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ABSTRACT
When deploying machine learning (ML) models on embedded and
IoT devices, performance encompasses more than an accuracy met-
ric: inference latency, energy consumption, and model fairness are
necessary to ensure reliable performance under heterogeneous and
resource-constrained operating conditions. To this end, prior research
has studied model-centric approaches, such as tuning the hyperpa-
rameters of the model during training and later applying model
compression techniques to tailor the model to the resource needs
of an embedded device. In this paper, we take a data-centric view
of embedded ML and study the role that pre-processing parameters
in the data pipeline can play in balancing the various performance
metrics of an embedded ML system. Through an in-depth case study
with audio-based keyword spotting (KWS) models, we show that
pre-processing parameter tuning is a remarkable tool that model de-
velopers can adopt to trade-off between a model’s accuracy, fairness,
and system efficiency, as well as to make an embedded ML model
resilient to unseen deployment conditions.

CCS CONCEPTS
• Hardware → Emerging tools and methodologies; • Computing
methodologies → Neural networks; Speech recognition; • Social
and professional topics → User characteristics.
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1 INTRODUCTION
With the widespread deployment of IoT devices, porting and deploy-
ing machine learning (ML) models to embedded devices and running
them directly on-device is becoming a priority research area [17, 23].
In a typical embedded ML lifecycle involving deep neural networks
(DNNs), model training is done offline and involves experimenting
with various model architectures and training hyperparameters (e.g.,
learning rate, batch size, optimizers) with the goal of achieving the
best prediction accuracy on a test set. Thereafter, the selection of a
model for deployment is done by considering the trade-offs between
prediction accuracy and system-focused metrics such as inference
latency and energy consumption. To this end, model developers
adopt a few common approaches: i) a model which can provide an
acceptable prediction performance with as few parameters as possi-
ble (e.g., less deep neural architectures) is preferred for deployment,
or ii) techniques such as pruning [25] or quantization [7] are applied
to compress the model and tailor it to the resource requirements of
the embedded device.

This model-centric view to embedded ML has seen extensive
research in the past few years [5]. In contrast, we take a data-centric
view [1] to embedded ML in this paper. We study the impact of
pre-processing parameters on input features in the embedded ML
pipeline, and their subsequent influence on the model’s prediction
performance and system efficiency. While seemingly innocuous,
pre-processing parameters directly influence the dimensionality and
data distribution of the data input to the ML model, which subse-
quently can have implications for the model’s inference latency and
prediction performance.

We focus our investigation on an audio keyword spotting (KWS)
task. Audio KWS is one of the most popular embedded ML work-
loads currently, and an essential component of modern voice as-
sistants in mobile phones and wearable devices such as earbuds
[4, 10, 11, 13]. In the data pipeline of a KWS task (detailed in §2.1
and illustrated in Figure 1), pre-processing parameters influence
how the raw speech waveform is segmented into frames, which type
of numerical operations are done on the segmented frames (e.g.,
extraction of Mel spectrograms or cepstral coefficients), and what
dimensionality the input features to the model have. To date, little
research has been done to understand the role of these important
parameters in the context of training and deploying embedded ML
models.

While prediction accuracy and system efficiency are the two pri-
mary metrics for evaluating models in the embedded ML community,
we additionally advocate for evaluating model fairness. Many IoT
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Figure 1: Audio processing pipeline during training and inference.

devices are consumer-centric, which makes fairness a particularly
important metric to ensure that applications are unbiased and work
reliably for all user groups. The prediction outputs of embedded
KWS models, for example, typically trigger other applications. If
used in critical applications, like voice-activated emergency response
for elderly care, it is important that an embedded KWS model is
not only resource-efficient and accurate, but also fair towards user
groups with different speech characteristics. Evidence in other appli-
cations has shown that ML models can discriminate against certain
user groups if fairness is not taken into consideration during model
development [15, 16, 19]. Fairness is thus increasingly considered
an important property of machine learning systems [14]. Moreover,
regulatory shifts are bound to require ML models to be fair and non-
discriminatory in some jurisdictions in future [2], and are a further
motivation for evaluating fairness. Hence, in addition to character-
izing the role of pre-processing parameters on a model’s prediction
accuracy, we also evaluate their impact on model fairness.

