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Abstract

In the past decades, great progress has been made in analyzing lateral torsional buckling of slender beams. The phe-
nomena has been accurately described by differential equations, closed form solutions are available for specific cases
and the solution for any load and any boundary condition can be obtained by finite element analysis. Timber and
steel design standards provide a procedure based on equivalent moment factors. With this procedure, beams can be
designed straightforwardly. However, modern designers continue to push the envelope and more irregular load patterns
are found, on which the design standards do not provide solutions. Consequently, designers are forced to determine the
equivalent moment factors based on case-specific literature and/or conservative assumptions. Unfortunately, this makes
many challenging modern designs uneconomical. Furthermore, significant inconsistencies between the different design
procedures are found. For that purpose, this paper proposes a solution in the form of a general formulation to determine
equivalent moment factors for any loading on a single-span beam for both free and restrained lateral bending and/or
warping at the supports, for both I-sections and rectangular slender sections loaded in the shear center. It is shown that
the obtained moment factors are accurate and in good agreement with design standards and literature, and a wide range
of irregular load patterns is considered.

Keywords: Elastic laterial torsional buckling, moment equivalent factor, moment gradient factor, steel beams, timber
beams, analytic energy approach

1. Introduction

The occurrence of elastic lateral torsional buckling (ab-
breviated as LTB) means a loss of structural stability and
therefore, it is considered as an ultimate limit state fail-
ure mode that has to be addressed during the design of
especially slender long-span laterally unsupported beams.
LTB is the rotation and translation of transversely loaded
beams out of plane as a result of buckling of the com-
pressive part of the cross-section due to bending. Accord-
ing to Lindner [1], the load level for which lateral tor-
sional buckling takes place, called the critical load, de-
pends on beam geometry, boundary conditions (rotational
and translational restraints at the supports), distribution
of the loading over the length of the beam, location of the
loading within the cross-section, material properties and,
as discussed by Pi and Trahair [2], pre-buckling deform-
ations. This paper focuses on the influence of the load
distribution and boundary conditions on the elastic crit-
ical load via the so-called equivalent moment factor, also
called the moment gradient correction factor, for symmet-
rical beams loaded at the shear centre by uniform loads,
point loads and bending moments at the supports (e.g.
as shown in Figure 4) and supported by fork supports,
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with the possibility to prevent warping as an additional
feature. The equivalent moment factor is used to transfer
any loading situation into an equivalent simply supported
beam that is loaded by a uniform bending moment, for
which the critical load can be easily found. I-sections and
rectangular slender sections, which are often made from
steel and timber respectively, are considered.

During the last few decades, research on lateral torsional
buckling concentrated on finite element formulations of ad-
vanced problems, due to the increasing complexity of solv-
ing the governing differential equations, as described by
Timoshenko and Gere [3], for non-standard loading cases.
As a result of the increasing application of computer pro-
grams in the design of structures, a clear understanding of
buckling phenomena is becoming more relevant to make
optimal use of the structural capacity. In this study, an
analytic approach based on the principle of conservation
of energy is followed, leading to analytic expressions which
can be used by the designer to obtain more insight in the
structural behaviour regarding lateral torsional buckling.
Although analytic expressions might not be as accurate
as numerical analyses, the simplicity of these expressions
offers the possibility to quickly converge to the optimal
design parameters of the considered structure, which is
especially relevant in early design stages. However, the
current design codes (such as EN 1993-1-1 [4], EN 1995-
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1-1 [5], AS-4100 [6] and ANSI/AISC 360-16 [7]) only offer
solutions for basic load cases (e.g. mid-span point loads,
uniformly distributed loads, clamped beams) and simpli-
fied general formulations which might lead to unnoticed
significant errors or over-conservative results, hence creat-
ing the need for a general accurate analytic approach, con-
sidering all load combinations within a predefined frame-
work, to evaluate lateral torsional buckling. At the mo-
ment, engineers are often referred to case-specific literat-
ure and are making use of rules of thumb (e.g. taking
the effective buckling length equal to the distance between
zero-moment-points, also known as points of contraflex-
ure). This paper describes a general closed-form analytic
approach to obtain the equivalent moment factor, which is
one of the parameters influencing the total buckling beha-
viour, without over-simplifying the problem. This closed-
form expression can be directly used by the designer or
implemented in structural analysis software to incorpor-
ate design check procedures for lateral torsional buckling.

First, the current design codes are summarized to show
the design procedures, followed by a review of the relev-
ant literature. Significant inconsistencies between between
the different design codes and approaches in literature are
found. Subsequently, the theoretical framework and the
general theory are presented and applied to some specific
cases. Finally, the general formulation is compared with
literature, showing good agreement, and the limitations of
the approach are discussed.

2. Design code procedures

The critical moment regarding lateral torsional buckling
for double symmetric beams loaded in the shear centre is
found by Timoshenko and Gere [3]:

Mcr = C1
π2EIz
(kL)2

√(
k

kw

)2
Iw
Iz

+
(kL)2GIt
π2EIz

(1)

in which coefficient C1 is the equivalent moment factor ac-
counting for the non-uniform moment distribution. The
influence of the support conditions on the length over
which the beam buckles are considered by the lateral bend-
ing coefficient k and the warping coefficient kw. For free
lateral bending and/or warping at the supports, the val-
ues are equal to 1 and for prevented lateral bending and/or
warping at the supports, the values become 0.5 (equivalent
to a column that is clamped on both sides). It is noted that
in practice, complete prevention of warping at the supports
is unrealistic and therefore, prevented warping is merely
interpreted as a theoretical limit case. The fork support
as is shown in Figure 2b offers both free lateral bending
and warping. For I-sections, the moment resistance is a
combination of warping and uniform (Saint-Venant) tor-
sion. For rectangular slender sections, the effects of warp-
ing tend to be negligible, as discussed by Trahair [8] and

Table 1: Equivalent moment factors according to EC3 [4]

Load case C1

Uniform moment (ψ = 1) 1.00
Linear moment from M to 0 (ψ = 0) 1.75
Linear moment from M to -M (ψ = −1) 2.30
Mid-span point load 1.35
Point loads on 0.25L and 0.75L 1.04
Uniformly distributed load 1.13

Chajes [9], which reduces Eq. 1 to

Mcr = C1
π

kL

√
EIzGIt (2)

Eq. 1 is used in steel standards and Eq. 2 is used in
timber standards, as most of the applied timber sections
are rectangular and slender. In fact, lateral torsional buck-
ling of a slender rectangular section follows the same ex-
pressions as an I-section with neglected warping. Hence,
this study treats rectangular slender sections as if they
are I-sections to generalize the approach. In this section,
the calculation of the critical moment for lateral torsional
buckling according to several design standards is elabor-
ated.

