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A B S T R A C T   

Vascular self-healing concrete (SHC) has great potential to mitigate the environmental impact of the construction 
industry by increasing the durability of structures. Designing concrete with high initial mechanical properties by 
searching a specific arrangement of vascular structure is of great importance. Herein, an automatic optimization 
method is proposed to arrange vascular configuration for minimizing the adverse influence of vascular system 
through a reinforcement learning (RL) approach. A case study is carried out to optimize a concrete beam with 3 
pores (representing a vascular network) positioned in the beam midspan within a design space of 40 possibilities. 
The optimization is performed by the interaction between RL agent and Abaqus simulation environment with the 
change of target properties as a reward signal. The results illustrates that the RL approach is able to automatically 
enhance the vascular arrangement of SHC given the fact that the 3-pore structures that have the maximum target 
mechanical property (i.e., peak load or fracture energy) are accessed for all of the independent runs. The RL 
optimization method is capable of identifying the structure with high fracture energy in the new optimization 
task for 4-pore concrete structure.   

1. Introduction 

Self-healing concrete (SHC) shows great possibility in mitigating the 
environmental impact of the construction industry by increasing the 
durability of structures and thereby reducing the need for repair or 
replacement [1]. Based on the previous research [2], vascular-based 
healing is one of the most important approaches to self-healing. 
Compared with the intrinsic and capsule-based self-healing system, 
incorporating a vascular system into matrix enables an ongoing supply 
of the healing agents [3]. Except for healing agents and vascular mate-
rials [4,5], the performance of SHC embedded with vascular networks is 
significantly influenced by the vascular configuration. 

A number of studies on design the vascular network of self-healing 
materials has been investigated based on fluid flow [6–9]. In some 
cases, however, the healing agent is pressurized to the cracked region 
and the fluid flow property of vascular networks are less important. 
Instead, the vascular configuration of SHC is designed based on me-
chanical properties [10–15]. Among others, some researchers designed 
vascular system with large tube coverage considering that a dense dis-
tribution of vascular system raises the likelihood that a crack intersects 
the network and triggering the healing process. On the other hand, the 

existence of vascular networks may cause stress concentration in the 
host matrix and compromise the mechanical properties [16–18]. 
Therefore, it is of necessity to balance the tradeoff between large 
coverage (for better healing capacity) and strength reduction. 

Except for theoretical analysis and trail-and-error approaches [19], 
heuristic optimization methods such as evolutionary algorithms and 
machine learning (ML) have been employed to design the vascular 
structures under certain configurations. For example, the vascular 
arrangement in self-cooling polymeric materials could be optimized 
using genetic algorithm (GA), where the influencing factors like network 
redundancy are taken into account [20]. More importantly, ML has 
emerged as a promising way to analyze and optimize materials [21,22]. 
Compared with analytical and numerical models, ML models speed up 
the prediction of target properties for the similar new structures. Be-
sides, the well-trained model could be employed for inverse design [23]. 
For vascular self-healing concrete, generative deep neural network 
(GDNN) is adopted to arrange the vascular system [24]. Although a 
structure with better target property has been found after the optimi-
zation process, there are still several issues present in the optimization 
process: (1) a large dataset is needed to train the ML model (i.e., map 
concrete structure to the target property), causing huge computational 
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burden; (2) the ML-recommended structures must be verified by simu-
lation software to obtain the best structure; (3) the ML model must be 
re-trained with a new dataset when the optimizing structure or the 
target property are changed. As a result, the large dataset for training 
deep neural network (DNN) and the ML-recommended structure veri-
fication are time-intensive, thereby compromising the optimization 
effectiveness. 

In recent years, reinforcement learning (RL) has shown significant 
success in solving complex problems such as game playing [25,26] and 
robotics [27]. Compared with gradient based ML methods, an RL agent 
can select the sequential actions that maximize the future rewards by 
iteratively interacting with their operation environment [28]. Further-
more, the algorithm does not rely on prior knowledge nor the large 
amount of initialization samples. In engineering, deep reinforcement 
learning has been applied in scheduling of precast concrete production 
[29], design of reinforced concrete structures [30] and material opti-
mization [31,32]. In the studies, most of the designed structures are 
simplified with discretized design domains since the interactive envi-
ronments are created either by solving governing equations or satisfying 
the designing provisions. As a result, the optimized structures are still far 
from the practical engineering. It is noted that reinforcement learning 
outperforms the conventional optimization algorithms especially when 
the environment is complicated. To fully realize the optimization po-
tential of reinforcement learning, interaction environment could be 
established by using numerical simulation to solve some practical 
problems. However, the optimization performance of RL is greatly 
influenced by the updating strategy and the hyperparameters. Further-
more, the number of interactions tends to be large, making it 
time-consuming to compute the reward with the numerical 
environment. 

