TUDelft

Non-Photorealistic Novel View Synthesis Using Radiance Fields

Medard Szilvasy
Supervisors: Elmar Eisemann, Petr Kellnhofer, Michael Weinmann
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Medard Szilvasy
Final project course: CSE3000 Research Project
Thesis committee: Elmar Eisemann, Petr Kellnhofer, Michael Weinmann, Jan van Gemert

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Radiance fields are a promising alternative to conven-
tional 3D representations in the domain of novel view syn-
thesis, with recent research achieving truly impressive pho-
torealistic view synthesis results. In this paper, we deal with
the concept of non-photorealistic rendering in the context
of radiance fields, for generating more stylistic captures of
real-world objects. We discuss the suitability of inverse ren-
dering as a stepping-stone to traditional shading and edge
detection, and contribute a new algorithm specifically for
outline detection in radiance fields.

1. Introduction

Novel view synthesis encompasses a range of techniques
that aim to allow new views of 3D scenes to be generated
from a limited set of input images. The field has seen sig-
nificant progress in recent years, with much of the latest
research developing radiance fields as a way of represent-
ing 3D environments [3, 14, 18, 22] — modelling a function
that maps each viewing direction and location in space to
its volume density and colour, allowing us to reconstruct a
scene’s geometry and view-dependent appearance.

Radiance fields achieve state-of-the-art, photorealistic
view synthesis results, but applying existing stylised render-
ing approaches is currently not directly possible with these
representations. Traditionally, these non-photorealistic
methods rely on scene properties that are also involved in
photorealistic rendering [13], such as vertex positions, sur-
face normals, texture and reflectance, but these are not an in-
herent part of RGB radiance fields. Additionally, many such
algorithms emphasise the visible lines in an image, includ-
ing silhouette edges, boundaries and creases [6,9, 10, 17].

This paper explores how non-photorealistic rendering
(NPR) can be adapted to radiance fields. In particular, we
leverage the contributions of previous work on inverse ren-
dering [11, 23, 25] to recover the material and geometric
properties of a scene, allowing re-rendering using a variety
of non-photorealistic methods. We also examine a number
of edge detection algorithms and their applicability, includ-
ing existing image-space algorithms, as well as introducing
a new object-space algorithm that makes use of the ability
of radiance fields to capture depth and shape in 3D space.

Non-photorealistic rendering is a broad field encompass-
ing techniques ranging from artistic rendering to imitate
cartoon [6], pencil sketch [13], pen-and-ink [20] and wa-
tercolour [5] styles, to cool-to-warm shading for better cap-
turing geometric information in technical illustration [8].

Project page: https://mszilvasy.github.io/TensoIR-
NPR

Figure 1. Some stylised novel view renderings using our approach.

While this paper demonstrates the successful application of
some NPR styles, the described methodology is intended to
be applicable to all 3D NPR methods that rely on the same
geometric and material properties. The approach to inverse
rendering does not matter either, as long as it also extracts
these properties.

In summary, this paper demonstrates the application of
classical non-photorealistic rendering to novel view synthe-
sis via radiance fields, and contributes a new edge detection
algorithm suitable for finding outlines in radiance fields.

2. Related Work

Recent interest in radiance fields as a means of view syn-
thesis was spurred by the introduction of the neural radi-
ance field (NeRF) [14], which was able to achieve high-
fidelity renderings of complex scenes with view-dependent
effects. NeRF trains and evaluates a multilayer perceptron
(MLP) to obtain radiance field samples, and while some re-
search since has expanded on this purely MLP-based ap-
proach [22], there are also variants which represent radi-
ance fields as voxel grids to achieve superior training rates
and reconstruction times [3, 18].

Previous work on non-photorealistic stylisation of ra-
diance fields [15, 21, 24] focuses on applying neural style
transfer [7] to combine the contents of the novel views gen-
erated by radiance fields with the artistic style of a refer-
ence image. This paper differs from such research in that
it focuses on how recovering the material and geometric
properties of a scene enables a range of classical (non-
photorealistic) approaches to rendering and shading to be

https://mszilvasy.github.io/TensoIR-NPR
https://mszilvasy.github.io/TensoIR-NPR

applied to radiance fields as they are to traditional 3D rep-
resentations.

