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1
Introduction

Accurately determining where a person is looking is fundamental to modern human-computer interac-
tion, with profound implications across various domains. From enabling more intuitive user interfaces in
virtual reality and ensuring driver safety in advanced automotive systems to providing critical insights in
healthcare and educational settings, 3D gaze estimation serves as a powerful, non-verbal channel for
understanding human attention, intention, and cognitive state. As the demand for seamless and intel-
ligent systems grows, so does the need for reliable and efficient methods to interpret this fundamental
behavioral cue directly from visual input.

Recent advancements in computer vision have been driven by the emergence of Vision Transformers
(ViTs) [3], which have demonstrated remarkable capabilities in capturing global context and long-range
dependencies within images. However, applying standard ViT architectures directly to appearance-
based gaze estimation presents a unique set of challenges. The task requires balancing two opposing
needs: preserving fine-grained details in the ocular region while understanding the broader facial con-
text, including head pose and orientation. Traditional ViTs often struggle on both fronts, as their rigid,
fixed-grid patching mechanism can (i) split key features like the iris and pupil across multiple patches,
weakening their representational power, and (ii) overload the attention mechanism with redundant in-
formation from less relevant areas like the forehead, cheeks, and background.

To address these inherent limitations, this thesis introduces FocusViT, a novel, lightweight, and end-to-
end differentiable framework designed to enhance Vision Transformers for the specific demands of gaze
estimation. Our approach improves a standard ViT by incorporating two complementary modules that
operate ahead of the main encoder. First, a Patch Translation Module, based on Spatial Transformer
Networks [8], dynamically repositions image patches to center important features, thus reducing feature
fragmentation. Second, a differentiable Top-K Selection Module learns to identify and discard the
least informative tokens, allowing the model to focus its computational resources exclusively on the
most relevant facial regions.

Our experiments demonstrate that this two-part strategy yields significant improvements in both accu-
racy and efficiency. The complete FocusViT framework reduces the mean angular error of a strong ViT
baseline from 4.98◦ to 4.61◦ on the challenging ETH-XGaze dataset, while processing 75% fewer to-
kens. More importantly, we uncover a key insight: leveraging token reduction to enable a finer-grained,
lossless 8x8 patch grid directly addresses a critical information compression bottleneck in smaller ViT
models, leading to a competitive performance of 4.42◦ MAE. These findings demonstrate that dynamic,
task-specific patch selection can be a powerful and efficient alternative to more complex hybrid archi-
tectures.

This report is structured into three primary sections. This introduction serves to contextualize the prob-
lem and summarize our core contributions. The core of the work is presented in the scientific paper
“Dynamic Patch Focus for Transformer-based Gaze Estimation”. Following the paper, a supplementary
chapter provides the necessary background knowledge on Vision Transformers, attention mechanisms,
and other foundational concepts essential for a comprehensive understanding of our methodology.
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Abstract

Appearance-based 3D gaze estimation must accommo-
date two conflicting needs: fine ocular detail and global
facial context. Vanilla Vision Transformers (ViTs) strug-
gle with both needs due to their fixed 16 × 16 patch grid
that (i) fragments critical features like the eyes into mul-
tiple patches, and (ii) floods the self-attention mechanism
with redundant information from the forehead, cheeks and
background. We introduce FocusViT, a lightweight and
end-to-end differentiable framework that enhances ViTs by
first using a Patch Translation Module, based on Spatial-
Transformer Networks, to dynamically translate patches to
center on content, and then employing a Perturbed Top-K
operator to select only the most informative tokens for pro-
cessing.

Our experiments show that combining translation and
selection reduces the mean angular error (MAE) of a ViT-
S baseline on ETH-XGaze from 4.98◦ to 4.61◦ while using
75% fewer tokens. Furthermore, by leveraging this token
reduction to enable a finer-grained, lossless 8x8 patch grid,
we address a key information bottleneck in the ViT-S archi-
tecture, achieving a final MAE of 4.42◦. The framework
also demonstrates consistent improvements on the MPI-
IFaceGaze dataset, reducing the baseline error from 5.72◦

to 5.36◦. Extensive ablation studies confirm our central
finding: patch translation and token selection are comple-
mentary mechanisms that work in synergy to improve model
performance.

1. Introduction
Gaze is a uniquely informative behavioural cue: it re-
veals attention, intent, situational awareness, and cognitive
load. Estimating where a person is looking (3D gaze) has
broad applications in fields such as human-computer inter-
action [8], healthcare [4], automotive safety [23], education
[14, 16], and virtual reality [24], where it enables improved
user experiences, safety, and the understanding of human
behaviors. Due to low device requirements, appearance-
based 3D gaze estimation, which infers gaze directly from

images without requiring personal calibration, has seen sig-
nificant advances with deep learning. In these settings, the
camera sees the entire face, usually under unconstrained
head pose and lighting, so the estimator model has to reason
about both fine ocular details and global face context.

Early convolutional neural network (CNN) models either
focused on cropped eye regions or used the entire face as in-
put. Each approach has its trade-offs: using only the eyes
captures fine details but ignores global context (e.g. head
pose) that might be crucial in low-light or extreme pose set-
tings, whereas using the full face provides context but di-
lutes the critical eye features. To address this, researchers
explored hybrid strategies. For example, multi-region net-
works process both face and eye patches in parallel to com-
bine local and global cues [18], learnable spatial weights
can emphasize eye regions within a full-face CNN [37],
and region selection networks dynamically choose the most
informative face sub-regions for each image [40]. These
works show that where the model looks in the face is as
important as how it learns gaze from the features.

In recent years, Vision Transformers (ViTs) [13] have
been applied to gaze estimation to leverage their ability to
capture long-range dependencies and global context. ViTs
split an image into a sequence of patch tokens and apply a
self-attention mechanism to model relationships across the
entire image. Cheng et al. introduced a hybrid transformer
model - GazeTR [9], and demonstrated improved accuracy
over CNN-only models by taking CNN-extracted facial fea-
tures and globally integrating them using transformer en-
coders. Beyond single-view settings, transformers have also
been used to fuse multi-view information, for example, us-
ing cross-view attention [10]. Another emerging direction
is to rethink the gaze network architecture: Wang et al. pro-
posed GazeCaps [27], which uses capsules to represent dif-
ferent facial properties and a self-attention routing to dy-
namically focus on the most relevant capsules. These works
emphasize the potential of transformer-based architectures
and adaptive attention mechanisms for gaze estimation.

However, applying ViTs to gaze estimation has its chal-
lenges. We identify two key limitations when using vanilla
full-face ViTs: (1) patch fragmentation of critical eye con-



tent, and (2) redundant background and face tokens. The
two limitations are as follows:

1. Patch fragmentation of critical eye content.
The fixed grid patch partitioning of a ViT can split se-
mantically important regions, predominantly the eyes,
across multiple patches. If an eye falls on a patch bound-
ary, its information will be divided into separate tokens,
and this can weaken the feature representation and even-
tually degrade gaze prediction accuracy. CNNs, on the
other hand, do not have this issue due to their overlap-
ping receptive fields. The fragmentation also has more
weight in smaller ViT models. Take, for example, the
small ‘ViT-S’ variant with 21M parameters: this model
projects each patch of size 3x16x16 to a token embed-
ding of dimension 384. Clearly, some information has to
be compressed, because 3 × 16 × 16 = 768 is twice as
much information as the model retains in its token em-
beddings. In bigger model variants such as ‘ViT-B’ or
‘ViT-L’, this issue is less present because their feature
dimension is at least 768. However, the attention mech-
anism still has to model split-eye relationships, which is
more work compared to simply integrating information
from different face regions.

