. In every simulation (with one exception), grid nudging is applied above

approximately 2 km in order to keep the simulations in sync with the large-scale forcing

data. In addition, the sea-surface temperature field is continuously updated throughout the

simulations.

Numerous physical parameterization options are available in the WRF model to repre-

sent turbulence, land-atmosphere interactions, radiation, cloud microphysics and other

processes. Based on our past experience, we have used the following parameterizations:

NOAH land surface model[44], Rapid Radiative Transfer Model for Global Climate Models

(RRTMG) for longwave radiation and shortwave radiation[45], WRF Single-Moment 5-class

microphysics scheme[46], and Kain-Fritsch cumulus scheme[47] (only activated for grid

sizes coarser than 5 km). We have selected the Mellor-Yamada-Nakanishi-Niino (MYNN) 2.5

level scheme[48] as the default planetary boundary layer (PBL) parameterization. However,

in one of the WRF runs, we use the Yonsei University scheme[49, 50] to investigate the

sensitivity of the simulated results with respect to PBL parameterizations.

The wind farm parameterization by Fitch et al.[51] is activated in three of the WRF runs

to simulate the effects of the Belgian offshore wind turbines on the atmospheric flow fields.

The effects of the wind turbines are represented as drag-induced energy sink and increased

turbulence in the vertical levels containing the rotor disk. The Fitch parameterization

assumes that a fraction of the total energy flowing through the wind farm is used for power

production (based on the turbine power coefficient) and the rest is converted into turbulent

kinetic energy (determined by the turbine thrust coefficient). The simulated wind farm

area consists of three Belgian offshore wind farms: C-Power, Northwind, and Belwind I.

In the left panel of Fig. 5.4, they are depicted as white dots. There are a total of 182 wind

turbines of five different types (Table 5.2). The power curves and thrust curves of these

turbines are listed in Appendix C.

Three different large-scale forcing datasets are used for initial conditions (IC) and

boundary conditions (BC). The ERA5 reanalysis dataset (horizontal grid size: ∼31 km;

sampling rate: 1 hourly) is available from 1979 to present day from the European Centre
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for Medium-Range Weather Forecasts (ECMWF) [52]. The ERA-Interim reanalysis dataset

(horizontal grid size: ∼79 km; sampling rate: 6 hourly) is also available from ECMWF

[53]. In addition to these reanalysis datasets, we also use an operational forecast dataset

(horizontal grid size: 0.25
◦
; sampling rate: 3 hourly for 0 to 240 h period and 12 hourly for

240 h to 384 h) from the Global Forecast System (GFS) to investigate if the Dunkelflaute

periods could have been predicted in a real-time forecast scenario. The WRF–GFS and

WRF–GFS+ simulations are initialized on January 14th and 21st, respectively to investigate

the impacts of prediction horizons on Dunkelflaute forecasting.

Figure 5.4: Left panel: locations of the Belgian offshore wind farms and the meteorological stations. Right panel:

domain configuration for the WRF simulations when the ERA5 reanalysis dataset is used for initial and boundary

conditions. The locations of the radiosonde launch locations are overlaid on this plot.

For the WRF runs involving ERA5, two nested domains are used (right panel of Fig. 5.4).

These domains are coupled in an one-way nesting mode. The outermost domain (d01) has

a grid size of 9 km (domain size: 1890 km × 1674 km); whereas, the inner domain (d02)

employs a grid size of 3 km (domain size: 819 km × 819 km). Given the coarser spatial

resolution of the ERA-Interim and the GFS datasets, we deemed it necessary to use a three

domain configuration. The largest domain (d01) for these runs uses a grid size of 27 km

(domain size: 2673 km × 2943 km); it is not shown. The second domain (d02) and the third

domain (d03) use grid sizes of 9 km and 3 km, respectively. Their corresponding domain

sizes exactly match the ones shown in the right panel of Fig. 5.4.
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Table 5.2: Information on the three Belgian offshore wind farms used in this study

Wind Farm Nameplate Capacity (MW) Turbines Hub Height (m) Rotor Diameter (m)

C-Power 325 6 Senvion 5 MW + 48 Senvion 6.2 MW 94 126

Northwind 216 72 Vestas V112 3 MW 71 112

Belwind I 171 55 Vestas V90 3 MW + 1 Alstom 6 MW 72 90
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5.5 Results
In this section, we compare the WRF model-based simulated results against various ob-

servational data. In addition, we investigate the sensitivities of the simulated results with

respect to grid-size, IC/BC, and wind farm parameterization.

5.5.1 Time Series Analysis
Measured wind speed time-series for the period of 14th–28th January of 2017 are shown in

the top panel of Fig. 5.5. It is evident that the wind speeds were mostly lower than 5 m s
−1

during the Dunkelflaute periods. More interestingly, wind speed shears within the layer

of 40–180 m were virtually absent for almost the entire two-week period; thus, it can be

inferred that the lower part of the boundary layer was well-mixed. Starting January 27th,

we do see some signatures of wind speed shear in the measurements.

Measured wind speed time-series from four stations (i.e., LEG, EPL, BWFZ, HKZ) over

the North Sea are intercompared in the top-right panel of Fig. 5.5. The selectedmeasurement

heights are close to the hub-height of a Senvion 5 MW turbine (94 m). Specifically, at LEG

and EPL, the selected measurement heights were at 91 m; whereas, at BWFZ and HKZ,

they were at 100 m. As illustrated by Fig. 5.5, the overall consensus of all the wind speed

time-series is very high. Since these four stations are spread over a large area (see the left

panel of Fig. 5.4), it is safe to deduce that the wind speeds during the chosen time-period

were spatially rather homogeneous.

The simulated wind speed time-series from the WRF–ERA5 and WRF-ERA-I runs are

shown in the bottom panel of Fig. 5.5. The selected grid points are close to the BWFZ

station. Output from both the runs show similar temporal evolution patterns and strongly

agree with the measured data in terms of magnitudes of both wind speeds and wind shears.

On January 21st, the simulated data exhibited a small level of shear which were not present

in the measurements.

As illustrated by Fig. 5.6, the observed and simulated wind direction time-series varied

a lot during January 14th–28th. The WRF–ERA5 run has more-or-less captured the overall

trend. Some deviations are however noticeable.

In the left panel of Fig. 5.7, the WRF model-generated wind power production data are

overlaid on top of the measured data by Elia. It is clear that the wind farm parameterization

of the WRF model is able to accurately capture the magnitudes of the power production

including the rapid ramp-down and ramp-up events. During the Dunkelflaute periods, the

measured power production data had a few sporadic episodes of power generation; the

simulated data were unable to capture such traits.

Given the spatio-temporally intermittent cloud patterns (see the bottom panel of Fig. 5.2),

rigorous validation of the WRF model-generated radiation data is a challenging task. As a

poor man’s choice, we have decided to compare the simulated (downwelling) shortwave

radiation data against the observational data from the Stabroek station. From the right

panel of Fig. 5.7, it is clear that the WRF model significantly overestimated the magnitudes

of shortwave radiation during the Dunkelflaute periods; in other words, the cloudiness

was weaker in the model than in the reality.

The measured and simulated air temperature time-series are compared in the left

panel of Fig. 5.8. Once again, we have selected the BWFZ location for comparison. The

temperature data were measured at a height of 4 m. However, the simulated data are from
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Figure 5.5: Top-left panel: wind speed time series from various heights measured at the BWFZ station. Top-right

panel: hub-height (∼91–100 m) wind speed time series measured at four locations over the North Sea (i.e., LEG,

EPL, BWFZ, HKZ). Simulated wind speed time series from various heights extracted from the WRF-ERA5 and

WRF-ERA-I runs are shown in the bottom-left and bottom-right panels, respectively. Only the simulated data

from the innermost domains (i.e., grid size of 3 km) are shown. The selected grid points are in close proximity

to the BWFZ station. The daytime Dunkelflaute periods are represented with lightly shaded grey regions. The

weak wind conditions, occurring during nighttime hours (no solar power generation), are demarcated by a darker

shade.

2 m height. In spite of the height difference, the measured and simulated data portray

similar trends. As often happens in marine boundary layers, no sign of a diurnal cycle can

be found in the temperature data during January 14th–28th. However, during this period,

the air temperature dipped below freezing twice, due to the passages of cold fronts. Such

temperature drops increased the energy demand, and in turn, the energy deficits during

the Dunkelflaute event.

The simulated sea-surface temperature (SST) and surface sensible heat flux values from

BWFZ are shown in the left and right panels of Fig. 5.8, respectively. During the two-week

simulation period, the SST decreased marginally. Since SST was almost always higher than

the air temperature, there is expected to be positive sensible heat flux at the surface. Under

such meteorological conditions, the surface layer is considered to be unstable (convective)

and it promotes turbulent mixing. Wind shears decrease drastically due to mixing as

depicted earlier in Fig. 5.5.
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Figure 5.6: Left panel: measured hub-height (100 m) wind direction time series at the BWFZ station. Right panel:

simulated wind direction time series (96 m) extracted from the WRF–ERA5 run (d02 domain). The selected grid

point from the WRF model is in close proximity of the BWFZ station. The daytime Dunkelflaute periods are

represented with lightly shaded grey regions. The weak wind conditions, occurring during nighttime hours (no

solar power generation), are demarcated by a darker shade.

During January 27th–28th, due to warm air advection, the air temperature became

warmer than the sea-surface and created stably stratified conditions. Such atmospheric

conditions are conducive to high wind shears as can be seen in Fig. 5.5.

5.5.2 Boundary Layer Structure
Measured profiles of potential temperature and wind speed spanning the entire boundary

layer are not available over the southern part of the North Sea region. As a substitute, we

utilize radiosondes launched from three neighboring locations over land (Herstmonceux,

Norderney, and EDZE Essen; see right panel of Fig. 5.4) to characterize the boundary layer

structure. In Figs. 5.9–5.11, we compare measured and simulated profiles for January 15th

and 24th. For both days, we show profiles corresponding to 00 UTC (close to local midnight)

and 12 UTC (close to local noon time). Simulated data from three runs (WRF–ERA5, WRF–

ERA5#, and WRF–ERA-I) are considered. In addition, we also plot the vertical profiles

which are directly extracted from the ERA5 reanalysis data.

Overall, all the simulations and ERA5 data more-or-less capture the magnitudes and

shapes of the profiles. Among them, the ERA5 is a clear winner and the WRF–ERA-I

performs the worst. The performances of the WRF–ERA5 and WRF-ERA5# runs are

slightly poorer than ERA5. This reduction in performance is possible because the WRF

runs only utilize ERA5 data during initialization and as boundary conditions. All the

internal grid points of the WRF domains dynamically evolve without any data assimilation.

The effects of grid nudging is felt only above 2 km.

Since the radiosondes were launched over land, the potential temperature profiles often

portray the telltale signs of the circadian cycles. For example, nocturnal stably stratified

conditions are noticeable at: Herstmonceux (00 UTC of January 15th and 24th), Norderney

(00 UTC of January 24th), and EDZE Essen (00 UTC of January 15th and 24th). The daytime

unstable conditions (mixed profiles) are evident at: Herstmonceux (12 UTC of January

24th), Norderney (12 UTC of January 15th and 24th), and EDZE Essen (12 UTC of January
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Figure 5.7: Left panel: measured and simulated wind power production data. The measured data are obtained from

Elia. Right panel: comparison of measured and simulated (downwelling) shortwave radiation data. The automated

weather station is located at Stabroek, Belgium. Only the simulated data from the innermost domains (i.e.,

grid-size of 3 km) of the WRF–ERA5 and WRF–ERA-I runs are shown in these plots. The daytime Dunkelflaute

periods are represented with lightly shaded grey regions. The weak wind conditions, occurring during nighttime

hours (no solar power generation), are demarcated by a darker shade.

24th). The other potential temperature profiles do not follow a canonical diurnal pattern.

For example, at 12 UTC of January 15th, a deep stable layer persists over Herstmonceux

and EDZE Essen.

The WRF simulations have, most of the time, captured the shape and amplitudes of the

potential temperature profiles. However, they failed to capture the mixed layer evolution

on January 24th at Herstmonceux and EDZE Essen. They underestimated the residual layer

height at 00 UTC. The growth of the mixed layer is rather slow for all the simulations. In

comparison to the MYNN scheme, the YSU scheme significantly delays the formation of

the mixed layer. It is plausible that the entrainment rate is better simulated by the MYNN

scheme for this specific case.

The observed wind speeds at higher altitudes were quite strong on January 15th and

the simulated ones closely resembled them. However, the WRF results overestimated the

turbine-layer wind speeds at Herstmonceux. On January 24th, the wind speeds subsided

drastically. At all the locations, the observed and simulated wind speeds were approximately

5 m s
−1

or even weaker in the lowest 1 km of the boundary layer.

