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Abstract 

Lane-changing behaviour detection is a critical aspect of driving safety and traffic 

management. This study focuses on detecting sudden lane changes as a subset of 

abnormal driving behaviours. By analyzing the characteristics of abrupt lane changes, 

the aim is to develop effective data-driven unsupervised machine learning (ML) 

methods for their detection and classification. Three unsupervised ML models, namely 

Isolation Forest, Local Outlier Factor, and Robust Covariance are evaluated and 

compared using a dataset of lane-change events. The results show that the Isolation 

Forest and Local Outlier Factor models outperform the Robust Covariance model, with 

the Local Outlier Factor model excelling in precision and overall accuracy, achieving 

the best overall detection rate. Both Robust Covariance and Isolation Forest deliver 

satisfactory results. Conversely, the Robust Covariance model exhibits poor 

performance. The findings verify the capability of data-driven ML methods for 

enhancing road safety and driving experiences through effective detection of sudden 

lane changes using vehicle motion information data. Future work involves further 

improving the accuracy and reliability of the ML models, validating their 

generalizability on larger datasets, incorporating contextual information, and exploring 

their real-time implementation in driving assistance systems.  
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1 Introduction 

In the field of intelligent transportation, traffic safety is an important topic. As one of 

the most serious hazards worldwide, traffic accidents cause great casualties and 

property losses (Dept. for Transp., 2013; Peden et al., 2004). According to the WHO 

(2022), over 1.25 million people die, and up to 50 million suffer from injuries due to 

road crashes, which makes road accidents a leading cause of death. 

 

Road crashes can not be completely prevented, but certain measures could be taken to 

try and reduce their occurrence. Most road accidents are caused by human factors such 

as driving behaviours (Saiprasert & Pattara-Atikom, 2013). According to the official 

reports in Beijing (Su et al., 2023), the causes of car accidents are generally attributed 

to drivers, vehicles, road conditions, and weather, among which the driver is the 

dominant factor and counts for about 95% of car accidents. Therefore, it is important 

to detect abnormal driving to improve traffic safety effectively. 

 

Based on the discussion on the predominantly human-caused nature of traffic accidents, 

it is essential to highlight the significant association between abnormal driving 

behaviours and a substantial number of traffic incidents. In particular, within these 

abnormal driving behaviours, lane-changing actions driven by human factors are found 

to be closely linked to a significant portion of these accidents. 

 

Lane-changing manoeuvres are associated with a substantial number of road traffic 

crashes. For instance, in 1999, about 539,000 two-vehicle lane-change crashes were 

reported in the U.S. (Basav Sen et al., 2003). In New South Wales, Australia, 3438 rear-

end and 1171 lane-changing crashes were reported in 2017 (NSW-Transport., 2018). In 

Queensland, Australia, lane-change-related crashes represent about 4% of total crashes, 

whilst rear-end and side-swipe crashes each represent 4% of total crashes, respectively 

(Manager, 2009). 

 

A successful lane change requires a driver to simultaneously allocate his/her mental 

attention to several decision-making factors, such as looking for an appropriate gap size 

on the adjacent lane, checking for a blind spot, maintaining the correct lane position 

and the distance to the leader on the current lane, and adjusting the driving speed (Ali 

et al., 2019). Given lane-changing manoeuvres' complexity and critical nature, this 

study focuses on detecting sudden lane changes as a subset of abnormal driving 

behaviours. Examining and analyzing the characteristics of these abrupt lane changes, 

this study aims to develop effective data-driven methods for detecting and classifying 

such behaviours, ultimately contributing to enhanced road safety and driving assistance 

systems. 

 

Several algorithms and techniques can be used to recognize driving behaviour, among 

which the data-driven machine learning (ML) method possesses high potential. The ML 



5 

 

method is roughly divided into supervised and unsupervised learning approaches. 

Supervised ML needs labelled data. For example, Ly et al. used a Support Vector 

Machine (SVM) as a supervised method to explore the possibility of using the labelled 

vehicle’s inertial sensors from the Controller Area Network (CAN) of a bus to build a 

profile of the drivers (Ly et al., n.d.). Assigning unknown data into categories by mining 

the underlying sources of unlabeled data is called the Unsupervised Machine Learning 

method. For example, clustering and Principal Component Analysis (PCA) from 

exploratory statistics were used to identify and explain driver groupings according to 

their driving behaviour (Constantinescu et al., 2010). 

