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Article
Precision in iterative modulation enhanced single-
molecule localization microscopy
Dylan Kalisvaart,1,* Jelmer Cnossen,1 Shih-Te Hung,1 Sjoerd Stallinga,2 Michel Verhaegen,1

and Carlas S. Smith1,2,*
1Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands and 2Department of Imaging Physics, Delft
University of Technology, Delft, the Netherlands
ABSTRACT Modulation enhanced single-molecule localization microscopy (meSMLM) methods improve the localization pre-
cision by using patterned illumination to encode additional position information. Iterative meSMLM (imeSMLM) methods itera-
tively generate prior information on emitter positions, used to locally improve the localization precision during subsequent
iterations. The Cram�er-Rao lower bound cannot incorporate prior information to bound the best achievable localization precision
because it requires estimators to be unbiased. By treating estimands as random variables with a known prior distribution, the
Van Trees inequality (VTI) can be used to bound the best possible localization precision of imeSMLM methods. An imeSMLM
method is considered, where the positions of in-plane standing-wave illumination patterns are controlled over the course of mul-
tiple iterations. Using the VTI, we analytically approximate a lower bound on the maximum localization precision of imeSMLM
methods that make use of standing-wave illumination patterns. In addition, we evaluate the maximally achievable localization
precision for different illumination pattern placement strategies using Monte Carlo simulations. We show that in the absence
of background and under perfect modulation, the information content of signal photons increases exponentially as a function
of the iteration count. However, the information increase is no longer exponential as a function of the iteration count under
non-zero background, imperfect modulation, or limited mechanical resolution of the illumination positioning system. As a result,
imeSMLM with two iterations reaches at most a fivefold improvement over SMLM at 8 expected background photons per pixel
and 95% modulation contrast. Moreover, the information increase from imeSMLM is balanced by a reduced signal photon rate.
Therefore, SMLM outperforms imeSMLM when considering an equal measurement time and illumination power per iteration.
Finally, the VTI is an excellent tool for the assessment of the performance of illumination control and is therefore the method
of choice for optimal design and control of imeSMLM methods.
SIGNIFICANCE One of the fundamental questions in single-molecule localization microscopy is at what precision the
position of a single molecule can be determined. In this work, we show that iterative localization microscopy obtains its
precision improvement through incorporation of prior information, thereby reducing the number of photons needed for
precise localization. In this situation, the Van Trees inequality quantifies the best possible localization precision that can be
achieved. The approach presented here can be generalized to evaluate the best possible localization precision obtainable
for different imaging tasks and with different illumination patterns, point spread functions, and/or control strategies.
INTRODUCTION

In single-molecule localization microscopy (SMLM),
sparsely activated fluorescent emitters are localized sequen-
tially to obtain a resolution higher than the diffraction limit
(1–3). Modulation enhanced SMLM (meSMLM) increases
the localization precision using patterned illumination to
sparsely activate emitters in a sample, after which emitter
Submitted January 11, 2022, and accepted for publication May 19, 2022.

*Correspondence: d.kalisvaart@tudelft.nl or c.s.smith@tudelft.nl

Editor: Diane S. Lidke.

https://doi.org/10.1016/j.bpj.2022.05.027

� 2022 Biophysical Society.

This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
positions are estimated from the sparsity in the emission
light (4). Methods such as SIMFLUX (5), SIMPLE (6),
and repetitive optical selective exposure (7) use a stand-
ing-wave intensity pattern for the illumination, while
MINFLUX (8) uses a doughnut-shaped intensity pattern.
Axial resolution was also increased through modulated
localization (9,10) and axial localization with repetitive op-
tical selective exposure (11), which use patterns with struc-
ture in lateral and axial directions.

Localization precision can be increased locally around the
emitter by iteratively adapting meSMLM methods through
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using prior information on the emitter position that was
generated from previous measurements, which we call itera-
tive meSMLM (imeSMLM). In (12), an iterative variant of
MINFLUX is discussed, where the position of an emitter is
estimated through triangulation with doughnut-shaped illu-
mination patterns. This estimate and its localization uncer-
tainty are used as prior information to reposition and shrink
the region of triangulation, after which the emitter position
is estimated again. This procedure locally improves precision
in the neighborhood of the emitter. Furthermore, it is argued
that distributing the limited signal photon budget over many
iterations is preferred over increasing the amount of signal
photons per iteration, as the information content of signal
photons increases over the course of iterations.