This paper makes the following contributions:

• We evaluate the impact of pre-processing parameters on the pre-
diction accuracy of embedded audio KWS models, and consider
the resulting effect on system efficiency.

• We introduce a metric to compute fairness of an embedded KWS
model and present the first-ever evaluation of the impact of pre-
processing parameters on model fairness.

• We investigate the role of pre-processing parameters when deploy-
ment conditions vary significantly from assumptions made during
training, and show that choosing the right parameters can improve
a model’s robustness in such challenging deployment conditions.

2 BACKGROUND
This section discusses background and related work on audio KWS
and model fairness.

2.1 Overview of audio KWS
The processing pipeline of an audio KWS task is depicted in Fig-
ure 1 and works as follows [6, 20]: raw input speech segments are
split into overlapping, short time duration frames using a sliding
window approach. Frame length and frame step are the two impor-
tant parameters that respectively define the duration of each frame
and the step size by which the sliding window is moved. Frame
step is usually set to a certain fraction of the frame length. Next,
a windowing function such as the Hamming window is applied to
each frame to reduce spectral leakage. Thereafter, the frames are
processed using Discrete Fourier-Transform to obtain a frequency-
domain power spectrum. To mimic the non-linear hearing perception
of the human ear, triangular filters on the Mel scale are applied to the

power spectrum to obtain filter bank features. A log operation on the
filter bank features is applied to obtain log Mel spectrograms. Op-
tionally, Discrete Cosine Transform (DCT) is applied to de-correlate
the log Mel spectrograms and yield a compressed representation of
the filter banks in the form of cepstral coefficients, also known as
MFCCs. The features (either the log Mel spectrograms or MFCCs)
from all frames are concatenated and often mean-normalized to form
a two-dimensional (2D) representation of the speech signal, which
is then fed to a deep neural network for training and inference.

Embedded ML trade-offs The choice of pre-processing parameters
can have a profound impact on the performance of an audio KWS
model in an embedded system. Frame length and frame step together
determine the temporal dimension of the 2D features that are fed to
a DNN, and the number of log Mel spectrogram or MFCC features
determine the length of features in each time segment. Together,
these features influence the dimensions of the input data to the
model, which in turn impacts the number of computations during
inference. Table 1 shows the impact of various parameters on the
system efficiency of an audio KWS pipeline. For instance, longer
frame length and frame steps are better for system performance, as
they lead to fewer frames and subsequently, smaller input feature
size for the ML model. Similarly, by using fewer Mel bins for log
Mel spectrograms or fewer MFCC features, we can also reduce the
input feature size, which in turn enhances the inference speed on an
embedded device.

Parameter Impact on
System Efficiency

Values used
in this study

frame length (ms) longer is better 20, 25, 30, 40
frame step

(% of frame length) longer is better 0.4, 0.5, 0.6

window type none Hamming, Hann

feature type depends on size log Mel spectrogram, MFCC
# Mel bins fewer is better 20, 26, 32, 40, 60, 80

# MFCC coefficients fewer is better None, 10, 11, 12, 13, 14

Table 1: Pre-processing parameters, their potential impact on system-level metrics
at inference and parameter options investigated in this study.

Even though these parameter choices could serve as an impor-
tant tool during model development to design efficient audio KWS
pipelines, little is known about their impact on model performance.
As an illustration, Table 2 lists several prior works which have fo-
cused on embedded KWS. Most studies adopt a fixed set of standard-
ized feature extraction parameters borrowed from classical audio
processing literature (e.g. 25ms frame length, 40% frame step) and
do not evaluate the impact of varying these parameters on model
performance. In this paper we aim to characterize the impact of these
parameters, in order to uncover how they can be tuned to balance
fairness, inference accuracy and resource efficiency to suit the goals
and requirements of an embedded ML application.