2.1. Eurocode 3 for steel

Lateral torsional buckling of double symmetric steel
beams is considered in Eurocode EN 1993-1-1 [4] for steel
structures as an ultimate limit state. For a beam loaded
in the shear centre, EC3 gives for the critical bending mo-
ment

Mcr = C1
π

Lb

√
EIzGIt

√
1 +

π2

L2
b

EIw
GIt

(3)

Eqs. 1 and 3 are identical when k and kw have the same
value and the buckling length Lb is set to kL. Using the
approach of EC3, it is not possible to have different val-
ues for the lateral bending and warping coefficients. The
equivalent moment factor C1 is prescribed for basic load
cases based on the work of Gardner and Nethercot [10]
and Trahair [8], as shown by Table 1. For a simply sup-
ported beam loaded at the supports by a moment M and
ψM , with −1 ≤ ψ ≤ 1, EC3 gives an analytic expres-
sion: C1 = 1.75 − 1.05ψ + 0.3ψ2 ≤ 2.3. Furthermore,
EC3 gives design diagrams for obtaining C1 for the load-
ing cases with support moments combined with uniformly
distributed loads or mid-span point loads, based on the
work of Bijlaard and Steenbergen [11].

2.2. Eurocode 5 for timber

The Eurocode EN 1995-1-1 [5] for timber structures
provides guidelines for transversely loaded rectangular
slender sections, for which warping is neglected. The crit-
ical moment is given by

Mcr =
π

Leff

√
EIzGIt (4)
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Figure 1: C1 as function of β for the different standards

in which Leff is the effective buckling length. For a lateral
bending and warping free beam, such that k = kw = 1,
the effective length is equal to 1/C1 and hence, Eq. 4 is
equal to Eq. 2. The current version of EC5 only gives the
effective length for 3 cases: for uniform moments 1.00, for
uniformly distributed loads 0.90 and for mid-span point
loads 0.80. For other loadcases, the designer is referred to
literature.

2.3. Australian Steel Standards

The Australian Steel Standards AS-4100 [6] make use of
Eq. 1. Instead of equivalent moment factors for specific
load-cases, the AS-4100 provides a general expression for
beams that are laterally bending and warping free:

C1 =
1.7Mmax√

M2
a +M2

b +M2
c

(5)

where Mmax is the maximum absolute moment within the
span and Ma, Mb and Mc are the absolute values of the
moments at respectively L/4, L/2 and 3L/4 of the span.

2.4. American Standards

Both the American Steel Standard (ANSI/AISC 360-
16 [7]) and the Timber Standard (AFPA-TR14 [12]) give
the same closed-form expression to calculate the equivalent
moment factor for a given moment distribution, based on
the work of Kirby and Nethercot [13].

C1 =
12.5Mmax

2.5Mmax + 3Ma + 4Mb + 3Mc
(6)

2.5. Canadian Standards

The Canadian Steel Standard CAN-CSA S16-14 [14]
provides the following closed-form expression for C1:

C1 =
4Mmax√

M2
max + 4M2

a + 7M2
b + 4M2

c

≤ 2.5 (7)

Figure 1 compares the expressions of the considered
design standards for a linear moment gradient on a simply
supported beam. The standards are in correspondence
with each other, although differences can be significant.
According to Sahraei et al. [15], the Australian standard
delivers, with respect to finite element analysis, the most
accurate solution for basic load cases.

3. Literature review

Lateral torsional buckling of beams can be studied in
two ways, as mentioned by Pi and Trahair [16]. Firstly, by
considering the nonlinear differential equations, as posed
by Timoshenko and Gere [3], which can be solved in closed
form for a few simplistic cases. For more general cases
finite integrals, series solution, finite differences, numer-
ical integration and finite element methods can be used.
Secondly, an energy-conservation based approach can be
followed: the work done by the load during buckling must
be equal to the increment in strain energy. Using approx-
imate deformation shapes, the buckling load can be de-
termined. The accuracy of energy-based methods is highly
depending on the applied deformation shape.

Using an energy-based approach, Chajes [9] derived ex-
pressions for lateral-torsional buckling of simply or warp-
ing restraining supported I-sections for two load-cases:
uniform bending and mid-span point loads. The books
of Kirby and Nethercot [13] and Trahair [8] comprehend a
more elaborate collection of load cases based on both en-
ergy approaches and finite element analyses. Trahair de-
scribed amongst others simply supported and restrained
beams loaded by one point load at arbitrary location,
beams loaded by mid-span point loads combined with sup-
port bending moments and beams loaded by a uniformly
distributed load combined with support bending moments.
Although this set of load-cases is quite elaborate, only ba-
sic load-cases are considered and there is no general ex-
pression fulfilling all the cases. This study aims to find an
expression that is approximately valid for all load-cases,
without over-simplifying the problem.

During the years, lots of experimental data have been
obtained regarding the equivalent moment factor (for ex-
ample by Xiao et al. [17] and Burow et al. [18]). However,
besides verification of theories, the use of experimental
data is rather limited, since information is only obtained
for specific cases. Both [17, 18] show that the experimental
and theoretical values for the critical buckling moments are
close to each other for the considered cases and hence, this
study will not further consider experimental values.