 

Unsupervised learning techniques are commonly employed when data is unlabeled, as 

is often the case with multi-variate anomalies, where it is uncertain whether the system 

behaviour is anomalous at any given point in time apart from obvious system failures. 

These techniques include Robust Covariance, Local Outlier Factors, and Isolation 

Forests (Nikita Butakov, 2020). 

 

However, it is important to note that the absence of labelled data in unsupervised models 

makes it challenging to measure their accuracy precisely. It is easier to ascertain the 

exact accuracy of the models in identifying abnormal lane changes with the presence 

of labelled data for validation. Since there is no ground truth or reference for 

comparison, evaluating the performance of unsupervised ML models sometimes 

becomes more subjective. 

 

In this study, the primary focus is on investigating sudden lane-changing behaviours in 

the open-sourced CitySim dataset. The data was first labelled and categorized according 

to rule-based criteria and human experts’ experience to establish a baseline and ground 

truth for comparison. Subsequently, three unsupervised ML models, i.e., Isolation 

Forest, Local Outlier Factor, and Robust Covariance, were customized and 

implemented, and the performances of three unsupervised models were evaluated and 

compared regarding various metrics (including accuracy, precision, and recall ratio). 

Results demonstrated that Local Outlier Factor achieved the best overall performance 

outperforming the Isolation Forest and Robust Covariance. 
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2 Related Work 

2.1 Lane-changing Behaviour Detection 

The lane-changing (LC) behaviours are investigated for various types of roads, such as 

urban arterials, freeways, and expressways.  

 

Decision models in lane-changing play a crucial role in predicting drivers' intentions. 

Drivers' LC intention could be predicted by operation inputs and vehicle states (Ng et 

al., 2020). Drivers' merging and give-way decisions were researched by a quantal 

response equilibrium framework and the Nash equilibrium solutions in lane changing 

(Arbis & Dixit, 2019). Most decision models can be probabilistic or deterministic-based 

(Li et al., 2019; Peng et al., 2020). 

 

Microscopic models, on the other hand, focus on capturing the finer details of lane-

changing behaviour. Variables such as the LC rate, velocity motivation, target lane 

choice, gap acceptance, target lane choice, and the direction of steering wheels are used 

to construct the microscope model (Guo et al., 2018). The insertion angle of the target 

vehicle is considered for a better understanding of how vehicle lane changing increases 

the probability of traffic accidents in the road segment (Yang et al., 2020).  

 

Alongside decision and micro motion models, it is vital to consider the motivation 

factors behind lane-changing. Mathematic models such as regression, hybrid, and 

microscopic models were proposed to describe motivation factors and mechanisms of 

LC behaviour (Farooq & Juhasz, 2019). The regression model predicted the frequency 

of the LC in low illumination well based on factors such as gender, weekly driving time, 

and lane-change and risky driving behaviour factors (Kusuma et al., 2020). 

 

2.2 Machine Learning Model 

Recent studies (Eftekhari & Ghatee, 2018) have explored abnormal driving behaviour 

using clustering and shallow learning algorithms. Previous research on abnormal 

driving behaviour has employed supervised and unsupervised methods. 

 

The training phase of supervised machine learning relies on labelled inputs and outputs. 

Once the model has learned the patterns and relationships in the labelled data, it can 

classify new and unseen datasets and make predictions. Jia et al. (2020) developed an 

LSTM-CNN model that combines the strengths of Long Short-Term Memory (LSTM) 

for processing time series data and Convolutional Neural Network (CNN) for 

processing matrix data. They detected extreme acceleration and deceleration points 

using statistical analysis of actual vehicle driving data and established a dataset for 

driving behaviour recognition. Training the LSTM-CNN model on this dataset yielded 

improved results. Shahverdy et al. (2021) proposed a lightweight 1D-CNN with high 
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efficiency and low computational complexity for classifying driver behaviour, 

specifically focusing on high-speed movement, braking, rapid speed changes, and quick 

steering. Ryan et al. (2021) simulated an end-to-end model of autonomous vehicles (AV) 

using Convolutional Neural Networks (CNN) to compare human and AV driving 

behaviour. 