2. Redundant background and face tokens.
Second, a full-face image yields many tokens from re-
gions like cheeks, forehead, and background that carry
little useful information for the gaze [5, 37]. These
redundant tokens not only bring unnecessary computa-
tional cost but can also distract the model’s attention. In-
deed, recent efficient transformer studies on image clas-
sification tasks show that a substantial subset of tokens
can be pruned with negligible impact on final perfor-
mance [2, 19, 22]. While pruning has not been studied
on gaze estimation, the eye and periocular region (in-
cluding eyelids and eyebrows) have consistently been
identified as the primary source of gaze information,
while other facial regions have much more subtle or
environmentally-subjective impact [37].
Additionally, in the context of vision transformers, us-
ing a smaller patch size is known to improve accuracy
by capturing fine-grained details [13, 26]. However, the
quadratic cost of self-attention makes this resolution im-
practical for the whole face. By dropping irrelevant to-
kens first, we can afford smaller patches where they mat-
ter most, without exploding computation.

To address these shortcomings, we introduce FocusViT,
a framework that extends a standard ViT with two
lightweight, trainable modules. To combat patch fragmen-
tation, we employ a Patch Translation Module based on
a Spatial Transformer Network (STN) [15] that applies a
content-aware translation to each patch, allowing them to
dynamically recenter on important ocular features. To mit-
igate token redundancy, we use a differentiable Perturbed

Top-K operator [11] that learns to select only the most in-
formative patches for processing, pruning the rest. Our en-
tire pipeline is trainable end-to-end and its components are
optional, allowing it to be adapted for specific use cases.
Compared to other token reduction techniques and Region
Proposal Networks, our method is simpler and more inter-
pretable: the model exposes exactly which face regions it
keeps and why, rather than relying on implicit token mixing
or token interpolation.

Our experiments demonstrate the effectiveness of this
approach. On the ETH-XGaze dataset, combining patch
translation with Top-K selection reduces the mean angu-
lar error (MAE) of a ViT-S baseline from 4.98◦ to 4.61◦

- while using only 25% of the original tokens. By lever-
aging token reduction to enable a finer-grained 8×8 patch
size, our selection-only model achieves an even lower er-
ror of 4.42◦. Our models also show consistent gains on the
MPIIFaceGaze dataset, with the best variants reducing the
baseline error from 5.72◦ down to 5.36◦.

In summary, our contributions are as follows:

1. We introduce FocusViT, a lightweight end-to-end train-
able framework that enhances vanilla/pure Vision Trans-
formers for gaze estimation by unifying patch translation
and selection. Our method includes a novel Offset-aware
Positional Embedding (OPE), meant to preserve spatial
coherence after patch translation.

2. Through extensive evaluation on the ETH-XGaze and
MPIIFaceGaze datasets, we show a key finding: for
smaller ViT architectures, using token reduction to en-
able a finer, lossless 8×8 patch grid can be more im-
pactful than dynamic patch translation, as it directly ad-
dresses the information compression bottleneck at the
patch-embedding layer.

3. We provide detailed ablation studies showing that patch
translation and selection are complementary modules.
The translation module first creates higher-quality can-
didate patches by centering them on relevant content,
which in turn allows the selection module to prune dis-
tractive tokens more aggressively and effectively.

2. Related Work

2.1. Gaze Estimation
Before state-of-the-art models shifted to incorporating self-
attention, convolutional backbones dominated appearance-
based 3D gaze estimation. iTracker [18] was the first
large-scale mobile gaze network, which used a four-stream
CNN (face + both eyes + face grid) trained on the 2.5M
frames crowdsourced GazeCapture dataset. [37] employed
a Spatial-Weights CNN and showed that using the entire
face with learned spatial masks instead of eye-only crops
reduced the angular error to 4.8° on EYEDIAP. Later,
Dilated-Net [6] preserved high spatial resolution with di-



lated convolutions and improved accuracy on MPIIGaze,
while Gaze360 [17] introduced a panoramic in-the-wild
dataset together with a ResNet-GRU temporal model that
predicts gaze even when the eyes are off-screen. These
CNNs remain strong baselines due to their efficiency and
ability to capture local features, but the local receptive fields
limit their ability to model long-range dependencies and
global context, especially in scenarios involving extreme
head poses or dual-camera setups. Transformers and self-
attention mechanisms help address these shortcomings by
modelling global face context and capturing multi-view or
multi-region correspondences.

The transformer-based breakthroughs started with
GazeTR [9], which explored both a pure Vision Trans-
former and a ResNet-ViT hybrid and reported that the hy-
brid variant already outperformed strong CNN baselines
while using fewer parameters. Subsequent works injected
domain knowledge into the Transformer pipeline. DV-Gaze
[10] introduces Dual-View Interactive Convolution blocks
plus a dual-view Transformer, cutting error by up to 30%
under extreme head pose on ETH-XGaze. GazeSymCAT
[41] (cross-attention between left/right eyes and face) and
GazeCaps [27] (self-attention-routed capsules) explicitly
model inter-eye relations, improving robustness to occlu-
sion and extreme yaw angles. Efficiency-oriented variants
like BoT2L-Net [29] insert Bottleneck-Transformer layers
into a shallow ResNet and train the network with twin
yaw/pitch losses, lowering mean angular error on Gaze360
without increasing model size. At the opposite end of the
spectrum, TransGaze [34] shows that a plain pre-trained
ViT can match hybrid models once eye-region tokens are
explicitly emphasized, while reducing the training time by
half, compared with deeper CNNs.

2.2. Patch and Token Reduction in Vision Trans-
formers

The computational complexity of Vision Transformers
scales quadratically with the number of tokens. To over-
come this, an existing area of work tries to improve ef-
ficiency by reducing the number of image patches/tokens
processed by the model. In ViTs, this can be done pre-
transformer, or within the transformer. While we found no
token reduction work done on gaze estimation, plenty of re-
search has been done on tasks such as image classification
and detection.

Pre-transformer selection. Work focusing on shrink-
ing the input sequence externally to the ViT is still scarce.
Differentiable Patch Selection [11] learns a perturbed-Top-
K mask that crops only the most informative patches and
discards the rest, yielding 3-4× FLOP savings while train-
ing end-to-end thanks to their differentiable Top-K operator.
Our method adopts this operator but uses a smaller patch
size and a vanilla ViT as the backbone. Other works include

STTS [28], whose spatial–temporal scorer ranks tokens
across both space and time and keeps only a perturbed-Top-
k subset per clip, trimming about 50% of video tokens with
negligible loss; AgentViT [3], which trains a reinforcement-
learning agent to decide on-the-fly which patches to embed;
and gViT [20], which applies Gumbel-Softmax sampling
on patches in echocardiography videos. However, pure pre-
transformer approaches remain rare. Most other works em-
bed the full grid first and prune later.

Intra-layer selection. Vision transformer: To discover
the “four secrets” of image patches [42] differentiates 3
key token selection mechanisms: token selection based on
a scoring function, based on token merging, and based on
convolution and pooling. Some prominent examples of
scoring-based models are DynamicViT [22], which uses
lightweight prediction modules that identify and prune less
informative tokens hierarchically across multiple stages;
AdaViT [19], with a generalized approach that can skip
tokens, heads and blocks in the model with a three-layer
decision network; Evo-ViT [33], which retains all tokens
but uses two computational paths with different computa-
tional costs, where unimportant tokens get cheap updates in
the model, while important tokens get full updates. Instead
of dropping tokens, ToMe [2], a token-merging approach,
greedily merges the most similar pairs with 2–3× speed-ups
at 0.3% accuracy loss. Pooling approaches like HVT [21]
or PSViT [25], insert pooling or 1-D convolutions between
blocks to down-sample tokens in a hierarchical manner.