2.2 Fairness in ML
Fairness issues constitute a discriminatory action, typically against
an individual or a group of people with one or more protected at-
tributes. Protected attributes can be location and context dependent,
and are often legally protected. EU non-discrimination law, for exam-
ple, prohibits both direct and indirect discrimination based on race
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Paper
frame
length

frame step
(% of frame length) feature type feature size

Tucker et al. [20] 25ms 0.4 log mel 20
He et al. [9] 25ms 0.4 log mel 80

Chen et al. [6] 25ms 0.4 log mel 40
He et al. [10] 25ms 0.4 log mel 80

Alvarez et al. [4] 30ms 0.33 log mel 40
Higuchi et al. [11] 25ms 0.4 MFCC 13
Zhang et al. [24] 40ms 0.5 MFCC 40

Table 2: Prior works on audio KWS focus on model optimization for embedded
devices and do not evaluate the impact of pre-processing parameters.

and ethnicity, gender, religion and belief, age, disability, or sexual
orientation [21]. Fairness in ML has become an important area of
study over the past decade [14]. In the speech recognition domain,
it is well known that automated processing techniques are sensitive
to demographic attributes of speakers [8]. Commercial products
have been found to exhibit discriminatory behaviour, for example
automated caption systems that have a higher word error rate for
speakers of colour [18], racial disparities that exist in speech-to-text
systems [12], and speaker verification models that produce worse
predictions for some nationalities, and for female speakers of most
nationalities [19]. However, little work has been done to investigate
the fairness of ML systems deployed on embedded devices. With
commercial deployments of ML-enabled devices having reached
global scale, investigating and evaluating their fairness is a matter of
necessity.

3 EXPERIMENT SETUP
In this section, we introduce the dataset and evaluation metrics, along
with various parameters studied in this paper.

3.1 Pre-processing parameters
Table 1 lists the parameters and their values that we considered
during training, as well as the expected impact that parameter values
will have on system efficiency at inference. As our objective is to
study the trade-offs of parameter choices for model performance and
fairness during inference, we focus on feature extraction and model
architecture parameters. Other hyperparameters such as learning
rate, number of training iterations etc. which do not have a direct
impact on inference efficiency are not studied in this paper.

We experiment with two types of convolutional neural archi-
tectures originally proposed in [17] and later implemented in the
TensorFlow framework [3], namely CNN and low-latency CNN
(llCNN). CNN consists of two convolutional layers followed by
one Dense hidden layer, while llCNN consists of one convolution
layer followed by two Dense hidden layers. The authors showed
that llCNN, by virtue of having less convolution operations, is more
optimized for embedded KWS. We trained each of the architectures
with combinations of all the pre-processing parameters listed in Ta-
ble 1. As discussed earlier, longer frame lengths and frame steps,
and fewer Mel bins and MFCC coefficients reduce the dimensions
of the input features to the neural network, and hence they lead
to higher inference efficiency. In Section 4 we present a detailed
characterization of the impact that these pre-processing parameters
have on inference accuracy and fairness.

3.2 Dataset
We use the Speech Commands [22] dataset for this study. The dataset
consists of 104,541 spoken keywords from 35 keyword classes such
as Yes, No, One, Two, Three recorded at a 16KHz sample rate. To in-
vestigate fairness, we focus on speakers’ sex, the distinction between
biological and physical characteristics of male and female speakers,
as a key attribute for which the model should be fair. In other words,
we want to evaluate whether an embedded KWS model trained with
a certain parameter configuration provides similar performance for
male and female speakers. To this end, we label all the audio sam-
ples in the dataset with the speaker’s sex using a crowd-sourced data
labeling campaign. The original train, validation and test sets of the
dataset were preserved, but split by sex between male and female
speakers. 30% of the training, 32% of the validation and 29% of
the test data are female speakers. During training, the train set was
equally weighted for male and female speakers. Validation and test
sets were not equally weighted.

3.3 Metrics
Quantifying embedded KWS accuracy. We evaluate model per-
formance with five accuracy metrics: Cohen’s kappa coefficient,
precision, recall, weighted F1 score and the Matthews Correlation
Coefficient (MCC). The trends we observed are consistent across
metrics and hence we present results only for the MCC metric. A
higher MCC metric implies better prediction performance.

Quantifying embedded KWS fairness. We define an embedded
KWS model as fair for a subgroup (i.e., male/female) if the sub-
group’s individual accuracy score equals the model’s average accu-
racy score across all subgroups. If a model performs better or worse
than average for a subgroup, we consider it to be favouring or preju-
diced against that subgroup. Both favouritism and prejudice reduce
model fairness. A suitable fairness metric should capture these defi-
nitions and penalise favouritism and prejudice equally. Additionally,
a fairness metric should be able to score models as being more or less
fair, and should consider positive and negative prediction outcomes.
Given these requirements, we operationalize fairness as follows. For
a subgroup 𝑖 (𝑖 = 1 · · ·𝑁 ), we define its relative performance over
the model’s average performance by 𝜏𝑖

𝜏𝑖 =
𝑀𝐶𝐶𝑖

1
𝑁

∑𝑁
𝑗=1𝑀𝐶𝐶 𝑗

(1)

where 𝑀𝐶𝐶𝑖 denotes the MCC score for the 𝑖𝑡ℎ subgroup.