To characterize the localization precision of (me)SMLM
methods, the Cram�er-Rao lower bound (CRLB) is often
used (13). Under mild assumptions (see (14)) on the likeli-
hood function of the acquired data, it holds for any unbiased

estimator of the parameter vector q that
�
C
q̂
� I� 1ðqÞ

�
is

positive semi-definite. Here, C
q̂
denotes the estimator covari-

ance, IðqÞ is the Fisher information, and I� 1ðqÞ is the CRLB.
In particular, the CRLB thus bounds the estimator variance
from below. It is shown in (15) that in SMLM, the covariance
of the maximum likelihood estimator converges to the CRLB
for increasing signal photon counts. As maximum likelihood
estimators attain the CRLB asymptotically, the CRLB can be
used to quantify the best possible localization precision that
can be obtained through (me)SMLM.

imeSMLMmethods iteratively update prior information on
emitter positions. This prior information locally improves the
localization precision during subsequent iterations. Addi-
tional prior information can be gained from photoactivation,
as is done in iterative MINFLUX (12) or MINSTED (16),
as only a pool of molecules is activated. To quantify the
best possible improvement of the localization precision in
imeSMLM, a suitable error bound should be able to incorpo-
rate prior information. The CRLB requires estimators to be
unbiased, whichmeans that it is not able to incorporate a prior
distribution on the estimands into the localization precision.

In this paper, we use the Van Trees inequality (VTI) as a
Bayesian alternative to the CRLB because prior information
on the estimands, such as the emitter position, is available.
We use the VTI to develop a fundamental limit on the local-
ization precision of imeSMLM methods, for example,
where standing-wave illumination patterns are used for the
localization. Furthermore, we simulate the effects of illumi-
nation pattern positioning on the localization precision. We
show that in the absence of background and under perfect
modulation, the information content of signal photons in-
creases exponentially as a function of the iteration count.
Under non-ideal conditions such as non-zero background
or imperfect modulation, this favorable scaling is lost,
which shows that optimal design of an imeSMLM method
is a complex problem, requiring knowledge of the practical
2280 Biophysical Journal 121, 2279–2289, June 21, 2022
imaging conditions. The VTI is the performance metric of
choice to design optimal control strategies in silico.
MATERIALS AND METHODS

In this section, we describe the VTI as a lower bound on the precision of

arbitrary estimators in case prior information is available. We describe

how to apply the VTI on an imeSMLM method with sinusoidal intensity

patterns. Furthermore, we describe the maximum a posteriori (MAP) esti-

mator as a method to iteratively fuse prior information with measurements

from the current iteration (see Fig. S1).
VTI

The VTI (17–19) is a Bayesian variant of the CRLB. By treating the esti-

mand vector q as a random variable with a known prior distribution, it

can incorporate prior information into the localization precision bound.

Because of this, the VTI can bound the localization precision of biased

and unbiased estimators from below, while the CRLB only bounds the

localization precision of unbiased estimators.

The VTI can be used to bound the localization precision of any estimatorbq of the parameter vector q from below. For this, the measurements x˛Rn

are modeled as independent realizations from a model distribution, which

depends on the parameter vector q through the likelihood function

LðqjxÞ. Additionally, a prior distribution lk� 1ðqÞ on the parameter vector

is available in each iteration k of the localization procedure (17,18). Under

regularity conditions on the likelihood function LðqjxÞ and the prior distri-

bution lk� 1ðqÞ (see Note S2), the mean squared error matrix

MSE
�bqk

�
¼ Elk� 1

24Z
Rn

�bqk � q
��bqk � q

�T

L
�
qjx�dx

35
(1)

of any estimator bqk of q during iteration k satisfies:

MSE
�bqk

�
� ðJD;k þ JP;kÞ� 1c 0: (2)

Here, Jk ¼ JD;k þ JP;k is called the Bayesian information matrix, which

is the Bayesian equivalent of the Fisher information matrix. The data infor-

mation matrix JD;k describes the Fisher information of the data, averaged

over the prior. It is given by

½JD;k�i;j ¼ Elk� 1

h
½IkðqÞ�i;j

i
: (3)

Here, IkðqÞ denotes the Fisher information in iteration k (see Note S1).
The prior information matrix JP;k describes the information contained in

the distribution of the prior information. It is given by

½JP;k�i;j ¼ Elk� 1

�
v logðlk� 1ðqÞÞ

vqi

v logðlk� 1ðqÞÞ
vqj

�
: (4)

In many practical scenarios, the data information matrix in Eq. 3 is diffi-

cult to compute analytically. Aside from certain special cases (see Analyt-

ical approximation of Bayesian lower bound on the localization precision),

one generally resorts to numerical methods to evaluate the VTI (20,21).
Localization precision for imeSMLM

In imeSMLM, prior information on the emitter position that was generated

during previous iterations is used to maximize the information content of

signal photons in the next iteration. The CRLB cannot incorporate prior in-

formation on estimand vector q, and therefore the Bayesian VTI is needed.



Precision in iterative localization microscopy
To be able to formulate the VTI for the described imeSMLM method, a

prior distribution on the parameter vector q needs to be chosen during

each iteration. Here, q consists of the emitter position ðqx;qyÞ, the expected
signal photon count qI , and the expected background photon count per

pattern qb.

We choose the asymptotic Gaussian distribution of the maximum likeli-

hood estimator as a prior. It is shown in (17,22) that the maximum likeli-

hood estimator asymptotically follows a multivariate normal distribution,

with mean q and with the covariance given by the CRLB I� 1ðqÞ. Alterna-
tively, one can say that for an increasing amount of signal photons, the

maximum likelihood estimator becomes unbiased and attains minimum

covariance given by the CRLB. As a result of this choice, the VTI for

imeSMLM is approximately equal to the CRLB, computed over all itera-

tions (see Fig. S2). This shows that the information increase in imeSMLM

is derived from Gaussian prior information.