Non-photorealistic rendering (NPR) covers various ren-
dering techniques that deviate from photorealistic methods
to stylise renders for artistic purposes [5, 13,20] or visual
communication [8,9, 17]. NPR techniques use much of the
same processes as the photorealistic techniques they diverge
from, and the NPR methods explored in this paper borrow
from, and contrast with, the photorealistic lighting models
of Phong [16] and Blinn [1].

Inverse rendering deals with estimating the geometric
and materials properties that contribute to the composition
of an observed image. In the context of radiance fields,
this has been extended to recovering the properties of a
3D environment and novel views generated from the scene
[11,23,25]. The existing research demonstrates applications
such as relighting and material editing, using photorealis-
tic approaches to rendering. In this paper, we explore how
these uses can be extended to non-photorealistic rendering,
and the most important features for these purposes.

3. Method

In this section, we discuss a method for producing
stylised novel view renderings, with non-photorealistic
shading and explicitly drawn silhouette edges and creases.
First, we describe various shading techniques and their ap-
plicability to radiance fields owing to the contributions of
previous work on inverse rendering (Sec. 3.1). We then dis-
cuss edge detection in 2D image space to represent outlines
and surface discontinuities (Sec. 3.2). Finally, we introduce
our own algorithm for silhouette edge detection in 3D object
space within radiance fields, a novel contribution of this pa-
per which hopes to surpass the accuracy of aforementioned
image space approaches (Sec. 3.3).

3.1. Shading

A broad range of shading algorithms, both photorealistic
and otherwise, rely on the same material parameters and
understanding of optics. At minimum, we require surface
positions, normals, albedo (for diffuse reflection), and
potentially an attribute such as shininess or roughness to
regulate specular reflections. A number of so-called inverse
rendering methods exist to train radiance fields for the
recovery of these properties [11, 23, 25], opening the way
for a variety of shading styles as we will now examine.

Blinn-Phong reflection model. We begin with a photo-
realistic lighting model, consisting of separate diffuse and
specular components. The intensity of diffuse reflection at a
surface is modulated by the cosine of the incident angle be-
tween the direction of incident light and the surface normal
L-N, as per Lambert’s law. In considering the contribution
of specular reflection, Phong’s shading algorithm [16] uses

the cosine of the angle between the direction of reflect light
and the viewer’s line of sight R - V, whereas a modified
approach by Blinn [1] favours the dot product between the
normal and a “halfway vector”, N - H, where H = |\IL¢¥|\
The overall Blinn-Phong reflection model for a single light
source can therefore be summarised as

i = kakq + ka(L - N) + k(N - H)® (1)

where ky and ks represent the diffuse and specular re-
flectance, respectively, k, is the ambient illumination, and
o is a shininess constant for the surface.

By recovering albedo, depth, normal and shini-
ness/roughness maps using inverse rendering (see Fig. 2b),
we can directly apply Blinn-Phong shading to novel views,
as shown in Fig. 2c.

Gooch model. The specular aspect of the Blinn-Phong
model (see Fig. 2d) plays a role in more stylistic shading
methods as well. The cool-to-warm lighting model intro-
duced by Gooch et al. [8] restricts shading to mid-tones,
affording greater visibility to specular highlights and edge
lines. Here, the diffuse shading is an interpolation between
cool and warm colour tones.

1+L.-N 1+L-N
id = (4—2) kwarm+ (1 - —’_2> kcool (2)

where

kcool = kblue + Oékld

3)
kwarm = kyellow + ﬁkd

for

kyiue = (07 0, b)
kyellow = (y7 Y, O)

in RGB space, where b, y, a and (3 are free parameters.

The resulting effect is one in which the surface points
facing towards the light have yellow-orange (warm) hues
and those facing away from it are shaded with blue-green
(cool) tones. Crucially, the properties involved (kg, L and
N) are the same ones required by the diffuse computation
of Blinn-Phong, which makes the extension of our approach
to Gooch shading on radiance fields trivial (see Fig. 2e).