 

While as the name implies, unsupervised machine learning is a less guided approach 

than supervised machine learning. Using unlabeled training data, unsupervised machine 

learning models are trained. It allows the model to identify patterns, structures, and 

relationships within the data without predefined labels or human intervention. 

Mohammadnazar et al. (2021) introduced a framework that utilizes unsupervised 

machine learning methods to quantify instantaneous driving behaviour and classify 

driving styles in different spatial contexts. K-means and K-medoid methods were 

applied to group drivers into aggressive, normal, and calm clusters. 

 

Similarly, Feng et al. (2018) proposed a novel technique for robustly classifying driving 

styles using the Support Vector Clustering approach. Their method aimed to 

differentiate variations in individual driving patterns and provide an objective driver 

classification. The authors identified four input signals (vehicle speed, engine speed, 

pedal position, and headway distance) and four statistical features (mean, standard 

deviation, maximum, and minimum values) as the parameters for feature extraction. 
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3 Methodology 

3.1 Unsupervised ML models 

Unsupervised machine learning models do not possess example input-output pairs that 

allow them to learn a function that maps the input features to outputs. Instead, they 

learn by finding structure within the input features. In unsupervised ML, "structure" 

refers to patterns, relationships, or regularities within the input features of the data. It 

involves identifying inherent dependencies or similarities among the data points 

without using labelled output information. By identifying structure, unsupervised 

learning models can uncover hidden patterns or groupings in the data, providing a 

deeper understanding of its inherent properties. In this study, Isolation Forest, Local 

outlier factor (LOF), and Robust Covariance are selected as the unsupervised ML 

models. In this section, the following paragraphs briefly introduce the three selected 

unsupervised ML models. 

 

Isolation Forest 

To look for anomalies, Isolation Forest (Lesouple et al., 2021) generates random 

isolation trees to isolate each data point. The number of branches required to isolate 

each point is computed for each tree. The mean of this number of branches defines the 

expected path length, which is used to isolate a point of interest. The expected path 

length is generally small for anomalies (contrary to nominal data) since anomalies are 

far from the majority of nominal data. 

 

In statistics, the deviation can be assessed by the Z-score. The generalization of the Z-

score for a point 𝑥𝑖  in the case of a 𝑝 -dimensional multi-variate probability 

distribution with some mean 𝜇  and covariance matrix Σ  is known as Mahalanobis 

distance 𝑑𝑖, which is given by: 

 

𝑑𝑖 = √(𝑥𝑖 − 𝜇)𝑇Σ−1(𝑥𝑖 − 𝜇) 

 

Here is a simplified example to illustrate the Isolation Forest algorithm for anomaly 

detection: 

➢ Data Preparation: The dataset comprises various features such as velocity, 

acceleration, coordinate and distance. 

➢ Isolation Forest Construction: 

a. Random Subsampling: Randomly select a subset of instances from the dataset. 

b. Random Feature Split: Randomly select a feature and a split value to partition 

the selected instances. The split value can be any value within the range of the 

selected feature. 

c. Recursive Partitioning: Recursively split the instances based on the selected 

feature and split value. Continue this process until each instance is isolated in a 
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separate leaf node or a predefined stopping criterion is met (e.g., maximum tree 

depth). 

➢ Path Length Calculation: Measure the average path length required to isolate each 

instance in an isolation tree. The path length is the number of edges traversed from 

the root to reach a particular instance. Anomalies are expected to have shorter 

average path lengths compared to normal instances. 

➢ Anomaly Score Calculation: Calculate an anomaly score for each instance based 

on the average path length across all isolation trees. Instances with shorter average 

path lengths (fewer splits required for isolation) are assigned higher anomaly 

scores, indicating a higher likelihood of being an anomaly. 

➢ Anomaly Detection: Identify instances with anomaly scores above the threshold as 

anomalies. These instances represent abnormal driving behaviours. 

 

Local outlier factor (LOF) 

LOF is another useful unsupervised ML algorithm that identifies outliers concerning 

the local neighbourhoods instead of using the entire data distribution (Breunig et al., 

2000). LOF is a density-based technique that uses the nearest neighbour search to 

identify anomalous points. The advantage of using a LOF is identifying points that are 

outliers relative to a local cluster of points. For instance, when using the local outlier 

factor technique, neighbours of certain points are identified and compared against the 

density of the neighbouring points. The following steps can be applied when using a 

LOF model: 

1) Calculate distance between P and all the given points using a distance function such 

as euclidean or Manhattan. 