In this study, we aim to automatically optimize vascular configura-
tion of vascular self-healing concrete through the interaction between an 
RL agent and a created numerical environment. Three-point bending test 
(3PBT) of concrete beam with different vascular arrangement is 
modelled with Abaqus/Explicit to create the numerical environment. 
Similar to previous research [33], the optimization objectives are 
defined as peak load or fracture energy of the concrete beams. To 
investigate the optimization effectiveness of different updating strate-
gies, 3 pores out of the 40 positions are arranged as the optimization 
constraint. Afterwards, the optimization for the 4-pore structure towards 
high fracture energy is carried out using the selected updating strategy 
to design the vascular configuration. There are mainly three novelties in 
this research: (1) The vascular configuration optimization is transformed 
to a Markov decision process (MDP) and two updating strategies are 
recommended to optimize the vascular configuration. The framework of 
MDP could be easily used to optimize structures with different number 
of pores. (2) Numerical environment is established using Abaqus soft-
ware, which could solve optimization problems close to practical engi-
neering. The connection between RL agent and numerical environment 
realizes the automatic enhancement of structures. (3) Except for the 
maximum number of interaction steps, another termination criterion is 
set to accelerate the optimization process by using the historical highest 
value as the threshold value. The used termination criterion helps 
improve the optimization performance with a relatively small number of 
interactions. 

This study is organized as follows: the concrete damage plasticity 
model and model calibration are described in Section 2.1 and data 
representation is introduced in Section 2.2. The formation of Markov 
decision process (MDP) is shown in Section 3.1 and the deep Q-learning 
approach to optimize vascular structures is described in Section 3.2. 
Optimization 84 of 3-pore concrete structure with two updating strate-
gies (3→2→3 and 3→4→3) is compared and analyzed, and the result and 
discussion are provided in Section 4. Finally, a new optimization of 4- 
pore concrete structure is carried out (Section 5). 

2. Numerical simulations 

To optimize the vascular configuration using machine learning (ML) 
method, an accurate numerical model is necessary to generate the 
dataset or create the interaction environment. In addition to accuracy, 
computational time and mapping relationship need to be taken into 
consideration when selecting the numerical models. In this study, the 
mapping relationship is defined as the sensitivity of target mechanical 
property to the change of vascular structure. The mapping relationship 
could be reflected by the prediction accuracy of the trained neural 
network. In our previous work [15], we simulated the fracture response 
of 3D-printed ABS vascular self-healing concrete. However, the 3D 
model with ABS vascular system is extremely time-consuming, making it 
not suitable for data-driven optimization (see Appendix). In addition, 
considering that hollow channels could act as the vascular system for 
self-healing, a 3D model with hollow channel or 2D model with pores 
could be also employed to generate the dataset. For the 3D model with 
hollow channels, the fracture response showed not to be sensitive to the 
change of vascular structure, making it difficult to establish the mapping 
relationship between the vascular configuration and the mechanical 
properties. More details can be found in Appendix. Therefore, a 2D 
model with pores is the most suitable model for the vascular configu-
ration optimization due to the favorable computation time and mapping 
relationship. We do, of course, acknowledge that this is a simplification 
of an actual vascular system, and that in practice a vascular network 
would preferably be oriented perpendicular to the crack plane (as 
attempted in the 3D model discussed in the Appendix). 

In this study, 3-point bending tests on the notched concrete struc-
tures are numerically simulated. The pores in the design region act as the 
channels for transporting the self-healing agents. The radius of pores is 
set as 1.5 mm for the verification of designed structures with experi-
ments in the future. To create a relatively large design space, the pores 
could be positioned in the compressive zone, and are not positioned in 
pairs. Based on the load-displacement curve, different mechanical 
properties are obtained and set as the optimization targets to calculate 
the reward signals. The schematic of the concrete structure with 4 pores 
is shown in Fig. 1. 

2.1. Model calibration 

2.1.1. Concrete damage plasticity model 
Concrete damage plasticity model (CDPM) is often used to describe 

cementitious materials [34]. For CDPM, tension stiffening and 
compression hardening need to be defined and the corresponding 
stress-strain relations are shown in Eqs. (1) and (2), individually. 

σt = (1 − dt)E0(εt − ε̃t
pl
) (1)  

σc = (1 − dc)E0(εc − ε̃c
pl
) (2)  

where σt, σc are the tensile stress and compressive stress respectively; dt, 
dc are tensile damage variable and compressive damage variable ranging 
from 0 (undamaged) to 1 (total loss of strength). E0 is the initial (un-

damaged) elastic stiffness of the material; εt, εc are the total strains; ε̃t
pl 

and ε̃c
pl 

are the equivalent plastic strains. For simplification, the stiffness 
degradation is not considered and the damage variables are set to 0 in 
this study. As a result, the equivalent plastic strains are equal to crack 

strains. As shown in Fig. 2, the crack strains (ε̃t
ck

, ε̃c
ck

) are defined as the 
total strain minus the elastic strain corresponding to the undamaged 
materials (Eqs. (3) and (4)). 

Where σt (σc) is the tensile (compressive) stress; dt (dc) is tensile 
(compressive) damage variable. E0 is elastic modulus; εt and εc are the 

total strains; ε̃t
pl 

and ε̃c
pl 

are the equivalent plastic strains. In this study, 

dt and dc are set to 0. ε̃t
ck

and ε̃c
ck 

are appeared in Eqs. (3) and (4) (see 
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Fig. 1. Schematic of concrete structure under 3-point bending.  

Fig. 2. Uniaxial tension/compression behavior for CDPM. (a) Tension; (b) Compression.  

Fig. 3. Calibration result for CDPM. (a) Tension; (b) Compression.  
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Fig. 2). 

ε̃t
ck
= εt − εel

0t (3)  

ε̃c
ck
= εc − εel

0c (4)  

2.1.2. Parameter determination 
A cement mortar mix was prepared using CEM-III B and water in a 

0.4:1 ratio by weight, sand (0.125–0.250 mm) in a ratio of 0.458:1 by 
weight. To prevent brittle failure during 3-point bending, 0.1 % of PE 
fibres are added to the cementitious matrix by volume. The input pa-
rameters for CDPM refer to our previous research [35]. 