Using both the Bubnov-Galerkin method and the finite
element method, Lim et al. [19] found an expression to
capture the equivalent moment factor for linear moment
gradients, as defined in Figure 1, for elastic lateral tor-
sional buckling of I-sections:

C1,Lim =
2

√
S1

√
(1 + ψ)2 + S2(1− ψ)2

(8)

3



Table 2: S1 and S2 values from Lim et al. [19]

k kw S1 S2

1.0 1.0 1.00 0.16
0.5 0.5 1.00 0.18
1.0 0.5 0.80 0.10

in which S1 and S2 are coefficients depending on the sup-
port conditions and are given in Table 2 for different lateral
bending and warping restraints k and kw respectively.

Serna et al. [20] studied C1 more in depth with the
aid of a finite difference approach. Tables and graphs are
given for a wide variety of cases (linear moments and uni-
formly distributed load or a concentrated load together
with one or two support moments), loaded in the shear
centre. They found that coefficient C1 is slightly depend-
ent on the length of span, following the observations of
Nethercot and Rockey [21]. Based on this elaborate ana-
lysis, Serna et al. proposed an improved expression for
k = kw = 1 which governs the studied load cases accur-
ately and conservatively, without taking into account the
length dependency:

C1,Serna =

√
35M2

max

M2
max + 9M2

a + 16M2
b + 9M2

c

(9)

Also following the finite difference approach, Suryoat-
mono and Ho [22] found equivalent moment factors for
beams under uniform loading and one or two support mo-
ments. Furthermore, they showed that significant differ-
ences occur when using the general formulas from design
standards, leading to over-conservative designs. Sahraei et
al. [15] considered elastic lateral torsional buckling of rect-
angular slender wooden beams and presented a simplified
expression to find the equivalent moment factor for a wide
variety of load cases:

Mcr,Sahraei = CrCbCLCp
√
EIzGIt (10)

in which

• Cr accounts for partial twist restraint at beam-ends,
meaning that the rotation out of plane is not fully
fixed at the supports.

• Cb is the equivalent moment factor accounting for
non-uniform load distributions, defined as C1 in the
Eurocode 3 for steel [4].

• CL considers the influence of the load-location within
the cross-section with reference to the shear centre.

• Cp is a coefficient that accounts for pre-buckling de-
formations (the so-called second order effects).

In their study, Sahraei et al. derived detailed expressions
for Cr, CL and Cp. For Cb, the equivalent moment factor,
the expression of the Australian Standard (Eq. 5) is ad-
opted, as this expression compared best to finite element

analyses of standard load cases. However, it is not known
if Eq. 5 performs sufficiently accurate for more irregular
loading cases. Furthermore, the strength of a simplistic ex-
pression becomes questionable when more complex cases
are studied, since these expressions are most likely over-
simplifications of the physical problem and might not be
accurate. The aim of this study is to find a more gen-
erally applicable closed-form expression for the equivalent
moment factor, which subsequently can be implemented in
the study of Sahraei et al. to further improve the accuracy
of Eq. 10. Furthermore, this closed-form expression can
be used in the design to consider irregular load patterns,
without the need to perform an elaborate finite element
analysis or study case-specific literature.

4. Theoretical framework

The beam is considered in two configurations: the unde-
formed configuration (x, y and z) and the deformed con-
figuration (x̄, ȳ and z̄) just after the occurrence of lateral
torsional buckling with displacements u, w and φ. Both
of the configurations are defined in Figure 2a. For the
purpose of this paper, the following key assumptions are
made:

1. The beam is prismatic with an I-section. The theory
also holds for slender rectangular sections, by imple-
menting Iw ≈ 0 in Eq. 1. Because only double sym-
metric sections are studied, bending moments around
the different axes are uncoupled.

2. The Euler-Bernoulli beam theory is applied, meaning
that plane sections remain plane and shear deforma-
tions are not considered.

3. The loading acts transversely in the shear centre of the
beam, not causing any additional torsional loading on
the beam. No lateral loading is included.

4. Displacements are assumed to be small such that first
order approximations of the deformed configuration
are valid and pre-buckling deformations can be neg-
lected.

5. Elastic material behaviour is assumed, meaning that
no energy dissipation can take place.

6. The considered beam is supported on both sides by
fork supports, as shown in Figures 2b and 2c. The fork
supports prevent lateral displacements u and twisting
φ and allow for lateral bending. In this study, the
possibility to prevent warping (φ′ = 0) at the sup-
ports is also included. However, both of the supports
should either have warping restrained or allowed. In
the span, the beam is laterally unsupported.

7. The beam is not loaded in axial direction.

5. Derivation of general formulation

The derivation of a general formulation for the equival-
ent moment factor C1 is based on the energy approach of
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Figure 2: (a) Definitions of the coordinate-systems in undeformed (x, y and z) and deformed configuration (post-buckling, x̄, ȳ and z̄) with
displacements u, w and φ; (b) Side view of fork support; (c) Top view of fork support

the American Wood Council [12]. C1 describes the ratio
between the critical load of a beam loaded by a uniform
bending moment (Figure 3) and a beam loaded by arbit-
rary loading and hence, both beams must be considered.
For the purpose of simplicity, the arbitrary loading is first
simplified to a single point load and two end-moments
(Figure 4). Later on, arbitrary loading is considered as a
superposition of multiple point loads and a general theory
is formulated. In this way, any loading can be simulated
by representing it as a collection of point loads.

5.1. General considerations

In this derivation, an energy-based approach is followed.
The energy prior to buckling is equaled with the energy
just after buckling, following assumption 5. Since the total
amount of energy in the system stays constant, the in-
crease in energy

∆E = ∆U + ∆V = 0 (11)

with U the strain energy and V the potential energy. For
the considered I-section and following the key assumptions,
strain energy can be the result of bending (around both y-
and z-axes), torsion and warping. For a beam loaded in
bending around a certain axis, the strain energy Ub taken
by the beam is found by integrating the internal work over
the complete volume.