Then, the fairness of the model to a subgroup 𝑖 is defined as:

𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠𝑖 = 𝑙𝑛 (𝜏𝑖 ) (2)

The 𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠𝑖 metric is 0 when a model is fair to subgroup 𝑖, negative
when it performs worse than average (i.e. when it is prejudiced
against a subgroup) and positive when it performs better than average
(i.e. when it favours a subgroup). Furthermore, the magnitude of
the metric is equal for an accuracy ratio and it’s inverse, as 𝑙𝑛(𝑥) =
−𝑙𝑛( 1𝑥 ). This has intuitive appeal that supports the interpretability
of the metric, as the magnitude of the 𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠𝑖 metric is equal for
subgroups that perform half as good and twice as good as average.
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Finally, we obtain the fairness of the model over all subgroups as:

𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠𝑚𝑜𝑑𝑒𝑙 =

𝑁∑
𝑖=1

|𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠𝑖 | (3)

The 𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠𝑚𝑜𝑑𝑒𝑙 metric defined above is valid under the condi-
tions that all subgroups are equally important within the application
context and that fairness is independent of the group size. A lower
value of 𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠𝑚𝑜𝑑𝑒𝑙 is preferred as it signifies that all subgroups
have similar accuracy as the model’s average accuracy.

4 ANALYSIS OF PARAMETER IMPORTANCE
In this section, we aim to understand and contrast the impact of the
various pre-processing parameters on model accuracy, fairness, and
system metrics.

4.1 Findings
We begin our analysis by first studying the impact of the neural
architecture on model performance. Thereafter, we study the role of
pre-processing parameters separately for each architecture.

Impact of model architecture. The distributions of MCC and model
fairness scores for CNN and llCNN architectures trained with 16k
audio input are shown in Figure 2. Unsurprisingly, models trained
with the larger CNN architecture perform better than those trained
with the optimized llCNN architecture. For model fairness, the distri-
bution of scores is less pronounced. Importantly both architectures
have models with scores close to 0, implying that both architectures
produce some models that are fair. Using a univariate linear regres-
sion test across all parameters, we confirmed that model architecture
has the greatest effect on predictive performance and a significant
impact on model fairness, with CNN models being better and fairer
(𝐹𝑀𝐶𝐶 = 3125.624, 𝑝 < 0.01 and 𝐹𝐹𝑎𝑖𝑟 = 22.755, 𝑝 < 0.01 for
𝐹𝑐𝑟𝑖𝑡 (1, 3454) = 6.642 at 𝑎𝑙𝑝ℎ𝑎 = 0.01). Given the dominating ef-
fect of the model architecture, we analyse pre-processing parameter
importance separately for CNN and llCNN models.

Architecture 16k CNN 16k llCNN
Parameters 𝐹 𝑀𝐶𝐶𝐹 𝑀𝐶𝐶𝐹 𝑀𝐶𝐶 𝑝𝑝𝑝 better if 𝐹 𝑀𝐶𝐶𝐹 𝑀𝐶𝐶𝐹 𝑀𝐶𝐶 𝑝𝑝𝑝 better if

# Mel bins 384.032* 5.2e-71 fewer 44.344* 4.9e-11 more
MFCCs 0.242 6.2e-1 - 101.267* 1.3e-22 not none
feature type 2.041 1.5e-1 - 392.356* 2.9e-72 MFCC

frame length 4.668 3.1e-2 - 8.705* 3.3e-3 not 0.04
frame step 16.065* 6.6e-5 shorter 0.094 7.6e-1 -
window type 3.927 4.8e-2 - 0.726 3.9e-1 -

Table 3: Parameter importance for the MCC performance metric for CNN and
llCNN architectures trained and evaluated on audios sampled at 16KHz.