Using this prior, we iteratively compute the best localization precision as

follows (see Fig. S3). In the first iteration, the CRLB I� 1
1 ðqÞ is evaluated.

The corresponding maximum likelihood estimator bq1 will approximately

be Gaussian distributed, with mean q and covariance I� 1
1 ðqÞ.

We use this distribution as prior information on the next iteration. In iter-

ation 2,we take the prior distribution l1ðqÞ to be the probability density func-
tion of a multivariate Gaussian distribution. To simulate the best possible

localization precision, ignoring the effects of estimation errors made during

earlier iterations, the true estimand vector q is used as the mean of the

Gaussian prior.We then evaluate JD;2 and JP;2. The new prior l2ðqÞ is chosen
to be Gaussian, with mean q and covariance ðJD;2 þ JP;2Þ� 1.

In each new iteration k, we take the prior distribution lk� 1ðqÞ to be

the probability density function of a multivariate Gaussian distribution,

with mean q and covariance ðJD;k� 1 þ JP;k� 1Þ� 1. We then evaluate

JD;k and JP;k . The new prior lkðqÞ is chosen to be Gaussian, with mean

q and covariance ðJD;k þ JP;kÞ� 1. This continues until M iterations are

completed.
Choice of pattern positions

We consider standing-wave intensity patterns with controllable spatial

phase shifts f5
x;k and f5

y;k in two orthogonal orientations. In each iteration

of the localization procedure, two x-oriented pattern phases, fþ
x;k and f�

x;k ,

and two y-oriented pattern phases, fþ
y;k and f�

y;k , are used to illuminate

the sample. The superscripts þ and � describe the pattern placement

with respect to the emitter position. Using prior information on the emitter

position, the pattern positions can be selected to maximize the information

content of signal photons.

In the initialization step, no prior information is available. Therefore, the

pattern positions are chosen to be f5
x;1 ¼ f5

y;1 ¼ 0 by default. A parameter

estimate bq1 is obtained, and the CRLB can now be computed, which results

in a Nðq; I� 1
1 ðqÞÞ prior distribution for the next iteration.

If the modulation contrast of the pattern is perfect, the intensity minima

of the standing-wave patterns should ideally be placed on the true emitter

position (qx , qy) during subsequent iterations k for the information content

of signal photons to be maximal. A similar result was found for iterative

MINFLUX, where a doughnut-shaped illumination pattern was used

(8,12). This result can be explained intuitively using a thought experiment,

as was done in (4). If we assume that the modulation contrast m ¼ 1, the

intensity minimum has true zero intensity. Suppose that the pattern posi-

tions are chosen such that each intensity minimum is placed exactly on

the emitter position. As the emitter is illuminated with zero-intensity light,

it will not emit any photons. We therefore need to wait infinitely long to

receive any non-zero amount of signal photons.

For this to happen, two scenarios are possible. Either the emitter is

located perfectly in the intensity minimum or nothing is located in the

intensity minimum. The prior information expresses confidence that

there is indeed an emitter located in this position, resulting in a decrease

of the mean squared error. The prior information thus adds information
to signal photons in case an emitter is illuminated with (near-)zero inten-

sity light.

In practice, the true emitter positions have to be estimated, so this pattern

placement cannot be implemented. An implementable pattern placement

strategy could replace the true emitter positions with their currently known

estimates bqx;k� 1 and bqy;k� 1. However, this can cause the localization pre-

cision to become sensitive to estimation errors. If the current position esti-

mate is imprecise, intensity minima will be placed away from the true

emitter position, and the newly obtained prior distribution will add little

information.

To decrease the sensitivity to estimation errors of the iterative locali-

zation method, the intensity minima of two patterns, fþ
k and f�

k , can

be placed symmetrically around the current estimate of the emitter posi-

tion, as shown in Fig. 1 (also see Fig. S4). In each iteration, the distance

between the intensity minima is decreased, thereby locally improving

the localization precision around the current estimate of the emitter

position.

In this article, we consider a pattern position control strategy where illu-

mination minima are placed symmetrically around the current estimate of

the emitter position, in which the distance between the emitter position

and an intensity minimum scales with the localization precision of the pre-

vious iteration. This control strategy is given by(
f5
x;k ¼ uðbqx;k� 1 5asx;k� 1Þ � p;

f5
y;k ¼ uðbqy;k� 1 5asy;k� 1Þ � p:

(5)

Here, u denotes the spatial pattern frequency. As the illumination pattern
2NA
is at best diffraction limited, it must hold that u% 2p,
lex

