
TrustChain for Smartphones
Measuring reconnection latency when the network is interrupted

Alexandra Mihaela Nicola
Supervisors: Johan Pouwelse, Bulat Nasrulin

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Alexandra Mihaela Nicola
Final project course: CSE3000 Research Project
Thesis committee: Johan Pouwelse, Bulat Nasrulin, Koen Langendoen

An electronic version of this thesis is available at
https://github.com/mbakker520/smartphone-trustchain/tree/reconnectionLatency.



Abstract

TrustChain is a scalable, lightweight blockchain architecture that avoids global con-
sensus by maintaining a personal chain of co-signed interactions for each peer, forming a
directed acyclic graph. While its structure makes it promising for mobile and resource-
constrained environments, its behavior under real-world conditions, such as the time it
takes to restore connectivity, remains underexplored. This paper presents an implemen-
tation of TrustChain in Rust for Android mobile devices and evaluates its robustness
under network disconnections across two protocols: UDP and Iroh over QUIC. Ro-
bustness is defined as the time elapsed between network connectivity restoration and
the successful exchange of the first valid TrustChain message between peers. Exper-
iments involved controlled Wi-Fi interruptions, measuring the reconnection time for
each protocol. The findings reveal trade-offs between protocol simplicity and recovery
performance. UDP demonstrated consistent low-latency reconnection times between 4
and 6 seconds, averaging ∼5 seconds, due to its stateless nature and lack of connection
recovery overhead. In contrast, Iroh reconnection times ranged from 4.5 to 11.5 seconds,
with most values between 6 and 8 seconds, because of QUIC’s timeout strategy, DNS-
based peer discovery, and relay reconnection overhead. The results provide insights
for deploying decentralized systems in mobile contexts and highlight open challenges
in peer reconnection for lightweight blockchain protocols. This study also proposes
improvements and directions for future work, including multi-peer evaluation, measur-
ing different Wi-Fi congestion levels, or experimentation with other network protocol
stacks.

1 Introduction
Blockchain technology has emerged as a foundational infrastructure for decentralized appli-
cations, enabling trustless, tamper-proof transactions in systems ranging from cryptocur-
rencies to digital identity and smart contracts [1]. At its core, a blockchain is a distributed,
append-only ledger that maintains a consistent and verifiable history of interactions across
a network of peers. Early designs like Bitcoin introduced the concept of consensus through
proof-of-work, allowing a permissionless group of actors to reach agreement on a shared
ledger without central control. However, this approach imposes significant performance and
scalability limitations. In real-time applications, global consensus systems restrict respon-
siveness and throughput due to their high energy costs, computing demands, and delays.

These limitations are problematic especially for mobile devices, which require efficiency, but
remain poorly supported by traditional blockchains. The need for lightweight, scalable, and
interaction-centric blockchain systems has led to the exploration of alternative architectures
that deviate from monolithic global ledgers and consensus-based transaction validation.

One interesting substitute is TrustChain. Designed as a lightweight, user-centric blockchain
protocol, TrustChain replaces the global ledger with a personal chain of interactions. Each
participant maintains their own history in the form of a Directed Acyclic Graph (DAG),
where each block represents a co-signed interaction with a peer. [2] Because of its scalabil-
ity, avoidance of global synchronization, and reduced computing requirements, TrustChain
is naturally suited for mobile deployments.

However, there are significant challenges when using TrustChain in the real world, par-
ticularly on smartphones or other mobile devices. One critical aspect is robustness: the

1



system’s ability to recover quickly after network interruptions. These situations are common
in mobile scenarios due to switching between Wi-Fi and mobile data, signal loss, or energy
saving modes. A robust system must restore peer connectivity and resume operation with
minimal delay after such disruptions.

This thesis addresses a critical but underexplored question:

How can a smartphone-optimized implementation of TrustChain be built from scratch to
support real time peer-to-peer communication? How robust is TrustChain, in terms of time
to re-establish connectivity, when running over different network protocols?

As part of a broader team project implementing a common TrustChain base over multiple
networking protocols, UDP and Iroh [3], this thesis contributes to a focused investigation of
reconnection performance. Specifically, it evaluates how long it takes TrustChain nodes to
resume interaction after simulated network failures, across each protocol.