In lieu of observed boundary layer profiles near the Belgian offshore wind farm region,

we only document simulated time-height plots of wind speeds and potential temperatures

in Fig. 5.12. The estimated PBL heights are overlaid on these plots. From the temperature

plot, it is clear that the PBL height was rather shallow (less than 500 m) for the large part

of the two-week simulation period. Furthermore, the temperature profiles are found to be

uniform in height (i.e., well-mixed) within the boundary layer for most of the time. This

result further corroborates our previous finding that the marine boundary layer near the

BWFZ station was unstable during January 14th–27th of 2017.

The top-left panel of Fig. 5.12 suggests that a sudden reduction of the wind speed

happens on January 15th and persists until January 21st. The gentle breezy condition

returned again on January 22nd and lasted until January 27th. The depth of the weak

flow field extends much higher than the PBL height. Thus, it is caused by a synoptic scale
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Figure 5.8: Left panel: measured and simulated air temperature time series at the BWFZ station. The measurement

height was 4 m; whereas, the simulated data are from 2 m height. The simulated sea-surface temperature (SST) is

also overlaid for comparison. Right panel: temporal evolution of sensible heat flux at the surface from the WRF

simulations. Only the simulated data from the innermost domains (i.e., grid-size of 3 km) of the WRF–ERA5

and WRF–ERA-I runs are shown in these plots. The daytime Dunkelflaute periods are represented with lightly

shaded grey regions. The weak wind conditions, occurring during nighttime hours (no solar power generation),

are demarcated by a darker shade.

system (an anticyclone) and not modulated by boundary layer processes. The localized

increase of wind speeds on January 21st could be due to an offshore low-level jet; it is a

mere speculation and cannot be substantiated in this study.

In order to quantify the impact of the PBL schemes on the simulated results, we have

computed the differences of simulated results from the WRF–ERA5# run (invokes the YSU

PBL scheme) and the WRF–ERA5 run (utilizes the MYNN 2.5 level PBL scheme). The

time-height plots of the differences of wind speeds and potential temperatures are shown

in the bottom panel of Fig. 5.12. In terms of potential temperature, the differences are

not large. Most of the differences occur in the (subsidence) inversion zone overlying the

boundary layer. The wind speed values also differ significantly within this zone. Within

the PBL, the YSU scheme often produces slightly stronger wind speeds in comparison to

the MYNN scheme.

5.5.3 Sensitivity to Grid-Size and IC/BC
The observed and simulated hub-height (∼ 100 m) wind speeds from the BWFZ location

are shown in the top panel of Fig. 5.13. The simulated time series from WRF-ERA5 and

WRF-ERA-I are quite similar. More interestingly, for both the runs, the simulated results

are virtually insensitive to grid-sizes. The ERA5 reanalysis data match the observed data

remarkably well, as found earlier in the context of vertical profiles.

In the context of (downwelling) shortwave radiation, the differences between different

simulations are significant (see the middle and bottom panel of Fig. 5.13). All theWRF-based

results overestimate the magnitude of radiation during the Dunkelflaute periods. For other

times, the simulated results are not too far off from from the observations.



5.5 Results

5

89

265 270 275 280 285 290 295 300 305
0

1000

2000

3000

4000

5000

H
e
ig

h
t 
(m

)

      Herstmonceux

                    ERA5

WRF - ERA5 (d02)

WRF - ERA5# (d02)

WRF - ERA-I (d03)

265 270 275 280 285 290 295 300 305
0

1000

2000

3000

4000

5000

H
e
ig

h
t 
(m

)

      Herstmonceux

                    ERA5

WRF - ERA5 (d02)

WRF - ERA5# (d02)

WRF - ERA-I (d03)

265 270 275 280 285 290 295 300 305
0

1000

2000

3000

4000

5000

H
e
ig

h
t 
(m

)

      Herstmonceux

                    ERA5

WRF - ERA5 (d02)

WRF - ERA5# (d02)

WRF - ERA-I (d03)

265 270 275 280 285 290 295 300 305
0

1000

2000

3000

4000

5000

H
e
ig

h
t 
(m

)

      Herstmonceux

                    ERA5

WRF - ERA5 (d02)

WRF - ERA5# (d02)

WRF - ERA-I (d03)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

H
e
ig

h
t 
(m

)

      Herstmonceux

                    ERA5

WRF - ERA5 (d02)

WRF - ERA5# (d02)

WRF - ERA-I (d03)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000
H

e
ig

h
t 
(m

)
      Herstmonceux

                    ERA5

WRF - ERA5 (d02)

WRF - ERA5# (d02)

WRF - ERA-I (d03)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

H
e
ig

h
t 
(m

)

      Herstmonceux

                    ERA5

WRF - ERA5 (d02)

WRF - ERA5# (d02)

WRF - ERA-I (d03)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

H
e
ig

h
t 
(m

)

      Herstmonceux

                    ERA5

WRF - ERA5 (d02)

WRF - ERA5# (d02)

WRF - ERA-I (d03)

Figure 5.9: Observed and simulated potential temperature (top panel) and wind speed (bottom panel) profiles at

the Herstmonceux radiosonde launch location. From left to right, the plots correspond to the following times,

respectively: 00 UTC of January 15th, 12 UTC of January 15th, 00 UTC of January 24th, and 12 UTC of January

24th. For the WRF runs (i.e., WRF–ERA5, WRF–ERA5#, WRA–ERA-I), only the simulated results from the 3 km

domains are shown and compared. Extracted data from the ERA5 reanalysis data are also included as a baseline.
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Figure 5.10: Same as Fig. 5.9, except for the Norderney radiosonde launch station.

5.5.4 Sensitivity to Wind Farm Parameterization
The numerical configuration and the physical parameterization options of the WRF–ERA5*

run is identical to the default run WRF–ERA5. Except, in the WRF–ERA5* run, the wind

farm parameterization scheme is turned off. Whereas, in the WRF–ERA5 run, it is used

in conjunction with 182 wind turbines. The differences in the simulated wind speeds and

turbulent kinetic energy at the BWFZ station are shown in Fig. 5.14.

The BWFZ station is located about 10 km from the Belgian offshore wind farms (refer to

the left panel of Fig. 5.4). It can experience wind farmwake effects when the prevailing wind

direction is within 180–270 degrees. According to Fig. 5.6, such wind directions happened

a few times during Jan 14th–28th. During such periods (e.g., January 16th and 24th), the

wake effects can be clearly seen in Fig. 5.14. These differences are quite substantial in terms

of both mean wind speeds and turbulent kinetic energy. For other periods, there are small

differences as well. This is due to the fact that in mesoscale simulations any perturbations

(here imposed by the wind farm parameterization) in flow fields change future evolution
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Figure 5.11: Same as Fig. 5.9, except for the EDZE Essen radiosonde launch station.

(the so-called ‘butterfly effect’).

5.5.5 Reanalysis versus Real-time
In addition to initial fields, the WRF model (or any other mesoscale model) requires

boundary conditions spanning the entire simulation period. For retrospective simulations,

such boundary conditions can be extracted from the reanalysis datasets (e.g., ERA5 and

ERA-Interim). Due to extensive data assimilation, such boundary conditions tend to be very

accurate. However, in the context of real-time forecasting, such high-fidelity boundary

conditions are not available. Rather, one has to use operational forecast data from a global

model (e.g., GFS).

In this section, we compare the results from theWRF–GFS run against the default WRF–

ERA5 run. We expect the accuracy of the WRF–GFS to be comparable with WRF–ERA5 run

at the beginning of the simulation period; however, its performance will likely deteriorate

with increasing prediction horizon. The top-left panel of Fig. 5.15 is in line with our

expectation. During the period of January 14th-18th, in terms of wind power production, the

performance of the WRF–GFS run is at par with WRF–ERA5. Afterwards, its results deviate

significantly from the measured data from Elia. Even though the WRF–GFS run predicts

the commencement of the second Dunkelflaute period rather accurately, it underestimates

its duration. It predicts that the power output from the Belgian wind farms return to the

nameplate capacity level by Jan 25th; in reality, such recovery happened after January

28th. In contrast, the WRF–GFS+ run, initialized on January 21st, significantly improves

the quality of the wind power forecast for the second Dunkelflaute period (particularly

during January 21–26) due to the reduction in prediction horizon (refer to bottom-left

panel of Fig. 5.15). In terms of (downwelling) shortwave radiation, the performance of

the WRF–ERA5, WRF–GFS, and WRF–GFS+ runs are poor (right panel of Fig. 5.15). More

validation work, potentially involving satellite remote-sensing-based radiation data, is

needed in this arena.
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Figure 5.12: Time-height plots of simulated wind speeds (top-left panel) and potential temperature (top-right

panel) from the d02 domain (grid size of 3 km) of the WRF–ERA5 run. The simulated PBL heights are overlaid on

these plots as white lines. Time-height plots of the differences between the WRF–ERA5# and WRF–ERA5 runs

(d02 domains) are shown in the bottom panels. The bottom-left and bottom-right panels represent differences of

wind speeds and potential temperatures, respectively. The grid point closest to the BWFZ station is selected for

all these plots.



5

92 5 Mesoscale modeling of a ‘Dunkelflaute’ event

14 16 18 20 22 24 26 28

Jan-2017

0

5

10

15

20

25

30

                    BWFZ

 WRF - ERA5 (d01)

 WRF - ERA5 (d02)

                     ERA5

14 16 18 20 22 24 26 28

Jan-2017

0

5

10

15

20

25

30

                    BWFZ

 WRF - ERA-I (d01)

 WRF - ERA-I (d02)

 WRF - ERA-I (d03)

14 16 18 20 22 24 26 28

Jan-2017

0

100

200

300

400

500

               Stabroek

WRF - ERA5 (d01)

WRF - ERA5 (d02)

                    ERA5

14 16 18 20 22 24 26 28

Jan-2017

0

100

200

300

400

500

               Stabroek

WRF - ERA-I (d01)

WRF - ERA-I (d02)

WRF - ERA-I (d03)

24 00UTC 24 12UTC 25 00UTC 25 12UTC 26 00UTC

Jan-2017

0

100

200

300

400

500

               Stabroek

WRF - ERA5 (d01)

WRF - ERA5 (d02)

                    ERA5

24 00UTC 24 12UTC 25 00UTC 25 12UTC 26 00UTC

Jan-2017

0

100

200

300

400

500

               Stabroek

WRF - ERA-I (d01)

WRF - ERA-I (d02)

WRF - ERA-I (d03)

Figure 5.13: Measured and simulated wind speed time series (top panels) and (downwelling) shortwave radiation

(middle panels) for January 14th - 28th. The bottom panels show measured and simulated shortwave radiation

time series for a shorter duration of January 24th - 25th for clarity. The observational wind speeds and radiation

data are from the BWFZ station and Stabroek station, respectively. Simulated results from all the computational

domains of the WRF–ERA5 (left panels) and WRF–ERA-I (right panels) are plotted for comparison. Extracted data

from the ERA5 reanalysis data are also included as a baseline. The daytime Dunkelflaute periods are represented

with lightly shaded grey regions. The weak wind conditions, occurring during nighttime hours (no solar power

generation), are demarcated by a darker shade.



5.5 Results

5

93

Figure 5.14: Time-height plots of the differences between the WRF–ERA5 and WRF–ERA5* runs (d02 domains).

The left and right panels represent differences of wind speeds and turbulent kinetic energy, respectively. The grid

point closest to the BWFZ station is selected for all these plots.
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Figure 5.15: Measured and simulated wind power production data (top-left panel) and (downwelling) solar

radiation at 12 UTC during January 14th–28th (top-right panel). The simulated results from WRF–GFS+ run,

initialized on January 21st, are shown in the bottom panel. The measured wind power data are obtained from Elia.

Only the simulated data from the innermost domains (i.e., grid-size of 3 km) of the WRF–ERA5 and WRF–GFS

runs are shown in these plots. The daytime Dunkelflaute periods are represented with lightly shaded grey regions.

The weak wind conditions, occurring during nighttime hours (no solar power generation), are demarcated by a

darker shade.
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5.6 Concluding Remarks
In this work, we simulate and characterize a Dunkelflaute (aka anticyclonic gloom) event

via mesoscale modeling. An extensive suite of observational data assisted in the model

validation. In addition to weak wind and cloudy conditions, we have found that the marine

boundary layer was frequently well-mixed during this event. As a consequence, wind speed

shears were negligible in measurements over the North Sea and also in corresponding

simulated data. Over land, however, the observed and simulated profiles portray traits of

stratification and wind speed shears.