Uniaxial tensile and compressive tests were carried out to calibrate 
the model parameters related to cementitious matrix. According to the 
obtained results (Fig. 3), the calibrated parameters of CDPM for the used 
mortar are listed in Table 1. The mesh size is set as 0.5 mm to ensure the 
simulation accuracy during the calibration process. Note that there is a 
slight difference between the calibrated curve and the input since the 
stiffness degradation is not considered in this study. 

When simulating 3-point bending test, the displacement of concrete 
structure gradually increases to 0.4 mm in a time period of 20 s. The 
mesh size in the midspan is chosen as 0.5 mm, which is kept same with 
the mesh size in the calibration process. To save the computation times, 
the mesh size progressively transforms to 4 mm, then it stays 4 mm for 
the remaining 40 mm (Fig. 4). A structure without pores is first created 
and meshed to act as the prototype. The mesh of the prototype is sym-
metric to eliminate the impact of mesh size on numerical analysis. To 
avoid the influence of the mesh on the simulated response, structures 
with pores are generated based on the meshed prototype. As a result, the 
mesh of the structure is identical in all simulations, except for the ex-
istence of pores. 

2.2. Data representation 

2.2.1. Structure representation 
To enable the automatic optimization process, an input file for nu-

merical simulation should be automatically generated based on the 
updated state after taking an action. Although the concrete structure 
seems complicated, the structures could be characterized by the differ-
ence in the design region (Fig. 1). 

In the simulation environment, the 40 positions are numbered from 
0 to 39 in accordance with the Python programming convention. The 
total design space for structures with 3 and 4 pores is 9880 (C3

40) and 
91,390 (C4

40) respectively. The 3-pore structure is sequentially encoded 
from combination 0 ([0, 1, 2]) to combination 9879 ([37–39]) and the 
same goes for 4 pores (combination 0 for [0, 1, 2, 3]; and combination 
91,389 for [36–39]). Based on the updated state after taking an action, a 
structure number ranging from 0 to CN

40-1 (N = 2, 3, 4) is passed to the 
Abaqus environment. Afterwards, the corresponding 3 or 4 positions are 
set as pores when generating the input file for numerical simulation. 

In the RL environment, the state of concrete structure is represented 
with a 5 × 8 matrix. In particular, a location is encoded as 1 if there is a 

pore, and 0 otherwise. Subsequently, the 5 × 8 matrix is flattened into a 
40-dimensional vector as the input state. An action is performed by 
converting the state from 0 to 1 (matrix to pore) or vice versa. An 
example of the input representation is shown in Fig. 5a. 

2.2.2. Target representation 
The target mechanical property is initially defined as peak load to 

investigate the RL approach as well as to tune the hyperparameters of 
the Q-networks. Afterwards, structures are optimized for high fracture 
energy. In this study, a healing agent is assumed to be stored/trans-
ported in the pores. When crack hits the pores, the healing agent could 
flow into the crack from the pores. In other words, the structure with 
pores hit by the crack is regarded to be healable. At the same time, the 
influence of pores on the initial mechanical properties should be mini-
mized. According to our previous research [24], more pores should be 
hit by the crack and therefore triggering the healing process and this 
results in higher fracture energy. In this study, fracture energy is defined 
as Eq. (5). An example of the optimization targets is shown in Fig. 5b. 

Fracture energy =

∫ 0.4

0
Fds (5) 

Similar to the input generation, the output file should be automati-
cally post-processed to obtain the target properties. In addition, the 
target value should be passed to the RL agent to calculate the reward 
corresponding to the state and action pair. Note that the Python running 
environment is different for RL agent training (Tensorflow framework), 
Abaqus running (system environment) and pre-/post- process (Abaqus 
Python). Therefore, the environment should be changed during the 
interaction process. 

3. Reinforcement learning algorithm 

3.1. Markov decision process (MDP) and Q-learning 

Markov Decision Process (MDP) is a mathematically idealized form 
of RL problems [28]. The learner (decision maker) is called the agent. 
The agent takes an action based on the perceived state st and the state 
transfers to a new state st+1. To guide the action, a numerical value rt is 
given as reward. The interaction between the agent and the environment 
continues until the perceived state is the terminal state sT, where T is the 
final time step. MDPs are meant to be straightforward framing of the 
problem of learning from interaction to achieve a goal. The 
agent-environment interaction in a Markov decision process is shown in  
Fig. 6. 

The aim of RL is to maximize the expected discounted return in an 
interaction episode, which is called the reward hypothesis. The expected 
discounted return can be expressed as shown in Eq. (6). 

Gt = Rt+1 + γRt+2 +⋯+ γT− t− 1RT =
∑T − t− 1

k=0
γkRt+k+1 (6)  

where γ is a parameter called the discount rate. 
Among the RL algorithms, Q-learning is a widely-used off-policy 

control method due to its capacity to converge to optimal policy even if 
acting sub-optimally [28]. Watkins was the first to introduce Q-learning, 
in which the value of a state-action pair is represented by Q(s,a), and the 
value is based on Eq. (7). 