Ub =
1

2

∫
V

σbεb dV (12)

Combining Eq. 12 with Hooke’s law (σb = Eεb), the kin-
ematic relation εb = κ · z/EI and the moment of inertia
Iy =

∫
A
z2dA, leads to

Ub =
1

2

∫ L

0

M2
b

EI
dx (13)

In the same manner the strain energy taken by warp-
ing Uw and torion Ut are derived (see [23, 9] for complete
derivations).

Uw =
1

2

∫ L

0

M2
w

EIw
dx (14)

Ut =
1

2

∫ L

0

M2
t

GIt
dx (15)

The potential energy is obtained by the position of the
loading with respect to a certain reference state. For the
considered problem, the change in potential energy ∆V is
equal but opposite to the work done by the loading in the
considered interval. Since the deformations are assumed
to be small (assumption 4), the bending moments in the
undeformed and deformed configuration can be related by
Mȳ ≈My and Mz̄ ≈ φMy.

5.2. Uniform moment over beam

A simply supported beam loaded by a uniform bending
moment M0 is shown in Figure 3. Prior to lateral torsional
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buckling, only bending around the y-axis takes place.

UI = Ub,y =
1

2

∫ L

0

M2
y

EIy
dx (16)

Just after lateral torsional buckling, bending around
both ȳ and z̄-axes, warping and torsion are considered in
the deformed configuration, leading to

UII = Ub,ȳ + Ub,z̄ + Ut,x̄ + Uw̄ =

1

2

∫ L

0

{
M2
ȳ

EIy
+
M2
z̄

EIz
+
M2
x̄

GIt
+
M2
w̄

EIw

}
dx

(17)

Using the relations between the deformed and unde-
formed configurations and assuming small deformations
do no influence warping and torsional behaviour, Eq. 17
can be elaborated to

UII =
1

2

∫ L

0

{
M2
y

EIy
+

(φMy)2

EIz
+
M2
x

GIt
+
M2
w

EIw

}
dx (18)

Next, the change in strain energy is found by ∆U =
UII − UI , giving with Eqs. 16 and 18

∆U =
1

2

∫ L

0

{
(φMy)2

EIz
+
M2
x

GIt
+
M2
w

EIw

}
dx (19)

The change in potential energy ∆V is equal and opposite
to the work done by the loading. For the considered beam,
the only work is done by the end moments, giving

∆V = −(θLTB,A + θLTB,B) ·M0 = −2θLTB,A ·M0 (20)

in which θLTB,A and θLTB,A are defined in Figure 3. The
transverse displacement wLTB due to only lateral torsional
buckling is related to the lateral displacement uLTB via
wLTB = φ uLTB . Furthermore, uLTB is found with the
moment-area theorem, whilst applying Mz̄ ≈ φMy, lead-
ing to

wLTB(xp) = xpθLTB,A −
∫ xp

0

φ · φMy

EIz
· (xp − x) dx (21)

From Eq. 21, θLTB,A can be solved by considering the
transverse displacement wLTB(xp = L) = 0, giving

θLTB,A =

∫ L

0

φ2My

EIz

(L− x)

L
dx (22)

Following the same approach, an expression for θLTB,B
is found:

θLTB,B =

∫ L

0

φ2My

EIz

x

L
dx (23)

L

M0 M0x

θLTB,A θLTB,B

wLTB(x)

Figure 3: Simply supported beam loaded by a uniform bending mo-
ment M0 with deformations due to LTB in plane of loading

For a uniform bending moment My = M0 and assuming
a buckling shape φ that is symmetric around x = L/2, Eq.
22 further reduces to

θLTB,A =
M0

2EIz

∫ L

0

φ2 dx (24)

Substitution of θLTB,A in Eq. 20 results in

∆V = −M
2
0

EIz

∫ L

0

φ2 dx (25)

Inserting Eqs. 19 and 25 in Eq. 11 leads to

∆E =
1

2

∫ L

0

{
− (φM0)2

EIz
+
M2
x

GIt
+
M2
w

EIw

}
dx = 0 (26)

5.3. Point load and support-moments on beam

A simply supported beam loaded by a point load F at
γL (with 0 < γ < 1) and two end moments MA = αFL
and MB = βFL is shown in Figure 4 together with the
corresponding bending moment line. Since the point load
acts in the same plane as the support-moments, the change
in strain energy ∆U is found by Eq. 19. Furthermore, the
change in potential energy ∆V is found in a similar way as
Eq. 20, adding the change in potential of the point load:

∆V = −FwLTB(γL)− θLTB,AMA − θLTB,BMB (27)

in which wLTB , θLTB,A and θLTB,B are given by Eqs. 21,
22 and 23 respectively. The total energy change in the
system is now found by

1

2

∫ L

0

{
(φMy)2

EIz
+
M2
x

GIt
+
M2
w

EIw

}
dx+ ∆V = 0 (28)

Considering the constitutive relationsMx = GIt(dφ/dx)
and Mw = −EIw(d2φ/dx2), and applying the same buck-
ling shape φ(x) for the uniform loading and the considered
case, the torsion and warping terms in Eqs. 26 and 28
work out to be equal and hence, the other terms in these
expressions should be equal as well. The accuracy of this
approach depends on the similarity of the buckling shapes
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Figure 4: Simply supported beam loaded by a point load and end-moments with the corresponding bending moment line My

of the considered and uniform load cases, as will be dis-
cussed later. Elaborating this gives

1

2

∫ L

0

{
(φMy)2

EIz
+

(φM0,eq)
2

EIz

}
dx− FwLTB(γL)

− θLTB,AMA − θLTB,BMB = 0

(29)

which can be solved to obtain the equivalent uniform mo-
ment M0,eq, once a certain buckling shape φ(x) is specified.
The equivalent moment factor C1 is now found by

C1 =
Mmax

M0,eq
(30)

