
Complementing
Software-Based Self-Test

with DFT
P. Kremers

Complementing
Software-Based

Self-Test
with DFT

by

P. Kremers
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday June 30, 2025 at 13:30.

Project duration: November 11, 2024 – June 30, 2025
Thesis committee: Dr. ir. Moritz Fieback, TU Delft, Daily Supervisor

Dr. ir. Mottaqiallah Taouil, TU Delft, Responsible Supervisor
Prof. Dr. Koen Langendoen, TU Delft

Cover: Wafer and DUV reticle mask by ASML

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Hyperscalers Meta and Google have observed a rare but severe phenomenon in cores throughout
their processor fleets: Silent Data Errors (SDEs). Recent research efforts have indicated that marginal
timing failures are the main cause of these SDEs. Currently, the underlying defects causing these
failures, systematically escape production testing like full scan tests. Moreover, ageing-related failures
that develop over the lifetime of a chip can also cause SDEs. To ensure reliability and to detect marginal
defects, in-field testing is crucial. A promising approach for in-field testing is Software-Based Self-Test
(SBST). This allows for online testing of a core by running a software program that activates faults and
observes test responses. These programs are based on structural test patterns created by constraining
ATPG (CATPG) to functionally possible inputs. The resulting test patterns are then converted into
instructions, and faults are propagated into data memory, to be observed. Therefore, SBST programs
enable testing a processor core while it is in functional mode. Recent SBST works have shifted from
the stuck-at fault (SAF) model to the transition delay fault (TDF) model. Static fault models, such as
the SAF model, fall short in modelling the marginal timing failures that cause SDEs. However, SBST
programs targeting TDFs provide less coverage than the structural production test approach full scan.
This thesis proposes a methodology to increase fault coverage (FC) of SBST programs, targeting TDFs,
with a low area Design-for-Test (DFT) hardware addition to a core.

Increasing the FC of structural tests can be achieved by improving the testability of a circuit. Improv-
ing the testability of a circuit requires enhancing either its observability or its controllability. The focus of
this thesis is on increasing the observability of a core through the addition of DFT hardware. To add the
DFT hardware to a core in a way that complements SBST, an SBST generation framework, an SBST
simulation framework, and three DFT designs were developed. The frameworks use the proprietary
ATPG tool Tessent by Siemens. The SBST generation framework is based on partial scan CATPG
test patterns. A design space exploration, to justify the DFT additions, is done by tweaking the partial
scan configuration used by the constrained ATPG. The SBST program and the DFT are tested by the
simulation framework, which converts the software program into a test pattern file. This test pattern
file is then simulated in Tessent, providing FC results. The exploration of the design space follows a
methodology that is based on the capabilities of the ATPG tool. The SBST program FC is increased
by enhancing the observability of a selection of flip-flops using DFT.

Two DFT designs are implemented. One in the control and status registers (CSR) module, and
another in the instruction decode (ID) stage module. Results are provided for both DFT designs. The
DFT in the CSRmodule achieved a FC increase of 6.29 percentage points for SAF and 2.40 percentage
points for TDF, at a cost of 0.84%area overhead. Furthermore, the DFT in the ID stagemodule achieved
a FC increase of 1.01 percentage points for SAF and 1.92 percentage points for TDF, for a 0.65% area
overhead. It is also observed that increased observability is more essential for detection of TDFs than
the detection of SAFs. The SAF coverage is higher than some other works, but the SBST program
size is significantly larger. When comparing the TDF coverage to other works it is clear that the FC
results are significantly lower. However, when comparing the DFT area overhead to other works it is
shown that the DFT additions introduce relatively little area overhead. In conclusion, this thesis has
shown that DFT hardware that complements SBST can increase SBST program FC for a small area
overhead. This indicates that DFT could aid SBST programs in matching the FC achieved by full scan.
That would make SBST complemented by DFT an alternative to full scan, with a lower area overhead
and flexible in-field testing capabilities.

To improve the results of this work, future work should be done to improve the baseline SBST TDF
FC. This could be done by introducing a feedback loop from fault simulation to the constrained ATPG.
This would allow proving that the same FC increase for area overhead trade-off can be made with
a baseline SBST program that has higher FC. Furthermore, no efforts were done to minimize SBST
program size. So, there is improvement that can be done in this area. The main limitations of this
work are the justification step in the SBST pattern conversion and the functional constraint extraction
process, resulting in lower fault coverage than that of state-of-the-art SBST works.

ii

Acknowledments

Writing this thesis has been an exciting and rewarding challenge. It was by no means an easy task,
which is why I have learned so much throughout the process. During this period, I have been fortunate
to receive a great deal of support, and I would like to take a moment to thank those who have stood by
me along the way.

First and foremost, I would like to thank my daily supervisor, Moritz Fieback. I truly appreciated our
weekly meetings, during which he never rushed me and often took even more time than scheduled
to help me. Moritz guided me in developing critical thinking skills, and whenever I felt stuck, he would
suggest plenty different approaches I could try. I was always welcome to drop by his office, which made
a big difference. I also wish to thank my responsible supervisor, Mottaqiallah Taouil, for his valuable
feedback and thought-provoking questions.

I am also grateful to my friends on the tenth floor, who I worked alongside for 30 weeks. Our mutual
venting about thesis frustrations, coffee breaks, and lunches kept me in good spirits. Additionally, I want
to thank my friends outside the university for their constant encouragement and support in everything
I pursue.

Finally, I would like to express my thanks to my family and my girlfriend. Their unwavering sup-
port and belief in me throughout both of my degrees has been instrumental in helping me reach this
milestone.

Thank you all!

Pepijn Kremers
Delft, June 2025

iv

Contents

List of Figures x

List of Tables xii

Glossary xiv

1 Introduction 1
1.1 Motivation . 1
1.2 State-of-the-Art . 3

1.2.1 SBST Methods . 3
1.2.2 SBST Complemented by a DFT . 4
1.2.3 Limitations . 4

1.3 Contribution . 5
1.4 Outline . 5

2 Background 6
2.1 Digital Design . 6

2.1.1 Logic Design . 6
2.1.2 Transistors . 8
2.1.3 ASIC Design Flow Steps . 9
2.1.4 Functional Design . 10
2.1.5 Synthesis . 10
2.1.6 Place and Route . 11

2.2 Processor Cores . 11
2.2.1 Instructions . 11
2.2.2 Instruction Set Architecture . 12
2.2.3 Main Modules . 12
2.2.4 Data and Control Flow . 13
2.2.5 Pipelining . 13

2.3 Chip Life Cycle . 15
2.3.1 Quality and Reliability . 15
2.3.2 Design . 15
2.3.3 Manufacturing . 16
2.3.4 Post Manufacturing . 17

2.4 Fault Modelling . 18
2.4.1 Defects . 18
2.4.2 Fault Types . 19

2.5 Test Evaluation . 22
2.5.1 Fault Simulation . 22
2.5.2 Metrics . 22

2.6 Combinational Test Generation . 23
2.6.1 Search Space Abstractions . 23
2.6.2 ATPG Algorithms . 24

2.7 Sequential Test . 25
2.7.1 Scan Design . 25
2.7.2 Transition Delay Fault Test . 26
2.7.3 Path Delay Fault Test . 28

3 Silent Data Errors 29
3.1 Silent Data Errors . 29

3.1.1 Calls-to-Action . 29

vi

Contents vii

3.2 SDE Nature . 30
3.2.1 Defects . 30
3.2.2 Propagation Through the Stack . 31

3.3 SDE Rates . 32
3.3.1 Microarchitecture-level Fault Injection . 32
3.3.2 Comparison . 35
3.3.3 Alternative SDE Estimation Methods . 36
3.3.4 Conclusion . 36

3.4 SDE Solutions . 36
3.4.1 Software Test Libraries . 36
3.4.2 Software Redundancy . 38
3.4.3 Continuous Verification in Hardware . 39
3.4.4 Test . 40
3.4.5 Conclusion . 44

3.5 SBST State-of-the-Art . 45
3.5.1 Overview . 45
3.5.2 Functional Constraints Extraction . 46
3.5.3 Pattern-to-Program Conversion . 47
3.5.4 SBST Combined with DFT . 51
3.5.5 Comparison . 51
3.5.6 Conclusion . 52

4 Software-Based Self-Test 53
4.1 Implementation: SBST Program Generation . 53

4.1.1 CV32E40P Core . 54
4.1.2 Synthesis . 56
4.1.3 Functional Constraints Extraction . 56
4.1.4 Constraint Command Generation . 58
4.1.5 Scan Chain Insertion . 59
4.1.6 CATPG . 60
4.1.7 Pattern-to-Program Conversion . 61

4.2 Experimental Setup . 64
4.2.1 Test Pattern File Generation . 64
4.2.2 Fault Simulation . 65

4.3 Results . 66
4.3.1 Experiments . 67
4.3.2 Metrics . 67
4.3.3 Synthesis . 67
4.3.4 Register File Test Programs . 67
4.3.5 SBST . 68

4.4 Discussion . 72
4.5 Conclusion . 72

5 DFT Design 73
5.1 Design Space Exploration . 73

5.1.1 Methodology . 73
5.1.2 Results . 74
5.1.3 Discussion . 78

5.2 Design Choices . 78
5.3 DFT Method . 79

5.3.1 Criteria . 79
5.3.2 Possible Options . 79
5.3.3 Trade-off . 80

5.4 Hardware Implementation . 80
5.5 Results . 83

5.5.1 Fault Simulation Results . 83
5.5.2 Area Results . 84

Contents viii

5.5.3 Comparison with Other Works . 86
5.6 Discussion . 87
5.7 Conclusion . 88

6 Conclusion 89
6.1 Summary . 89

6.1.1 Chapter 2 . 89
6.1.2 Chapter 3 . 89
6.1.3 Chapter 4 . 89
6.1.4 Chapter 5 . 90

6.2 Conclusion . 90
6.3 Limitations . 90
6.4 Future Work . 90

References 92

A Status and Control Registers 100

B Bugged Design Space Exploration Results 102

List of Figures

1.1 IC Sales Revenue from IEEE International Roadmap for Devices and Systems [2] . . . 1

2.1 Basic Logic Gates including Truth Tables from [29] . 7
2.2 Critical and Short Path Examples from [29, p. 90] . 7
2.3 SR Latch: Bistable States, Symbol, and Truth Table [29] 8
2.4 D Flip-Flop: (a) Schematic, (b) Symbol, and (c) Condensed Symbol [29, p. 114] 8
2.5 Cross-section of an N-well CMOS Process from [30, p. 42] 9
2.6 ASIC Design Flow inspired by [31] . 10
2.7 Simple Example Core . 13
2.8 Example Pipeline Operation . 14
2.9 Example of Forwarding . 14
2.10 Example of Stalling . 15
2.11 Chip Life Cycle . 15
2.12 Fabrication and Test Cost per Transistor [37] . 17
2.13 Classification of Failure Mechanisms from [36, p. 1] . 18
2.14 Failure Mechanism Classification . 19
2.15 An Example of a Single SAF from [1, p. 71] . 20
2.16 An Example of potential bridging faults from [9, p. 4] . 20
2.17 Delay Fault Model Taxonomy . 21
2.18 An Example of a TDF from [9, p. 5] . 21
2.19 Fault Simulation in the Context of Test Generation based on [1, p. 88] 22
2.20 An Example of The D-algorithm . 24
2.21 A Sequential Circuit Inserted with Scan Design . 25
2.22 Waveform of Scan Design Launch-on-Shift Functionality 26
2.23 Example Full-scan Circuit from [36, p. 656] . 27
2.24 Waveform of Launch-on-Capture Pattern . 27
2.25 Enhanced Scan Flip-Flop [42] . 28

3.1 Defect Mode Classification of SDE Based on Impedance (left), SDE Distribution Across
Circuit Types (middle), and SDE Distribution by Functional Region (right) from [49] . . . 31

3.2 Classifying SDEs Throughout the Stack . 32
3.3 SDC Probabilities of Non-benign Faults from [52] . 33
3.4 Arm Cortex-A15 FIT rates (left graph) and Arm Cortex-A72 FIT rates (right graph) from

[57] . 34
3.5 SDC AVF for Permanent Faults in L1D Cache and Integer Adder from [58] 34
3.6 SDC Probability of Multiplication and Addition Arithmetic Units for Integers and Floating

Points Numbers from [53] . 35
3.7 Software Self-checking Methods for Data Centre SDEs 37
3.8 Example of (a) Original Program (b) Full Duplication (c) SID from [64] 38
3.9 Self-Checking Multiplier Circuit from [66] . 39
3.10 Overview of Proposed Method from [72] . 41
3.11 Proposed Method from [75] . 43
3.12 Taxonomy of Development Styles for SBST from [84] . 45
3.13 An Overview of SBST . 46
3.14 ATIG Framework from [21] . 47
3.15 Proposed SBST Test Program Generation from [8] . 48
3.16 Interaction Between Processor and VCM from [13] . 49
3.17 SBST Program Generation from [88] . 49
3.18 Proposed Test Program Generation and Pattern-to-Program Conversion Flows from [11] 50

x

List of Figures xi

4.1 Proposed SBST Program Generation Framework . 54
4.2 Simplification of the Pulpissimo Architecture [92] . 55
4.3 CV32E40P Diagram from [93] . 56
4.4 T5 Rule Violation in Tessent Visualizer . 59
4.5 T5 Rule Violation Fix . 60
4.6 Tessent CATPG Script Flow . 61
4.7 CATPG Output Pattern Inspired by Tessent Manual [94] 61
4.8 Pattern-to-Program Conversion Flow . 62
4.9 Modified Test Program Template based on [11] . 63
4.10 Experimental Setup . 64
4.11 SBST Fault Simulation Framework from [78] . 65
4.12 Tessent Fault Simulation Script Flow . 66
4.13 SAF and TDF Results of the SBST Programs and CATPG Patterns 68
4.14 Test Pattern Conversion Results . 69
4.15 CATPG CPU Runtime . 69

5.1 SAF Results with Additional Controllable and Observable Scan Cells 75
5.2 TDF Results with Additional Controllable and Observable Scan Cells 75
5.3 SAF Results with Additional Observe Points . 76
5.4 TDF Results with Additional Observe Points . 76
5.5 SAF Results with Additional Controllable and Observable Scan Cells and Sequential

Depth 8 . 77
5.6 TDF Results with Additional Controllable and Observable Scan Cells and Sequential

Depth 8 . 77
5.7 SAF Results with Additional Observe Points and Sequential Depth 8 78
5.8 TDF Results with Additional Observe Points and Sequential Depth 8 78
5.9 DFT CS Design . 81
5.10 DFT CS Design Optimised for Area . 82
5.11 DFT ID Design . 82

B.1 TDF Results with Additional Observable Scan Cells . 102

List of Tables

2.1 Roth’s Five-valued and Muth’s Nine-valued Algebras . 24

3.1 SDE Rate Measurement Methodologies from [53] . 32
3.2 Qualitative Comparison of Fault Injected Components 35
3.3 Qualitative Comparison of Fault Models used for Fault Injection 36
3.4 Area Overhead and Fault Coverage Comparison for 32-bit Multiplier from [66] 40
3.5 Gate Delay vs ∆Vth and Occurrence Probability from [69] 40
3.6 Distribution of Units that Showed Vmin Elevation with TA Content from [70] 41
3.7 Results from [72] . 43
3.8 Resulting FE Ratio from [75] . 44
3.9 Comparison of Various SBST Works . 52

4.1 Registers Included in Partial Scan Configuration . 58
4.2 March Algorithms Partly from [96] . 64
4.3 Synthesis Results of CV32E40P [90] with the TSMC 40nm Cell Library 67
4.4 March Tests Fault Coverage of Register File Module . 68
4.5 SAF and TDF Results based on TDF Patterns with Sequential Depth 8 70
4.6 SBST Program Size Results for Sequential Depth 8 . 70
4.7 SAF SBST Results based on SAF Patterns . 71
4.8 SBST Results for Random FSS Generation based on SAF and TDF Patterns 71

5.1 Criteria for the DFT Design . 79
5.2 Options for the DFT Design . 80
5.3 DFT Design Trade-off Table . 80
5.4 SAF and TDF Results for the CS DFT and Optimised CS DFT 83
5.5 SAF and TDF Results for ID DFT . 84
5.6 Area Results Core Baseline . 84
5.7 Area Core CS DFT with Total Area Increase . 85
5.8 Area Core Optimised CS DFT with Total Area Increase 85
5.9 Area Core ID_DFT with Total Area Increase . 86
5.10 SAF FC Comparison with Other Works . 86
5.11 TDF FC Comparison with Other Works . 87
5.12 Area Comparison with Other Works . 87

A.1 Control Status Register Overview of the CV32E40P [97] 101

xii

Glossary

ALU Arithmetic Logic Unit.
ASIC Application Specific Integrated Circuit.
ATE Automatic Test Equipment.
ATIG Automatic Test Pattern Generation.
ATPG Automation Test Pattern Generation.

BDD Binary Decision Diagram.
BMC Bounded Model Checking.

CATPG Constrained Automation Test Pattern Generation.
CEE Corrupt Execution Error.
CISC Complex Instruction Set Computing.
CMOS Complementary MOS.
CPU Central Processing Unit.
CUT Circuit-Under-Test.

DFT Design-for-testability.
DSE Design Space Exploration.

ECC Error Correction Codes.

FC Fault Coverage.
FCE Functional Constraints Extraction.
FE Fault Efficiency.
FSS Fault-Sensitizing State.

GDF Gate Delay Fault.
GPR General Purpose Register.
GPU Graphics Processing Unit.

HDL Hardware Description Language.

IC Integrated circuit.
IPC Instructions Per Cycle.
ISA Instruction Set Architecture.

LoC Launch-on-Capture.
LoS Launch-on-Shift.

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor.

PDF Path Delay Fault.
PPDF Partial Path Delay Fault.
PUT Processor-Under-Test.

RISC Reduced Instruction Set Computing.
RL Reinforcement Learning.

xiv

Glossary xv

RTL Register Transfer Level.

SAF Stuck-at Fault.
SBST Software-based Self-test.
SDC Silent Data Corruption.
SDE Silent Data Error.
SDF Small Delay Fault.
SFI Statistical Fault Injection .
SID Selective Instruction Duplication.
SIMD Single Instruction Multiple Data.
STIL Standard Test Interface Language.
STL Software Test Library.

TC Test Coverage.
TDF Transition Delay Fault.

VCM Validity Checker Module.

1
Introduction

This chapter is an introduction to this thesis. The Introduction begins with Section 1.1, which explains
the importance of and need for researching Software-based Self-test (SBST). This is followed by a
discussion on the current state-of-the-art SBST including its limitations, in Section 1.2. Then, Section
1.3 covers the academic contributions of this thesis. Finally, in Section 1.4 the high level structure of
the rest of the thesis is presented.

1.1. Motivation
In the information age chips can be found everywhere, i.e. in cars, smartphones, toys, household
appliances, and even space. Due to the extremely large volume of integrated circuits (ICs) deployed
and their wide range of applications, it is key that these ICs are manufactured correctly. For example,
an IC in an electrical car that is manufactured incorrectly can result in a driver being unable to brake.
A malfunctioning IC in a pacemaker can halt its service for a period of time and prove fatal. These
examples are endless, especially in the context of industries like defence, health-care, automotive,
and aerospace.

This pressing issue is tackled by the field of study on testing for IC quality and reliability. The root
cause are imperfections in the physical structure of chips introduced during the manufacturing process.
These are addressed by testing, which checks if the physical structure of the produced IC matches the
intended physical structure [1]. During the testing process, themain objective is to detect manufacturing
defects. The ratio of chips that pass this testing process is called the yield. The yield can greatly affect
IC cost, as well as the time it takes to test each IC. Due to the large amounts of money involved in
chip manufacturing, see Figure 1.1, developing new and improving existing testing strategies is of the
utmost importance.

Figure 1.1: IC Sales Revenue from IEEE International Roadmap for Devices and Systems [2]

1

1.1. Motivation 2

Despite decades of test development, currently deployed ICs, across device generations [3], have
been observed to systematically suffer from errors that corrupt data and stay undetected [4]. This is
extremely problematic, which is why there have been calls-for-help [4][5] by two industry hyperscalers:
Google and Meta. These errors are bypassing current testing practices, and there are no effective in-
field detection schemes. This has renewed enthusiasm in the IC testing community, and given a new
perspective to a decades old issue: Silent Data Errors (SDEs). Due to SDEs corrupting data and staying
undetected they are also known as Silent Data Corruptions (SDCs). Previously, the main hypothesis on
what caused SDEs was that they manifest in memory due to transient soft errors caused by cosmic rays
[6]. However, the previously mentioned hyperscalers, have a shared perspective on a newly identified
potential cause of SDEs: manufacturing defects. SDEs are an extremely rare phenomenon, this is
a reason why not much is known about them and why researching them is challenging. The scale
of the operations of hyperscalers, more than a million of CPU cores per fleet [7], provides them with
an unique opportunity to observe and study SDEs. They found a pattern of persistent SDEs that was
traced back to the compute parts of cores. Meta states that debugging an SDE can take months of
debug engineering time [5]. Their silent nature also allows SDEs to go unnoticed for a long time period.
This corrupted data can do serious damage that is hard or impossible to reverse, especially when it
is related to i.e. bank transitions, security feeds, legal logs, and decryption keys. That is why more
thorough manufacturing tests need to be developed, as well as effective in-field detection schemes.

At their data centres Meta has observed that the manifestation of SDEs can depend on specific envi-
ronmental conditions like temperature, frequency, and voltage [5]. Additionally, they found dependence
on specific sequences of instructions, and even specific data values used in certain operations. What
they described are intermittent faults, which are non-permanent faults that only appear under specific
conditions. Intermittent faults can be caused by manufacturing defects as well as IC degradation due
to ageing. Failures caused by degradation due to ageing are not present immediately after manufac-
turing, so they are not detected by post-manufacturing testing. The period of time an IC is specified to
work correctly is called its lifetime, a metric used for this is reliability. Failures negatively impacting IC
reliability can only be detected by applying in-field testing to deployed ICs. Meta calls them post-burnin
failures and explains the increase of them by pointing to the decrease in feature size: “Silicon feature
sizes are now measured in nanometers, leaving smaller margins for error, and perhaps more risk of
post-burnin (latent) failures.“ [5].

With the importance of testing, both immediately after manufacturing and in-field, established the
right context is set to introduce Software-Based Self-Test (SBST). SBST is a method of testing a core
in-field for defects, while it is in functional mode. It is called software-based because an SBST program
is a sequence of instructions that can be run like a software program. An advantage of SBST as
opposed to using scan design [1] for testing, is that the core can stay in functional mode and run the
test program at-speed. Additionally, SBST programs can be split up in parts, allowing very small parts
of a program to be run independently when the core has a small amount of idle time. This fits really well
within the context of large data centres, which is where most of the SDEs are occurring. Additionally,
most modern SBST methods are generated based on scan test patterns [8]. Scan tests are especially
effective at detecting timing failures [9]. A prominent researcher in the test community, Adit Singh, has
emphasized the need for “new low-cost scan tests“ [10]. SBST can be seen as an answer to his call, as
it has low overhead and is based on scan test patterns. This thesis includes a literature review of SDEs
and its potential remedies. From this literature review SBST has emerged as a promising practical
candidate solution.

The perspective that SBST is a promising test approach is shared by the test community, this can
be seen alone by the vast amount of research on SBST in the last half decade [8][11][12][13][14][15]
[16][17][18][19][20]. However, current SBST solutions often still require a large amount of manual test
engineering effort [14]. Even though this topic is still actively being researched, almost all works limit
themselves to the restrictions set by the hardware of the circuit-under-test (CUT). Part of the challenge
of developing an SBST program is ensuring the developed program is functional behaviour, so that
there is no extra area overhead. Adding extra hardware that can be used during testing could aid
in test development and execution. Furthermore, there have been very few to no recent works that
attempt to enhance SBST by adding a form of DFT hardware. This work explores a methodology to
enhance SBST by adding DFT hardware to a core. This is achieved by uniquely basing the SBST on
partial scan patterns, instead of full scan patterns which is the standard.

1.2. State-of-the-Art 3

1.2. State-of-the-Art
The topic SBST has many unsolved questions, thus there are many different works with methodolo-
gies focusing on different aspects. Section 1.2.1 introduces these methods and describes their main
differences. This is followed by Section 1.2.2 which covers the works that have combined SBST with a
DFT hardware addition. Finally, Section 1.2.3 concludes with limitations of the current state-of-the-art.

1.2.1. SBST Methods
Before introducing the various SBST methodologies, it is important to outline the main steps of SBST
generation. The first step, Functional Constraints Extraction (FCE), entails extracting functional con-
straints from the CUT. Then, these constraints can be used to perform Constrained Automatic Test
Pattern Generation (CATPG) on the CUT, which is the second step. The third step applies some form
of postprocessing to the generated test patterns converting them into instructions and creating the final
product: an SBST program. This third step is often called pattern-to-program conversion.

Next, a brief overview of state-of-the-art works with their focues on the first and third steps of SBST is
provided. This work is based on structural testing, however functional SBST methods will be discussed
in Chapter 4. The aforementioned chapter will also include more detail on the functional SBSTmethods
mentioned below.

Functional Constraints Extraction
FCE is the process of extracting constraints from the processor, which can be applied during CATPG.
To perform FCE manually, a great amount of manual effort and processor core knowledge is necessary.
However, automating FCE is also really challenging to implement and not many works have done this.
Furthermore, FCE is in practice always done partly by extracting constraints of some signals. In theory,
it could be done completely covering every functionally possible state the core can be in. Perfectly
complete FCE would ease the CATPG efforts, as for every test pattern a matching instruction sequence
would exist.

In 2010, Zhang et al. [21] proposed an automatic FCE methodology. The methodology is based on
expanded instructions, which are instructions with some extra information about the state of the rest of
the circuit. Data mining through simulations is applied to map expanded instructions to signal values.
From these mapping constraints follow which can be used in CATPG. The work targeted the fault model
SAFs, more on this in Section 2.4, and their main contribution was an automated FCE method.

In 2013 Zhang et al. [22] developed amore advanced automatic FCEmethod. This method is based
on executing-trace-based constraint extraction. This means that executing-traces from simulations are
analyzed to find mappings between instructions and signals. Compared to the previous work from
Zhang et al., this FCE method could additionally extract constraints for hidden control logic like branch
predictors. So, this advance FCE method resulted in better results, even comparable to full-scan [1].

Pattern-to-Program Conversion
Pattern-to-program conversion is the core step in SBST program generation. It turns the test patterns
generated by CATPG into a sequence of instructions that can run on a core like a program. The
constraints used in this process are extracted by FCE. A high-level overview of some state-of-the-art
works focusing in pattern-to-program conversion is provided below.

In 2016 Riefert et al. [23] propose the Validity Checker Module (VCM). This module is used to
impose functional constraints on the CUT. They also model the problem of trying to reach a specific
circuit state (specified in the test patterns), as a bounded model checking (BMC) problem. That way a
BMC solver can be used to generate instruction sequences.

In 2021 Chen et al. [8] developed an SBST generation method based on a test program template.
This template consists of instruction sequences that set different parts of the pipeline of the CUT into the
desired state. This greatly simplified the conversion of full-scan patterns into a program of instructions.

Then, in 2023 Chen et al. [11] expand the test program template based SBST generation method. In
contrast to modeling the justification problem as a BMC [23] problem, they model it as a binary decision
diagram (BDD). Additionally, they develop a handcrafted test program for the register files.

In 2024 the test program template method is once again expanded, but by Kuo and Huang [12].
They propose a branch-aware SBST generation method. Essentially they rearrange the final SBST
program to ensure faults during branch instructions are propagated to an observable output.

1.2. State-of-the-Art 4

Lastly, it is interesting to note that in 2023 Anghel et al. [14] were the first and only work to generate
an SBST program that targets path delay faults (PDFs). More on this fault model can be found in
Section 2.4. They use a similar setup as [23], including a VCM and a BMC solver.

1.2.2. SBST Complemented by a DFT
The SBST works discussed thus far have all adhered to functional constraints imposed by the CUT and
the instruction set architecture (ISA). Theoretically these constraints could be bypassed or adjusted by
adding DFT hardware to the CUT. This would entail introducing area overhead, and negating one
of SBSTs selling points: zero area overhead. However, the main appeal of SBST is that it can be
performed at-speed and has high flexibility, making it ideal for in-field testing. Relatively little research
has been done on the trade-off of area versus SBST performance or SBST development effort. A short
introduction of the works that have combined SBST with some type of DFT hardware addition will follow.

Test Instructions
In 2001 Lai et al. [24] explored adding DFT hardware that enables SBST to use so called ’test instruc-
tions’. Their methodology for finding effective test instructions involves applying testability analysis to
find registers with low controllability or observability. The “testability analysis“ entails manually analyz-
ing the micro-architecture of the core. Then, they add test instructions to increase the controllability
and observability of those registers. They found that they were able to decrease SBST test time, while
increasing fault coverage. At the cost of relatively little area increase. They verified their approach on
the PARWAN core [25], and the DLX core. Their work targets “path delay faults“, but they do not define
them and only mention them once.

Added Observation Points
In 2006 Nakazato et al. [26] proposed a DFT method to enhance SBST by adding observation points.
However, they work under the assumption that each register in the core can be set to 0 or 1 by some
function. The work by Nakazato et al. has some contradictions, it claims: “A function to initialize the
value of each register in the processor to ‘0’ or ‘1’ is added“. But it also says: “the proposed method
adds only observation points to the original design“. Additionally, there is no explanation on how these
”functions” are implemented. Another thing missing from the work is any kind of nuance when choosing
which observation points to add. Lastly, they do not mention for what fault model they are testing.

Functional DFT
Recently, in 2024 Irith Pomeranz published a work on a functional DFT [27]. This work is more theo-
retical than the previous two discussed works. It was not tested in combination with an SBST program,
but SBST is the context in which the idea for the functional DFT can be used. Therefore, there are
no area results, only fault coverage results. In short, the idea is to add multiplexers in front of specific
flip-flops. These multiplexers swap state variables (flip-flop content) so that this swap propagates a
fault towards an observation point in case of a faulty circuit, and in case of a fault-free circuit the state
does not change.

1.2.3. Limitations
The focus of state-of-the-art research on SBST is mainly on two subproblems: pattern-to-program
conversion and FCE. Improving pattern-to-program conversion will directly lead to a higher fault cov-
erage (FC), because more of the patterns from the CATPG are converted into functional instruction
sequences. Enhancing FCE capabilities will cause stricter constraints for the CATPG, leading to more
patterns that can be turned into instructions, and indirectly also leading to higher FC results. So the
main goal of research on SBST is improving its FC metric. However, none of the recent state-of-the-art
works considers adding extra hardware to increase FC. Some faults could linger in a core, but have
no easy path to propagate to an observable output. For example, when a bit in a status or control
register is corrupted, propagating it to an observable output is a very convoluted process. In that case
DFT hardware could help make it observable. Nonetheless, the recent state-of-the-art works limit them-
selves to the hardware already available on the core, even though for other forms of testing some area
overhead is considered the norm [28].

The recent functional DFT idea of Irith Pomeranz is a promising way to improve FC, but has yet to be
tested in combination with SBST. The solutions discussed that combine a DFT hardware addition with

1.3. Contribution 5

SBST, are outdated and have some flaws. Firstly, Lai et al. [24] do not give any source or explanation
for what they mean with path delay faults, and their work is done on small and outdated processor
cores. Their method for finding poorly observable and controllable registers is ad hoc and cannot
be automated. Nakazato et al. [26] have a good idea, but also leave some questions. They claim
to only add observation points, but they also add functions that can set each register or work under
the assumption that these exist. Additionally, there is no nuance when picking the registers that are
made observable. Lastly, they provide no FC results, but express their results in “template level fault
efficiency“ for no explicit fault model.

The following list states the shortcomings of current state-of-the-art research on SBST

• No SBST technique has 100% fault coverage, this metric can be further improved.
• There is no analysis on how varying constraints effect FC and the pattern-to-program conversion
process.

• There is no SBST program that tests all PDFs, only a selection of PDFs.
• There is no combination of DFT and SBST that targets the current state-of-the-art fault model
TDF.

• The current works that combine DFT and SBST lack a systematic method of identifying effective
locations for DFT addition.

• No DFT and SBST combination has been tested on a modern core.
• There is no work that analyses the trade-off between area and FC in the context of SBST com-
bined with a DFT.

1.3. Contribution
This thesis shows that a low-cost DFT addition can enhance SBST program FC. To reach this goal a
baseline SBST program is generated. Also, before landing at the solution SBST, a thorough literature
study on the issue of SDEs was conducted.

The main contributions of this thesis are:

• A literature study on SDEs.
• A literature study on SBST
• A framework using Tessent that can run fault simulation of a sequence of instructions on the
CV32E40P core.

• A framework that can automatically generate functional constraints for different partial scan con-
figurations of the CV32E40P core.

• A partial scan based SBST generator, using Tessent, for the CV32E40P core that can automat-
ically generate SBST programs for different fault models. Achieving 76.57% FC for SAF and
64.29% FC for TDFs.

• An analysis of CATPG with varying configurations.
• A methodology for finding locations for effective DFT additions that will enhance SBST.
• An implementation of a DFT addition for usage during SBST program execution. Achieving a a
FC increase of 6.29 percentage points for SAFs and 2.4 percentage points for TDFs, at the cost
of 0.84% area increase.

• An analysis of the trade-offs that should be considered when adding DFT for usage during SBST.

1.4. Outline
This thesis is structured as follows. Starting with Chapter 2, this will provide the relevant background
information needed to understand the rest of the thesis. Then, chapter 3 covers the literature review,
starting from the issue of SDEs, and ending with a resolution: SBST. After this, Chapter 4 will go in
depth on SBST, the implementation developed for this thesis, and the experimental setup. One of the
main contributions of this thesis, a methodology for choosing DFT avenues, is described in Chapter 5.
Moreover, three DFT designs are discussed, and their results are presented. Lastly, the thesis will be
concluded in Chapter 6.

2
Background

This chapter will cover the background theory necessary to understand the rest of the thesis. The
chapter starts off by introducing the digital design flow in Section 2.1. Then, Section 2.2 discusses
modern processor cores and any relevant related information. Section 2.3 illustrates the chip life cycle,
from the conception of an idea to the end of life of the chips. As well as how testing fits into it. Following
this is Section 2.4 in which fault models are discussed. Section 2.5 explains how these fault models are
used to evaluate tests. Then, more detail will be provided on how tests are generated based on these
fault models in combinational circuits in Section 2.6. Section 2.7 specifically discusses test generation
for sequential circuits.

2.1. Digital Design
Digital design is a broad field covering the design of digital ICs. Digital ICs consist of digital circuits,
while analogue ICs consist of analogue circuits, and mixed-signal ICs consist of both analogue and
digital circuits. Digital circuits process digital signals, which are binary signals that can have 2 states
(on/off). In contrast, analogue circuits work with analogue signals, which have a range of values they
can take on. Digital systems consist of logic gates, made up of transistors, that carry out simple logic
functions. These logic functions can be expressed in Boolean algebra. There are two main types of
digital logic: combinational and sequential, these are discussed in Section 2.1.1. To design digital ICs,
many steps need to be taken, see Section 2.1.3. First, the hardware needs to be designed at a high
level of abstraction to be able to represent complex ideas, see Section 2.1.4. Then, this high level
design needs to be translated into more detailed logic gates, see Section 2.1.5. After this, the design
should be mapped onto the specific technology of the foundry that will manufacture it, see Section 2.1.5.
More details on the final step in the digital design flow can be found in Section 2.1.6.

2.1.1. Logic Design
At the core of digital design one can find logic design. Logic design is the design of logic circuits with
logic gates. Logic gates are defined as “Logic gates are simple digital circuits that take one or more
binary inputs and produce a binary output“ [29, p. 19]. These simple digital circuits can be represented
by symbols, their inputs, and output. Logic gate functionality can be encoded in something called a
truth table. The behaviour of logic gates can also be expressed in boolean algebra. An example of 6
simple logic gates can be seen in Figure 2.1. The aforementioned concepts are shown for NOT, AND,
OR, XOR, NAND, and NOR gates. From top to bottom the figure shows for each gate: the symbol, the
function (in boolean algebra), and the truth table.

Furthermore, logic design can be categorised into two categories: sequential logic design and com-
binational logic design. The two categories of logic design and their distinctions will be elaborated upon
below.

6

2.1. Digital Design 7

Figure 2.1: Basic Logic Gates including Truth Tables from [29]

Combinational Logic
A combinational circuit, consisting of combinational logic, is defined as “A combinational circuit’s outputs
depend only on the current values of the inputs“ [29, p. 56]. An example of a combinational circuit is
a logic gate. This means a combinational circuit has no memory, it can not recall the previous inputs it
received. A combinational circuit merely carries out a specified logic function.

Even though combinational circuits do not use a clock, timing is an important aspect. After a change
in input these circuits immediately change their outputs, or at least immediately after some propagation
delay. In other words, combinational circuits are asynchronous. Propagation delay is the time it takes
for a signal to travel through a path. The propagation delay of a circuit is the maximum time required
for all changes in input signals to have propagated to the outputs of the circuit. A circuit also has a
contamination delay, which is the minimum time it takes for a change in any input to change any output
value. Figure 2.2 introduces two types of paths that every combinational circuit has, namely the critical
path, and the short path. The critical path highlighted in blue goes through three logic gates, as can be
seen its delay is the time the signal takes to propagate through these gates and the wires that connect
them. It is the same for the short path highlighted in gray, but this path only contains one logic gate.
These paths are very much related to the concepts propagation and contamination delay. The critical
path of a circuit is the path from an input to an output with the largest propagation delay. From this
it follows that the propagation delay of a circuit is the propagation delay of its critical path. The short
path of a circuit is the path from an input to an output with the least delay. Therefore, the contamination
delay of a circuit is equal to the propagation delay of its short path.