Q(st,At)←Q(st,At)+ α[Rt+1 + γmax
a

Q(st+1, a) − Q(st,At)] (7)  

where α is the learning rate. 
The learned action-value function Q(s, a) directly approximate q∗, 

the optimal action-value function. In most cases, a q-table is sufficient to 
store the action-value pair when using Q-learning. However, the linear 
form cannot take into account any interactions between features. In this 
study, a neural network is employed for the nonlinear function 

Table 1 
Input parameters for fiber reinforced mortar.  

(a) Compressive CDPM parameters 
Yield stress (MPa) Inelastic strain ( %) 
40 0 
53 0.008 
15 0.022 
10 0.047 
(b) Tensile CDMP parameters 
Yield stress (MPa) Displacement 
2.4 0 
0.15 0.05 
0.1 0.976  
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approximation. In other words, Q-network is adopted to describe the 
state-action value [29,36]. The input is the state s and the output is the 
parameterized Q function Qθ(s,a), where θ are the weights of the neural 
network. To promote the convergence of the network, experience replay 
and two separated networks are used [37]. 

3.2. Deep Q-learning approach to optimize vascular structures 

The optimization target is to design a concrete structure with high 
flexural strength or fracture energy under the predefined constraint. The 
update strategy is as follows: (1) A concrete structure with 3 pores is 
randomly generated as the start state s0; (2) One agent (Agent 1) per-
forms an action to decrease the number of pores from 3 to 2 (state 
transfers from st to s′

t); (3) The other agent (Agent 2) performs an action 
to increase the number of pores from 2 to 3 with (state transfers from s′

t 
to st+1); (4) State st is updated to state st+1 in step (3) until reaching the 
terminal state sT. 

The optimization of a 3-pore structure could also be performed via 
the update strategy of changing 3 pores to 4 pores, then changing from 4 
pores to 3 pores. More importantly, note that structure with other 
number of pores could be optimized without significantly changing the 
programming code. Therefore, structures with 3 pores are first investi-
gated with the RL framework. At the beginning of each episode, we 
initialize the concrete structure. To optimize the concrete structure with 
less computational burden, the interaction process does not start from a 
certain structure. Instead, the starting state is randomly generated at the 
beginning of each episode. Therefore, 3 unique integers in the range 
between 0 and 39 are randomly chosen. The 3 selected positions are 
encoded as 1′s (pores) and the remaining 37 positions are encoded as 0′s 
(matrix) to form a 40-dimensional vector, which is used as the start 
state. The optimization effectiveness via the update strategy of 3→2→3 
and 3→4→3 is compared. The two updating strategies for 3-pore 
structure optimization are shown in Fig. 7. 

Based on [38], an MDP is defined by seven elements, i.e., (1) set of 
state S; (2) Set of action A; (3) Transition function P(s′|s,a); (4) Reward 
function R(s′,a,s); (5) start state S0; (6) Discount factor γ; (7) Horizon H. 
According to previous studies [32], the discount factor is set to be 0.95. 
The other elements are introduced in the following section. 

3.2.1. Set of state S and start state s0 
The entire design space is all of the possible structures when there are 

3 pores out of the 40 positions in the middle span. Theoretically, there 

are 9880 (C3
40) possibilities at most, and each state is represented by a 

40-dimensional vector with 0′s and 1′s. For update strategy 1, the tran-
sition state is a 2-pore structure, where there are 780 (C2

40) possibilities. 
The initialized state is called the start state (s0). 

Similarly, for the updating strategy of 3→4→3, the sets of state and 
transition state are 9880 (C3

40, 3-pore structure) and 91,390 (C4
40, 4-pore 

structure) respectively. The start state is also randomly generated at the 
beginning of each episode. 

3.2.2. Action function and transition function 
Based on the current state st, the agent will take actions to maximize 

the discounted future reward. Herein, actions are taken to convert the 
‘state’ of one position: turn a position from pore to matrix (1→0) or from 
matrix to pore (0→1). Considering that the agent can only take one 
action in one interaction with the environment, two agents are created 
to take two separate actions in a row to maintain the pore number as 3. 
Taking the updating strategy 2 as example: Agent 1 first takes an action 
to turn one position from matrix to pore (0→1). To ensure that the pore 
number changes from 3 to 4, the action should be taken among the 37 
matrix positions. Afterwards, Agent 2 takes another action a′ to turn one 
position from pore to matrix (1→0). Similarly, the action a′ acts on the 4 
positions which are defined as pores. The transition functions are shown 
in Eq. (8)–(11) respectively. 

For updating strategy 1 (3→2→3): 

P
(
s′

t

⃒
⃒st, a′) =

⎧
⎨

⎩

1
3

(for pore positions)

0(for other positions)
(8)  

P
(
st+1|s′

t, a′) =

⎧
⎨

⎩

1
38

(matrix positions)

0(other positions)
(9) 

For updating strategy 2 (3→4→3): 

P
(
s′

t

⃒
⃒st, a′) =

⎧
⎨

⎩

1
37

(matrix positions)

0(other positions)
(10)  

P
(
st+1|s′

t, a′) =

⎧
⎨

⎩

1
4

(pore positions)

0(other positions)
(11)  

Fig. 4. Mesh size of the 4-pore structure under 3-point bending.  
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Fig. 5. Representation of structure and target. (a) Structure representation; (b) Target representation.  

Fig. 6. Agent-environment interaction in MDP.  
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3.2.3. Reward function 
The feedback the agent receives from the environment in response to 

its action is referred to as a reward. In this study, the reward function is 
based on the target properties. To optimize structures towards the 
higher peak load (i.e., higher strength), the change of the peak load 
before and after taking actions is defined as the reward function. Two 
actions are taken in a row by the two agents and the reward function 
when state transfers from st to st’, st’ to st+1 are shown in Eqs. (12) and 
(13) respectively. 