The core contributions of this thesis are:

• TrustChain’s core features implementation

• Implementation of different network protocols: UDP and Iroh over QUIC.

• An experimental framework that measures reconnection time under identical failure
patterns across all protocols

• A comparison of UDP and Iroh in terms of robustness, outlining the trade-offs between
the protocols for constrained deployments.

The rest of this paper is structured as follows: Section 2 reviews related work on blockchain
robustness and protocol behavior in disrupted networks. Section 3 provides background
on TrustChain and the selected protocols. Section 4 outlines the TrustChain and network
protocols implementations, as well as the metrics for measuring robustness. Section 5 details
the experimental setup, along with the results. Section 6 presents the responsible research,
followed by a discussion in Section 7. Section 8 concludes with recommendations for future
work.

2 Background and Related work
Blockchain technologies have evolved significantly since their inception, with increasing in-
terest in adapting them to mobile and constrained environments. However, most of the lit-
erature still focuses on consensus mechanisms, scalability, or energy efficiency, with limited
attention paid to system robustness, especially in terms of reconnection time after network
interruptions. This chapter reviews existing literature relevant to blockchain deployment on
constrained devices, TrustChain’s architecture, and network protocol performance, identi-
fying a critical research gap.

2.1 Blockchain on constrained devices
Several studies have explored the feasibility of deploying blockchain systems on smartphones
and low-power devices. The Trinity protocol proposed by Zhidanov et al. [4] introduces

2



a hybrid model combining Proof-of-Work, Proof-of-Stake, and Proof-of-Activity to enable
blockchain participation on mobile hardware. While the work includes a simulation and
early-stage deployment across multiple countries, it does not quantitatively evaluate how
the system behaves under disconnection or failure conditions. This raises concerns about
the robustness in real world deployments, where a mobile system should support reliable
peer-to-peer communication.

Other studies address blockchain fault tolerance more broadly. For example, wChain [5] is
designed for multihop wireless networks and includes mechanisms for node recovery in dy-
namic topologies. Other research proposes hybrid consensus models incorporating machine
learning to predict and mitigate faults [6]. However, these works are not focused on mobile
device deployments or reconnection latency metrics.

Similarly, Kim et al. [7] propose a Proof-of-Phone consensus mechanism leveraging trusted
smartphone hardware to reduce operational costs. Their architecture introduces high entry
costs through dedicated hardware modules, to limit excessive competition. This enables
a secure, low cost blockchain operation on mobile phones. Although the authors discuss
resilience in economic and cryptographic terms, they do not measure robustness in the face
of network churn or temporary loss of connectivity. This omission raises doubts about its
practical usefulness in mobile contexts, where connectivity is frequently interrupted.

2.2 TrustChain
TrustChain is a decentralized ledger architecture designed for high scalability and Sybil re-
sistance without relying on global consensus. Instead of a single shared blockchain, each
participant maintains a personal chain of co-signed interactions, forming a DAG when all
individual chains are considered collectively. This structure is illustrated in Figure 1. Ev-
ery block records a transaction between two peers and is cryptographically signed by both,
linking backward to each participant’s previous block.

This structure enables parallel growth of chains and avoids the bottlenecks of consensus
based validation. It also makes TrustChain well suited to mobile and resource constrained
environments, where global synchronization is costly or infeasible. Blocks are disseminated
using a gossip protocol, and nodes operate with partial knowledge of the overall system
state. This decentralized, peer driven structure supports a degree of robustness under churn
and intermittent connectivity, as each node independently manages its history.

3



Figure 1: The tamper-proof TrustChain data structure to record transactions. Reproduced
from Pouwelse et al. [2] with permission.

The TrustChain architecture was introduced as a scalable and Sybil-resistant blockchain
system tailored for decentralized, permissionless environments without relying on global
consensus [2]. Its design, further detailed in an IETF draft [8], relies on individual chains of
co-signed blocks forming a Directed Acyclic Graph, which supports asynchronous operation
and resilience to churn. While TrustChain’s structure suggests robustness against tempo-
rary disconnections, the system has not been evaluated empirically for recovery time after
network loss, particularly across different transport protocols.