2.3. Patch Translation and Deformable Sampling

A complementary line of work lets the network move or re-
size patches instead of (or in addition to) dropping them.
Spatial Transformer Networks (STNs) [15] apply a pre-
dicted affine transformation to input feature maps, allow-
ing a network to focus on important regions by translat-
ing, scaling, or rotating the patch grid. This approach to
differentiable attention to location paved the way for later
deformable ViT modules. Deformable Patch-based Trans-
former (DPT) [7] predicts per-patch offsets + scales based
on input content and generates new embeddings using bilin-
ear interpolation from the vanilla patch embeddings. Their
method improved ImageNet accuracy and COCO detection
with only a slight increase in FLOPs. [32] presents DAT,
a Vision Transformer with Deformable Attention at every
layer, that uses learnable offset groups across all queries,
which shift the keys/values to attend to important regions.
In detection, Deformable DETR [43] uses a deformable at-
tention module that acts as sparse attention with learned
offsets, and leads to faster convergence and reduced com-
plexity from quadratic to linear in the number of patches.
A more relevant approach, perhaps, which combines to-
ken selection with spatial adaptation similarly to our work,
is DeBiFormer [1]. They introduce Deformable Bi-level



Routing Attention (DBRA), which first finds top-k regions
per query (bi-level routing) and then deforms the attended
positions within those regions. The combined approach led
to more semantically relevant regions being selected, which
made the attention more efficient and meaningful.

In the context of 3D gaze estimation, Zhang et al.
[40] introduce a two-stage architecture in which a Region-
Selection Network (RSN) first proposes a single, content-
dependent crop inside the face image and a subsequent gaze
network regresses the gaze vector from that crop. The RSN
is trained without any bounding-box supervision through
a novel unsupervised loss that encourages the selected re-
gion to be informative for the downstream gaze loss, allow-
ing the whole pipeline to be optimised end-to-end. Their
method dynamically focuses on visible or well-lit eye re-
gions, outperforms fixed-patch baselines, and proves espe-
cially robust under directional illumination, extreme head
pose, and partial self-occlusion. Conceptually this paper is
close to our work in that it selects face sub-regions; how-
ever, it experiments with just up to 3 selected rectangular
crops of 68×68 resolution per image, whereas we keep a set
of the most informative 16×16 patches and additionally ap-
ply per-patch translations so that each retained token can be
centered or move closer to the ocular region.

3. Methodology
Our model predicts gaze by coupling a Patch Translation
Module and a Top-K Selection Module, prior to a Vision-
Transformer backbone for the gaze estimation task. The
model architecture is presented in Figure 1. In this section,
we introduce and discuss each component in detail.

3.1. Vision Transformers
A Vision Transformer [13] treats an image as a 1D token
sequence: the RGB image is first partitioned into N non-
overlapping patches, and each is flattened and linearly pro-
jected to a d-dimensional vector. Next, a learnable class
token is prepended, positional information is added, and the
resulting sequence is processed by L transformer encoder
layers with h heads each. Inside the encoders, multi-head
self-attention models the pairwise relations among all to-
kens. For the final prediction, the class token is sent to the
MLP head, which, for our task, outputs yaw–pitch angles,
which are then mapped to 3D unit vectors.

3.2. Patch Translation
Our Patch Translation Module is a Spatial Transformer
Network (STN) [15], a learnable component designed to
achieve spatial invariance against any spatial transforma-
tion. It does so by adaptively transforming its input to a
specific pose of interest, with input-dependent parameters:
translation, scaling, and rotation, which are part of a 2D
affine transformation matrix:

A =

(
sx rx tx
ry sy ty

)
, (1)

where s, r, and t stand for scale, rotation, and translation,
respectively, on horizontal and vertical axes x and y.

The STN consists of three components: the localization
network, the grid generator and the sampler. Their work-
flow is as follows: for an input image I , the localization
network predicts the parameters of matrix A; afterwards,
the grid generator uses the predicted parameters to create a
mapping from the transformed output image coordinates to
the original input image; and finally, the sampler uses the
grid generator pixel coordinates and applies bilinear inter-
polation to extract the output pixel values - which together
form the spatially-transformed image.

In our implementation, we restrict the STN to only per-
form spatial translation. This was done because our datasets
are already normalized (images are rotated and cropped),
using the approach in [38], and the small residual head tilt
can be modelled by the ViT itself. The localization net-
work therefore, is a dedicated Offset Predictor which out-
puts a 2D translation offset (∆x,∆y). It’s architecture uses
the first two layers from an ImageNet pretrained ResNet-18
model (i.e., all blocks up to, and including Layer2). Lever-
aging pretrained weights has improved accuracy in our early
experiments.

To predict an offset for each patch, we derived the
following process. While we could simply provide each
patch’s content of size 3x16x16 to the Offset Predictor net-
work, in practice, the 16x16 patch size is very small, and the
network is unlikely to accurately infer the context. There-
fore, we provide a larger field of view: each 16x16 patch
in the input gets extended to double its size, i.e., a 32x32
patch, with the same center. This is simply achieved by un-
folding the image with a kernel size of 32 and a stride of
16. This way, the STN can choose a more accurate transfor-
mation by seeing 8 extra pixels at each patch border. Due
to this design decision, we have to set the scale parameter
of the matrix A to 0.5, so that the STN network crops the
32x32 patch in half to the original patch size. The rotation
parameters are also set to 0 to disable rotation.

However, there is one issue that remains: applying the
patch translation offsets will change the patch content, and
the positional encodings of the Vision Transformer are no
longer accurate. To overcome this, we developed a type of
conditional positional encoding that we call Offset-aware
Positional Embedding (OPE). It works simply by encod-
ing the learned offset to the ViT token dimension, and is
added to the standard positional vector so that the ViT is
aware of the translation:

opei = pei + MLP(∆x,∆y), (2)

where pei is the i-th standard positional vector of the ViT
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Figure 1. Overview of the proposed FocusViT pipeline. The architecture features 2 independent and optional modules: Patch Translation
and Top-K Selection. The Patch Translation Module enables dynamic 2D patch offsetting (∆x,∆y), while the Top-K Selection Module
allows for adaptive patch filtering. The aligned, selected tokens then enter an unmodified ViT encoder.

model. In our experiments, we try both a one-layer MLP as
well as a two-layer variant.

3.3. Differentiable Top-K patch selection
The patch-selection task has multiple definitions, but in
this paper, we use the ranking-problem formulation: a
lightweight ConvNet assigns a relevance score si to ev-
ery patch, and only the K highest-scoring patches are for-
warded to the Vision Transformer. While it is a simple
concept, this hard Top-K operation arg topk(s,K) is non-
differentiable - since the non-selected patches are discarded,
they always get zero gradient, so standard back-propagation
cannot tell the network how to adjust scores. We therefore
adopt the Perturbed Top-K operator of Cordonnier et al.
[11], which is designed to be differentiable based on per-
turbed optimizers.