“)

Cartoon shading. We adapt the hard shading technique
described by Lake et al. [13] to achieve the flat, two-
dimensional style prevalent in cartoons and comic books.
As opposed to smoothly interpolating the diffuse colour
across a surface as in the other models described so far, we
define a boundary between shadowed and illuminated sur-
faces as the point at which the cosine of the incident angle,
L. N, crosses a given threshold 6.

(a) Standard RGB rendering.

(d) The specular component only.

(b) Albedo (top-left), depth (top-right), normal
(bottom-left) and roughness (bottom-right) maps
recovered with inverse rendering.

(e) Gooch shading.

(f) Cartoon style.

Figure 2. Different ways of shading the same view. Outlines are drawn on the Gooch and cartoon style renders using the silhouette edge

detection algorithm described in Sec. 3.3.

. kok, L-N<9
1= PN ®)
kg L-N>¥6

Our results are shown in Fig. 2f.

3.2. Image Space Edge Detection

Drawing visible border lines to represent the profile (sil-
houette) and surface discontinuities (creases) of an object is
an important characteristic of the non-photorealistic styles
we have been dealing with: technical illustration employing
the Gooch model imitates the black exterior and white inte-
rior lines conventionally used by illustrators [9], while the
bold, black edge lines seen in cartoon and cel animation are
recreated in cartoon-style rendering [6].

We can draw edges using image processing techniques,
such as the Canny edge detector [2], or the Sobel opera-
tor [19]. Although it is possible to perform edge detection
directly on the image output, such edges typically do not

directly correspond to silhouettes and creases [10]. Instead,
we carry out the chosen algorithm on the depth maps (for
silhouette edges) and normal maps (for crease lines) of the
view.

Our results using Canny edge detection are shown in
Fig. 3d. There is a significant drawback here which can-
not be shown in the image: there is a lack of cross-view
consistency, meaning there are distinct flickering artifacts
between similar views as large sections of lines appear and
disappear all at once. This effect can be seen in the supple-
mentary videos on our project page.

When using the Sobel operator, we compute the image
gradients of the depth and normal maps, and label the points
where these exceed a certain threshold as edges. This results
in bold outlines with a good degree of cross-view consis-
tency, as seen in Fig. 3e and the supplementary videos.

In Fig. 11 of the appendix, we demonstrate how edges
can be integrated into stylised rendering. In Fig. 11b, we
combine Gooch shading with dark silhouettes and light

(a) The depth map used for silhouette edge detec- (b) The normal map used for crease line detection.

(d) Edge detection using the Canny edge detector.

(e) Edge detection based on the Sobel operator.

(c) The lines which we expect to detect, rendered
in Blender.

(f) Silhouette edge detection using our method.

Figure 3. A comparison of different edge detection methods. Where applicable, silhouette edges are drawn in black, while crease lines are

drawn in white.

crease lines to highlight internal edges, while in Fig. 11c,
we draw black edges to help discern object shape in cartoon
stylisation.

3.3. Novel Silhouette Edge Detection Algorithm

Silhouette edges can be thought of as the intersections
between front-facing and a back-facing surfaces, as illus-
trated in Fig. 5. In mesh representations, a silhouette occurs
on the edge between two connected polygons, one of which
faces towards the camera, and the other of which faces away
from it [9, 10, 13]. Radiance fields do not explicitly define
surfaces as polygon meshes do, which prompts us to search
for another way of finding where front- and back-facing sur-
faces meet.

We present an approach that leverages the volumetric na-
ture of radiance fields instead. Volumetric representations
can be cross-sectioned to obtain 2D slices at various depths
— a property which we use to our advantage by iteratively
analysing the volume of an object, one evenly-spaced slice

at a time, to infer the shape of its surface.