2.3 Network protocol evaluations
Reliable communication is fundamental to the operation of blockchain protocols, particularly
in decentralized and mobile environments where connectivity can be intermittent. Various
network protocols offer different trade-offs between performance, reliability, and resource
usage.

While many blockchain deployments rely on TCP-based stacks for guaranteed delivery, al-
ternative protocols such as UDP, TFTP [9], and libp2p-based stacks like Iroh [3] offer lower
overhead or improved adaptability in peer-to-peer contexts. These protocols differ signifi-
cantly in how they handle connection state, packet loss, and recovery mechanisms, which
can directly impact robustness in real-world deployments.

QUIC [10] is a modern transport protocol designed to provide fast, reliable, and secure
communication, built on top of UDP. Unlike traditional TCP, it combines connection estab-
lishment, encryption, and stream multiplexing into a single protocol layer, which significantly
reduces handshake delays. Its features such as early data transmission, active loss recovery
and connection migration can be promising in the context of mobile TrustChain, where
temporary disconnections are common.

4



Prior work in peer-to-peer networking, such as Kotlin-IPv8 and related overlays has observed
limitations in data throughput and reliability, especially for UDP-based communication un-
der high load [11]. These results highlight the need for alternative lightweight protocols
that provide a certain level of reliability with minimal overhead. TFTP [9] introduces a
lightweight acknowledgment system over UDP, while Iroh builds on modern transport tech-
nologies like QUIC and offers connection abstraction and peer discovery. However, existing
studies tend to focus on throughput, latency, or energy efficiency, and do not measure
reconnection behavior after network disruptions. To our knowledge, no prior work has sys-
tematically compared these protocols in the context of blockchain or DAG-based systems
like TrustChain, where re-establishing peer communication quickly after disconnection is
essential for usability.

Another protocol that was considered for implementation was the Micro Transport Proto-
col [12], a UDP based protocol primarily used in BitTorrent peer-to-peer file sharing. Its
main characteristic is its ability to manage network congestion effectively, ensuring that
large data transfers in the background do not significantly slow down other internet ac-
tivities. However, despite its strengths in efficient background data transfer, the Micro
Transport Protocol was ultimately not chosen for implementation. The primary reason lies
in TrustChain’s need for rapid and consistent reconnection after network interruptions, es-
pecially in mobile environments. On top of this, given the project’s time constraints, it
was decided to focus on protocols that offered more direct and simpler paths to achieving
the core robustness requirements, such as those that allowed for more straightforward and
simpler implementation.

These protocols range from minimalistic to highly abstracted communication layers, offering
different connection managements, reliability, and reconnection logic. Understanding how
each performs in a TrustChain based system under network churn provides insight into
practical blockchain deployment trade-offs.

2.4 Research Gap
In summary, while prior work has investigated blockchain scalability, security, and energy
efficiency for smartphones and IoT devices, the specific problem of reconnection delay after
network interruptions remains largely unaddressed. Existing literature does not offer:

• Quantitative measurements of time to reconnect after disconnection;

• Comparisons between network protocols for TrustChain message recovery;

• Evaluations of how these delays impact TrustChain’s functionality or usability in mo-
bile contexts.

To bridge this gap, this thesis defines a performance metric for reconnection time, implement-
ing a shared TrustChain base over two transport protocols, UDP and Iroh, and empirically
comparing their behavior in controlled network disruption scenarios.

3 TrustChain and Network Protocols Implementation
This chapter outlines the implementation of the TrustChain core and its integration with
two network protocols: UDP and Iroh. It also defines the robustness metric used to eval-

5



uate reconnection behavior and describes the system design enabling controlled protocol
comparisons.

3.1 TrustChain Implementation Scope
As part of the team’s effort to implement a shared TrustChain base across multiple net-
work protocols, the individual contribution centers on evaluating robustness under network
disruptions. The implemented system is a partial realization of TrustChain’s core function-
ality, written in Rust and integrated into an Android environment via JNI. The subset of
the TrustChain’s features and architecture that were implemented include:

• Block creation and proposal logic: A proposal is a one-sided block created by the
sender, containing the payload and metadata such as index, previous hash, and signa-
tures.