2) Find the k (k-nearest neighbor) closest point. For example, if K = 3, find the third 

nearest neighbor's distance. 

3) Find the k closest points. 

4) Find local reachability density using the following equation: 

 

𝑙𝑟𝑑𝑘(𝑂) =
‖𝑁𝑘(𝑂)‖

∑ 𝑟𝑒𝑎𝑐ℎ𝑑𝑖𝑠𝑡𝑘(𝑂′ ← 𝑂)𝑂′∈𝑁𝑘(𝑂)
 

 

where reachable distance can be calculated as follows: 

 

𝑟𝑒𝑎𝑐ℎ𝑑𝑖𝑠𝑡𝑘(𝑂
′ ← 𝑂) = 𝑚𝑎𝑥{𝑑𝑖𝑠𝑡𝑘(𝑂), 𝑑𝑖𝑠𝑡(𝑂, 𝑂

′)} 

 

5) The last step is to calculate the local outlier factor as follows: 

 

𝐿𝑂𝐹𝑘(𝑂) =
∑

𝑙𝑟𝑑𝑘(𝑂
′)

𝑙𝑟𝑑𝑘(𝑂)
𝑂′∈𝑁𝑘(𝑂)

‖𝑁𝑘(𝑂)‖
 

 

Robust Covariance 
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The Robust Covariance technique assumes that normal data points have a Gaussian 

distribution, and accordingly estimates the shape of the joint distribution (i.e., estimates 

the mean and covariance of the multivariate Gaussian distribution) (Nikita Butakov, 

2020). It is based on the fact that outliers lead to an increase of the values (entries) in 

Σ , making the spread of the data apparently larger. Consequently, |Σ|(the determinant) 

will also be larger, which would theoretically decrease by removing extreme events.  

 

Rousseeuw and Van Driessen (Peter J.Rousseeuw & Driessen Van Katrien, 1999) 

developed a computationally efficient algorithm that can yield robust covariance 

estimates. The method is based on the assumption that at least ℎ out of the 𝑛 samples 

are “normal” (ℎ is a hyperparameter). The algorithm starts with 𝑘 random samples 

with (𝑝 + 1) points. For each 𝑘 sample, 𝜇, 𝛴, and |𝛴| are estimated, the distances 

are calculated and sorted in increasing order, and the ℎ smallest distances are used to 

update the estimates. In their original publication, the subroutine of computing 

distances and updating the estimates of 𝜇, 𝛴, and |𝛴| is called a “C-step” and two 

such steps are sufficient to find good candidates (for 𝜇 and 𝛴) among the k random 

samples. In the next step, a subset of size m with the lowest |𝛴| (the best candidates) 

is considered for computation until convergence, and the one estimate whose |𝛴| is 

minimal is returned as output. 

 

3.2 Evaluation metrics 

Table 1 presents the confusion matrix, which serves as the basis for evaluating the 

discrimination performance of the selected model. A range of metrics will be employed 

to assess the overall effectiveness of the model in accurately classifying instances, 

ensuring a comprehensive evaluation of its performance (M & M.N, 2015). 

 

Table 1 Confusion Matrix and the Corresponding Array Representation 

 Actual Positive Class Actual Negative Class 

Predicted Positive Class True-positive (TP) False-negative (FN) 

Predicted Negative Class False positive (FP) True-negative (TN) 

 

In the context of binary classification, the model distinguishes between two classes: 

positive and negative. The positive class corresponds to the specific event or condition 

the model aims to identify, while the negative class represents the alternative possibility. 

For instance, in abnormal driving behaviour detection, the positive class may be 

labelled "abnormal," while the negative class represents the absence of abnormal 

behaviour. True Positive (TP) and True Negative (TN) indicate the number of instances 

accurately classified as positive and negative, respectively. 

 

Within this study, True Positive (TP) signifies the accurate identification of anomalies, 

while True Negative (TN) denotes the correct identification of normal instances. 

Conversely, False Positive (FP) and False Negative (FN) indicate the misclassification 

of positive and negative instances. These terms represent the instances where anomalies 
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or normal cases were incorrectly identified. As a result, performance metrics such as 

accuracy, precision, and recall are computed utilizing these four measures to evaluate 

the model's effectiveness. 