The Perturbed Top-K operator works by changing the
raw patch relevance scores s = (s1, . . . , sN ) with a Monte-
Carlo expectation over the hard-Top-K operation after the
scores have been noised:

fσ(s) = Eϵ∼N (0,I)

[
TopK

(
s+ σϵ, K

)]
≈ 1

T

T∑
t=1

TopK
(
s+ σϵ(t), K

)
,

(3)

where ϵ(t) is i.i.d. Gaussian noise, σ denotes the temper-
ature, and TopK(·,K) returns a 0/1 indicator vector where
the K largest components have values 1/K so that the mask
sums to 1. In other words, one-hot Top-K scores are com-
puted after adding noise to the score vector; this operation

is repeated T times, and the average is taken. This opera-
tion is differentiable because the non-smooth hard-Top-K
sits inside the expectation.

In our implementation, we set the parameters similarly to
the values in the [11] as T = 500 and σ = 0.05. In our ex-
periments that also use the Patch Translation Module, we set
T to 200 due to GPU memory constraints. During training,
we follow the same temperature schedule and linearly decay
σ to 0; and during inference, we set σ to 0, which is equiv-
alent to a deterministic hard Top-K selection. Our Patch
Scorer network is also based on the authors’ implementa-
tion and uses two pretrained ResNet layers as our Offset
Predictor network, discussed previously. The only differ-
ence with the Offset Predictor is the prediction head: the
scorer uses a convolution layer followed by max-pooling,
whereas the predictor uses global-pooling followed by an
MLP.

4. Experiments

This section empirically validates our proposed FocusViT
framework through a series of ablation studies on the ETH-
XGaze dataset. We first analyze the Patch Translation and
Top-K Selection modules in isolation to measure their indi-
vidual contributions. We then investigate the performance
gains from using a finer patch resolution, and finally, we
evaluate the complete model to demonstrate the comple-
mentary benefits of combining both components. Follow-
ing this analysis, we present the results of our final mod-
els on the MPIIFaceGaze dataset and compare them against



related work. We conclude with a standalone experiment
investigating an alternative, implicit deformable sampling
approach using Metaformer [35] architectures like Pool-
former, as described in Section 4.8.

To visualize the model’s regions of interest, we chose to
display the selected patch boundaries directly on the input
images. We used a fixed color-coding rather than a diverg-
ing palette like in a heatmap. A direct score-based heatmap
proved uninformative due to the low variance among the
top-K scores, while a ranking-based heatmap was mislead-
ing because ranks were often determined by arbitrary tie-
breaking between patches with numerically close scores.

4.1. Setup

Datasets. We train and evaluate our models on the ETH-
XGaze [39] and MPIIFaceGaze [37] datasets. ETH-XGaze
is a high-resolution 1.1 million-image dataset of 110 sub-
jects, with extreme head pose and 16 illumination condi-
tions. However, since the test partition labels are not pub-
licly released and require a time-consuming online submis-
sion, we do a 50/30 random split of the train partition of
80 subjects, and define our train and test sets respectively
as such. MPIIFaceGaze contains 214k images of 15 sub-
jects, collected in the wild with mostly frontal head poses.
For this dataset we use the common cross-subject 15-fold
evaluation procedure. Both datasets are normalized to a
canonical camera space using the method in [38], which
removes camera distance and head rotation variance and
consistently improves learning. For MPIIFaceGaze, we ini-
tialise from ETH-XGaze weights, because this cross-dataset
pre-training setup has been shown to improve model perfor-
mance [9]. For training on ETH-XGaze, we initialize from
ImageNet weights.

Model Variants. To concisely represent our model
configurations, we adopt the following naming scheme:
FocusViT-<backbone>/<patch-size>/<type>
-r<selection-ratio>. In this scheme, <backbone> speci-
fies the ViT architecture size (e.g., ‘S’ for Small). <patch-
size> indicates the input patch resolution (e.g., 16 for 16x16
or 8 for 8x8). The <type> is ‘D’ for dynamic models
that include our Patch Translation Module, and ‘S’ for
static models that do not perform patch translation. Fi-
nally, <selection-ratio> denotes the fraction of tokens kept,
such as r0.5 for 51% and r0.25 for 25%. For instance,
FocusViT-S/16/D-r0.25 refers to the model built on a ViT-
Small backbone that uses a 16x16 patch size, includes the
dynamic Patch Translation Module, and selects the top 25%
of patches. To maintain readability in the following sec-
tions, we will describe model configurations explicitly and
reserve the compact notation for the final summary table.

Training settings. All models are implemented by extend-
ing the timm-library [30] implementation of Vision Trans-

formers, and trained on a single NVIDIA A40 (48 GB) for
40 epochs. We use the AdamW optimiser and a cosine one-
cycle schedule, with the base learning rate of 0.0005. We
set the batch size to 200 - if it does not fit the model on the
GPU, we set it to the highest number that does.

Evaluation metric. Performance is reported as the mean
angular error (MAE) in degrees between predicted and
ground-truth gaze vectors, used by most works on gaze es-
timation.

Baseline. Our reference is the ImageNet-pretrained ViT-S
model vit small patch16 224 [31] (21M parameters,
16x16 patch size, N=196, L=12, h=6, d=384). The same
underlying architecture is used for our models with patch
translation and Top-K selection. The finetuned baseline de-
livers a mean angular error of 4.98◦ on ETH-XGaze, and
5.72◦ on MPIIFaceGaze.

4.2. Contribution of Patch Translation
We begin our analysis by isolating the effect of the Patch
Translation Module. In this experiment, the module is
added to our ViT-S baseline, but all 196 patch tokens (for
a 16x16 grid) are retained. We perform a cumulative abla-
tion study on the ETH-XGaze dataset to evaluate different
architectural choices within this module. Table 1 summa-
rizes the results.

The key investigated components are:
• Default translation: A simple translation module where

the offset predictor head is a single linear layer.
• Offset-aware Positional Embedding (OPE): Adds the

offset-dependent embedding described in Eq. 2 to the
standard positional encoding.

• Tanh offset activation: Inserts a tanh activation to the
offset predictor head to bound the predicted offsets to the
range [-1, +1] - this is motivated by the STN’s grid gen-
erator, which defines a regular grid in [-1, +1]×[-1, +1].

• Hidden layer in predictor’s head: Expands the offset
predictor with a hidden layer.

• Hidden layer in OPE: adds a 128-unit hidden layer in-
side the OPE’s MLP.

• Pretrained offset predictor: Initializes the predictor
with weights pretrained on ETH-XGaze.
The results in Table 1 show a clear progression. Our

Default Model immediately improves performance, reduc-
ing the MAE from the baseline’s 4.98◦ to 4.82◦. However,
by integrating the rest of the components, we achieve small
gains that further bring the MAE down to 4.71◦. This rep-
resents a 0.27◦ improvement over the ViT-S baseline, con-
firming the benefit of allowing patches to shift. From the
ablation study we further see that adding OPE slightly hurts
performance. While the OPE module is not beneficial here,
we will show in Section 4.6 that it becomes essential when
combining translation with patch selection to preserve spa-



tial coherence.

Table 1. Cumulative ablation study of the Patch Translation Mod-
ule on ETH-XGaze. The baseline ViT-S achieved 4.98◦ MAE, and
the default translation module reduces this to 4.82◦.

Configuration
MAE

(ETH-XGaze)

Default Patch Translation 4.82◦

+ OPE 4.84◦

+ Tanh Offset Activation 4.82◦

+ Offset Predictor Hidden Layer 4.78◦

+ Pretrained Offset Predictor 4.71◦

+ OPE Hidden Layer 4.72◦

Figure 2 shows a visualization of the best-performing
model’s behavior (with 4.71◦ MAE). The figure reveals a
consistent pattern: patches located on the forehead and eye-
brows shift downwards, while patches near the eye’s bound-
ary slide to better center the pupil, or the eyelids if not vis-
ible. In contrast, there is minimal movement in less infor-
mative areas, such as the cheeks and chin, suggesting the
module learns to focus on relevant facial features. The vi-
sualization also shows that the patch movements, while ef-
fective, are relatively modest. This limited motion is likely
the reason why the OPE module is not beneficial in this
translation-only setup.