For basic climatological characterizations of Dunkelflaute events, the ERA5 reanalysis

dataset could be utilized owing to its global coverage, long-term availability, and high

accuracy. However, this dataset does not include the wake effects of wind farms. In order

to account for such effects, one should utilize the WRF model or other mesoscale models

in conjunction with a suitable wind farm parameterization. Mesoscale simulations can also

provide more advanced diagnostics (e.g., turbulent kinetic energy), and by virtue of their

high spatial resolutions, they can resolve coastal effects.

In this study, we have noticed that in retrospective mode, some of the features (e.g.,

hub-height wind speeds, power production) of the Dunkelflaute can be reliably simulated

using coarse grid-sizes (e.g., 27 km). If this finding holds true for modeling of other

Dunkelflaute events, then it will be possible to simulate these events with a relatively low

computational costs. In a real-time forecasting scenario, however, this specific event could

not be predicted beyond four days. In our future work, we will find out if we can improve

on the predictability of these events by coupling mesoscale modeling with deep learning

approaches.

Before closing, we would like to mention that the renewable energy community is not

the only stakeholder who is interested in a better understanding and forecasting capability

of the Dunkelflaute phenomenon. It is also relevant for the air pollution community [54,

55] and the astronomy community [56].

5.7 Appendix
5.7.1 Appendix A: Climatology of Dunkelflaute Events in Bel-

gium
Weanalyzedwind and solar power production data fromElia.be for the years 2013–2018.

These data have a sampling rate of 15 min; thus, in a given year, we have approximately

35,000 samples. A particular sample is classified as a Dunkelflaute event if the production

by onshore wind, offshore wind, as well as, solar farms fall below 10% of their respective

nominal capacities during that particular 15 min period. We do not tag a sample as a

Dunkelflaute event if solar power production is exactly zero and it happens outside the

time-window of 09 UTC – 15 UTC; this way, we effectively exclude nighttime conditions

from the climatological analysis. It is clear from Fig. 5.16 that every year all the three

renewable power generation sources drop below 10% of their capacities for a substantial

period of time (approximately ranging from 30% to 50%). Typically, offshore wind power

production has a higher capacity factor in comparison to its onshore counterpart. On

average, the Dunkelflaute events account for around 7% – 8% of the time per year. These

numbers do not vary much across the years.

Elia.be
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Figure 5.16: Annual climatology of Dunkelflaute events in Belgium. The colored bars represent the percentage of

the time when Belgian onshore wind, offshore wind, solar power output and all three simultaneously (classified

as Dunkelflaute) are less than 10% of rated output.

5.7.2 Appendix B: Anomaly Patterns over Europe
The synoptic condition during the month of January of 2017 was quite unusual as can be

seen in Fig. 5.17; see also Dunstone et al.[57]. These anomaly plots are created using the

ERA5 data. First, a climatological mean is computed for the month of January from ERA5

data spanning the years 1981 to 2010. Then, this mean is subtracted from the monthly

average of January 2017.

It is evident that during January 2017, over the North Sea, sea level pressure was a

lot higher than the climatological mean over the North Sea region. Similar behavior was

observed in the case of 500 mb geopotential height. Both zonal and meridional winds

showed negative anomaly for the southern part of North Sea and surrounding areas.

Extremely cold conditions prevailed over the southern part of continental Europe.
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Figure 5.17: Anomaly maps from: https://www.esrl.noaa.gov/psd/cgi-bin/data/
testdap/plot.comp.pl.

https://www.esrl.noaa.gov/psd/cgi-bin/data/testdap/plot.comp.pl
https://www.esrl.noaa.gov/psd/cgi-bin/data/testdap/plot.comp.pl
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5.7.3 Appendix C: Power and Thrust Curves
The power and thrust curves of the wind turbines from the Belgian offshore wind farms are

extracted from various sources (see Table 5.3) and are plotted in Fig. 5.18. In some cases, in

lieu of actual turbine data in the public domain, we had to utilize data from proxy turbines

with similar characteristics.

Table 5.3: Sources of Power and Thrust Curves

Turbine Power Curve Thrust Curve

Vestas V90 3 MW Source: manufacturer Source: Bot[58]

Vestas V112 3 MW Source: manufacturer Source: manufacturer

Senvion (formerly REPower) 5 MW Source: windPRO Source: windPRO

Senvion 6.2 MW Source: manufacturer Proxy: Senvion 5 MW

Alstom 6 MW Proxy: ECN 6 MW[59] Proxy: ECN 6 MW[59]
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Figure 5.18: Power curves (left panel) and thrust curves (right panel) of the turbines from the Belgian offshore

wind farms.
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6
Estimation of ‘Dunkelflaute’

Events using Gradient
Boosting Machines

In Europe’s energy system, wind and solar power generation are projected to develop consider-
ably in the coming years, so its estimation during unfavorable weather conditions, such as
Dunkelflaute (near-calm, overcast conditions), is crucial. In recent literature, physics-based
models, known as mesoscale models, have been used for such predictions. The purpose of
this study is to investigate whether we can utilize machine learning algorithms as viable
alternatives to mesoscale models for Dunkelflaute predictions. In particular, gradient-boosting
machines are applied to predict solar and wind power (both onshore and offshore) produc-
tion directly from observational datasets. The proposed approach outperforms a popular
mesoscale model (called the Weather Forecasting and Research model), as well as a random
forest model. In addition, the proposed approach allowed us to quantify the importance of
various meteorological features in the prediction of Dunkelflaute events.
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As wind and solar power play an increasingly prominent role in the European energy

system, extreme weather events (e.g., Dunkelflaute events) can have significant impacts

on power production [1, 2, 3, 4, 5, 6]. Northern European countries may experience

Dunkelflaute events several times a year when wind and solar energy levels are very

low for a few consecutive days [4]. They can challenge the reliability of power system

operation in terms of the balance between electricity supply and demand. It is therefore

imperative to predict these Dunkelflaute events in advance and plan the grid system for

the upcoming shortage of power production. Reliable predictions can play a key role in

electricity dispatching and the stable operation of the power system, and in turn, can help

reduce the reserve capacity and the operating cost of the power system.

The first study on the estimation of Dunkelflaute events was conducted by [5]. They

investigated the capability of a physics-based mesoscale model, called theWeather Research

and Forecasting (WRF) model, to simulate (hindcast) Dunkelflaute events in Belgium in

January 2017. Through comprehensive validation, they demonstrated the capability of the

WRF model to predict wind speed and insolation fields during Dunkelflaute events. Similar

high-level performances of other physics-based models in the prediction of wind speed [7,

8] and wind power [9, 10] have been reported in the literature.

Although physics-based models are quite capable of forecasting wind and solar power,

there is significant room for improvements [11]. These types of models are susceptible

to errors in initial and boundary conditions, as well as to imperfections in numerical and

physical parameterizations [12]. They also require significant amounts of computational

resources. Thus, it is worth investigating if machine learning-based approaches can provide

at-par or better power predictions at a reduced cost. We address this question in this study,

albeit with a focus on Dunkelflaute events.

ML is an artificial intelligence approach that learns intricate structures from large

datasets and makes predictions or decisions for specific purposes [13, 14]. It has been

widely used in many aspects of the atmospheric science field recently, such as cloud image

classification [15], weather forecasting [16, 17], solar and wind energy forecasting [18] ,
etc. Besides, ML techniques have shown their potential for clustering weather patterns of

wind speed and insolation and identifying Dunkelflaute periods that occurred in a specified

country [6]. Based on the study of [6], a reliable estimation of Dunkelflaute events is

significantly valuable for the next steps and can provide early warning of such events.

To handle the aforementioned uncertainties in power forecasting from NWP models,

machine learning approaches have also been implemented to establish a hybrid model.

For example, [19] applied feature selection approaches and Long Short-Term Memory to

correct the errors of WRF output. This deep learning network has reduced the errors from

numerical simulation by around 30%. Besides, ML algorithms can post-process wind-related

features, which are forecasted by numerical weather models, to output power production.

Typical research is done by [20], who applied Multilayer Perceptron on the decomposed

time-series components for power forecasting utilizing the historical and NWP datasets.

Other algorithms including gradient boosting machines [21], support vector machine,

and artificial neural network [22] also perform well in different research. These hybrid

approaches are also efficient in solar power forecasting, either correcting the prediction

errors from numerical simulation [23] or outputting power production based on the solar-

related features from numerical models [24]. Therefore, ML algorithms are efficient in
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power production forecasting and have the potential to forecast Dunkelflaute periods.

This is the first research using ML algorithms to estimate wind and solar power produc-

tion during the Dunkelflaute periods. A gradient boosting machine is employed to predict

solar, offshore wind, and onshore wind power production with observational datasets. The

rest of the paper is organized as follows. We briefly introduce ML algorithms in Section 2.

The datasets used in the experiments are described in Section 3. In Section 4, we discuss

the proposed algorithms. Prediction and comparison results are documented in Section 5

followed by a summarized discussion in Section 6.

6.1 Decision Tree-based Forecasting Approaches
6.1.1 Decision Tree Regression
Decision tree (DT)-based approaches are among the most effective ML workhorses for

tabular regression problems. Recent AIML competitions have shown that DT methods

provide impressive accuracy in sales forecasting and other applications [25, 26]. DTs

employ explanatory variables (called features in the ML literature) to predict a dependent

variable (or target). Given that DTs are a rule-based regression approach, their training

requires decisions on several factors, including the feature chosen for splitting the root and

each branch, the rule (cut-point value) to use on each selected feature for performing the

splitting, and the condition for stopping the splitting. These decisions are automatically

made by the algorithm utilized to train the model.

For the input 𝑛 samples each with feature vector 𝒙 ∈ 𝐑𝑙
and the target value 𝑦 ∈ 𝐑,

where 𝑙 is the feature scale, a DT algorithm recursively splits the feature space to group the

samples with similar target values. For a specific node set 𝐴𝑚 with 𝑛𝑚 samples, a possible

splitting threshold 𝑡𝑚,𝑗 , 𝑗 ∈ [1, 𝑙] may split the set into two subsets 𝐴𝑚,1 and 𝐴𝑚,2 [27, 28]:

𝐴𝑚,𝑗,1 = {(𝒙,𝒚)|𝒙(𝑗) < 𝑡𝑚,𝑗 }
𝐴𝑚,𝑗,2 = 𝐴𝑚\𝐴𝑚,𝑗,1

(6.1)

where 𝒙𝒋 is the 𝑗th column of 𝒙, representing the sample vector corresponding to the

𝑗th feature. To optimize the parameters of the DT model, an optimization process is applied

to minimize the ensemble loss:

𝐸(𝐴𝑚, 𝑗) =
𝑛𝑚,𝑗,1
𝑛𝑚

𝐿(𝐴𝑚,𝑗,1)+
𝑛𝑚,𝑗,2
𝑛𝑚

𝐿(𝐴𝑚,𝑗,2)

𝑡∗𝑚,𝑗 = arg min𝑡𝑚,𝑗𝐸(𝐴𝑚, 𝑗)
(6.2)

where, 𝑛𝑚,𝑗,1 is the sample number in 𝐴𝑚,1, 𝑛𝑚,𝑗,2 is the sample number in 𝐴𝑚,2, and 𝐿(⋅)
is the loss function. Usually, the mean square error is used as the loss function:

𝐿(𝐴) =
1
𝑛𝑎

∑
𝑦∈𝐴

(𝑦 −
1
𝑛𝑎

∑
𝑦∈𝐴

𝑦)2 (6.3)

where 𝑛𝑎 is the sample number in the node set 𝐴. After the optimization, the two

subsets 𝐴𝑚,1 and 𝐴𝑚,2 becomes two new node sets, and the tree continuously grows by

iterating the aforementioned steps. The split of the node set stops when the tree reaches

the maximum depth or the sample number is below the minimum one. For any input

feature vector 𝒙𝟎, the prediction by the DT model 𝑇 (⋅) is:
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𝑦0 = 𝑇 (𝑥0) =
1
𝑛𝑎

∑
𝑦∈𝐴

𝑦, if 𝑥0 ∈ 𝐴 (6.4)

However, the algorithm used for training a single DT can be sensitive to randomness and

extreme values even if the DT is pruned and trimmed. In order to tackle the limitation and

improve accuracy, the methods to create ensembles (combinations) of multiple DTs have

been proposed. Here, we introduce two widely used methods, Random Forests (RFs) [29,

30] and Gradient Boosting (GB) [31].

6.1.2 Random Forest Regression
RF regression is an ensemble learning approach that constructs multiple DTs for the

regression task. Specifically, each DT has access to a different subset of variables at each

node and the results from these tree models are averaged. In this way, the forecasts can be

less sensitive to extreme values and can reduce variance more than individual models.