R1
(
s′

t

⃒
⃒st, a

)
= PL′

t − PLt (12)  

R1
(
st+1|s′

t, a
′) = PLt+1 − PL′

t (13)  

Where PLt, PL′
t and PLt+1 are the peak load of the concrete structure at 

state st (3 pores, before action a), state s′
t (2/4 pores, after action a) and 

state st+1 (3 pores, after action a′) respectively. 
Similarly, the reward function is defined as the change of fracture 

energy before and after taking actions in order to optimize the concrete 
structure for higher self-healing capacity. The reward functions are 
shown in Eqs. (14) and (15) respectively. 

R2
(
s′

t

⃒
⃒st, a

)
= T′

t − Tt (14)  

R2
(
st+1|s′

t, a
′) = Tt+1 − T′

t (15)  

Where Tt, T′
t and Tt+1are the defined fracture energy of the concrete 

structure at state st (3 pores, before action a), state s′
t (2/4 pores, after 

action a) and state st+1 (3 pores, after action a′) respectively. 

3.2.4. Horizon 
Horizon defines how long the agent interacts with the environment. 

In this study, the concrete structure optimization is mapped into a finite 
MDP and is an episodic task. Therefore, we should determine when to 
stop the interaction. Here, two termination criterions are set to stop the 
interaction process: (1) the maximum number of interaction steps; (2) 
the target value equals or exceeds a threshold value. 

For an episodic task, it is necessary to set a maximum number of steps 
for each episode. Considering the computational time for the visited 
structures, the number of interaction step is set as 200 after hyper-
parameter tuning. However, the maximum number of steps is not suf-
ficient since the RL agent is likely to miss the better structures during the 
interaction process. In addition, the starting state is randomly generated 
and the initial guess may be with high peak load or fracture energy. As a 
result, the interaction should be terminated in advance if a concrete 
structure with high target occurs. The historical highest value is set as 
the threshold value to judge whether an equally good or better structure 
has been encountered during the training process. The threshold value is 
initialized as 0 before the interaction, and it is updated with the highest 
peak load/ fracture energy during the interaction. To increase the 
exploration of agent, the historical maximum value is multiplied by a 
factor (<1). Since the computational errors for peak load and fracture 
energy are different, the factors for peak load and fracture energy are 
tuned separately. 

3.2.5. Agent 
The agent learns to choose the subsequent actions based on the 

current state in an attempt to achieve maximum reward. Two agents are 
created to make two sequential actions in a row to maintain a constant 
number of pores. Deep Q-network (DQN) is employed to map the state to 
the action-state pair. The number of neurons of the input and the output 

Fig. 7. A schematic representation of the updating process for optimization.  

Z. Wan et al.                                                                                                                                                                                                                                     



Construction and Building Materials 411 (2024) 134592

8

layer is set to 40 since the concrete structure is represented with a 40- 
dimensional vector (Section 2.2.1). There are 2 hidden layers with 
1024 and 512 hidden neurons, respectively. For the agent takes action to 
change 2-pore structures to 3-pore structures, one hidden layer is 
created with 1024 neurons considering the limited state (C3

40 = 780) 
after hyperparameter tuning. The output layer has 40 neurons so that 
any of the 40 locations can be selected. Similar to [32], the loss function 
and activation function are chosen as Huber loss and ReLu function for 
their favourable performance. Compared with other loss functions, 
Huber loss is more robust. As a commonly-used activation function, 
ReLu function gets rid of the vanishing gradient problem. Huber loss and 
ReLu function could be represented with Eqs. (16) and (17) respectively. 
The used DQN is schematically presented in Fig. 8. 

Lδ(a) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
(y − f (x))2 for |y − f (x) | ≤ δ

δ|y − f (x) | −
1
2

δ2 otherwise
(16)  

f (x) = max(0, x) (17)  

where δ is the threshold at which to change between delta-scaled L1 and 
L2 loss. 

During the learning process, the weights (θ) of the deep Q-network 
are updated instead of directly updating Q-value. The updating logics 
are given in Eqs. (18) and (19). 

target(s′) = R(s, a, s′)+ γmax
a′

Qθk (s
′, a′) (18)  

θk+1←θk − α∇θ[
1
2
(Qθ(s, a) − target(s′) )2

]|θ=θk
(19) 

Considering that function approximation with neural network faces 
possible instabilities or even divergence [39], two heuristics, i.e., 
experience replay and target Q-network, are employed to fix this prob-
lem. They could help to disconnect the data correlation and increase the 
learning efficiency. The replay buffer is 64, and the update target fre-
quency is 10, and the batch-size is 16. Tensorflow framework is adopted 
for coding and the training process. 

4. 4. Results and discussion 

4.1. 3-pore concrete structure optimization for maximum peak load 

To test the feasibility of vascular structure optimization using the RL 
approach, SHC with 3 pores are first enhanced aiming to mitigate the 
influence of pores on strength. The optimization process is indepen-
dently run for multiple times to investigate the average behavior of the 
learning algorithm. 