5.4. Arbitrary point loading on a beam

In this study, arbitrary loading is defined as a random
collection of N point loads δiF , in which F is the unit
load and δi the collection of multipliers with i = 1..N ,
on a beam with support-moments αFL and βFL on both
sides. The loads are applied on locations γi. Intermediate
moment loads are not considered but can be implemented
by the reader by considering the loss of potential energy
by this moment load during buckling in the same manner
as the support-moments. Taking multiple point loads into
account, Eq. 29 changes to

1

2

∫ L

0

{
(φMy)2

EIz
+

(φM0,eq)
2

EIz

}
dx−

N∑
i=1

δiF wLTB(γiL)

− θLTB,AMA − θLTB,BMB = 0

(31)

and the moment My is found by

My(x) =− αF (L− x)− βFx

+

N∑
i=1

{
δiFx(1− γi) 0 ≤ x ≤ γiL
δiFγi(L− x) γiL ≤ x ≤ L

(32)

Different sizes of point loads can be included in two
ways: either by the multipliers δi or by manipulating the
location collection γi such that multiple unit loads F on

the same location represent a certain relative size. In the
remainder of this paper, the latter approach is used in or-
der to reduce the number of different input parameters. By
implementing Eqs. 31 and 32 in Eq. 30, a general expres-
sion has been derived to determine the equivalent moment
factor C1 once a certain buckling shape φ(x) is assumed.
For a fork support that allows for warping (k = kw = 1),
many authors (e.g. [3, 8, 9]) assume a sinusoidal buckling
shape according to

φ(x) = a sin
πx

L
(33)

with a being an unknown scaling variable. Eq. 33 fulfills
the boundary conditions: twisting is prevented on both
sides, so φ(0) = φ(L) = 0, and warping is allowed meaning
Mw(0) = Mw(L) = 0 and hence φ′′(0) = φ′′(L) = 0.
Substitution of the assumed buckling shape φ(x) in Eq. 31,
solving to M0,eq using the moment distribution as defined
in Eq. 32 and inserting the obtained M0,eq in Eq. 30
results in a general expression for the equivalent moment
factor C1:

C1 =
Mmax

FL
√
D1(α2 + β2) +D2αβ +D3α+D4β +D5

(34)

In which coefficients D1 to D5, given in Appendix A, are
fully defined by the collection of locations of point loads
γi. Appendix A also gives an expression to calculate the
maximum bending moment in the beam. For example,
when a beam is loaded by point loads of 15 kN at L/2
and 10 kN at 3L/4, γi = [0.5, 0.5, 0.5, 0.75, 0.75] with a
unit point load F of 5 kN. In this manner, it is possible
to include different sizes of point loads, although it is not
possible to include point loads with different directions in
this formulation. These can be included by elaborating Eq.
31 with an adjusted moment distribution. The coefficients
D1 to D5 have a physical meaning.

• D1 and D2 are constant values, respectively 0.2827
and 0.4347, taking account of the influence of the
support-moments on the equivalent moment factor.
These factors are constant as only the magnitude of
the support-moments is susceptible to change.

7



• D5 considers the influence of the point loads on C1

by the moment distribution and the work done by
the point loads. For α = β = 0, Eq. 34 reduces to
Mmax/(FL

√
D5).

• D3 and D4 are interaction factors for the point loads
and the support-moments. The vertical displacements
wLTB(γiL) are influenced by the size of the support-
moments and the support rotations θLTB are influ-
enced by the point loads, hence creating cross-terms.

Using the same formulations, it is possible to prevent
warping at the supports while allowing for lateral bending
(k = 1 and kw = 0.5) by assuming a different buckling
shape for both the uniform moment load case and the ar-
bitrary loading

φ(x) = a

(
1− cos

2πx

L

)
(35)

which fulfills the boundary conditions: φ(0) = φ(L) = 0
and warping is prevented meaning φ′(0) = φ′(L) = 0. As
discussed by Trahair [8], the influence of warping-restraints
at the supports on the critical moment depends on the
torsional stiffness GIt, the warping stiffness EIw and the
length L of the beam. However, these effects are com-
pletely neglected by assuming that Eq. 35 holds for both
the uniform moment and the arbitrary loading. Restrained
warping at the supports has a favourable influence on lat-
eral torsional buckling, leading to larger C1 values. Tables
3 and 4 give coefficients D3, D4 and D5 for a single point
load and multiple point loads respectively for both free
and restrained warping at the supports. For prevented

warping, coefficients D1 and D2 are constants: 0.2700 and
0.4600 respectively.

5.5. Uniformly distributed loading

Uniformly distributed loads q are handled in the same
manner. The force-related term in the potential energy
change ∆V is replaced by an integral over the complete
length of the beam:

N∑
i=1

δiF wLTB(γiL) =

∫ L

0

q · wLTB(γL) dγ (36)

and MA = αqL2 and MB = βqL2 are implemented in Eq.
31, leading to

C1 =
Mmax

qL2
√
D1(α2 + β2) +D2αβ +D3α+D4β +D5

(37)
The coefficients D1 and D2 remain unchanged and coef-

ficients D3, D4 and D5 are given in Table 4. For the com-
bination of point loads and uniformly distributed loads,
one should represent the UDL as a collection of equivalent
equally-spaced point loads, such that the expressions in
Appendix A together with Eq. 34 can be applied. This
approach is further elaborated in section 7.

6. Validation

In this section, the derived general formulations for
point loads (Eq. 34) and uniformly distributed loads (Eq.