• Block completion and finalization: The receiver validates the proposal, signs it, and
completes the block. Both sides store the block in their respective chains.

• Local storage: Each device maintains a per-peer chain of interactions in memory.

• Signature validation: All finalized blocks undergo dual signature verification using
either ed25519-dalek or Iroh’s signing key, depending on the networking mode.

• The public key and signing mechanisms adapt based on whether the node is running
in UDP or Iroh mode.

• Duplicate message filtering: A deduplication cache ensures each finalized block is
processed only once.

The implementation does not include full peer discovery, message broadcasting, or block
gossiping. As such, all evaluation focuses on pairwise reconnection and message exchange.

3.2 Robustness
In the context of distributed systems, robustness refers to the system’s ability to maintain
correct operation under disruptions such as network partitioning, node failures, or recon-
nection. For blockchain systems, this includes aspects like data integrity, availability, and
especially recovery from communication failures. Robustness is especially critical in mobile
deployments, where network conditions may change frequently. For TrustChain, reconnec-
tion robustness means how quickly and reliably two nodes can resume valid block exchange
after losing and regaining network contact.

To evaluate protocol robustness in the context of TrustChain, a specific metric was defined:

Reconnection Time: The time elapsed between the restoration of network connectivity
and the successful exchange of the first valid TrustChain message between peers.

This metric reflects how well the underlying protocol can detect when connectivity is restored
and resume the TrustChain workflow. The comparison between UDP and Iroh highlights
the impact of the communication protocol on recovery speed, which is critical for mobile

6



environments.

Alternative robustness metrics were considered but ultimately not selected for this study.
For instance, the percentage of messages dropped during disconnection could provide insights
into protocol-level reliability. However, this was excluded because UDP is stateless by default
and drops all messages sent after disconnection and the default implementation of Iroh
over QUIC tears down the connection after exponential backoff and re-establishes a new
one. Furthermore, another viable strategy would have been to measure energy consumption
during failure and recovery events, which is also a form of robustness. However, this was
outside the scope of the current work.

3.3 Network Protocol Implementations
UDP. The UDP implementation uses raw datagram sockets for direct peer-to-peer com-
munication. The networking logic is handled in Kotlin using the standard DatagramSocket
API. On the Rust side, blocks are created, signed, validated, and messages are serialized
as JSON strings and transmitted over UDP, with no built-in reliability mechanisms. Each
device locally maintains a per-peer chain and uses simple deduplication strategies and index
tracking to manage incoming messages. The protocol remains fully stateless, and all session
control or retransmission logic is absent, simplifying the stack, but limiting its resilience to
disruptions. UDP was chosen as a baseline for minimal overhead communication in local or
controlled environments.

Iroh. Iroh is a modern peer-to-peer protocol stack based on libp2p and QUIC. It supports
decentralized peer discovery, stream multiplexing, NAT traversal, and secure communica-
tion via public-key-based NodeIds. In this implementation, each peer advertises itself using
Pkarr, a DNS-based relay system provided by Iroh, and discovers others via relay lookups.
Once a connection is established, data is exchanged over multiplexed QUIC streams. The
Rust core handles TrustChain block logic independently of the transport layer, but dynam-
ically adjusts its signing and identity logic depending on the networking mode, using Iroh’s
keypair and NodeId for identification.

A flow of actions happening inside Iroh when exchanging messages between peers and the
network drops is:

• Initially messages are being sent normally, using QUIC connection over Iroh. The
connection may use either a direct UDP path or a relay tunnel.

• The network drops for one peer, losing the possibility of sending or receiving any
messages. The other peer continues to send messages, but QUIC does not see any
acknowledgments. It starts exponential probe timeouts backoff (first probe sent after
1s, then 2s, then 4s).

• After multiple failed probes, QUIC declares the connection lost and tears down the
old connection. Then, Iroh notices the disconnection at the Router layer.