4.1.1. The optimized structure and frequency 
Considering that the goal is to find a concrete structure with the 

highest peak load, the historical maximum peak load is recorded during 
the interaction process. Both updating strategies are employed and 
compared in terms of the percentage of the best structures. The results 
are shown in Fig. 9a and b. In addition, the displacement-load curves of 
the optimized structures are also shown in Fig. 9c and d. It is noted that 
the subfigure in the upper right of Fig. 9c and d represent the corre-
sponding structures, where the yellow circles are pores and the teal re-
gions are cracks. This also applies to Fig. 13 in Section 4.2.3. 

For both updating strategies, there are two optimal structures with 
peak loads of 785.3 N and 784.0 N (See Fig. 9a and b). During the 20 
independent runs (10 runs for each updating strategy), the final two 
structures are encountered before the episode of 100 in most runs. In the 
whole design space, the maximum peak load of a 3-pore structure 
determined by the Abaqus model is 785.3 N, which has been identified 
in 16 out of the 20 optimization runs. The remaining 4 runs identify a 
structure with a peak load of 784.0 N, which is ranked as the second 
highest in the whole design space. As shown in Fig. 9b, the percentage of 
runs which successfully identified the best structure (peak load =
785.3 N) through updating strategy 1 (3→4→3) is higher than that of 
updating strategy 2. 

When looking into the corresponding optimal structures, it is found 
that those two structures are symmetric (see Fig. 9c and d). The main 
crack does not hit pores in neither of the two structures, which explains 
why these structures have a high peak load. Note, however, that this is 
not optimal for self-healing: in these cases, no vascular networks would 
have been activated, and no self-healing would have been possible. In 
theory, the peak load of symmetric structures should be identical; the 
slight difference between the two structures (0.16 %) is a result of a 
simulation error. Therefore, it could be concluded that the optimization 
algorithm successfully identified the structure with the highest peak 
load in all 20 runs. 

4.1.2. Number of visited structures during interaction 
The total number of visited structures can reflect the number of in-

teractions as well as the convergence of Q-networks. More importantly, 
more computation time is used if more unique structures are visited. 
Therefore, the number of visited 3-pore structures is recorded (Fig. 10). 

As shown in Fig. 10a, the total number of visited 3-pore structures is 
dramatically different between the two updating strategies. Except for 
the random initialization of the start state, this may be also caused by the 
high probability of exploration since the exploration rate decays from 1 
with a decay rate of 0.995 in each episode. Exploration enables the RL 
agent to get rid of suboptimal actions. The average numbers of total 
visited 3-pore structures with the updating strategy 1 and 2 are 4355 and 
3078, which are much less than 20,000 (maximum number of visited 3- 
pore structures). In other words, the interaction process in most of the 
runs stops before reaching the maximum number of steps (i.e., 200 
steps). This can also be verified by Fig. 10b, where the number of visited 
3-pore structures in most episodes is less than 100. As a result, the small 
number of totally visited structure decreases the training time of RL 
agent. 

Compared with the time spent on training Q-networks, the simula-
tion time (i.e., running Abaqus models) accounts for most of the training 
time in this study. The simulation time increases only when new struc-
tures are encountered since the target properties of previous structures 
could be directly accessed. For a reinforcement learning task, it is 
common that one structure (including the best structure) is visited 
multiple times during the interaction process. Therefore, the number of 
unique visited structures is also recorded to look into the computation 
burden. According to Fig. 10(a), the number of visited unique 3-pore 
structures is much smaller than the total number of visited structures. 
The average numbers of visited unique structure with the two update 
strategies are 2143 and 1666 respectively. Therefore, the RL agent 
manages to find the best structure by visiting 22 % of the complete Fig. 8. Schematic representation of DQN.  
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dataset. Compared with the updating strategy 1, the other strategy is 
more efficient since less computation power is needed. The advantage of 
an RL agent will be more pronounced as the design space increases. 

4.1.3. Change of average reward 
The increase in expected reward with experience is another 

important parameter to evaluate the performance of the learning algo-
rithm. Due to the mechanisms of exploration (i.e., random selection of 
action) during the interaction process, the reward in a single run could 
significantly fluctuate. Therefore, 10 independent runs are repeated to 
measure the average behavior of the two updating strategies and the 
result is shown in Fig. 11. 

Fig. 9. Optimization result of 3-pore structure towards high peak load. (a) historical best structure during the interaction process; (b) Percentage of the best historical 
structures; (c) Structure with a peak load of 785.3 N; (d) Structure with a peak load of 784.0 N. 

Fig. 10. Number of visited unique structures in (a) different running times; and (b) Number of visited examples in Run 8.  
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From Fig. 11, it can be seen that the average reward still fluctuates 
due to the noisy reward, which is set as the change of the peak load of 3- 
pore structure before/after the actions. For the two updating strategies, 
the average reward gradually improves before episode 70. Afterwards, 
the average reward levels off at the reward of about 60 N. Compared 
with the first terminal condition, the second terminal condition greatly 
influences the average reward. The target value of the historically best 
structure is relatively low at the beginning, where an equally good or 
better structure is encountered easily and the interaction ends up with a 
large reward at the beginning. However, the threshold value increases 
with an increasing number of visited structures. Although the RL agent is 
trained to take right actions to maximize the reward, it is possible that 
the interaction cannot find an equally good or better structure within 
200 steps. As a result, the average reward gradually increases and then 
remains steady. 

4.1.4. Loss function of the two Q-networks 
To evaluate the performance of two RL agents, it is necessary to 

investigate the change of loss functions as training progresses. The loss 
functions of the two Q-networks in one run is shown in Fig. 12. 