 

Accuracy measures the ratio of accurately classified instances to the total cases 

evaluated. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Precision quantifies the proportion of correctly predicted positive patterns among the 

total predicted patterns in the positive class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall, as an additional valuable measure, tackles a different inquiry: it determines the 

proportion of actual Positives that are correctly classified. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

The F1-score combines the precision and recall of the model, defined as the harmonic 

mean of precision and recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Lastly, the Receiver Operating Characteristic-Area Under the Curve (ROC AUC) is 

employed as an evaluation metric. This metric assesses the model's performance by 

identifying the areas where it excels at classifying normal and anomaly situations. 

Plotting True Positive Rates against False Positive Rates produces ROC curves. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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4 Data Description 

This study utilizes the CitySim dataset due to its inclusion of abnormal driving 

behaviour, making it suitable for calculating the necessary features for the thesis. 

CitySim (Zheng et al., 2022) is a collection of video-based trajectory data from drone 

recordings focusing on traffic safety in the United States. The dataset comprises vehicle 

trajectories extracted from 1140 minutes of drone videos captured at 12 different 

locations. It encompasses various road geometries such as primary freeway segments, 

weaving segments, expressway merge/diverge segments, signalized intersections, stop-

controlled intersections, and intersections without sign/signal control. 

 

The CitySim dataset is available in Comma Separated Value (CSV) files, where each 

row represents a waypoint belonging to a vehicle trajectory within a single frame. Each 

waypoint contains positional information for seven essential vehicle points, including 

the centre point, head, tail, and four bounding box vertices (refer to Figure 1). The 

dataset provides positional data in various formats, such as pixels, feet, and GPS 

coordinates. Moreover, it includes details on speed, heading (measured relative to both 

the global north and the image X-axis), and the lane number of the vehicle. Notably, 

the dataset exhibits high precision, with measurements accurate within a range of 

approximately 10 centimetres. 

 

Figure 1 Vehicle bounding box feature description 

 

Expressway A (Figure 2) in CitySim is chosen as a case study for analysing abnormal 

lane-changing behaviours. The weaving segment of Expressway A is particularly 

significant due to its actual occurrence of critical safety events, including cut-ins, 

merges, and other lane-changing behaviours. 
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Figure 2 Expressway A 

 

When a vehicle changes lanes by cutting into a target lane from a source lane, it can 

conflict considerably with the following vehicle on the target lane. This lane-changing 

behaviour is known to be a contributing factor in rear-end collisions. Given that the 

study focuses on the weaving segments of Expressway A, it is expected to observe 

various lane change behaviours in this area. (See in Table 2 and Figure 3). 

 

Table 2 Lane changing behaviour at Expressway A 

ExpresswayA-01 No lane changing Once Twice Three times Four times Total 

Lane-changing 325 97 118 47 5 592 

 

 
Figure 3 Proportional distribution of lane changing times 

The dataset provides insights into the distribution of lane-changing behaviours, 

allowing for an analysis of their proportions. Notably, in approximately 54.9% of 

instances, a significant proportion did not involve lane changes, indicating that a 

substantial portion of observed driving behaviours did not include lane changes. 

 

Among the instances that did involve lane changes, approximately 16.4% consisted of 

single-lane changes. This suggests that many driving instances included a single-lane 

change during the recorded period. 

 



14 

 

Instances with two-lane changes accounted for approximately 19.9% of the dataset, 

indicating a relatively higher frequency of instances where two-lane changes occurred. 

On the other hand, instances with three-lane changes were less common, comprising 

roughly 7.9% of the dataset. Instances with four-lane changes were the least frequent, 

representing only around 0.8% of the dataset. 

 

The analysis reveals that most instances did not involve lane changes, followed by 

instances with a single lane change. Instances with multiple lane changes (two or three) 

were less frequent, while instances with four-lane changes were extremely rare. This 

distribution is visually depicted in Figure 3 through a pie chart. 

 

In order to assess whether vehicles exhibit sudden lane-changing behaviour, the lateral 

acceleration of these vehicles is analyzed. Figure 4 illustrates the distinct characteristics 

of rapid lane-changing behaviour observed in real-life situations. 