• The network is back up and the Iroh’s Endpoint auto-reconnects to home relay. The
relay now knows the node is online again

• A QUIC handshake completes over relay and new logical connection established be-
tween peers. Iroh triggers hole punching in the background

7



• Iroh attempts NAT traversal using relay/STUN-style coordination. If it is successful,
the direct path replaces the relay and congestion control is reset to avoid slow start.
If not, the relay continues being the path

• The first message sent after the reconnection successfully arrives.

TFTP. The Trivial File Transport Protocol was initially selected for implementation be-
cause of its simplicity and lightweight overhead, making it a potential middle ground be-
tween raw UDP and Iroh over QUIC. The implementation followed a file-based approach,
where TrustChain messages were transferred as JSON files, with accompanying markers to
indicate transfer completion. Although this setup aimed to provide basic reliability in a
local environment, the integration proved to be unstable and difficult to manage. Due to
frequent issues with file handling, transfer timing, and message loss, the TFTP based sys-
tem could not be reliably evaluated and was excluded from the final robustness experiments.

It also needs to be considered what happens to the blocks transmitted when the connection is
interrupted and analyze the failure detection and recovery strategies embedded in each pro-
tocol. UDP, as a stateless protocol, offers no mechanism to detect peer loss or automatically
resume communication. QUIC, by default does not send keep-alive packets unless config-
ured, to avoid unnecessary traffic on healthy connections. [13] In Quinn’s TransportConfig,
the keep-alive interval is None by default.

4 Experimental Setup and Results
To evaluate the robustness of TrustChain under network disruptions, a series of controlled
experiments were conducted, which compared the two network protocols: UDP and Iroh
over QUIC. Each experiment measures the system’s ability to recover from temporary dis-
connections by recording the reconnection time. This chapter presents the software and
hardware setup for the experiments along with the results.

4.1 Setup
The system is deployed on Android devices with protocol mode selected at runtime. The
same TrustChain core handles block generation and validation across all modes. The evalu-
ation setup includes: one peer initiates a proposal, the network connection is dropped and
later restored. The peer resumes communication and finalizes the block. Timestamps are
logged at: disconnection, network restoration, first successful proposal or finalized block
received. These are used to compute the reconnection delay.

The experiments were conducted using two Android devices to represent both physical and
virtual environments:

• Device 1: Samsung Galaxy S20+, physical, running Android 13

• Device 2: Google Pixel 7 emulator, running Android API level 36 via Android Studio

The use of both a real device and an emulator allows testing in different runtime conditions
and network interface behaviors. Because of hardware limitations, the available computer
could not support two emulators at the same time and this setup was the only option for
running the experiments. For consistency, the battery level of the physical phone was kept

8



above 80%. Both devices were connected to the same local Wi-Fi network, with mobile data
disabled on the physical device to avoid fallback routing. The TrustChain core was compiled
with identical settings for all test cases, and the networking mode was selected at runtime.

To evaluate reconnection behavior, the connection drop was simulated by disabling and re-
enabling the device’s Wi-Fi using ADB shell commands (svc wifi disable/enable). This was
automated through a benchmarking script that ran for 150 iterations, each disabling Wi-Fi
for 30 seconds, then re-enabling it and waiting additional 10 seconds to allow for message
delivery. During each run, a timestamp was recorded at the moment of reconnection (Tup),
and another when the first message was received (Trecv). These were used to compute re-
connection time as Trecv − Tup.

To generate traffic, the app sent messages automatically at fixed 0.5-second intervals using
an auto-send feature. This interval was chosen to ensure prompt message delivery right after
reconnection, while avoiding excessive load of the application. A higher interval might have
resulted in a slightly higher reconnection time, due to how it is computed. The chosen 0.5
interval provided a balance between responsiveness and system stability during reconnection
testing. Logs were collected from Logcat and parsed using a custom Python script, which
extracted timestamps with millisecond precision and plotted results for analysis.

4.2 Results and Analysis
The results of the experiment using UDP as the network communication protocol can be
found in the histogram from Figure 2. The reconnection time can take anywhere between 4
and 6 seconds, the average being approximately 5 seconds.

Figure 2: Histogram showing the frequency of reconnection times (in
seconds) observed after Wi-Fi recovery using the UDP protocol across
multiple test runs.