For the input 𝑛 samples each with feature vector 𝒙 = (𝑥1, 𝑥2, ..., 𝑥𝑙) ∈ 𝐑𝑙
and the target

value 𝑦 ∈ 𝐑, a random subspace of feature vector 𝒙𝒔𝒊 = (𝑥𝑗1, 𝑥𝑗2, ...) and the target value

𝑦 can be used to train a DT model 𝑇𝑖 with the aforementioned algorithm. By randomly

constructing 𝑀 trees, the prediction of the RF model on the input feature vector 𝒙𝟎 is:

𝑦0 =
1
𝑀

𝑀
∑
𝑖=1

𝑇𝑖(𝑥0) (6.5)

One issue of RFs is that bias reduction cannot be achieved since each tree is built on a

bootstrap sample with quite similar distribution as the initial training set. Therefore, it is

worth exploring other DT-based approaches.

6.1.3 Gradient Boosting Regression
GB combines successive weak learners to focus on the resulted errors sequentially through

boosting approach and model the residuals adaptively for all the data so that each new tree

improved on the forecast accuracy of the existing trees [32, 33]. As a result, GB reduces

both bias and variance [34, 18], and its results mostly outperform RFs in more specialized

applications [35].

For the input 𝑛 samples each with feature vector 𝒙 ∈ 𝐑𝑙
and the target value 𝑦 ∈ 𝐑, the

GB regression calculates the ensemble prediction as:

𝑦̂ = 𝐺𝑀 (𝑥) =
𝑀
∑
𝑖=1

𝑇𝑖(𝑥) (6.6)

where, 𝐺𝑀 (⋅) represents the GB model and 𝑇𝑖, 𝑖 = 1,2, ...,𝑀 are the DT models. These

DT models are weak learners as the tree size is limited. The GB algorithm constructs the

DT recursively as:

𝐺𝑚(𝑥) = 𝐺𝑚−1(𝑥)+𝑇𝑚(𝑥) (6.7)

Therefore for each step, a new DT model is implemented to minimize the ensemble

loss:
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𝑇𝑚(𝑥) = arg min𝑇𝑚 ∑
(𝑥,𝑦)∈𝑆

𝐿(𝑦,𝐺𝑚(𝑥)) = arg min𝑇𝑚 ∑
(𝑥,𝑦)∈𝑆

𝐿(𝑦,𝐺𝑚−1(𝑥)+𝑇𝑚(𝑥)) (6.8)

where, 𝐿(⋅) is the loss function, which is usually a square error function 𝐿(𝑦, 𝑦̂) = (𝑦−𝑦̂)2,
and 𝑆 is the sample set. To simplify the calculation, a first-order Taylor approximation is

used to estimate the loss:

𝐿(𝑦,𝐺𝑚−1(𝑥)+𝑇𝑚(𝑥)) ≈ 𝐿(𝑦,𝐺𝑚−1(𝑥))+𝑇𝑚(𝑥)[
𝜕𝐿(𝑦,𝐺𝑚−1(𝑥))

𝜕𝐺𝑚−1(𝑥)
] (6.9)

where, 𝑔𝑚(𝑥) = 𝜕𝐿(𝑦,𝐺𝑚−1(𝑥))
𝜕𝐺𝑚−1(𝑥) is the partial derivative of the loss function. Then the

equation (6.10) can be rewritten as:

𝑇𝑚(𝑥) = arg min𝑇𝑚 ∑
(𝑥,𝑦)∈𝑆

𝑇𝑚(𝑥)𝑔𝑚(𝑥) (6.10)

The DT model generated from this minimizing optimization is thereby proportional to

the negative gradient −𝑔𝑚(𝑥). Since the ensemble loss is minimized, the updated GB model

results in smaller errors by implementing the new DT. Therefore, the bias and variance

decrease with the GB algorithm.

There are several variants of the GB method in common use, like Light gradient

boosting machine [36] (LightGBM), XGBoost [37], or Categorical Boosting (CatBoost) [38].

These methods all share the same idea of gradient boosting but differ in the way they

grow or aggregate the individual trees. Among these, XGBoost, has been used by the

top winners in Kaggle competitions [37], and CatBoost shows promising performance

especially for generalization accuracy [38]. Recently, light gradient boosting machine

(LightGBM) has shown its excellent performance of high prediction accuracy, fast training

speed and reduced memory consumption to process large data sets, and ability to minimize

over-fitting problems.

Regarding lightGBM, the major differences from XGBoost are the deployment of

histogram-based algorithms and a leaf-wise growth strategy with depth constraints. For the

histogram algorithm, there is no extra storage requirement for the pre-sorted results, and

the value after the discretization of features can be stored with an 8-bit integer. Instead of

using a level-wise growth strategy, LightGBM employs a more effective leaf-wise method,

which finds the leaves with the highest accuracy at each step throughout all the leaves.

These two algorithms together with the depth limitation make it achieve high accuracy

with less time and memory consumption [35]. As a result, it has been widely used in many

fields, e.g. music recommendation [39], acoustic scene classification [40], and smart grid

load forecasting [41]. LightGBM was also used by most of the winning teams in the M5,

demonstrating the method’s ability to forecast multiple time series of diverse patterns and

features [42]. It has not yet been applied in estimating wind and solar power production

during the Dunkelflaute periods, which is a concern in our research.
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6.2 Description of the Datasets
6.2.1 Reanalysis Data
For the purpose of Belgian Dunkelflaute estimation, time series of gridded meteorologi-

cal reanalysis data and historical power production data are used as input features and

corresponding outputs, respectively. Since observed meteorological data can be sparsely

located and temporally discontinuous, the ERA5 reanalysis dataset from the European

Centre for Medium Range Weather Forecasts [43] is used instead in this study. It contains

the hourly data with a spatial resolution of ∼31 km, which is the highest among its coun-

terparts. In addition, this dataset was demonstrated reliable for capturing numerous traits

of Dunkelflaute events [4, 5, 6].

The previous studies of Gradient Boosted (GB) trees emphasize the importance of

including more features to achieve smaller errors [44]. Therefore, many meteorological

variables from ERA5 are used as input features. The local wind speed, solar radiation flux

and cloud cover are closely related to the Dunkelflaute events so these variables at different

heights are included. Besides, some variables describing the stability of the boundary layer

are considered, including the boundary layer height, temperature, heat fluxes, and surface

pressure. Other preprocessed variables like the sine or cosine formats of the day and hour

to be estimated are also included.

For forecasting outputs, the data of aggregated wind and solar power production in

Belgium are obtained from the system operator Elia (https://www.elia.be). These measured

power data are aggregated from the sampling rate of 15 min to 60 min to be consistent with

the hourly meteorological data from ERA5. All the data in 2016 are divided into training

and validation sets, and those from January and February of 2017 are used as two test sets.

In January 2017, Belgium experienced a total of nine days of Dunkelflaute [5], which is

concerned with evaluating the ML forecasting model.

6.2.2 Location Selected of Parameters
The interested domain for the forecasting is chosen as 49°N to 52°N and 2°E to 7°E, which

covers the Belgian onshore and offshore areas. The weather variables at one or more

locations in the domain grid will be chosen as the LightGBM model input.

At the domain grid, the correlation coefficients between the power production and the

related meteorological variable are calculated in order to find the most power-related loca-

tions where we retrieve ERA5 variables for the modeling. Figure 6.1 shows the correlation

coefficients between solar power and mean surface downward long-wave radiation flux

(MSDWSWRF), as well as those between wind power and 100-meter wind speed (M100).

It is clear that the highest coefficients for solar and onshore wind power are obtained in

the middle of the domain; while for offshore wind power, the highest coefficient locates in

the Belgian offshore region. Considering all these three power, we find the three points

with the highest coefficients, which are p1 (50.75°N, 4.5°E), p2 (51.75°N, 3°E), and p3 (50.5°N,

5.5°E). ERA5 variables at points (p1), (p1, p2), and (p1, p2, p3) will be input into three

LightGBM models, called LGB - 1GP, LGB - 2GP, and LGB - 3GP, respectively.

Taking the p1 location as an example, the correlations between the above power and

the corresponding weather variables are illustrated in Figure 6.2. The linear correlation

between solar power and irradiance is quite clear. For wind power, there is a trend similar
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Figure 6.1: Correlation coefficients of power data and related variables. We use data for the year of 2016.

to the wind power curve with a cut-in speed of 3-4 m/s, and a cut-off speed of around 20

m/s. Compared with offshore wind power, the slope of the onshore one is relatively gentle.
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Figure 6.2: Bivariate histogram of power data and related variables. We use data at p1 for the year of 2016.

6.3 Methodology
6.3.1 Model Training
While there are a handful of features that can be used for the tree model, it is important to

decide on useful features depending on whether these features can provide a split that de-

creases the forecast error. Therefore, hyper-parameters, such as maximum tree depths and

leaves, are important to control the configuration of the tree, e.g., avoiding the conditions

that the trees are too shallow or too deep. In order to optimize the hyper-parameters for the

LightGBM model, an auto ML software called ’FLAML’ is used. FLAML can automatically

tune the hyper-parameters to find the accurate model at low computational cost [45]. It

uses a re-sample strategy to reduce the required training sample for each learner and then

calculates the estimated computational cost to either recursively increase the sampling size

or use new hyper-parameter configurations. Another advantage of FLAML is that it can

include models like RF and XGBoost, which can be used for comparison. While training

the models, K-fold cross-validation is employed with the k of 5. The hyper-parameters are

optimized by minimizing the validation error. The Mean Absolute Error (MAE) is used

since the deviation can be obtained directly and it is widely used in the renewable energy

area [18]. Then the model with optimized hyper-parameters is used for forecasting January

or February of 2022.
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6.3.2 ELI5
After training the LightGBM model, it is crucial to understand the effect of each feature

on the model output. ELI5 is a visualization tool in Python, and it can evaluate feature

importance for tree-based models [46, 47]. To compute the importance of each feature, only

this input feature is randomly shuffled in the test data and a new prediction is made. The

reduction of the square errors between the new prediction and the original one represents

the feature importance. Therefore, a feature is more significant with a larger reduction,

and this approach can be a good measure of feature importance to interpret the estimation

results.

6.4 Results
6.4.1 Prediction of Power using LightGBM
As aforementioned, three LightGBM models (LGB - 1GP, LGB - 2GP, and LGB - 3GP) are

trained with 25, 46, and 67 input variables, respectively. The performance of the models is

evaluated by comparing the estimation with the observed power data. The comparison of

estimated solar, offshore wind and onshore wind power with observed power are presented

in Fig. 6.3, Fig. 6.4, and Fig. 6.5, respectively. The measured time series are in black while

the estimated ones are in red.

It is clear in Fig. 6.3 that solar power is estimated well with the model of LGB - 1GP

for both test sets. However, the model does not achieve a good performance in wind

power estimation. Although the estimated trends are similar to the measured power, the

short-time fluctuations show large biases. Besides, for the second test set, the time with

sudden high wind power production is not promising. The estimation of offshore wind

power production is even worse. Neither the extremely low nor the high production are

estimated well. The reason can be that only variables from one grid point near the coastal

area are not enough to limit the errors.

In the second model, LGB - 2GP, two grid points are considered, one onshore and

the other offshore. This model, therefore, requires nearly double the number of input

variables. According to Fig. 6.4, the predictions of wind and solar power production have

improved considerably. The trends and short-term fluctuations in wind power production

are both well estimated. However, sudden high levels of wind power production are still

underestimated. Despite this, the model’s high performance suggests that two grid points

are indeed needed.

The third grid point is then included in LGB - 3GP. However, from the visual point of

view, there is no distinct difference when compared with the results from LGB - 2GP.

A summary of the root-mean-square error (RMSE) and coefficient of determination

(R
2
) for these three models are listed in Table 6.2. The smallest RMSE for all datasets and

the best R
2
for test sets are labeled in bold. Overall, LGB - 2GP and LGB - 3GP models

outperform the LGB - 1GP model, especially for wind power production. This is due to

the different locations of onshore and offshore wind farms. The best LightGBM models

achieve a low magnitude of RMSE and high R
2
values, indicating the accurate estimation

of the two test sets. For example, the R
2
of estimating solar power is around 0.9 for all

three models. For onshore and offshore wind power, the R
2
of LGB - 2GP and LGB - 3GP

ranges from 0.84 to 0.91. Their promising performance indicates the remarkably accuracy
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Figure 6.3: Prediction of solar (top panel), offshore wind (middle panel) and onshore wind power (bottom panel)

using LGB - 1GP for the first test set: Jan, 2017 (left panel) and the second test set: Feb, 2017 (right panel).

regarding the power estimation for the Dunkelflaute and non-Dunkelflaute periods.