Architecture 16k CNN 16k llCNN
Parameters 𝐹 𝐹𝑎𝑖𝑟𝐹 𝐹𝑎𝑖𝑟𝐹 𝐹𝑎𝑖𝑟 𝑝𝑝𝑝 fairer if 𝐹 𝐹𝑎𝑖𝑟𝐹 𝐹𝑎𝑖𝑟𝐹 𝐹𝑎𝑖𝑟 𝑝𝑝𝑝 fairer if

# Mel bins 46.449* 1.8e-11 fewer 13.090* 3.1e-4 fewer
MFCCs 25.534* 5.3e-7 - 0.252 6.2e-1 -
feature type 43.179* 8.6e-11 log Mel 12.018* 5.5e-4 MFCC

frame length 20.003* 8.8e-6 longer 3.386 6.6e-2 -
frame step 2.648 1.0e-1 - 2.773 9.6e-2 -
window type 9.199* 2.5e-3 Hamming 0.180 6.7e-1 -

Table 4: Parameter importance for model fairness for CNN and llCNN architec-
tures trained and evaluated on audios sampled at 16KHz.

(a) Performance evaluated with the Matthews Correlation Coefficient (MCC)

(b) Model fairness

Figure 2: Distribution of scores for CNN and low latency CNN (llCNN) architec-
tures trained with 16k audio data.

Impact of feature type and count. The F-scores and p-values for
parameters of the CNN and llCNN models are shown in Table 3
for the MCC performance metric and in Table 4 for model fairness.
Starred values reject the null hypothesis for 𝐹𝑐𝑟𝑖𝑡 (1, 1726) = 6.650
at 𝑎𝑙𝑝ℎ𝑎 = 0.01 and their parameters impact the metric at a 1% sig-
nificance level. better if and fairer if parameter values are specified
for important parameters based on mean values and are indicative of
overall trends, not the values of the best parameter configuration.

(a) Effect of # Mel bins on MCC scores with log Mel spectrogram features

(b) Effect of # Mel bins on MCC scores with MFCC features

Figure 3: MCC scores for CNN and llCNN architectures trained with 16k data.
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For CNN architectures we find that the number of Mel bins has
the greatest impact on model performance, and a significant impact
on fairness. Models perform better and are fairer if they have a
lower number of Mel bins, and performance degrades rapidly with
larger numbers of Mel bins. CNN models are fairer when using log
Mel spectrogram features. llCNN architectures on the other hand
perform better and fairer when using MFCC features. This finding
is emphasised by the absence of MFCC coefficients (i.e. MFCCs
parameter value is none) strongly impacting model performance.
However, provided that MFCC features are used, the actual number
of coefficients has no significant impact on model performance, and
does not impact fairness. This can be explained by the first cepstral
coefficients containing most of the signal information.

The effect of the number of Mel bins for log Mel spectrogram
and MFCC feature types is shown in Figure 3. With log Mel spec-
trogram features, fewer Mel bins provide significantly higher MCC
scores (Figure 3a). However, when MFCC features are used in the
case of llCNN model, the impact of the number of mel bins is less
pronounced (Figure 3b).

Impact of temporal filters and windowing. The model perfor-
mance of CNN architectures is sensitive to the frame step. Frame
steps that are shorter relative to the frame length result in models
with higher MCC scores. CNN model fairness is sensitive to frame
length and the window type, but not to frame step. Longer frame
lengths and the Hamming window result in fairer CNN models.
Overall, CNN models are more sensitive to feature type and count,
than to other pre-processing parameters. The MCC performance
scores of llCNN architectures are lowest when the frame length is
0.04s, the longest frame length that we investigated. Both model
fairness and MCC performance are otherwise not significantly im-
pacted by frame length, frame step or window type. This presents an
opportunity to optimise these parameters for system performance in
embedded applications.

4.2 Implications for embedded ML design
We summarise the impact of pre-processing parameters on system
performance, model performance and model fairness in Table 5.
Feature type significantly impacts model accuracy and fairness. Se-
lecting log Mel spectrograms as features for CNN architectures, and
MFCCs as features for llCNN architectures results in better accuracy
and fairness. As feature type by itself does not have any effect on
system efficiency, model developers can choose the features best
suited for the neural architecture.