 

 
Figure 4 Rapid lane changing(Jia et al., 2020) 

 

Based on the findings from the literature review, it is clear that unsupervised models 

are commonly used without the need for pre-labelling the data. However, to gain a more 

comprehensive understanding of the results obtained from the unsupervised models 

employed in this study (Isolation Forest, Local Outlier Factor, and Robust Covariance), 

it becomes necessary to label the lane-changing behaviours present in the dataset. 

Specifically, our focus will be on identifying sudden lane-changing behaviour and 

classifying them based on the metric of lateral acceleration. This initial data labelling 

process allows us to establish a baseline for evaluating the outcomes of the 

unsupervised models. 

 

The following Table 3 and Figure 5 are the analysis of lateral acceleration for the 

vehicles that have lane-changing behaviour. 

Table 3 Lateral acceleration 

Expressway A Mean Std Min Max 

 Lateral Acceleration(m/s2) 0.00 1.30 -6.59 6.42 
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Figure 5 Lateral Acceleration Distribution 

 

Most vehicles exhibiting lane change behaviour demonstrate a relatively constant 

acceleration of around 0 m/s², indicating lane changes performed at a consistent speed. 

However, there are outliers in the dataset where the acceleration of certain vehicles 

deviates from this pattern, as illustrated in Figure 6. Based on the normal distribution, 

we define outlier values as those exceeding 1.3 m/s² or falling below -1.3 m/s², which 

serve as the filtering criteria for identifying such cases. 

 

Figure 6 Extreme lateral acceleration and deceleration points distribution at different speeds 

(red=normal/orange=abnormal) 
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The scatter plot exhibits a distinct pattern resembling a bird, which is remarkably well-

suited for analyzing lane-changing behaviours. Firstly, points on the bird's wings 

suggest a significant occurrence of abnormal lane changes involving high speeds. This 

indicates a potential risk of unsafe driving behaviour associated with sudden lane 

changes. On the contrary, the concentrated points forming the bird's body indicate a 

predominant occurrence of normal lane-changing behaviours with consistent lateral 

acceleration, indicating a more stable driving pattern. 

 

Before the upcoming chapter, where an unsupervised model will be used for classifying 

abnormal lane-changing behaviours, this chapter focuses on the manual labelling of 

data using lateral acceleration as a metric. The subsequent chapter will then compare 

the manual data labelling and the unsupervised model approach. This comparison aims 

to evaluate the effectiveness and reliability of both methods in accurately identifying 

and classifying abnormal lane-changing behaviours. 
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5 Experimental Results and Comparison 

5.1 Experimental Results 

Isolation Forest 

Figure 7 and Table 4 presents the results obtained from the Isolation Forest machine 

learning approach. 

 

Figure 7 Confusion Matrix Isolation Forest 

 

Table 4 Performance of Isolation Forest 

 Precision Recall F1-score Support 

Abnormal 0.74 1.00 0.85 618 

Normal 1.00 0.69 0.82 686 

Accuracy  0.84 1304 

Macro avg 0.87 0.84 0.83 1304 

Weighted avg 0.88 0.84 0.83 1304 

F1_score 0.8151986183074266 

FPR 0.3119533527696793 

TPR 1.0 

ACC 0.8358895705521472 

 

Local Outlier Factor 

The findings from the Local Outlier Factor machine learning approach are visually 

depicted in Figure 8 and Table 5. 
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Figure 8 Confusion Matrix Local Outlier Factor 

 

Table 5 Performance of Local Outlier Factors 

 Precision Recall F1-score Support 

Abnormal 0.99 0.88 0.93 618 

Normal 0.90 0.99 0.94 686 

Accuracy  0.94 1304 

Macro avg 0.94 0.94 0.94 1304 

Weighted avg 0.94 0.94 0.94 1304 

F1_score 0.9442896935933148 

FPR 0.011661807580174927 

TPR 0.883495145631068 

ACC 0.9386503067484663 

 

Robust Covariance 

Figure 9 and Table 6 presents the comprehensive results obtained through the Robust 

Covariance machine learning method. 
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Figure 9 Confusion Matrix Robust Covarianc 

 

Table 6 Performance of Robust Covariance 

 Precision Recall F1-score Support 

Abnormal 0.00 0.00 0.00 618 

Normal 0.48 0.85 0.62 686 

Accuracy  0.45 1304 

Macro avg 0.24 0.42 0.31 1304 

Weighted avg 0.25 0.45 0.32 1304 

F1_score 0.616445623342175 

FPR 0.15306122448979592 

TPR 0.0 

ACC 0.4455521472392638 

 

5.2 Comparison 

The following table 7 compares the model performance metrics for Isolation Forest, 

Local Outlier Factor, and Robust Covariance, highlighting their accuracy, precision, 

recall, F1-Score, False Positive Rate (FPR), and True Positive Rate (TPR). 