Figure 2.2: Critical and Short Path Examples from [29, p. 90]

2.1. Digital Design 8

Sequential Logic
Sequential logic is defined as follows “The outputs of sequential logic depend on both current and prior
input values“ [29, p. 109]. So, in contrast to combinational logic sequential logic does have memory.
This implies that a sequential circuit can retain information about its past inputs. In practice, sequential
circuits typically store a representation or transformation of prior inputs, commonly referred to as the
state of the circuit. This state can be viewed as a set of bits called state variables [29], that contain
information about the previous cycle of the circuit. The state or values of the state variables determine
the behaviour of the circuit. The question that remains is: how does sequential logic have memory?

The essential component that enables building digital memory is a bistable element, an element
with two stable states. Two simple and common bistable elements are latches and flip-flops. These
are sequential circuits that store a state variable of one bit, and contain controllable inputs that can set
this bit. There are many different types of latches, but to provide the necessary background for this
thesis only the SR latch is briefly discussed. A simple example of a latch is an SR latch, and is shown
in Figure 2.3. An SR latch consists of two cross-coupled NOR gates. Figure 2.3 shows the bistable
states of an SR latch, its symbol, and its truth table. Case one indicates the inputs necessary to drive
the latch to ’0’, case two drives the latch to ’1’, case three sets both outputs to ’0’ (creating an unstable
state) and case four enables the latch to maintain state and store its current value. So the general idea
of a latch, regardless of the type, is that it can store a bit and changes when its inputs change. This is
asynchronous behaviour as a latch responds to changes on its inputs immediately.

Figure 2.3: SR Latch: Bistable States, Symbol, and Truth Table [29]

In contrast to a latch, a flip-flop has synchronous behaviour and only changes its state value on the
edge of a clock. The most common type of flip-flop is the D flip-flop. The design of a flip-flop is a bit
more complicated than that of the previously discussed SR latch. In short, as shown in Figure 2.4 (a),
a D flip-flop is made up of two D latches and an inverter that ensures the clock inputs of both D latches
are complements of each other. A D latch consists of an SR latch, two AND gates, and an inverter. D
latches have a clock input, and change continuously when the clock is high. The function of a D flip-flop
is defined as “a D flip-flop copies D to Q on the rising edge of the clock, and remembers its state at all
other times“ [29, p. 114]. From this can be concluded that bistable elements that update their state in
response to a clock edge are flip-flops, and all other bistable elements are latches.

Figure 2.4: D Flip-Flop: (a) Schematic, (b) Symbol, and (c) Condensed Symbol [29, p. 114]

2.1.2. Transistors
Transistors are the fundamental building blocks of all digital ICs. All logic gates discussed in Section
2.1.1 can be built using transistors. A transistor is an electronic switch that can control the flow of
current between two terminals based on the voltage applied to a third terminal. The most commonly
used type in digital circuits is the MOSFET.

AMOSFET has three terminals: source, drain, and gate. The transistor is built on a silicon substrate,
with regions doped to form either p-type or n-type material. Between the source and the drain lies a

2.1. Digital Design 9

channel region, separated from the gate by a thin insulating layer of silicon dioxide. By applying a
voltage to the gate, an electric field is generated that controls whether a conductive channel forms
between the source and drain [30]. Figure 2.5 shows, in the context of a p-substrate, the two types of
MOSFETs:

• nMOS Transistor: A positive gate voltage attracts electrons to the channel region beneath the
gate oxide. If this positive voltage is large enough (above the threshold voltage), it creates an
n-channel connecting the n-type source and drain regions, allowing electrons to flow from the
source to the drain.

• pMOS Transistor: A negative gate voltage attracts holes to the channel region beneath the gate
oxide. If this negative voltage is sufficiently large in magnitude (below the threshold voltage), it
creates a p-channel connecting the p-type source and drain regions, allowing holes to flow from
source to drain.

Figure 2.5: Cross-section of an N-well CMOS Process from [30, p. 42]

The ability to turn current flow on or off, which is logic switch behaviour, makes transistors essential
for implementing logic gates, memory cells, and other digital structures. The small size and efficient
switching of billions of transistors on a chip is what enables modern processors to operate at high speed
and low power.

In CMOS (Complementary MOS) technology, both nMOS and pMOS transistors are used together
to implement logic functions. This complementary structure minimises static power consumption and
is the basis for all modern digital ICs.

2.1.3. ASIC Design Flow Steps
There are many steps in the design flow for application specific integrated circuits (ASIC), as shown
in Figure 2.6. In this thesis only the front-end steps were applied. However, the back-end steps are
still important context for the literature study and the thesis as a whole. Therefore, the following three
sections discuss the large steps in the ASIC design flow. Namely: functional design, synthesis, and
place and route.

2.1. Digital Design 10

FR
O

N
T

EN
D

B
A

C
K

 E
N

D

FAB

Technology
Independent

Technology
Dependent

Specifications

Micro-Architecture

RTL Design

Simulation

Synthesis

DFT

Data Preparation

Time Design

Floor planning

Power planning

Place design

CTS

Routing

DRC/LVS

Signal integrity

Tape out GDSII

ASIC DESIGN FLOW

Figure 2.6: ASIC Design Flow inspired by [31]

2.1.4. Functional Design
Functional design is the step, in the ASIC design flow, with the most manual labour. This is where most
of the creative designing takes place. Prior to this step it is crucial to form clear specifications for the
design. These can then be used to guide the functional design. Functional design happens at register
transfer level (RTL). This is an abstraction level that describes how data moves between registers in se-
quential circuits, and the logic that processes it in combinational circuits. This abstraction is necessary
because it is not feasible to design complicated systems by describing logic gates, sequential elements,
and wire connections. Designers can use the RTL abstraction to express the logical functionality of a
design in a hardware description language (HDL), i.e. VHDL or Verilog.

When an RTL design is produced, the next step is simulation. The RTL design needs to be simulated
to verify the correct functionality of the design. Ideally, the steps following functional design do not
change the behaviour of the design. Additionally, the next steps require a lot of computation time. So,
before proceeding one should be sure of the correctness of the design so far.

2.1.5. Synthesis
When a correct functional design is produced, the design can be synthesised. The synthesis step is
where the design becomes technology dependent, this will be elaborated on below. Synthesis consists
of three intermediate steps: Translation, Optimisation, and Mapping. They are briefly covered below:

1. Translation, is the process of converting a functional design to generic logic elements, i.e. logic
gates and sequential elements. This step also flattens the design by removing all modular hier-
archy. This effectively replaces all module instances with their internal logic.

2.2. Processor Cores 11

2. Optimization, this process optimises the logic and structure of the design at a boolean or gate
level to reduce area, power, and delay. It achieves this by doing things such as simplifying
Boolean expressions, and removing redundant logic. All while not changing the circuit behaviour.
This step also considers any design constraints that are provided, i.e. to ensure all paths meet
the clock requirements.

3. Mapping, is when the design becomes technology dependent. The input of this step is an op-
timised netlist consisting of generic logic. This is converted into a netlist with real-world gates
provided by a semiconductor foundry through a technology cell library. This is the first step that
prepares the design for physical implementation on a chip. This steps also considers any design
constraints that are provided, i.e. to ensure all paths meet the clock requirements. Further-
more, technology-dependent optimisation or post-mapping optimization happens after mapping
has taken place.

Synthesis is concluded when all three steps are executed. The result of this process is an optimised
netlist of the design expressed in logic gates provided by the foundry that will manufacture the chip.

2.1.6. Place and Route
After synthesis, there are many back-end operations that take place to convert the technology specific
netlist into a GDSII file for production. A GDSII file is a binary file that contains the physical layout of an
IC, this can be sent directly to the semiconductor foundry for manufacturing. The two main steps are
placing and routing. Placing places the standard cells from the netlist onto the cell. Routing connects
all components with wires according to the netlist. Moreover, there are optimisations taking place in
this step such as the minimisation of wire delays. During place and route the setup and hold timing
specified is also ensured. Setup time is the minimum time before the clock edge that the data input of
a sequential element must be stable. Hold time is the minimum time after the clock edge that the data
input must remain stable.

After placing, but before routing, a process called clock tree synthesis is carried out. This is the
process of inserting and optimising the clock signal distributions network, so that every sequential
element has a clock signal that meets certain requirements. These requirements include minimal clock
skew, controlled latency, balanced loads, and low power consumption. Lastly, it is important to note that
most DFT hardware will be inserted right before this step. The technology specific netlist is modified to
accommodate DFT after synthesis, as this is significantly harder to do post place and route.

2.2. Processor Cores
The processor core is a concept that needs to be well understood to understand the entirety of this
thesis. Because this thesis presents a case study on a specific processor core. The term processor is
often used interchangeably with the term CPU. A CPU is a general-purpose processor, which means it
is designed to execute a wide range of applications. An example of a non general-purpose processor is
a graphics processing unit (GPU). GPUs were originally developed to run graphics processing tasks, i.e.
rendering videos, images, and animations. This has made GPUs really efficient at parallel processing,
and thus useful for AI computing.

In the context of this thesis whenever a processor core is mentioned, this refers to a CPU core.
Modern CPUs have multiple CPU cores enabling multi-threading, and small fast cache memory for
immediate data access. Modern CPUs will often also have access to some larger slower memory.
However, this section will zoom in on the CPU core, not the system around it. The following subsec-
tions will cover the instruction set architecture that defines its capabilities, the types of instructions and
operations it performs, its key structural components, the flow of data and control signals, and finally,
the use of pipelining to improve performance.

2.2.1. Instructions
To use a core’s hardware a language called instructions can be used [32]. Instructions can be repre-
sented by an arbitrary amount of bits, but often it will be 32 or 64 bits. When instructions are formatted
as binary digits, it is called machine code. A sequence of instructions is called a program. Instructions
are split up into segments called fields. Each field has unique information needed to execute the in-
struction. Some examples of information that can be found in fields are the opcode (unique for each
instruction), the operands, and addresses.

2.2. Processor Cores 12

A sequence of these instructions is called a program [32], and can execute specific tasks. When
a core runs a program it will keep track of which instruction it is at. This does not necessarily need to
happen incrementally, it is also possible for a program to redirect the core to a specific instruction. There
are different categories of instructions, and also individual instructions that do very specific operations.
But the common instruction categories are:

• Arithmetic: Arithmetic instructions carry out arithmetic operations like subtraction and addition.
• Data Transfer: Instructions that fall under this category can be used to read or write data to
memory.

• Logical: Logical instructions are used for execution of logic operations, i.e. and, or, and nor.
• Conditional Branch: This category consists of instructions that will take a branch, if a specific
condition is satisfied.

• Unconditional Branch: This category consists of instructions that will take a branch uncondi-
tionally. This category consists of instructions that cause an unconditional branch, redirecting the
core to a different instruction in the program rather than the one that sequentially follows.

2.2.2. Instruction Set Architecture
This subsection introduces the instruction set architecture (ISA), defined as “An abstract interface be-
tween the hardware and the lowest-level software that encompasses all the information necessary to
write a machine language program that will run correctly, including instructions, registers, memory ac-
cess, I/O, and so on.“ [32, p. 85]. Every CPU is an implementation of a specific ISA. Therefore, it
understands the instructions described by that particular ISA. The ISA specifies how low-level software
can control a CPU. This happens through a compiler that can compile software programs into machine
code that consists of instructions compatible with a specific ISA.

Besides instructions, ISAs define other characteristics and functionalities of CPUs. One of the things
that ISAs define are the registers in a CPU. This includes specifications like the purpose of specific reg-
isters, the number of registers, and the size of each register. Generally the size of register are 32 or 64
bits. But an ISA can also include special purpose registers like registers for SIMD instructions, which
are usually 128, 256, or 512 bits. Another aspect that ISAs specify is the data types used for operations.
Some examples of commonly used data types are 32-bit integers, 64-bit integers, floating point num-
bers, and fixed point numbers. ISAs also describe addressing modes, which define how instructions
identify its operands. The operands of an instructions can be values stored in registers, memory, or
even constants. Addressing modes provide flexibility in accessing data by supporting different methods
like immediate, direct, indirect, or indexed.

There are two main categories of ISAs: Complex Instruction Set Computing (CISC) and Reduced
Instruction Set Computing (RISC). CISC ISAs, such as x86, consist of a large number of complex in-
structions, often capable of performingmulti-step operations. This increases the complexity in hardware
to simplify software. In contrast, RISC ISAs, such as ARM and RISC-V, use a smaller, generalized set
of simple instructions that often require more instructions to perform the same task, but with improved
efficiency and performance due to streamlined hardware design.

The ISA used in the case study in this thesis is RISC-V. It is a modern RISC architecture designed
to be simple, modular, and extensible. It provides a minimal base instruction set with optional standard
extensions (e.g., for integer multiplication, compressed instructions, or floating-point arithmetic), mak-
ing it highly adaptable for a wide range of applications from embedded systems to high-performance
computing. Its open-source nature and academic origins have contributed to its wide usage in both
research and industry [33].

2.2.3. Main Modules
The main modules of every processor core are an ALU, control unit, decoder, and registers. Figure 2.7
shows an example of a very simple core. The ALU is the main engine of most cores, it can execute a
wide range of logical and arithmetic computations. What an ALU executes depends on which instruc-
tions are read from memory, this is decided by the control unit through the program counter (PC). The
control unit ensures that the right instructions are fetched from memory by controlling the PC. These in-
structions are fed into the decoder module which decodes the incoming instructions. When instructions
are decoded, it becomes clear to the core what it should do. The control unit sends control signals to

2.2. Processor Cores 13

the rest of the core, telling it what it should do to carry out the decoded instructions. Lastly, registers
are used to temporarily store data which can be used by the ALU for computation.

instrinstr
Instruction

Memory
DataRegisters

Data

Data
ALU

Data

Data
Memory

Control

ControlDecoder

PC
Control

Control

Figure 2.7: Simple Example Core

2.2.4. Data and Control Flow
In a processor core, executing an instruction requires the coordinated movement of data and control
signals between the core’s components. The data flow refers to how information, such as operand val-
ues, addresses, or results, moves through components like registers, the ALU, and memory interfaces.
The control flow steers this movement by deciding the timing and coordination of operations via control
signals.

Control signals determine things like whether data should be read from or written to registers,
whether an ALU operation should be done, and where the results should be routed to. These con-
trol signals are often generated using some form of control unit based on the instruction opcode and
status flags.

To manage data flow, the processor core uses data paths, the physical and logical paths through
which data travels. A data path typically includes components such as multiplexers, registers, buses,
and computation units like the ALU. For example, during an arithmetic instruction, the control unit
enables specific registers to feed operands to the ALU, activates the ALU to perform an operation, and
routes the result back to a destination register.

Timing is essential in ensuring correct operation. Most modern cores operate on a clocked cycle,
meaning that data movement and processing are synchronised by a clock signal. On each clock pulse,
depending on the control signals, data is fed into registers, and operations are triggered. This ensures
that each step in the instruction cycle occurs in the correct sequence. These steps will be elaborated
on below in Section 2.2.5.

The combination of data paths and control logic enables the CPU core to carry out complex instruc-
tion sequences in a structured and efficient manner.

2.2.5. Pipelining
To improve performance, processor cores universally use pipelining. Pipelining is defined as “an im-
plementation technique in which multiple instructions are overlapped in execution“ [32, p. 725]. This
enables simultaneous processing of multiple instructions by dividing the execution path into distinct
stages. Each stage is a step in the instruction cycle. A typical pipeline consists of the following stages
listed below. Although it is important to note that these are the general stages, so some could be
combined or split up even more.

• Instruction Fetch (IF): Retrieves the next instruction from memory.
• Instruction Decode (ID): Decodes an instruction and identifies the required operations and
operands.

• Execute (EX): Performs arithmetic or logic operations via the ALU or other computation units like
multiplier and dividers.

• Memory Access (MEM): Accesses memory if required.
• Write-Back (WB):Writes results to registers.

2.2. Processor Cores 14

With pipelining, while one instruction is being decoded, another can be fetched, and a third can be
executing etc. For a visualisation of this see Figure 2.8, this shows for three consecutive instructions
in what stage each instruction is during what cycle. This overlap significantly increases throughput
measured in instructions per cycle (IPC).

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Figure 2.8: Example Pipeline Operation

However, pipelining introduces hazards that can disrupt smooth execution. Data hazards occur
when instructions depend on the results of past instructions, but those past instructions are still in the
pipeline. Control hazards arise from branches and jumps that may alter the instruction flow. Struc-
tural hazards happen when a required hardware resource is busy. To mitigate these hazards, several
strategies are employed. Forwarding (bypassing) allows intermediate results to be used before they
are written back. Figure 2.9 shows how forwarding is used to solve a data hazard. Stalling pauses
pipeline stages until dependencies are resolved.

EXIDIF MEM WB

EXIDIF MEM WB

Cycle 2Cycle 1 Cycle 3 Cycle 4 Cycle 5 Cycle 6

add $s0, $t0, $t1

sub $t2, $s0, $t3

Program
execution order
(in instructions)

Figure 2.9: Example of Forwarding

Figure 2.10 shows an example where both forwarding and stalling are necessary to solve a data
hazard. Lastly, there is also branch prediction which attempts to guess the outcome of branches to
minimize delays caused by control hazards.

2.3. Chip Life Cycle 15

EXIDIF MEM WB

EXIDIF MEM WB

Cycle 2Cycle 1 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

lw $s0, 20($t1)

sub $t2, $s0, $t3

Program
execution order
(in instructions)

Figure 2.10: Example of Stalling

2.3. Chip Life Cycle
This thesis researches the field of testing. Therefore, it is crucial to explain where and how testing fits
into the chip life cycle. The life cycle of a chip is shown in Figure 2.11. The operational life of a chip
starts from themoment it is deployed until it cannot be used reliably any longer, this is called the wearout
stage. However, the lifetime of a chip starts from the moment of manufacturing. Before manufacturing
there is also the design process where the idea of the chip design is converted into a physical design
ready for manufacturing. This section starts with defining chip quality and reliability. Then, the rest of
this section will discuss how testing is incorporated into design, manufacturing, operational life, and
wearout.

Design,
Manufacturing,

Test
Operational Life Wearout

time

t=0 t=Tlifetime

Figure 2.11: Chip Life Cycle

2.3.1. Quality and Reliability
Prior to discussing the chip life cycle and how testing is involved, it is key to define the two concepts
quality and reliability. There is no formal definition of quality in [1], but the next best is “The highest
quality refers to the product meeting its requirements at lowest possible cost“ [1, p. 47]. This means
that test quality determines if an IC can perform its function at the start of its operational life. The book
includes cost in the indirect definition, because there is a trade-off between thoroughness of testing and
test cost. This trade-off is included in the quality metric, so a good definition of quality would be “Chip
quality is the extent to which an IC meets its requirements at the beginning of its life, while minimising
test cost“. Gielen et al. define reliability as: “Reliability is defined as the ability of a circuit to conform to
its specifications over a specified period of time under specified conditions.“ [34]. So reliability ensures
a chip functions according to its requirement during its entire (specified) lifetime.

2.3.2. Design
The design stage and process has already been partly discussed in Section 2.1.3. Therefore, this
section will be brief. In this stage the desired functionality is converted into a physical design. During
this process verification testing is done, this tests the functionality of the design not its structure. After
the intermediate step synthesis a netlist with generic components is produced, this is often when test

2.3. Chip Life Cycle 16

engineering takes place. This netlist can be used to generate test patterns, that can be applied after
manufacturing to test the physical chip. Besides test pattern generation, DFT insertion for scan design
also takes place after synthesis.

2.3.3. Manufacturing
From a finished design, a physical chip can be produced by a foundry, this process is called manu-
facturing. Manufacturing itself consists of two main processes: wafer processing, and assembly and
packaging.

Wafer processing involves producing the ICs on a silicon wafer, through steps which build up or
remove material in specific regions of the wafer, to create the transistors and interconnects that form
the chip. A step called photolithography [35] is used to pattern specific regions on the wafer using light
and a material called photoresist. This defines where material will be added or removed through an
optical photomask [35]. Doping introduces impurities into the silicon to modify electrical properties and
form the source, drain, and channel regions of transistors. Oxidation and deposition are used to create
insulating or conductive layers, while etching removes unwanted material. This sequence of steps is
repeated many times to create the multilayered structure of a modern IC.

After wafer processing, the wafer contains hundreds or thousands of identical chips. These chips
on the wafer are tested with manufacturing tests. In the assembly and packaging stage, the wafer is
diced into individual dies, and each die is mounted in a protective package. This package provides
mechanical support and protection, and also contains the electrical connections that can connect the
chip to a larger electronic system. Before the chips are shipped to customers, they once again undergo
manufacturing tests to ensure correct functionality. This is a crucial step in quality control, as even a
small defect in fabrication can lead to chip failure. Manufacturing tests include:

• Probe Testing: Is done while the dies are still on the wafer. Tests include basic electrical mea-
surements and functional patterns, which as mentioned earlier are generated during the design
phase.

• Package Testing: Performed after packaging to verify that the packaging process did not intro-
duce faults and that the chip still functions correctly.

• Burn-in Testing: Exposing a chip to high temperature to accelerate the aging process, and detect
aging-related failures. A burn-in duration of 50-150 hours at 125 degrees is effective in detecting
80-90% of production-induced defects [36].

Yield, the percentage of functional chips on a wafer, is a key metric in manufacturing. Manufacturing
defects are often spatially distributed and caused by process variations. Higher yield translates to lower
cost per working chip. However, testing also costs money and time: “Device testing represents the
single largest manufacturing expense in the semiconductor industry, costing over $40 billion a year.“
[36, p. 3]. These figures are probably low estimates, as this book was published more than 20 years
ago in 2003. Figure 2.12 shows a trend that points to testing becoming more expensive than fabrication.
This is due to the continuous decrease in feature size, which increases the number of transistors per
chip.

2.3. Chip Life Cycle 17

Figure 2.12: Fabrication and Test Cost per Transistor [37]

Overall, manufacturing translates the logical design into a physical object while testing acts as a filter
that separates functioning devices from defective ones. The close interplay between manufacturing
quality and test strategy directly impacts the cost, performance, and reliability of modern integrated
circuits.

2.3.4. Post Manufacturing
Referring back to Figure 2.11, the post manufacturing period includes the chip’s operational life and
wearout. The first testing that happens post manufacturing is known as incoming inspection or accep-
tance testing [1]. This test is performed by the user or for the use by an independent testing house, to
ensure product quality. Any test performed on a chip after this is called an in-field test. In-field tests
can take on many forms, i.e by using scan design (see Section 2.7.1) or JTAG. In-field tests ensure the
reliability of a chip.

Wearout
To explain wearout, the concept of failure mechanisms is important. Failure mechanisms are described
as “the physical and electrical causes for faults“ [36, p. 1]. The formal definition of faults will be dis-
cussed below in Section 2.4, but for now faults are an abstraction of defects. So, failure mechanisms
can be seen as the physical and electrical causes of age defects. Figure 2.13 shows a classification of
failure mechanisms. As can be seen failure mechanisms can be categorised in one of three categories.
Electrical stress failures occur due to poor design or careless handling. Intrinsic failure mechanisms
are inherent to the semiconductor die, i.e. dislocations, processing defects and crystal defects. These
failure mechanisms are usually caused during wafer fabrication. Extrinsic failure mechanisms can be
introduced during the packaging and interconnection processes.

2.4. Fault Modelling 18

Figure 2.13: Classification of Failure Mechanisms from [36, p. 1]

2.4. Fault Modelling
The formal definitions of an error has already been discussed. Faults and defects however have only
briefly been mentioned. A fault is defined as “A representation of a “defect” at the abstracted function
level is called a fault“ [1, p. 58]. An abstraction level often used is logic level. Specific faults adhere to
their corresponding fault models. Which defects are represented by a fault depends on its fault model.
The concept of fault models is necessary because the fault model aids in the development of structural
tests (mentioned earlier in Section 2.4.1). Most test generation and test evaluation algorithms are built
for specific fault models, this will be further discussed in Section 2.6.2 and Section 2.5. The following
two sections will defects, fault modelling and fault types.

2.4.1. Defects
The definition of a defect is “A defect in an electronic system is the unintended difference between the
implemented hardware and its intended design“ [1, p. 58]. The goal of structural testing is to detect
defects in an IC. In contrast, the goal of functional testing is to detect erroneous behaviour of an IC.
Errors are defined as A wrong output signal produced by a defective system is called an error. An error
is an “effect” whose cause is some “defect.” [1, p. 58]. That being said, defects are a fundamental
concept in testing. Hence, if an IC does not pass functional testing it will not pass structural testing.
However, if an IC does not pass structural testing it can still pass functional testing. Defects can occur
during manufacturing or during the use of devices. Some common defects in ICs are [1]:

• Material Defects: Caused during manufacturing due to issues with material, i.e. bulk defects
(cracks, crystal imperfections), and surface impurities.

• Process Defects: Caused due to issues in the manufacturing process, i.e. missing contact
windows, parasitic transistors, and oxide breakdown.

• Package Defects: Defects introduced during packaging, i.e. contact degradation, and seal leaks.

The materials and process defect can be related back to transistor physics discussed in Section
2.1.2. Surface impurities can take the form of unwanted particles or unintended dopants, and disrupt

2.4. Fault Modelling 19

the doping regions (n+ and p+) seen in Figure 2.5, leading to leakage currents or threshold voltage
shifts. These defects can interfere with the insulating silicon layer or junction integrity, degrading tran-
sistor performance or causing device failure. Parasitic transistors have unwanted current paths be-
tween adjacent n+ and p+ regions across the p-substrate or n-well, which can be introduced during
manufacturing, leading to signal interference.

2.4.2. Fault Types
Faults manifest due to various failure mechanisms, which can differ in their occurrence patterns and
persistence. Figure 2.14 show the different categories permanent, non-permanent, intermittent, and
transient. Depending on the underlying failure mechanism, faults can either be permanent or non-
permanent. Permanent faults exist for an indefinite period of time, while non-permanent faults are not
constantly present but only part of the time. Non-permanent faults can be further split up into tran-
sient and intermittent faults. Transient (or environmental) faults occur once randomly and are caused
by environmental conditions. Related failure mechanisms are radiation, noise, and power supply fluc-
tuations. Realistically these faults cannot be tested for, because they occur randomly and are not
reproducible. Intermittent (non-environmental) faults are caused by non-environmental conditions, so
they manifest periodically and therefore are somewhat reproducible. Some examples of these non-
environmental conditions are loose connections, timing issues due to aging components, and hazards
in critical timing [1]. The key takeaway from intermittent faults is that they are reproducible, so they can
be modelled by permanent fault models. Even though testing might have to be repeated several times
until the intermittent fault is detected.

Current test practices are built around permanent faults. However, Chapter 1 pointed out that a
lot of SDEs are most likely caused by non-permanent failure mechanisms. As transient faults cannot
be systematically detected through testing, that leaves intermittent faults. So when considering the
problem of SDEs testing for intermittent faults should be considered a solution with great potential.

Failure
Mechanism

Permanent Non-Permanent

Transient Intermittent

Figure 2.14: Failure Mechanism Classification

In engineering, modelling is often used to formulate a problem in a way that makes it easier to solve.
In the case of fault modelling, test engineers deal with a problem that manifests in physical reality. Fault
models create a mathematical abstraction of this physical reality. This enables the usage of analytical
tools to solve the problem. These fault models exist at varying abstraction levels. The most used
abstraction level for this is RTL level, but there are also fault models at transistor level and other lower
levels.

2.4. Fault Modelling 20

Static Faults
The most used fault model is the single Stuck-at-fault (SAF) model. This model operates at the gate
abstraction level. The single SAF model is defined in [1, p. 71] as:

“
Three properties characterize a single stuck-at fault:

1. Only one line is faulty.
2. The faulty line is permanently set to either 0 or 1.
3. The fault can be at an input or output of a gate.

“
Figure 2.15 shows an example of a single SAF. The line between the OR gate and most right AND

gate is stuck at the value ’1’. To test if this SAF is present in this circuit a test vector is applied. The
correct behaviour of the circuit would output a ’0’, when the test vector would be applied at the circuit’s
inputs. However, if the aforementioned SAF is present the output will become ’1’ and the SAF can be
detected. The multiple SAF model is similar to the single SAF model but it assumes two or more lines
are faulty.

Figure 2.15: An Example of a Single SAF from [1, p. 71]

Another fault model at gate level is the bridging fault, shown in Figure 2.16. Bridging faults are a
short circuit between two or more lines causing logic interference. A fault model at transistor level is
the transistor fault, which can be stuck-open or stuck-short. A stuck-open transistor fails to conduct
when it should, causing floating outputs. A stuck-short transistor conducts when it should not, causing
shorts between the power source and the ground. Analogue faults are modelled at the analogue level,
an example is parametric faults which are deviations in component values like resistance or threshold
voltage. At a higher abstraction level like architecture behaviour faults can occur. An example of a
behaviour fault is when conditional branch instructions are always taken.

Figure 2.16: An Example of potential bridging faults from [9, p. 4]

Delay Faults
Delay fault models will play a key part in any solution to SDEs. This will be further elaborated on in
Chapter 3 when low voltage testing is discussed. But at this point in the thesis it is already known that
many SDEs are likely caused by intermittent failure mechanisms [5][4], which includes timing problems.
This is already one reason delay fault models should play a part in any solution to SDEs.

2.4. Fault Modelling 21

Delay Fault

Gate Delay
Fault (GDF)

Transition Delay
Fault (TDF)

Path Delay
Fault (PDF)

 Small Delay
Fault (SDF)

Partial Path
Delay Fault

(PPDF)

Figure 2.17: Delay Fault Model Taxonomy

Figure 2.17 shows the different delay fault models and their relations. The simplest delay fault model
is the GDF model. The GDF model is defined as: “A circuit is said to have a GDF in some gate if an
input or output of the gate has a lumped delay fault manifested as a slow 0→1 or 1→0 transition“ [36,
p. 38]. The most used GDF model is the TDF model [38], because in the context of delay fault models
it is relatively easy to develop test for. An example of a TDF is shown in Figure 2.18. As can be seen in
the timing diagram of the faulty circuit, the TDF is causing a delay big enough so the transition of D2 is
delayed until after the clock period. The consequence of this is that the output D flip-flop will store and
output the incorrect value. A SDF at the same line as the illustrated TDF, would also cause a delay in
the transition of the value of D2. However, this would not be directly problematic because the transition
would still take place between the end of the clock period.

Figure 2.18: An Example of a TDF from [9, p. 5]

The PDF model is defined as “It assumes that there is a cumulative delay defect along a combi-
national path, which causes the path to exceed some specified duration. This combinational path can
begin at a primary input or a clocked flip-flop and can end at a primary output or a clocked flip-flop“ [9,
pp. 5, 6]. This specified duration can be the clock period. From this definition a few insights related to
GDFs can be made. PDF effectively models SDFs. When an accumulation of SDFs becomes prob-
lematic, creating a path delay that is larger than the clock period, it manifests as a PDF. Furthermore,
a TDF can be detected by any PDF for which the path passed through the gate or line where the TDF
is located. However, a PDF is not always detected by a TDF that lies on its path. For example, when

2.5. Test Evaluation 22

the TDF is sensitized and propagated through another significantly shorter path.
Clearly the PDF model [39] is more thorough and will potentially be able to detect more defects than

the TDF model. On the other hand, in a large design the number of paths can be huge and will result in
extremely long PDF test development and execution times. As a compromise between the two there
is the PPDF model. It is known as the segment delay fault model, but it has the same abbreviation as
transition delay fault so it shall hereby be renamed to partial path delay fault PPDF. Because this fault
model targets transitions on path segments of length L or smaller [36]. So, these segments contain L
or fewer lines. L can be chosen based on the test requirements. Picking L = 1 would result in a TDF,
and setting L to the maximum length of any path through the circuit would result in a PDF.

2.5. Test Evaluation
Test evaluation plays a key part in testing. It reports fault coverage that test patterns provide circuits, but
it also plays a key role in test generation. ATPG uses test evaluation in a feedback loop to get feedback
on the test patterns were generated. The main engine behind test evaluation is fault simulation. In
essence it simulates the circuit under test and injects faults into it. Then, it compares good machine
simulation [38] with fault injection simulation to determine if the injected fault is detected. Figure 2.19
shows how fault simulation is included in ATPG. As can be seen the fault list is updated based on what
faults are detected by current test vectors according to the fault simulation. That way ATPG focuses
on faults that are not yet detected by already generated test patterns.

Verified
design (netlist)

Verification
input stimuli

Remove
tested faults

Fault simulator Test vectors

Delete
vectorsTest compacter

Add vectors
Test generator

List of modeled faults

Adequate

LowFault
coverage

?

Stop

Figure 2.19: Fault Simulation in the Context of Test Generation based on [1, p. 88]

2.5.1. Fault Simulation
As mentioned above fault simulation checks what faults are detected by which test patterns. This is
done by comparing simulation of a fault injected circuit with good machine simulation. Because this
process is used very frequently during test development there are different methods with varying levels
of efficiency. The two fault simulation methods most used in practice are:

• Serial Simulation: Simulates a single fault at a time, by running all test patterns with a single
fault present. This is simple but can be time-consuming for a circuit with many faults.

• Parallel Simulation: Simulatesmultiple faults simultaneously. The idea is to “use the bit-parallelism
of logical operations in a digital computer“ [1, p. 107]. This enables simultaneous simulation of n
circuits (for an n-bit word machine) with identical behaviour but different values.

2.5.2. Metrics
It should now be clear that fault simulation computes the results of test patterns based on some fault
model. The relevant metrics for test will be covered in this section. First, the metrics that indicate how

2.6. Combinational Test Generation 23

good a test is at detecting a certain fault model are fault coverage FC, and fault efficiency FE. As can
be seen in Equation 2.1, FC is the ratio of how many of the total faults for a specific fault model are
detected. Equation 2.2 shows that FC is similar to FE, but FE also takes into account undetectable
faults. Therefore, FE is a better indicator of how the ATPG performs. Both FE and FC can be expressed
as a fraction or a percentage.

Fault coverage =
number of detected faults

total number of faults
(2.1)

Fault efficiency =
number of detected faults

total number of faults − number of undetectable faults
(2.2)

These are very important performance criteria, but not the only criteria. Another key metric is test
set size. The test set size is the total number test vectors in a test set. This can be seen as a cost,
because the larger the test set size is the longer a test set will take to apply. Also, the test set size
determines how much memory is needed to store the test set on automatic test equipment or even on
chip. Another cost metric is CPU time. CPU time, expressed in any time unit, is the time it takes for the
ATPG tool to generate the test set. Often CPU time is not a trivial metric because test development for
a design only needs to be done once, and then the generated test set can be used on all chips with the
design. However, when CPU time blows up and it takes weeks to run ATPG the metric can be a good
indicator of the limits of the ATPG tool.

2.6. Combinational Test Generation
Combinational test generation is structural test generation for combinational circuits. Structural test
generation is the process of creating structural test patterns to detect defects in an IC. It “is based
on fault models, and focuses on detecting manufacturing defects in the circuit by considering how a
defect manifests at the logic level“ [9, p. 12]. In contrast, in functional testing the goal is to verify the
expected behaviour of a design. Structural test generation for ICs is something that realistically can
not be done manually, therefore the standard used is automatic test pattern generation ATPG. By ab-
stracting physical defects into mathematical fault models, ATPG algorithms can systematically explore
the circuit’s behaviour to activate and propagate faults to the primary outputs. Combinational ATPG
treats the circuit as a purely Boolean network, ignoring state elements. It relies on the deterministic
nature of logic gates and the finite input and output space. The goal is to generate a set of test vectors
that achieves high coverage of a specified fault list. This section will cover different aspects involved
in combinational test generation.

2.6.1. Search Space Abstractions
ATPG tools use data structures to describe the search space for test patterns. Data structures used for
this are binary decision diagrams and binary search trees. When a binary search tree is used to model
a logic circuit there is a branch leaf for each input combination. In the worst case ATPG algorithms
completely search this tree to prove untestability of a fault. This is undesirable because the exhaustive
search space is 2n input vectors (for n inputs). Therefore, these are pruned through logical abstractions
and implications:

• Justification: Assign values to primary inputs to satisfy a desired internal signal value.
• Implication (Forward/Backward): Once an assignment is made, Boolean consequences are
propagated forward (to update gate outputs) and backward (to constrain preceding gates), reduc-
ing choices at other inputs.

• Backtracking: Inconsistent assignments trigger backtracking to previous decision points, en-
abling search over a much smaller tree than 2n.

• Fault Dominance and Equivalence: Faults that are detected by every test pattern for another
fault can be removed from the fault list and assumed to be detected when the other fault is de-
tected.

A further optimization is the use of ATPG algebra, which is “a higher-order Boolean set notation with
the purpose of representing both the “good” and the “failing” circuit (or machine) values simultaneously“
[1, p. 159]. In Roth’s five-valued algebra (see Table 2.1), the symbol D means ’1’ in the good machine,

2.6. Combinational Test Generation 24

’0’ in the faulty machine, and D means ’0’ in the good, ’1’ in the faulty. The values ’0’ and ’1’ represent
exactly that in both good and faulty machines, while X means “unknown in both,” so only one pass of
ATPG is necessary to propagate differences between faulty and good machines. Muth extended this
idea to a nine-valued algebra by splitting X into cases where one side is known and the other unknown
(G0, G1, F0, F1), which can improve combinational-circuit testability when only one side’s value is
observable.