In summary, patch translation “cleans up” the input grid
by pushing patches towards more valuable regions. We
show later that this effect is even more pronounced when
combined with patch selection, which we explore in the fol-
lowing sections.

4.3. Analysis of Fixed Subsampling with Transla-
tion

Before introducing a Patch Scorer, we ask: What if we sim-
ply skip patch windows at a larger stride, while allowing
them to shift their locations? This can also be considered a
form of patch selection, without requiring a scorer network.
The idea is similar to the concept introduced by [36], how-
ever, they apply the shifting in multiple steps and employ
feature extraction at each stage.

For this experiment, we replace the standard 14x14 grid
with two sparser, fixed configurations: a 10x10 grid that
keeps 100 tokens (51% of the original) and a 7x7 grid that
keeps 49 tokens (25%). The layout of these grids is illus-
trated in Figure 3.

The results, presented in Table 2, show that both config-
urations underperform the full-token model (4.71◦) and the
baseline (4.98◦). However, we observe an interesting effect:
the model with fewer tokens (25% selection) achieves a bet-
ter MAE of 5.33◦ compared to the 5.44◦ error of the model

with more tokens (51% selection). A qualitative analysis
of the selected patches in Figure 4 (rows 1-2) explains this
result. The fixed stride of the subsampled grids inevitably
selects patches from uninformative regions like the back-
ground, forehead, or cheeks. The sparser 7x7 grid appears
to be more effective simply because it is forced to discard a
larger number of these distracting tokens.

Table 2. Performance of models using patch translation on fixed,
subsampled grids.

Grid stride Selected % MAE (ETH-XGaze)

24 px 51% 5.44◦

32 px 25% 5.33◦

This outcome strongly suggests that which patches are
kept is as important as the number kept. This provides a
clear motivation for using a learned scorer network, which
can select the most informative patches in a content-aware
manner, as we will explore next.

4.4. Contribution of Learned Patch Selection
We next evaluate score-based patch selection on a static
grid, without patch translation. In this setup, a lightweight
scorer network assigns a relevance score to each of the 196
16x16 patches, and only the Top-K are passed to the trans-
former backbone. We test configurations that keep the top
51% (100 patches) and 25% (49 patches) of tokens. We also
tried a variant where the Patch Scorer sees a larger 32x32
context window of each patch.

The results, presented in Table 3, show that this approach
does not outperform the baseline. The best configuration,
which retains 51% of the patches, achieves a MAE of 5.22◦,
a 0.24◦ degradation compared to the baseline. This perfor-
mance decrease is likely because patch fragmentation re-
mains an issue - critical features like the iris can be split
across multiple patches. Furthermore, by discarding tokens,
the model loses some of the global context it might rely on
to compensate for the fragmentation. This helps explain
why retaining 51% of patches yields better results than the
more aggressive 25% selection.

Table 3. Performance of learned Top-K selection on a static 16x16
grid (without translation).

Selection % MAE (ETH-XGaze)

51% 5.22◦
25% 5.69◦

51% (32x32 scorer input) 6.09◦

25% (32x32 scorer input) 5.75◦

A closer inspection of the selected patches, shown in Fig-
ure 4 (rows 3-4), highlights the learned policy of our Patch



Figure 2. Visualization of the Patch Translation Module on ETH-XGaze. These examples are from our best-performing translation-only
model in Table 1 (4.71◦ MAE). The blue squares show the final patch positions after being dynamically shifted toward more informative
regions, such as the eyes and eyebrows, across various head poses.

Figure 3. Illustration of the fixed 10x10 (left) and 7x7 (right) sub-
sampling grids. While the initial placement of patches is static,
each selected patch is still dynamically translated to focus on rel-
evant content. This deterministic sampling method inevitably in-
cludes irrelevant regions like cheeks, forehead or background.

Scorer. The network consistently focuses on the periocu-
lar region (eyes, eyelids, eyebrows), while correctly ignor-
ing large, uninformative areas like the cheeks and forehead.
However, the scorer network sometimes assigns importance
to non-facial artifacts like the subject’s hair or background,
especially when facial information is sparse.

Furthermore, we observe a bias in the scorer’s behavior
under uneven lighting. For example, when a face is half-
lit, the model tends to select more patches from the darker
side. We hypothesize that this is not a preference for dark-
ness itself, but for the high-frequency information and sharp
contrast found at the shadow boundaries. These features are
rich cues for 3D facial geometry, which the simple convo-
lutional Patch Scorer may have learned to associate with
informative regions.

This general limitation of a small 16x16 patch size mo-
tivated us to experiment with providing the scorer network
with a larger 32x32 context window of each patch. How-
ever, this approach significantly worsened performance.
This is likely due to a misalignment between the Patch
Scorer and the ViT: while the 32x32 window provides more
context, the ViT still processes the central 16x16 patch. If

critical information lies in the outer border of this context
window, the scorer may be misled into assigning a high
score even though the central patch is less informative.

4.5. Impact of Finer Patch Resolution
Top-K selection reduces the sequence length, therefore, we
can afford a smaller patch size on our GPU. We explore this
advantage by replacing the standard 16x16 patches with a
finer 8x8 grid. Because individual 8×8 windows lack con-
text, we reuse the trained 16×16 Patch Scorer from the pre-
vious section. The frozen 16x16 scorer assigns scores to
“parent” windows, and if a parent is selected, its four cor-
responding 8x8 “child” tokens are passed to the ViT back-
bone. This process is visualized in Figure 5.

This change leads to a significant performance gain, as
shown in Table 4. The model using 51% of the 8x8 tokens
achieves a MAE of 4.42◦, a substantial 0.56◦ improvement
over our ViT-S baseline. This is the best result achieved in
our experiments. Even when aggressively pruning 75% of
the tokens (the 25% selection model), the model still sur-
passes the baseline with an MAE of 4.87◦.

Table 4. Performance of selection-only models using a finer-
grained, 8x8 patch size. Selection is guided by a frozen Patch
Scorer trained on 16x16 patches. 4.4.

Model MAE (ETH-XGaze)

25% selection 4.87◦

51% selection 4.42◦

The dramatic improvement can be attributed to a key
technical detail of the ViT architecture. A single 16x16
patch contains 768 pixel values (3×16×16), which must be
compressed to fit into the model’s 384-dimensional embed-
ding, causing information loss. This creates a significant
information compression bottleneck, causing a loss of fine-
grained detail before the data even reaches the transformer
layers. In contrast, an 8x8 patch contains only 192 values
(3×8×8), which fits entirely within the embedding dimen-



Figure 4. Patch selection by dynamic-grid subsampling (rows 1-2) vs. learned Top-K (rows 3-4). Either 51% or 25% of patches are
sampled. The learned Top-K selector focuses on the eyes, nose, mouth, and head contour while consistently avoiding the cheeks and
forehead. Some artefacts, such as hair strands or the person’s shirt, are sometimes sampled when facial detail is weak. The dynamic-grid
subsampling method accurately captures important eye features by shifting the patches, but more irrelevant tokens happen to be selected
due to the grid configuration.

sion without compression. By using smaller patches, the
model can access a much richer, lossless representation of
fine ocular details. The finding that 51% selection still out-
performs 25% selection is consistent with our previous ex-
periment, further emphasizing that a larger amount of to-
kens is beneficial on a static grid.