We demonstrate our process in Fig. 4: each cross-
sectional slice of the scene is examined in order of increas-
ing distance from the camera. As a surface comes into view,
it appears to expand in successive iterations (see Fig. 4a),
with the outer boundary reaching its greatest extent at the
silhouette point (see Fig. 4b), before receding in later slices
(see Fig. 4c). It is therefore the boundaries of the cross-
sectional slices at their greatest extent that define the final
silhouette as perceived by the viewer. We handle occlusion
by keeping track of which locations have already been cov-
ered by previous slices — outlines cannot occur in places
which are occluded by a surface that was intersected first.

Our approach produces a 2D map of silhouette points,
which we compare with other methods in Fig. 3f. The
process can be summarised as follows:

For each 2D slice:

1. Identify and mark all pixels that represent occupied loca-

(a) We track the outer boundary of the surface
from the camera’s perspective in screen space
while scanning through the object.

(b) The silhouette is where front-facing and
back-facing surfaces intersect. For the algo-
rithm, this is where the boundary of the active
layer reaches its greatest extent.

(c) Beyond the silhouette point, the surface ap-
pears to draw away from the boundary. We con-
sider the last marked boundary to be a part of the
final silhouette.

Figure 4. An illustration of the process used by our edge-finding algorithm, with some images from its execution, in which the current
layer is highlighted in white, previous layers are shown in grey, marked (potential) edges are coloured red and finalised silhouette points

are coloured green.

Figure 5. A silhouette point (shown by the white square) is defined
as the point where a surface facing towards the camera intersects
a surface facing away from the camera.

tions.

2. Label any pixels on the outer boundary of the current slice as
potential edges, unless they are already occluded by previous
layers.

3. Mark as finalised silhouette points any pixels that were
previously labeled as potential edges but are no longer at the
boundary in the current slice (i.e., not touching occupied
pixels).

Slicing method. Next, we must address the question of how
to decide which points make up a slice. In particular, deter-

mining the criteria for when a point is considered occupied
or unoccupied for the purposes of finding the boundaries.
An obvious solution would be to sample the volume density
o, and label the points in which o exceeds a predetermined
threshold ¢,,,;,, as occupied.

Si = 0j 2 Omin (6)

where o; is the volume density of a particular pixel at the
ith iteration of the algorithm and S; is a predicate determin-
ing whether or not the pixel is considered occupied in that
iteration (note that each iteration corresponds to a different
cross-sectional slice of the scene).

Although this approach works well in most cases, it ig-
nores the reality of how volume density is distributed in a
radiance field, where a surface is defined by the cumulative
contributions of multiple points along the path of a cast ray.
The issue is evident in Fig. 6: a threshold that is too low
can lead to obtrusive artifacts due to seemingly random low
volume density patches left over from training the radiance
field, while choosing a value of o,;, that is too high results
in holes in the surface in spots where o; does not reach the
threshold in any particular slice, even if these areas appear
solid in the rendered radiance field.

While we can generally get around the limits of the
aforementioned method by choosing a suitable value of
Omin,» W€ favour an alternative that tracks the accumulated

Omin = 0.01

Omin = 1

| § €

Omin = 10

Omin = 25

Figure 6. The effects on our algorithm of changing the threshold omin using the o-based slicing method, where a point is considered
occupied if o0; > omin. The layers which have been passed through by the algorithm are coloured grey. Setting the threshold too low
causes artifacts to appear in the foreground, while setting the threshold too high can cause the algorithm to skip low density areas.

Amin = 0.01
Qmin = 0.25

mln =038
Qmin = 0.0001

LEKEK

mln =038
Qmin = 0.25

mln_08
Qmin = 0.5

mln—]-

Qmin = 0.25

Figure 7. The alternative slicing method in Eq. (10), which uses a combination of « and accumulated opacity A to determine occupancy.
We can still “break” the process by setting the opacity threshold Amin too high or too low — but once a suitable value is found, we only

need to modulate amin to vary the level of detail.

opacity A; of each pixel:

Ap=0
A=A 1+ a;(1 - Ai—y)
Here, A; recursively depends on the accumulated opacity of

the pixel with the same position in the last iteration, A;_1,
and

(7

a; =1 —exp(—0;0;) ®)

where J; is the distance between samples.