Table 3: Coefficients D3, D4 and D5 for 1 point load at γL with and without warping allowed at the supports

γ 0.1 0.2 0.25 0.33 0.4 0.5 0.6 0.67 0.75 0.8 0.9
kw = 1
D3 -0.0562 -0.1087 -0.1312 -0.1592 -0.1735 -0.1757 -0.1581 -0.1369 -0.1069 -0.0864 -0.0434
D4 -0.0434 -0.0864 -0.1069 -0.1369 -0.1581 -0.1757 -0.1735 -0.1592 -0.1312 -0.1087 -0.0562
D5 0.0028 0.0106 0.0158 0.0241 0.0300 0.0335 0.0300 0.0241 0.0158 0.0106 0.0028
kw = 0.5
D3 -0.0540 -0.1072 -0.1322 -0.1664 -0.1863 -0.1925 -0.1730 -0.1483 -0.1144 -0.0919 -0.0460
D4 -0.0460 -0.0919 -0.1144 -0.1483 -0.1730 -0.1925 -0.1863 -0.1664 -0.1322 -0.1072 -0.0540
D5 0.0027 0.0107 0.0163 0.0263 0.0340 0.0388 0.0340 0.0263 0.0163 0.0107 0.0027

Table 4: Coefficients D3, D4 and D5 multiple point loads at γiL with and without warping allowed at the supports

γi UDL [0.25, 0.75] [0.33, 0.67] [0.25, 0.50] [0.25, 0.50, 0.75] [0.33, 0.50, 0.67] [0.33, 0.33, 0.67]
kw = 1
D3 -0.1086 -0.2382 -0.2962 -0.3069 -0.4138 -0.4718 -0.4554
D4 -0.1086 -0.2382 -0.2962 -0.2826 -0.4138 -0.4718 -0.4331
D5 0.0122 0.0578 0.0912 0.0923 0.1774 0.2341 0.2066
kw = 0.5
D3 -0.1150 -0.2466 -0.3147 -0.3247 -0.4733 -0.5073 -0.4811
D4 -0.1150 -0.2466 -0.3147 -0.3069 -0.4733 -0.5073 -0.4630
D5 0.0134 0.0611 0.1004 0.1029 0.2279 0.2628 0.2270
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Load case
Bresser
(1)

EC3
(2)

AS-4100
(3)

ANSI
(4)

Trahair
(5)

Serna
(6)

(1)/(2) (1)/(3) (1)/(4) (1)/(5) (1)/(6)

ψ = 1 1.000 1.000 0.982 1.000 1.000 1.000 1.00 1.02 1.00 1.00 1.00
ψ = 0.75 1.141 1.131 1.120 1.111 1.131 1.137 1.01 1.02 1.03 1.01 1.00
ψ = 0.5 1.324 1.300 1.297 1.250 1.300 1.310 1.02 1.02 1.06 1.02 1.01
ψ = 0.25 1.564 1.506 1.525 1.429 1.506 1.532 1.04 1.03 1.09 1.04 1.02
ψ = 0 1.881 1.750 1.818 1.667 1.750 1.815 1.07 1.03 1.13 1.07 1.04
ψ = −0.25 2.284 2.031 2.164 2.000 2.031 2.155 1.12 1.06 1.14 1.12 1.06
ψ = −0.5 2.712 2.300 2.483 2.174 2.350 2.488 1.18 1.09 1.25 1.15 1.09
ψ = −0.75 2.940 2.300 2.594 2.222 2.500 2.652 1.28 1.13 1.32 1.18 1.11
ψ = −1 2.766 2.300 2.404 2.273 2.500 2.523 1.20 1.15 1.22 1.11 1.10
UDL 1.133 1.130 1.166 1.136 1.130 1.136 1.00 0.97 1.00 1.00 1.00
Mid PL 1.366 1.350 1.388 1.316 1.350 1.276 1.01 0.98 1.04 1.01 1.07
Quarter PL 1.494 1.450 1.363 1.364 1.450 1.390 1.03 1.10 1.10 1.03 1.07
2 PL (0.25, 0.75) 1.040 1.040 0.982 1.000 1.088 1.000 1.00 1.06 1.04 0.96 1.04
Mid PL SC 1.830 1.700 1.817 1.705 1.800 1.596 1.08 1.01 1.07 1.02 1.15
Mid PL DC 1.732 1.640 1.700 1.923 1.710 1.435 1.06 1.02 0.90 1.01 1.21
UDL SC 2.276 2.200 2.404 2.083 2.250 2.197 1.03 0.95 1.09 1.01 1.04
UDL DC 2.613 2.300 2.500 2.381 2.420 2.574 1.14 1.05 1.10 1.08 1.02

Average 1.07 1.04 1.09 1.05 1.06
Standard dev. 0.08 0.05 0.10 0.06 0.06

Table 5: Comparison of the equivalent moment factors C1 with the general formulation of this study for several standard load cases and free
warping (k = kw = 1)

37) are compared with the available literature. In Table
5, equivalent moment factors are given for practical load-
cases like a moment gradient from M to ψM , uniformly
distributed loads (UDL) and point loads (PL) for simply
supported, single clamped (SC) and double clamped (DC)
beams based on Eqs. 34 and 37, Eurocode 3 [4], the Aus-
tralian Steel Standard AS-4100 [6], the American Steel
Standard ANSI/AISC 360-17 [7] and the general formu-
lation from Serna et al. [20] as given by Eq. 9. Only
supports with k = kw = 1 are considered in Table 5
since most design standards do not offer expressions to
include support restraints. The average ratio between the
found general formulations and literature lies between 1.04
and 1.09, with the lowest ratio for AS-4100, meaning that
this study results in a non-conservative equivalent moment
factor with respect to literature, which could be the result
of the conservative nature of general simplified design ex-
pressions. For ψ < 0, the ratio increases significantly as a
result of the assumed symmetric sinusoidal buckling shape
not being accurate for very asymmetric loading. This dis-
crepancy for asymmetric load patterns is shown by Figure
5, in which the finite difference results of Serna et al. for
an IPE500 steel beam with length L = 8m are elaborated,
with parameters chosen to represent practical usual cases
(although differences with other lengths and profiles are
small).