Table 2.1: Roth’s Five-valued and Muth’s Nine-valued Algebras

Symbol Meaning GM FM Algebra
D 1/0 1 0

Roth’s Algebra [5 values]
D 0/1 0 1
0 0/0 0 0
1 1/1 1 1
X X/X X X
G0 0/X 0 X Muth’s additionsG1 1/X 1 X
F0 X/0 X 0 [Extended unknowns]F1 X/1 X 1

2.6.2. ATPG Algorithms
Different ATPG algorithms differ in how they traverse the search space. There are threemain categories
of ATPG algorithms, namely: exhaustive ATPG, random ATPG, and ATPG based on path sensitisation
methods. Exhaustive ATPG tries all possible test vectors, therefore this is not a scalable solution.
Random ATPG is based on generating random patterns. Because this approach does not analyse the
circuit’s logic structure, it is limited in the fault coverage it can achieve. Path sensitisation methods
apply path sensitisation techniques and are currently the standard ATPG method. It consists of the
following three steps:

1. Fault sensitisation: also known as fault activation or excitation, forces a signal to create a dif-
ference between the good and the faulty circuit.

2. Fault propagation: also known as path sensitisation, ensures that the fault effect is propagated
to at least one primary output of the circuit.

3. Line justification: Applies backwards justification to find primary input values that match the
fault sensitisation and propagation signal assignments made in the previous two steps.

Now a brief explanation of the first path sensitisation algorithms, the D-algorithm, will follow. The D-
algorithm uses Roth’s D notation (1/0 on a line) and iteratively applies sensitisation, propagation, and
justification until a test is found or the fault is proven to be untestable. Figure 2.20 shows an example
of the D-algorithm finding a pattern for a stuck-at 0. First a symbol from Roth’s algebra is assigned to
the fault site, in this case a D (so ’1’ for the good machine and ’0’ for the faulty machine). Then, a path
is selected to an output, and the off-path inputs are set accordingly (in green). Lastly, justification is
applied to find matching primary input values resulting in a test vector. A test vector V consists of a
value for each primary input present in the CUT.

D*

0
0

D

C

B

A

0

DSA0

D

0

D

1

L

1

D

Figure 2.20: An Example of The D-algorithm

2.7. Sequential Test 25

2.7. Sequential Test
Sequential tests are tests for circuits with sequential elements combined with combinational logic. In
Section 2.4.2 delay faults were covered, delay tests test for delay faults. Delay test thus check if
transitions (slow-to-rise and slow-to-fall) complete within the set time constraint. Delay faults can be
observed at sequential elements, so they are often applied in combination with scan design. However,
scan design is also useful for static faults in sequential circuits. In short, scan design enables setting and
observing sequential elements in a circuit. This section first introduces scan design before discussing
TDF, PDF, and SDF testing.

2.7.1. Scan Design
The essence of scan design is to make flip-flops controllable and observable, to improve FC. In a non-
scan design the only observable and controllable nodes are the primary input and outputs. However,
this imposes limitations on the amount of faults that can be detected. That is why scan DFT hardware
is added. This is achieved by converting the flip-flops into scan flip-flops (SFFs). This involves adding
a MUX, controlled by the scan enable signal (SE), in front of the flip-flops. When SE is ’0’ the MUX
will ensure normal circuit behaviour, but when SE is ’1’ (this is called test mode) the MUX will feed the
scan in signal to the flip-flop. As shown in Figure 2.21, these scan flip-flops are connected into one or
more scan chains, that act as shift registers when the circuit is in test mode. This enables setting and
observing the flip-flop values through shifting, via the additional primary input scan in (SI) and primary
output scan out (SO). There are two types of scan design full scan and partial scan. Full scan is when
all flip-flops turned into scan flip-flops, so sequential ATPG is reduced to combinational ATPG. Partial
scan entails that a selection of flip-flops are turned into scan flip-flops, introducing trade-offs between
area overhead and test difficulty.

Combinational logic

PI PO

SFF SFF SFFSI
SE

SO

Combinational logic

PI PO
FF

FF
FF

Figure 2.21: A Sequential Circuit Inserted with Scan Design

A waveform is shown in Figure 2.22, that displays the functionality of the scan design from Figure
2.21. It is can be seen that when the SE signal is high the bits a, b, and c are shifted into the scan
flip-flops. Once the circuit is in the right state, SE goes to ‘0‘ again and the test pattern is applied
through the primary inputs (PI). At the end the primary outputs (PO) and state variables d, e, and f are
captured to check for any unexpected behaviour. Finally, the SE is high again so that bits d, e, and f
can be shifted out and be made observable at output SO. At the same time the circuit can be set into
the desirable state for the next test pattern, see bits c, b, and a being shifted in.

2.7. Sequential Test 26

clk
procedure Shift Test Shift

SE
SI a b c c b a

SFF[0] a b c d c b a
SFF[1] a b e d c b
SFF[2] a f e d c

SO f e d
PI V1 V2
PO PO

Figure 2.22: Waveform of Scan Design Launch-on-Shift Functionality

2.7.2. Transition Delay Fault Test
A test pattern used to test a TDF consists of a pair of test vectors (V1, V2). The first vector V1 is the
initialization vector, and vector V2 is the launch vector. The steps for testing a TDF, illustrated in Figure
2.22, are as follows:

1. Initialization Cycle: The circuit is initialized to a certain state by vector V1 (and optionally scan
chains), i.e. for a slow-to-rise TDF the fault site of the TDF is initialized to ‘0‘.

2. Launch Cycle: Vector V2 is applied and a transition is launched at the target gate terminal, i.e.
a ‘0‘ to ‘1‘ transition at the fault site of a slow-to-rise TDF. This cycle is indicated in Figure 2.22
by V2 being at the primary input (PI).

3. Capture Cycle: The transition is propagated and captured at an observation point. In Figure
2.22 these observation points are PO, and the scan flip-flops.

There are three TDF scan pattern generation methods: launch-on-shift, launch-on-capture, and
enhanced scan. These have different timing for launching test patterns. The aforementioned methods
will be briefly covered now.

Launch-on-Shift
In launch-on-shift (LoS), also called skewed-load [40], patterns the last shift of the scan chain load is
used to launch the transition. A TDF scan test can be modelled as < v1, s1, v2, s2 >, where v1 and v2
are the pair of test vectors of the TDF test. Furthermore, s1 and s2 are sets of state variables for the
initial state of the circuit (after the initialization cycle) and the captured state of the circuit respectively.
Figure 2.23 shows a full-scan circuit, where y1 − y3 are the state input variables, Y1 − Y3 are the state
output variables, x1 and x2 are input vectors, and z1 and z2 are primary outputs. LoS patterns shift s1
in through the scan chain, and shift s2 out. This means that if pattern i certain values for y1 and y2,
pattern i + 1 has these values for y2 and y3 respectively. This results in overlap between consecutive
state variable vectors, which is a limitation of LoS patterns.

2.7. Sequential Test 27

Figure 2.23: Example Full-scan Circuit from [36, p. 656]

Launch-on-Capture
Launch-on-capture (LoC) is also known as broadside [41]. This TDF pattern generation method is very
similar to LoS. After pattern i applies s1, v1 and v2, the state variable s2 is equal to s1 for the next pattern
(i + 1). This is functional behaviour, which is why LoC is also called functional justification. But this
does limit the flexibility of possible TDF patterns. Figure 2.24 shows LoC test patterns, consisting of
test vector pairs V1, V2, V3, V4, and V5, V6. After the vector pair V1, V2 is applied the state is already in
the correct state for the vector pair V3, V4. The same is the case for the next vector pair.

clk
procedure Shift Test Shift

SE
PI V1 V2 V3 V4 V5 V6
PO PO1 PO2 PO3

Figure 2.24: Waveform of Launch-on-Capture Pattern

Enhanced Scan
The last TDF pattern generation method is enhanced scan [42]. Enhanced scan uses double-strobe
flip-flops [43], in Figure 2.25 it can be seen that a double-strobe flip-flop is a scan flip-flop with a hold
latch on its output. An extra signal is added to control these hold latches. This setup enables the
application of any arbitrary vector pair to test a TDF. Resulting in a higher fault coverage than LoS and
LoC patterns at the cost of more area overhead.

2.7. Sequential Test 28

Figure 2.25: Enhanced Scan Flip-Flop [42]

2.7.3. Path Delay Fault Test
The PDF fault model has been described in Section 2.4.2. From that description and the previous
section about TDF testing it can be deduced that testing is very similar when targeting PDFs and TDFs.
When a TDF test pattern is executed, it will detect any TDFs along the entire propagation path. However,
it will only be able to detect one PDF which consists of the cumulative delay along this path. This is one
of the reasons PDF testing is significantly more expensive than TDF testing. Another reason is that
there will be significantly more faults in a PDF fault list than in a TDF fault list. That is why PDF testing
is not practical. Tests for PDFs can be divided into two types: robust, and non-robust PDF tests.

Robust PDF Test
A test pattern < V1, V2 > is a robust test pattern for a PDF “if and only if it detects a path fault indepen-
dent of gate delays in the rest of the circuit.“ [44]. This means that a robust PDF test guarantees an
incorrect value will be propagated to the end of the path, if the delay of the path under test exceeds a
specific duration. This sounds like a desired characteristic of a test. However, it can be hard to find a
robust PDF test. To simplify the ATPG process, non-robust PDF tests can be used.

Non-Robust PDF Tests
From the definition of robust PDF tests, the definition of non-robust PDF test can be inferred. Namely,
non-robust PDF test guarantees the detection of the targeted PDF only if no other faults are present.
Non-robust PDF tests can again be subdivided into two types, weak and strong. The former is defined
as follows “A strong non-robust test does not allow delayed transitions on off-path inputs to invalidate
the test, but does not consider pulses“ [45]. So it assumes every off-path input to have a non-controlling
value for the gate it drives, or pulses on off-path inputs happen early enough to not affect the propagation
of the target fault. Weak non-robust PDF tests are defined as “A weak non-robust test requires only
that the path be sensitized. It allows delayed transitions and pulses on off-path inputs to invalidate a
test“ [45]. This definition is self-explanatory. From both definitions it can be concluded that the weak
tests give less chance of a test pattern actually succeeding in detecting a PDF.

3
Silent Data Errors

This chapter contains the literature study focusing on SDEs. This is a broad and popular topic within
the testing community. That means that there are ample publications relevant to this issue. In Section
3.1, the chapter starts by introducing the problem and its newly revived relevance. This is followed by
Section 3.2, diving into the nature of SDEs and its characteristics. Next, Section 3.3 discusses SDE
rates and how they can be measured. Then, Section 3.4 describes techniques that can help mitigate
the consequences of SDEs. Lastly, the chapter will end with Section 3.5, covering SBST in depth.

3.1. Silent Data Errors
SDEs are errors that ’silently’ take place in computers, also known as silent data corruptions (SDCs).
The consequence of these errors is corrupted data, meaning that somewhere in memory incorrect
information is stored. This could cause be a pixel in a saved image to be a slightly different color, but it
could also be something more problematic like an extra zero in the amount of money sent over a bank
transfer. These errors are so called ’silent’ because as they are occurring no software level or hardware
level alarms are going off, and even weeks later they can still be undetected. This ’silent’ nature can
often lead to months of debug engineering time [5], when trying to find the root cause.

A key question in research about SDEs is: what causes silent data errors? An intuitive answer to
this is soft errors due to cosmic rays [6], this is a widely known phenomenon. This phenomenon occurs
when a radiation event creates a charge disturbance that causes the data content of a memory cell to
flip. This is a straightforward cause of SDCs, as it happens silently and corrupts data. Adding to that,
the majority of the area on most modern chips is used for memory. Meaning that cosmic rays are more
likely to hit memory parts of a chip. To tackle this source of SDEs, error correction codes (ECC) are an
effective method. ECC are a method to detect and correct errors upon memory accesses. The main
purpose of ECC is to correct for noise that randomly occurs while reading from memory [46].

Another possible source of SDEs are physical defects due to manufacturing and ageing [47]. During
the chip manufacturing process wafer inspection is applied, to identify chips with defects and avoid them
from being used. So the defects causing SDEs fall under the category ’escapes’, as they are defective
but escaped detection at the manufacturing plant. SDEs are extremely rare and unlikely to happen. If
they are caused by a defect, the defect is only prevalent in very specific conditions. It could also be
assumed that the defect is not easily sensitized and observed, else it would have been detected at the
manufacturing plant.

3.1.1. Calls-to-Action
In 2021 there have been two calls-to-action, in the form of papers [5][4], from the hyperscalers Meta and
Google. In these papers Google and Meta illustrate the problem of SDCs in their at-scale infrastructure.
They call for a collaborative effort between industry and the test research community to address this
issue. In addition, they provide unparalleled information and insight into SDCs in data centres. Their
access to at-scale infrastructure provides them with the unique opportunity to study a large number of
SDCs cases. This infrastructure consists of millions of processors with multiple cores, making SDCs a

29

3.2. SDE Nature 30

frequent appearance.

Meta was the first to publish its paper on SDCs. They argue against the prior belief that SDCs are
mainly caused by cosmic rays, and claim empirical evidence supports that SDCs occur due to device
characteristics and are repeatable at scale [5]. They also shift the scope of the problem of SDCs from
the prior location of memory to a new area: functional blocks. ECC are able to correct SDCs that take
place in memory, but functional blocks have minimal error correction. This is problematic as it leaves
room for SDCs to manifest. Meta also found that SDCs in functional blocks can depend on specific data
and system conditions. Data variation can change the paths that are activated and system conditions
can change the propagation speed of paths. So, they mention timing path errors as a possible cause
of these SDCs. The discovery of SDCs is often delayed due to their silent nature. Meta shows the
debugging flow for a SDC from application level down to assembly. This process can require months
of debug engineering time. This emphasizes the importance of either detecting SDC-prone machines
or correcting SDCs.

A few months later Google’s paper on SDCs followed, confirming that Meta’s observations are
similar to what Google is observing. They then introduce a new concept as a new cause of SDCs:
“silent“ corrupt execution errors (CEEs). This is defined as malfunctioning instructions due to man-
ufacturing defects, which can only be detected by checking the result of these instructions against
expected results [4]. These CEEs can occur long after the machine’s start of life, and on specific cores
on multi-core CPUs. Google calls those cores suffering CEEs; “mercurial“ cores. Specific instances
of CEEs observed by Google are: violations of lock semantics, data corruptions due to memory oper-
ations, deterministic AES mis-computation, corruption affecting garbage collection. These CEEs are
hard to reproduce deterministically, due to dependence on workload, frequency, voltage, and temper-
ature. CEEs are an emerging cause of SDCs, and there are several reasons for it. CEEs are rare so
large-scale operations, which is a relatively recent phenomenon, allow them to happen more frequently.
Feature sizes are getting smaller and smaller, so chips become less reliable. CPU architectures are
increasing in complexity, which means that there are more avenues for CEEs to manifest.

3.2. SDE Nature
The newly found perspectives on the problem of SDEs has been discussed, and the importance of the
issue has been emphasized. Next, to better understand the problem, its nature will be portrayed. In
this section questions about SDE nature will be examined, to guide the eventual search for solutions.
Questions like, what is the root cause of modern day SDEs? What type of defects can cause SDEs?
How do SDEs propagate through the layers of computer abstraction?

3.2.1. Defects
Defects are undesirable physical deviations in chips that can impact their functionality or performance.
These physical deviations also impact the yield from wafers at semiconductor fabrication plants, also
known as fabs or foundries. It is also important to note that defects cause different type of SDEs,
than cosmic rays, noise, or droop. The latter causes ’transient SDEs’, this means the SDE happens
only once randomly. Defects can cause ’persistent SDEs’ that occur more than once, and are at least
somewhat reproducible. According to a paper by Intel, one of the world’s largest chip manufacturers
[48], there are no unique or novel defect modes that manifest as SDE [49]. So, SDEs are caused
by widely known types of defects that escape the post manufacturing testing procedures. The Test
Technical Committee of the IEEE Electronics Packaging Society estimated that 80% of SDEs are due
to time-zero test escapes [50].

Figure 3.1 shows SDE rates published by intel for different defect modes, circuit types, and logic
function. It can be seen that a large majority of SDEs were traced to “subtle open defects“. These
are resistive-open defects where the transistor is still functional, but it has a higher threshold voltage
“driven by subtle marginality“ [49]. This indicates that marginal or subtle electrical behaviour and timing
tolerance in silicon play a large role in whether a defects manifests as an SDE. For the different circuit
types memory arrays, logic, and clock distribution there is no one large contributor. The same story
goes for functional regions, data paths and control path logic both contribute equally. However, less
failures were due to faults on both data and control.

3.2. SDE Nature 31

Gross Defects Subtle Defects
0

20

40

60

80

100
SD

E
(%

)
Open
Short

Array Logic Clock0

5

10

15

20

25

30

35

40

45

SD
E

(%
)

Data Control Hybrid
Path Type

0

10

20

30

40

50

SD
E

(%
)

Figure 3.1: Defect Mode Classification of SDE Based on Impedance (left), SDE Distribution Across Circuit Types (middle), and
SDE Distribution by Functional Region (right) from [49]

SDEs due to subtle timing marginalities induced by process variations has been further explored
in the work of Adit Singh [51]. This work was prompted by published industrial data that points to
timing failures caused by significant delay increases of random paths. Singh focuses on low voltage
operation, because this accentuates circuit delays due to process variation. He shows that the delay of
certain transistors, with a threshold voltage of multiple standard deviations from the mean, skyrockets
when using lower voltage. Furthermore, simulations show that extreme outlier timing paths are virtually
always caused by a single slow transistor, which becomes especially problematic at low voltage or low
frequency. Another interesting insights provided by Singh [51], is that the delay increase due to increase
in threshold voltage is systematically larger than the decrease in delay due to decrease in threshold
voltage. So these do not cancel each other out. Finally, Singh proposes performing timing tests at
lower voltage than threshold voltage to find the extreme outlier transistors as they scale differently from
other transistors.

3.2.2. Propagation Through the Stack
To classify a defect as the cause of an SDE it is important to analyse the entire stack and how defects
propagate through it. Figure 3.2 shows the computing abstraction hierarchy and some additional text.
As can be seen, the bottom four layers are classified as hardware and the top 6 layers are classified as
software. Hardware and software are connected through the ISA, this was discussed in Section 2.2.2.
To the left of this classification, the stack is again divided into benign, masked, and SDE. A defect
propagating through the stack is called benign when “it exists, but it never appears at the software
layer“ [52]. A defect can be benign due to hardware masking mechanisms, such as when a defect can
be modelled as a SDF that does not affect functional behaviour. At the microarchitecture-level a fault
has a chance to manifest as an SDE without needing to propagate all the way up to the application
level. When a fault causes a wrong computation and the result of this is written to a memory this
is classified as an SDE. A storage corruption like this does not get detected and corrected by ECC,
because it is already corrupted before entering the memory. When a fault propagates up to the ISA
level it becomes an architecturally visible fault [52], more details on this can be found in Section 3.3.1.
An architecturally visible fault can propagate upwards to the application level, where it can be classified
as an SDE. However, it can still be masked in software by propagating to an unused value or by causing
a crash or a time-out. This prevents the defect from manifesting as an SDE. From this illustration it can
be concluded that to classify a defect or faulty behaviour as a SDE the propagation through the whole
stack needs to be simulated.

3.3. SDE Rates 32

Physics

Devices

Circuits (Gates/Registers)

Micro Architecture

ISA

Machine Code

Assembly

Programming Language

Algorithm

Application

Operating System

H
ar

dw
ar

e
So

ftw
ar

e

Be
ni

gn
(s

of
tw

ar
e)

 M
as

ke
d

Defect

Fault

Fault

Architecturally visible fault

SDE

SD
C Incorrect Output (SDE)

/ Correct Output (Benign or Masked)

Crash / Time-out
/ Unused Value / Detected (i.e. by ECC)

I/OCEE / Storage Corruption

Non-functionally possible
faults / non problematic
SDF

Figure 3.2: Classifying SDEs Throughout the Stack

3.3. SDE Rates
The previous section concluded by emphasising the importance of simulating the entire stack when
attempting to measure SDEs. This section will discuss how SDEs are measured, and give insights into
SDE rates. The most straight forward way to measure SDE rates, considering SDE occurrences are
extremely rare, would be to have a fleet of processors available and run programs that can easily be
checked for SDE behaviour afterwards. However, having access to enough physical faulty processors
is a privilege only owners of extreme scale systems can afford. Therefore, simulations are most likely
the most practical way to gain insight into SDE rates. This is the argument of Gizopoulos et al. [53]
for using microarchitecture-level simulation in their work, and their other works that will be discussed in
this section. Gizopoulos et al. also mention the observations of the hyperscalers discussed in Section
3.1.1, and point to processing elements having an unexpectedly large rate of SDEs. To investigate this
Gizopoulos et al. claim microarchitecture-level simulation enables exploration into probabilities, rates,
severities, and root causes of SDE for with high accuracy. Additionally, this measurement method has
the best trade-off between speed and observability, in the context of a full stack simulation, including
things like ECC mechanisms, and OS behaviour. Table 3.1 shows the methodologies they considered.
They argue that from all the low cost options microarchitecture-level fault injection has the best observ-
ability for feasible speed. The only physical fault injection method they considered was beam testing.
An alternative they did not mention or consider is stress testing a dozen or so processors by for ex-
ample running them at low voltage or in a high temperature environment. This would induce faults,
and measurements could be done to see how many of these faults manifest as SDE. Faults could not
be injected in specific units, but SDE rates could be compared on varying benchmarks with different
instruction profiles.

Table 3.1: SDE Rate Measurement Methodologies from [53]

Evaluation Method Time Needed Cost Accessible Resources Fault Source Availability Observability
Field, Lifetime data months/years very high all natural final product limited

Beam testing hours high all natural final product limited
Software-level fault injection hours low limited synthetic early/final product medium

Architecture-level fault injection days low limited synthetic early medium
Microarchitecture-level fault injection days/weeks low most synthetic early very high

RTL fault injection years low all synthetic late very high

3.3.1. Microarchitecture-level Fault Injection
Microarchitecture-level fault injection is used to estimate SDE rates. Amicroarchitecture-level simulator
used in multiple studies that will be discussed in this section is gem5 [54]. Gem5 allows deterministic
end-to-end execution of large workloads on an operating system. Gem5 simulates interactions between
components like control units, execution units, and all major storage units. However, it only functionally

3.3. SDE Rates 33

models combinational and sequential logic. Fault injection is combined with microarchitecture-level
simulation to try and induce SDEs. This is achieved using a microarchitecture-level fault injection
framework like GeFIN [55]. GeFIN is built on top of gem5, and can classify outcomes of each fault
injection as: SDE, timeout, crash, or assert. An SDE is measured when the simulation finished normally
but the program output is different from the fault-free program output. When the simulation did not
finish within a certain period of time it is categorized as a time-out. The simulation can also not output
anything due to some catastrophic event, this is called a crash. Lastly, an assert is when the simulation
encounters a high-level condition that the simulator can not handle, like an illegal address being used.
GeFIN is able to inject different type of faults like permanent, transient, and intermittent. However,
because combinational and sequential logic is functionally simulated it is limited to bit-flips in memory
components, and at outputs of functional units. Additionally, in these micro-architectural studies often
not all possible faults are injected. It is not feasible to inject in a reasonable time all possible errors
in all locations at each clock cycle, which is why statistical fault injection (SFI) is used. During SFI
a randomly selected subset of possible faults are injected, at random injection cycles. The sampling
size of an SFI campaign can be computed using the population size (all possible faults at any cycle),
desired margin of error, and desired confidence level [56].

Microarchitecture-level Results
This section will discuss some of the results from the microarchitecture-level papers. The goal of this
is to paint a more complete picture of SDE behaviour within the entire system. Architecturally visible
faults were introduced in Section 3.2.2, they are also known as corrupt execution errors (CEEs). There
are five different types of CEEs:

• Execution Time Error: A completely correct instruction is committed in the wrong cycle.
• Instruction Flow Change: A different instruction is executed due to incorrect instruction fetching.
• Instruction Replacement: A different instruction is executed due to a corrupted opcode.
• Operand Forced Switch: When one or more operand fields are corrupted.
• Data Corruption: The correct resource is used but the content of the register is corrupted.

The work of Papadimitriou et al. [52] uses GeFIN to inject faults into on-chip storage structures of a
CPU with a 64-bit Armv8 ISA. The fault model Papadimitriou et al. use is the transient single-bit fault,
meaning a bit flip is injected into a storage structure once per simulation. They use SFI to inject 2000 bit
flips per structure. Figure 3.3 shows the SDC probability of different hardware structures for each type
of CEE. The SDC probability is the probability that a fault in a certain hardware structure manifests as a
SDC. Data Corruption is by far the most common type of CEE, with a 53.1% SDC probability for the L1
data cache. When looking at the definition of data corruption this makes sense. If data in the L1 data
cache is corrupted due to a fault, when loading this data into a registers its content is also corrupted.
Furthermore, it is to be expected that data corruption is the most common type of CEE. This is due to
the fact that data corruption is the least likely type of CEE to cause a crash, so the most likely to stay
silent and become a SDE.

Figure 3.3: SDC Probabilities of Non-benign Faults from [52]

3.3. SDE Rates 34

An earlier work of Papadimitriou et al. [57] uses the exact same setup, also using GeFIN and
injecting 2000 single bit flips into each storage structure. However, they compare two different microar-
chitectures, and also different compiler optimization levels (O0, O1, O2, and O3). Figure 3.4 shows the
FIT rate for both microarchitectures per optimization level for eight different benchmarks. FIT stands
for failures in time, and is the number of failures that can be expected in one billion device-hours of
operation. Furthermore, the FIT rates are also categorized into application crashes, system crashes
and SDCs. It is interesting to see that the more modern architecture is more vulnerable to SDCs. This
supports the claims made by Meta [5] and Google [4]. The benchmarks dijkstra and sha have the low-
est SDC rates. This might be due to the fact that a graph algorithm and a cryptographic hash algorithm
both use relatively little memory, and the fault are injected into memory structures.

Figure 3.4: Arm Cortex-A15 FIT rates (left graph) and Arm Cortex-A72 FIT rates (right graph) from [57]

A work by Gizopoulos et al. [58] also uses GeFIN but injects different faults. Gizopoulos et al. in-
ject transient and permanent bit-flips into storage structures, as well as permanent faults in an integer
adder. However, microarchitecture-level simulation only simulates functional units functionally. There-
fore, statistical models were created to describe the propagation of permanent stuck-at faults in the
integer adder to its output. Essential this is a frequency of a stuck-at or bit-flip at the output. Figure 3.5
shows the SDC AVF for different ISAs per benchmark, for permanent faults in the L1D Cache and the
integer adder. SDC AVF is simply the the probability of a fault leading to a SDC. The data cache has
a higher SDC AVF than the integer adder, which is to be expected. Due to their statistical model many
injected faults are masked in the integer adder, while there is no masking in the data cache. Further-
more, in both plots RISC-V seems to be the ISA that is most susceptible to SDCs.However, this could
differ for different implementation of each ISA. This is a nuance that was not mentioned by Gizopoulos
et al.

Figure 3.5: SDC AVF for Permanent Faults in L1D Cache and Integer Adder from [58]

A more recent work by Gizopoulos et al. [53] does not use GeFIN to inject fault but Gem5-marvel
[59]. Gem5-marvel is a fault injection framework built on top of gem5, that is able to inject faults into
functional units. It uses gate-level models of functional units in C++, on which stuck-at fault injection
can be done. Besides memory structures they also inject faults into an integer adder and multiplier,
and a floating-point adder and multiplier. Figure 3.6 shows the SDC probability of the aforementioned
functional units for different benchmarks. As can be seen, floating-point adder and multiplier units are
significantly more SDC prone than their integer counterparts. This could be due to increased logic

3.3. SDE Rates 35

complexity, or because the benchmarks use more floating point arithmetic than integer arithmetic. This
study should have taken into account the instruction profile of the benchmarks when presenting results.

Figure 3.6: SDC Probability of Multiplication and Addition Arithmetic Units for Integers and Floating Points Numbers from [53]

The discussed microarchitecture-level works have been of the same group of authors. Therefore,
some other microarchitecture-level fault injection works will briefly be covered to show some different
approaches. Li et al. [60] developed a fault injection framework that models microarchitecture-level
effects of gate-level permanent faults. Enabling them to compare SDC occurrences due to permanent
SAFs with SDC occurrences due to permanent TDFs. As expected, of these two fault models TDFs is
most likely to cause SDCs. Hyungmin Cho [61] has shown that FPGA emulation can speed up RTL-
level fault injection combined with microarchitecture-level simulation. In contrast, Wibowo et al. [62]
went up an abstraction layer and combined functional simulation with microarchitecture-level simulation
to speed up execution.

3.3.2. Comparison
The discussed microarchitecture-level SDC works have been compared in search of their limitations
and potential avenues for improvement. Table 3.2 shows the components that each work has performed
fault injection in. As can be seen many functional units have not been covered.

Table 3.2: Qualitative Comparison of Fault Injected Components

Component [57] [58] [52] [53] [60] [61] [62]
Memory ✓ ✓ ✓ ✓ ✓ ✓

Functional Units

IntALU ✓
IntMultDiv
FP_ALU
FP_MultDiv
ReadPort
SIMD_Unit
PredALU
WritePort
RdWrPort
Int Add ✓ ✓
Int Mult ✓
VF Add ✓
VF Mult ✓
Decoder ✓
AGEN ✓

Table 3.3 shows with combination of fault types and fault models have been used for fault injection
in each work. In terms of transient faults only single-bit faults have been injected, and injection of
intermittent faults has not been explored whatsoever.

3.4. SDE Solutions 36

Table 3.3: Qualitative Comparison of Fault Models used for Fault Injection

Fault Type Fault Model [57] [58] [52] [53] [60] [61] [62]

Permanent

Bit-flip fault ✓ ✓
Single-bit fault ✓ ✓
Gate-level fault ✓ ✓
SA fault ✓ ✓
Delay fault ✓
Bridging fault
Transistor fault

Transient Single-bit fault ✓ ✓ ✓ ✓ ✓ ✓
Intermittent Any

3.3.3. Alternative SDE Estimation Methods
There are alternatives to microarchitecture-level fault injection for estimating SDE rates. However,
most works use microarchitecture-level fault injection due to its efficiency, this was discussed at the
start of Section 3.3. One of these alternatives is data from deployed hardware, but there are not
many entities with access to large fleets of processors. Another alternative is beam testing, this is a
technique using focused ion or electron beams. These beams can be used to inject faults at specific
location within circuits to observe their effects. This method can be very costly if precision of the fault
location is required. There is also software-level and architecture-level fault injection, but these are not
as detailed as microarchitecture-level fault injection. The more detailed approach RTL fault injection
suffers from long run time. For these practical reasons, most of the works found that report SDE rates
use microarchitecture-level fault injection.

3.3.4. Conclusion
To conclude this chapter about microarchitecture-level SDC works, a lot of similar studies with little
additional novelty were discussed. However, these studies did help paint a picture of how faults can
turn into SDCs. Except for the work of Hyungmin Cho [61], no works have compared different fault
models for varying fault types. This should be investigated, maybe different fault models will have
different correlations to SDCs or CEEs for various functional units or ISAs. The fault models currently
used are not good enough, more complex fault models will have different propagation from gate level
to microarchitecture-level. For example, transition delay faults depend on two cycles, and what they
use now does not consider the transition of signals between clock cycles. Furthermore, not many
functional units have been considered for fault injection, i.e. no fixed point units or dividers. This could
be interesting to see how it relates to the different types of CEEs. Combining different abstraction
levels to get more detailed when necessary, and switch to a faster less detailed abstraction level when
applicable is very promising and should be explored more. No intermittent faults are explored at all,
while Google [4] and Meta [5] point to these as a potential cause of a lot of SDCs. Microarchitecture-
level fault injection of intermittent fault for different fault models would provide great insights.

3.4. SDE Solutions
Mitigating the consequences of SDEs can involve either hardware or software solutions. The goal of
SDE solutions is to prevent SDEs from occurring. This can be achieved by detecting and correcting
SDEs in real time. But it could also be done by identifying circuits suffering from SDE occurrences,
and avoiding their usage. The software solutions that will be covered in this section include software
test libraries, and software redundancy. Hardware solutions that are discussed involve continuous
verification, and structural testing. Any combination of these techniques can be used to mitigate SDEs.

3.4.1. Software Test Libraries
Software test libraries (STLs) for SDEs are software libraries that can be used to detect processor
defects that can cause SDEs. They are practical because they can be ran on processors that have
some down time. Therefore, they are used in modern data centres as an in field maintenance tool.
These tools run as full-system diagnostics and execute a wide variety of code sequences to test every
CPU subsystem. An example of an STL is DCDIAGS [63], a tool that consists of a suite of tests.

3.4. SDE Solutions 37

The suite verifies if every computation returns correct results by using self checking mechanisms for
example, multi-threaded arithmetic or cryptographic routines, and checking each result for correctness.
Figure 3.7 shows some of these mechanism, this is elaborated on below:

• Golden-Value Tests: The tool runs a fixed sequence of operations with a known input and com-
pares the result to a “golden” reference. For example, it may compute a checksum or a mathemat-
ical function of a predetermined value and check that the output matches the expected constant.
Any discrepancy flags the core as defective.

• Cross-Thread (Multi-Core) Comparison: All cores in the processor execute the same instruc-
tion sequence with identical initial data. At the end of each iteration, the outputs from every thread
are compared against each other. Any core that produces a deviating result is marked as faulty.

• Inverse-Transformation Tests: A computation is paired with its inverse (i.e. compress then
decompress, or encrypt then decrypt) on a random data buffer. The final output should exactly
match the original input, else an SDE is inferred.

Large Library of Solved
Equations

Core Under Test

Answer from
Core

Answer from
Library=

Equation

Thread1 Thread1 Thread1 Thread1

Answer Answer Answer Wrong
Answer
Defect

= = !=

Data
Answer Answer

Compare

"Golden Value"
Tests

Cross-Thread
Comparisons

Inverse
Transformations

Figure 3.7: Software Self-checking Methods for Data Centre SDEs

These software tests turn the CPU into its own self-checking test engine. Intel reports that DCDIAGS
tests have uncovered unique SDE causing failure mechanisms that escaped all other testing [63]. STLs
are currently used both in chip manufacturing and in data centre maintenance. In production test,
DCDIAGS is run on every wafer or packaged part to filter out “tails” of undetected defects. In the field,
administrators typically schedule periodic offline tests: they take servers down for maintenance and

3.4. SDE Solutions 38

run diagnostics (including DCDIAGS) on each CPU. This routine maintenance can catch processors
that only reveal SDE faults after some ageing.

However, STLs have some downsides. To successfully detect SDEs, tests need to be repeated
many times. This is due to the intermittent behaviour of defects causing SDEs. So individual tests
consisting of specific computations will be run repeatedly. Therefore tests that target SDE defects have
a huge test cost. This is characterized by time to failure (TTF), which is the length of time an individual
test must run to detect a defect. Long TTFs causes large test costs. Moreover, STL development is
based on stressing all architectural units of the processor and hoping to detect defects. It is a form of
functional testingmeaning it is not based on fault models. Therefore, test development is not systematic,
but extremely ad hoc. Lastly, this also means that the thoroughness of these tests is unclear. The
thoroughness can not be expressed in FC, and the only way to evaluate tests is to see how many
defects are detected.

3.4.2. Software Redundancy
Software redundancy techniques replicate program computations in software to detect and correct
defects that lead to SDCs. STLs, discussed in the previous section, used software self checking mech-
anism which in essence are also a form of software redundancy. However, the software redundancy
that will be discussed in this section does online detection and correction of incorrect computations.
Two primary software redundancy approaches that have been adopted in are full duplication and selec-
tive instruction duplication (SID). In full duplication, every instruction is executed twice or more and the
results are compared at runtime. Figure 3.8(a) shows an example of this. While conceptually simple,
this approach costs nearly 100% performance overhead and doubles the memory footprint of programs,
making it impractical for large-scale or latency-sensitive workloads.

Figure 3.8: Example of (a) Original Program (b) Full Duplication (c) SID from [64]

SID reduces overhead by duplicating only a subset of vulnerable instructions. Figure 3.8(b) shows
an example of this. Each candidate instruction is duplicated in the binary, and a comparison is inserted
immediately before the next control�flow or synchronization point. If a transient fault flips a bit in either
of the two identical instructions, the mismatch triggers an error detection event. SIDformulates the
selection of instructions as a 0–1 knapsack problem, where each instruction’s cost is its fraction of
dynamic cycles, and its benefit is the product of that cost and the measured SDC probability from a
compiler-level fault injection run. Equation 3.1 and Equation 3.2 show the formulas for cost and benefit
respectively, of instruction i.

Costi =
(Dynamic Cycles)i

Total Cycles
, (3.1)

Benefiti = (SDC Probability)i × Costi. (3.2)

Within a given performance-overhead budget, SID maximizes total benefit by duplicating only the
most promising instructions. Because SID measures (SDC Probability)i using a single reference input,
it can overlook instructions whose fault propagation behaviour changes with different data sets. Huang
et al. [64] observe that ∼ 16% of instructions, in typical high performance computing kernels, exhibit
near-zero SDC probability under the reference input, but become highly vulnerable under other inputs.