Table 6.2: RMSE and R
2
(marked in parentheses) for LGB-1GP, LGB-2GP, LGB-3GP.

LGB Runs Solar Power Offshore Wind Power Onshore Wind Power
Name Trn Val Tst Tst2 Trn Val Tst Tst2 Trn Val Tst Tst2

LGB - 1GP 33 78 81 (0.86) 88 (0.88) 129 131 137 (0.70) 130 (0.75) 65 65 87 (0.82) 120 (0.85)

LGB - 2GP 23 79 71 (0.91) 83 (0.91) 50 77 75 (0.91) 90 (0.87) 57 63 82 (0.84) 101 (0.90)

LGB - 3GP 38 81 66 (0.92) 79 (0.92) 48 77 74 (0.91) 104 (0.84) 51 59 81 (0.85) 94 (0.92)

6.4.2 ELI5 Results
Taking LGB - 2GP as an example, we use ELI5 to understand the modeling results and

feature importance (top 6 features in Table 6.3). The features with the highest weight

contribute the most to the model prediction. For example, regarding the estimation of solar

power, the most correlated variables are the components of surface downward radiation

flux. This is reasonable since the irradiance directly determines the power production of

solar panels. The components at the offshore grid point (second grid point) matter more

than their onshore counterpart.

In terms of the prediction of wind power production, it is promising that the wind

speeds at the heights of 100 m and 10 m are the most relevant variables. Other parameters

describing the flow, e.g. instantaneous wind gusts are also of great importance in the

prediction. Besides, boundary-layer-related parameters are also important. Including these

variables can provide extra information on the thermal and convective processes in the

boundary layer, which have a close correlation with the occurrence of Dunkelflaute ([5, 4]).

It turns out that these variables are indeed among the most important components for the

modeling.
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Figure 6.4: Same as Fig. 6.3, except for using LGB - 2GP.

Table 6.3: Weights of Top Features for the LGB-2GP Model.

Solar Feature MSDWSWRF-p2 MSDWLWRF-p2 MSDWSWRF-p1 MSDWLWRF-p1 ISHF-p2 SKT-p2

Weight 0.352 0.246 0.153 0.082 0.022 0.022

Offshore wind Feature M100-p1 M10-p1 I10FG-p1 M100-p2 M10-p2 BLH

Weight 0.323 0.290 0.141 0.065 0.043 0.020

Onshore wind Feature M100-p2 I10FG-p2 M10-p2 M100-p1 M10-p1 ISHF-p2

Weight 0.598 0.228 0.070 0.057 0.030 0.012

6.4.3 Comparison with Other Tree-based Models
Two other tree-based models, RF and XGBoost, are compared with LightGBM for perfor-

mance evaluation. The input variables are from 2 or 3 grid points, called 2GP or 3GP. The

RMSE and R
2
of the comparison results are shown in Table 6.4. For solar power estimation,

these tree-based models have close performance, with RMSE around 80 MW and R
2
around

0.9. For wind power estimation, the LightGBM model outperforms the other two, with

a visible decrease in RMSE and an increase in R
2
. However, when estimating onshore

wind power on the second test set, XGBoost seems to be more promising than LightGBM.

Nonetheless, the overall better performance indicates that LightGBM has advantages in

estimating solar and wind power production.

Table 6.4: RMSE and R
2
(marked in parentheses) for XGBoost, RF and LightGBM models.

Models Solar Power Offshore Wind Power Onshore Wind Power
Tst Tst2 Tst Tst2 Tst Tst2

2GP
XGBoost 71 (0.91) 84 (0.91) 78 (0.90) 99 (0.85) 83 (0.84) 95 (0.91)

RF 76 (0.89) 86 (0.90) 77 (0.90) 104 (0.83) 85 (0.83) 113 (0.88)

LightGBM 71 (0.91) 83 (0.91) 75 (0.91) 90 (0.87) 82 (0.84) 101 (0.90)

3GP
XGBoost 69 (0.91) 79 (0.92) 77 (0.90) 112 (0.81) 82 (0.84) 91 (0.92)

RF 76 (0.89) 84 (0.91) 77 (0.90) 120 (0.78) 84 (0.84) 99 (0.91)

LightGBM 66 (0.92) 79 (0.92) 74 (0.91) 104 (0.84) 81 (0.85) 94 (0.92)
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Figure 6.5: Same as Fig. 6.3, except for using LGB - 3GP.

6.4.4 Comparison with WRF-ERA5
In this section, we compare the offshore wind power prediction using LightGBM with

that using the state-of-the-art mesoscale model (Weather Research and Forecasting, WRF).

For running the WRF model, ERA5 has been used as large-scale forcing data. Wind farm

parameterization by [48] is used to simulate the Belgian offshore wind turbines with 182

wind turbines of five different types. The detailed turbine curves, domain configuration,

and physical parameterizations can refer to [5].

In the left panel of Fig. 6.6, the WRF model has reproduced the wind power production

quite well in comparison with the measured data from Elia. In the right panel of Fig. 6.6, the

equally high correlation between the predicted power production using LGM - 2GP and the

observed power series is visible. In order to evaluate the overall forecasting performance

of the two methods, statistics metrics like root mean square error (RMSE) and coefficient of

determination (𝑅2
) are used. The RMSE between WRF-ERA5 and the measured power data

is 73MW, and the RMSE between the LGB - 2GP and the measured power data is 44MW.

Furthermore, a larger square of the correlation between the predicted value and the actual

value is seen for using LGB-2GP (0.94) than using WRF-ERA5 (0.83). The metrics indicate

the capability of LightGBM to accurately capture the magnitudes of the power production

including the Dunkelflaute periods. It takes less time than numerical modeling, while it

outperforms WRF.
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Figure 6.6: Comparison of WRF-ERA5-based and LGB-2GP-based results (Jan, 2017).

6.5 Concluding Remarks
In this work, we estimate wind and solar power production during several Dunkelflaute

events via machine learning. This paper is the first to demonstrate the capability of

LightGBM for estimating wind and solar power production during Dunkelflaute periods

with public-domain data (e.g., reanalysis datasets). The crucial elements for the model

are the meteorological variables at the location of onshore or offshore grid points. A

high correlation is seen between observed power production and those estimated using

LightGBM models, especially the LGB - 2GP and LGB - 3GP. By comparison, the LightGBM

models also outperform other tree-based models. It is also clear that the proposed algorithm

is applicable in power production not only during the Dunkelflaute periods but also during

other time periods.

The prediction of power production includes diverse meteorological variables. In

addition to insolation and wind speed, some of the variables (e.g., boundary layer height

and sensible heat flux) are closely related to the prediction of solar, onshore, and offshore

wind power. The inclusion of these variables in the extra second or third grid point can

enhance the overall performance considerably. Furthermore, the power production is

reproduced considerably well using mesoscale simulation (WRF), while our LightGBM

prediction can even perform better. It is needless to say that the accurate and reliable

prediction of the Dunkelflaute events can be of great importance for the maintenance and

planning of grid systems.

In this proof-of-concept study, we input variables from the ERA5 reanalysis dataset into

the model. The modeling using inputs from other operational models (e.g., GFS) can be a

valuable next step for a real-time forecasting scenario. In addition, other machine learning

methods may be more effective than our current approach. We hope to experiment with

some of these alternatives in our future work.

References
[1] Frank Meinke-Hubeny et al. “Energy transition in Belgium–Choices and costs”. In:

EnergyVille in Opdracht van Febeliec: Genk, Belgium (2017).



6

116 6 Estimation of ‘Dunkelflaute’ Events using Gradient Boosting Machines

[2] D Wetzel. “Die „Dunkelflaute “bringt Deutschlands Stromversorgung ans Limit”.

In: Die Welt “vom 6 (2017). https://www.welt.de/wirtschaft/article161831272/Die-

Dunkelflaute-bringt-Deutschlands-Stromversorgung-ans-Limit.html. Accessed De-

cember 18, 2021., p. 2017.

[3] Bowen Li et al. “Quantifying the predictability of a ‘Dunkelflaute’event by utiliz-

ing a mesoscale model”. In: Journal of Physics: Conference Series. Vol. 1618. 6. IOP
Publishing. 2020, p. 062042.

[4] Bowen Li et al. “A brief climatology of dunkelflaute events over and surrounding

the North and Baltic Sea areas”. In: Energies 14.20 (2021), p. 6508.

[5] Bowen Li et al. “Mesoscale modeling of a “Dunkelflaute” event”. In: Wind Energy
24.1 (2021), pp. 5–23.

[6] Bowen Li, Sukanta Basu, and Simon JWatson. “Automated Identification of “Dunkelflaute”

Events: A Convolutional Neural Network–Based Autoencoder Approach”. In: Artifi-
cial Intelligence for the Earth Systems 1.4 (2022), e220015.

[7] Eric P James, Stanley G Benjamin, and Melinda Marquis. “Offshore wind speed

estimates from a high-resolution rapidly updating numerical weather prediction

model forecast dataset”. In:Wind Energy 21.4 (2018), pp. 264–284.

[8] Jaemo Yang et al. “An analog technique to improve storm wind speed prediction

using a dual NWP model approach”. In: Monthly Weather Review 146.12 (2018),

pp. 4057–4077.

[9] Christos Stathopoulos et al. “Wind power prediction based on numerical and sta-

tistical models”. In: Journal of Wind Engineering and Industrial Aerodynamics 112
(2013), pp. 25–38.

[10] Madasthu Santhosh, Chintham Venkaiah, and DM Vinod Kumar. “Current advances

and approaches in wind speed and wind power forecasting for improved renewable

energy integration: A review”. In: Engineering Reports 2.6 (2020), e12178.

[11] Jing Zhao et al. “An improved multi-step forecasting model based onWRF ensembles

and creative fuzzy systems for wind speed”. In: Applied Energy 162 (2016), pp. 808–

826.

[12] Jing Zhao et al. “Multi-step wind speed and power forecasts based on a WRF simula-

tion and an optimized association method”. In: Applied energy 197 (2017), pp. 183–

202.

[13] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), pp. 436–444.

[14] Ian Goodfellow et al. Deep learning. Vol. 1. 2. MIT press Cambridge, 2016.

[15] Jinglin Zhang et al. “CloudNet: Ground-based cloud classification with deep con-

volutional neural network”. In: Geophysical Research Letters 45.16 (2018), pp. 8665–
8672.

[16] Stephan Rasp and Sebastian Lerch. “Neural networks for postprocessing ensemble

weather forecasts”. In: Monthly Weather Review 146.11 (2018), pp. 3885–3900.



References

6

117

[17] João Trevizoli Esteves, Glauco de Souza Rolim, andAntonio Sergio Ferraudo. “Rainfall

prediction methodology with binary multilayer perceptron neural networks”. In:

Climate Dynamics 52.3 (2019), pp. 2319–2331.

[18] Alberto Torres-Barrán, Álvaro Alonso, and José R Dorronsoro. “Regression tree

ensembles for wind energy and solar radiation prediction”. In: Neurocomputing 326

(2019), pp. 151–160.

[19] Weifeng Xu et al. “Multi-step wind speed prediction by combining a WRF simulation

and an error correction strategy”. In: Renewable Energy 163 (2021), pp. 772–782.

[20] Sahra Khazaei et al. “A high-accuracy hybrid method for short-term wind power

forecasting”. In: Energy 238 (2022), p. 122020.

[21] WenqingXu, LikeNing, and Yong Luo. “Wind speed forecast based on post-processing

of numerical weather predictions using a gradient boosting decision tree algorithm”.

In: Atmosphere 11.7 (2020), p. 738.

[22] Asnor Muizan Ishak et al. “Error correction modelling of wind speed through hydro-

meteorological parameters and mesoscale model: a hybrid approach”. In: Water
resources management 27.1 (2013), pp. 1–23.

[23] Sara Pereira et al. “Development of an ANN based corrective algorithm of the

operational ECMWF global horizontal irradiation forecasts”. In: Solar Energy 185

(2019), pp. 387–405.

[24] DávidMarkovics andMartin JánosMayer. “Comparison ofmachine learningmethods

for photovoltaic power forecasting based on numerical weather prediction”. In:

Renewable and Sustainable Energy Reviews 161 (2022), p. 112364.

[25] Casper Solheim Bojer and Jens Peder Meldgaard. “Kaggle forecasting competitions:

An overlooked learning opportunity”. In: International Journal of Forecasting 37.2

(2021), pp. 587–603.

[26] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. “The M4

Competition: 100,000 time series and 61 forecasting methods”. In: International
Journal of Forecasting 36.1 (2020), pp. 54–74.