, where lex is the

excitation wavelength and NA is the numerical aperture. The localization

precisions sx;k� 1 and sy;k� 1 are the square roots of the first and second di-

agonal elements of J� 1
k� 1, respectively. The aggressiveness parameter a de-

termines how close the pattern minima are placed to the estimated emitter

position.
MAP estimation

Estimators used for iterative localization microscopy should be able to

recursively fuse measurements with prior knowledge on estimands that

was obtained during earlier iterations. In each iteration k, we compute the

MAP estimator bqk, which is given by the maximizing argument of the pos-

terior distribution pðqjx1;.;xkÞ. As the measurements x1;.; xk are inde-

pendent, the posterior satisfies the following recursion:

pðqjx1;.; xkÞfq pðxkjqÞpðqjx1;.; xk� 1Þ
f
q
pðxkjqÞpðx1;.; xk� 1jqÞpðqÞ:

(6)

Here, pðqjx1;.; xk� 1Þ denotes the posterior from the previous iteration,

pðx jqÞ represents the likelihood of the measurements from the current iter-
k

ation, and pðx1;.; xk� 1jqÞ represents the likelihood of the accumulated

measurements from previous iterations. If prior information is available,

such as in photoactivation (12,16), it can be included in pðqÞ. To keep

the analysis as general as possible, we choose pðqÞ to be a uniform

(improper) prior over R4 to represent the lack of prior information on q

before measurements are done. For this choice, the estimation error of

the MAP estimator is guaranteed to converge to the VTI if the likelihood

reflects the underlying distribution of the data. The MAP estimate can

then be computed as follows:bqk ¼ arg max
q

½logðpðx1;.; xk� 1jqÞÞ þ logðpðxkjqÞÞ�:
(7)
Biophysical Journal 121, 2279–2289, June 21, 2022 2281



FIGURE 1 Pattern position control strategy (see Eq. 5) to iteratively increase information content of signal photons. (a) Example of one period of a si-

nusoidal intensity pattern in the x-direction, with the intensity minimum centered at a global phase zero. (b) Individual illumination patterns placed during

iteration 2. In each iteration, four sinusoidal illumination patterns are placed, such that current estimate of the emitter position is enclosed between the

illumination minima of the patterns. (c) Summed illumination patterns over the course of three iterations. The distance between the intensity minimum

of the summed patterns and the emitter position reduces iteratively as a result of adjusting the search region based on prior information about the achieved

precision in the previous iteration. (d) Expected signal photon response from the emitter in (b) and (c) over the course of three iterations, using the illumi-

nation placement from (c). (e) Illustration of the expected signal photon budget for one, two, and three iterations. Two scenarios are considered in this article,

namely the case where the signal photon count is kept constant over the course of all iterations and the case where the imaging time and illumination intensity

are kept constant over the course of all iterations. In the latter case, the signal photon budget is only exhausted by imeSMLM in case the single emitter is

illuminated with maximum intensity during all iterations. If the intensity pattern minima are placed close to the emitter, a reduced number of photons is

recorded within the same time window.

Kalisvaart et al.
Simulations and parameter values

The VTI and MAP estimates for the described imeSMLM method were

obtained using representative in silico experiments. The VTI was

evaluated using simple Monte Carlo integration (see Note S3), where

50,000 Monte Carlo samples were used for convergence. 50,000 realiza-

tions of regions of interest were simulated by realizing the image forma-

tion model (see Note S1), where the emitter was located in the center

of the camera pixel array and where its subpixel position was uniformly

randomized. MAP estimates were obtained from Eq. 7 using Levenberg-

Marquardt optimization (23,24). The model parameters (see Table S1)

are considered to be representative of an imeSMLM experiment where

standing-wave intensity patterns are used to illuminate the sample. We

choose the pattern frequency u and the standard deviation of the Gaussian

point spread function (PSF) to be diffraction limited. This maximizes

the information contained in the illumination pattern. For the chosen

parameters, the pattern pitch is approximately equal to twice the standard

deviation of the Gaussian PSF. This is consistent with earlier work

on modulation enhanced localization microscopy with sinusoidal illumina-

tion (5).
2282 Biophysical Journal 121, 2279–2289, June 21, 2022
Software and data availability

The software for computing the VTI, simulating regions of interest, and

estimating emitter positions is available at (25). The unprocessed simulated

data underlying the results are available at (26).
RESULTS AND DISCUSSION

In this section, we present the theoretical and numerical re-
sults of this study. We describe a closed-form expression of
the VTI, assuming one-dimensional localization, no image
discretization by the camera, and zero background. Simula-
tions explore the effects of the number of iterations and the
choice of pattern positioning on the localization precision.
In Figs 2 and 3, the effects of the iteration count and pattern
positioning on the localization precision are simulated,
respectively assuming a fixed photon count per iteration



FIGURE 2 Simulated iterative localization and precision bound using a fixed expected signal photon budget per iteration. In (a)–(d), the pattern posi-

tioning of Eq. 5 was used with aggressiveness parameter a ¼ 3. In (d) and (e), the results are compared with the theoretical limit of Eq. 9 and the precision

approximation of Eq. 10, which assume perfect modulation and zero background. Error bars denote the standard deviation of the root-mean-square error,

obtained by comparing 200 batches of 250 MAP estimates. (a) Example of simulated regions of interest during three iterations of an iterative localization

experiment. Contrast was enhanced for visualization purposes. The divergence in emitter intensity from iteration 1 to iteration 3 is the result of shrinking the

distance between pattern minima while enforcing a fixed expected signal photon budget per iteration in simulation. As a result, the pattern minima that are

placed furthest from the emitter position (due to position estimation errors in the previous iteration) will use a larger share of the signal photon budget. (b)