3.4. SDE Solutions 39

As a result, conventional [64] may suffer up to a 37% drop in coverage when the program runs on
arbitrary inputs.

To address input dependence, MINPSID [64] augments SID with an input�search engine based on
a genetic algorithm and control-flow-graph (CFG) fitness metric. It:

1. Statically analyses the program to build its CFG.
2. Iteratively generates and mutates inputs, scoring each by the difference in their weighted CFG

profiles (edge-execution counts) to explore diverse execution paths.
3. Performs targeted fault injection on each new input to uncover incubative instructions (instructions

with which SDC coverage loss correlates).
4. Updates each incubative instruction’s benefit to its maximum observed value across all inputs,

ensuring they are selected in the final knapsack optimization.

This process effectively recovers the lost coverage: MINPSID reduces the average input-induced
coverage drop from 37% to under 3% across 11 benchmarks. However, the protection levels that were
used in the work were 30%, 50%, and 70%. The protection level “indicates the amount of dynamic
instructions need to be duplicated“ [64]. So, the protection level equals the runtime overhead, which
is quite significant considering the occurrence frequency of SDCs. Laguna et al. developed IPAS [65],
a SID method that exploits machine learning to find incubative instructions. This improved runtime
overhead compared to the work of Huang et al. [64]. But, the overhead still ranges from 4% to 35%
which is not feasible for most applications.

3.4.3. Continuous Verification in Hardware
Continuous verification in hardware entails hardware verifying its own operations to detect faulty be-
haviour when it happens. These self-checking functional units raise an exception or log an error when
a discrepancy is detected. This ensures that a potential SDE loses the S and therefore is not silent.
Of course, continuous hardware checking increases area or energy cost, so it is typically applied to
the most vulnerable or safety-critical paths. However, in contrast to software redundancy, continuous
verification in hardware can be designed to cause less runtime overhead.

The example that will be discussed is a low cost hardware scheme for continuous verification of
large arithmetic circuits by Pan et al. [66]. The scheme is based on the relation shown in Equation
3.3. The relation considers two numbers b1 and b2, and the modulo n of these numbers, a1 and a2
respectively. It states that multiplying a1 with a2 is equal to multiplying b1 with b2 and taking the modulo
n of the result.

If a1 ≡ b1 (mod n) ∧ a2 ≡ b2 (mod n) =⇒ a1 × a2 ≡ b1 × b2 (mod n) (3.3)

The relation can be used to self-check amultiplication, and also works for other arithmetic operations
like addition and subtraction. Figure 3.9 shows the self-checking circuit based on this relation.

Figure 3.9: Self-Checking Multiplier Circuit from [66]

Table 3.4 shows the resulting FC and overhead for different modulo n implementations, and other
works. The fault coverage is not complete, because of escapes due to ambiguous cases like 9 (mod 3) =

3.4. SDE Solutions 40

0 and 12 (mod 3) = 0. Using the same logic it can be explained why for higher n there is higher FC,
this is because there will be less ambiguous cases. Lastly, when comparing the scheme of Pan et al.
[66] with the other works, it becomes clear that a nuanced trade-off between area overhead and FC is
worth it.

Table 3.4: Area Overhead and Fault Coverage Comparison for 32-bit Multiplier from [66]

Detection Scheme Mod 3 Mod 7 Mod 31 Mod 127 Nicolaidis [67] Marienfeld [68]

Area Overhead % 14.5 16 18.7 21.7 46 to 76 28 to 35
Fault Coverage % 93 94 97 97 100 100

3.4.4. Test
This section covers test solutions, which include techniques from the field of structural hardware testing.
This is seen as a hardware solution, as structural testing is based on the underlying hardware. It
can mitigate SDEs by ensuring circuits with defects, that could manifest as SDEs, are not used. The
underlying cause of SDEs is thought to be “timing errors from random process variations“ [10]. The
test might well be the best solution because its objective is to detect the root cause of SDEs: defects.
Moreover, the response of the industry in the past few years has been the brute force solution STLs,
discussed in Section 3.4.1. Current test infrastructure made for traditional ATE, can not be used to apply
STLs. This would require many test boards in parallel to deal with the long test times of functional tests,
as well as cooling infrastructure which is needed to cool CUTs that operate at-speed. That is why “new
low-cost scan tests that can reliably detect timing failures caused by random process variations remain
of great interest to industry“ - Adit Singh [10]. The test communities response to this will be discussed
in this section.

Vmin Testing
In Section 3.2.1, testing at low voltage was established to be a way to accentuate subtle timing marginal-
ities, and thus be able to detect them better. Adit Singh published another work on this topic [69]. Table
3.5 shows that the chance of an outlier transistor causing a problematic delay is significantly higher at
Vmin than at Vnom. He also showed how this can be leveraged for setting the voltage and timing of
TDF and CAT scan tests to help increase the detection of these marginal parts.

Table 3.5: Gate Delay vs ∆Vth and Occurrence Probability from [69]

∆Vth Percentage Delay Change due to ±∆Vth Probability of
σ Volts VDD = 1.0V VDD = 0.6V Vth > Vth0 + ∆Vth
0 0.000 0% 0% 0% 0% 1 in 2.0E0
1 0.025 -4.9% +5.4% -13.7% +18.1% 1 in 6.0E0
2 0.050 -9.6% +11.4% -24.4% +43.2% 1 in 4.4E1
3 0.075 -13.6% +18.1% -32.7% +79.9% 1 in 7.4E2
4 0.100 -17.5% +25.6% -39.7% +137.8% 1 in 3.2E4
5 0.125 -21.0% +33.9% -45.5% +240.7% 1 in 3.5E6
6 0.150 -24.3% +43.2% -50.3% +465.6% 1 in 1.0E9
7 0.175 -27.3% +53.8% -54.4% +1018% 1 in 7.8E11

Singh’s approach is tried by intel in a work by Natarajan et al. [70]. They test the Timing-Aware
Transition (TAT) and the Timing-Aware Cell-Aware (TACA) fault models under different temperature
and frequency conditions on data centre products. To see if the Vmin can be increased, because
an increased Vmin means that the circuit would not function correctly with the original Vmin. Table 3.6
shows their results. In these results class units are a set of packaged units that have not been tested on
a system, and SDE units are units that have been tested and failed due to SDE. The testing frequencies
F1 and F4 related to each other in the following way: F4 = 4×F1. It was concluded that high frequency
testing at low temperature accentuates timing marginalities the most, because the Vmin for which the
units were functional went up the most under these conditions.

3.4. SDE Solutions 41

Table 3.6: Distribution of Units that Showed Vmin Elevation with TA Content from [70]

Temp

Percentage of 108 Class units
with at least one core having ≥
40mV increase over baseline

Percentage of 7 SDE units
with at least one core having ≥

40mV Vmin increase over baseline
F1 F4 F1 F4

Total (TA) TAT TACA Total (TA) TAT TACA Total (TA) TAT TACA Total (TA) TAT TACA
hot 26.9 20.4 14.8 0 0 0 71.4 71.4 57.1 0 0 0
cold 45.4 38.9 20.4 73.1 73.1 7.4 71.4 71.4 57.1 85.7 85.7 42.9

Process Variation Aware Testing
To attempt to tackle SDEs caused by defects induced by process variation, there has been a string of
recent works on process variation-aware testing. These recent works build upon the work by Sauer et
al. [71]. Process variation is the root cause of hard-to-detect marginal defects currently escaping post
manufacturing testing. Therefore, current testing could likely be improved by incorporating process
variation. That is the main motivation for the work of Jafarzadeh et al. [72], in which they propose a
pattern generation method that targetsSDFs under process variation. Moreover, the generated tests
are robust, which means that it detects the targeted SDF regardless of other delays. Jafarzadeh et al.
also define a new metric for fault efficiency of SDFs under process variations. Equation 3.4 shows the
fault efficiency of test set T for fault size i. The numerator is the amount of faults with size i detected
by T for all circuits (c) in circuit set C. The denominator is the amount of detectable faults of size i in
FL for all circuits in C.

FE(i, T) =

∣∣⋃
c∈C F (c, i, T)

∣∣∣∣⋃
c∈C {(f, c, i) ∈ FL}

∣∣ (3.4)

Figure 3.10 shows the proposed method. First, a transition fault test set is generated, as well as
a training set of 100 Monte-Carlo instances of the CUT. Each instance consists of randomly sampled
transistors from a 14nm FinFET transistor model [73]. Then, a SDF fault list is generated by estimating
the minimum detectable fault size using a static timing analysis tool. The fourth step involves robust
test pattern set generation for the fault list, and set of circuit instances. This is followed by timing-aware
test set compaction. Finally, the resulting test set is validated using a validation set of Monte-Carlo
circuit instances.

Figure 3.10: Overview of Proposed Method from [72]

The algorithm used for step four is shown in Algorithm 1. The inputs consist of the SDF fault list (FL)
generated in step 3, and the trained set of circuit instances (C). A TDF test set acts as the base test set
and will be expanded by the algorithm. The algorithm starts with fault size i = 1 and iterates until i = K
or FL is empty. Every iteration the algorithm does the following for fault size δi. First, timing-aware
fault simulation for all SDFs of size δi is performed. Then, the detected faults (f, c, δi) (fault location,
circuit instance, fault size respectively) are removed from FL as well as all faults (f, c, δj), where j ≥ i.
The authors make the reasonable assumption that if an SDF of a certain size is detected, all SDFs at
the same location and circuit of a larger size are also detected. After this, the circuit c with the lowest

3.4. SDE Solutions 42

SDF FE is found, and N-detect [74] ATPG for TDFs is applied on undetected fault locations in c. From
the generated patterns, ones that detect new SDFs in C are added to the test set. This process is
repeated until i = K or FL is empty.

Algorithm 1 Test Pattern Set Generation under Variations from [72]
INPUT: FL,C
OUTPUT: Test set T for SDFs
1: Set i = 1.
2: Generate transition fault test set T̃ .
3: for i ≤ K do
4: Perform timing-aware fault simulation of all SDFs of size δi in C with T̃ .
5: Drop the detected faults (f, C, δj) with j ≥ i from FL.
6: Find c ∈ C with the lowest SDFs efficiency.
7: Apply N-detect ATPG for transition faults on undetected fault locations in c and get TTF .
8: Add patterns detecting new SDFs in C to T̃ .
9: i = i+ 1.
10: end for
11: T = T̃

Algorithm 2 shows the algorithm for test pattern set compaction under process variations. The
inputs of this algorithm are test set T , fault list FL, and training set of monte carlo circuits C. The
output is a compacted test set T ’ for SDFs. As the algorithm initializes two sets FLdetected and T ’.
Then, the algorithm loops through each test pattern in T . Per test pattern it first performs timing-aware
fault simulation to find the set of faults F (tj) in FL detected by tj . Second, it selects subset F ’(tj) of
F (tj) with minimum fault sizes, and if all faults in F ’(tj) have a matching larger fault in FLdetected, tj is
dropped from T ’. Else when one or more new faults are present in F ’(tj), these additionally detected
faults are found, and the corresponding larger faults are removed from FLdetected. Then the additionally
detected faults are added to FLdetected. Then FL is also updated to not include any faults detected by
tj . Once this is done for every test pattern in T , there should be only one fault size in T ’ for each pair
(f, c). So, reversed order fault simulation of FLdetected and T ’ is executed. This entails fault simulation
starting with the last pattern in T ’, and ending with the first pattern in the set. If any simulated pattern
does not find any new faults it is removed from the test set.

Algorithm 2 Test Pattern Set Compaction under Variations from [72]
INPUT: T, FL,C
OUTPUT: Compacted Test set T ′ for SDFs
1: Set j = 0
2: Initialize fault lists FLundetected = FL, FLdetected = empty, T ′ = T
3: for j =< |T | do
4: Perform timing-aware fault simulation to find set of faults F (tj) in FLundetected detected by tj
5: Select subset (F ′(tj)) of F (tj) with minimum fault sizes
6: if (All faults in F ′(tj) have a matching (larger) fault in FLdetected) then
7: drop tj from T
8: else
9: Determine additional detected faults by tj
10: Remove the corresponding larger faults from FLdetected

11: Update FLundetected

12: end if
13: end for
14: Fault simulation of T ′ and FL′ in reversed order as there is now one fault size for each (f, c)

Figure 3.7 shows the results from Jafarzadeh et al. [72]. They used six benchmark circuits to
compare their robust test set with a 10-detect test set, and an Mrob test set. The Mrob test set is
generated by N-detect with N = Mrob, to match the test set size of the robust test set. The provided
results consist of FE as defined in Equation 3.4, and the test set size TSize.

3.4. SDE Solutions 43

Table 3.7: Results from [72]

Circuits Robust Test Set Mrob-detect Test Set 10-detect Test Set
FE TSize Mrob FE TSize FE TSize

b12 0.59 704 5 0.58 685 0.59 1337
b14 0.58 2533 6 0.56 2521 0.57 4091
b20 0.56 3367 5 0.54 3125 0.55 6329
b17 0.56 5498 8 0.54 5506 0.55 6870
p45k 0.57 14234 6 0.55 12962 0.56 21487
p100k 0.55 16764 8 0.53 16884 0.54 20989

Figure 3.7 shows a slight improvement in the by Jafarzadeh et al. created FE metric, for the robust
test set over the 10-detect test set. This is to be expected because this metric is used in the generation
of the robust test set. Furthermore, the robust test set does provide a significant test set size decrease
compared to N-detect. The main idea of work from Jafarzadeh et al. [72] is that the test pattern gen-
eration specifically tries to target hard-to-detect faults. By searching of the circuit in the circuit set with
the lowest FE. In addition, the method allows generating test patterns for SDFs while avoiding slow
timing-aware ATPG. This was done by using non-timing-aware ATPG in combination with timing-aware
GPU-accelerated fault simulation.

This variation-aware testing method was expanded by Jafarzadeh et al. [75], to also account for
voltage variations. Figure 3.11 shows the proposed methodology. First, two circuit sets are generated
through static timing analysis for minimal and nominal voltage, as well as the corresponding fault lists.
Then, Tmin_unc is generated based on Cmin and FLmin in a similar way to [72]. Following this, the
compaction algorithm from [72] is applied under Vmin and Vnom, and even twice sequentially for both,
creating the test sets T ”min Tmin, and T ′min.

Figure 3.11: Proposed Method from [75]

Table 3.8 shows the results of their approach. They compare the test sets T ”min Tmin, and T ′min,
with the test set Tnom based on the approach in [72]. The comparison is done using FE ratio as
defined in Equation 3.5. This ratio being not going below one means the patterns generated for Vmin

also enhance test under nominal voltage with respect to FC. An improvement in pattern count is also
observed.

R(CV , δi, T1, T2) =
FE(CV , δi, T1)

FE(CV , δi, T2)
(3.5)

3.4. SDE Solutions 44

Table 3.8: Resulting FE Ratio from [75]

Circuits Rg(Cmin,Tmin, Tnom) Rg(Cnom,T ′
min, Tnom) Rg(Cnom,T ′′

min, Tnom)
Value i Value i Value i

b12 1.07 2 1.10 2 1.13 2
b14 1.02 3 1.31 3 1.33 3
b20 1.03 3 1.24 3 1.25 3
b17 1.05 2 1.32 2 1.33 2
b18 1.03 3 1.38 3 1.39 3
P45k 1.03 3 1.28 3 1.29 3
P100k 1.02 2 1.24 2 1.26 3

Two more works have been published following this promising approach. Jafarzadeh et al. [76]
propose a DLBIST method that uses these process variation-aware test patterns. To apply the right
test set in the right conditions they add a “DFVS control“ unit to the DLBIST setting, that can set the CUT
to desired frequency and voltage. Jafarzadeh et al. [77] again expand on the process variation-aware
testing work. They identify the zero temperature coefficient which is the voltage where temperature
effect inversion is zero. This means that the effects of temperature-induced variability are minimized.
They conclude that test generation at the zero temperature coefficient voltage increases SDF FC, and
decreases test set size.

Software-Based Self-Test
SBST is another potential test solution for SDEs. SBST is a method of testing a processor core using
instructions, allowing a SBST program to be executed like any other program. Chen et al. [78] compare
SBST with the alternatives full scan and logic BIST. They show several advantages of SBST. It restricts
itself to the available hardware, so it does not add any extra area to the design. SBST can be run like any
other software program enabling at-speed test. Additionally, SBST programs are very flexible allowing
in-field application of SBST tests. However, SBST also has its downsides making it a bit impractical for
wide adaptation. SBST programs are specifically tailored per core, and it costs significant engineering
effort to develop. This is due to the complexity of extracting functional constraints from a processor
core. Also, the conversion of patterns to instructions is still actively being researched. A more detailed
discussion of the current SBST state-of-the-art can be found in Section 3.5.

Other System Level Test Works
There are several other works on system level test that are worth discussing. The work by Cantoro
et al. [79] shows that system level tests targeting SAFs can be modified to target TDFs. This is done
by observing which TDFs are excited by the SAF test, and then observing them. Bartolomucci et al.
[80] describe a technique that is used to assess small delay defects coverage of software test libraries.
This technique enables measuring the quality of software test libraries with regards to small delay
defects. However, it does not improve software test library generation. Lastly, there are also system
level test works that do not test CPU cores, but rather GPUs [81] [82]. With the growing adoption of
artificial intelligence, demand for GPUs and other accelerators is sure to keep increasing in the coming
decades [83]. Therefore, demand for system level tests for GPUs is also likely to increase.

3.4.5. Conclusion
To conclude, several software and hardware SDE solutions have been covered. Mitigation through
test has the most potential, due to relatively low overhead compared to the other solutions. Moreover,
testing targets the root cause of many SDEs, defects. Testing under minimal voltage has been shown
to find more hard-to-detect defects causing SDEs. Process variation-aware testing is also an improve-
ment over current testing practice, in terms of FC and test set size. A combination of the two has been
proven to be even better. SBST is a way of applying tests that is faster and more flexible than current
methods of test application. This is exactly what is needed to tackle SDEs. It is an answer to Adit
Singh’s call : ”new low-cost scan tests that can reliably detect timing failures caused by random pro-
cess variations remain of great interest to industry” [10]. SBST programs are based on scan tests, and
are relatively low cost. In combination with low voltage and variation-aware testing it could be exactly
what the industry needs. However, it is not yet widely deployed mainly due to the large development

3.5. SBST State-of-the-Art 45

effort associated with SBST. Nonetheless, SBST is the SDE solution with the most untapped potential
to be a good solution to the issue of SDEs. This thesis will research SBST to unlock more if its potential.

3.5. SBST State-of-the-Art
This section will cover the SBST state-of-the-art. The goal of this section is to discuss existing ap-
proach, and existing unsolved challenges. Based on this discussion an avenue for researching SBST
is identified. This will be the starting point for the research done in this thesis. There are different
types of SBST development methods. Figure 3.12 shows an SBST taxonomy created by Psakaris et
al. [84] fifteen years ago. An SBST can be developed by either a functional method, or a structural
method. This relates to functional and structural testing, which has been covered already. Structural
methods are superior to functional methods, because functional methods are ad hoc and structural
methods are based on fault models. Therefore, this thesis will only consider structural SBST methods,
which are split up into hierarchical methods and RTL-level methods. Hierarchical methods are defined
as “Such methods focus on a processor’s modules one at a time, generating stimuli for each module
and then extending those stimuli to the processor level“ [84]. Examples of hierarchical methods are
using precomputed stimuli and CATPG. RTL-level methods are “methods in which the test program
generation process exploits structural RTL information along with ISA information to generate instruc-
tion sequence templates for justifying and propagating faults of the module under test“ [84]. Examples
of RTL methods are pseudorandom test data, which consists of random instructions, and ATPG per
component.

However, it is ambiguous that ATPG per component is not a hierarchical method. Additionally, this
literature review will show many RTL-level method that make use of CATPG. The methods developed
since Psakaris et al. [84] published have almost all used CATPG.

Figure 3.12: Taxonomy of Development Styles for SBST from [84]

The rest of this section is structured as follows. First, Section 3.5.1 will provide an overview of SBST
and its various aspects. Then, Section 3.5.2 will discuss the state-of-the-art FCE methods. Section
3.5.3 covers pattern-to-program conversion used by state-of-the-art SBST works. Then, Section 3.5.4
discusses the combination of SBST with DFT and related works. The discussed SBST works will then
be discussed in Section 3.5.5. Finally, Section 3.5.6 will conclude this section.

3.5.1. Overview
To enable a structured discussion of the state-of-the-art of a hot topic like SBST, its components need
to be explained first. Given that different works focus on varying aspects of SBST, the discussion is
organized by its different aspects. Figure 3.5.2 shows the main steps of SBST. First, there is FCE which
can be seen as a preparatory step for CATPG. ATPG needs to be constrained (CATPG) to adhere to
the functionality of the core-under-test. FCE can be implemented using different approaches for the

3.5. SBST State-of-the-Art 46

modelling, extraction, and subsequent formatting of these constraints. This will be elaborated on in
Section 3.5.2. CATPG is a very important step but not a step that gets a lot of attention in the literature.
This is most likely due to the fact that most ATPG tools are proprietary, so not much can be disclosed
about them. The only thing that varies for different works is the method of applying the constraint, but
this is heavily tool dependent. Lastly, there is pattern-to-program conversion which turns the patterns
generated by ATPG into an SBST test program. This step will be further covered in Section 3.5.3.

Test Program

Netlist /
RTL

description
Processor

ISA

Constraints

I/O Constraints
Spatial Constraints
Temporal Constraints

Formatted constraints

Self-test signature
Virtual circuits
VCM
PI/PPI values DUT

Formatting methods

Data mining (DT)
Manual
Logic simulations

Functional Constraints Extraction
(FCE)

Constrained ATPG
(CATPG)

SA
TDF
PDF

Pattern-to-Program
Conversion

Parsing
Justification
Sequence Padding

Test Patterns

Constraints + netlist

Figure 3.13: An Overview of SBST

3.5.2. Functional Constraints Extraction
FCE is one of the main challenges when developing an SBST. This is due to the ever-increasing com-
plexity of modern processor cores. It is very challenging to automate, and “ATPG constraints are very
hard (if not impossible) to extract by analysing the design“ [85]. It is important that FCE is done well.
The better the constraints are that constrain the ATPG, the easier the pattern-to-program conversion is.
The ideal case is perfect FCE resulting in the output patterns of the ATPG all being functionally possible,
enabling pattern-to-program conversion to perfectly convert the patterns into a test program. However,
in practice FCE is never completely perfect. If the constraints are very strict, pattern-to-program con-
version will be able to implement all patterns as instructions, at the cost of a lower FC due to heavily
restricted CATPG. On the other hand, if the constraints are very loose, the fault coverage of the patterns
generated by CATPG will be high, but a ton of patterns might not be functionally possible. Resulting in

3.5. SBST State-of-the-Art 47

a lot of FC loss in this step. For all of these reasons improving FCE is extremely important. Works with
their focus or their partial focus on the FCE process will be discussed below.

Expanded Instructions
In 2010 Zhang et al. [21] presented a template-based SBST method called automatic test instruction
generation (ATIG). The ATIG Zhang et al. propose is based on expanded instructions. The additional
information an expanded instruction contains is: time, instruction type, circuit states, operand values,
instruction results, in/out flags, and the program counter. Figure 3.14 shows the ATIG framework. As
can been simulation-enabled data mining is executed to obtain mappings between expanded instruc-
tions and signal values. These mappings are used to generate instruction-level constraints. These
constraints are then converted into virtual circuits, and applied to ATPG effectively creating CATPG
functionality. The test patterns generated by the CATPG are then converted into instructions, and a
program is assembled. The mappings are also used in this process. The main contribution of Zhang
et al. is the automatic FCE they developed. The discussed work was validated on the PARWAN [25]
processor and targeted stuck-at faults (SAFs).

Figure 3.14: ATIG Framework from [21]

Executing-Trace-Based Constraint Extraction
In 2013, Zhang et al. [22] proposed an advanced ATIG method based on executing-trace-based con-
straint extraction. Unlike the previous template-driven approach, this method leverages instruction-
level simulators to collect rich execution traces, which are then used to derive expanded instruction
representations containing elements such as operands, results, flags, addresses, and instruction types.
These expanded instruction representations form direct mappings to the ports of processor compo-
nents, simplifying the extraction of functional constraints. A decision tree algorithm with directed ran-
dom checking is applied to these traces to systematically map signal-to-instruction relationships. These
extracted mappings enable CATPG to generate functionally valid patterns, even for hard-to-reach hid-
den control logic. For sequential hidden control logic components like branch predictors, Zhang et al.
introduce a method that embeds structural test patterns into functional routines derived from extended
finite state machines, enhancing sequential depth and observability. Validation on the miniMIPS [86]
processor demonstrated that the proposed method achieves comparable FC to full-scan, with an SBST
program.

3.5.3. Pattern-to-Program Conversion
Pattern-to-program conversion is a vital step in SBST program generation. It is the process of turning
the output of the CATPG, test patterns, into a sequence of instructions that forms the final SBST test
program. This process is dependent on the constraints that were used in the ATPG. The more com-
plete the constraints are, the more efficient the pattern-to-program conversion is. Pattern-to-program

3.5. SBST State-of-the-Art 48

conversion efficiency measures how many of the test patterns are successfully converted, into instruc-
tion sequences that detect the same fault as the test patterns. A relatively easy task done in almost
all pattern-to-program conversions is writing all general purpose register values to memory, to make
faults observable. The biggest challenge of pattern-to-program is finding instructions that can set the
core to specific FSSs. Different approaches to this and pattern-to-program conversion in general will
be discussed in this section.

Test Program Template
Chen et al. [8] developed a test program template to aid in the pattern-to-instruction conversion. Figure
3.15 shows the SBST test program generation proposed by Chen et al. [8]. The constraint generation in
this work was done manually, and therefore the constraints are very loose. Meaning that only obvious
constraints were applied, like the instruction input of the core being constrained to the ISA, and the
ALU opcode register adhering to legal ALU opcodes. This could lead to lower FC when compared to
stricter constraints, but they also implemented a feedback loop from fault simulation back to CATPG
which increases FC. Next, they perform CATPG creating LoC full-scan patterns. As discussed in the
background LoC are functional behaviour and thus easy to convert to instructions. Then, in the pattern-
to-program conversion the test program template is used. The template consists of six segments,
consisting of a sequence of instructions. Iinit initializes the general purpose registers with The values
specified in S1. IEX is also based on the values in S1, specifically the values in Ex stage, and ALU
input registers. IID is the instruction that is found in the ID register in S1. IIF1, and IIF2 correspond
to the instructions specified in I1 and I2. Finally, Istr is an instruction sequence that writes all general
purpose registers to memory for fault observation. The work has been validated on a 5-stage MIPS32
core, and achieved 97.82% TDF FC.

Figure 3.15: Proposed SBST Test Program Generation from [8]

BMC and VCM
In the work of Riefert et al. [87] [23] they present “the first fully automated approach to functional
microprocessor test“ based on Bounded Model Checking BMC. BMC is used to generate instruction
sequences. By modelling the problem of achieving a system state from an initial state through a se-
quence of instructions as a BMC problem, it can be solved using a BMC solver. The aforementioned
work also introduces a new concept: Validity Checker Module (VCM). A VCM is a type of virtual circuit
that has the functional constraints imposed by the PUT encoded in it. A VCM allows DFT engineers to
easily specify constraints for patterns to adhere to functional inputs. Furthermore, it enables proving
the untestability of faults under the specified requirements. The work of Riefert et al. targets Small-
Delay Faults and was done on the miniMIPS core [86]. Their main focus was on pattern-to-program
conversion and the constraining of ATPG.

Faller et al. [13] also used BMC, and a VCM. However, they modified the VCM to enable faster
development of various RISC-V processor families. This was achieved by creating generic constraints,
and adding a mapping layer able to map processors with the RISC-V ISA onto the generic constraints.

3.5. SBST State-of-the-Art 49

Figure 3.16 shows that the mapping layer applies name mapping and bus mapping. The developed
SBST specifically targets the ALU and register file of the core-under-test, and was validation on two
different RISC-V cores. The smallest of the two had about half the area of the larger one, the achieved
FC for the former was 82% and the latter 45.5%. Compared to other works the achieved FC is not high.
Because the focus of this work was developing an easy to develop generic SBST generation method
for RISC-V cores.

Figure 3.16: Interaction Between Processor and VCM from [13]

Reinforcement-learning-based SBST
Chen et al. [88] have proposed a reinforcement learning (RL) based SBST generation method. Chen
et al. specifically exploit RL to tackle the issue of finding a sequence of instructions that can put the
PUT in fault-sensitizing states (FSSs). The agent (in this case the SBST program generator) receives
feedback based on simulation traces which indicate that a FSS has been reached. Finding instructions
that can set a PUT to a specific FSS is the main challenge of pattern-to-program conversion. There-
fore, main priority of their work lies in improving pattern-to-program conversion. Figure 3.17 the entire
SBST program generation framework. There is a feedback loop from test program generation and fault
simulation back to CATPG. When the FC is lower than desired CATPG is done again but with extra
constraints extracted from the previous iteration’s traces. The FCE that was applied here, simply ex-
tracts the registers that are ’0’ or ’1’ more than 97.5% of the time in the collected traces as constraints
for the CATPG. The developed SBST program targets TDFs, and a total FC of 94.94% was achieved
on the Antares core [89].

Figure 3.17: SBST Program Generation from [88]

BDD-based Justification Engine
The work of Cheng et al. [11] presents an SBST generation method that uses a BDD-based justification
engine. A binary decision diagram (BDD) is an abstraction of a boolean function, and thus can be used

3.5. SBST State-of-the-Art 50

to represent the functionality of digital circuits. A justification engine can be used to justify a sequence of
instructions that can create, if functionally possible, a FSS provided by CATPG. The SBST generation
method by Cheng et al. employs a hybrid pattern-to-program conversion method. It is hybrid because it
uses a test program template (the same as Chen et al. [8]) and a justification engine. Figure 3.18 shows
the proposed SBST program generation flow. As can be seen Cheng et al. also add a tailor-made test
program for the register files. Furthermore, BDDs are used to generate the so called ’d-sequence’.
Referring back to Figure 3.15, the ’d-sequence’ consists of the segments Iinit, IEX , and IID, which
are used to get the state in the FSS S1. The essence of their work is research on a novel method of
pattern-to-program conversion. This method was validated on a 5-stage RISC-V in-order processor,
and tests for TDFs. The achieved FC is 90.44 %.

Figure 3.18: Proposed Test Program Generation and Pattern-to-Program Conversion Flows from [11]

Branch-Aware
Kuo and Huang [12] introduce a branch-aware SBST program generation method that addresses the
challenge of incorporating branch instructions in SBST. Other template-based approaches struggle
with the non-linear control flow introduced by branch instructions, especially in processors with branch
prediction mechanisms. The novelty in this work is a method that considers both the actual and pre-
dicted outcomes of branch instructions to guarantee correct instruction execution order. The generation
flow is very similar to the one shown in Figure 3.18. It starts with CATPG, followed by the derivation
of preloading (P), detection (D), and observation (O) sequences. However, the difference is that af-
ter D-sequence generation, if it contains branch instructions D is rearranged. The rearrangement
algorithm accounts for all four possible outcomes of branch prediction, true or false positives and neg-
atives, using a state-aware insertion of NOPs and jump instructions to keep the intended execution
path. Furthermore, the work introduces NOP block recycling, which minimizes test program size by
reusing instruction slots left behind after branch-related rearrangement. An optimized test template
is also proposed, reducing overhead by only loading and observing modified registers. The method
was validated on a five-stage RISC-V core with branch prediction and achieved 90.68% TDF FC, ris-
ing to 92.25% with a register file-specific template (from [11]). The test program size was reduced by
76% compared to the baseline template approach. This work demonstrates that making test program
generation branch-aware significantly enhances both FC and efficiency.

PDF-based SBST
The first and to this day the only work to target path delay faults (PDFs) with SBST is by Anghel et al.
[14]. Anghel et al. propose a systematic method to develop SBST programs for PDFs. The proposed
methodology also includes identification of functionally untestable faults. This approach was tested on
the open-source RISC-V processor core Ri5cy. The main focus of this work was creating an SBST
program that targets the PDF model.

3.5. SBST State-of-the-Art 51

3.5.4. SBST Combined with DFT
The SBST works discussed thus far have all adhered to functional constraints imposed by the CUT and
the instruction set architecture (ISA). Theoretically these constraints could be bypassed or adjusted by
adding DFT hardware to the CUT. This would entail introducing area overhead, and negating one
of SBSTs selling points: zero area overhead. However, the main appeal of SBST is that it can be
performed at-speed and has high flexibility, making it ideal for in-field testing. Relatively little research
has been done on the trade-off of area versus SBST performance or SBST development effort. A short
introduction of the works that have combined SBST with some type of DFT hardware addition will follow.

Test Instructions
Lai et al. [24] propose adding DFT hardware that enables SBST to use test instructions. They apply
testability analysis to find registers with low controllability or observability. The “testability analysis“
is done by manually analysing the micro-architecture of the core. Then, they add test instructions to
increase the controllability and observability of those registers. Like an instruction that moves data
from status registers to a general purpose register, and an instruction that does the same thing but the
other way around. Furthermore, they add an instruction that drives the exception signals from a general
purpose register. Lai et al. found that they were able to decrease SBST test time, while increasing FC
to 100%. At the cost of a 4.7% and 1.6% area overhead on the the PARWAN core [25], and the DLX
core respectively. Their work targets “path delay faults“, but they do not define them and only mention
them once. Due to the fact that Lai et al. report a 100% FC of PDFs it is likely they had a different
interpretation of PDFs than what is known today.

Added Observation Points
Nakazato et al. [26] propose a DFT method to enhance SBST by adding observation points. However,
they work under the assumption that each register in the core can be set to 0 or 1 by some function.
To ensure this assumption holds they add hardware that carries out this function. They manage to
increase the template level fault efficiency to 100%, Equation 3.6 shows their definition of template
level fault efficiency. Where #MT is the number of faults detected in the module-under-test by “test
generation“ [26], and #TP is the number of faults detected by the test template. However, they do not
mention for what fault model they are generating tests for.

FET =
#TP
#MT

(3.6)

Reaching full template level fault efficiency, comes at an area overhead cost of 26.68% and 13.49%
for the SAYEH core and DLX core respectively. Furthermore, the work by Nakazato et al. has some
contradictions, it claims: “A function to initialize the value of each register in the processor to ‘0’ or ‘1’
is added“. But it also says: “the proposed method adds only observation points to the original design“.
Additionally, there is no explanation on how these “functions“ are implemented. Another thing missing
from the work is any kind of nuance when choosing which observation points to add.

Functional DFT
Irith Pomeranz published a work on a functional DFT [27]. This work is more theoretical than the
previous two discussed works. It was not tested in combination with an SBST program, but SBST is
the context in which the idea for the functional DFT can be used. Therefore, there are no area results,
only fault coverage results. In short, the idea is to add multiplexers in front of specific flip-flops. These
multiplexers swap state variables (flip-flop content) so that this swap propagates a fault towards an
observation point in case of a faulty circuit, and in case of a fault-free circuit the state does not change.
This DFT requires a very specific situation to be effective. Therefore, Pomeranz ALSO outlines a
procedure to find out for which combination of sequential elements inserting the DFT is effective. The
approach is based on the observation that faulty circuits have different states than fault-free circuits.

3.5.5. Comparison
A comparison of a selection of the discussed SBST works is presented in Table 3.9. The considered
FCE methods are ’test engineer’, ’data mining’, and ’logic simulation’. Data mining has been previously
explained in this chapter. ’test engineer’ means the constraint are manually extracted by analysing the
design, and logic simulation means they are extracted by analysing logic simulation. As can be seen

3.5. SBST State-of-the-Art 52

most works still do FCE manually because their focus is on pattern-to-program conversion, and auto-
matic FCE is not easy to develop. In terms of constraint formats the most used in simply constraining
the (pseudo) primary inputs of the PUT with the built-in functionality of the ATPG tool. When looking
at fault models a subtle shift towards the more thorough delay fault models can be observed. The
conversion methods used by the various works differs a lot, and no trend over time can be established.
Most of these methods have been previously discussed. Except for parser mapping, this means that
values from test patterns are mapped to registers and inputs and test engineers manually find fitting
instructions. Lastly, a very clear shift in the ISA of the PUT can be observed. Recent works all use the
most modern of the three ISAs, namely RISC-V.

Table 3.9: Comparison of Various SBST Works

SBST Work 2001
[78]

2010
[21]

2019
[88]

2021
[8]

2023
[13]

2023
[11]

2023
[14]

2024
[12]

FCE
Method

Test Engineer ✓ ✓ ✓ ✓ ✓ ✓
Data Mining ✓
Logic Simulation ✓ ✓

Constraint
Format

Signature ✓
VCM ✓
Virtual circuits ✓
PI/PPI Values ✓ ✓ ✓ ✓ ✓

Fault
Model

SAF ✓ ✓ ✓
TDF ✓ ✓ ✓ ✓
PDF ✓

Conversion
Method

Parser Mapping ✓ ✓
Justification ✓
Padding ✓ ✓
Included in CATPG ✓ ✓ ✓

ISA
PARWAN ✓ ✓
MIPS32 ✓ ✓
RISC-V ✓ ✓ ✓ ✓

3.5.6. Conclusion
In conclusion, state-of-the-art research on SBST focuses mainly on two sub-problems: pattern-to-
program conversion and FCE. Improving these two aspects indirectly increases FC of the SBST pro-
gram, which is the goal of most of the research. However, this is not the main focus for the work from
Faller et al. [13]. They try to make SBST development easier (for RISC-V cores). This might be as
important as improving FC, as the high development effort is one of the largest reasons SBST is not
widely adopted. Furthermore, none of the recent state-of-the-art works consider adding extra hardware
to increase FC or ease development efforts. They limit themselves to the hardware already available
on the core, DFT overhead on processor cores is considered the norm [28]. Furthermore, the works
that did combine SBST with a form of DFT, are very outdated. Moreover, they do not consider the area
vs FC trade-off or how a DFT could decrease SBST development effort.