4.6. Effect of Joint Translation and Selection

We now combine our best-performing Patch Translation
Module with the Top-K Selection Module to create the full
FocusViT model. This final experiment is designed to show
how dynamic patch alignment and learned selection are
complementary.

First, we demonstrate the critical importance of Offset-
aware Positional Embedding (OPE). As shown in Table 5,
activating the Patch Scorer on top of the translated patches
without OPE degrades performance, resulting in an error
of 6.02◦. Simply enabling the OPE module to inform the
model about the spatial shifts causes the error to drop to
4.78◦. Adding a hidden layer to the OPE’s MLP further
refines the performance to 4.61◦ - a 0.37◦ improvement
over the baseline. This confirms that explicitly encoding
the patch offsets is essential for the transformer to maintain
spatial coherence when patches are both moved and pruned.

The combined FocusViT model also reveals a major re-
versal in behavior. In the selection-only experiments (Sec-



Figure 5. Visualization of 8x8 patch selection for the 51% model
(left, 400 tokens) and 25% model (right, 196 tokens). Each se-
lected 16x16 parent window is split into four 8x8 child tokens,
which form the final input sequence.

Table 5. Performance of the full model combining patch transla-
tion and selection. The table ablates the selection ratio and the
effect of Offset-aware Positional Embedding (OPE) for the 25%
configuration.

Configuration
MAE

(ETH-XGaze)

25% selection without OPE 6.02◦

25% sel. + OPE 4.78◦

25% sel. + OPE+hidden-layer head 4.61◦

51% sel. + OPE+hidden-layer head 5.22◦

tions 4.4 and 4.5), retaining more tokens (51%) was al-
ways better. Here, the opposite is true: the model with
more aggressive 25% selection (4.61◦ MAE) significantly
outperforms the 51% version (5.22◦ MAE). This improve-
ment comes from the effective collaboration between patch
translation and token selection. The translation module first
“cleans up” the input by centering patches on informative
content like the eyes. As a result, the Patch Scorer is pre-
sented with higher-quality candidates and can afford to be
more selective, discarding a larger number of tokens with-
out losing critical information, thereby reducing distrac-
tions.

A visual analysis in Figure 6 supports this conclusion.
Compared to selection on a static grid, the final set of cho-
sen patches is more tightly focused around the periocular
region. Patches that could have been selected on the eye-
brows are now shifted down to cover the eyes before being
selected. This reinforces our core claim: translation and se-
lection are complementary. The translation module creates
better candidates, and this allows the selection module to
filter more aggressively and effectively.

4.7. Final Results and Discussion
To conclude our analysis, we now summarize the results
for our most relevant FocusViT configurations on both
the ETH-XGaze and MPIIFaceGaze datasets and compare
them against our baseline and related work. The complete
results are presented in Table 6.

Our ablation studies on ETH-XGaze revealed clear im-
provements over the ViT-S baseline (4.98◦ MAE). Among
configurations, combining patch translation and selection
significantly improved performance, achieving a 4.61◦

MAE. However, the most impactful change came from us-
ing a finer 8×8 patch size. Specifically, our selection-
only model, FocusViT-S/8/S-r0.5, attained the best result
on ETH-XGaze with a 4.42◦ MAE. This highlights that
for the ViT-S architecture, addressing the information com-
pression bottleneck at the patch-embedding layer made
the biggest difference. Furthermore, our most parameter-
efficient model, FocusViT-T/8/S-r0.5, achieved a competi-
tive 4.50◦ MAE with only 5.60M parameters, outperform-
ing the full translation-and-selection ViT-S model.

On the MPIIFaceGaze dataset, which has less variation
in head pose but features in-the-wild lighting conditions,
our models also showed consistent gains over the 5.72◦

baseline. The best variants - FocusViT-T/8/S-r0.5 (5.36◦)
and FocusViT-S/16/D-r1.0 (5.37◦) - reduced the error sig-
nificantly. A qualitative analysis of samples from MPI-
IFaceGaze, shown in Figure 7, confirms that our models
behave consistently across datasets. Both the patch trans-
lation and selection modules continue to perform well even
under challenging low-light conditions. We again note the
scorer network’s tendency to select patches at high-contrast
shadow boundaries, suggesting that it may use these as cues
for 3D facial geometry.

Comparison with GazeTR. The GazeTR [9] model
provides an excellent point of comparison, as it addresses
the same issue of patch fragmentation but through a fun-
damentally different approach. Instead of using a simple
linear projection for image patches, GazeTR starts with
a ResNet18 backbone to extract rich local feature maps,
which are then turned into tokens and processed by a trans-
former. Table 6 shows a clear performance difference be-
tween our models and GazeTR across datasets. On ETH-
XGaze, our best model outperforms it (4.42◦ vs. 4.56◦),
and our small FocusViT-T model nearly matches its per-
formance (4.50◦ vs. 4.56◦) with about half the parameters
(5.60M vs. 11.42M). This suggests that our modules are
particularly effective at handling the geometric challenges
associated with extreme head poses. In contrast, on MPI-
IFaceGaze, GazeTR’s deep CNN backbone is likely more
robust to complex, “in-the-wild” lighting conditions, al-
lowing it to achieve a better 4.96◦ MAE compared to our
5.36◦. Overall, this shows that FocusViT is a competitive
and parameter-efficient alternative, especially robust in sce-



Figure 6. Visualization of the full FocusViT model (25% selection). Patches are first dynamically translated and then scored, leading to a
more refined and concentrated selection on the eyes compared to models without translation.

Model Patch Size Patch Trans. Selection % Feat. Dim. # Params ETH-X MPIIFace

ViT-S (baseline) 16 - - 384 21.67M 4.98 5.72
gazeTR [9] - - - 32 11.42M 4.56 4.96

FocusViT-S/16/D-r1.0 16 Y - 384 22.48M 4.72 5.37
FocusViT-S/16/D-r0.5 16 Y 51% 384 23.13M 5.22 6.25
FocusViT-S/16/D-r0.25 16 Y 25% 384 23.11M 4.61 5.84

FocusViT-S/16/S-r0.5 16 N 51% 384 21.86M 5.22 6.22
FocusViT-S/16/S-r0.25 16 N 25% 384 21.84M 5.69 6.42
FocusViT-S/8/S-r0.5 8 N 51% 384 21.82M 4.42 5.92
FocusViT-S/8/S-r0.25 8 N 25% 384 21.75M 4.87 6.01
FocusViT-T/8/S-r0.5 8 N 51% 192 5.60M 4.50 5.36
FocusViT-T/8/S-r0.25 8 N 25% 192 5.56M 5.07 6.02

Table 6. Gaze estimation performance on MPIIFaceGaze (MPIIFace) and ETH-XGaze (ETH-X).

narios with significant geometric variation.

4.8. Alternative Approach: Implicit Deformable
Sampling

To contrast with FocusViT’s explicit input sampling, we
ran an isolated experiment on implicit deformable sam-
pling. Instead of shifting entire input patches, this ap-
proach allows the network to adjust its receptive fields in-
ternally based on local image content - a concept found in
works on deformable attention and convolution. For this,
we integrated Deformable Convolution (DCN) [12], an
operator that learns adaptive spatial sampling offsets, into
two MetaFormer-based models [35]. The first model was
Poolformer-S, which uses a simple pooling operator as its
token mixer. The second was a modified 12M-parameter
CAFormer-S variant employing standard 2D convolutions

in its first three stages and self-attention in the final stage.
The CAFormer modifications involved increasing the to-
tal number of blocks to 26 and decreasing the maximum
embedding dimension to 192. In both models, we re-
placed the standard token mixers with deformable variants:
Deformable Pooling and Deformable Convolution - while
keeping the architecture and parameter count nearly iden-
tical to ensure a fair comparison. Deformable Pooling is a
custom operator we developed that follows the same mech-
anism as the DCN operator, but replaces convolution with
average pooling.

