

Delft University of Technology

CHAMP, GRACE, GOCE and Swarm density and wind characterization with improved gas-surface interactions modelling (PPT)

March, Gunther; Doornbos, Eelco; Visser, Pieter

Publication date 2018

Document Version Final published version

Citation (APA)

March, G., Doornbos, E., & Visser, P. (2018). *CHAMP, GRACE, GOCE and Swarm density and wind characterization with improved gas-surface interactions modelling (PPT)*. 42nd COSPAR Assembly 2018, PAsadena, California, United States.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

CHAMP, GRACE, GOCE and Swarm density and wind characterization with improved gas-surface interactions modelling

G. March, E. Doornbos, P.N.A.M.Visser

g.march@tudelft.nl

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

42nd COSPAR Assembly 2018, Pasadena, California, U.S.A., Monday, July 16, 2018.

Contents

- Introduction;
- Improved SPARTA model;
- Gas-Surface Interactions (GSI);
- Influence on Aerodynamics;
- Influence on Wind;
- Influence on Density;
- Summary and Outlook.

Introduction

Improved SPARTA model

Panel model

Panel	Area (m²)	Area Normal Vector			Area		IR-	Solar-	ESA-EOPG-MOM-MO-15,	
		x	Y	z	(%)	Material	Emissivity	(BoL/EoL)	Stemes (2018)	
Nadir I		0.0	0.0	1.0	15%	Aluminum/Alodine Foil	0.100	0.368/0.52		
	1.540				70%	OSR Radiator	0.780	0.050/0.230		
	1.540				10%	Black Kapton	0.780	0.930	Pros	Cons
					5%	Beta Cloth	0.800	0.400		Cons
									Simple approach	Low fidelity geometry
										No Shadowing

Low computational cost

tational cost No Multiple reflections

SPARTA (Stochastic PArallel Rarefied-gas Time-accurate Analyzer) model

Pros	Cons		
High fidelity geometry	Complex approach		
Shadowing	Expensive computational cost		
Multiple reflections			

Improved SPARTA model

New densities turned out to be higher reaching a mean +11% for CHAMP, +5% for GRACE, +9% for GOCE and +32% for Swarm.

Gas-Surface Interactions (GSI)

$$C_D = (1 - \sigma) C_{D,spe} + \sigma C_{D,dif}(\alpha_E)$$

$$\alpha = \frac{T_{inc} - T_{re}}{T_{inc} - T_{re}}$$

$$\alpha_E = \frac{T_{inc} - T_{re}}{T_{inc} - T_W}$$

ŤUDelft

- Adsorption of gases on satellite surfaces;
- (Solar activity);
- (Altitude);
- ...?!

Influence on Aerodynamics

GOCE winds between: 2010-01-01, 2013-01-01; $\alpha_{\rm E} = 1.00$

GOCE winds between: 2010-01-01, 2013-01-01; $\alpha_{\rm E} = 0.93$

GOCE winds between: 2010-01-01, 2013-01-01; $\alpha_{\rm E} = 0.60$

CHAMP winds between: 2002-01-01, 2005-01-01; $\alpha_{\rm E} = 1.00$

CHAMP winds between: 2002-01-01, 2005-01-01; $\alpha_{\rm E} = 0.93$

CHAMP winds between: 2002-01-01, 2005-01-01; $\alpha_{\rm E} = 0.60$

Influence on Density: Swarm-A

Influence on Density: Swarm-A

Influence on Density: Swarm-A

Influence on Density (ratios)

HA: High solar Activity; LA: Low solar Activity;

Influence on Density (ratios)

Influence on Density (ratios)

Summary & Outlook

- Optimize coefficients for *diffusive* & *specular* reflections (α_E , σ);
- Improve Solar Radiation Pressure (SRP) accelerations;

- TU Delft works on the improvement of Swarm & GOCE thermospheric products [ESA contract (Starting: Q1-2019)];
- We are interested in revisiting GRACE data and work with GRACE-FO.

Thank you for your attention!

G. March, E. Doornbos, P.N.A.M.Visser

g.march@tudelft.nl

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

42nd COSPAR Assembly 2018, Pasadena, California, U.S.A., Monday, July 16, 2018.