For a beam loaded by two equal end-moments or one
end-moment and a concentrated mid-span load (Figures
6 and 7), the general formulation shows strong similarity
with the finite difference results of Serna et al. for both free
and restrained warping. For the case with one end-moment
differences up to 13.8% are obtained, following from the

introduced asymmetry of the loading for large α, causing
deviations from the assumed symmetric buckling shapes.
Figures 8 and 9 compare the general formulation with lit-
erature for an uniformly distributed load with one or two
(equal) end-moments and it is found that, for this load
cases, both the Australian Standard AS-4100 and Eq. 37
show good correspondence with the finite difference results
of Serna et al. [20] and Suryoatmono and Ho [22] with dif-
ferences up to 6.7% and 12.7% respectively. The available
design standards and literature are captured with reason-
ably accuracy with the aid of Eqs. 34 and 37, depend-
ing on the complexity and asymmetry of the considered
loading pattern. Hence, when making use of the general
formulation, it is important to verify whether the assumed
buckling shapes (Eqs. 33 and 35) are sufficiently accurate
for the purpose of the analysis. Instead of case-specific
(possibly more accurate) analysis, this study offers a gen-
eral formulation that can be used to consider all loading
cases within the formulated theoretical framework with no
significant loss of accuracy.

7. Application

With the aid of the general formulations for point loads
(Eq. 34) and uniformly distributed loads (Eq. 37), some
specific cases are analyzed and compared with the design
standards to show the application of the theory.

7.1. Elaboration of example

A simply supported beam with length L = 8m without
warping restraints (k = kw = 1), loaded at 1/2 of the span
by a point load F = 12.5kN is considered. The beam
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Figure 5: C1 as function of the ratio α/β (or coefficient ψ in Eurocode 3) for (a) unrestrained warping with kw = 1 and (b) restrained warping
with kw = 0.5

−0.4 −0.2 0 0.2 0.4
0

1

2

3

coefficient α = β

C
1

General form.
Serna et al.
AS-4100

ANSI/AISC

(a)

−0.4 −0.2 0 0.2 0.4
0

1

2

3

4

5

coefficient α = β

C
1

General form.
Serna et al.

(b)

Figure 6: C1 for a beam loaded by two equal end-moments and a concentrated mid-span load for (a) unrestrained warping with kw = 1 and
(b) restrained warping with kw = 0.5
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Figure 7: C1 for a beam loaded by one end-moment (β = 0) and a concentrated mid-span load for (a) unrestrained warping with kw = 1 and
(b) restrained warping with kw = 0.5
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Figure 8: C1 for a beam loaded by two end-moments and a uniformly distributed load for (a) unrestrained warping with kw = 1 and (b)
restrained warping with kw = 0.5
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Figure 9: C1 for a beam loaded by one end-moment (β = 0) and a uniformly distributed load for (a) unrestrained warping with kw = 1 and
(b) restrained warping with kw = 0.5

is loaded by support-moments MA = MB = 17.5kNm,
leading to α = β = MA/FL = 0.175. For a beam
loaded at 1/2 of the span, Table 3 gives D3 = −0.1757,
D4 = −0.1757 and D5 = 0.0335 and from Appendix A
follows D1 = 0.2827 and D2 = 0.4347. The maximum mo-
ment Mmax = 17.5kNm is found at the supports. From
Eq. 34, the equivalent moment factor C1 = 3.405. From
the diagrams of Eurocode 3 for concentrated loading and
support-moments follows C1,EC3 = 2.30. Furthermore,
C1,ANSI = 2.886 and C1,AS−4100 = 2.108 are found based
on Eqs. 6 and 5. Using the numerical finite difference
approach, Serna et al. found C1,Serna = 3.354 for this
case, which is assumed to be (close to) the exact value.
Hence, when using the design standards, the structure is
over-conservative by a factor 1.18 for ANSI and even 1.62
for AS-4100, leading to inefficient use of the cross-section.

When considering the same beam loaded at L/3 with
α = 0.175 and β = 0.035, the general formulation for point

loads results in C1 = 3.083. For non-midspan loadings,
Eurocode 3 does not provide a solution. Assuming that a
mid-span load is a proper representation of the considered
case, Eurocode 3 provides C1,EC3 = 1.60. The American
Steel Standard gives C1,ANSI = 2.720 and the Australian
Steel Standard provides C1,AS−4100 = 4.344, which is 1.6
times larger than C1,ANSI . The inconsistency between
different design standards is the result of the non-physical
nature of simplified expressions created by curve-fitting,
causing specific cases, with for example Ma = Mc = 0, to
deviate significantly from the physical reality. The general
formulation of Eq. 34 is based on physical considerations
and is therefore less likely to show these inconsistencies.

7.2. Combination of PL and UDL

General formulations are given for cases with only point
loads or UDL. However, it is also possible to consider the
combination of PL and UDL by representing the UDL by
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a set of n equivalent equally-spaced point loads and add
these locations to γi to make use of Eq. 37 (although it
is also possible to solve Eq. 31 including the work done
by the UDL and the corresponding My instead of using
the general formulation). Consider a simply supported
beam loaded by a mid-span point load F and an UDL q =
θF/L. The UDL is represented by n equivalent unit loads
Fi = qL/n, where it is advised to use n > 10 to obtain a
proper representation of the UDL. The concentrated load
is represented by n/θ unit point loads Fi. The collection
of locations γi is now found by

γi =

[
2j − 1

2n
L; γF,k

]
for j = 1...n (38)

with k = n/θ and γF,k = γF , where n is chosen such that
k is an integer. Following this approach, it has been found
that the equivalent moment factor for the combination of
a mid-span point load and an UDL can be accurately de-
scribed by

C1 =

{
1.27 · θ−0.034 for θ ≤ 25

1.13 for θ > 25
(39)

Using the general formulations of this study, design fig-
ures and diagrams can be straightforwardly created. For
this purpose, it is advised to program the general formu-
lations and expressions of Appendix A. Furthermore, it
is also possible to consider multiple uniformly distributed
loads over parts of a span by changing the distance between
the equivalent point loads for each UDL.

7.3. Intermediate torsional/lateral supports

This study considers single-span beams without inter-
mediate supports. To increase the resistance to lateral
torsional buckling, intermediate torsional and/or lateral
supports can be added. A first indication of the equivalent
moment factor can be achieved by assuming that each seg-
ment, defined as the part between two supports, behaves
as an independent individual segment. This assumption
holds for similar segments that have similar resistances.
For non-similar segments however, the assumption of no
interaction does not hold anymore since the stronger seg-
ments restrain the weaker ones and more elaborate ana-
lysis should be performed. The same effects are obtained
for multi-span beams over multiple supports. These effects
are not further elaborated in this study.