Two-dimensional histogram of MAP localizations on 50,000 simulated regions of interest during three iterations of an iterative localization experiment at an

expected signal photon count of qI ¼ 2000 photons. (c) Histogram of MAP localizations projected on the x-direction. AGaussian with standard deviation sx
is fitted on the histogram. (d) Simulated localization precision in x-direction as a function of the expected signal photon count when one, two, or three it-

erations are used. (e) Simulated localization precision in x-direction as a function of the aggressiveness parameter a, and the distance between the pattern

minima using the same values of the aggressiveness parameter a, for different expected signal photon counts and assuming a constant signal photon count per

iteration.

Precision in iterative localization microscopy
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FIGURE 3 Simulated iterative localization and precision bound using a fixed imaging time and illumination power per iteration. In (a)–(d), the pattern

positioning of Eq. 5 was used with aggressiveness parameter a ¼ 3. In (d) and (e), results are compared with the theoretical limit of Eq. 9, which assumes

perfect modulation and zero background. Error bars denote the standard deviation of the root-mean-square error, obtained by comparing 200 batches of 250

MAP estimates. (a) Example of simulated regions of interest during three iterations of an iterative localization experiment. Contrast was enhanced for visu-

alization purposes. (b) Two-dimensional histogram of MAP localizations on 50,000 simulated regions of interest during three iterations of an iterative local-

ization experiment at an expected signal photon budget of qI ¼ 2000 photons. (c) Histogram of MAP localizations projected on the x-direction. A Gaussian

with standard deviation sx is fitted on the histogram. (d) Simulated localization precision in x-direction as a function of the expected signal photon budget qI ,

when one, two, or three iterations are used. (e) Simulated localization precision in x-direction as a function of the expected signal photon budget for different

pattern positioning strategies.

Kalisvaart et al.
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and a fixed imaging time and illumination power per
iteration.
Analytical approximation of Bayesian lower
bound on the localization precision

Under some assumptions on the image formation model,
analytical expressions for the localization precision can be
derived using the VTI. We derive an analytical approxima-
tion of the Bayesian VTI on the localization precision of an
imeSMLM method where sinusoidal intensity patterns are
used, given a Gaussian PSF and a sequence of pattern
positions.

We limit ourselves to one-dimensional localization where
we disregard the effect of discretization of the image due to
the finite size of camera pixels. In addition, we do not esti-
mate the expected signal photon count qI , and we ignore
background such that qb ¼ 0. Under these assumptions,
the derived analytical approximation serves as a funda-
mental limit on the localization precision. That is, the local-
ization precision of the described imeSMLM method for
two-dimensional localization, under the effects of image
discretization, estimation uncertainty on qI and qb, and
non-zero background, can only be worse than the analytical
approximation.

The approximation of the best possible localization preci-
sion is given by (see Note S4):

sx;k R ðJkÞ�
1
2 R

sx;k� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ s2

x;k� 1ðFPSF þ FillumÞ
q ; (8a)

q c
	 � � �
FPSF ¼ I k

s2
PSF

2 þ m cos ubqx;k� 1 � fþ
x;k

þ m cos
�
ubqx;k� 1 � f�

x;k

��
exp

	
� u2s2

x;k� 1

2




;

(8b)

	 � � �

Fillum ¼ qIcku

2 2 � m cos ubqx;k� 1 � fþ
x;k

þ m cos
�
ubqx;k� 1 � f�

x;k

��
exp

	
� u2s2

x;k� 1

2




:

(8c)

Here, ck models the expected photon count per iteration
under imperfect illumination (see Note S1). Furthermore,
sPSF denotes the standard deviation of a Gaussian PSF,
and m denotes the modulation contrast of the illumination
pattern. In the denominator, the term ‘‘1’’ accounts for the
prior information. The terms FPSF and Fillum describe the in-
formation derived from the spot center estimation and the
information derived from the illumination pattern modula-
tion, respectively. Note that Eq. 8 is an exact representation
of the VTI for m ¼ 1 and fþ
x;k ¼ f�

x;k and a lower bound on

the VTI for m< 1 or fþ
x;ksf�

x;k.

If the pattern positions of Eq. 5 are substituted into Eq. 8,
we obtain:

sx;k R ðJkÞ�
1
2 R

sx;k� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ s2

x;k� 1ðFPSF þ FillumÞ
q ; (9a)

qIck
	 	

u2s2 



FPSF ¼

s2
PSF

2 � 2m cosðuasx;k� 1Þexp � x;k� 1

2
;

(9b)

	 	
u2s2 


Fillum ¼ qIcku
2 2 þ 2m cosðuasx;k� 1Þexp � x;k� 1

2
:

(9c)

Assuming that the modulation contrast is perfect and that
zero background photons are recorded, Eq. 9 can be used to
derive the optimal distribution of the signal photon budget
(see Note S5). This proves that it is optimal to isotopically
distribute the signal photon budget over the number of iter-
ations from iteration 2 onwards.