Given that the raw UDP protocol implemented is a stateless protocol with no built-in con-

9



nection or session management, the reconnection times are low. Once the Wi-Fi connection
is restored and the OS has completed IP configuration and routing updates, any messages
sent by the other peer are immediately deliverable. Since messages are transmitted every
0.5 seconds, the first packet after recovery is received shortly after the network is available.
Therefore, the variable but small delays observed in the histogram is attributed to the un-
derlying OS-level latency, such as Wi-Fi initialization, IP address assignment, rather than
any action in the UDP layer. No reconnection or detection mechanism is needed, which can
explain the consistent and low reconnection times in the experiments.

The results of the experiment using Iroh as the network communication protocol can be
found in the histogram from Figure 3. The reconnection time can take anywhere between
4.5 and 11.5 seconds, the most frequent being between 6 and 8 seconds. Compared to the
results from UDP, Iroh has a higher reconnection time, with more fluctuations.

Figure 3: Histogram showing the frequency of reconnection times (in sec-
onds) observed after Wi-Fi recovery using the Iroh over QUIC protocol
across multiple test runs.

Several components in Iroh’s implementation can introduce latency and fluctuations when
recovering a connection. Studying the Crate Iroh documentation [13], the following possible
causes of the reconnection delay were identified, along with possible mitigations:

• QUIC Timeout Detection. When the network is lost, QUIC does not immediately
assume the connection is dead. Instead, it relies on a series of exponentially delayed
probe timeouts (PTOs) to detect the absence of acknowledgments. These delays can
result in connection loss detection taking a few seconds. To reduce this latency, the
QUIC idle timeout can be shortened and periodic keep-alive packets (e.g., every 2-3
seconds) can be enabled to force earlier detection. Moreover, tuning the initial round-
trip time (RTT) estimation to a lower value can help reduce the duration of each PTO
interval, which will accelerate the disconnection recognition.

10



• Discovery delays. When the connection is lost, the peers need to find each other
again. By default, Iroh uses a DNS-based discovery mechanism (Discovery n0 ) that
publishes and resolves NodeId records via a dynamic DNS service. While generally
efficient, this process can introduce latency due to DNS query times, caching behavior,
or delays in peer re-registration. To reduce this dependency, applications can provide
known addresses directly, which allows Iroh to skip the discovery step entirely.

• Relay Reconnection and Handshake. When the Wi-Fi drops, the connection to
the relay server is also lost and when the network returns, Iroh must reconnect to
the relay, introducing unavoidable latency during reconnection. Once a peer regains
network access, it must re-establish its connection to a home relay, and the other side
may attempt to reconnect via that relay before any direct path is available. The relay
based handshake adds at least one full round-trip time (RTT), and often slightly more
due to TLS negotiation overhead, adding more delay. To minimize this, applications
could maintain a persistent Endpoint instance across network transitions to avoid
rebuilding the relay connection from scratch.

5 Responsible Research
In line with TU Delft’s standards for scientific integrity and transparency, this chapter
outlines the ethical considerations and reproducibility of the work presented.

5.1 Ethical considerations
Evaluating communication protocols for mobile blockchain systems involves trade-offs that
can impact users indirectly, particularly in terms of energy consumption and resource use.
While no sensitive or personal data was used during testing, energy efficiency remains rele-
vant due to the deployment of TrustChain on resource-constrained devices.

The implementation avoids heavy consensus algorithms and relies on lightweight block sign-
ing and message validation. However, different protocols may induce varying levels of retry
overhead or idle connection maintenance, which could affect battery life in practical settings.
Although energy use was not measured directly in this work, it is an important factor for
future research, especially when scaling to multipeer or real time deployments.

Privacy risks are minimal in the current setup. All communication occurred on a private,
local Wi-Fi network between two test devices, with synthetic payloads and no user identifi-
able information. Key material was generated locally and used only for message validation
within the controlled test environment.

5.2 Reproducibility
The implementation was designed with reproducibility in mind. Understanding the imple-
mentation and design choices is crucial for potentially replicating the experiments’ results.
Thus, Chapter 3 describes the implementations of TrustChain and network protocols in
detail, as well as a comprehensive definition of robustness. The details of setting up the
experimental setup can be found in Chapter 4.