Recently, the target fault model of SBST works has shifted from SAFs to TDFs. This more effectively
targets SDEs because SAFs fall short in modelling the timing issues that are causing SDEs. However,
it can also be observed that FC results are lower for TDFs than for SAFs. This is likely due to the
fact that the TDF model is more complicated, and thus harder to create test patterns for. To potentially
reach similar TDF coverage with SBST as with full scan, test pattern generation needs to be assisted
by increasing the testability of the core. A low cost DFT addition to complement SBST programs would
enable high quality in-field testing, and could potentially replace full scan completely. This would justify
the area cost of the DFT. Therefore, this work explores a hardware DFT addition to complement SBST.
The goal of this addition is to increase FC at minimal area overhead.

4
Software-Based Self-Test

This chapter covers the SBST framework developed in this thesis. Section 4.1 discusses the imple-
mentation of the SBST program generation. This includes the PUT, synthesis process, FCE, constraint
generation, CATPG, and pattern-to-program conversion. Then, Section 4.2 presents the experimental
setup. The setup consists of the test pattern file generation, and fault simulation. Section 4.3 reports
the results of the synthesis, CATPG, and SBST. These results are discussed in Section 4.4. Finally,
the chapter is concluded in Section 4.5

4.1. Implementation: SBST Program Generation
The proposed SBST program generation framework is developed for the CV32E40P core [90], and con-
sists of many components. Therefore, before going into detail, a high-level overview of the framework
will now be presented, covering the large components and their inter operation. Figure 4.1 shows the
high-level overview of the proposed framework.

There are three main inputs to the framework, namely design constraints, a technology cell library,
and the core’s behavioural design. The design constraints and technology cell library are necessary
for synthesis. Synthesis processes these inputs, together with the core’s behavioural design, and
produces a gate-level netlist that will represent the core in the rest of the flow. Except for FCE, FCE
also uses the core behavioural design and generates a scan cell configuration and constraint files. The
scan cell configuration and the netlist are used for scan chain insertion. Then, the scan cell report
that specifies, which registers are connected to which scan chains and scan cells is processed by the
constraint command generation. The constraint command generation, generates TCL procedures with
commands in them that add the right constraints to the correct scan cells. During the CATPG process,
before ATPG is performed, the aforementioned commands are used to apply constraints to the scan
cells. The CATPG then produces test patterns that adhere to the constraints. The ATPG tool used
in this thesis is Tessent by Siemens. These patterns are then processed by the pattern-to-program
conversion, which uses a test program template inspired by [8]. The pattern-to-program conversion
then outputs a sequence of instructions which make up the test program. The rest of this section will
discuss the core-under-test, synthesis, FCE, constraint application, scan chain insertion, CATPG, and
pattern-to-program conversion.

53

4.1. Implementation: SBST Program Generation 54

Te
ss

en
t

Gate-level Netlist

Synthesis

TCL Procedure Files

Constraint
Command
Generation

Test Pattern File

CATPG

DFT Inserted Netlist

Scancell.rpt
Scan Chain

Insertion

Constraint Files
Scancell Configuration

FCE

Sequence of Instructions

Pattern-to-
Program

Conversion

Core Behavioral
Design

Technology
Cell Library

Design
Constraints

SBST Test
Program

Test
Program
Template

Core ISA

Figure 4.1: Proposed SBST Program Generation Framework

4.1.1. CV32E40P Core
The core for which the SBST program generation framework is developed is the CV32E40P core, for-
merly known as RI5CY, by ETH Zurich [90]. This core is chosen because it uses the RISC-V instruction
set, which is a widely used [33] modern instruction set. Additionally, compared to other SBST works
the core is relatively large, and it can execute multiplication. The latter is important because in Chapter
3 it is established that SDEs manifest in functional units. ETH Zurich has also developed a single-core
microcontroller architecture around the CV32E40P called Pulpissimo [91]. Figure 4.2 shows the Pulpis-
simo architecture. It adds peripherals, a debug unit, a clock generator, JTAG, memory, and a possible
hardware processing engine (HWPE). However, for the purpose of this thesis much of this hardware
is not used and thus excluded. The scope of the testing is the core, so components such as a clock
and reset generator, a timer, and the debug unit are removed. SBST involves testing a processor core,
in this case the CV32E40P. For this purpose some data memory (RAM) is needed to save results and
make the faults observable. By writing data to the data memory during an SBST program, the data
memory can be inspected at a later stage to see if any faults occurred. An SBST program, similar to
any other program, consists of a sequence of instructions. Therefore, program memory (ROM) is also
necessary to read the program from. Figure 4.2 shows the simplification that follows from this, outlined
by the red dotted lines. More details on how the memory is implemented can be found in Section 4.2.
For now, it is important to understand that the core is utilized within the program generation framework,
assuming that both data memory and instruction memory will be available when the SBST program
runs.

4.1. Implementation: SBST Program Generation 55

Figure 4.2: Simplification of the Pulpissimo Architecture [92]

Figure 4.3 shows the CV32E40P core. CV32E40P is an open-source 32-bit in-order RISC-V core
with 4 pipeline stages, described in SystemVerilog [93]. It is an implementation of the RV32IMC_Zicsr
ISA, which includes RISC-V 32-bit integer, multiplication, compressed, and CSR instructions. Option-
ally, the hardware processing engine can be used to add RV32F instructions, enabling floating point
operations. As can be seen in Figure 4.3, the four pipeline stages are instruction fetch (IF), instruction
decode (ID), execute (EX), and write back (WB). The instruction decode stage has 32 general purpose
registers (GPRs), a decoder, and a controller. The execution stage consists of compute units, and con-
trol status registers (CSR). The main inputs of the core are indicated on the left and right as rdata_i,
these are the instruction data and data from the data memory respectively. These inputs provide data
from the location indicated by the core through the addr_o output, also on the left and right hand side
of Figure 4.3. Lastly, there is the output wdata_o, used to write to data memory.

4.1. Implementation: SBST Program Generation 56

Figure 4.3: CV32E40P Diagram from [93]

4.1.2. Synthesis
The CV32E40P core covered in the previous section is synthesized into a gate-level netlist, using a
40nm technology, so CATPG can be performed on it, and so scan chains can be inserted. The inputs of
the synthesis are design constraint files, a technology cell library, and the core RTL design. The design
constraint files are used in the synthesis process to set timing goals like the maximum length of the
critical path, and setup or hold constraints. The design constraints also set analog constraints like the
capacitance of an input, which is key when planning on actually manufacturing a chip at a foundry. This
information is used to optimize the synthesis according to these constraints. However, in this thesis
synthesis is done to generate a gate-level netlist for ATPG targeting gate-level fault models. Therefore,
the specifics of the design constraints files are not critical. For SDF these constraint files would matter
because timing-aware ATPG is necessary, but for TDFs this is not the case. So for TDFs and SAFs
changing the constraint files might cause some gate level or wiring changes, but the results will not
significantly change.

The technology cell library that is used is the 40nm technology of TSMC. Genus, the synthesis tool
used, combines the technology, RTL design, and design constraints into a netlist. The synthesis.tcl
script is set up for this purpose. The clock gating module in the CV32E40P core had to be replaced for
synthesis with a clock gating cell of the specific technology used. Clock gating is a power management
technique used in digital design, that removes the clock signal when it is not being used. This is done
by latching the clock with an enable signal. HDL could describe clock gating functionally, but only
technology-specific clock gating cells can implement it safely and efficiently in silicon. These cells are
tuned to the electrical, timing, and physical characteristics of the specific node, so that any potential
clock glitches are avoided.

4.1.3. Functional Constraints Extraction
The FCEmethod applied in this work is manual extraction by a test engineer. The choice for this method
will first be justified, then the method is explained. The SBST state-of-the-art has shown current works
either use manual FCE or (semi) automated FCE enabled through logic simulation and data mining. It
can be observed that only the works with their main focus being FCE have gone through the efforts of
automating it. This is plainly because setting up automatic FCE requires tremendous effort, and is not
worth it if this is not the focus of the research. This is exactly the reason why a form of manual FCE is
used in this work.

FCE is one of the most challenging aspects of SBST, and requires great effort to develop. Due to
the focus of this work lying elsewhere, this process has been simplified as much as possible. Before
diving into the simplification it is key to formulate the goal of FCE. The constraints that FCE extracts
should ensure that the patterns produced by CATPG are functionally possible. This means that the
instruction input of the core should be restricted to the instructions of the implemented ISA (RV32IMC).
Additionally, the CATPG uses scan-based patterns. So, the internal FSSs specified by these patterns
should also be functionally possible. This is the main challenge of FCE. The input constraints are
straightforward to implement, but internal states of the core are very hard to constrain. This is due to

4.1. Implementation: SBST Program Generation 57

the complexity of modern processor cores.
The simplification of the FCE is applied for the FSS constraints. The issue is that the CV32E40P,

when applying full-scan scan insertion, has 2130 scan cells. So, when considering full-scan patterns
the FSS has the size of 2130 bits. Therefore, it is not feasible to do a complete manual FCE. The
work by Chen et al. [8] identifies only “apparent register value constraints“ to reduce development
efforts. With apparent register value constraints they mean registers that save instructions or ALU
opcodes. In a way this is also done in this thesis. However, as opposed to full-scan (used by Chen
et al. [8]), this work uses partial scan. This is a form of simplification. If there are no constraints on
certain registers, and they can not be easily controlled, they are removed from the scan configuration
used in the CATPG process. Effectively avoiding the situation in which an unconstrained state variable
creates a functionally not possible FSSs. Also, the main goal of this work is to add some form of DFT.
An estimate about the DFT addition can be made by adding more controllable or observable scan cells
to this partial-scan setup. To make a good estimate about the DFT addition, the constraints should be
as strict as possible. This will increase the pattern-to-program conversion efficiency, and improve this
estimate.

Partial Scan Configuration
The reason for choosing a partial scan configuration has been explained above. The decision-making
process for which specific scan cells to include in this partial scan configuration will now follow. The
main criterion is that the included scan cells should be relatively easy to extract functional constraints
from. The partial scan configuration selection methodology consists of the following main steps:

1. Remove all registers except the registers in the IF stage and ID stage.
2. Remove registers in the control unit, which are not directly driven by an instruction entering the

ID stage or take a constant value in functional operation.
3. Remove the performance counter registers.
4. Remove registers that depend only on signals from pipeline stages other than the IF and ID

stages.

With the goal of simplifying the FCE process in mind the steps are elaborated below. The first step
removes all registers from the EX and WB stages. This is because these are stages further along the
pipeline, which makes it harder to trace register states back to instructions. Step two involves removing
registers from the control unit in the ID stage. Registers are removed that cannot be directly driven by
an instruction entering the ID stage, and which are not constant in functional operation. For example,
certain registers only change when in debug mode which will not happen during SBST program ex-
ecution. Third, the performance counters in the ID stage are removed, as they are driven in a very
convoluted way, making it difficult to set proper constraints for them. Lastly, the fourth step removes
registers that depend only on signals from the EX and WB stages. It is hard to analyse which instruc-
tions set these registers to which values, as the signals driving these registers come from the back of
the pipeline. Lastly, it is important to note that general purpose registers 1-9 are reserved for usage to
aid in pattern-to-instruction conversion. So, general purpose registers 10-31 are included, as these are
easily controllable and observable. Figure 4.1 shows the resulting partial scan configuration, excluding
the general purpose registers.

4.1. Implementation: SBST Program Generation 58

Table 4.1: Registers Included in Partial Scan Configuration

Register Name Range Register Name Range
/id_stage_i/alu_operand_a_ex_o_reg 31:0 /id_stage_i/controller_i/debug_reg_q_reg 0
/id_stage_i/alu_operand_b_ex_o_reg 31:0 /id_stage_i/controller_i/debug_reg_entry_q_reg 0
/id_stage_i/alu_operand_c_ex_o_reg 31:0 /id_stage_i/regfile_waddr_ex_o_reg 4:0
/id_stage_i/mult_operand_a_ex_o_reg 31:0 /id_stage_i/regfile_alu_we_ex_o_reg 0
/id_stage_i/mult_operand_b_ex_o_reg 31:0 /id_stage_i/regfile_we_ex_o_reg 0
/id_stage_i/mult_operand_c_ex_o_reg 31:0 /id_stage_i/prepost_useincr_ex_o_reg 0
/id_stage_i/alu_en_ex_o_reg 0 /id_stage_i/regfile_alu_waddr_ex_o_reg 4:0
/id_stage_i/mult_signed_mode_ex_o_reg 1:0 /id_stage_i/branch_in_ex_o_reg 0
/id_stage_i/mult_en_ex_o_reg 0 /id_stage_i/csr_access_ex_o_reg 0
/id_stage_i/mult_operator_ex_o_reg 2:1 /id_stage_i/csr_op_ex_o_reg 1:0
/id_stage_i/data_we_ex_o_reg 0 /id_stage_i/data_sign_ext_ex_o_reg 0
/id_stage_i/controller_i/jump_done_q_reg 0 /id_stage_i/data_req_ex_o_reg 0
/id_stage_i/controller_i/illegal_insn_q_reg 0 /id_stage_i/data_type_ex_o_reg 1:0
/if_stage_i/instr_rdata_id_o_reg 31:2 /if_stage_i/instr_valid_id_o_reg 0
/if_stage_i/illegal_c_insn_id_o_reg 0 /if_stage_i/is_compressed_id_o_reg 0

Manual FCE
As mentioned before, the FCE was done manually. The constraints are modelLed as a finite set of
possible circuit states, reachable with one instruction. So, for each instruction entering either the IF or ID
stage, the state following from it is established as one of the possible states. In the pattern-to-program
conversion a state coming from the CATPG can then be linked to its corresponding instruction. This is
done twice, once for the IF stage, and once for the ID stage. These constraints are created manually
by analysing the RTL design as well as logic simulations. For example, when an ADD instruction
enters the core through simulation it can be seen what values the registers in the IF stage have. In the
next cycle, when the ADD instruction enters the ID stage it is decoded by the decoder, which sets the
values of several registers in the ID stage. This can easily be viewed by analysing the RTL design and
confirmed through simulations.

4.1.4. Constraint Command Generation
The constraint command generation is the process of applying the extracted constraints to the ATPG
through Tessent commands. This process depends upon the capabilities and functionality of the ATPG
tool that is used. This thesis uses the ATPG tool Tessent by Siemens. Tessent allows setting ATPG
constraints, and cell constraints [94]. Setting ATPG constraints restricts ATPG generated patterns
to adhere to them. These constraints can restrict specific pins to a value. Alternatively, an ATPG
function can be added as an ATPG constraint. An ATPG function can be any logical combination of
pins, specified with AND’s, OR’s, and NOT’s. ATPG constraints can be static or dynamic. A static
constraint is always applied, in contrast a dynamic constraint is only applied during ATPG patterns. A
cell constraint can restrict any scan cell to ‘0‘, or ‘1‘. Besides that, it can make specific scan cells only
observable or only controllable. Below is a list of the constraint sets created:

• All instruction constraints dynamic (1)
• Scan enable constraint dynamic (0)
• Cell constraints static

The dynamic constraint sets are the all instruction constraints and scan enable constraint. The all
instructions constraint set restricts the instruction input of the core to implemented instructions, and the
scan enable constraint restricts scan enable to 0. These constraints are dynamic because they only
need to be applied during the ATPG cycles, not necessarily during load and shift cycles. Lastly, there
are cell constraints that specify if scan cells are observable or controllable. With the exception of the
general purpose registers, all of the scan cells in the scan configuration are set to be only controllable
and not observable. This will ease pattern-to-program efforts as any flip-flop that is not part of a general
purpose register is hard to make observable through instructions.

The state constraints consisting of the constraints on the IF and ID stages are static so that they
also hold during load and shift cycles. However, these constraints have not been applied to the CATPG

4.1. Implementation: SBST Program Generation 59

because they resulted in extremely long test pattern generation time and low FC. The effect of this will
be a lower pattern conversion rate.

The application of constraints has been automated. Because when the scan configuration changes,
the flip-flops will be linked to different scan chains and scan cells. Therefore, the scan cell report can
be processed together with the csv files containing the constraints, to create scripts with procedures
consisting of Tessent commands that apply the constraints.

4.1.5. Scan Chain Insertion
Scan chain insertion converts a selection of flip-flops in the netlist into scan cells, distributed over a num-
ber of scan chains. First, the scan insertion process is set up. This involves setting the maximum num-
ber of scan chains, and themaximum length of scan chains. Then, in case of partial scan, the sequential
elements that should not be turned into scan cells are removed from the scan list. Setting up the scan
insertion process also should get rid of any rule violations. There are certain rules that must be satisfied
to ensure proper functionality of scan chains, more on this below. The first step of the scan insertion
itself is distributing the memory elements from the scan list into scan chains (analyze_scan_chains).
Then, the scan chains are inserted using insert_test_logic -write_in_tsdb On -replace. This
command inserts the scan cells, stitches them up into scan chains, and writes out the scan inserted
netlist and a TCD file. The TCD file contains scan configurations and is used during ATPG.

To ensure the scan chains can be reliably used to apply test, Tessent automatically analyses all
memory elements to see if they adhere to certain rules. The sequential instances that pass these rules
are considered scannable, and are added to the scan list. One of these rule sets is the scannability
rules (S rules), which check if the tool can turn off all set and reset lines, and control all clock inputs
of sequential cells from primary inputs. If a sequential element does not pass one of these rules it is
no longer considered for scan insertion. One of the scannability rules that blocks scan insertion on
the CV32E40P core is the S1 scannability rule. The S1 rule states that all the clock inputs (including
sets and resets) of each scannable non-scan memory element need to be able to be turned off. This
ensures that non-scan elements that could be converted to scan can be controlled to hold their data.
The S1 rule violation was resolved with the Tessent command: set_test_logic -set on -reset on
-clock on. This inserts test logic that can control the set, reset, and clock.

Another set of rules, which are check after insertion are the scan chain trace rules (T rules). To
check these rules Tessent injects values at control locations to facilitate scan chain tracing. When
tracing fails the corrupt scan cells highlighted and an error occurs. After inserting scan chains in the
CV32E40P core, two T rules were violated (T5 and T3). The T5 rule states that no undefined values
must be placed on a clock input or a non zero value on a set or reset of a memory element in the scan
path. The T3 rule checks if the shift procedure creates a sensitisable path from the scan chain output
back to the scan chain input. There were exactly the same amount of violations for both rules, so it was
one issue caused violations of both rules. Figure 4.4 shows one of the T5 violations viewed in Tessent
visualizer. It can be seen that the latch in the TSMC clock gating cell CKLHQD1BWP is uninitialized at
the start of the trace sequence. This causes a T5 violation and indirectly also a T3 violation.

Figure 4.4: T5 Rule Violation in Tessent Visualizer

All clock gating cells available in the TSMC cell library have the same design, but different electrical
properties. Additionally, Tessent did not provide a way to solve these violations in their manual or online.
Therefore, an alternative clock gating cell is implemented using TSMC cell library primitives. Figure 4.5
shows the original clock gating cell from the library on the left, and on the right the alternative clock
gating cell is shown. The OR gate driven by the clock gate enable and test enable inputs is moved
behind the latch. The test enable signal passes the latch, going straight into the OR gate together with

4.1. Implementation: SBST Program Generation 60

the uninitialized value from the latch. This ensures there is no undefined signal being outputted from
the clock gating cell into any scan cells.

Latch

TE

E

CPN
Q

Latch

TE

E

Q
CPN

Figure 4.5: T5 Rule Violation Fix

4.1.6. CATPG
CATPG is the generation of test patterns restricted to specified constraints. This step is essential to
SBST test program generation, and it is what takes the most computation time. Figure 4.6 shows the
entire flow of the script that runs CATPG in Tessent. This flow is equivalent to the “Tessent“ block
in Figure 4.1. Step one ensures the specified settings are used in the rest of the flow, and creates
output folders named according to these settings. The settings include the scan configuration, scan
chain length, top module, fault model, and the sequential depth. The scan configuration contains all
the sequential elements that should be converted into scan cells, and the scan chain lengths specifies
how many scan cells are placed in each scan chain. However, to maximize FC results this is always
set to zero. The downside of this is that many extra inputs and outputs are added to the design, but
this scan setup is only used in simulation so the amount of inputs and outputs does not matter. The
fault model dictates what faults the ATPG target, and the sequential depth sets the maximum amount
of cycles a test pattern can be. Step two reads the netlist of the specified top module, specifies the top
module to Tessent, and reads the cell library files. To simulate the netlist, Tessent needs behavioural
descriptions of the cells from the used technology library. Steps three and four have been discussed
in Section 4.1.5. Step five writes out a scan cell report, that is used in step six (see Section 4.1.4) to
generate the constraint scripts. Step seven uses the aforementioned scripts to add constraints to the
tool. Next, step eight sets the fault type, the sequential depth, and creates patterns. Finally, step 9
writes out any relevant reports.

4.1. Implementation: SBST Program Generation 61

1. Init

2. Circuit Setup

3. Scan Setup

4. Scan Insertion

Scancells.rpt
5. Scan Cell Report

Constraint Scripts

6. Constraint Gen

7. Add Constraints

8. CATPG

9. Write Reports

Scan Config

Chain Length

Top Module

Netlist Cell Library

Fault Model

Sequential Depth

Figure 4.6: Tessent CATPG Script Flow

The output of the CATPG are test pattern files in a STIL [95] format. Figure 4.7 shows the expected
behaviour of these test patterns. As can be seen the scan enable is only high during load/unload and
shift procedures, ensuring no scan chain usage during sequential and capture cycles. This is due to
the dynamic scan enable constraint mentioned in Section 4.1.3. Lastly, the input sequential depth n
(shown in Figure 4.7) sets the maximum sequential depth of the test patterns. This decides how many
clock sequential cycles there can be within a pattern.

Procedure Load/Unload Shift Sequential Capture

Cycles 1 i n 1

SE

clk

Figure 4.7: CATPG Output Pattern Inspired by Tessent Manual [94]

4.1.7. Pattern-to-Program Conversion
Pattern-to-program conversion processes the test pattern file outputted by CATPG, and creates an
SBST program. The implemented pattern-to-program conversion uses a similar test template as used
by Chen et al. [8], but it is tailored to partial scan. Figure 4.8 the flow of the pattern-to-program con-
version process. The inputs are the ScanCells.rpt and TestPatterns.stil files, based on the information
present in these files an SBST program can be generated. The scan cell report contains the informa-
tion about which flip-flops are linked to which scan cells and scan chains. The test pattern file contains
values for each primary input or scan cells, for each cycle in every test pattern. These files are parsed
creating a list of instances of the Pattern class, and a list of instances of the ScanChain class. The
Pattern class saves all the relevant information of a pattern. The ScanChain class consists of one or
more instances of the ScanCell class, which links a scan cell with its corresponding flip-flop. The two

4.1. Implementation: SBST Program Generation 62

aforementioned lists together are used to create a Mapper instance. The Mapper class can be used
to retrieve values for a specific pattern, including flip-flop values, and instruction input values for spe-
cific sequential or capture cycles in the pattern. Then, the Mapper instance is used to instantiate the
InstrGen class. The InstrGen class has the method generate_program() which is used to generate
the SBST program.

list[ScanCell]

Parse Scan
Cells

list[ScanChain]
Create Scan

Chains

list[Pattern]

Parse Test
Pattern

Mapper

Create Mapper
Instance

InstrGen

Create InstrGen
Instance

Sequence of Instructions

generate_program()

instr_init

instr_ID

instr_IF

instr_PI

instr_store

For Each
Test Pattern

SBST Test
Program

ScanCells.rptTestPatterns.stil

Figure 4.8: Pattern-to-Program Conversion Flow

The generate_program() method uses the test template to convert each pattern. The customized
test template is shown in Figure 4.9, and as can be seen the template outlines the steps taken in
generate_program(). The upper three signals represent a scan LoC test pattern, and the lower two
signals show how this is applied via SBST. The IPI instructions can be read directly from the test
pattern file. The Istr instructions save the values of all used general purpose registers (x10-x31). The
instruction sequences used to set the core to the FSS (S1) are Iinit, IID, and IIF . The correct values
are loaded into the used general purpose registers with the instruction sequence Iinit. The instruction

4.1. Implementation: SBST Program Generation 63

that sets the IF stage in the right state is IIF . The instruction sequence IID attempts to set the ID stage
to the FSS. However, for this some justification may be necessary.

SE

PI I1 I2

State S1 S2

State S1 S2

Instruction Iinit IID IIF IPI IPI Istr

Figure 4.9: Modified Test Program Template based on [11]

Justification of Fault Sensitizing State
Justification of the FSS entails finding instructions that set the core in the right state. As can be seen in
Figure 4.9, these instructions consist of the instructions sequences Iinit IID, and IIF . The sequence
Iinit consists of instructions loading the GPRs with scan in values from the CATPG test patterns. IIF
is the instruction that is loaded into the instruction register of the IF stage in the test patterns. Lastly,
the instruction sequence IID sets the ID stage to the correct FSS. This is a bit more complicated than
the other instruction sequences.

The state variables set by IID include the ALU or multiplier operator, operands, write addresses,
and other state variables in the ID state. The FSS is recreated as much as possible, but this process
is not perfect. This is due to the fact that the values which the scan cells are set to are not con-
strained. Applying the manually extracted state constraints resulted in very low fault coverage, so the
state constraints have not been applied to the CATPG. Resulting in test patterns with FSSs that are not
functionally possible. Therefore, these states have been recreated as much as possible by checking if
the ALU or MULT operators are legal. If one of these operators is legal an instruction for the ID stage
pipeline can be found. If not, the hamming distances between the states each instruction causes and
the FSS specified in the test pattern are computed. The instruction that most closely recreates the FSS
is then picked. This is the last instruction of the IID instruction sequence before the instructions IIF ,
and IPI . However, there are also some instructions before this in IID. These instructions load the
MULT operands to the correct value is the last instruction in IID is found to be an ALU instruction, and
vice versa. Additionally, some instructions are added that set GPRs to the values of the ALU or MULT
operands in the test pattern, depending on what the last instruction in IID is. This final instruction then
used the prepared registers.

For example, if the ALU operator (in the test pattern file) indicates that there is an ADD instruction,
the test pattern in parsed for the values of the ALU’s a and b operands. Two registers are then set to
these values with lui and ori instructions. The same is done to two other registers for the multiplication
operands. Then, MULT instruction is applied to set the multiplication operands, followed by an add
instruction that sets the ALU operands and operator.

Register File Test Program
The register file of any core has a repeating structure consisting of 32 registers (flip-flops) and their
corresponding read and write logic. When a test pattern is found for one register it can be applied
iteratively on all registers. So, for this specific module, the manual generation of test patterns is more
efficient than ATPG. This has been shown in the work of Cheng et al. [11]. The implemented register
file test program is inspired by this work, but it is an improved version. It is shown in Section 4.3 that
the implemented RF test program has higher fault coverage than the one described in [11].

There has been one work on specifically testing register files using SBST, by Tuna et al. [96]. The
mentioned work applies march tests on a register file through instructions. A march test consists of
a sequence of march elements, which itself is a sequence of memory reads and writes. The second
column in Table 4.2 shows different march tests and the march elements they apply. Memory reads of

4.2. Experimental Setup 64

1 and 0 are specified by r1 and r0 respectively, and writes are specified by w0 and w1. Furthermore,
each march element is applied to all memory entries iteratively before moving on to the next march
element. The upwards and downwards arrows before all march elements, specify if the iteration goes
from the lowest address to the highest or the highest address to the lowest respectively. The ad hoc
march algorithm that is proposed uses a slightly modified notation. The upwards and downwards arrows
still indicate the order in which the march sequences are applied to each register. However, for each
operation it is also specified if the operation is done on the register of the current iteration (i), or another
register.

Table 4.2 shows the different march algorithms that were tried. The march algorithm with the highest
fault coverage of the register file, see Section 4.3.4, is chosen and used. The chosen march algorithm
is the ad hoc algorithm, tailored for the implementation of the register file of the CV32E40P core.

Table 4.2: March Algorithms Partly from [96]

March Algorithm March Sequence
MATS { ↑ (w0); ↑ (r0, w1); ↑ (r1) }
MATS+ { ↑ (w0); ↑ (r0, w1); ↓ (r1, w0) }
MATS++ { ↑ (w0); ↑ (r0, w1); ↓ (r1, w0, r0) }
MARCH X { ↑ (w0); ↑ (r0, w1); ↓ (r1); ↓ (r0) }
MARCH C- { ↑ (w0); ↑ (r0, w1); ↑ (r1, w0); ↓ (r0, w1); ↓ (r1, w0); ↑ (r0) }
MARCH SR { ↑ (w0); ↑ (r0, w1, r1, w0); ↑ (r0, r0); ↑ (w1); ↓ (r1, w0, r0, w1); ↓ (r1, r1) }
Ad hoc { ↑ (wi0, wi1, ri1, ri−11, wi0, wi1, ri+10, ri1, wi−10, wi0, wi+10, wi1, ri+10, ri−10,

ri1) ↑ (wi0, wi0, ri0, ri−10, wi1, wi0, ri+10, ri0, wi−11, wi1, wi+11, wi0, ri+11, ri−11,
ri0) }

4.2. Experimental Setup
The goal of the experimental setup is to test the FC provided by a generated SBST program. This is
done through fault simulation in Tessent. Figure 4.10 shows a high-level overview of the experimental
setup. To be able to test the SBST program, it needs to be formatted into a test pattern file that can
be read and simulated by Tessent. This section will present the method that is used to generate test
pattern files from a sequence of instructions. Then, an elaboration on the fault simulation in Tessent is
given.

STIL Test Pattern FileTest Pattern File
Generation

Fault
Simulation

SBST
Results

SBST Test ProgramSBST Program
Generation

Figure 4.10: Experimental Setup

4.2.1. Test Pattern File Generation
The test pattern file generation consists of a SystemVerilog testbench that runs the sequence of instruc-
tions, making up the SBST program, and writes out a test patterns file in the STIL [95] format. Figure
4.11 shows the general fault simulation framework used for SBST fault simulation. Everything shown
in the figure except the fault simulation was developed as part of the experimental setup for this thesis.
The three main parts of the developed framework are discussed below.

4.2. Experimental Setup 65

Figure 4.11: SBST Fault Simulation Framework from [78]

Data and Instruction Memory
The SystemVerilog testbench that is implemented mocks the data and instruction memory. The core
communicates with both memories via the OBI (Open Bus Interface) protocol. At the start of the test-
bench the data memory is initialized with random values. The idea of SBST is that the faults are
propagated to the data memory, and checked at a later stage. For the sake of generating a test pattern
file it is enough to write it to memory, and capture the data write output of the core to be used in the test
pattern file. The instruction memory consists of the instructions from the SBST program. The data read
address output of the core is not considered, whenever the core requests the next instruction the next
instruction from the SBST program is provided. This ignores possible branch instructions that could
change the program counter. However, the SBST program could be saved in memory to account for
branch instructions. This is outside of the scope of this work, and would not change the results.

Core I/O
Every cycle of the testbench, the core inputs are captured. These input values are used to write a
sequential cycle into the test pattern file. When the testbench detects four NOP instructions in a row,
it also captures the core outputs. Four NOP instructions in a row are inserted by the SBST program
generator to indicate the end of a pattern. The captured core outputs, as well as the captured core
inputs of the previous cycle are used to write a capture cycle into the test pattern file.

STILVerify
After the test pattern file has been generated it is verified with the STILVerify software. STILVerify is a
verification tool from Siemens for checking the conformiry of STIL files. It ensures that the syntax of the
STIL file is correct. Furthermore, STILVerify can be used to convert a STIL file into Verilog testbench
files. Simulation of this testbench is the same as the simulation Tessent does internally when running
fault simulation of the STIL test pattern file. This enables test engineers to debug and verify STIL-based
test development.

4.2.2. Fault Simulation
Fault simulation is executed in Tessent to check which faults are detected by the SBST program. Figure
4.12 presents the flow of the developed Tessent fault simulation script. Steps one and two are the
same as in the CATPG script discussed in Section 4.1.6. Step three flattens the design by removing all
modular hierarchy, replacing all module instances with their internal logic. Step four adds constraints to
the instruction inputs of the core ensuring functional behaviour. Then, step five sets up the simulation
by setting the fault model, and sequential depth (to the maximum). Finally, step 6 reads in the patterns
and simulates them. The results of step 6 are written out in step 7, including any failures if they occur.
Failures are when the good simulation does not match the expected values specified in a test pattern.
This effectively checks if the test pattern content is valid.

4.3. Results 66

1. Init

2. Circuit Setup

3. Flatten

4. Add Constraints

5. Sim Setup

6. Sim Patterns

7. Write Reports

Top Module

Netlist Cell Library

Fault Model

Figure 4.12: Tessent Fault Simulation Script Flow

Implications of Parallel Fault Simulation
A key insight about fault simulation in Tessent is that it can only do parallel fault simulation. There is
no option to run sequential fault simulation. Parallel fault simulation means that multiple test patterns
are simulated in parallel. Sequential fault simulation would entail that the test patterns are simulated
sequentially, carrying over the state the core is left in by the previous test pattern as the starting point
of the current test pattern. Running parallel fault simulation means that the core needs to be reset at
the start of each test pattern. Otherwise, sequential elements will be uninitialized and store undefined
values. This is no issue as the state of the circuit at the start of each test pattern does not contribute to
fault sensitization or propagation.

Modified Core for Fault Simulation
Another limitation of Tessent is that it only allows one capture cycle per pattern. A test pattern file with
patterns containing more than one capture cycle is syntactically correct according to STILVerify. But
when attempting to simulate such a test pattern file in Tessent an error occurs. This is an issue because
the test program template ends each pattern by writing out the general purpose registers to memory.
Each time a value from a register reaches the core’s data write output a capture should take place to
detect any corrupt values that were propagated into the register. It is also not possible to spread the
memory write instruction over the test patterns that follow, because at the start of each test pattern to
core has to be reset.

To tackle this issue an alternative design of the CV32E40P core has been implemented, namely
the “CV32E40P_core_faultsim“. To create this core used for fault simulation the component cv32e40p
_faultsim_outputs has been added, as well as 1024 additional primary outputs (logic [1023:0]
faultsim_o). This component is connected to these additional outputs, and whenever a data write is
executed the component copies this data onto the faultsim_o output. The component effectively acts
as a ring buffer of 1024 bits, allowing 32 32-bit writes. When the buffer is full it will wrap around and
overwrite the first data that was written out. Having these extra outputs allows capturing all data that
was written out in one capture cycle. This comes at the cost of 1024 extra primary outputs, but as
this alternative core design is only used for fault simulation this is negligible. The only information that
gets lost is the write addresses that correspond to all the data in the ring buffer. However, the original
CATPG patterns also expect to observe these address outputs.

4.3. Results
This section briefly presents the results of the SBST implementation. First, the results from synthesising
the CV32E40P [90] in Genus with the TSMC 40nm cell library are shown. Then, the results from the

4.3. Results 67

CATPG are presented, for the scan configuration discussed earlier in this section. Finally, the results
of the generation SBST program are shown. These results will be discussed in Section 4.4.

4.3.1. Experiments
Results are presented for a series of experiments, which will be briefly outlined. First, the instruction
implementations of the different march algorithms, discussed in Section 4.1.7, are tested through fault
simulation. FC results of these experiments is provided. Then, the FC results of the developed SBST
programs are shown for both SAFs and TDFs. These are compared with a baseline of full scan FC
results. All of those results are given for sequential depths ranging from 2 to 8. For the CATPG and full
scan results this means that the pattern generation was run with the corresponding sequential depths.
The SBST results for various sequential depths are all based on CATPG patterns of corresponding
sequential depths. More sequential depth will allow for achieving higher FC, but it increases test gener-
ation time which is also reported. Lastly, the hamming distance estimation discussed in Section 4.1.7
is compared to just picking a random instruction.

4.3.2. Metrics
The main metric used in the results is FC, which is defined in Section 2.5.2. The program size of the
SBST programs is reported in megabytes (MB). Lastly, a metric that has not been introduced yet is test
coverage loss (TCL). Test coverage loss, defined in Equation 4.1, is the percentage of test coverage
that is lost by undetected faults. Test coverage differs from fault coverage as it excludes faults that are
proven to be untestable by ATPG patterns. It reflects the effectiveness of the ATPG.

Test Coverage Loss = 1− number of detected faults

number of total faults − number of untestable faults
(4.1)

4.3.3. Synthesis
Table 4.3 shows the results from synthesising the CV32E40P core [90] using the TSMC 40nm Cell
Library. As can be seen, the total area, consisting of the cell and interconnect area, is 38,476µm2. The
total power consists of the leakage power, internal power, and switching power. The leakage power is
the static power consumption of the core. The internal power is the switching power inside cells, and
the switching power is the power due to load capacitance. Finally, the maximum clock frequency is
reported to be around 103.5MHz.