From Eq. 9 with m ¼ 1, it can be seen that the contribu-
tion of the expected signal photon count qI to the localization
precision grows exponentially as sx;k� 1 decreases. This im-
plies that the information content per signal photon grows as
the number of iterations increases. Assuming that the modu-
lation contrast is perfect and that zero background photons
are recorded, it is thus favorable to increase the number of
iterations as much as possible within the limited photon
budget.

However, increasing the number of iterations results in a
lower amount of signal photons per iteration, lowering the
signal-to-background ratio in each iteration. The exponen-
tial scaling is therefore destroyed by background. Further-
more, we assume here that the mechanical resolution of
the illumination positioning system is not limiting, such
that every illumination-pattern position between �p and
p can be reached. In practice, this becomes increasingly
difficult for small sx;k� 1, preventing the exponential limit
to be reached for high amounts of iterations. Because of
these factors, it makes sense to limit the number of iterations
in practical applications.
Effect of iterations on localization precision

From the theoretical limit of Eq. 8, it was found that illumi-
nation pattern control can exponentially increase the infor-
mation content of signal photons under perfect modulation
and zero background, making an increase of the iteration
count preferable over an increase of the number of photons
per iteration. The effect of the iteration count and pattern
Biophysical Journal 121, 2279–2289, June 21, 2022 2285
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positioning on the localization precision for imperfect mod-
ulation and zero background will be simulated in this
subsection.

In Fig. 2, the effect of the iteration count on the localiza-
tion precision is simulated assuming a fixed expected
signal photon count per iteration. The aggressiveness
parameter a was set to 3 for these simulations. For each
simulation, the VTI was evaluated, and MAP estimates
were computed for 50,000 randomly generated regions of
interest (see Note S1). These results are compared with
the theoretical limit of Eq. 8, where we assume perfect mod-
ulation to reflect the best achievable localization precision.
We also compute the CRLB reported in (12), where the illu-
mination minimum is approximated by a quadratic profile.
Assuming that N signal photons are collected during each
iteration, this approximation of the CRLB is given by

sx;k T

���fþ
x;k � f�

x;k

���
4uN1=2

¼ 2asx;k� 1

4N1=2
: (10)

In Fig. 2 a, examples of simulated regions of interest are
shown assuming a fixed expected signal photon count per
iteration. From iterations 1 to 3, the emitter intensity appears
to diverge. This effect is caused by enforcing a fixed expected
signal photon budget per iteration in simulation. Due to this
assumption, the emitter intensities represent the share of the
expected signal photon budget used during each measure-
ment. As the distance between pattern minima shrinks over
the course of iterations, the signal photon budget is distrib-
uted increasingly unevenly over the measurements.

In iteration 1, pattern minima are placed far from the true
emitter position, so the emitter is illuminated with high in-
tensity from all patterns. As such, the illumination patterns
will use an approximately equal share of the signal photon
budget.

In subsequent iterations, pattern minima are placed
increasingly close to the estimated emitter position. Because
we make an estimation error, pattern minima are placed
asymmetrically around the true emitter position. As a result,
the pattern minima that are placed furthest from the emitter
position will use a larger share of the signal photon budget.
As the expected signal photon budget is constant over the it-
erations, the emitter intensities appear to diverge.

From Fig. 2 d, it can be seen that iterative localization us-
ing the pattern placement of Eq. 5 results in improved local-
ization precision over SMLM. For eight background
photons per pixel and 95% modulation, we found that
around a fivefold improvement over SMLM can be reached
by doing two iterations at a signal photon count of 644
signal photons per iteration. When doing three iterations,
the maximum improvement over SMLM is around four,
reached at 240 signal photons per iteration.

These findings are in contrast with the results under per-
fect modulation and zero background, as described by the
analytical approximation. As expected from the earlier
2286 Biophysical Journal 121, 2279–2289, June 21, 2022
analysis, we find that the localization precision is propor-
tional to q� 1

I when doing two iterations and q
� 3=2
I when

doing three iterations. This difference is explained by the
fact that the precision loss due to background, imperfect
modulation, and discretization accumulates as the number
of iterations increases, as the lowered precision sx;k� 1 in
a previous iteration is carried over to the next iteration.
In practice, the favorable exponential increase of infor-
mation over the course of the iterative procedure is thus
lost.

When recording 315 or more photons per iteration, using
two iterations rather than three results in a better localization
precision. To investigate the cause, Fig. S5 shows the local-
ization precision as a function of the cumulative signal
photon count at a total signal photon count of 2000 photons.
For eight background photons per pixel and 95% modula-
tion, we see that using three iterations is still preferred
when the second out of three iterations ends at 1333 signal
photons. At this moment, using three iterations results in a
4.5-fold precision increase over using SMLM. During the
third out of three iterations, the localization precision im-
proves only marginally, resulting in a decrease of the preci-
sion improvement to 3.7 with respect to SMLM. This is not
expected from the analytical approximation under perfect
modulation and zero background, where the localization
precision improvement over SMLM increases from 13 to
190 during the third iteration.