System impact 16k CNN 16k llCNN
Parameters better if fairer if better if fairer if

feature type depends on size - log Mel MFCC MFCC
# Mel bins fewer is better fewer fewer N/A N/A
MFCCs fewer is better - none not none -

frame length longer is better - longer not 0.04 -
frame step longer is better shorter - - -
window type none - Hamming - -

Table 5: Summary of system, predictive performance and fairness impact of pre-
processing parameters on CNN and llCNN models trained with 16k data.

Focusing on CNN architectures with log Mel spectrogram fea-
tures, our findings show that models with fewer Mel bins have better
predictive performance, are fairer, and are likely to have better sys-
tem performance (energy consumption and latency). Frame step has

an opposing effect on CNN architectures, with shorter frame steps
resulting in models with better predictive performance, while longer
frame steps are better for system performance. This finding reveals
an important design choice for model developers: depending on the
application and system requirements, they can modify the frame step
to trade-off between predictive performance and system cost.

For llCNN architectures with MFCC features, the number of
MFCC coefficients does not have a significant impact on predictive
performance and fairness, and can thus be optimised for system
performance by selecting as few coefficients as possible. Similarly,
frame step and frame length (except 40ms) also do not have a signif-
icant impact on predictive performance and fairness, and can thus
be optimized for system efficiency by selecting longer frame length
and step sizes.

In Table 6 we show the parameter values, prediction accuracy, model
fairness scores, and inference latency for models selected based on
highest MCC score, best model fairness score and optimal system
heuristics. For optimal system heuristics we chose parameter values
that reduce the system impact, provided that they do not oppose
MCC performance or model fairness. The inference latency was
computed by executing each model on a Raspberry Pi 4. The trade-
offs between the best models for each metric are clear and allow a
model developer to tune the pre-processing pipeline to application
requirements. For the CNN model, we can reduce inference latency
by 7.2% at the cost of 3.7% reduction in absolute prediction accuracy.
Similarly, by tuning the pre-processing parameters for the llCNN
model, we can improve model fairness by 81% with a 4.2% drop in
prediction accuracy.

architecture feature
type

frame
length

frame
step

#Mel
bins MFCCs inference

latency
MCC
score

model
fairness

CNN (MCC) log Mel 20s 0.4 20 None 180ms 0.877 1.2e-2
CNN (fairness) log Mel 30s 0.6 26 None 176ms 0.849 1.8e-4
CNN (system) log Mel 40s 0.6 20 None 167ms 0.840 3.5e-3

llCNN (MCC) MFCC 20s 0.5 20 14 173ms 0.804 6.6e-4
llCNN (fairness) MFCC 20s 0.6 20 14 169ms 0.762 1.2e-4
llCNN (system) MFCC 30s 0.6 40 10 160ms 0.773 2.3e-2

Table 6: MCC, model fairness scores, and inference latency for three 16k CNN
and llCNN models. For model fairness, lower scores are better.

5 PARAMETER IMPORTANCE UNDER
VARYING DEPLOYMENT CONDITIONS

In embedded applications the audio data that devices can collect is
constrained by hardware capabilities such as microphone quality,
and hardware constraints, such as power consumption. Collecting
data at a lower sample rate consumes less power than collecting it
at a higher sample rate, which is beneficial in applications where
battery life is a concern. We thus consider parameter importance in
two scenarios that are likely to arise when deploying ML models to
heterogeneous devices. In the first scenario we consider the effect
of lowering the training and evaluation sample rate from 16kHz to
8kHz, a realistic possibility in many embedded applications. For
this experiment we down-sampled the Speech Commands dataset to
8kHz, both during training and inference. In the second scenario we
consider what happens when a black-box model is deployed in an
application that collects data at a different sample rate to what the
model was trained at, that is, a 16kHz model receives an 8kHz input
and vice versa.
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5.1 Impact of a lower sample rate
Table 7 shows a summary of our findings on parameter importance
for 8kHz audios. In contrast to the results for 16kHz audios, we
observe that the choice of features used for 8kHz audios offer a
clear tradeoff between model accuracy and fairness. While MFCC
features are better for prediction accuracy, log mel spectrograms
result in fairer models for both CNN and llCNN architectures. As
such, depending on the application requirements (e.g., whether to
prioritize accuracy or fairness), a developer can choose the optimal
feature. We also observe that using fewer mel bins can satisfy the
goal of system efficiency and fairness for both architectures. Sim-
ilarly, by using fewer MFCC coefficients, we can achieve better
system efficiency and prediction accuracy. Table 7 also illustrates
how the temporal parameters such as frame length and frame step
could be tuned to balance system efficiency and model performance.