Despite pretraining all models on ImageNet using the
same setup as in the Metaformer paper, the results in Table 7
show no significant gains for the deformable variants. These
results suggest a key limitation: while DCN is effective for
object-level classification and detection tasks where they



Figure 7. Qualitative results of FocusViT models under various illumination conditions on MPIIFaceGaze. Rows 1–3 show visualizations
of the translation-only model (FocusViT-S/16/D-r1.0) and selection-only models retaining 51% and 25% of patches (FocusViT-S/16/S-r0.5
and S-r0.25). Even in challenging low-light conditions, the models consistently attend to the periocular region.

model large-scale geometric transformations, they appear
less effective for fine-grained regression tasks such as gaze
estimation. This supports our conclusion that for such tasks,
explicit, targeted spatial sampling, as used in FocusViT, is a
more effective approach.

5. Conclusion and future work
We presented FocusViT, a framework that enhances Vi-
sion Transformers for gaze estimation by unifying content-
adaptive patch translation with differentiable Top-K selec-
tion in a single, end-to-end trainable model. Our experi-
ments successfully validate this approach as a proof of con-
cept, demonstrating that the modules are complementary:
translation improves patch quality by centering on ocular
features, which in turn allows the selection module to prune
distractive tokens more effectively.

Our objective was to improve a pure ViT baseline rather
than set a new benchmark. While combining the two mod-
ules significantly improved accuracy, our most impactful
finding was that token reduction enables the use of a finer-
grained, lossless 8x8 patch grid. This approach resolves
a key information bottleneck in the ViT-S architecture, re-
ducing the baseline error from 4.98◦ down to a competitive

4.42◦ MAE on ETH-XGaze, and from 5.72◦ to 5.36◦ on
MPIIFaceGaze. This demonstrates that for certain architec-
tures, addressing the input representation bottleneck can be
more beneficial than dynamic patch alignment alone. When
compared to hybrid models like GazeTR, our framework
outperforms on ETH-XGaze, while our most efficient vari-
ant nearly matches its performance with about half the pa-
rameters.

For future work, we identify several promising direc-
tions:

• Hybrid Architectures: Integrating the FocusViT sam-
pling modules into a hybrid CNN-Transformer model
could combine the benefits of convolutionally extracted
local features with our efficient and targeted attention
mechanism.

• Multi-Scale Patch Selection: A hierarchical approach
with a larger patch size could be explored, where a
scorer network evaluates coarse, large-context patches
(e.g., 32×32) to select informative regions, while the ViT
backbone processes finer-grained patches (e.g., 8x8) from
only those areas.

• Threshold-Based Sparsification: Replacing the fixed-
K selection with an adaptive score threshold could allow



Table 7. Performance of Metaformer-based models with and without deformable sampling. The experiment contrasts standard token
mixers (Pooling, Convolution) with their deformable counterparts. MAE is reported on the ETH-XGaze dataset.

Model Token Mixer # Params MAE (ETH-XGaze)

Poolformer-S Pooling 20.9M 4.40°
Poolformer-S (Deformable) Deformable Pooling 20.7M 4.38°
CAFormer-S (modified) Convolution + Attention 12.0M 4.15°
CAFormer-S (Deformable) Deformable Conv. + Attention 12.5M 4.13°

the model to dynamically adjust the number of processed
tokens based on scene complexity. This could potentially
improve the balance between accuracy and computational
cost, and make the selected set of tokens more precise.
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3
Supplementary material

This supplementary material provides the foundational knowledge required to understand the core deep
learning and computer vision concepts discussed in the main thesis. It is designed to equip readers
from all backgrounds with the necessary context to fully appreciate the technical contributions and
experimental results.

The material begins with the fundamental principles of Deep Learning, starting with Neural Networks,
the bio-inspired models that form the basis of modern artificial intelligence. It details their structure,
training procedures, and the mathematical concepts of loss functions and optimizers that drive their
learning process. From there, we delve into two key architectures for computer vision. First, we explore
Convolutional Neural Networks (CNNs), the established backbone of image analysis. This section
explains how CNNs use learnable filters and pooling layers to build a hierarchical understanding of
images, and it covers influential architectures and Residual Networks (ResNets) [7]. Next, we introduce
the Vision Transformer (ViT) [3], a more recent paradigm adapted from natural language processing
that treats an image as a sequence of patches and uses a powerful self-attention mechanism [22] to
model global relationships within the data.

After establishing these core technologies, the focus shifts to the specific problem domain of Gaze
Estimation. We introduce the task of determining where a person is looking and its applications in
diverse fields from human-computer interaction to automotive safety. This section clarifies the distinc-
tion between model-based and appearance-based methods [1], with an emphasis on the latter, which
leverages deep learning to function with standard cameras. Finally, we briefly describe the large-scale
datasets that are crucial for training and evaluating robust gaze estimation models.

3.1. Deep Learning and Computer Vision
3.1.1. Neural Networks
Deep Learning is a specialized field within Machine Learning that draws its inspiration from the bio-
logical structure and function of the human brain. The foundational components of deep learning are
Neural Networks, computational models composed of interconnected nodes known as artificial neurons.
These networks have proven to be exceptionally effective at learning complex patterns and representa-
tions directly from data, making them instrumental in advancing fields like computer vision and natural
language processing.

At its core, a single artificial neuron is a simple processing unit. It receives a vector of inputs, x =
(x1, x2, . . . , xn), where each input xi is multiplied by a corresponding weight wi. These weights signify
the importance of each input. The neuron then computes a weighted sum of these inputs, adds a bias
term (b), and passes the result through an activation function (g) to produce a single output, y. This
operation can be expressed as:

17



3.1. Deep Learning and Computer Vision 18

y = g

((
n∑

i=1

wixi

)
+ b

)
or more compactly y = g(wTx+ b) (3.1)

A neural network (NN) is constructed by organizing these neurons into layers: an input layer that
receives the raw data, one or more hidden layers that perform the intermediate computations, and an
output layer that produces the final prediction. Data flows directionally from the input layer through the
hidden layers to the output layer in a process called forward propagation.

Figure 3.1: A diagram illustrating a simple neural network with an input layer, one hidden layer, and an output layer, showing
the connections between neurons. [17]

Activation functions
The true power of neural networks comes from their ability to model complex, non-linear relationships,
which are characteristic of most real-world data. The simple weighted sum in Equation 3.1 is a linear
operation. To capture non-linearities, an activation function is applied at the end of each neuron’s
computation. Without these functions, even a deep network with many layers would behave no differ-
ently than a single, simple linear model. Common activation functions include:

• Sigmoid: g(z) = 1
1+e−z . This function maps any input value to a smooth curve between 0 and 1.

While historically popular, especially for output layers in binary classification tasks, it can lead to
the “vanishing gradient” problem in deep networks, where the gradients become extremely small,
hindering the learning process.