[27] Roman Timofeev. “Classification and regression trees (CART) theory and applica-

tions”. In: Humboldt University, Berlin 54 (2004).

[28] Clifton D Sutton. “Classification and regression trees, bagging, and boosting”. In:

Handbook of statistics 24 (2005), pp. 303–329.

[29] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[30] Khaled Fawagreh, Mohamed Medhat Gaber, and Eyad Elyan. “Random forests: from

early developments to recent advancements”. In: Systems Science & Control Engineer-
ing: An Open Access Journal 2.1 (2014), pp. 602–609.

[31] Jerome H Friedman. “Stochastic gradient boosting”. In: Computational statistics &
data analysis 38.4 (2002), pp. 367–378.

[32] Llew Mason et al. “Boosting algorithms as gradient descent”. In: Advances in neural
information processing systems 12 (1999).



6

118 6 Estimation of ‘Dunkelflaute’ Events using Gradient Boosting Machines

[33] Jane Elith* et al. “Novel methods improve prediction of species’ distributions from

occurrence data”. In: Ecography 29.2 (2006), pp. 129–151.

[34] Jane Elith, John R Leathwick, and Trevor Hastie. “A working guide to boosted

regression trees”. In: Journal of animal ecology 77.4 (2008), pp. 802–813.

[35] Junliang Fan et al. “Light Gradient Boosting Machine: An efficient soft computing

model for estimating daily reference evapotranspiration with local and external

meteorological data”. In: Agricultural water management 225 (2019), p. 105758.

[36] Guolin Ke et al. “Lightgbm: A highly efficient gradient boosting decision tree”. In:

Advances in neural information processing systems 30 (2017).

[37] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. In:

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining. 2016, pp. 785–794.

[38] Liudmila Prokhorenkova et al. “CatBoost: unbiased boosting with categorical fea-

tures”. In: Advances in neural information processing systems 31 (2018).

[39] Qingwen Zhang et al. “Improvement of Makkink model for reference evapotran-

spiration estimation using temperature data in Northwest China”. In: Journal of
Hydrology 566 (2018), pp. 264–273.

[40] Eduardo Fonseca et al. “Acoustic scene classification by ensembling gradient boost-

ing machine and convolutional neural networks”. In: Virtanen T, Mesaros A, Heittola
T, Diment A, Vincent E, Benetos E, Martinez B, editors. Detection and Classification of
Acoustic Scenes and Events 2017 Workshop (DCASE2017); 2017 Nov 16; Munich, Ger-
many. Tampere (Finland): Tampere University of Technology; 2017. p. 37-41. Tampere

University of Technology. 2017.

[41] Wenjie Zhang, Hao Quan, and Dipti Srinivasan. “Parallel and reliable probabilistic

load forecasting via quantile regression forest and quantile determination”. In: Energy
160 (2018), pp. 810–819.

[42] Spyros Makridakis, Evangelos Spiliotis, et al. “The M5 competition and the future of

human expertise in forecasting”. In: Foresight: The International Journal of Applied
Forecasting 60 (2021), pp. 33–37.

[43] Hans Hersbach et al. “The ERA5 global reanalysis”. In: Quarterly Journal of the Royal
Meteorological Society 146.730 (2020), pp. 1999–2049.

[44] Naveen Goutham et al. “Using machine-learning methods to improve surface wind

speed from the outputs of a numerical weather predictionmodel”. In: Boundary-Layer
Meteorology 179.1 (2021), pp. 133–161.

[45] Chi Wang et al. “FLAML: A fast and lightweight automl library”. In: Proceedings of
Machine Learning and Systems 3 (2021), pp. 434–447.

[46] Namita Agarwal and Saikat Das. “Interpretable machine learning tools: a survey”.

In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE. 2020,
pp. 1528–1534.

[47] Murat Kuzlu et al. “Gaining insight into solar photovoltaic power generation fore-

casting utilizing explainable artificial intelligence tools”. In: IEEE Access 8 (2020),
pp. 187814–187823.



References

6

119

[48] AC Fitch et al. “Local and mesoscale impacts of wind farms as parameterized in a

mesoscale NWP model”. In: Mon Weather Rev 140.9 (2012), pp. 3017–3038.





7

121

7
Will there be more

‘Dunkelflaute’ Events in the
Near Future?

The decarbonization plan in European countries, aiming at alleviating climate change, pro-
motes the development of renewable power, which can itself be impacted by a changing climate.
A low level of renewable power production during unfavorable weather conditions, such as
‘Dunkelflaute’ (simultaneous calm and cloudy periods), will significantly challenge grid stabil-
ity; such behavior requires in-depth research. Here we present the first evaluation of potential
climate change impacts on periods of Dunkelflaute. An unsupervised deep-learning framework
(named WISRnet) is improved to cluster projected wind speed and insolation. Specifically, we
encode spatial weather patterns taken from an ensemble of five EURO-CORDEX climate simu-
lations for 2010-2050. The encoded patterns are then used for country-dependent clustering,
where five clusters out of twenty-five are closely related to Dunkelflaute events. By analyzing
these clusters focusing on Belgium and then the UK, a decreasing trend in the occurrence
of Dunkelflaute is seen for the negative-emission scenario of RCP2.6, while there is a robust
growth of Dunkelflaute occurrence in the RCP4.5 and RCP8.5 scenarios. The expected growing
occurrence of Dunkelflaute periods in the future could challenge grid operators and necessitate
taking an increase in such events into account in future power system plans and design.
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7.1 Introduction
Given the carbon reduction targets, European power systems are incorporating increasing

shares of renewable power production. In 2017, 17.5% of European energy consumption

came from renewable sources [1], while the magnitude is projected to grow to at least 32%

and 66% by 2030 [2] and 2050 [3], respectively. With such high penetration of renewable

energies (like wind and solar power) in the power grid, the power supply will have a

growing dependence on meteorological conditions [4, 5]. Therefore, extreme weather

conditions which impact renewable production could have significant consequences on

the stability of the future power grid. Dunkelflaute [6, 7, 8, 9, 10] is such an extreme event,

which causes simultaneous low levels of wind and solar power production. In a study of

the brief climatology of Dunkelflaute in northern European countries using historical wind

and solar power production data, Li et al. [10] found that Dunkelflaute events happened

frequently in winter and multiple events existed longer than one day. With the increasingly

important roles of renewables, this extreme weather and the related adverse effects will

likely become more and more detrimental. Therefore, it is important to quantify the trend

in Dunkelflaute event occurrences in future climate scenarios.

A changing climate can influence the large to regional-scale circulations [11, 12], and

thus the near-surface wind and solar resources can be affected [13, 14]. The impacts

of climate change on wind and solar power production have been investigated in many

previous studies [15, 16, 17, 18], and the overall results are limited and negative. The

projected decrease in wind and solar power production can be between 0-10% over Europe,

with a larger reduction northward for solar power [18, 19], and southward for wind

power [15, 20, 21]. Jerez et al. [22] looked at the combined response of wind and solar power

generation to climate change. A reverted annual cycle of these two power production was

shown, and their temporal changes in projected scenarios are lower than 5%. Furthermore,

certain studies investigated the seasonal variability of wind and solar resources under future

climate conditions. One study showed a projected 3-5% decrease in solar generation in

winter compared with a negligible increase in summer in Europe [23], as well as decreased

wind speed in winter but increased in summer in the Mediterranean area [24]. These

projected trends of wind and solar power in winter are of great interest since Dunkelflaute

events have been shown to mainly occur in winter [10]. However, will there be more

simultaneous windless and cloudy periods in future winters, and what impact could climate

change have on the occurrence of Dunkelflaute events in Europe? These questions remained

as yet unanswered.

The core purpose of this work is to shed light on climate change impacts on the occur-

rence of Dunkelflaute events. Climate models have been widely used to explore the future

climate under different emission scenarios. Regional climate models (RCMs) are commonly

applied on the regional scale to downscale the simulated domains of global climate models

(GCMs) [13]. The framework of the Coordinated Regional Climate Downscaling Exper-

iment (CORDEX) consists of many RCM simulations all over the World. The European

branch of CORDEX, the EURO-CORDEX framework (http://www.euro-cordex.net), sim-

ulates an ensemble of European climate projections. It uses a relatively high resolution

(12.5 km for EUR-11) and has shown to be useful in assessing the impacts of a changing

climate on wind and solar variables [15, 18, 25]. However, many studies have found several

types of uncertainty in the projected results for wind and solar variables resulting from
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the choice of climate models [20, 23, 24]. To address the uncertainties, some researchers

used an ensemble including different boundary conditions and modeling approaches [26,

27, 28]. Likewise, we here consider an ensemble of five global-regional climate simulations

under the Representative Concentration Pathway (RCP) 2.6, RCP4.5, and RCP8.5 scenar-

ios to investigate future changes of Dunkelflaute occurrence and evaluate the relevant

uncertainties.

Meteorological data like wind speed and insolation from climate models are usually

used to estimate climate effects on wind and solar power [23, 29]. However, utilizing

these meteorological data to derive wind power data is usually complex, especially when

extrapolating surface wind speed to a higher level [30, 31] and obtaining realistic power

curves. The case is similar for solar power, whose calculation requires surface irradiance

and temperature as inputs to a power curve [18, 23].

The unsupervised data-driven WiSRnet model described in [32] provides an opportu-

nity to directly identify Dunkleflaute events from wind speed and insolation data. The

WISRnet model uses a deep convolutional neural network(CNN)-based autoencoder (AE) to

encode the inputted patterns of wind speed and insolation. The encoded two-dimensional

patterns are clustered using an improved k-means method for further region-dependent

identification of Dunkelflaute events. A detailed review of machine learning algorithms is

provided in [32].

In this work, theWiSRnet framework is improved and used to investigate the occurrence

of Dunkelaute events from future climate change time series projections. This is the

first study to assess the occurrence of Dunkelflaute events given a changing climate.

Dunkelflaute occurrence under different pathways of future climate forcing using various

climate models is evaluated. This analysis is significant for future power systems with high

penetrations of renewable power.

The paper is structured as follows. In Section 2, we describe the climate data and the

methodologies applied in this work. Section 3 documents the results of weather pattern

clustering and the occurrence of Dunkelflaute events in Belgium under different future

projections. The uncertainties under different projections are also discussed. Section 4

presents a similar analysis for the UK. Finally, we summarise our conclusions in Section 5.

7.2 Data and Methodology
7.2.1 Climate Data
In this paper, projected climate data from the EURO-CORDEX framework is used. Covering

the European domain, EURO-CORDEX has a grid resolution of approximately 12.5 km

(0.11°) and a temporal interval of three hours. Here we use an ensemble of data from

five EURO-CORDEX global-regional models (GCM-RCM). As shown in Table 7.1, the

ensemble consists of three RCMs, including SMHI-RCA4 (named RCA4 hereafter) [33],

KNMI-RACMO22E (named RACMO22E hereafter) [34], and DMI-HIRHAM5 model (named

HIRHAM5 hereafter) [35]. They are driven by three GCMs, namely MPI-M-MPI-ESM-LR,

EC-EARTH, and HadGEM2-ES, to obtain the lateral boundary conditions. The five GCM-

RCM simulations listed in Table 7.1 are abbreviated as RMMM, 0HE, 1REE, 2RH, and 3REE,

respectively.

The RCM simulations mainly cover the North Sea and the bordering countries (see
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Table 7.1: List of climate simulations used in this study.

abbr. Institution RCM GCM driving run

RMMM
Swedish Meteorological

and Hydrological

Institute

RAC4

MPI-M-MPI-ESM-LR (r1i1p1)

run at the Max Planck Institute

for Meteorology (MPI-M)

0HE Danish Meteorological

Institute

HIRHAMS

EC-EARTH (r1i1p1) run at the

Irish Centre for High-End

Computing (ICHEC)

1RE
Swedish Meteorological

and Hydrological

Institute

RAC4

EC-EARTH (r1i1p1) run at the

Irish Centre for High-End

Computing (ICHEC)

2RH
Swedish Meteorological

and Hydrological

Institute

RAC4

HadGEM2-ES (r1i1p1) run at

Met Office Hadley Centre

(MOHC)

3REE
Royal Netherlands

Meteorological

Institute

RACMO22E

EC-EARTH (r1i1p1) run at the

Irish Centre for High-End

Computing (ICHEC)

‘Input’ part in Figure 7.1) since this area is expected to have a large number of ongoing and

proposed wind farm installations. These simulations have consistent domains with 192

× 192 latitude-longitude grid points. The weather data for 10-m wind speed and surface

downward solar radiation are archived from all simulations spanning over 40 years for

the period 2010-2050. The insolation data are pre-processed to have the same temporal

resolution as the wind speed. All the simulations were developed under the RCP8.5 scenario,

except the RMMM simulation which is also forced by another two emission scenarios,

RCP4.5 and RCP2.6. These three RCP scenarios represent different levels of greenhouse gas

emission causing a radiative forcing of 8.5, 4.5, 2.6 𝑊/𝑚2
in 2100, which represent strong,

stabilized, and negative emission scenarios, respectively.