Simulations show similar results for different settings of
the modulation contrast and the background count. Specif-
ically, we find a stagnation of the localization precision dur-
ing the third iteration for 80% and 90% modulation contrast
(see Fig. S6) and background counts of 1, 4, and 12 photons
per pixel (see Fig. S7), in contrast to the results for perfect
modulation and zero background.

We can conclude that imperfect modulation and non-zero
background limit the best possible localization precision
when the illumination pattern minima are placed closer to
the emitter position. When distributing photons equally
over the iterations, increasing the number of iterations indef-
initely does not necessarily lead to increasingly informative
signal photons.

Additionally, we see ill-convergence of the MAP esti-
mator at perfect modulation when patterns are placed close
to the true emitter position (see Figs. S6 and S10). This is
caused by a (near-)zero signal photon response under per-
fect modulation. For pattern minima that are close to the
true emitter position, the signal photon response is low or
zero for perfect modulation. This causes low signal-to-back-
ground ratios, which means that the shape of the PSF is
poorly represented in the data. Analogous to existing results
on the maximum likelihood estimator (15), the MAP esti-
mator fails to consistently estimate the emitter position
with minimum uncertainty. For 95% modulation, we do
not see ill-convergence for expected background counts of
one or more photons per pixel, although the maximum
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localization precision is not reached for a< 2 due to the low
signal-to-background ratio (see Fig. S11).

In the simulations of Fig. 2 d, the aggressiveness param-
eter a was kept constant at three. For zero background and
perfect modulation, it is expected that reducing the aggres-
siveness improves the localization precision independently
from the expected signal photon budget (see Fig. S8). For
eight background photons per pixel and 95% modulation,
we see that a ¼ 2 improves the localization precision four-
fold over SMLM when recording 518 signal photons.

The optimal choice of the aggressiveness parameter de-
pends on the expected background photon count, the modu-
lation contrast, and the expected signal photon count. Fig. 2
e shows that the optimal a decreases for a decreasing signal
photon count (see Fig. 2 e). For 95% modulation and eight
background photons per pixel, a ¼ 2:5 is optimal at a
signal photon budget of 2000 photons, while a ¼ 5:5 is
optimal at a signal photon budget of 5000 photons. We
also see that the optimal a decreases for increasing back-
ground (see Fig. S11). That is, as the signal-to-background
ratio increases, the optimal a increases as well.

For perfect modulation, we have already argued that the
localization precision can be optimized by placing pattern
minima directly on the emitter. However, this optimum
shifts when the modulation contrast is imperfect (see
Fig. S10). Specifically, this shows that the localization
precision does not improve from infinitely reducing the dis-
tance between pattern minima in case the pattern modula-
tion is imperfect. This indicates that the prediction from
(8) does not hold for imperfect modulation.

Therefore, a practical way of choosing a is needed to
optimize imeSMLM. If prior knowledge about the signal
photon count, the background, and the modulation contrast
is available, the theoretically optimal a should be found by
optimizing the VTI. It remains an open question how to do
this systematically. A practical solution could be to choose a
from a lookup table, constructed in silico from optimizing
the VTI under a range of practical experimental conditions.

In Fig. 3, the effect of the iteration count and pattern posi-
tioning on the localization precision is simulated, assuming a
fixed imaging time and illumination power per iteration. As a
consequence of using patterned illumination, the use of the
available signal photon budget varies between iterations
(see Fig. 1 e). Identically to the previous simulations, the
aggressiveness parameter awas set to three, and the MAP es-
timates were computed for 50,000 regions of interest.

From Fig. 3 d and e, we see that SMLM outperforms
imeSMLM over a range of signal photon budgets and for
different pattern positioning strategies. For eight back-
ground photons per pixel and 95% modulation, SMLM out-
performs imeSMLMwith three iterations by a factor 1.2 at a
signal photon budget of 518 signal photons.

To investigate the cause of this performance loss, we
simulate the localization precision per recorded photon
under the illumination strategy of Eq. 5 (see Fig. S9 a
and c). It can be seen that imeSMLM still enables an in-
crease of the information content per recorded signal
photon. For eight background photons per pixel and 95%
modulation, the localization precision is improved 1.4-fold
over SMLM when the first 411 signal photons are recorded
using two iterations. When doing three iterations, the
maximum improvement over SMLM is 1.5, reached after
422 signal photons.

However, SMLM uses more of the available signal
photon budget within the same time span, ultimately result-
ing in a better localization precision over imeSMLM (see
Fig. S9 b and d in the Supporting Material). For SMLM,
all 2000 signal photons within the budget are collected.
For imeSMLM, all signal photons available in first iteration
are collected, as the illumination intensity equals that of
SMLM. In subsequent iterations, pattern minima are placed
closer to the emitter position, resulting in a reduced signal
photon response. When doing three iterations in total, 60
signal photons are collected on average during the second
iteration, and 40 signal photons are collected on average
during the third iteration. While these photons are more
informative than those obtained with SMLM, the total
amount of information is not enough to outperform SMLM.