For updating strategy 1, the loss functions of the two Q-networks 
decrease as increase of episode even though they fluctuate during the 
training process (see Fig. 12a). Due to the limited number of visited 

examples (restricted by terminal criterion 2) at the beginning, the loss 
functions remain 0 for both two agents. This phenomenon can also be 
observed in updating strategy 2 (see Fig. 12b). Compared with Agent 1, 
the loss function of Agent 2 starts increasing at the last stage of training 
process. The possible reason is visiting the repetitive examples. 

As to updating strategy 2, the loss functions of the two agents show 
similar trends during the training process. The loss functions gradually 
decrease before episode 50, then keep fluctuating until episode 130. A 
clear decrease can be seen around the episode 150. At the last stage of 
the training process, the loss functions of the two agents increase again. 
Compared with updating strategy 1, the two Q-networks are deeper and 
therefore more likely to suffer from overfitting with repetitive examples. 
Note, however, that the loss functions do not influence the search for the 
best structures according to the results in Section 4.1.1. 

4.2. 3-pore concrete structure optimization for high fracture energy 

4.2.1. Optimized structure and frequency 
In Section 4.1 it is shown that the vascular concrete can be optimised 

for maximum peak load (i.e., strength). However, as stated, this is not 
optimal for the self-healing capacity. To design a vascular structure with 
more pores hit by the crack, in this section fracture energy is set as the 
target property. The results are shown in Fig. 13. 

As shown in Fig. 13, two 3-pore structures with the fracture energy of 
136.0 N⋅mm and 134.6 N⋅mm are found in the 20 runs. The performance 
of updating strategy 2 is better, since 70 % of the runs end with the 
structure with higher fracture energy. According to the whole dataset, 
the highest fracture energy of 3-pore structure from numerical simula-
tion is 136.0 N⋅mm. However, considering that the two best structures 
are symmetric, it could be concluded that the best structure is obtained 
in all of the runs. Compared with peak load, the computation error of 
fracture energy for the two symmetric structures is larger (1.03 %). This 
is caused by the truncation error when calculating fracture energy 
(displacement = 0.4 mm). Compared with peak load optimization, the 
final two structures are encountered after the episode of 100 in most 
runs. Therefore, it is necessary to set the maximum step to be 200 when 
optimizing concrete structure towards higher fracture energy. 

4.2.2. Number of visited structures during interaction 
Similarly, the numbers of visited structures in the 20 runs are 

recorded to study the training time as well as the convergence. The re-
sults are shown in Fig. 14a. In addition, the number of visited structures 
in one episode is shown in Fig. 14b. 

Compared with the peak load, the number of total visited structures 

Fig. 11. Average reward of structure optimization for high peak load over 
30 runs. 

Fig. 12. Loss functions of two Q-networks of structure optimization for high peak load with (a) updating strategy 1; (b) updating strategy 2.  

Z. Wan et al.                                                                                                                                                                                                                                     



Construction and Building Materials 411 (2024) 134592

11

is much larger, manifesting that it is more difficult for the RL agent to 
converge when optimizing concrete for high fracture energy. Further-
more, the large number of visited unique structures requires more 

computational time during the interaction process. 
The performance of updating strategy 1 is better than that of 

updating strategy 2. For updating strategy 1 (3→2→3), the numbers of 

Fig. 13. Optimization result of 3-pore structure towards higher fracture energy. (a) historical best structure during the interaction process; (b) Frequency of the best 
historical structures; (c) Structure with fracture energy of 136.0 N⋅mm; (d) Structure with fracture energy of 134.6 N⋅mm. 

Fig. 14. Number of visited structure in (a) different running times; and (b) one episode (running 1).  
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total visited and unique 3-pore structures are 14,329 and 3843, 
respectively, which are lower than that of updating strategy 2 (17,609 
and 4570, respectively). From Fig. 14b, it can be seen that the in-
teractions in most of episodes is terminated by the maximum step cri-
terion when using update strategy 2. 

4.2.3. Change of average episode-reward 
The average reward of the 20 independent runs for the two updating 

strategies is shown in Fig. 15. 
From Fig. 15, the average reward also fluctuates for the two update 

strategies. The average reward of updating strategy 1 is significantly 
higher than that of updating strategy 2. For updating strategy 1, the 
average reward gradually improves at the beginning and then remains 
steady with an average reward of about 25 N⋅mm after episode 100. 
However, the average reward of updating strategy 2 sees a significant 
increase at the beginning, but it increases and remains unchanged in the 
following training process. The average reward of strategy 2 is less than 
10 N⋅mm. Therefore, updating strategy 1 is recommended for opti-
mizing the 4-pore structures for high self-healing capacity in the 
following part. 

4.2.4. Loss function of the two Q-networks 
Similarly, the loss functions of two Q-networks in one run is shown in  

Fig. 16. 

According to Fig. 16, loss functions of the two Q-networks show 
different trends. The loss functions of Q-network turning matrix to pore 
(agent 2 for strategy 1, agent 1 for strategy 2) increases as the episodes 
pass. Compared with updating strategy 1, the loss function of agent 2 
(4→3) dramatically decreases at the first 50 episodes and then gradually 
decreases in the remaining episodes. The loss function of agent 1 in 
updating strategy 1 first increases and then gradually deceases. The loss 
functions also prove that it is more difficult for the RL agent to converge 
when optimizing concrete for high fracture energy compared with 
optimization for high peak load. 