7.2.2 Methodology
The WiSRnet framework, which is a data-driven automated classification algorithm using

wind speed and insolation data, was proposed by Li et al. [32]. There are two steps in the

framework: spatial pattern extraction using a deep-CNN-based autoencoder and; weather

pattern clustering centering over a certain country or region. It has been demonstrated

to be effective as most observed Dunkeflaute periods are successfully categorized into

Dunkelflaute clusters for the country of interest [32]. The WiSRnet framework is improved

in this study and used to identify future Dunkelflaute events based on climate projection

data from EURO-CORDEX. It should be noted that the grid resolution for EURO-CORDEX

(about 12.5km) is different to that for for ERA5 (about 31km). This means that the input

used in this study has 192 × 192 grid points as opposed to a previous study using ERA5

which used 128 × 64 latitude-longitude grid points [32].

The improved WiSRnet framework used in this work is shown in Figure 7.1. For the

first step of the WiSRnet framework, an asymmetric CNN-based autoencoder (CNN-AE)

is used to extract the inputted fields for further classification. Wind speed and insolation
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fields are first inputted to the encoder individually, comprising seven convolutional layers

and three max-pooling layers. The output of the encoder is a two-dimensional bottleneck

layer with a dimension of 24 × 24, which is important in capturing both the magnitude

and spatial information in the inputted weather patterns. The encoded patterns are then

linked to the decoding part to recreate the original weather fields. The decoder includes

two fully-connected (FC) layers, five convolutional layers and three up-pooling layers to

reconstruct input weather patterns. To examine the accuracy of this CNN-AE model, we

use the root-mean-squared error (RMSE) as a loss function.

Decoder

Clustering Results

Input: 
1@192 ✖192

Conv7: 1@3 ✖3

Conv1: 4@3 ✖3 
MP@2 ✖2

Conv2: 8@3 ✖3 
MP@2 ✖2

Conv4: 32@3 ✖3

Conv5: 256@3 ✖3

Conv6: 32@3 ✖3

Output: 
1@24 ✖24

Conv3: 16@3 ✖3 
MP@2 ✖2

}}

24

24

.

..
.
..

Flatten 
FC1: 1152

FC2: 2304
Conv3: 32@3 ✖3 Conv5: 8@3 ✖3 

UP@2 ✖2
Conv6: 4@3 ✖3 

UP@2 ✖2

Reshape:  
4@24 ✖24 Conv7: 1@3 ✖3 

Output: 1@192 ✖192

Conv4: 16@3 ✖3 
UP@2 ✖2

Encoder

A Set of 8 Encoders for Wind Speed

Standardization

Convolution with  
Gaussian window

K-means  
Clustering

or

Input: wind speed or  
solar radiation

Dunkelflaute 
Identification ……

……

A Set of 8 Encoders for Insolation

Figure 7.1: Schematic of the proposed architecture for the weather pattern clustering. The inputted variables of

wind speed (in units of m/s) and insolation (in units of W/m
2
) have a size of 192 × 192. The encoder consists of 7

convolutional layers that have 4, 8, 16, 32, 256, 32, and 1 filter, respectively. Each filter has a kernel size of 3 ×
3. Each convolutional layer is followed by a ReLU layer and max-pooling (MP) layer for the first three layers

(filter size of 2 × 2). The down-scaled encoder is connected to a decoder part to reconstruct the inputted data. The

decoding model consists of two fully connected (FC) layers, five convolutional layers, and three up-pooling (UP)

layers. The encoded pattern (i.e., bottleneck layer) has a size of 24 × 24. Many sets including eight bottleneck

layers for wind and solar patterns are first normalized using a standard scaling (by removing the mean and scaling

to unit variance) and then convolved with a Gaussian window centered on the location of interest. Finally, the

k-means clustering algorithm is used for the clustering of weather patterns.

The second step of the WiSRnet framework is weather pattern clustering utilizing

the encoded patterns. The encoded patterns are first normalized and then convolved

with a two-dimensional Gaussian kernal centered over a specific country to achieve a

region-dependent clustering. Subsequently, the convolved patterns are used for k-means

clustering. Instead of directly clustering hourly data as in [32], here we improve the method
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by clustering 24-hour data at one time to pay more attention to the long-lasting events.

We achieve this by clustering the maximum of every successive eight samples (3-hourly).

In this way, the inputted weather patterns are clustered into 25 clusters for the country of

interest.

For the training of the AE, we use 40-year data from the RMMM simulation for all

three RCP scenarios. To assess the accuracy of the CNN-AE model, data are divided into

a training set, a validation set and a test set consisting of the first 60%, 10%, and the last

30% of samples, respectively. Each set for the individual RCP scenarios is concatenated

together and fed into the autoencoder. In the implementations, we use the Adam (adaptive

moment estimation) optimizer [36] with maximum epochs of 50 and a batch size of 128. A

detailed description of the implementations, performance comparisons and optimizations

are provided in [32].

The RMSE of the input minus the reconstructed wind speed and insolation grid point

values for the training, validation and test sets from the RMMM simulation are listed in

Table 7.2. The accuracy is similar to [32] based on ERA5 reanalysis data. The framework is

then inferenced using data from the 0HE, 1RE, 2RH, and 3REE models. As seen in Table 7.2,

the accuracy is similar.

Table 7.2: RMSE of the input minus the reconstructed wind speed and insolation values over all grid points for

the different climate simulations.

Variable Wind Speed (m/s)
Model RMMM - 3RCP Scenarios 0HE 1RE 2RH 3REE
Dataset train validation test all all all all
RMSE 0.7708 0.7749 0.7712 0.90 0.77 0.77 0.87

Variable Insolation(W/m2)
RMSE 25.50 25.77 25.16 25.14 25.41 25.02 24.47

Finally, all the encoded patterns from the five simulations are clustered together centered

over the country of interest, namely, Belgium and the UK in this study. The several clusters

that are most characteristic of long-lasting Dunkelflaute periods will be studied in the next

section.



7.3 Results: Trend of Dunkelflaute Occurrence centered over Belgium

7

127

7.3 Results: Trend of Dunkelflaute Occurrence
centered over Belgium

7.3.1 Weather Pattern Clustering Centered over Belgium

Figure 7.2: Anomalies of wind speed and insolation based on the 40-year mean for the 25 clusters (C1–C25) using

the RMMM simulation (RCP4.5 scenario). The Gaussian kernel is centered on Belgium.
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In Figure 7.2, we show the clustering results of the weather patterns with the Gaussian

weighting kernel first centered on Belgium. Taking the RMMM simulation (RCP4.5 scenario)

as an example, the mean wind speed and insolation anomalies are calculated based on the

10-year mean values for all 25 clusters. These clusters show different distributions of wind

speed and insolation with a clear focus over the Belgian area.

It is visually clear that the C4, C13, C18 clusters are themost representative of Dunkelflaute

with quite low wind speed and insolation over the Belgian onshore and offshore areas.

Thus these three clusters are the ‘Top3’ Dunkelflaute candidate clusters (named ‘Top3-DF

clusters’). Furthermore, though with marginally larger anomalies of wind speed, the C10

and C11 clusters also exhibit typical Dunkelflaute characteristics. Therefore, these five

clusters are considered the ‘Top5’ suitable candidates for Dunkelflaute clusters (named as

‘Top5-DF clusters’).

In Table 7.3, we list the number and fraction of samples in each cluster, as well as the

mean wind speed (named mean WS) and insolation (named mean SR) for the 25 clusters.

The Top5-DF clusters visually identified before are shown in bold. These five clusters have

the lowest mean wind speed and insolation as expected. For the Top3-DF clusters, the

mean wind speed is especially low at less than 3.5m/s. For the C10 and C11 clusters, the

mean wind speed slightly increases but is still lower than 5m/s. The mean insolation for

these five clusters is quite low with values lower than 90 W/m
2
. These Top3 and Top5

Dunkelflaute clusters account for about 12% and 21% of all the samples, respectively.

Table 7.3: Information for the 25 clusters (C1–C25). The clustering is based on the RMMM simulation (RCP4.5

scenario) and the Gaussian weight function is centered on Belgium.WS=wind speed (in m/s); SR=insolation (in

W/m
2
).

Clusters C1 C2 C3 C4 C5 C6 C7
Number 6805 5892 4410 4700 6210 6442 1908

Fraction 0.0582 0.0504 0.0377 0.0402 0.0531 0.0551 0.0163

Mean WS 4.3591 6.2277 3.4981 3.4330 3.0677 4.4888 8.3381

Mean SR 116.75 33.91 295.05 37.58 230.07 180.24 95.17

Clusters C8 C9 C10 C11 C12 C13 C14
Number 3806 4782 5093 5891 2882 3749 3686

Fraction 0.0326 0.0409 0.0436 0.0504 0.0247 0.0321 0.0315

Mean WS 2.1800 6.7628 4.9426 4.2314 8.6898 2.2017 5.4116

Mean SR 113.28 85.69 32.44 59.50 30.90 44.76 221.01

Clusters C15 C16 C17 C18 C19 C20 C21
Number 4557 6215 7820 5667 5974 5646 1016

Fraction 0.0390 0.0532 0.0669 0.0485 0.0511 0.0483 0.0087

Mean WS 2.2227 5.4927 3.3196 3.2013 5.6380 4.0885 10.1700

Mean SR 269.33 72.30 160.07 85.20 142.22 238.08 36.16

Clusters C22 C23 C24 C25
Number 1932 4846 4973 1970

Fraction 0.0165 0.0415 0.0426 0.0169

Mean WS 4.8548 7.4223 2.0955 6.9653

Mean SR 296.53 34.37 181.58 181.13
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Figure 7.3 shows the probability density function (PDF) for the Top5-DF clusters at

the location of the geographical center of Belgium. Nearly all the samples in the Top3-DF

clusters have wind speeds lower than 5m/s, and lower than 7 m/s for the Top5-DF clusters.

Concerning the PDF of insolation, the majority of samples are in the range 0-100 𝑊/𝑚2
, at

most reaching approximately 200 𝑊/𝑚2
. This confirms the findings in [32] that Top3-DF

clusters are reliable indicators of Dunkelflaute events.
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Figure 7.3: Probability density function (PDF) of wind speed (top-left panel) and isolation (bottom-left panel) for

the individual Top5-DF clusters, specifically, the 13th, 4th, 18th, 11th, and 10th cluster. The PDF of wind speed

(top-right panel) and isolation (bottom-right panel) for Top3-DF and Top5-DF clusters together are also displayed.

These plots are for the RMMM model.
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7.3.2 Dunkelflaute Event Occurrence under Different RCP
Scenarios

Based on the weather pattern clustering, we use the Top3-DF and Top5-DF clusters to

examine how frequently Dunkelflaute events occur during the period 2010 to 2050 under

different RCP scenarios. The top panel of Figure 7.4 shows the frequency of the Dunkelflaute

events from the RMMM simulations forced by the RCP4.5 emission scenario. We can see a

possible growing tendency for samples in both Top3-DF and Top5-DF clusters for the period

2010-2050. The bottom panels of Figure 7.4 show the frequency of Dunkelflaute events for

the RMMM simulation forced by the RCP8.5 and RCP2.6 emissions scenarios for the period

2010 to 2050. For the RCP8.5 scenario, the number of samples in the Top3-DF and Top5-DF

clusters also show a possible increasing, similar to the RCP4.5 scenario. In contrast, the

frequency of Dunkelflaute samples for the RCP2.6 scenario is possibly declining. It can

thus be speculated that the future occurrence of Dunkelflaute periods can be closely related

to pathways of future climate forcing. A low emission scenario, like RCP2.6, can lead to

a reduced number of Dunkelflaute periods in the near future. In contrast, a high level of

greenhouse gas emission instead will boost the occurrence of Dunkelflaute events and

become an increasing concern for the power grid.

Figure 7.4: Frequency of Dunkelflaute events in the Top3-DF and Top5-DF clusters for the period 2010-2050.