11



Moreover, all experiments were conducted using open-source tools and publicly available
libraries. The TrustChain core was implemented in Rust and integrated with an Android
application using JNI. All protocol-specific logic was implemented in a modular way, and
the networking mode could be selected dynamically at runtime. We also aim to make the
implementation of the Trustchain logic, the communication protocols (Iroh, UDP), and the
benchmarking framework available as open-source software. This will be useful for other
researchers who want to validate or extend our work.

While aiming for reproducibility, there are some challenges that need to be addressed. The
devices used for measuring the reconnection latency can influence the results, because of OS
background tasks or emulator behavior. Moreover, the command for simulating the network
drop (svc wifi disable/enable) may have different behavior depending on the Android version
of the smartphone.

By considering these ethical factors and ensuring reproducibility, this work aims to support
the responsible development of decentralized mobile communication systems.

6 Discussion, Future Work and Conclusions
This thesis set out to answer the following central research question:

How can a smartphone-optimized implementation of the TrustChain protocol be built
from scratch to support real time peer-to-peer communication? How robust is TrustChain,
in terms of time to restore connectivity, when running over different network protocols?

To address this, a minimal TrustChain core was implemented in Rust and integrated into
an Android environment, supporting two transport protocols: UDP and Iroh. The system
was evaluated for reconnection robustness, defined as the time between Wi-Fi recovery and
successful message exchange after simulated disconnection. The experiments were conducted
using a real device and an emulator, with 150 runs for each protocol.

6.1 Summary of the findings
The experiments conducted show the difference between using UDP and Iroh over QUIC as
the network communication protocol in a smartphone-based implementation of TrustChain.
There is a measurable difference regarding the reconnection time, UDP achieving a consis-
tent average of 5 seconds, due to its stateless nature and lack of overhead. It is a simple
protocol, but comes with the cost of reliability, as UDP does not provide any delivery guar-
antees or built-in reconnection handling.

The implementation of Iroh over QUIC presents more variable reconnection times, ranging
between 4.5 seconds to 11.5 seconds, with the most frequent being between 6 and 8 sec-
onds. Some possible factors for the reconnection latency were identified: QUIC timeout
detection, which uses delayed probes to detect disconnections, discovery delays from
DNS-based peer resolution, and relay reconnection and handshake overhead, which
includes relay server reregistration and TLS negotiation. Playing with these parameters
could decrease the reconnection time, this remains a future work.

12



These results highlight the tradeoffs between simplicity, resilience and complexity. While
UDP is well-suited to fast, local deployments, its stateless design makes it unreliable under
churn. Iroh, though designed for decentralized robustness, can introduce unexpected delays
due to its internal complexity.

6.2 Limitations and Future Work
One limitation of this study is that it focuses on pairwise communication only. Multi-peer
interactions and their impact on robustness were not explored, because of hardware limi-
tation: the available computer could not support more than one emulator running and the
availability to physical devices was limited. Moreover, another limitation is that the imple-
mentation supports only Android devices, with no support for IOS.

Furthermore, the TFTP protocol was a strong candidate for implementation, because it
could potentially provide a middle ground between UDP and QUIC. However, the imple-
mentation was not successful. This limits the study’s comparison to two protocols, even
though a third protocol was partly implemented.

This study opens the path to future investigations. Listed based on the impact, future
researchers can explore:

• Change QUIC’s parameters and evaluate the impact on robustness: shorten idle time-
out, introduce keep-alive packets, maintain a persistent Endpoint instance, or skip the
discovery step for known addresses

• Support and evaluate multipeer support for measuring reconnection latency

• Evaluate robustness under different Wi-Fi congestion levels and mobile data

• Explore protocol switching strategies, where nodes dynamically choose between UDP
or Iroh, depending on the context

• Complete the TrustChain feature set implementation, such as peer discovery, block
gossiping, and conflict resolution and re-evaluate reconnection latency

6.3 Conclusions
This study investigated the reconnection latency under two different network protocols, UDP
and Iroh over QUIC, in the context of a lightweight blockchain protocol, TrustChain, de-
ployed on Android devices. Specifically, it analyzed how quick peers resume communication
after temporary network disruptions, such as Wi-Fi interruption. The goal was to define
robustness in the context of mobile devices and evaluate the performance of a built-from-
scratch TrustChain mobile application.