5. Application to new optimization 

Based on the results above, vascular configuration optimization to-
wards good fracture energy through RL approach is performed for 4- 
pore concrete structures. The set of state is 91,380, which would make 
it time consuming to optimize by brute force. Considering that the 
performance of updating strategy 1 is better than updating strategy 2 in 
Section 4.2, the updating strategy for 4-pore structure optimization is 
chosen as 4→3→4. The two Q-networks consist of 2 hidden layers with 
1024 and 512 neurons in each layer. The result of 4-pore structure 
optimization for fracture energy is shown in Fig. 17. 

As shown in Fig. 17, the optimized 4-pore vascular structure has a 
fracture energy of 173.5 N⋅mm, which is higher than the highest fracture 
energy of 3-pores. When looking at the historical best structure in the 
optimization process (Fig. 17(a)), great improvement of fracture energy 
occurs at the episode 27, where 3 of the 4 pores are the same with the 3- 
pore structure with the highest fracture energy. In the following epi-
sodes, the 4th pore changes at the episodes of 51 and 136, and ends up 
with the position of 29. Compared with other structures, the 4th pore of 
the final optimized structure is the closest to the other 3 pores. From 
Fig. 17(b), it can be seen that damages occur around this pore. As a 
result, the fracture energy of the final structure is higher than the other 
structures. The number of the total visited structures and unique visited 
structures are 18,902 and 12,392 respectively. Considering that there 
are 91,390 combinations of 4-pore structures, the interaction visits 13.6 
% of the complete dataset. Therefore, it is feasible to optimize the 
vascular structure of concrete using the RL approach. 

Compared with generative deep neural network (GDNN), the rec-
ommended optimization is capable of automatically improve the 
structures without a pretrained ML model. In addition, the model in this 
study has better “generalization” property since it could be easily used 
for different pores by updating the simulation environment in Abaqus 
software. However, unlike supervised learning, it is difficult for rein-
forcement learning to make predictions for given similar inputs. In 

Fig. 15. Average reward of structure optimization for higher fracture energy 
over 20 runs. 

Fig. 16. Loss functions of two Q-networks of structure optimization for higher fracture energy. (a) updating strategy 1; (b) updating strategy 2.  

Z. Wan et al.                                                                                                                                                                                                                                     



Construction and Building Materials 411 (2024) 134592

13

practice, it is of necessity to establish prediction models based on 
existing dataset (especially from experiments). Besides, an interactive 
environment is indispensable for reinforcement learning so as to 
calculate the corresponding reward after taking an action. 

In future research, the optimization of vascular configuration should 
be extended towards more realistic scenarios, e.g., considering different 
loading conditions and the influence of structural parameters such as 
presence of steel reinforcement. In the current optimization approach, 
the vascular network was simplified as pores in the middle span of the 
2D beam to reduce the computational burden. Clearly, the vascular 
system perpendicular to the crack is more appropriate for self-healing in 
the real structures. Instead of simple vascular system (i.e., four channels) 
in this study, a more complicated vascular system without vascular wall 
may help establishing the mapping relationship between the vascular 
configuration and the mechanical response without significantly 
increasing the computational time. Besides, the optimization of vascular 
self-healing concrete reinforced by rebars could be more complicated 
since the influence of vascular configuration on mechanical response 
will be much smaller compared with the influence from rebar. 
Furthermore, the vascular network is optimized when the specimens 
were under 3-point bending. Clearly, these cases are simple, and the 
methods must be extended before they could be useful for practice. 

6. Conclusions 

In this work, an automatic optimization method is proposed to 
arrange the vascular configuration of SHC through RL approach. A 
Markov Decision Process (MDP) is first formed and its elements are 
defined. To assess the viability of utilizing the method for vascular 
arrangement, SHC with 3 pores is first enhanced for higher peak load or 
fracture energy with two update strategies. Subsequently, vascular 
structure of a 4-pore concrete is optimized for good self-healing capacity 
by setting fracture energy as the target property. The main conclusions 
are as follows:  

(1) The proposed method is capable of automatically optimizing the 
vascular structure of concrete towards different target properties 
through the interaction between RL agent and Abaqus simulation 
environment. The optimization process is influenced by the 
design constraint, target properties and updating strategies.  

(2) Considering the symmetry of structures, the structure with 
highest peak load of 3-pore concrete structures is accessed in all 
20 independent runs through two updating strategies. The 
change trends of average reward for the two updating strategies 

are similar during the training process. However, updating 
strategy 2 outperforms strategy 1 since the average number of 
unique visited structure is less, which saves computational time.  

(3) The 3-pore structure with the highest fracture energy is also 
visited in all 20 independent runs. However, the loss functions of 
RL agents taking action to increase the pore number dramatically 
increase as the episode increases. For both updating strategies, 
the numbers of total visited and unique visited structures are 
much larger than those of the peak load optimization of 3-pore 
structures. Therefore, it is more difficult for the RL agent to 
converge when optimizing concrete for high fracture energy. 

(4) When optimizing a 3-pore structure towards high fracture en-
ergy, the optimization performance of updating strategy 1 is 
better since the number of unique visited structures is smaller and 
it is time-efficient. Besides, the average reward of strategy 1 is 
higher.  

(5) The RL optimization method is able to identify the structure with 
high fracture energy in the new optimization task for 4-pore 
concrete structure. As such, the method can be a powerful tool 
to automatically optimize structure towards higher target 
property. 
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