In order for a pixel in a given slice to be considered oc-
cupied with this approach, the accumulated opacity (which
depends on preceding iterations as well as the actual one)
must exceed a threshold A,;,. This allows us to avoid the
possibility of artifacts appearing in low density regions as
we saw in the other approach, since there is not enough of
an accumulation of opacity in these patches for it to sur-
pass the threshold. To avoid the appearance of holes, we al-
ways mark a point as occupied when it is the first in its path
to have an accumulated opacity greater than the threshold,
A; > Apin- We mark subsequent points in the same path
as occupied only if they are a significant contributor to the
accumulated opacity:

Q> Omin * Aj)

where o iy, 1S a predetermined threshold.

Overall, the predicate .S; determining the occupancy of a
pixel using this method is as follows:

A; > Anin if S is false for all j < i
Si =< a; > amin - A; if S;_1 is true (10)
false otherwise

As demonstrated in Fig. 7, this method of checking
occupancy does not produce holes or artifacts as the value
of amin 18 varied, but instead results in a loss of detail for
lower values, and a tendency to produce false positives in
areas with sharp gradients for high values.

Line weight. So far, we have discussed an algorithm that
produces a one-pixel-thick outline map composed of silhou-
ette points. We may wish to draw lines which are more than
a single pixel thick, however, to enhance visibility or em-
phasise depth.

Extending the algorithm to encode depth is trivial: we
just need to store the depths of the slices where each sil-
houette point is first encountered. To render the points with
varying thickness based on their proximity to the camera,
we assign weights using linear interpolation:

(a) Euclidean distance approach from Eq. (12).

(b) Manhattan distance approach from Eq. (13).

(c) A close-up view illustrating the contrasting stroke styles. Euclidean
distance creates smooth, circular strokes (left), while Manhattan distance
produces sharp, blocky edges (right).

Figure 8. Heavily exaggerated lines produced by assigning all sil-
houette points a constant weight (with a = b = 5), and then
increasing their thickness using either the Euclidean distance for-
mula (Eq. (12)) or the Manhattan distance formula (Eq. (13)). We
observe how the choice of approach gives different line styles.

w(d) = = Gmin)b=0a) (11)

dmax - dmin

Here, d represents the depth of the silhouette point, and
dmin and dp,x are the lowest and highest possible depth
values, respectively. The line weights to be interpolated be-
tween are denoted by the free parameters a and b — a higher
weight corresponds to a greater line thickness. It is worth
noting that w(dpin) = a and w(dmax) = b. If a constant
line thickness is desired, a and b can be set to the same

value.

To draw thicker outlines, we then place appropriately
sized spots at the weighted silhouette points, using larger
spots for greater weights. We use the following formula to
compute the contribution of silhouette point ¢ at coordinates
(s, ¢y) to the final intensity value of the pixel at (z,y):

I. = max (wc - \/(:1: —)2+ (y — ¢y)?, O> (12)

where w, is the weight of the point c. While we have as-
signed an intensity value proportional to weight and Eu-
clidean distance in this formula, alternatives such as Man-
hattan distance are also possible:

I, = max (we — |z — ¢z| — |y — ¢y, 0) (13)

The choice of formula subtly affects the style of lines
produced by the algorithm, as shown in Fig. 8. Regardless
of the method used to determine the individual contribu-
tions I, of each silhouette point, the final intensity at a pixel
is obtained by summing these contributions, clamped to a
maximum value of 1.

Tfina = min <Z I, 1) (14)

We include more results showing the effects of changing
the weight parameters a and b, and the resulting thickened
lines, in Fig. 12 of the appendix.

4. Results

A selection of scenes rendered using our stylisation
methods is shown in Fig. 1. This is a highly subjective
domain, particularly on the topic of shading, so in this
section we focus primarily on the differences between
edge detection methods and the impacts of the various
parameters and optimisations introduced in the previous
section.

Setup. All results pictured in this paper are obtained using
our methods implemented within TensoIR [11], a frame-
work for inverse rendering. TensolR is built upon Ten-
soRF [3], which provides a framework for modelling ra-
diance fields as explicit voxel feature grids.