The implementation includes core TrustChain features, implemented from scratch, such as
block proposal, completion and signature validation, along with different network protocols.
UDP offered fast recovery but no reliability or state awareness, while Iroh showed higher and
more variable reconnection times. This was attributed to factors such as QUIC’s delayed
connection timeout, DNS-based peer discovery, and relay re-establishment.

13



The key findings are: UDP achieves a reconnection time between 4 and 6 seconds, due to its
simplicity, while Iroh over QUIC has longer and more variable results, ranging between 4.5
and 11.5 seconds, with an average between 6 and 8 seconds. Although Iroh provides more
complex transport features, these introduce reconnection overhead.

In conclusion, UDP offered fast recovery but no reliability, while Iroh, despite its advanced
features like QUIC, stream multiplexing, and NAT traversal, showed higher and more vari-
able reconnection times. This was attributed to factors such as QUIC’s delayed connection
timeout, DNS-based peer discovery, and relay re-establishment.

References
[1] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. An

overview of blockchain technology: Architecture, consensus, and future trends. In 2017
IEEE 6th International Congress on Big Data (BigData Congress), pages 557–564.
IEEE, 2017.

[2] Johan Pouwelse. Trustchain: A sybil-resistant scalable blockchain. 2020. Internet-Draft,
Internet Engineering Task Force (IETF).

[3] n0-computer. Iroh: A peer-to-peer networking stack based on libp2p and quic. https:
//www.iroh.computer/docs, 2025. Accessed: 2025-05-21.

[4] Konstantin Zhidanov, Sergey Bezzateev, Alexandra Afanasyeva, Mikhail Sayfullin,
Sergei Vanurin, Yulia Bardinova, and Aleksandr Ometov. Blockchain technology for
smartphones and constrained iot devices: A future perspective and implementation. 07
2019.

[5] Minghui Xu, Chunchi Liu, Yifei Zou, Feng Zhao, Jiguo Yu, and Xiuzhen Cheng. wchain:
A fast fault-tolerant blockchain protocol for multihop wireless networks. 02 2021.

[6] Venkatesan .K and Syarifah Rahayu. Blockchain security enhancement: an approach
towards hybrid consensus algorithms and machine learning techniques. volume 14, 01
2024.

[7] Jae Min Kim, Jae Won Lee, Kyungsoo Lee, and Junho Huh. Proof of phone: A low-cost
blockchain platform. In 2019 IEEE International Conference on Consumer Electronics
(ICCE), pages 1–4, 2019.

[8] Johan Pouwelse. Trustchain: A sybil-resistant scalable blockchain. Internet-
Draft, IETF, 2020. Available at https://datatracker.ietf.org/doc/html/
draft-pouwelse-trustchain-01.

[9] Karen R. Sollins. The TFTP Protocol (Revision 2). RFC 1350, 1992. Accessed: 2025-
05-21.

[10] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure
Transport. RFC 9000, May 2021.

[11] R. Koning. Performance analysis of an offline digital euro prototype. 2023.

14

https://www.iroh.computer/docs
https://www.iroh.computer/docs
https://datatracker.ietf.org/doc/html/draft-pouwelse-trustchain-01
https://datatracker.ietf.org/doc/html/draft-pouwelse-trustchain-01


[12] Wikipedia contributors. Micro transport protocol — Wikipedia, the free encyclopedia,
2025. [Online; accessed 10-June-2025].

[13] Crate iroh. https://docs.rs/iroh/latest/iroh/.

15

https://docs.rs/iroh/latest/iroh/

	Introduction
	Background and Related work
	Blockchain on constrained devices
	TrustChain
	Network protocol evaluations
	Research Gap

	TrustChain and Network Protocols Implementation
	TrustChain Implementation Scope
	Robustness
	Network Protocol Implementations

	Experimental Setup and Results
	Setup
	Results and Analysis

	Responsible Research
	Ethical considerations
	Reproducibility

	Discussion, Future Work and Conclusions
	Summary of the findings
	Limitations and Future Work
	Conclusions