Table 4.3: Synthesis Results of CV32E40P [90] with the TSMC 40 nm Cell Library

Metric Value
Cell Count 12,399
Sequential Elements 2,130
Cell Area 25,866.77µm2

Net Area 12,256.66µm2

Total Area 38,123.43µm2

Total Power 2.25mW
Leakage Power 17.33µW (0.77%)
Internal Power 1.46mW (64.85%)
Switching Power 0.78mW (34.38%)

Clock Period 10,000ps
Slack 353ps
Max Clock Frequency 103.5MHz

4.3.4. Register File Test Programs
The register file test program has been explained in Section 4.1.7. Different march algorithms have
been tried, and the ad hoc program is picked because it provides the highest FC. Table 4.4 shows
the fault coverage of the register file for SAFs and TDFs. It can be seen that SAF FC is similar for
all algorithms. Large differences in FC can be observed when considering the TDF results. Notably,

4.3. Results 68

march SR performs better than the other march algorithms, and the ad hoc program outperforms the
rest.

Table 4.4: March Tests Fault Coverage of Register File Module

March Algorithm SAF FC TDF FC
MARCH C- 72.77% 22.71%
MARCH X 73.56% 22.71%
MATS ++ 63.37% 20.66%
MARCH SR 74.33% 47.46%
Ad hoc 74.80% 61.37%

4.3.5. SBST
The CATPG patterns have been converted to SBST programs which are tested by fault simulation.
Figure 4.13 shows the fault coverage of the generated SBST programs and the CATPG patterns they
are based on. As can be seen the CATPG patterns perform worse than the SBST programs they are
converted into for the lowest sequential depths. This is happening due to padding instructions added
in the SBST program, and the RF test program that is added. Both of these will detect faults that might
not be detected by the original CATPG patterns. Furthermore, when sequential depth increase there
is a significant drop between CATPG FC and FC of corresponding SBST programs. This is most likely
due to the imperfect pattern-to-program conversion, failing to recreate certain FSSs. Lastly, it is clear
that these SBST programs do not come close in FC to the full scan baselines.

2 3 4 5 6 7 8
Sequential Depth [n]

30

40

50

60

70

80

90

100

FC
 [%

]

SBST Results

full scan TDF
full scan SAF
CATPG TDF
SBST TDF
CATPG SAF
SBST SAF

Figure 4.13: SAF and TDF Results of the SBST Programs and CATPG Patterns

To see how the pattern-to-program conversion performs, ideally one would check each CATPG
pattern and corresponding SBST instructions. Then, compare if all faults detected by the CATPG
pattern are also detected by the instructions. However, due to limits imposed by the ATPG tool this
calculation of pattern conversion rate is not possible. Therefore, the detected faults conversion ratio
is calculated. This entails the ratio of faults detected by the CATPG patterns that are also detected
by the SBST program. This metric does not measure how many of the test patterns are successfully
converted, but it does indicate the ratio of faults that are intended to be detected, based on the CATPG
patterns, by the SBST program. Figure 4.14 shows the detected faults conversion ratio for various
sequential depths and two fault models. As expected there are many patterns likely not converted

4.3. Results 69

perfectly. It can be observed that the larger the sequential depth the higher the conversion ratio, this is
likely due to the fact that the more cycles a test pattern lasts the less effect the initial FSS has on the
capturing of faults. Therefore, the larger the sequential depth the less it matters if the FSS is recreated
successfully.

2 3 4 5 6 7 8
Sequential Depth [n]

35

40

45

50

55

De
te

ct
ed

 Fa
ul

ts
 C

on
ve

rs
io

n
Ra

tio
 [%

]

Test Patterns to SBST Conversion
SAF
TDF

Figure 4.14: Test Pattern Conversion Results

The CATPG runtime is shown in Figure 4.15 for SAF and TDF CATPG. As expected, when the
sequential depth starts to increase the runtime goes up. However, from sequential depth five onward
the runtime decreases slightly for increasing sequential depth. This is likely caused by the fact that the
search space of the CATPG algorithm increased. So, certain faults that the CATPG algorithm timed
out on before can be detected now, saving a significant amount of time.

2 3 4 5 6 7 8
Sequential Depth [n]

102

103

104

105

CP
U

Ru
nt

im
e

[s
]

CATPG CPU Runtime

full scan TDF
full scan SAF
CATPG TDF
CATPG SAF

Figure 4.15: CATPG CPU Runtime

A detailed FC report for the sequential depth 8 SBST program is shown in Table 4.5. Compared to
Table 4.4 the TDF FC of the register file module has increased by about 24 % by the conversion of the
CATPG patterns. However, there is still significant TDF coverage loss in the register file as well as the
EX stage. Moreover, the FC for both fault models is extremely low in the “cs_registers“ module.

4.3. Results 70

Table 4.5: SAF and TDF Results based on TDF Patterns with Sequential Depth 8

Module #Faults SAF FC (%) SAF TCL (%) TDF FC(%) TDF TCL (%)
id_stage 50330 90.98 4.00 78.91 9.37

register_file 36468 97.42 0.83 85.30 4.37
controller 2030 47.32 0.94 27.09 1.31
decoder 1894 71.54 0.48 63.20 0.62
int_controller 604 0.17 0.53 0.00 0.53

ex_stage 29914 86.99 3.40 70.56 7.73
alu 15834 77.84 3.08 62.77 5.18
mult 13502 98.15 0.20 79.70 2.40

cs_registers 16386 5.57 13.66 0.01 14.47
if_stage 10688 83.83 1.53 71.84 2.66

aligner 1784 88.45 0.18 78.20 0.34
compressed_decoder 1978 92.82 0.13 92.01 0.14
prefetch_buffer 4130 92.99 0.26 83.37 0.61

load_store_unit 5522 85.95 0.69 72.98 1.32
sleep_unit 42 41.67 0.02 19.05 0.03
faultsim 0 0 0 0 0
Total 113292 76.57 23.40 64.29 35.68

Figure 4.6 shows the program sizes of the SAF and TDF SBST programs. This program size is
calculated by only counting effective test patterns from the SBST program. Effective test patterns are
test patterns that detect undetected faults. As can be seen the SBST program is significantly larger
when it targets TDFs compared to SAFs. This is to be expected as the TDF model is the more intricate
model.

Table 4.6: SBST Program Size Results for Sequential Depth 8

Fault Model SAF TDF
Program Size (MB) 0.167 0.249

The SBST results shown in Table 4.5 are of an SBST program based on CATPG test patterns that
target TDFs. This program was then fault simulated for both fault models. Table 4.7 shows the SAF
results for an SBST program based on CATPG test patterns that target SAFs. As can be seen the
resulting FC is slightly lower. Therefore, in the rest of the work all CATPG test patterns target TDFs,
and these are then converted and simulated for both fault models.

4.3. Results 71

Table 4.7: SAF SBST Results based on SAF Patterns

Module # SAF Faults SAF FC (%) SAF TCL (%)
id_stage 50330 89.93 4.47

register_file 36468 96.37 1.17
controller 2030 46.43 0.96
decoder 1894 70.43 0.49
int_controller 604 0.17 0.53

ex_stage 29914 81.57 4.83
alu 15834 76.59 3.25
mult 13502 87.55 1.47

cs_registers 16386 4.95 13.75
if_stage 10688 84.74 1.44

aligner 1784 88.34 0.18
compressed_decoder 1978 92.16 0.14
prefetch_buffer 4130 92.99 0.26

load_store_unit 5522 86.06 0.68
sleep_unit 42 41.67 0.02
faultsim 0 0.00 0.00
Total 113292 74.68 25.29

Lastly, Table 4.8 shows the results of an SBST which does not use the hamming distance estimation
for justification of the FSS. Instead it uses a random instruction. When comparing these results with
Table 4.5 it can be seen that SAF FC is slightly higher with the random instruction, while TDF FC is
slightly lower. However, the differences are very small so nothing conclusive can be said about it. Likely
the hamming distance estimation functions like a random instruction picker.

Table 4.8: SBST Results for Random FSS Generation based on SAF and TDF Patterns

Module # Faults SAF (%) SAF TCL (%) TDF (%) TCL (%)
id_stage 50330 89.00 4.88 76.86 10.28

register_file 36468 94.63 1.73 82.42 5.66
controller 2030 46.53 0.96 25.71 1.33
decoder 1894 77.67 0.37 71.28 0.48
int_controller 604 0.17 0.53 0.00 0.53

ex_stage 29914 80.36 5.15 72.32 7.26
alu 15834 75.03 3.47 64.06 5.00
mult 13502 86.66 1.57 81.96 2.13

cs_registers 16386 10.94 12.89 0.69 14.37
if_stage 10688 85.10 1.41 72.06 2.64

aligner 1784 88.34 0.18 72.03 0.44
compressed_decoder 1978 91.46 0.15 92.57 0.13
prefetch_buffer 4130 94.39 0.20 85.01 0.55

load_store_unit 5522 86.13 0.68 73.05 1.31
sleep_unit 42 41.67 0.02 19.05 0.03
faultsim 0 0.00 0.00 0.00 0.00
Total 113292 74.88 25.09 63.99 35.97

4.4. Discussion 72

4.4. Discussion
A key observation from these results is that an increase in pre-converted CATPG FC translates to
a higher post-conversion SBST FC. This observation will play an essential part in the design space
exploration in Section 5.1. Moreover, the results also show that increasing sequential depth of the test
patterns will increase SBST FC at the cost of long CATPG runtime. The works by Cheng et al. [11] and
Kuo et al. [12] use a feedback loop from fault simulation back to CATPG to improve their FC results.
However, they only consider using a sequential depth of 2, combining a larger sequential depth with
this feedback loop might result in higher FC or less iterations of the feedback loop.

The developed SBST clearly does not have a high test pattern conversion rate, resulting in rela-
tively low FC. This could be resolved by either implementing a justification engine to recreate FSSs
more successfully or by implemented the aforementioned feedback loop. Furthermore, for TDFs the
“cs_registers“ module has 0 % FC. This may indicate that this module is hard to test for delay faults,
while the core is in functional mode.

4.5. Conclusion
In conclusion, an SBST generation framework for RISC-V cores has been developed. The resulting
SBST program achieved 76.57 % SAF FC, and 64.29 % TDF FC on the CV32E40P core. The detailed
FC results show that the EX stage, ID stage, and “cs_registers“ module suffer from low FC. This indi-
cates the need to improve FC, especially for TDFs, through the addition of a DFT. It is also shown that
pre-converted CATPG test pattern results give an indication of post-conversion SBST program results.
Therefore, a design space exploration will be carried out by tweaking the partial scan CATPG setup.

5
DFT Design

This chapter contains the design of the DFT addition to the SBST created in the experimental setup.
Section 5.1 covers the design space exploration, including the methodology and results. The results of
the DSE are discussed in Section 5.2, and an avenue for the DFT is picked. Then, Section 5.3 considers
various design options and explains the choices made in picking one. The DFT implementation is
covered in Section 5.4. Finally, the results are presented in Section 5.5 and discussed in Section 5.6.
This is followed by a conclusion in Section 5.7

5.1. Design Space Exploration
The DSE to identify avenues for DFT addition that complements SBST is one of the novelties of this
thesis. The main idea of the DSE is to use partial scan patterns for SBST generation, so that scan cells
can be added to see how FC is effected by increased observability or controllability. Adding observability
and controllability to flip-flops, not considered in the pattern-to-program conversion, mimics the effect
a DFT with similar functionality. The premise is that the CATPG test pattern FC, provides an indication
of the FC after being converted to an SBST program. This was concluded in Section 4.5. A DSE
can be performed based on this indication of potential FC increase. Also included in the DSE is the
consideration of the trade-off between area increase and FC increase. The amount of flip-flops being
made observable or controllable indicates the amount of area overhead. Moreover, the capabilities
added to these flip-flops are also accounted for. Making a flip-flop only observable will cause less area
overhead, than making it controllable and observable.

5.1.1. Methodology
The DSE methodology determines which scan configurations are explored in the DSE. A scan con-
figuration is defined as the configuration of scan cells, it specifies which scan cells are added to the
baseline scan configuration used for the SBST generation covered in Chapter 4. Aside from which scan
cells are added to the partial scan setup, the scan configuration also conveys if they are observable,
controllable, or observable and controllable.

The DSE should cover all possible abilities of scan cells that it adds, to be able to make the most
educated choice about the DFT addition. Furthermore, there should be some systematic way of de-
ciding which scan cell combinations are considered for scan configurations that are simulated during
the DSE. Algorithm 3 outlines the DSE methodology. The inputs are the baseline scan configuration
Cbaseline, a set of ability scan cells can have A, and parameter x. The outputs are the optimal scan
configuration Coptimal, a set of combined scan configurations Scomb, and a set of scan configurations
Shigh which perform x percent better than the baseline. The first step generates set M consisting of
one entry per core module, each entry consists of all the potential scan cells in the corresponding mod-
ule. Then, some variables are initialized and the baseline scan configuration is added to the set with
scan configurations to be simulated SDSE . Next, the cartesian product of A and M is computed to
create scan configurations. These scan configurations are each combined with Cbaseline and added to
SDSE . All scan configurations in SDSE are now simulated for sequential depth 2 to 8. Then, based on
parameter x a set is made of a selection of high FC scan configurations Shigh. After, the set Scomb is

73

5.1. Design Space Exploration 74

created, consisting of any possible combinations of the scan configurations in Shigh. Once created, all
scan configurations in Scomb are now simulated for sequential depth 2 to 8. Based on the results of
these simulations the optimal scan configuration according to Equation 5.1 is found Coptimal. Finally,
the algorithm returns this optimal scan configuration, Scomb, and Shigh.

AFC =
FC

additional_area
(5.1)

Algorithm 3 DSE Methodology for Finding DFT Avenue to Complement SBST
INPUT: Cbaseline, A ∈ {obs, obs&cont}, x
OUTPUT: Coptimal, Scomb, Shigh

1: Create Set M with selection of scan cells SCmodule per core module.
2: Set i = 0, K = size(A), Shigh = ∅, SDSE = Cbaseline, Scomb = ∅.
3: for i ≤ K do
4: For each entry in M create a scan configuration where all scan cells have ability Ai .
5: Complement Cbaseline by combining with created scan configurations and add to SDSE .
6: i = i+ 1
7: end for
8: Set i = 2, K = 9
9: for i ≤ K do
10: Run CATPG with sequential depth i for all scan configurations in SDSE .
11: i = i+ 1
12: end for
13: Add scan configurations to Shigh, for which the best run had at least x%FCmore than best baseline

run.
14: Add all possible combinations of the configurations in Shigh to Scomb.
15: for i ≤ K do
16: Run CATPG with sequential depth i for all scan configurations in Scomb.
17: end for
18: For the best run of every configuration in Scomb and Shigh calculate the compound metric of FC and

additional area.
19: The configuration with the highest compound metric score is Coptimal.

5.1.2. Results
This section will briefly present the results from the DSE following Algorithm 3. The results will be
interpreted and discussed in Section 5.2.

Fault Coverage for Controllable and Observable Scan Cells
Figure 5.1 shows the SAF results of the CATPG run with additional observable and controllable scan
cells for each module. The two modules which seem to benefit most from additional observability and
controllability at sequential elements are “cs_regs“ and “id_stage“. From this, it follows that a combina-
tion of the two configurations also has a FC increase compared to the baseline, this can also be seen
in Figure 5.5. The plot also shows that the “complete_obs“ configuration that includes all sequential
elements, performs like full scan when these elements are given controllability and observability.

5.1. Design Space Exploration 75

2 3 4 5 6 7 8
Sequential Depth [n]

60

70

80

90

100
FC

 [%
]

CATPG with Additional Scan Cells

aligner
complete_obs
cs_regs
ex_stage
fifo
id_stage
id_stage_and_cs_regs
int_controller
load_store
obi_int
prefetch_cont
baseline

w
Figure 5.1: SAF Results with Additional Controllable and Observable Scan Cells

Figure 5.2 shows the results for the same simulations as Figure 5.1 but for TDFs. It shows similar
trends to the SAF results, but the FC is systematically lower. However, it can be observed that for
a sequential depth of 8 the FC results of the two configurations “cs_regs“ and “id_stage“ are about
the same. This is expected as the “cs_regs“ module is hard to control, so it benefits more from extra
controllability and observability than just observability.

2 3 4 5 6 7 8
Sequential Depth [n]

40

50

60

70

80

90

FC
 [%

]

CATPG with Additional Scan Cells

aligner
complete_obs
cs_regs
ex_stage
fifo
id_stage
id_stage_and_cs_regs
int_controller
load_store
obi_int
prefetch_cont
baseline

Figure 5.2: TDF Results with Additional Controllable and Observable Scan Cells

Fault Coverage for Observable Scan Cells
Figure 5.3 shows the SAF FC for CATPGwith additional observation points in each module. The results
showing FC of observable only additional scan cells indicate that this is less of an improvement over the

5.1. Design Space Exploration 76

baseline, compared to observable and controllable scan cells. This is expected as the capabilities of the
additional scan cells are decreased, and thereby the testability of the core. The three best performing
configurations are still the same three that perform best for additional controllable and observable scan
cells.

2 3 4 5 6 7 8
Sequential Depth [n]

60

70

80

90

FC
 [%

]

CATPG with Additional Observe Points

aligner
complete_obs
cs_regs
ex_stage
fifo
id_stage
id_stage_and_cs_regs
int_controller
load_store
obi_int
prefetch_cont
baseline

Figure 5.3: SAF Results with Additional Observe Points

Figure 5.4 shows the TDF fault coverage for CATPG with additional observation points in each
module. The exact same simulations with additional observable scan cells, give different results. More
details on this can be found in Appendix B. The FC results for the two fault models SAFs and TDFs
show similar results. Specifically trends seen for increasing sequential depth for both fault models are
the same, but the FC for SAFs is systematically higher.

2 3 4 5 6 7 8
Sequential Depth [n]

30

40

50

60

70

80

90

FC
 [%

]

CATPG with Additional Observe Points

aligner
complete_obs
cs_regs
ex_stage
fifo
id_stage
id_stage_and_cs_regs
int_controller
load_store
obi_int
prefetch_cont
baseline

Figure 5.4: TDF Results with Additional Observe Points

5.1. Design Space Exploration 77

Area
This section covers the same results as the previous section, but area costs are included, in terms of
additional scan cells. Additionally, only the FC is provided for the runs with sequential depth 8, which
has the highest FC results.

Area Controllable and Observable Scan Cells
Figure 5.5 shows the SAF results for the run with additional observable and controllable scan cells.
The additional scan cell numbers give an estimate of the increase in area if the functionality of the
additional scan cells would be added to the design through a functional DFT. As expected a linear trend
can be observed, meaning that more additional scan cells provide more FC increase. Furthermore, the
“id_stage“ configuration stands out due to it having little additional scan cells for significant FC increase.

0 200 400 600 800 1000 1200
Additional Scan Cells [n]

92

93

94

95

96

97

98

99

FC
 [%

]

CATPG for Sequential Depth 8

aligner
complete_obs
cs_regs
ex_stage
fifo
id_stage
id_stage_and_cs_regs
int_controller
load_store
obi_int
prefetch_cont
baseline

Figure 5.5: SAF Results with Additional Controllable and Observable Scan Cells and Sequential Depth 8

Figure 5.6 shows the TDF results for the run with additional observable and controllable scan cells.
Once again, the TDF results look similar to the SAF but the overall FC is lower.

0 200 400 600 800 1000 1200
Additional Scan Cells [n]

82

84

86

88

90

92

94

FC
 [%

]

CATPG for Sequential Depth 8

aligner
complete_obs
cs_regs
ex_stage
fifo
id_stage
id_stage_and_cs_regs
int_controller
load_store
obi_int
prefetch_cont
baseline

Figure 5.6: TDF Results with Additional Controllable and Observable Scan Cells and Sequential Depth 8

Area Observable Scan Cells
Figure 5.7 shows the additional number of observable scan cell for each configuration and the corre-
sponding SAF FC. A linear trend can once again be observed.

5.2. Design Choices 78

0 200 400 600 800 1000 1200
Additional Observe Points [n]

91.5

92.0

92.5

93.0

93.5

94.0

94.5

FC
 [%

]

CATPG for Sequential Depth 8

aligner
complete_obs
cs_regs
ex_stage
fifo
id_stage
id_stage_and_cs_regs
int_controller
load_store
obi_int
prefetch_cont
baseline

Figure 5.7: SAF Results with Additional Observe Points and Sequential Depth 8

Figure 5.8 shows the additional number of observable scan cell for each configuration and the
corresponding TDF FC. Compared to the SAF results more of a spread can be observed for the config-
urations with the least amount of additional scan cells. This is the case because the percentage point
difference between these configurations and baseline is larger than for the SAF results. This indicates
that increased observability is more essential for detecting TDFs than SAFs.

0 200 400 600 800 1000 1200
Additional Observe Points [n]

81

82

83

84

85

86

87

88

FC
 [%

]

CATPG for Sequential Depth 8

aligner
complete_obs
cs_regs
ex_stage
fifo
id_stage
id_stage_and_cs_regs
int_controller
load_store
obi_int
prefetch_cont
baseline

Figure 5.8: TDF Results with Additional Observe Points and Sequential Depth 8

5.1.3. Discussion
The results of the DSE presented previously show that adding additional functionality to the core could
potentially increase FC of SBST programs that make use of this. Additional controllability and observ-
ability is shown to provide more FC increase than just observability. However, What is not included is
that for the controllable and observable scan cells, each additional scan cell will add more area than for
observable only scan cells. This follows from the fact that extra functionality requires extra hardware.
A general trend is observed which shows that more additional scan cells provide more FC. This is the
main trade-off that should be considered when choosing an avenue for a DFT addition.

5.2. Design Choices
The design choices made about the flip-flops to include for the DFT addition are based on the DSE runs.
These are the runs with additional observable only scan cells and observable and controllable scan cells.
The set with contenders Shigh according to Algorithm 3, with parameter x = 2, will be considered. From
the scan cell configurations with only additional observable scan cells “complete_obs“, “cs_regs“, and
“id_stage_and_cs_regs“ are contenders. From the scan configurations with additional observable and

5.3. DFT Method 79

controllable scan cells the same configurations are contenders, but and additionally “id_stage“ is also
a contender.

Making a flip-flop controllable and observable will cost more area than just making a flip-flop ob-
servable. So, area overhead is considered taking this into account as well as the amount of additional
scan cells for the contender configurations. The configurations that immediately seem less favorable
when taking into account area overhead, are “complete_obs“, “id_stage_and_cs_regs“, and “cs_regs“
(controllable and observable). Because they provide relatively little extra FC for the amount of extra
area overhead.

The scan configurations that are left for consideration are “id_stage“ (controllable and observable),
and “cs_regs“ (observable). Due to the fact that Tessent does not allow setting scan cell constraints,
the pattern-to-program conversion does not perfectly recreate the FSSs from the test patterns. For
this reason it is expected that a few extra id_stage flip-flops that are controllable will not necessarily
translate to an increase in SBST FC. As the rest of the FSSmight not completely match the pattern, and
these additional flip-flops might depend on this. However, adding observable flip-flops to the control
registers will likely not suffer the same problem. Additionally, the baseline SBST results from Table 4.5
show that most FC loss happens in the “cs_regs“ module. For those reasons adding observability to
the flip-flops in the “cs_regs“ module is chosen as the goal of the DFT addition. Besides that the small
“id_stage“ configuration for observable only scan cells has also been implemented for comparison.

5.3. DFT Method
This section will cover the high-level design of the chosen DFT addition. First, a list of criteria is pre-
sented. Then, based on these criteria several options are considered and the option that meets the
criteria the best is picked.

5.3.1. Criteria
Table 5.1 shows the criteria that are defined for the DFT addition. These criteria can be used to measure
the success of the design. Criteria AR and TI express that the time and area overhead should be
minimized. The IO criterion specifies that the DFT cannot add any extra inputs or outputs to the core.
The criteria RE, OB, and SS are functional criteria and are explained in the criterion description column.

Table 5.1: Criteria for the DFT Design

Criterion Code Criterion Description
AR The design must minimize area overhead.
TI The design must minimize the increase in SBST program run time.
IO The design has to make use of existing primary inputs and outputs.
RE The design must be able to reliably detect defects.
OB The design must be able to propagate state variables to an observable output

of the core.
SS The design must be able to take a snapshot of a selection of state variables

at a specific cycle.

5.3.2. Possible Options
For the trade-off analysis, multiple design options are considered. Table 5.2 shows the different options
that are considered for the DFT addition. Option 1 is a standard scan design that is only used for
observation. Option 2 is a scan chain like structure that can be used in functional mode. So, the register
values are shifted out through sequential elements that do not effect the rest of the functionality of the
circuit when used. Options 3 and 4 are explained in Table 5.2. Lastly, option 5 uses a clock that is
faster than the core’s clock to serialize the state variable data, thereby reducing the amount of extra
memory elements needed. Additionally, this option would require the core to have an extra primary
output to output this serialized data to.

5.4. Hardware Implementation 80

Table 5.2: Options for the DFT Design

Option Number Option Description
1 Standard scan design, but it is only used for observation.
2 Multiple shift register structures inspired by scan chains, but they can be used

in functional mode.
3 Wires from the flip-flops straight to (by the SBST template) reserved registers,

with a MUX that controls it.
4 Add shadowD latches to the flip-flops that start holding their value at a specific

cycle. Complemented by an FSM that writes the values to (by the SBST
template) reserved registers.

5 Use a fast clock to partially serialize the state variables, reducing extra mem-
ory elements.

5.3.3. Trade-off
The trade-off table is shown in Table 5.3. All the options score well on the functional criteria, except
for option 5. This design might not be reliable due to the fact that it requires clock domain crossing,
so it scores a one on this criterion. Furthermore, the ideas that do not add any extra primary inputs or
outputs score a 5 on the IO criterion, else the given score is one. The AR criterion score is an estimation
of the area overhead each option will bring. Option 2 scores a 1 on this criterion, as it would require
one extra flip-flop for each flip-flop that needs to be made observable. Options 1 and 3 would add a
significant amount of wiring and multiplexers, so these options score a 2. An option that likely has a bit
less area overhead than this is option 4, and the lowest area option is option 5. For the timing criterion TI
options 2 and 5 score the best, because these designs would not lengthen the SBST program run time.
Options 3 and 4 would require some extra instructions that write the registers with the state variables
to memory, so they score a 4. Finally, option 1 scores the worst because it would require shifting out
the state variables with a slow clock, while pausing the functionality of the rest of the core. The option
with the overall highest score is saving state variables in latches, and writing them into registers with
an FSM.

Table 5.3: DFT Design Trade-off Table

Criterion Code Option 1 Option 2 Option 3 Option 4 Option 5
AR (2/5) (1/5) (2/5) (3/5) (5/5)
TI (1/5) (5/5) (4/5) (4/5) (5/5)
IO (1/5) (1/5) (5/5) (5/5) (1/5)
RE (5/5) (5/5) (5/5) (5/5) (1/5)
OB (5/5) (5/5) (5/5) (5/5) (5/5)
SS (5/5) (5/5) (5/5) (5/5) (5/5)

Total Score 19 22 26 27 22

5.4. Hardware Implementation
In total three DFT additions are implemented for extra observability in the control and status registers
(CSR) module and the ID stage module. Figure 5.9 shows the high-level design of the CS DFT, which
is implemented using design option 4. Only one extra module has been added to the core: “cs_buffer“.
This module has the same amount of latches as the control and status registers module has flip-flops
that are accessible in functional mode. These latches are used to capture the contents of these flip-
flops at a specific cycle. Therefore, there is also some logic that counts down to the capture cycle. A
test instruction is added to the core by modifying the decoder unit, this instruction informs the “cs_buffer“
when to start counting down and from what number to count. Another functionality of the “cs_buffer“ is
that it periodically writes the captured values to a reserved register. This register is saved in memory
by instructions inserted into the SBST program. Lastly, some logic has been added to the register file
to be able to write the captured values into a register without disturbing the normal functionality of the
core.

5.4. Hardware Implementation 81

ID_stage_dft CSR_dft

CS_buffer

RF_dft

wdata_dft_i

we_dft_i

Decoder_dft

dft_wait_count capture_clock
data_o

valid_o

Load_store

data_req_o

data_req_i

Figure 5.9: DFT CS Design

Control and Status registers are auxiliary registers present in most modern cores, micro-controllers,
and I/O devices. These registers serve many different purposes like saving the configuration of how
cores should respond to interrupts and providing debugging capabilities [97]. Therefore, in functional
mode these registers are hard to control and observe through instructions. Appendix A shows which
registers are accessible in functional mode, and what the functions of all these registers are. Due to
the convoluted and hard to control nature of the status and control registers ATPG patterns result in
low fault coverage in this unit. Therefore, a manual test program has been developed by writing to
these registers one by one, thereby sensitising TDFs in them. This allowed for the implementation of
an optimised version of the CS DFT design. As only one register is tested per test pattern, only one
register’s value needs to be saved at a time. This allows for the removal of the latches, by adding a
mux and directly routing the value of the selected register to a GPR.

Effectively, the optimised CS DFT design implements option 3 from Table 5.2. However, because a
maximum of 32 bits are written to at a time the bus from the “cs_buffer“ to the register files only needs
to be 32 bits wide. So, under these circumstances this option scores a lot better on the area criterion
AR. Figure 5.10 shows the optimised CS design, which includes an additional connection between the
decoder and the “cs_buffer“. This connection sends the information found in the DFT instruction on
which register should be saved, to the MUX in the “cs_buffer“.

5.4. Hardware Implementation 82

ID_stage_dft CSR_dft

CS_buffer

RF_dft

wdata_dft_i

we_dft_i

Decoder_dft

dft_wait_count

capture_clock

data_o

valid_o

Load_store

data_req_o

data_req_idft_addr_o
cap_addr_i

Figure 5.10: DFT CS Design Optimised for Area

Another DFT has been implemented in the ID stage module. This includes 22 flip-flops that were
not included in the baseline partial scan configuration. This DFT is placed close to the register files,
and decoder. It does use ATPG patterns, but because there are only 22 flip-flops there is no need to
use latches to save the values of the flip-flops. So this design also uses option 3 from Table 5.2. The
bit values are routed straight to a general purpose register, and written at the right cycle using the write
enable signal.

ID_stage_dft

idbuffer
Decoder_dft

dft_wait_count capture_clock

data_o

valid_o

Load_store

data_req_o

data_req_i

RF_dft

wdata_dft_i

we_dft_i

Figure 5.11: DFT ID Design

5.5. Results 83

5.5. Results
This section shows the results of the three implemented DFT designs in terms of FC increase compared
to baseline, and area overhead compared to baseline. Then, the proposed work is compared to state-
of-the-art works. No new metrics are introduced in this section.

5.5.1. Fault Simulation Results
Table 5.4 shows the results for the CS DFT, in terms of number of faults, FC, and TC loss. Results are
shown for two fault models: SAF and TDF. The results in Table 5.4 show that compared to baseline
(see Table 4.5) the CS DFT addition achieves a FC increase of 6.29 percentage points for SAFs and
2.4 percentage points for TDFs, at the cost of 0.84% area increase. It should be noted that the total
number of faults is slightly higher than the baseline number of faults, due to the added hardware. So,
the FC results are low estimates because the test patterns were not generated to detect the faults in
the DFT hardware. Lastly, most of the additional FC, as expected, is in the “cs_registers“ module.

Table 5.4: SAF and TDF Results for the CS DFT and Optimised CS DFT

Module #Faults SA FC (%) SA TCL (%) TDF FC(%) TDF TCL (%)
id_stage 51126 91.42 3.82 79.08 9.33

register_file 36906 97.44 0.82 85.28 4.74
controller 2016 48.09 0.91 25.89 1.30
decoder 2058 77.14 0.41 68.83 0.56
int_controller 604 11.09 0.47 0.00 0.53

ex_stage 30758 87.14 3.41 69.41 8.17
alu 16004 77.71 3.09 62.93 5.15
mult 14176 97.75 0.26 76.26 2.92

cs_registers 16216 46.94 7.51 18.06 11.60
if_stage 10558 82.77 1.59 70.31 2.74

aligner 1772 88.66 0.18 78.44 0.33
compressed_decoder 1978 92.82 0.12 92.01 0.14
prefetch_buffer 3940 91.64 0.29 82.41 0.61

load_store_unit 5522 85.66 0.69 72.67 1.32
sleep_unit 42 41.67 0.02 21.43 0.03
faultsim 0 0 0 0 0
Total 114612 82.86 17.10 66.72 33.24

Table 5.5 shows the results for the ID DFT, again in terms of number of faults, FC, and TC loss. The
ID DFT addition increases the FC with 1.01 percentage points for SAFs and 1.92 percentage points
for TDFs, for an area overhead of 0.65%. Similar to the CS DFT the total number of faults is slightly
higher than baseline due to the hardware addition. Lastly, increases in FC can be seen in the ID stage,
EX stage, and load store unit. This follows from the fact that the ID stage is connected to both the
EX stage and the load store unit. So, adding observability to the ID stage helps detect faults in the
aforementioned modules as well.

5.5. Results 84

Table 5.5: SAF and TDF Results for ID DFT

Module #Faults SAF FC (%) SAF TCL (%) TDF FC(%) TDF TCL (%)
id_stage 50732 91.92 3.58 81.25 8.30

register_file 36696 97.87 0.68 87.58 3.98
controller 2024 50.20 0.88 28.21 1.27
decoder 2004 76.50 0.41 68.46 0.55
int_controller 604 0.17 0.53 0.00 0.53

ex_stage 30778 89.21 2.87 73.51 7.09
alu 16020 80.94 2.65 67.08 4.59
mult 14180 98.98 0.11 80.84 2.36

cs_registers 16406 5.48 13.56 0.00 14.34
if_stage 10558 83.03 1.57 70.94 2.68

aligner 1772 88.71 0.17 79.06 0.32
compressed_decoder 1978 93.63 0.11 92.97 0.12
prefetch_buffer 3940 91.76 0.28 83.12 0.58

load_store_unit 5522 85.71 0.69 74.97 1.21
sleep_unit 42 41.67 0.02 19.05 0.03
faultsim 0 0 0 0 0
Total 114440 77.58 22.38 66.21 33.76

5.5.2. Area Results
All area results are presented in µm2. In Table 5.6 the detailed area of the core with no DFT additions
is shown as a baseline. It can be observed that the register file is the largest module, and the next
largest is the control status registers module. This is likely due to the fact that most of the sequential
elements present in the core can be found in these two modules. Lastly, it is noticeable that roughly a
third of the area is interconnect wiring.

Table 5.6: Area Results Core Baseline

Instance Cell Count Cell Area Net Area Total Area
cv32e40p_core 12399 25866.767 12256.664 38123.431

id_stage 5210 11129.605 4498.194 15627.799
register_file 3558 8114.576 3305.877 11420.454
controller 270 334.102 181.906 516.008
decoder 265 268.834 171.240 440.074
int_controller 80 138.121 33.314 171.435

ex_stage 3431 6711.314 3028.965 9740.280
alu 1898 3115.400 1610.312 4725.712
mult 1484 3479.137 1367.019 4846.156

cs_registers 1772 4211.903 1510.576 5722.479
if_stage 1201 2708.269 938.809 3647.078
aligner 187 496.213 117.459 613.673
compressed_decoder 257 264.776 184.539 449.315
prefetch_buffer 468 1230.919 335.763 1566.683

load_store_unit 737 1060.164 502.457 1562.621
sleep_unit 6 13.759 1.902 15.661

Table 5.7 shows the core area results with the CS DFT addition before optimization. Compared
to baseline there is a 7.35% increase in area. This is mainly caused by the “csbuffer“ module that
contains many latches. Increases in the decoder and register file modules can also be seen due to

5.5. Results 85

added hardware. A small increase in the EX stage can be seen as well, this could be because the CS
registers module is connected to the EX stage module. So, changes in one of them might slightly effect
the other during synthesis.

Table 5.7: Area Core CS DFT with Total Area Increase

Instance Cell Count Cell Area Net Area Total Area Increase
cv32e40p_core_cs_dft 13481 27815.281 13111.547 40926.829 +7.36%

id_stage 5279 11242.678 4529.083 15771.760 +0.92%
register_file 3626 8199.072 3339.825 11538.897 +1.04%
controller 259 332.867 177.140 510.007 –1.16%
decoder 274 278.712 171.520 450.232 +2.32%
int_controller 80 138.121 33.314 171.435 +0.00%

ex_stage 3482 6677.975 3109.124 9787.099 +0.45%
alu 1858 3136.745 1599.438 4736.183 +0.22%
mult 1575 3424.453 1458.051 4882.504 +0.75%

cs_registers 2789 6102.205 2238.833 8341.039 +45.76%
csbuffer 1034 1880.071 681.864 2561.935

if_stage 1145 2684.455 915.917 3600.372 –1.28%
aligner 186 494.626 116.521 611.146 –0.41%
compressed_decoder 257 264.776 184.539 449.315 +0.00%
prefetch_buffer 409 1205.341 307.959 1513.300 –3.41%

load_store_unit 737 1060.870 502.457 1563.326 +0.04%
sleep_unit 6 13.759 1.902 15.661 +0.00%

Table 5.8 shows the core area results with the optimised CS DFT addition. Compared to baseline
there is a 0.84% increase in area. The optimization of the CS DFT has decreased the area of the
“csbuffer“ module significantly by removing the latches. It can also be seen that the decoder total area
increase doubled, this is because the DFT instruction for the optimised design also contains an address
that needs to be decoded.