Our dataset comprises two synthetic scenes (the Lego
model and hot dog) from the NeRF dataset [14], one syn-
thetic scene (the armadillo) from the Stanford 3D scanning
repository [4], and a real-world scene (the Ignatius statue)
from the Tanks and Temples dataset [12].

Comparison of silhouette edge detection methods. We
now evaluate a difficult case for the silhouette edge detec-
tion algorithms discussed in Secs. 3.2 and 3.3. We focus on

A

(a) Ground truth (b) Gpuin = 0.01 (©) Gmin = 0.02

e e AT AT T

(d) Gmin = 0.03 () Gmin = 0.04 () Gmin = 0.05

Figure 9. The effects of the choice of threshold Gmin When using the Sobel operator for silhouette edge detection. The expected results,

rendered in Blender, are shown in the leftmost column.

e 6 ({1

Figure 10. The edges drawn by our algorithm using opacity-based
slicing with the parameters Amin = 0.6, amin = 0.1. With the
appropriately selected parameters, all views maintain a high level
of detail without false positives at high depth gradients.

the Sobel operator and our volumetric edge detection algo-
rithm, and how their parameters can be tuned to achieve the
desired effects.

In Fig. 9, we show how using different thresholds on the
Sobel operator affects the resulting outlines. We notice how
lower thresholds produce more false positives on surfaces
that make a sharp angle with the camera (see Fig. 9b) due
to the large, continuous depth changes in these areas. While
choosing a higher threshold does alleviate this, it also re-
sults in a great loss of detail on other views which may not
have such sharp depth gradients (see Fig. 9f).

We performed the same procedure on our own algorithm,
the full results of which are shown in Figs. 13 and 14 in
the appendix. A selected result from Fig. 14c is shown in
Fig. 10, where we see a constant level of detail across all
views without false positives in continuous regions.

5. Conclusion

In this paper, we have demonstrated how radiance fields
are a useful medium not just for faithful reconstruction of
real-life scenes, but also for abstract, artistic or technical
stylisation. We build upon the contributions of inverse ren-
dering to enable non-photorealistic shading styles, and draw
silhouettes and creases to emphasise shape and geometry.
We also contribute a novel algorithm for detecting silhou-
ette edges in radiance fields, suitable for finding and en-
hancing the outlines of an object.

6. Responsible Research

In the interest of ensuring the reproducibility of our re-
sults, and to allow scrutiny of our implementations, our
code is made publicly available at https://github.
com/mszilvasy/TensoIR-NPR. As mentioned, the
datasets we use are all available in the public domain
[4, 12, 14], and the code repository also includes the con-
fig files needed to train and render the scenes presented in
this paper.

References

[1] James F. Blinn. Models of light reflection for computer syn-
thesized pictures. Proceedings of the 4th annual conference
on Computer graphics and interactive techniques, 1977. 2

[2] John F. Canny. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-8:679-698, 1986. 3

https://github.com/mszilvasy/TensoIR-NPR
https://github.com/mszilvasy/TensoIR-NPR

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision (ECCV),2022. 1,7

Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, 1996. 7, 8

Cassidy Curtis, Sean Anderson, Joshua Seims, Kurt Fleis-
cher, and David Salesin. Computer-generated watercolor.
Proc. SIGGRAPH1997, 97,06 1997. 1, 2

Philippe Decaudin. Cartoon-looking rendering of 3d-scenes.
2003. 1,3

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
Image style transfer using convolutional neural networks.
In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2414-2423, 2016. 1

Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Co-
hen. A non-photorealistic lighting model for automatic tech-
nical illustration. In Proceedings of the 25th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’98, page 447452, New York, NY, USA, 1998.
Association for Computing Machinery. 1, 2

Bruce Gooch, Peter-Pike J. Sloan, Amy Ashurst Gooch, Pe-
ter Shirley, and Richard F. Riesenfeld. Interactive technical
illustration. In SI3D, 1999. 1, 2, 3, 4