 

Table 7 Comparison of unsupervised machine learning 

 Accuracy Precision Recall F1-Score FPR TPR 

Isolation Forest 0.84 0.74 1.00 0.82 0.31 1.0 

Local Outlier Factor 0.94 0.99 0.88 0.93 0.01 0.88 

Robust Covariance 0.45 0.00 0.00 0.00 0.15 0.00 
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The Isolation Forest model achieves relatively good accuracy, correctly classifying 84% 

of instances. It demonstrates a precision of 0.74, indicating that 74% of the instances 

predicted as abnormal are indeed true positives. The model also achieves a perfect recall 

of 1.00, correctly identifying all actual abnormal instances. The F1-score, a harmonic 

mean of precision and recall, is 0.82, representing a balanced performance. The FPR of 

0.31 suggests that around 31% of normal instances are incorrectly identified as 

abnormal, while the TPR of 1.0 indicates that all abnormal instances are correctly 

detected. 

 

The Local Outlier Factor model demonstrates high accuracy, correctly classifying 94% 

of instances. It achieves an impressive precision of 0.99, indicating that 99% of the 

instances predicted as abnormal are true positives. The model's recall is 0.88, suggesting 

it captures 88% of the actual abnormal instances. The F1-score of 0.93 indicates a well-

balanced performance. The FPR is only 0.01, indicating a very low rate of 

misclassifying normal instances as abnormal. The TPR of 0.88 signifies the model's 

ability to identify a substantial portion of abnormal instances. 

 

The Robust Covariance model exhibits poor accuracy, correctly classifying only 45% 

of instances. The precision and recall values are both 0.00, indicating that no instances 

are correctly identified as abnormal, resulting in no true positives. Consequently, the 

F1-score is also 0.00, indicating a complete failure in performance. The FPR of 0.15 

signifies a relatively high rate of misclassifying normal instances as abnormal, while 

the TPR of 0.00 indicates a complete failure in detecting actual abnormal instances. 

 

In summary, the Isolation Forest and Local Outlier Factor models perform better than 

the Robust Covariance model. The Isolation Forest model balances precision and recall, 

while the Local Outlier Factor model excels in precision and achieves high overall 

accuracy. On the other hand, the Robust Covariance model performs poorly, failing to 

detect any true positives and exhibiting high false positives. 

6 Discussion 

The results highlight the effectiveness of the Isolation Forest and Local Outlier Factor 

models in detecting sudden lane changes, outperforming the Robust Covariance model. 

The Isolation Forest model demonstrates a balanced performance in precision and recall, 

indicating its ability to identify true positives while minimizing false positives. On the 

other hand, the Local Outlier Factor model exhibits a high precision rate, indicating a 

low rate of false positives and high confidence in the detected anomalies. 

 

The poor performance of the Robust Covariance model suggests that it may not be 

suitable for detecting sudden lane changes in this context. Further investigation and 

improvements are necessary to enhance its accuracy and reliability. Possible 

enhancements involve exploring different outlier detection algorithms or incorporating 
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additional features and data sources. 

 

In terms of future work, it would be beneficial to evaluate the performance of these 

models on larger and more diverse datasets to validate their generalizability. 

Additionally, incorporating contextual information such as weather conditions, road 

types, and traffic density could provide a more comprehensive understanding of the 

factors influencing sudden lane changes and improve the accuracy of the detection 

models. Furthermore, investigating the real-time implementation of these models in 

driving assistance systems and exploring their integration with other advanced driver 

assistance technologies could be valuable avenues for future research. 

 

Overall, this study contributes to abnormal driving behaviour detection by comparing 

and evaluating different unsupervised models for detecting sudden lane changes. The 

findings lay the foundation for further research and development of more robust and 

accurate detection systems, ultimately enhancing road safety and driving experiences. 
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