Table 5.8: Area Core Optimised CS DFT with Total Area Increase

Instance Cell Count Cell Area Net Area Total Area Increase
cv32e40p_core_cs_dft_opt 12608 25998.361 12444.665 38443.026 +0.84%

id_stage 5333 11232.446 4563.299 15795.745 +1.07%
register_file 3628 8196.955 3340.545 11537.500 +1.03%
controller 265 335.513 179.992 515.505 –0.10%
decoder 280 286.474 174.141 460.615 +4.67%
int_controller 80 138.121 33.314 171.435 +0.00%

ex_stage 3518 6645.164 3134.759 9779.924 +0.49%
alu 1891 3115.577 1607.666 4723.243 –0.05%
mult 1578 3412.811 1475.458 4888.268 +0.87%

cs_registers 1828 4332.384 1538.758 5871.142 +2.60%
csbuffer 52 119.599 39.385 158.984

if_stage 1145 2683.220 915.917 3599.137 –1.31%
aligner 186 494.626 116.521 611.146 –0.41%
compressed_decoder 257 264.776 184.539 449.315 +0.00%
prefetch_buffer 409 1204.459 307.959 1512.418 –3.47%

load_store_unit 737 1060.693 502.457 1563.150 +0.03%
sleep_unit 6 13.759 1.902 15.661 +0.00%

Table 5.9 shows the core area results with the ID stage DFT addition. Compared to baseline there
is a 0.65% increase in total area. Most of the area increase is caused by the addition of the “idbuffer“,

5.5. Results 86

and the extra decoding capabilities added to the decoder.

Table 5.9: Area Core ID_DFT with Total Area Increase

Instance Cell Count Cell Area Net Area Total Area Increase
cv32e40p_core_id_dft 12541 25961.317 12409.802 38371.120 +0.65%

id_stage 5319 11300.890 4575.550 15876.439 +1.59%
register_file 3587 8175.787 3320.822 11496.609 +0.67%
controller 265 337.982 170.204 508.186 –1.52%
decoder 280 286.474 174.141 460.615 +4.67%
int_controller 80 138.121 33.314 171.435 +0.00%
idbuffer 52 119.070 39.385 158.455

ex_stage 3516 6657.865 3119.681 9777.546 +0.38%
alu 1890 3116.635 1609.044 4725.679 –0.00%
mult 1577 3424.453 1459.002 4883.455 +0.77%

cs_registers 1776 4212.432 1514.818 5727.250 +0.09%
if_stage 1145 2683.220 915.917 3599.137 –1.31%
aligner 186 494.626 116.521 611.146 –0.41%
compressed_decoder 257 264.776 184.539 449.315 +0.00%
prefetch_buffer 409 1204.459 307.959 1512.418 –3.47%

load_store_unit 737 1061.399 502.457 1563.855 +0.07%
sleep_unit 6 13.759 1.902 15.661 +0.00%

To conclude the optimised CS DFT performs the best for slightly more area overhead than the
ID DFT. This indicates the relation between area overhead and FC increase, and the corresponding
trade-off that can be made.

5.5.3. Comparison with Other Works
The results of the proposed combination of SBST and DFT will be compared with other relevant works.
The area overhead will be compared with the two other works that have complemented SBST with DFT.
Furthermore, FC results for SAFs and TDFs will be compared.

Stuck-at Faults
The SAF FC results are compared with other works in Table 5.10. Three different results from this
thesis are shown in Table 5.10. The “CS“ and “ID“ implementations refer to the implemented optimised
CS DFT design and the ID DFT design respectively. The “ID (adjusted)“ entry is added for a better
comparison with the other RISC-V work by Faller et al. [13]. They have removed the csr registers,
decoder, and load store unit from the fault list, “ID (adjusted)“ is the ID DFT but the aforementioned
modules are removed from the fault list.

Table 5.10: SAF FC Comparison with Other Works

Work Proposed Faller et al. Riefert et al.
Year 2025 2023 [13] 2016 [23]
Implementation SBST CS ID ID (adjusted) –
SAF FC (%) 76.57 82.86 77.58 90.27 75.85 82.42 79.18 45.40 95.02
#Faults 113292 114612 114440 90106 22810 34039 35645 64557 54181
Area Overhead (%) 0 0.84 0.65 0.65 0 0 0 0 0
Program Size (MB) 0.167 0.168 0.216 0.216 0.016 0.026 0.018 0.046 –
Generation Time (h) 22 22 22 22 16.78 46.80 54.18 96.39 –
Instruction Set RV32IMC_Zicsr RV32E RV32I RV32I_Zicsr RV32I MIPS32

Table 5.10 shows that the proposed work has higher SAF FC than the other RISC-V work. However,
this is only the case after the addition of a DFT. When the three hard-to-test modules mentioned in
Section 5.5.3 are removed from the fault list, the proposed work has relatively high FC. The generation
time of this work is also lower than that of the other RISC-V work. However, it is important to note that
the program of Faller et al. [13] are significantly smaller. This is due to the fact that this is not the focus

5.6. Discussion 87

of this work, and no attempts have been done to decrease program size. Lastly, it can be seen that
the work that is done on a MIPS32 core has higher FC. This trend is also present for TDF results. The
MIPS32 ISA is more complicated than the RISC-V ISA, so when a fault occurs, many processes are
affected and the chance is higher that the fault becomes observable in some way. This could be an
explanation for why it is easier to test MIPS32 cores.

Transition Delay Faults
The TDF FC results are compared with other works in Table 5.11. Again three different results from
this thesis are shown in Table 5.11. The “CS“ and “ID“ implementations refer to the two DFT designs
that were implemented. The “ID (no csr)“ implementation is added for a better comparison with the
other works. None of the other works have a CSR module in their results, but they also do not mention
removing it. To provide a more fair comparison “ID (no csr)“ is the same as “ID“ but the CSR module is
removed from the fault list.

Table 5.11: TDF FC Comparison with Other Works

Work Proposed Kuo et al. Cheng et al. Chen et al.
Year 2025 2024 [12] 2023 [11] 2021 [8] 2019 [88]
Implementation SBST CS ID ID (no csr) –
TDF FC (%) 64.29 66.72 66.21 77.29 92.25 90.44 86.40 97.82 94.94
#Faults 113292 114612 114440 98034 55190 50486 50486 90240 88258
Area Overhead (%) 0 0.84 0.65 0.65 0 0 0 0 0
Program Size (MB) 0.249 0.250 0.348 0.348 2.17 – – 4.26 0.195
Generation Time (h) 22 22 22 22 – 39 26 153.41 –
ISA RISC-V MIPS32

The comparison of the TDF results shows that the proposed work has lower TDF FC than state-
of-the-art SBST works. The difference in results between SAF and TDF results stems from the SBST
generation. Instruction justification has been A low priority in this work, and this is more essential for
detecting TDFs than SAFs. Most likely this is causing the large difference in results.

Area
The area overhead of the two implemented DFT designs is compared with two other works in Table
5.12. As indicated both works have implemented their DFTs on a small core and a larger core. When
observing the total area results it should be considered that this thesis uses 40nm technology, and
Nakazato et al. [26] have not specified what technology was used. Lastly, the achieved FC is not
compared because both works use outdated fault models.

The comparison in Table 5.12 is incomplete due to missing data in some of the works. However,
it still provides some insights. The area comparison shows that the implemented DFT designs are
relatively small compared to existing DFT designs. When comparing the increase of total gates, it must
be noted that the increase in interconnect is not taken into account. Furthermore, the comparison of
total area increase is incomplete due to the fact that this is technology independent, and most likely a
different technology was used.

Table 5.12: Area Comparison with Other Works

Work Total Gates (increment) Total Area (µm2) (increment)
Proposed (CS) 12608 (+1.68%) 38443 (+0.84%)
Proposed (ID) 12541 (+1.14%) 38371 (+0.65%)
Lai et al. (small core) [24] 1810 (+4.7%) –
Lai et al. [24] 19165 (+1.6%) –
Nakazato et al. (small core) [26] – 15695 (+26.68%)
Nakazato et al. [26] – 66613 (+13.49%)

5.6. Discussion
The FC results are slightly inaccurate because the total number of faults for both additions is slightly
higher than the baseline number of faults due to the added hardware. Ideally, test patterns should

5.7. Conclusion 88

also be generated and added to find these faults. It can also be seen that the CS DFT performs
significantly better than the ID stage DFT for SAFs, while there is little difference for TDFs. This is
because the baseline SAF coverage in the “cs_registers“ module is very low because observing these
registers is a very convoluted process. The DFT addition enables the observation of these registers.
The baseline SAF coverage in the modules where the ID stage DFT adds FC is already quite high so
adding observability will not increase the FC much. The reason the TDF FC does increase, is because
the place and timing of observing a fault is more essential for TDFs than for SAFs.

Although the DFTs seem to be more effective for TDFs than for SAFs, TDF FC is relatively low
compared to other works. This is caused by the SBST generation framework which has a very low test
pattern conversion ratio. The work by Chen et al. [8] reports about a 22 percentage point increase in
TDF coverage compared to the SBST baseline of this work. However, Chen et al. have also not im-
plemented a through justification engine. The main difference between the work by Chen et al. [8] and
the proposed work, is that Chen et al. [8] have implemented a feedback loop from fault simulation back
to CATPG. This indicates that the baseline SBST can likely be significantly improved by implementing
such a feedback loop. The cost of this would be that the generation time would increase considerably.

5.7. Conclusion
In conclusion, it is shown that DFT additions that complement SBST can increase FC for very little area
overhead. The hard to control and observe CS registers can be made partly functionally testable by
adding DFT hardware. Other modules like the ID stage can also benefit fromDFT hardware. To improve
SBST testing and create comparable FC to full scan, multiple of these small targeted “functional“ DFT
additions could be combined. These results show that SBST complemented by DFT potentially could
posses similar testing capabilities to full scan for a smaller area overhead. This is possible by reusing
as much hardware as possible, which is intrinsic to SBST.

Compared to state-of-the-art works the SAF results are very promising. However, to be feasible the
program size would need to be decreased. Currently, all registers included in the partial scan CATPG
setup are being written to and read from in every pattern. This accounts for about 75% of the test
program. An easy solution would be checking which registers change during a test pattern and only
interacting with those. The comparison of the TDF results show that the SBST generation needs to be
further improved to match state-of-the-art coverage.

6
Conclusion

This chapter concludes this thesis. A summary of all previous chapters is provided in Section 6.1.
Then, Section 6.2 draws conclusions from the thesis, and Section 6.3 discusses the limitations this
thesis faced. Lastly, Section 6.4 contains recommendations for future work.

6.1. Summary
This section summarises the contents of the chapters that form the main body of this thesis.

6.1.1. Chapter 2
Chapter 2 (Background) provides the necessary background on digital IC design and test. It starts
with an overview of combinational and sequential logic, including gate and flip-flop level constructs,
and describes how transistors are structured. The chapter then covers the ASIC design flow: RTL
design, synthesis, and place-and-route, and introduces modern processor microarchitectures, high-
lighting pipeline stages, and data and control flow. The chip life cycle from the design stage to the
end-of-life is also discussed. Finally, it covers fault modelling and test generation techniques, from
SAFs and delay fault models to ATPG algorithms and fault simulation, setting the stage for both the
literature study and the combination of SBST with DFT.

6.1.2. Chapter 3
Chapter 3 (Silent Data Errors) surveys the phenomenon of SDEs and their implications for IC reliability.
It paints a complete picture of SDEs, classifies underlying defect mechanisms, and reviews injection-
based and field-observed SDE rates across microarchitecture-level components. It is concluded that
marginal timing failures are a large cause of SDEs, and computation units are especially vulnerable.
The chapter evaluates existing software solutions i.e. software test libraries, redundant execution. As
well as hardware solutions such as continuous hardware verification and test. Then, the chapter fo-
cuses on SBST methods. It analyses state-of-the-art functional constraints extraction and pattern-to-
program conversion methods. Additionally, it covers the limited work on SBST complemented by DFT.
The chapter ends on the notion that SBST targeting TDFs needs to be improved, and a DFT addition
is a promising way to achieve this.

6.1.3. Chapter 4
Chapter 4 (Software-Based Self-Test) details the implementation of an SBST framework for the CV32E40P
RISC-V core. The program generation flow is presented. It starts by outlining an FCE method for a par-
tial scan setup. Then, it covers the application of constraints in the ATPG tool Tessent, and the process
of inserting scan chains into the CV32E40P core. Following this, the CATPG process is discussed, and
the implementation of pattern-to-instruction conversion is presented. An experimental setup is estab-
lished to generate test pattern files, and perform fault simulation using Tessent. The chapter concludes
with results of synthesis, CATPG, and the SBST. The resulting SBST program achieved 76.57 % SAF
FC, and 64.29% TDF FC on the CV32E40P core. The detailed FC results show that the EX stage, ID
stage, and “cs_registers“ module suffer from low FC. This is improved with a DFT in the next chapter.

89

6.2. Conclusion 90

6.1.4. Chapter 5
Chapter 5 (DFT Design) explores the addition of DFT hardware to improve SBST FC. It begins with a
DSE performed to justify the location of the DFT insertion. Then, a design method is chosen based on
a trade-off analysis of criteria and candidate design options. A hardware implementation is described,
detailing the integration of observe logic to the CV32E40P core. Results show a FC increase of 6.29
percentage points for SAFs and 2.4 percentage points for TDFs, at the cost of 0.84% area increase.
These results indicate that DFTs which complement SBST can add FC capabilities for relatively small
area overhead. Potentially, this could improve current SBST functionality to match full scan FC at a
lower area overhead. However, it was also shown that the TDF FC results are relatively low compared
to state-of-the-art works.

6.2. Conclusion
In conclusion, this thesis presented a methodology that determines avenues for a DFT addition to
complement SBST programs. Moreover, multiple DFT designs are proposed and implemented on the
CV32E40P RISC-V core. These additions are shown to increase the FC of the SBST program, at the
cost of relatively little area overhead compared with results of state-of-the-art works. Based on these
results it can be concluded that DFT complementing SBST can aid in the detection of hard-to-detect
faults, and thereby increase FC. In contrast to the recent direction of state-of-the-art SBST works, which
limit themselves to the available hardware on the core.

6.3. Limitations
The results of this work are limited by the following aspects.

• The FCE performed in this work was a limiting factor, as it is not comparable with state-of-the-art
FCE methods. Because manual FCE takes great effort, and this is not the main focus of this
work, it was greatly simplified. Moreover, automating FCE is almost exclusively done by works
for which this is the main focus. The result of this is that the constraints set on the ATPG were
not complete and thus lowered the test pattern conversion rate.

• The SBST generation framework provides lower results than current state-of-the-art works. Due
to the main focus of the work being the DFT addition not the SBST program generation framework.
This has limited the conclusions that could be made based on the results. Ideally, what should
be proven is that a baseline SBST program with high FC can be complemented by a DFT, and
result in the same FC increase and area overhead. Based on this a strong claim could be made
that SBST complemented by a DFT is an alternative to full scan.

• The ATPG tool Tessent did not have all the capabilities that would have been ideal to have for
SBST generation, and fault simulation. One of Tessent’s limitations was that Tessent is only able
to perform parallel fault simulation, and not sequential fault simulation. Additionally, Tessent is
not able to handle more than one capture cycle per test pattern, even though its supporting tool
STILverify does not indicate this as problematic. This has necessitated a fix to be able to read
out all general purpose registers in one test pattern. Lastly, Tessent is not capable of proving if
faults are untestable based on scan cell constraints. It is only able to find untestable faults based
on input constraints. Resulting in potentially functionally untestable faults being in the fault list,
and lower FC results.

6.4. Future Work
Recommendations for future work are listed below.

• To increase the FC of the SBST program, a feedback loop could be created from the fault sim-
ulation back to the CATPG. A list of undetected faults would need to be provided, together with
the test patterns that were not successfully converted into instruction sequences. This feedback
loop could be repeated until the desired FC is reached or no FC increase is observed any longer.
This is one of the main reasons the SBST generation framework is not as effective as current
state-of-the-art works.

• This work focused on adding observability, solving the issue of error masking. However, an anal-
ysis can be performed comparing how well extra observability, controllability, and observability

6.4. Future Work 91

and controllability complement SBST programs. In particular, it would be interesting to see how
this effects TDF FC.

• N-detect CATPG could be used in an attempt to find more functionally possible test patterns.
• One of the state-of-the-art pattern-to-program conversion or FCE methods could be replicated to
improve the SBST program results.

• It should also be explored if combining multiple local DFT additions will provide the similar FC
and area trade-off.

• No efforts have beenmade in this work to reduce SBST program size. A quick improvement would
be detecting which registers change in each test pattern, and only writing to and reading from
those registers. Currently, initializing registers and storing register values in memory accounts
for about 75% of the program size.

References

[1] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-
Signal VLSI Circuits (Frontiers in Electronic Testing), en, V. D. Agrawal, Ed. Boston, MA: Springer
US, 2002, vol. 17, ISBN: 978-0-7923-7991-1. DOI: 10.1007/b117406. [Online]. Available: http:
//link.springer.com/10.1007/b117406 (visited on 05/09/2025).

[2] IEEE International Roadmap for Devices and Systems, Executive Summary 2022, en, 2022. DOI:
10.60627/C13Z-V363. [Online]. Available: https://irds.ieee.org/images/files/pdf/2022/
2022IRDS_ES.pdf (visited on 05/17/2025).

[3] E. J. Marinissen, H. Dattatraya Dixit, S. Blanton, et al., “Silent data corruption: Test or reliability
problem?” In 2024 IEEE European Test Symposium (ETS), ISSN: 1558-1780, May 2024, pp. 1–7.
DOI: 10.1109/ETS61313.2024.10567773. [Online]. Available: https://ieeexplore.ieee.org/
document/10567773 (visited on 09/29/2024).

[4] P. H. Hochschild, P. Turner, J. C. Mogul, et al., “Cores that don’t count,” in Proceedings of the
Workshop on Hot Topics in Operating Systems, Ann Arbor Michigan: ACM, Jun. 2021, pp. 9–
16, ISBN: 978-1-4503-8438-4. DOI: 10 . 1145 / 3458336 . 3465297. [Online]. Available: https :
//dl.acm.org/doi/10.1145/3458336.3465297 (visited on 09/11/2024).

[5] H. D. Dixit, S. Pendharkar, M. Beadon, et al., Silent data corruptions at scale, Feb. 22, 2021.
arXiv: 2102.11245[cs]. [Online]. Available: http://arxiv.org/abs/2102.11245 (visited on
09/11/2024).

[6] R. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp. 305–316, Sep. 2005, Con-
ference Name: IEEE Transactions on Device and Materials Reliability, ISSN: 1558-2574. DOI:
10.1109/TDMR.2005.853449. [Online]. Available: https://ieeexplore.ieee.org/document/
1545891 (visited on 03/28/2025).

[7] Y. Zhu, S. Krishnan, K. Karanasos, et al., “KEA: Tuning an exabyte-scale data infrastructure,”
2021, Publisher: arXiv Version Number: 1. DOI: 10.48550/ARXIV.2106.11445. [Online]. Avail-
able: https://arxiv.org/abs/2106.11445 (visited on 05/17/2025).

[8] K.-H. Chen, B.-Y. Yang, J.-R. Liang, H.-L. Chen, and J.-L. Huang, “Automatic test program gen-
eration for transition delay faults in pipelined processors,” in 2021 IEEE International Test Confer-
ence in Asia (ITC-Asia), ISSN: 2768-069X, Aug. 2021, pp. 1–6. DOI: 10.1109/ITC-Asia53059.
2021.9808811. [Online]. Available: https://ieeexplore.ieee.org/document/9808811 (visited
on 11/29/2024).

[9] M. Tehranipoor, K. Peng, and K. Chakrabarty, Test and Diagnosis for Small-Delay Defects. New
York, NY: Springer, 2012, ISBN: 978-1-4419-8296-4. DOI: 10 . 1007 / 978 - 1 - 4419 - 8297 - 1.
[Online]. Available: https://link.springer.com/10.1007/978-1-4419-8297-1 (visited on
12/09/2024).

[10] A. D. Singh, “Silent error corruption: The new reliability and test challenge,” in 2023 IEEE 24th
Latin American Test Symposium (LATS), ISSN: 2373-0862, Mar. 2023, pp. 1–2. DOI: 10.1109/
LATS58125.2023.10154487. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/10154487 (visited on 09/29/2024).

[11] H. Cheng, C.-J. Li, H.-L. Chen, and J.-L. Huang, “BDD-based self-test program generation for
processor cores,” in 2023 IEEE International Test Conference in Asia (ITC-Asia), ISSN: 2768-
069X, Sep. 2023, pp. 1–6. DOI: 10.1109/ITC-Asia58802.2023.10301167. [Online]. Available:
https://ieeexplore.ieee.org/document/10301167 (visited on 12/12/2024).

[12] L.-A. Kuo and J.-L. Huang, “Branch-aware self-test program generation for processor cores,”
in 2024 International VLSI Symposium on Technology, Systems and Applications (VLSI TSA),
Apr. 2024, pp. 1–4. DOI: 10.1109/VLSITSA60681.2024.10546455. [Online]. Available: https:
//ieeexplore.ieee.org/document/10546455 (visited on 12/12/2024).

92

https://doi.org/10.1007/b117406
http://link.springer.com/10.1007/b117406
http://link.springer.com/10.1007/b117406
https://doi.org/10.60627/C13Z-V363
https://irds.ieee.org/images/files/pdf/2022/2022IRDS_ES.pdf
https://irds.ieee.org/images/files/pdf/2022/2022IRDS_ES.pdf
https://doi.org/10.1109/ETS61313.2024.10567773
https://ieeexplore.ieee.org/document/10567773
https://ieeexplore.ieee.org/document/10567773
https://doi.org/10.1145/3458336.3465297
https://dl.acm.org/doi/10.1145/3458336.3465297
https://dl.acm.org/doi/10.1145/3458336.3465297
https://arxiv.org/abs/2102.11245 [cs]
http://arxiv.org/abs/2102.11245
https://doi.org/10.1109/TDMR.2005.853449
https://ieeexplore.ieee.org/document/1545891
https://ieeexplore.ieee.org/document/1545891
https://doi.org/10.48550/ARXIV.2106.11445
https://arxiv.org/abs/2106.11445
https://doi.org/10.1109/ITC-Asia53059.2021.9808811
https://doi.org/10.1109/ITC-Asia53059.2021.9808811
https://ieeexplore.ieee.org/document/9808811
https://doi.org/10.1007/978-1-4419-8297-1
https://link.springer.com/10.1007/978-1-4419-8297-1
https://doi.org/10.1109/LATS58125.2023.10154487
https://doi.org/10.1109/LATS58125.2023.10154487
https://ieeexplore.ieee.org/abstract/document/10154487
https://ieeexplore.ieee.org/abstract/document/10154487
https://doi.org/10.1109/ITC-Asia58802.2023.10301167
https://ieeexplore.ieee.org/document/10301167
https://doi.org/10.1109/VLSITSA60681.2024.10546455
https://ieeexplore.ieee.org/document/10546455
https://ieeexplore.ieee.org/document/10546455

References 93

[13] T. Faller, N. I. Deligiannis, M. Schwörer, M. S. Reorda, and B. Becker, “Constraint-based auto-
matic SBST generation for RISC-v processor families,” in 2023 IEEE European Test Symposium
(ETS), ISSN: 1558-1780, May 2023, pp. 1–6. DOI: 10.1109/ETS56758.2023.10174156. [On-
line]. Available: https://ieeexplore.ieee.org/abstract/document/10174156 (visited on
12/13/2024).

[14] L. Anghel, R. Cantoro, R. Masante, M. Portolan, S. Sartoni, and M. S. Reorda, “Self-test library
generation for in-field test of path delay faults,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 42, no. 11, pp. 4246–4259, Nov. 2023, Conference Name:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, ISSN: 1937-
4151. DOI: 10.1109/TCAD.2023.3268210. [Online]. Available: https://ieeexplore.ieee.org/
document/10104111 (visited on 12/12/2024).

[15] E. Kaja, N. Gerlin, J. A. Halabi, et al., “An automated and effective approach for SBST generation
targeting RISC-v CPUs,” in 2024 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), ISSN: 2765-933X, Oct. 2024, pp. 1–4. DOI: 10.1109/
DFT63277.2024.10753552. [Online]. Available: https://ieeexplore.ieee.org/document/
10753552 (visited on 12/12/2024).

[16] J. Seo and H. Cho, “Generating efficient instruction sequence for software-based self-testing
of processor cores using reinforcement learning,” IEEE Access, vol. 12, pp. 189 288–189 296,
2024, Conference Name: IEEE Access, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2024.351
6389. [Online]. Available: https : / / ieeexplore . ieee . org / document / 10794784 (visited on
02/03/2025).

[17] R. Cantoro, P. Girard, R. Masante, S. Sartoni, M. S. Reorda, and A. Virazel, “Self-test libraries
analysis for pipelined processors transition fault coverage improvement,” in 2021 IEEE 27th In-
ternational Symposium on On-Line Testing and Robust System Design (IOLTS), ISSN: 1942-
9401, Jun. 2021, pp. 1–4. DOI: 10.1109/IOLTS52814.2021.9486711. [Online]. Available: https:
//ieeexplore.ieee.org/document/9486711 (visited on 01/14/2025).

[18] Y. Zhang, K. Chakrabarty, Z. Peng, et al., “Software-based self-testing using bounded model
checking for out-of-order superscalar processors,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 39, no. 3, pp. 714–727, Mar. 2020, Conference Name:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, ISSN: 1937-
4151. DOI: 10.1109/TCAD.2018.2890695. [Online]. Available: https://ieeexplore.ieee.org/
document/8599062 (visited on 01/10/2025).

[19] A. S. Oyeniran, R. Ubar, M. Jenihhin, and J. Raik, “Implementation-Independent Functional Test
for Transition Delay Faults in Microprocessors,” in 2020 23rd Euromicro Conference on Digital
System Design (DSD), Aug. 2020, pp. 646–650. DOI: 10.1109/DSD51259.2020.00105. [Online].
Available: https://ieeexplore.ieee.org/document/9217857 (visited on 11/29/2024).

[20] Y. Zhang, Y. Ding, Z. Peng, H. Li, M. Fujita, and J. Jiang, “BMC-based temperature-aware SBST
for worst-case delay fault testing under high temperature,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 30, no. 11, pp. 1677–1690, Nov. 2022, Conference Name:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, ISSN: 1557-9999. DOI: 10.
1109/TVLSI.2022.3186946. [Online]. Available: https://ieeexplore.ieee.org/document/
9834321 (visited on 01/15/2025).

[21] Y. Zhang, H. Li, and X. Li, “Software-based self-testing of processors using expanded instruc-
tions,” in 2010 19th IEEEAsian Test Symposium, ISSN: 2377-5386, Dec. 2010, pp. 415–420. DOI:
10.1109/ATS.2010.77. [Online]. Available: https://ieeexplore.ieee.org/document/5692282
(visited on 12/12/2024).

[22] Y. Zhang, H. Li, and X. Li, “Automatic test program generation using executing-trace-based con-
straint extraction for embedded processors,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 21, no. 7, pp. 1220–1233, Jul. 2013, Conference Name: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, ISSN: 1557-9999. DOI: 10.1109/TVLSI.2012.
2208130. [Online]. Available: https://ieeexplore.ieee.org/document/6265421 (visited on
01/15/2025).

https://doi.org/10.1109/ETS56758.2023.10174156
https://ieeexplore.ieee.org/abstract/document/10174156
https://doi.org/10.1109/TCAD.2023.3268210
https://ieeexplore.ieee.org/document/10104111
https://ieeexplore.ieee.org/document/10104111
https://doi.org/10.1109/DFT63277.2024.10753552
https://doi.org/10.1109/DFT63277.2024.10753552
https://ieeexplore.ieee.org/document/10753552
https://ieeexplore.ieee.org/document/10753552
https://doi.org/10.1109/ACCESS.2024.3516389
https://doi.org/10.1109/ACCESS.2024.3516389
https://ieeexplore.ieee.org/document/10794784
https://doi.org/10.1109/IOLTS52814.2021.9486711
https://ieeexplore.ieee.org/document/9486711
https://ieeexplore.ieee.org/document/9486711
https://doi.org/10.1109/TCAD.2018.2890695
https://ieeexplore.ieee.org/document/8599062
https://ieeexplore.ieee.org/document/8599062
https://doi.org/10.1109/DSD51259.2020.00105
https://ieeexplore.ieee.org/document/9217857
https://doi.org/10.1109/TVLSI.2022.3186946
https://doi.org/10.1109/TVLSI.2022.3186946
https://ieeexplore.ieee.org/document/9834321
https://ieeexplore.ieee.org/document/9834321
https://doi.org/10.1109/ATS.2010.77
https://ieeexplore.ieee.org/document/5692282
https://doi.org/10.1109/TVLSI.2012.2208130
https://doi.org/10.1109/TVLSI.2012.2208130
https://ieeexplore.ieee.org/document/6265421

References 94

[23] A. Riefert, R. Cantoro, M. Sauer, M. Sonza Reorda, and B. Becker, “A Flexible Framework for the
Automatic Generation of SBST Programs,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 10, pp. 3055–3066, Oct. 2016, ConferenceName: IEEETransactions
on Very Large Scale Integration (VLSI) Systems, ISSN: 1557-9999. DOI: 10.1109/TVLSI.2016.
2538800. [Online]. Available: https://ieeexplore.ieee.org/document/7440859 (visited on
01/15/2025).

[24] W.-C. Lai and K.-T. Cheng, “Instruction-level DfT for testing processor and IP cores in system-on-
a-chip,” in Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232),
ISSN: 0738-100X, Jun. 2001, pp. 59–64. DOI: 10.1145/378239.378282. [Online]. Available:
https://ieeexplore.ieee.org/document/935477/citations?tabFilter=papers#citations
(visited on 02/03/2025).

[25] Z. Navabi, VHDL : analysis and modeling of digital systems, eng. New York ; London : McGraw-
Hill, 1996, ISBN: 978-0-07-112732-5. [Online]. Available: http://archive.org/details/vhdla
nalysismode0000nava (visited on 05/02/2025).

[26] M. Nakazato, S. Ohtake, M. Inoue, and H. Fujiwara, “Design for testability of software-based self-
test for processors,” in 2006 15th Asian Test Symposium, ISSN: 2377-5386, Nov. 2006, pp. 375–
380. DOI: 10.1109/ATS.2006.260958. [Online]. Available: https://ieeexplore.ieee.org/
document/4030794/citations?tabFilter=papers#citations (visited on 02/03/2025).

[27] I. Pomeranz, “Functional Design-for-Testability for Functional Test Sequences,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 43, no. 12, pp. 4852–
4859, Dec. 2024, Conference Name: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, ISSN: 1937-4151. DOI: 10.1109/TCAD.2024.3396654. [Online]. Available:
https://ieeexplore.ieee.org/document/10518130 (visited on 02/02/2025).

[28] G. Haley, Dft at the leading edge. [Online]. Available: https://semiengineering.com/dft-at-
the-leading-edge/ (visited on 05/17/2025).

[29] D. Harris and S. Harris, Digital Design and Computer Architecture, Second Edition, 2nd ed. Mor-
gan Kaufmann, 2012, ISBN: 978-0-12-394424-5. (visited on 05/07/2025).

[30] J. M. Rabaey, DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE (PRENTICE HALL
ELECTRONICS AND VLSI SERIES 1), en. Prentice Hall, 2003, p. 514.

[31] V. Universe, Complete ASIC Design flow 2021 – VLSI UNIVERSE. [Online]. Available: https:
//www.vlsiuniverse.com/complete-asic-design-flow/ (visited on 05/07/2025).

[32] D. A. Patterson and J. L. Hennessy, Computer Organization and Design MIPS Edition: The Hard-
ware/Software Interface, 6th ed. Morgan Kaufmann, 2021, ISBN: 978-0-12-822674-2. (visited on
05/07/2025).

[33] Risc-v. [Online]. Available: https://semiengineering.com/knowledge_centers/compute-
architectures/instruction-set-architecture-isa/risc-v/ (visited on 06/19/2025).

[34] G. Gielen, P. De Wit, E. Maricau, et al., “Emerging Yield and Reliability Challenges in Nanometer
CMOS Technologies,” in 2008 Design, Automation and Test in Europe, ISSN: 1558-1101, Mar.
2008, pp. 1322–1327. DOI: 10.1109/DATE.2008.4484862. [Online]. Available: https://ieeexp
lore.ieee.org/document/4484862 (visited on 04/30/2025).

[35] D. A. Neamen, Semiconductor physics and devices: basic principles, en, 4. ed. New York, NY:
McGraw-Hill, 2012, ISBN: 978-0-07-352958-5.

[36] N. K. Jha and S. Gupta, “Testing of digital systems,”
[37] P. Peercy, “SIA updates national technology roadmap for semiconductors,”MRS Bulletin, vol. 22,

no. 11, pp. 29–29, Nov. 1997, ISSN: 0883-7694, 1938-1425. DOI: 10.1557/S0883769400034370.
[Online]. Available: http : / / link . springer . com / 10 . 1557 / S0883769400034370 (visited on
06/22/2025).

[38] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar, “Transition fault simulation,”
IEEE Design & Test of Computers, vol. 4, no. 2, pp. 32–38, Apr. 1987, Conference Name: IEEE
Design & Test of Computers, ISSN: 1558-1918. DOI: 10 . 1109 / MDT . 1987 . 295104. [Online].
Available: https://ieeexplore.ieee.org/document/4069962 (visited on 12/13/2024).

https://doi.org/10.1109/TVLSI.2016.2538800
https://doi.org/10.1109/TVLSI.2016.2538800
https://ieeexplore.ieee.org/document/7440859
https://doi.org/10.1145/378239.378282
https://ieeexplore.ieee.org/document/935477/citations?tabFilter=papers#citations
http://archive.org/details/vhdlanalysismode0000nava
http://archive.org/details/vhdlanalysismode0000nava
https://doi.org/10.1109/ATS.2006.260958
https://ieeexplore.ieee.org/document/4030794/citations?tabFilter=papers#citations
https://ieeexplore.ieee.org/document/4030794/citations?tabFilter=papers#citations
https://doi.org/10.1109/TCAD.2024.3396654
https://ieeexplore.ieee.org/document/10518130
https://semiengineering.com/dft-at-the-leading-edge/
https://semiengineering.com/dft-at-the-leading-edge/
https://www.vlsiuniverse.com/complete-asic-design-flow/
https://www.vlsiuniverse.com/complete-asic-design-flow/
https://semiengineering.com/knowledge_centers/compute-architectures/instruction-set-architecture-isa/risc-v/
https://semiengineering.com/knowledge_centers/compute-architectures/instruction-set-architecture-isa/risc-v/
https://doi.org/10.1109/DATE.2008.4484862
https://ieeexplore.ieee.org/document/4484862
https://ieeexplore.ieee.org/document/4484862
https://doi.org/10.1557/S0883769400034370
http://link.springer.com/10.1557/S0883769400034370
https://doi.org/10.1109/MDT.1987.295104
https://ieeexplore.ieee.org/document/4069962

References 95

[39] G. L. Smith, “Model for delay faults based upon paths.,” in ITC, vol. 85, Citeseer, 1985, pp. 342–
349. [Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&
doi=4bd3e334fa5d2c6a817130e3c8cee5a69a6bc3e6 (visited on 12/13/2024).

[40] S. Patil and J. Savir, “Skewed-load transition test: Part II, coverage,” in Proceedings International
Test Conference 1992, ISSN: 1089-3539, Sep. 1992, pp. 714–. DOI: 10.1109/TEST.1992.527893
. [Online]. Available: https://ieeexplore.ieee.org/document/527893 (visited on 01/02/2025).

[41] J. Savir and S. Patil, “On broad-side delay test,” in Proceedings of IEEE VLSI Test Symposium,
Apr. 1994, pp. 284–290. DOI: 10 . 1109 / VTEST . 1994 . 292299. [Online]. Available: https : / /
ieeexplore.ieee.org/document/292299 (visited on 01/02/2025).

[42] S. Vemula, “SCAN BASED DELAY TESTING,” 2005. [Online]. Available: https://www.semanti
cscholar.org/paper/SCAN-BASED-DELAY-TESTING-Vemula/11215a6ba775e1c5e8f6c56174db
fd4b4891a485 (visited on 01/05/2025).

[43] B. Dervisoglu and G. Stong, “DESIGN FOR TESTABILITY USING SCANPATH TECHNIQUES
FOR PATH-DELAY TEST AND MEASUREMENT,” in 1991, Proceedings. International Test Con-
ference, ISSN: 1089-3539, Oct. 1991, pp. 365–. DOI: 10.1109/TEST.1991.519696. [Online].
Available: https://ieeexplore.ieee.org/document/519696 (visited on 01/02/2025).

[44] C. J. Lin and S. Reddy, “On delay fault testing in logic circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 6, no. 5, pp. 694–703, Sep. 1987, Confer-
ence Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
ISSN: 1937-4151. DOI: 10.1109/TCAD.1987.1270315. [Online]. Available: https://ieeexplore.
ieee.org/abstract/document/1270315 (visited on 12/13/2024).

[45] I. Pomeranz, “Weak and strong non-robust tests for functionally possible path delay faults,” IEEE
Access, vol. 12, pp. 156 651–156 661, 2024, Conference Name: IEEE Access, ISSN: 2169-3536.
DOI: 10.1109/ACCESS.2024.3486057. [Online]. Available: https://ieeexplore.ieee.org/
document/10734085 (visited on 11/27/2024).