Aaron Hertzmann. Introduction to 3d non-photorealistic ren-
dering: Silhouettes and outlines. 1999. 1, 3, 4

Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Song-
fang Han, Sai Bi, Xiaowei Zhou, Zexiang Xu, and Hao
Su. Tensoir: Tensorial inverse rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 1,2,7

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics, 36(4), 2017.
7,8

Adam T. Lake, Carl S. Marshall, Mark J. Harris, and Marc
Blackstein. Stylized rendering techniques for scalable real-
time 3d animation. In International Symposium on Non-
Photorealistic Animation and Rendering, 2000. 1, 2, 4

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1,7, 8

Thu Nguyen-Phuoc, Feng Liu, and Lei Xiao. Snerf: Stylized
neural implicit representations for 3d scenes, 2022. 1

Bui Tuong Phong. Illumination for computer generated pic-
tures. Communications of the ACM, 18:311 —317,1975. 2
Takafumi Saito and Tokiichiro Takahashi. Comprehensible
rendering of 3-d shapes. Proceedings of the 17th annual con-
ference on Computer graphics and interactive techniques,
1990. 1,2

Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 1
Irwin Sobel. An isotropic 3x3 image gradient operator. Pre-
sentation at Stanford A.I. Project 1968, 02 2014. 3

[20] Georges Winkenbach and David H. Salesin. Computer-
generated pen-and-ink illustration. SIGGRAPH °94, page
91-100, New York, NY, USA, 1994. Association for Com-
puting Machinery. 1, 2

[21] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,
Eli Shechtman, and Noah Snavely. Arf: Artistic radiance
fields, 2022. 1

[22] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. ArXiv, abs/2010.07492, 2020. 1

[23] Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul E.
Debevec, William T. Freeman, and Jonathan T. Barron. Ner-
factor: Neural factorization of shape and reflectance under
an unknown illumination. ACM Trans. Graph., 40:237:1-
237:18,2021. 1,2

[24] Yuechen Zhang, Zexin He, Jinbo Xing, Xufeng Yao, and Ji-
aya Jia. Ref-npr: Reference-based non-photorealistic radi-
ance fields for controllable scene stylization, 2023. 1

[25] Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei
Jia, and Xiaowei Zhou. Modeling indirect illumination for
inverse rendering. In CVPR, 2022. 1,2

A. Appendix

The following pages include all figures which could not
be incorporated into the main body of the document.

(a) Silhouette edges (black) and crease lines
(white) detected using the Sobel operator. This
is the same view that was shown in Fig. 9.

(b) Gooch shading (top) with dark silhouette (c) Toon shading (top) with silhouette edges
edges and light crease lines (bottom). and crease lines drawn in black (bottom).

Figure 11. Stylised rendering with edges derived using the Sobel operator.

(@a=8>b=0 ba=1b=1 ©a=1b=9

Figure 12. Exaggerated lines showing how changing the weight parameters a and b in Eq. (11) lets us vary line thickness. Increasing the
value of a results in heavier lines close to the camera, while higher values of b yield thicker lines further away.

10

A,

(a) Ground truth

N N e) S) S e

(b) onin = 2 (€) Omin =4 (d) omin =6 (€) Omin = 8 () omin = 10

Figure 13. The effects of the choice of threshold omin When using our silhouette detection method with o-based slicing in Eq. (6). We
observe how higher thresholds cause low density regions to be missed by the algorithm.

(a) Ground truth

W W AW Ml (e

(b) Qmin = 0.05 (©) amin = 0.1 (d) Qmin = 0.15 (€) amin = 0.2 (f) Qmin = 0.25

Figure 14. The silhouettes detected for the same views using the opacity-based slicing method in Eq. (10). The accumulated opacity
threshold is fixed at Amin = 0.6 for all columns, and only the the threshold cumin is varied.

11

	. Introduction
	. Related Work
	. Method
	. Shading
	. Image Space Edge Detection
	. Novel Silhouette Edge Detection Algorithm

	. Results
	. Conclusion
	. Responsible Research
	. Appendix