System impact 8k CNN 8k llCNN
Parameters better if fairer if better if fairer if
feature type depends on size MFCC log Mel MFCC log Mel
# Mel bins fewer is better N/A fewer N/A -
MFCCs fewer is better not none N/A not none N/A
frame length longer is better - longer - shorter
frame step longer is better shorter - - -
window type none - - - -

Table 7: Summary of system, predictive performance and fairness impact of pre-
processing parameters on CNN and llCNN models trained with 8k data.

5.2 Sample rate divergence during deployment
Table 8 and Figure 4 illustrate our findings on parameter importance
when the model encounters sample rate divergence during deploy-
ment. The results reveal some very surprising findings. Firstly, we
observe that in the presence of sample rate divergence, MFCCs are
no longer the right features to choose for llCNN models (in contrast
to our findings in Table 5). In fact, the performance degradation by
using MFCC features in llCNN models is so severe that the best
MCC scores drop from 0.804 to 0.25. Instead, a model developer
should opt for mel spectrogram features if they expect the possibil-
ity of sample rate divergence at deployment, because even though
mel spectrograms have lower accuracy than MFCCs for the llCNN
models, they are more robust to sample rate divergence.

System impact 16k input | 8k llCNN 8k input | 16k llCNN
Parameters better if fairer if better if fairer if
feature type depends on size log Mel log Mel log Mel log Mel
# Mel bins fewer is better - more - -
MFCCs fewer is better none none none none
frame length longer is better - - - -
frame step longer is better - - - -
window type none - - - -

Table 8: Summary of system, predictive performance and fairness impact of pre-
processing parameters on llCNN models when the input sample rate is different
to the training sample rate: llCNN models trained with 16k data were evaluated
on 8k input, and vice versa.

6 DISCUSSION AND CONCLUSIONS
The aim of this paper was to characterize the impact that configura-
tion parameters can have on different performance metrics of a ML
model, such as prediction accuracy, fairness or system efficiency.
Based on our findings, following are the takeaways and implications
for future work on embedded ML.

Figure 4: Effect of feature type on the distribution of MCC scores of CNN and low
latency CNN architectures trained and evaluated at different sample rates.

Pre-processing parameters matter. Our results show that data pre-
processing parameters have a statistically significant effect on model
accuracy, fairness and inference efficiency in audio KWS tasks. We
advocate that tuning these parameters should be considered as an
important part of the embedded ML training pipeline, something
which we have not seen in prior works (see Table 2). Depending on
the objectives and resource availability of an embedded ML appli-
cation, model developers can modify these parameters to balance
model accuracy, fairness and inference efficiency.

Choosing the right parameter can help in unknown deployment
conditions. Embedded ML models need to deal with the heterogene-
ity in sensor hardware at inference time. For instance, a KWS model
trained on 16kHz audios may – at inference time – encounter mi-
crophones which cannot sample audio at 16kHz. Our findings show
that choosing the right pre-processing parameters can alleviate the
negative impact of such unseen deployment conditions on model per-
formance. For example, we found that the use of mel spectrograms
as input features instead of MFCCss can prevent severe degrada-
tion in model performance when the samples rates diverge between
training and inference stages.

Towards data-centric ML. Our work directly relates to the emerg-
ing trend in the ML community on approaching ML from a data-
centric perspective as opposed to only model-centric perspective [1].
Specifically, in the case of embedded ML, a number of works have
taken a model-centric approach by applying model pruning [25],
weight quantization [7] to ensure that ML models can satisfy the
resource requirements of embedded devices. Our findings highlight
that there is a clear merit in taking a data-centric view to this problem
and by configuring the parameters of the data pipeline (e.g., frame
step, number of mel bins), we can balance various performance
metrics of an embedded ML system. As a future work, we plan to
explore how both data- and model-centric embedded ML approaches
can work together.

At the workshop. We hope to discuss with other workshop attendees
how this work can be extended to other sensing modalities (e.g.,
vision, accelerometer data). Moreover, we would like to get feedback
on how the data-centric approach to embedded ML presented in this
paper can be combined with model-centric optimization approaches
from the literature, such as layer pruning and weight quantization.
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