The dash lines and the light blue band represent linear trends and 95% confidence interval (labeled as 95% CI),

respectively. The clustering is based on the RMMM simulation (RCP4.5 scenario for the top panel, RCP8.5 for

the bottom left panel and RCP 2.6 for the bottom right panel) and the Gaussian weight function is centered on

Belgium.
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7.3.3 Variation in Dunkelflaute Event Occurrence for Dif-
ferent Models

As mentioned above, in addition to clustering Dunkelflaute events from the RMMM simula-

tion forced by three RCP scenarios, events were also clustered according to four additional

model simulations: 0HE, 1RE, 2RH, and 3REE forced by the RCP8.5 scenario to investigate

model variability. Taking the 0HE simulation as an example, the anomalies of wind speed

and insolation for the Top5-DF clusters are shown in Figure 7.5. Similar to the clustering

results in Figure 7.2 for the RMMM RCP8.5 simulation, the C13, C4, and C18 clusters also

show characteristics of Dunkelflaute. The results are similar for the 1RE, 2RH, and 3REE

simulations (maps not shown here).

Figure 7.5: Anomalies of wind speed and insolation based on the 40-year mean for the Top5-DF clusters using the

0HE simulation (RCP8.5 scenario). The Gaussian kernel is centered on Belgium.

Based on the weather pattern clustering, the frequency of Dunkelflaute occurrence

for the 0HE, 1RE, 2RH, and 3REE simulations (forced by RCP8.5 scenario) is presented in

Figure 7.6. Among all the models, the possible growth of Dunkeflaute frequency is similar

for the 0HE, 1RE, and 2RH models, while the 3REE model results show a clear increasing.

The magnitude for the 0HE model is remarkably higher, as it grows from around 14% in

2010 to 18% in 2050.

Figure 7.6: Frequency of Dunkelflaute events in the Top3-DF and Top5-DF clusters for the period 2010-2050.

The dash lines and the light blue band represent linear trends and 95% confidence interval (labeled as 95% CI),

respectively. The clustering is based on four models of 0HE, 1RE, 2RH, and 3REE (RCP8.5 scenario).
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7.4 Dunkelflaute Occurrence over the UK

7.4.1 Weather Pattern Clustering Centered over the UK

The proposed framework can also be used for other countries to identify Dunkelflaute

periods. Anomalies of wind speed and insolation for the five most representative clusters

identified as Dunkelflaute over the UK (Top5-DF clusters) are shown in Figure 7.7. The

clustering is based on the RMMM simulation (RCP4.5 scenario) and the Gaussian kernel is

centered on the UK. For the Top5-DF clusters, specifically, the C11, C14, C23, C1, and C19

clusters, low winds speeds and low insolation can be seen over the UK.

Figure 7.7: Anomalies of wind speed and insolation based on the 40-year mean for the Top5-DF clusters using the

RMMM simulations (RCP4.5 scenario). The clustering is centered over the UK.

7.4.2 Dunkelflaute Event Occurrence under Different RCP
Scenarios

With the Gaussian kernel centered over the UK, the clustering is implemented on the

decoded weather patterns for the RMMM simulation (forced by three RCP scenarios) and

the other four simulations, 0HE, 1RE, 2RH, and 3REE (forced by RCP8.5 scenario). The

Dunkelflaute occurrence for different RCP scenarios is shown in Figure. 7.8. There is a

possible reduction in the frequency of Dunkelflaute occurrence across the 40 years if the

RMMM simulation is driven by the RCP2.6 scenario, whereas contrasting results are seen

for the higher RCP scenarios. The possible increasing trends of Dunkelflaute frequency

for the RCP4.5 and RCP8.5 scenarios collaborate with the previous findings in Belgium.

It confirms our inference that a higher level of greenhouse gas emission can foster the

occurrence of Dunkelflaute events in the future.
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Figure 7.8: Frequency of Dunkelflaute events in the Top3-DF and Top5-DF clusters for the period 2010-2050.

The dash lines and the light blue band represent linear trends and 95% confidence interval (labeled as 95% CI),

respectively. The clustering is based on the RMMM simulation (RCP4.5, RCP8.5 and RCP 2.6 scenarios). The

Gaussian kernel is centered on the UK.

When forced by the RCP8.5 scenario, the other three models show a greater increase

than the RMMM. The 0HE and 3REE models suggest significant substantial increases for

both the Top3-DF and Top5-DF clusters, while the 1RE and 2RH models exhibit relatively

steady growth in the Dunkelflaute frequency.

Figure 7.9: Same as Fig 7.6, except that the clustering is centered over the UK.

7.5 Concluding Remarks
In this paper, an unsupervised deep learning methodology (WiSRnet) is used to identify

Dunkelflaute events from future climate simulations using wind speed and insolation fields.

We improve the WiSRnet framework to cluster the weather patterns in both temporal and

spatial dimensions, with the focusing area centered over Belgium and the UK. Based on

the weather pattern clustering, we identify the top-3 and top-5 clusters closely related to

Dunkelflaute periods.

Using the RMMM model, a positive trend in Dunkelflaute frequency is seen for the

RCP4.5 and RCP8.5 emission scenarios, while a negative trend is seen for the RCP2.6

emission scenario, however, these trends are not statistically significant given the inter-

annual variation. When an ensemble of four further models are forced using the RCP8.5

scenario, all models indicate an increase in the occurrence of Dunkelflaute for Belgium

and the UK but this trend is not significant for all models.

A higher occurrence of Dunkelflaute events in the future, may require additional

flexibility and storage requirements for a grid with a high penetration of renewables and

this risk should be included in the future design and planning of power systems.

In this study, an ensemble of five climate model projections gave insights into the

expected effects of climate change on Dunkelflaute. It is tentatively suggested by the

models that Dunkelflaute events may increase in the future over Northern Europe, however,
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the trends are not always significant given interannual variability. A wider range of global

and regional climate projections should be used to improve the reliability of this analysis.
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8.1 Conclusion
Dunkelflaute events are extreme weather conditions with dramatically reduced renewable

power production, which can significantly challenge grid stability. This dissertation con-

centrates on three aspects to better understand the behavior of Dunkelflaute events and

develop physical and ML approaches for its prediction. They are 1) to statistically analyze

the frequency, length, seasonal, and spatial characteristics of Dunkelflaute events; 2) to

develop different identification and prediction strategies from using models and data in

order to improve the predictability of Dunkelflaute events; 3) to detect potential changes

in the occurrence of Dunkelflaute in a changing climate. The research sub-questions raised

in Chapter 1 have been addressed accordingly.

Q1: What is the frequency, duration, driver, and spatial coherence of Dunkelflaute in
Northern Europe?

Chapter 2 provides the answers to the research question Q1. In this chapter, a statistical

analysis of Dunkelflaute events in eleven countries in Northern Europe was conducted. By

using simulated power production data from Renewables.ninja, as well as actual data from

TSOs, the frequency, length, and seasonality of Dunkelflaute were characterized. By using

the ERA5 reanalysis dataset, the meteorological drivers giving rise to Dunkelflaute events

were identified. A simple assessment of impact on the grid was made which provides

insight into maintaining system stability during Dunkelflaute. The main conclusions are

summarized as follows:

• By classifying Dunkelflaute events with both wind and solar capacity factors below

0.2 and duration longer than 1h, approximately 5-10 events every year persisted for

more than 1 day in Germany, Norway, and the UK. Several events were found to last

up to 5 days. The season with this most frequent Dunkelflaute is winter, with 50-100

hours of events each month.

• Through characterizing weather patterns, large stationary high-pressure systems and

widespread low cloud coverage are typically associated with Dunkelflaute. Blocked

regimes originating from extensive high-pressure systems can prevent oceanic airflow

into Northern Europe countries, and reduce wind power production.

• No strong relationships were found of Dunkelflaute between neighboring countries.

Due to this low dependency, the interconnection of European grid systems could

significantly reduce the impact of Dunkelflaute.

Q2: Can we automatically identify Dunkelflaute events using publicly available meteoro-
logical data instead of limited power data?

Chapter 3 provides the answer to the research question Q2. In this chapter, an un-

supervised deep learning framework, namely WISRnet, is proposed with two important

components, a CNN-AE model for downscaling weather patterns and a region-based k-

means model for automatically clustering the Dunkelflaute related patterns. This deep
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learning strategy has been validated through aggregated wind and solar power production

data from Belgium. The main conclusions are summarized as follows:

• The CNN-AE model downscales the spatial wind speed and insolation patterns with

low learning errors, which is effective in extracting internal features and encapsulat-

ing spatial information for further clustering.

• The k-means clustering model assisted by a Gaussian convolutional kernel is effective

in clustering weather patterns concentrated on one specific region. This enables

WISRnet to identify Dunkelflaute events in different countries.

• The WISRnet approach has demonstrated its capability to identify Dunkelflaute

events from weather patterns. A good agreement has been achieved between the

Dunkelflaute labelling predicted by WISRnet and the observed events. Specially, five

out of all twenty-five clusters were identified as Dunkelflaute clusters in Belgium

with high true positive ratios.

Q3: Can we reliably model and predict Dunkeflaute events using a contemporary mesoscale
model?

Chapter 4 provides the answer to the research question Q3. In this chapter, the WRF

model is applied to simulate atmospheric conditions during Dunkelflaute. The model has

been validated using a large quantity of observational data. The main conclusions are

summarized as follows:

• The WRF model combined with a wind farm parameterization has demonstrated

its ability to reliably reproduce and predict wind power production and insolation

during Dunkelflaute periods.

• DuringDunkelflaute events, themarine boundary layerwas observed to be commonly

well-mixed, and the boundary layer evolution is well predicted through the WRF

model.

• Certain characteristics of Dunkelflaute events, such as hub-height wind speeds and

power production, can be accurately modelled. For instance, a grid size of 27 km

was found to be reliable in simulating these features. This could significantly reduce

computational costs required for simulating such events.

Q4: Can we reliably estimate Dunkeflaute events using contemporary machine-learning
methods? How is its performance compared with mesoscale models?

Chapter 5 provides the answer to the research question Q4. In this chapter, a LightGBM-

based approach is proposed to estimate the wind and solar power production during

Dunkelflaute events. Variables that could affect renewable power production were included

for prediction, such as wind speed, insolation, boundary layer height and sensible heat

flux. These variables are acquired as input at multiple locations. The main conclusions are

summarized as follows:
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• The LightGBM model outperformed other machine learning models, including RF

and XGBoost, as well as the physical model WRF. It can provide an accurate and

reliable estimation of power production during Dunkelflaute events.

• According to the spatial correlations between power data and related variables,

choosing weather variables from multiple locations for model input is meaningful.

Increasing the locations to two can dramatically increase model accuracy, while the

addition of the third location does not improve much.

• Among the input variables, surface downward radiation flux is important for the

estimation of solar power, while wind speeds, wind gusts, and boundary-layer-related

parameters are important for the estimation of wind power.

Q5: What will Dunkelflaute be like in the future given climate change?

Chapter 6 provides the answer to the research question Q5. In this chapter, WISRnet

is improved and used to cluster projected wind speed and insolation patterns and then

identify Dunkelflaute events. Three future emission scenarios are analysed. The main

conclusions are summarized as follows:

• WISRnet is effective to identify future Dunkelflaute events from projected wind

speed and insolation patterns.

• The frequency of future Dunkelflaute events is dependent on future emission sce-

narios. For the negative emission scenario RCP2.6, Dunkelflaute frequency shows

a declining trend over the period 2010-2050, while an increasing trend is seen for

the RCP4.5 and RCP8.5 scenarios, abeit that the trends are not significant given the

interannual variability.

8.2 Applications of research findings
There are multiple approaches proposed in this dissertation to reliably predict wind and

solar power production during Dunkelflaute events. The following potential applications

are proposed accordingly:

• WISRnet is an effective tool to identify Dunkelflaute events from wind speed and

insolation patterns and has the potential to be extended to other types of weather

patterns. It can be applied to different regions and countries over the world.

• The LightGBMmodel has the potential to forecast power production duringDunkelflaute

periods using GFS data. In addition, it also has the potential to forecast grid demand.

8.3 Recommendations for future research
This dissertation provides insight into the statistical characteristics of and the prediction

strategies for Dunkelflaute events. There are several recommendations for future research.
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• Although some meteorological features have been observed along with Dunkelflaute

events, the detailed weather conditions to evolve and form this extreme weather are

unknown and should be investigated in future research.

• Many potential aspects of ML approaches have not been investigated and should

be included in future research. For example, applying the WISRnet structure and

feeding other weather pattern data can be used for identifying Dunkelflaute. Using

ML models to predict power production with GFS data and using ML models to

predict grid demand are also recommended for future researches.

• Sincemesoscale andMLmodels are able to predict power production duringDunkelflaute,

a hybrid model is worth investigation to improve the prediction performance.

• Several areas of research have been investigated to predict Dunkelflaute events. It is

also important to develop strategies to handle power imbalance during such extreme

weather conditions. Different strategies should be investigated regarding their cost,

impact, and effectiveness.
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