These effects are further exemplified by the analytical
approximation, as pattern minima are placed even closer
to the emitter position when the effects of background and
imperfect modulation are removed. For three iterations
with a photon budget of 2000 photons, eight signal photons
are collected on average during the second iteration, and one
signal photon is collected on average during the third
iteration. As the amount of signal photons with increased in-
formation is so limited, the localization precision approxi-
mately scales with q

� 1=2
I for imeSMLM, with a constant

improvement factor of 1.6 over SMLM when doing two it-
erations and 1.7 when doing three iterations.

In the simulations of Fig. 3 d, the aggressiveness param-
eter a was kept constant at three. Fig. 3 e shows that for zero
background and perfect modulation, it is expected that the
aggressiveness does not significantly influence the
maximum localization precision, as on average less than
15 signal photons are collected during the second and third
iterations for a ¼ 2, 3, or 4. As such, the precision improve-
ment from aggressive localization is balanced by a reduction
of the signal photon count. For eight background photons
per pixel and 95% modulation, we see that aggressive local-
ization with a ¼ 2 results in a 1.3- to 1.8-fold reduction in
localization precision for signal photon budgets qI between
200 and 10,000 photons.
CONCLUSIONS

In imeSMLM, resolution is improved locally around an
emitter position by using prior information that was derived
from measurements in earlier iterations. The CRLB cannot
incorporate prior information, as it requires estimators to be
Biophysical Journal 121, 2279–2289, June 21, 2022 2287
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unbiased. By treating estimands as random variables with a
known prior distribution, the Bayesian VTI can be used to
bound the maximally achievable localization precision
from below. The VTI is useful for bounding the localization
precision in imeSMLM as it is able to account for the effect
of prior information that is generated over the course of
iterations.

We derived an analytical approximation of the Bayesian
lower bound on the localization precision of imeSMLM
methods that make use of standing-wave illumination pat-
terns in the absence of image discretization by the camera,
estimation uncertainty on the signal photon count, and back-
ground fluorescence. This fundamental limit cannot be sur-
passed, as relaxing the aforementioned assumptions can
only worsen the localization precision of imeSMLM
methods. Using this limit, we have shown that the informa-
tion content of signal photons increases exponentially as a
function of the iteration count when the modulation contrast
is 100%. Additionally, we prove that for perfect modulation,
it is optimal to isotopically distribute the single-molecule’s
photon budget over the number of iterations from iteration 2
onwards.

We demonstrate a practical imeSMLM pattern control
strategy using the VTI. The VTI was simulated to assess
the performance of imeSMLM under eight photons per
pixel background and 95% modulation contrast. By using
two iterations in total, imeSMLM reaches at most a five-
fold improvement over SMLM. This indicates that the
exponential localization improvement as a function of the
iteration count cannot be achieved in most experiments,
as it breaks down for slight imperfections in the modula-
tion contrast.

Moreover, SMLM is able to outperform imeSMLM in
case the imaging time and illumination laser power are
kept constant between iterations. imeSMLM results in
signal photons with increased information content. Howev-
er, placing pattern minima close to the emitter position re-
duces the signal photon response, while SMLM is able to
collect more signal photons within the same time frame.
At a signal photon budget of 2000 photons, we find that
SMLM is around 1.2 times better than three iterations of
imeSMLM at eight expected background photons per pixel
and 95% modulation contrast. We conclude that imeSMLM
is able to increase the information content per signal photon
but that this information increase does not necessarily
outweigh the reduced signal photon response.

From this, we find that the optimal selection of pattern
placement, the number of iterations, and the time spent
per iteration in imeSMLM depends on many factors, such
as the photon budget, imperfections in the illumination sys-
tem, and the expected background count. Specifically, we
show that the smallest step size is most likely not the best
one and that the optimal step size depends on the molecule
intensity, modulation contrast, and background fluores-
cence. Furthermore, we demonstrate that the localization
2288 Biophysical Journal 121, 2279–2289, June 21, 2022
precision only scales with the step size over a small set of
experimental conditions.

The VTI can be used to quantify the best possible perfor-
mance of illumination pattern control strategies and is there-
fore a promising performance metric in optimal control of
imeSMLM methods. In this article, we chose to analyze
imeSMLM with four sinusoidal illumination patterns. This
is the most straightforward approach using sinusoidal illu-
mination. It remains an open question if other arrangements
of sinusoidal illumination patterns could lead to further
imeSMLM improvements. Other illumination pattern
shapes, such as the doughnut-shaped pattern from
MINFLUX (8,12), could also lead to improvements in im-
eSMLM. When designing imeSMLM experiments, the
VTI is the preferred tool to tailor the pattern placement strat-
egy to different imaging conditions.
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