7.4. Approach within context of design procedure

With the aid of the derived general formulation, the
equivalent moment factor for single span beams without
intermediate restraints is determined for both I-section (of-
ten steel) and rectangular slender sections (often timber).
The determination of the critical theoretical (Euler) buck-
ling load is a general physical problem, which does not
depend on the considered material. In the regular design
procedures, the theoretical buckling load, as determined

with the equivalent moment factor (Eqs. 1 and 2), is re-
duced in order to incorporate effects of material imperfec-
tions, geometric imperfections, internal stresses etc. The
reduction of the theoretical buckling load is a material de-
pendent procedure and is therefore not further considered
in this study, but is mentioned here to capture the com-
plete design procedure. Furthermore, for general applica-
tion of the derived general formulation, the influence of the
loading location within the cross-section on the buckling
load should be studied in more detail.

8. Conclusions

Lateral torsional buckling is considered as an ultimate
limit state failure mode during the design of beam struc-
tures. This study focused on the influence of the mo-
ment distribution via the equivalent moment factor C1 on
the critical elastic moment for both I-sections (often steel)
and slender rectangular sections (often timber). The con-
sidered design standards offer different simplified general
solutions and some practical case-specific solutions. The
advantage of simplicity comes with the disadvantage of
loss of accuracy. Furthermore, the goal of design stand-
ards is to be conservative rather than to be accurate. On
the other side, literature offers many case-specific studies
that go in depth on a certain load case, mostly leading to
an accurate, but complex, solution.

This paper has presented a general formulation that is
in between the simplicity of the design standards and the
specific complex solution procedures as can be found in
literature. This general formulation is derived based on
the principle of conservation of energy and can be used
for support-moments, point loads (Eq. 34), uniformly dis-
tributed loads (Eq. 37) and a combination of those, for
free warping (k = kw = 1) and restrained warping (k = 1
and kw = 0.5) at the supports. For the case with free
warping, coefficients D1 to D5 are defined in Appendix A.
The results of this paper have been compared with design
standards (EC3[4], AS-4100[6], ANSI/AISC 360-17[7]) as
well as literature (Trahair[8], Serna et al.[20], Lim et al.
[19] and Suryoatmono and Ho [22]) and it is found that
this paper is in good correspondence with design stand-
ards and literature. On average, the ratio between the
results of this study and literature lies between 1.04 and
1.09. The expected accuracy of the general formulation
decreases for asymmetric loading as a result of the as-
sumed symmetric buckling shapes (Eqs. 33 and 35) not
representing the physical reality. The influence of length,
warping and torsion stiffness on C1 for restrained warping
(kw = 0.5) is neglected in this study, inducing a potential
loss of accuracy.

The application of the general formulations has been
shown with the aid of practical examples, pointing out
possible drawbacks of using design standards. By ma-
nipulating the collection of locations γi, it is possible to
represent complex load-cases of multiple UDL and point
loads combined. Instead of using the general formulation,
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it is also possible to make use of Eq. 31. The general
formulation presented in this paper is limited to elastic
material behaviour, in plane loading, loading in the shear
center and double-symmetric cross-sections and can not
consider the influence of axial loading. In order to work
with the general formulation, one must be aware of these
limitations.

In a more general picture, this paper contributes to the
solution of Sahraei et al. [15], which takes account of par-
tial twist restraints, load height, moment distribution and
pre-buckling deformations. In their study, Sahraei et al.
made use of the Australian Steel Standards to consider the
influence of the moment distribution. With the contribu-
tion of this paper, the theory of Sahraei et al. is improved
and more physical background is obtained.
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AppendixA. Expressions D1 to D5 for k = kw = 1

D1 =
1

3
− 1

2π2
≈ 0.2827 (A.1)

D2 =
1

3
+

1

π2
≈ 0.4347 (A.2)

D3 =

N∑
i=1

{
−(γi − 1)Pi +Qi +Ri +

γi − 1

π2

}
(A.3)

D4 =

N∑
i=1

{
γiPi −Qi +

γ3
i − γ1

3
− γi
π2

}
(A.4)

D5 =

N∑
i=1

{
PiSi −Qi

 N∑
j=1

γj − Ti


+

1

3

(
γ4
i + (Ui − [n+ 2− i])γ3

i + γ2
i

)
−

N∑
j=i+1≤N

Rj · γi +
1

π2

(
−1

2
γ2
i + (Ti − Ui)γi

)}
(A.5)

with

Pi =
1

π2
cos2 πγi

Qi =
1

π3
sinπγi cosπγi

Ri =
−γ3

i + 3γ2
i − 2γi

3

Si =

i−1∑
j=1

[γj(γi − 1)] +

N∑
j=i

[γi(γj − 1)]

Ti =
1 + 2(N − i)

2

Ui =

N∑
j=i+1≤N

γj

0 ≤ γi ≤ 1

(A.6)
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and the maximum moment

Mmax = max(|My,γi |) (A.7)

with

My,γi =FL

[
i−1∑
j=1

γj + γi ·

(
N − i+ 1−

N∑
j=1

γj

)

− α(1− γi)− βγi

] (A.8)

14


	Introduction
	Design code procedures
	Eurocode 3 for steel
	Eurocode 5 for timber
	Australian Steel Standards
	American Standards
	Canadian Standards

	Literature review
	Theoretical framework
	Derivation of general formulation
	General considerations
	Uniform moment over beam
	Point load and support-moments on beam
	Arbitrary point loading on a beam
	Uniformly distributed loading

	Validation
	Application
	Elaboration of example
	Combination of PL and UDL
	Intermediate torsional/lateral supports
	Approach within context of design procedure

	Conclusions
	Expressions D1 to D5 for k=kw=1