[46] B. Moyer, Error correction code (ecc), Accessed: 2025-03-28. [Online]. Available: https://sem
iengineering.com/knowledge_centers/memory/error-correction-code-ecc/.

[47] A. Singh, S. Chakravarty, G. Papadimitriou, and D. Gizopoulos, “Silent data errors: Sources,
detection, and modeling,” in 2023 IEEE 41st VLSI Test Symposium (VTS), ISSN: 2375-1053,
Apr. 2023, pp. 1–12. DOI: 10.1109/VTS56346.2023.10139970. [Online]. Available: https://
ieeexplore.ieee.org/abstract/document/10139970?casa_token=sAuEGbks5QwAAAAA:i2
Dz4eIfDFgaHzIAWrogmNAALwmbc_cB4V3rwOJ_GhQ6bIVG-GpfZQbmgDKRB_KJAvAKcT9p (visited on
09/29/2024).

[48] J. Vanian, Samsung Dethrones Intel As World’s Biggest Chip Maker, en. [Online]. Available: http
s://fortune.com/2017/07/27/samsung-intel-chip-semiconductor/ (visited on 04/03/2025).

[49] M. Shamsa and D. Lerner, “Defect mechanisms responsible for silent data errors,” in 2024 IEEE
International Reliability Physics Symposium (IRPS), ISSN: 1938-1891, Apr. 2024, pp. 1–5. DOI:
10.1109/IRPS48228.2024.10529392. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/10529392?casa_token=WD2j586I0SIAAAAA:h6At6wc0rj4YMaquems6JMce7
kly93jIGlj5bvQhX5GGUdWDJ3whw8DjUltxFmkMTdRpWBNc (visited on 09/29/2024).

[50] Meeting of the test technical committee (ttc) of the ieee electronics packaging society (eps), Oct.
2023.

[51] A. D. Singh, “Silent data corruption from timing marginalities due to process variations,” in 2024
IEEE European Test Symposium (ETS), ISSN: 1558-1780, May 2024, pp. 1–7. DOI: 10.1109/
ETS61313.2024.10567054. [Online]. Available: https://ieeexplore.ieee.org/document/
10567054 (visited on 09/29/2024).

[52] G. Papadimitriou and D. Gizopoulos, “Silent data corruptions: Microarchitectural perspectives,”
IEEE Transactions on Computers, vol. 72, no. 11, pp. 3072–3085, Nov. 2023, Conference Name:
IEEE Transactions on Computers, ISSN: 1557-9956. DOI: 10.1109/TC.2023.3285094. [Online].
Available: https : / / ieeexplore . ieee . org / abstract / document / 10151692 ? casa _ token =
ssK3RRaVi0gAAAAA:xcwkBa6KySA6Ddb-_PMJ9NOzQum5GkWybOMNAU_X-vDQ3Hs9A2wpVBXihznXBF1
ZJxw1Kult (visited on 09/29/2024).

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4bd3e334fa5d2c6a817130e3c8cee5a69a6bc3e6
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4bd3e334fa5d2c6a817130e3c8cee5a69a6bc3e6
https://doi.org/10.1109/TEST.1992.527893
https://ieeexplore.ieee.org/document/527893
https://doi.org/10.1109/VTEST.1994.292299
https://ieeexplore.ieee.org/document/292299
https://ieeexplore.ieee.org/document/292299
https://www.semanticscholar.org/paper/SCAN-BASED-DELAY-TESTING-Vemula/11215a6ba775e1c5e8f6c56174dbfd4b4891a485
https://www.semanticscholar.org/paper/SCAN-BASED-DELAY-TESTING-Vemula/11215a6ba775e1c5e8f6c56174dbfd4b4891a485
https://www.semanticscholar.org/paper/SCAN-BASED-DELAY-TESTING-Vemula/11215a6ba775e1c5e8f6c56174dbfd4b4891a485
https://doi.org/10.1109/TEST.1991.519696
https://ieeexplore.ieee.org/document/519696
https://doi.org/10.1109/TCAD.1987.1270315
https://ieeexplore.ieee.org/abstract/document/1270315
https://ieeexplore.ieee.org/abstract/document/1270315
https://doi.org/10.1109/ACCESS.2024.3486057
https://ieeexplore.ieee.org/document/10734085
https://ieeexplore.ieee.org/document/10734085
https://semiengineering.com/knowledge_centers/memory/error-correction-code-ecc/
https://semiengineering.com/knowledge_centers/memory/error-correction-code-ecc/
https://doi.org/10.1109/VTS56346.2023.10139970
https://ieeexplore.ieee.org/abstract/document/10139970?casa_token=sAuEGbks5QwAAAAA:i2Dz4eIfDFgaHzIAWrogmNAALwmbc_cB4V3rwOJ_GhQ6bIVG-GpfZQbmgDKRB_KJAvAKcT9p
https://ieeexplore.ieee.org/abstract/document/10139970?casa_token=sAuEGbks5QwAAAAA:i2Dz4eIfDFgaHzIAWrogmNAALwmbc_cB4V3rwOJ_GhQ6bIVG-GpfZQbmgDKRB_KJAvAKcT9p
https://ieeexplore.ieee.org/abstract/document/10139970?casa_token=sAuEGbks5QwAAAAA:i2Dz4eIfDFgaHzIAWrogmNAALwmbc_cB4V3rwOJ_GhQ6bIVG-GpfZQbmgDKRB_KJAvAKcT9p
https://fortune.com/2017/07/27/samsung-intel-chip-semiconductor/
https://fortune.com/2017/07/27/samsung-intel-chip-semiconductor/
https://doi.org/10.1109/IRPS48228.2024.10529392
https://ieeexplore.ieee.org/abstract/document/10529392?casa_token=WD2j586I0SIAAAAA:h6At6wc0rj4YMaquems6JMce7kly93jIGlj5bvQhX5GGUdWDJ3whw8DjUltxFmkMTdRpWBNc
https://ieeexplore.ieee.org/abstract/document/10529392?casa_token=WD2j586I0SIAAAAA:h6At6wc0rj4YMaquems6JMce7kly93jIGlj5bvQhX5GGUdWDJ3whw8DjUltxFmkMTdRpWBNc
https://ieeexplore.ieee.org/abstract/document/10529392?casa_token=WD2j586I0SIAAAAA:h6At6wc0rj4YMaquems6JMce7kly93jIGlj5bvQhX5GGUdWDJ3whw8DjUltxFmkMTdRpWBNc
https://doi.org/10.1109/ETS61313.2024.10567054
https://doi.org/10.1109/ETS61313.2024.10567054
https://ieeexplore.ieee.org/document/10567054
https://ieeexplore.ieee.org/document/10567054
https://doi.org/10.1109/TC.2023.3285094
https://ieeexplore.ieee.org/abstract/document/10151692?casa_token=ssK3RRaVi0gAAAAA:xcwkBa6KySA6Ddb-_PMJ9NOzQum5GkWybOMNAU_X-vDQ3Hs9A2wpVBXihznXBF1ZJxw1Kult
https://ieeexplore.ieee.org/abstract/document/10151692?casa_token=ssK3RRaVi0gAAAAA:xcwkBa6KySA6Ddb-_PMJ9NOzQum5GkWybOMNAU_X-vDQ3Hs9A2wpVBXihznXBF1ZJxw1Kult
https://ieeexplore.ieee.org/abstract/document/10151692?casa_token=ssK3RRaVi0gAAAAA:xcwkBa6KySA6Ddb-_PMJ9NOzQum5GkWybOMNAU_X-vDQ3Hs9A2wpVBXihznXBF1ZJxw1Kult

References 96

[53] D. Gizopoulos, G. Papadimitriou, O. Chatzopoulos, N. Karystinos, H. D. Dixit, and S. Sankar,
“Silent data corruptions in computing systems: Early predictions and large-scale measurements,”
in 2024 IEEE European Test Symposium (ETS), ISSN: 1558-1780, May 2024, pp. 1–10. DOI:
10.1109/ETS61313.2024.10567770. [Online]. Available: https://ieeexplore.ieee.org/
document/10567770 (visited on 09/29/2024).

[54] N. Binkert, B. Beckmann, G. Black, et al., “The gem5 simulator,” SIGARCHComput. Archit. News,
vol. 39, no. 2, pp. 1–7, Aug. 31, 2011, ISSN: 0163-5964. DOI: 10.1145/2024716.2024718. [On-
line]. Available: https://dl.acm.org/doi/10.1145/2024716.2024718 (visited on 11/21/2024).

[55] A. Chatzidimitriou and D. Gizopoulos, “Anatomy of microarchitecture-level reliability assessment:
Throughput and accuracy,” in 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Apr. 2016, pp. 69–78. DOI: 10.1109/ISPASS.2016.7482075.
[Online]. Available: https://ieeexplore.ieee.org/document/7482075 (visited on 05/12/2025).

[56] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault injection: Quantified error
and confidence,” in Automation & Test in Europe Conference & Exhibition 2009 Design, ISSN:
1558-1101, Apr. 2009, pp. 502–506. DOI: 10.1109/DATE.2009.5090716. [Online]. Available:
https://ieeexplore.ieee.org/document/5090716 (visited on 11/13/2024).

[57] G. Papadimitriou and D. Gizopoulos, “Characterizing soft error vulnerability of CPUs across com-
piler optimizations and microarchitectures,” in 2021 IEEE International Symposium on Workload
Characterization (IISWC), Nov. 2021, pp. 113–124. DOI: 10.1109/IISWC53511.2021.00021.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/9668302 (visited on
09/29/2024).

[58] D. Gizopoulos, G. Papadimitriou, and O. Chatzopoulos, “Estimating the failures and silent errors
rates of CPUs across ISAs and microarchitectures,” in 2023 IEEE International Test Conference
(ITC), ISSN: 2378-2250, Oct. 2023, pp. 377–382. DOI: 10.1109/ITC51656.2023.00056. [Online].
Available: https://ieeexplore.ieee.org/document/10351088 (visited on 11/13/2024).

[59] O. Chatzopoulos, G. Papadimitriou, V. Karakostas, and D. Gizopoulos, “Gem5-MARVEL:
microarchitecture-level Resilience Analysis of Heterogeneous SoC Architectures,” in 2024 IEEE
International Symposium onHigh-PerformanceComputer Architecture (HPCA), ISSN: 2378-203X,
Mar. 2024, pp. 543–559. DOI: 10.1109/HPCA57654.2024.00047. [Online]. Available: https:
//ieeexplore.ieee.org/document/10476486 (visited on 05/12/2025).

[60] M.-L. Li, P. Ramachandran, U. R. Karpuzcu, S. K. S. Hari, and S. V. Adve, “Accurate
microarchitecture-level fault modeling for studying hardware faults,” in 2009 IEEE 15th Interna-
tional Symposium on High Performance Computer Architecture, ISSN: 2378-203X, Feb. 2009,
pp. 105–116. DOI: 10.1109/HPCA.2009.4798242. [Online]. Available: https://ieeexplore.
ieee.org/document/4798242 (visited on 11/28/2024).

[61] H. Cho, “Impact of microarchitectural differences of RISC-v processor cores on soft error effects,”
IEEE Access, vol. 6, pp. 41 302–41313, 2018, Conference Name: IEEE Access, ISSN: 2169-
3536. DOI: 10.1109/ACCESS.2018.2858773. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/8418379 (visited on 11/28/2024).

[62] B. Wibowo, A. Agrawal, and J. Tuck, “Characterizing the impact of soft errors across microar-
chitectural structures and implications for predictability,” in 2017 IEEE International Symposium
on Workload Characterization (IISWC), Oct. 2017, pp. 250–260. DOI: 10.1109/IISWC.2017.
8167782. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8167782
(visited on 11/28/2024).

[63] D. P. Lerner, B. Inkley, S. H. Sahasrabudhe, E. Hansen, L. D. R. Munoz, and A. v. de Ven, “Op-
timization of tests for managing silicon defects in data centers,” in 2022 IEEE International Test
Conference (ITC), ISSN: 2378-2250, Sep. 2022, pp. 578–582. DOI: 10.1109/ITC50671.2022.
00076. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9983919?
casa_token=ZohgUDmjkG4AAAAA:124fyRjqACo6od00xqp6mMWA91n2tdmL7mXBUuleRv6rb5EhPZy5
a9D9VQdC87Qh0a91OGkP (visited on 09/29/2024).

https://doi.org/10.1109/ETS61313.2024.10567770
https://ieeexplore.ieee.org/document/10567770
https://ieeexplore.ieee.org/document/10567770
https://doi.org/10.1145/2024716.2024718
https://dl.acm.org/doi/10.1145/2024716.2024718
https://doi.org/10.1109/ISPASS.2016.7482075
https://ieeexplore.ieee.org/document/7482075
https://doi.org/10.1109/DATE.2009.5090716
https://ieeexplore.ieee.org/document/5090716
https://doi.org/10.1109/IISWC53511.2021.00021
https://ieeexplore.ieee.org/abstract/document/9668302
https://doi.org/10.1109/ITC51656.2023.00056
https://ieeexplore.ieee.org/document/10351088
https://doi.org/10.1109/HPCA57654.2024.00047
https://ieeexplore.ieee.org/document/10476486
https://ieeexplore.ieee.org/document/10476486
https://doi.org/10.1109/HPCA.2009.4798242
https://ieeexplore.ieee.org/document/4798242
https://ieeexplore.ieee.org/document/4798242
https://doi.org/10.1109/ACCESS.2018.2858773
https://ieeexplore.ieee.org/abstract/document/8418379
https://ieeexplore.ieee.org/abstract/document/8418379
https://doi.org/10.1109/IISWC.2017.8167782
https://doi.org/10.1109/IISWC.2017.8167782
https://ieeexplore.ieee.org/abstract/document/8167782
https://doi.org/10.1109/ITC50671.2022.00076
https://doi.org/10.1109/ITC50671.2022.00076
https://ieeexplore.ieee.org/abstract/document/9983919?casa_token=ZohgUDmjkG4AAAAA:124fyRjqACo6od00xqp6mMWA91n2tdmL7mXBUuleRv6rb5EhPZy5a9D9VQdC87Qh0a91OGkP
https://ieeexplore.ieee.org/abstract/document/9983919?casa_token=ZohgUDmjkG4AAAAA:124fyRjqACo6od00xqp6mMWA91n2tdmL7mXBUuleRv6rb5EhPZy5a9D9VQdC87Qh0a91OGkP
https://ieeexplore.ieee.org/abstract/document/9983919?casa_token=ZohgUDmjkG4AAAAA:124fyRjqACo6od00xqp6mMWA91n2tdmL7mXBUuleRv6rb5EhPZy5a9D9VQdC87Qh0a91OGkP

References 97

[64] Y. Huang, S. Guo, S. Di, G. Li, and F. Cappello, “Mitigating silent data corruptions in HPC applica-
tions across multiple program inputs,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, ISSN: 2167-4337, Nov. 2022, pp. 1–14. DOI:
10.1109/SC41404.2022.00022. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/10046091?casa_token=Qa6sjEkGDCgAAAAA:3ePOA8ZHO0X_yIhM176gQqhiMqdEJNXOal
U-bcgWqvO7TFFHaoS2GaMxFDnrnxQ6MDsTjHef (visited on 09/29/2024).

[65] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Modeling Soft-Error Propagation
in Programs,” in 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), ISSN: 2158-3927, Jun. 2018, pp. 27–38. DOI: 10.1109/DSN.2018.00016.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8416468 (visited on
11/28/2024).

[66] A. Pan, J. W. Tschanz, and S. Kundu, “A low cost scheme for reducing silent data corruption in
large arithmetic circuits,” in 2008 IEEE International Symposium on Defect and Fault Tolerance of
VLSI Systems, ISSN: 2377-7966, Oct. 2008, pp. 343–351. DOI: 10.1109/DFT.2008.42. [Online].
Available: https://ieeexplore.ieee.org/document/4641190 (visited on 11/12/2024).

[67] M. Nicolaidis, R. Duarte, S. Manich, and J. Figueras, “Fault-secure parity prediction arithmetic
operators,” IEEE Design & Test of Computers, vol. 14, no. 2, pp. 60–71, Apr. 1997, ISSN: 1558-
1918. DOI: 10.1109/54.587743. [Online]. Available: https://ieeexplore.ieee.org/document/
587743 (visited on 06/22/2025).

[68] D.Marienfeld, E. Sogomonyan, V. Ocheretnij, andM.Gossel, “New self-checking output-duplicated
booth multiplier with high fault coverage for soft errors,” in 14th Asian Test Symposium (ATS’05),
ISSN: 2377-5386, Dec. 2005, pp. 76–81. DOI: 10.1109/ATS.2005.80. [Online]. Available: https:
//ieeexplore.ieee.org/document/1575410 (visited on 06/22/2025).

[69] A. D. Singh, “Understanding vmin failures for improved testing of timing marginalities,” in 2022
IEEE International Test Conference (ITC), ISSN: 2378-2250, Sep. 2022, pp. 372–381. DOI: 10.
1109/ITC50671.2022.00046. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/9983900?casa_token=GwUaGS3GlDkAAAAA:MSXyCeqQuwQ4p1tmSLzYGGlXrjmP1hSuxla
y4_E7z8zpqS_saYWgJtmbIum-ZHsPxR4xDIoi (visited on 09/29/2024).

[70] S. Natarajan, C. S. Oak, V. Kakollu, et al., “Effectiveness of timing-aware scan tests in targeting
marginal failures and silent data errors in a data center processor,” in 2024 IEEE International
Test Conference (ITC), ISSN: 2378-2250, Nov. 2024, pp. 253–260. DOI: 10.1109/ITC51657.
2024.00045. [Online]. Available: https://ieeexplore.ieee.org/document/10766694 (visited
on 12/04/2024).

[71] M. Sauer, I. Polian, M. E. Imhof, et al., “Variation-aware deterministic ATPG,” in 2014 19th IEEE
European Test Symposium (ETS), ISSN: 1558-1780, May 2014, pp. 1–6. DOI: 10.1109/ETS.
2014.6847806. [Online]. Available: https://ieeexplore.ieee.org/document/6847806 (visited
on 12/05/2024).

[72] H. Jafarzadeh, F. Klemme, J. D. Reimer, et al., “Robust pattern generation for small delay faults
under process variations,” in 2023 IEEE International Test Conference (ITC), ISSN: 2378-2250,
Oct. 2023, pp. 111–116. DOI: 10.1109/ITC51656.2023.00026. [Online]. Available: https://
ieeexplore.ieee.org/document/10351052 (visited on 11/11/2024).

[73] H. Amrouch, G. Pahwa, A. D. Gaidhane, et al., “Impact of variability on processor performance in
negative capacitance FinFET technology,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 67, no. 9, pp. 3127–3137, Sep. 2020, Conference Name: IEEE Transactions on
Circuits and Systems I: Regular Papers, ISSN: 1558-0806. DOI: 10.1109/TCSI.2020.2990672.
[Online]. Available: https://ieeexplore.ieee.org/document/9090811 (visited on 01/02/2025).

[74] I. Pomeranz and S. Reddy, “On n-detection test sets and variable n-detection test sets for tran-
sition faults,” in Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146), ISSN: 1093-
0167, Apr. 1999, pp. 173–180. DOI: 10.1109/VTEST.1999.766662. [Online]. Available: https:
//ieeexplore.ieee.org/document/766662 (visited on 06/22/2025).

https://doi.org/10.1109/SC41404.2022.00022
https://ieeexplore.ieee.org/abstract/document/10046091?casa_token=Qa6sjEkGDCgAAAAA:3ePOA8ZHO0X_yIhM176gQqhiMqdEJNXOalU-bcgWqvO7TFFHaoS2GaMxFDnrnxQ6MDsTjHef
https://ieeexplore.ieee.org/abstract/document/10046091?casa_token=Qa6sjEkGDCgAAAAA:3ePOA8ZHO0X_yIhM176gQqhiMqdEJNXOalU-bcgWqvO7TFFHaoS2GaMxFDnrnxQ6MDsTjHef
https://ieeexplore.ieee.org/abstract/document/10046091?casa_token=Qa6sjEkGDCgAAAAA:3ePOA8ZHO0X_yIhM176gQqhiMqdEJNXOalU-bcgWqvO7TFFHaoS2GaMxFDnrnxQ6MDsTjHef
https://doi.org/10.1109/DSN.2018.00016
https://ieeexplore.ieee.org/abstract/document/8416468
https://doi.org/10.1109/DFT.2008.42
https://ieeexplore.ieee.org/document/4641190
https://doi.org/10.1109/54.587743
https://ieeexplore.ieee.org/document/587743
https://ieeexplore.ieee.org/document/587743
https://doi.org/10.1109/ATS.2005.80
https://ieeexplore.ieee.org/document/1575410
https://ieeexplore.ieee.org/document/1575410
https://doi.org/10.1109/ITC50671.2022.00046
https://doi.org/10.1109/ITC50671.2022.00046
https://ieeexplore.ieee.org/abstract/document/9983900?casa_token=GwUaGS3GlDkAAAAA:MSXyCeqQuwQ4p1tmSLzYGGlXrjmP1hSuxlay4_E7z8zpqS_saYWgJtmbIum-ZHsPxR4xDIoi
https://ieeexplore.ieee.org/abstract/document/9983900?casa_token=GwUaGS3GlDkAAAAA:MSXyCeqQuwQ4p1tmSLzYGGlXrjmP1hSuxlay4_E7z8zpqS_saYWgJtmbIum-ZHsPxR4xDIoi
https://ieeexplore.ieee.org/abstract/document/9983900?casa_token=GwUaGS3GlDkAAAAA:MSXyCeqQuwQ4p1tmSLzYGGlXrjmP1hSuxlay4_E7z8zpqS_saYWgJtmbIum-ZHsPxR4xDIoi
https://doi.org/10.1109/ITC51657.2024.00045
https://doi.org/10.1109/ITC51657.2024.00045
https://ieeexplore.ieee.org/document/10766694
https://doi.org/10.1109/ETS.2014.6847806
https://doi.org/10.1109/ETS.2014.6847806
https://ieeexplore.ieee.org/document/6847806
https://doi.org/10.1109/ITC51656.2023.00026
https://ieeexplore.ieee.org/document/10351052
https://ieeexplore.ieee.org/document/10351052
https://doi.org/10.1109/TCSI.2020.2990672
https://ieeexplore.ieee.org/document/9090811
https://doi.org/10.1109/VTEST.1999.766662
https://ieeexplore.ieee.org/document/766662
https://ieeexplore.ieee.org/document/766662

References 98

[75] H. Jafarzadeh, F. Klemme, H. Amrouch, S. Hellebrand, and H.-J. Wunderlich, “Vmin testing un-
der variations: Defect vs. fault coverage,” in 2024 IEEE 25th Latin American Test Symposium
(LATS), ISSN: 2373-0862, Apr. 2024, pp. 1–6. DOI: 10.1109/LATS62223.2024.10534608. [On-
line]. Available: https://ieeexplore.ieee.org/document/10534608 (visited on 11/28/2024).

[76] H. Jafarzadeh, F. Klemme, H. Amrouch, S. Hellebrand, and H.-J. Wunderlich, “Time and space
optimized storage-based BIST under multiple voltages and variations,” in 2024 IEEE European
Test Symposium (ETS), ISSN: 1558-1780, May 2024, pp. 1–6. DOI: 10.1109/ETS61313.2024.
10567295. [Online]. Available: https://ieeexplore.ieee.org/document/10567295 (visited on
11/29/2024).

[77] H. Jafarzadeh, F. Klemme, J. D. Reimer, H. Amrouch, S. Hellebrand, and H.-J. Wunderlich, “Min-
imizing PVT-variability by exploiting the zero temperature coefficient (ZTC) for robust delay fault
testing,” in 2024 IEEE International Test Conference (ITC), ISSN: 2378-2250, Nov. 2024, pp. 26–
30. DOI: 10.1109/ITC51657.2024.00013. [Online]. Available: https://ieeexplore.ieee.org/
document/10766727 (visited on 12/04/2024).

[78] L. Chen and S. Dey, “Software-based self-testing methodology for processor cores,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 3, pp. 369–
380, Mar. 2001, Conference Name: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, ISSN: 1937-4151. DOI: 10.1109/43.913755. [Online]. Available: https:
//ieeexplore.ieee.org/document/913755 (visited on 01/05/2025).

[79] R. Cantoro, F. Garau, P. Girard, et al., “Effective techniques for automatically improving the tran-
sition delay fault coverage of self-test libraries,” in 2022 IEEE European Test Symposium (ETS),
ISSN: 1558-1780, May 2022, pp. 1–2. DOI: 10.1109/ETS54262.2022.9810392. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/9810392 (visited on 01/14/2025).

[80] M. Bartolomucci, N. I. Deligiannis, R. Cantoro, and M. S. Reorda, “Fault grading techniques
for evaluating software-based self-test with respect to small delay defects,” in 2024 IEEE 30th
International Symposium on On-Line Testing and Robust System Design (IOLTS), ISSN: 1942-
9401, Jul. 2024, pp. 1–6. DOI: 10.1109/IOLTS60994.2024.10616077. [Online]. Available: https:
//ieeexplore.ieee.org/document/10616077 (visited on 11/28/2024).

[81] J. E. Rodriguez Condia, F. A. Da Silva, A. Ç. Bağbaga, et al., “Using STLs for effective in-field
test of GPUs,” IEEE Design & Test, vol. 40, no. 2, pp. 109–117, Apr. 2023, ISSN: 2168-2356,
2168-2364. DOI: 10.1109/MDAT.2022.3188573. [Online]. Available: https://ieeexplore.ieee.
org/document/9815288/ (visited on 01/08/2025).

[82] J.-D. Guerrero-Balaguera, J. E. R. Condia, and M. S. Reorda, “On the functional test of special
function units in GPUs,” in 2021 24th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), ISSN: 2473-2117, Apr. 2021, pp. 81–86. DOI: 10.1109/
DDECS52668.2021.9417025. [Online]. Available: https://ieeexplore.ieee.org/document/
9417025 (visited on 01/10/2025).

[83] B. Fuller, Are you ready for ai? [Online]. Available: https://semiengineering.com/are-you-
ready-for-ai/ (visited on 06/19/2025).

[84] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda, “Microprocessor software-based
self-testing,” IEEE Design & Test of Computers, vol. 27, no. 3, pp. 4–19, May 2010, Conference
Name: IEEE Design & Test of Computers, ISSN: 1558-1918. DOI: 10.1109/MDT.2010.5. [Online].
Available: https://ieeexplore.ieee.org/document/5396292 (visited on 12/12/2024).

[85] P. Wohl and J. Waicukauski, “Test generation for ultra-large circuits using ATPG constraints and
test-pattern templates,” in Proceedings International Test Conference 1996. Test and Design
Validity, ISSN: 1089-3539, Oct. 1996, pp. 13–20. DOI: 10.1109/TEST.1996.556938. [Online].
Available: https://ieeexplore.ieee.org/document/556938 (visited on 01/15/2025).

[86] Minimips, Accessed: 2025-05-02. [Online]. Available: https://opencores.org/projects/mini
mips.

https://doi.org/10.1109/LATS62223.2024.10534608
https://ieeexplore.ieee.org/document/10534608
https://doi.org/10.1109/ETS61313.2024.10567295
https://doi.org/10.1109/ETS61313.2024.10567295
https://ieeexplore.ieee.org/document/10567295
https://doi.org/10.1109/ITC51657.2024.00013
https://ieeexplore.ieee.org/document/10766727
https://ieeexplore.ieee.org/document/10766727
https://doi.org/10.1109/43.913755
https://ieeexplore.ieee.org/document/913755
https://ieeexplore.ieee.org/document/913755
https://doi.org/10.1109/ETS54262.2022.9810392
https://ieeexplore.ieee.org/document/9810392
https://doi.org/10.1109/IOLTS60994.2024.10616077
https://ieeexplore.ieee.org/document/10616077
https://ieeexplore.ieee.org/document/10616077
https://doi.org/10.1109/MDAT.2022.3188573
https://ieeexplore.ieee.org/document/9815288/
https://ieeexplore.ieee.org/document/9815288/
https://doi.org/10.1109/DDECS52668.2021.9417025
https://doi.org/10.1109/DDECS52668.2021.9417025
https://ieeexplore.ieee.org/document/9417025
https://ieeexplore.ieee.org/document/9417025
https://semiengineering.com/are-you-ready-for-ai/
https://semiengineering.com/are-you-ready-for-ai/
https://doi.org/10.1109/MDT.2010.5
https://ieeexplore.ieee.org/document/5396292
https://doi.org/10.1109/TEST.1996.556938
https://ieeexplore.ieee.org/document/556938
https://opencores.org/projects/minimips
https://opencores.org/projects/minimips

References 99

[87] A. Riefert, L. Ciganda, M. Sauer, P. Bernardi, M. S. Reorda, and B. Becker, “An effective ap-
proach to automatic functional processor test generation for small-delay faults,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE), ISSN: 1558-1101, Mar. 2014,
pp. 1–6. DOI: 10.7873/DATE.2014.140. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/6800341 (visited on 01/15/2025).

[88] C.-Y. Chen and J.-L. Huang, “Reinforcement-learning-based test program generation for software-
based self-test,” in 2019 IEEE 28th Asian Test Symposium (ATS), ISSN: 2377-5386, Dec. 2019,
pp. 73–735. DOI: 10.1109/ATS47505.2019.00013. [Online]. Available: https://ieeexplore.
ieee.org/document/8949401 (visited on 01/05/2025).

[89] T. Angel, Antares MIPS32, https://github.com/AngelTerrones/Antares, [Online], 2015.
[90] M. Gautschi, P. D. Schiavone, A. Traber, et al., Near-Threshold RISC-V Core With DSP Exten-

sions for Scalable IoT Endpoint Devices, Feb. 2017. DOI: 10.1109/TVLSI.2017.2654506. [On-
line]. Available: https://ieeexplore.ieee.org/document/7864441 (visited on 05/16/2025).

[91] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and L. Benini, “Quentin: An ultra-
low-power pulpissimo soc in 22nm fdx,” in 2018 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S), 2018, pp. 1–3. DOI: 10.1109/S3S.2018.8640145.

[92] Pulp-platform/pulpissimo, original-date: 2018-02-09T10:24:02Z, May 2025. [Online]. Available:
https://github.com/pulp-platform/pulpissimo (visited on 05/16/2025).

[93] Cv32e40p, Accessed: 2025-05-16. [Online]. Available: https://github.com/pulp-platform/
cv32e40p.

[94] Siemens EDA, Tessent™ shell reference manual, Software Version 2021.3, Document Revision
24, https://eda.sw.siemens.com/, Siemens EDA, 2021.

[95] “IEEE Approved Draft Standard Test Interface Language (STIL) for Digital Test Vector Data,”
IEEE P1450/D2, October 2023, pp. 1–141, Dec. 2023. [Online]. Available: https://ieeexplore.
ieee.org/document/10273846 (visited on 05/16/2025).

[96] M. Tuna, M. Benabdenbi, and Laboratoire, “Software based self-test of register files in risc pro-
cessor cores using march algorithms,” Mar. 2006.

[97] Cv32e40p docs control and status registers. [Online]. Available: https://docs.openhwgroup.
org/projects/cv32e40s-user-manual/en/latest/control_status_registers.html (visited
on 06/17/2025).

https://doi.org/10.7873/DATE.2014.140
https://ieeexplore.ieee.org/abstract/document/6800341
https://ieeexplore.ieee.org/abstract/document/6800341
https://doi.org/10.1109/ATS47505.2019.00013
https://ieeexplore.ieee.org/document/8949401
https://ieeexplore.ieee.org/document/8949401
https://github.com/AngelTerrones/Antares
https://doi.org/10.1109/TVLSI.2017.2654506
https://ieeexplore.ieee.org/document/7864441
https://doi.org/10.1109/S3S.2018.8640145
https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/cv32e40p
https://github.com/pulp-platform/cv32e40p
https://eda.sw.siemens.com/
https://ieeexplore.ieee.org/document/10273846
https://ieeexplore.ieee.org/document/10273846
https://docs.openhwgroup.org/projects/cv32e40s-user-manual/en/latest/control_status_registers.html
https://docs.openhwgroup.org/projects/cv32e40s-user-manual/en/latest/control_status_registers.html

A
Status and Control Registers

Table A.1 shows the control and status registers of the cv32e40p [90] core. For each register its size
is given, and a description. Besides that it is indicated if the register is writable in functional mode. If
this is not the case the core would need to enter debug mode to access the register.

100

101

Table A.1: Control Status Register Overview of the CV32E40P [97]

Register name Size (index) Description Writable
Debug Control and
Status

[31:0] Debug registers, track activity of
certain control sequences.

No

Debug PC [31:1] Contains the virtual address of the
next instruction in debug mode.

No

Debug Scratch register 0 [31:0] General-purpose debug scratch
register.

No

Debug Scratch register 1 [31:0] General-purpose debug scratch
register.

No

Trigger Data register 1 [2] Execute bit, enables matching on
instruction address.

No

Trigger Data register 2 [31:0] Stores the instruction address to
match against for a breakpoint trigger.

No

Machine Cause [5:0] Shows if an exception is an interrupt
and its corresponding code.

Yes

Machine Counter-Inhibit
register

[3:2], [0] Controls which performance counters
are active.

Yes

Machine Exception PC [31:1] Machine exception program counter. Yes
Machine Performance
Monitoring Counter 0

[63:0] Hardware performance monitor
counter 0.

Yes

Machine Performance
Monitoring Counter 2

[63:0] Hardware performance monitor
counter 2.

Yes

Machine Performance
Monitoring Counter 3

[63:0] Hardware performance monitor
counter 3.

Yes

Machine Performance
Monitoring Event
Selector 3

[15:0] Event selector for Machine
Performance Monitoring Counter 3

Yes

Machine Interrupt Enable
register

[31:16], [11],
[7], [3]

Machine interrupt enable bits. Yes

Machine Scratch [31:0] OS or Firmware can use this to store
temporary data across trap handling.

Yes

Machine Status [7], [3] Machine interrupt enable and prior
enable bits.

Yes

Machine Trap-Vector
Base Address

[31:8], [0] Base address of trap vector, and trap
vector mode.

Yes

B
Bugged Design Space Exploration

Results

Figure B.1 shows the results of the CATPG run with additional observable scan cells, instead of addi-
tional observe points. In theory, the two mentioned options add the same functionality to the flip-flops,
and therefore should give similar FC results. However, this is not the case as can be seen in Figure
B.1. This is probably caused by some internal mechanism of Tessent.

The most feasible explanation is that this is caused by Tessent internally treating the observable-
only scan cells as controllable when trying to find suitable patterns. Resulting in ATPG aborts because
the values being loaded into these scan cells are not actually applied to the corresponding flip-flops.
Evidence for this is seen in the fault analysis report, by an increase in ATPG aborts caused by an
increase of uncontrolled faults. This in combination with the fact that for these simulations a maximum
scan chain length of one is used, has likely confused Tessent and caused bugged the results.

2 3 4 5 6 7 8
Sequential Depth [n]

30

40

50

60

70

80

FC
 [%

]

CATPG with Additional Observable Scan Cells
aligner
complete_obs
cs_regs
ex_stage
fifo
id_stage
id_stage_and_cs_regs
int_controller
load_store
obi_int
prefetch_cont
baseline

Figure B.1: TDF Results with Additional Observable Scan Cells

102

	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	State-of-the-Art
	SBST Methods
	SBST Complemented by a DFT
	Limitations

	Contribution
	Outline

	Background
	Digital Design
	Logic Design
	Transistors
	ASIC Design Flow Steps
	Functional Design
	Synthesis
	Place and Route

	Processor Cores
	Instructions
	Instruction Set Architecture
	Main Modules
	Data and Control Flow
	Pipelining

	Chip Life Cycle
	Quality and Reliability
	Design
	Manufacturing
	Post Manufacturing

	Fault Modelling
	Defects
	Fault Types

	Test Evaluation
	Fault Simulation
	Metrics

	Combinational Test Generation
	Search Space Abstractions
	ATPG Algorithms

	Sequential Test
	Scan Design
	Transition Delay Fault Test
	Path Delay Fault Test

	Silent Data Errors
	Silent Data Errors
	Calls-to-Action

	SDE Nature
	Defects
	Propagation Through the Stack

	SDE Rates
	Microarchitecture-level Fault Injection
	Comparison
	Alternative SDE Estimation Methods
	Conclusion

	SDE Solutions
	Software Test Libraries
	Software Redundancy
	Continuous Verification in Hardware
	Test
	Conclusion

	SBST State-of-the-Art
	Overview
	Functional Constraints Extraction
	Pattern-to-Program Conversion
	SBST Combined with DFT
	Comparison
	Conclusion

	Software-Based Self-Test
	Implementation: SBST Program Generation
	CV32E40P Core
	Synthesis
	Functional Constraints Extraction
	Constraint Command Generation
	Scan Chain Insertion
	CATPG
	Pattern-to-Program Conversion

	Experimental Setup
	Test Pattern File Generation
	Fault Simulation

	Results
	Experiments
	Metrics
	Synthesis
	Register File Test Programs
	SBST

	Discussion
	Conclusion

	DFT Design
	Design Space Exploration
	Methodology
	Results
	Discussion

	Design Choices
	DFT Method
	Criteria
	Possible Options
	Trade-off

	Hardware Implementation
	Results
	Fault Simulation Results
	Area Results
	Comparison with Other Works

	Discussion
	Conclusion

	Conclusion
	Summary
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	Conclusion
	Limitations
	Future Work

	References
	Status and Control Registers
	Bugged Design Space Exploration Results