• Hyperbolic Tangent (tanh): g(z) = ez−e−z

ez+e−z . Similar to sigmoid, but squashes values to a range
between -1 and 1. Because its output is zero-centered, it often helps speed up convergence.
However, like the sigmoid function, it is susceptible to the vanishing gradient problem for very
large or very small input values.

• Rectified Linear Unit (ReLU): g(z) = max(0, z). The most popular choice in modern deep learn-
ing, ReLU is computationally efficient and simply outputs the input if it is positive, and zero oth-
erwise. It is computationally very efficient and helps to alleviate the vanishing gradient problem.
Its primary disadvantage is the “dying ReLU” problem, where a neuron can get stuck in a state
where it only outputs zero and can no longer learn.

Training procedure
The objective of training a neural network is to find the optimal set of parameters (weights and biases,
collectively denoted as θ) that allow it to approximate a target function. The network learns a mapping
ŷ = f(x; θ), where the prediction ŷ should be as close as possible to the true value y. This is achieved
by:

1. Performing a forward pass to compute a prediction for a given input.
2. Quantifying the error between the prediction and the true value using a loss function.
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Figure 3.2: The graphs of the Sigmoid, tanh, and ReLU activation functions. [4]

3. Using an algorithm called backpropagation, which calculates the gradient of the loss function
with respect to each network parameter.

4. Slightly adjusting the parameters in the direction that minimizes the loss, a process typically man-
aged by an optimization algorithm like Stochastic Gradient Descent (SGD) or Adam.

This iterative process of forward pass, loss calculation, and backpropagation is repeated for all data
in the training set, allowing the network to progressively minimize its error and improve its predictive
accuracy.

To guide this minimization process, a loss function (or cost function) is used to formally quantify the
discrepancy between the network’s predicted output (ŷ) and the actual target value (y). The choice
of loss function is critical and depends on the network’s objective. For regression tasks, where the
goal is to predict a continuous value like a price or an angle, a common choice is the Mean Squared
Error (MSE). It computes the average of the squared differences between predicted and true values,
penalizing larger errors more heavily:

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (3.2)

For classification tasks, where the goal is to assign an input to a discrete category, Cross-Entropy
(CE) Loss is the standard. It measures the dissimilarity between the predicted probability distribution
and the true distribution: penalizing larger errors more heavily:

LBCE = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (3.3)

For a gaze estimation task, which is a regression problem, the loss is often a function of the angular
distance between the predicted and true gaze vectors.

Once the loss is calculated, an optimizer is the algorithm that applies the gradients computed during
backpropagation to update the network’s parameters (θ). The most fundamental optimizer is Stochas-
tic Gradient Descent (SGD) [18], which updates the parameters using the gradient computed from
a small, random subset of the training data, known as a mini-batch. While effective, its fixed learning
rate can sometimes lead to slow or unstable convergence. To address this, more advanced adap-
tive optimizers have been developed. The most popular among these is Adam (Adaptive Moment
Estimation) [11], which computes individual adaptive learning rates for each parameter. Adam also
incorporates momentum by using moving averages of past gradients, which helps accelerate conver-
gence and makes the training process more stable. A variant, AdamW [16], is frequently used in
modern Transformer-based architectures for its improved weight decay implementation.

3.1.2. Convolutional Neural Networks (CNNs)
A standard NN, often called a fully connected network, treats an input as a simple list of numbers. For
an image, this means flattening a 2D grid of pixels into a long 1D vector. This approach has two ma-
jor drawbacks: it is computationally expensive due to the massive number of connections, and more
importantly, it discards the spatial structure of the image. The information about which pixels are neigh-
bors, which form lines, shapes, and textures, is lost. Convolutional Neural Networks (CNNs) are a
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specialized type of neural network designed to overcome these limitations. They are the powerhouse
behind many modern AI applications, particularly in computer vision tasks like image classification, ob-
ject detection, and medical image analysis. CNNs are inspired by the human visual cortex and are
designed to automatically and adaptively learn spatial hierarchies of features from images.

The fundamental building block of a CNN is the convolutional kernel (or filter). A kernel is a small
matrix of learnable parameters, and the core idea is that this kernel acts as a feature detector. At
each position, the kernel performs a mathematical operation called a convolution. This involves an
element-wise multiplication of the kernel’s values with the corresponding pixel values of the image
patch it’s currently over, and then summing up the results. This sum produces a single number in a
new matrix called a feature map.

The formula for a 2D convolution on an image I with a kernel K to produce a feature map S is:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

This process is repeated across the entire image, creating a feature map that highlights where the
specific feature detected by the kernel appears. An example is shown in Figure 3.3. The crucial point
is that the network learns the values of these kernels during training, figuring out which features are
important for the given task.

Figure 3.3: Convolution with an edge detection kernel. Image taken from
https://developer.nvidia.com/discover/convolution

CNNs derive their efficiency and effectiveness from three key properties:

• Local Connectivity: Neurons in a convolutional layer are only connected to a small, localized
region of the input layer (the “receptive field”). This is unlike a standard NN where every neu-
ron is connected to every neuron in the previous layer. This drastically reduces the number of
parameters and the computational overhead.

• Parameter Sharing: The same kernel is used across the entire image. This means that a feature
detector (e.g., for a horizontal edge) is shared across all spatial locations. This not only further
reduces the parameter count but also makes the network translationally equivariant.

• Translation Equivariance: This means that if an object in the image moves, its representation
in the feature map will move by the same amount. This allows the network to recognize the same
feature regardless of its position.

After a convolution operation, it’s common to apply a downsampling (or pooling) layer. The main
purpose of downsampling is to reduce the spatial dimensions of the feature maps, which has two
benefits:

1. It reduces the number of parameters and computational load in the network.
2. It helps to make the feature representations more robust to small shifts and distortions.

The most common type of downsampling isMax Pooling. It involves sliding a window over the feature
map and, for each patch, taking only the maximum value. This has the effect of summarizing the
features in a region and retaining the most prominent ones. Another option is Average Pooling, which
takes the average of the values in the patch, providing a more generalized summary. Max pooling often
performs better in practice as it is more effective at highlighting salient features.

https://developer.nvidia.com/discover/convolution
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A Typical CNN Architecture
A typical CNN is composed of a sequence of layers. The most common pattern is:

Convolutional Layer → Activation Layer (ReLU) → Pooling Layer

This block of layers can be repeated multiple times.

• Convolutional Layer: Applies kernels to the input to create feature maps.
• Activation Layer (ReLU): An activation function, typically the Rectified Linear Unit (ReLU), is
applied element-wise to the feature map. ReLU introduces non-linearity, allowing the network to
learn more complex patterns. It simply converts all negative values to zero.

• Pooling Layer: Downsamples the feature map.

After several of these blocks, the final feature maps are flattened into a 1D vector and fed into one
or more Fully Connected Layers, which are standard neural network layers that perform the final
classification. As an example, we show the LeNet-5 architecture in Figure 3.4.

Figure 3.4: A typical CNN architecture (here, LeNet-5). [14]

Notable Architectures
• LeNet-5 (1998): Developed by Yann LeCun et al., it was one of the earliest CNNs and was
famously used for recognizing handwritten digits on checks [14]. Its architecture of stacked con-
volutional and pooling layers followed by fully connected layers set the standard for years to
come.

• AlexNet (2012): Developed by Alex Krizhevsky et al., it won the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) in 2012 by a huge margin [13]. It was much deeper and
larger than LeNet-5 and introduced key innovations still used today: the ReLU activation func-
tion, dropout for regularization, and data augmentation. Its success kickstarted the deep learning
revolution.

• VGGNet (2014): Developed by the Visual Geometry Group at Oxford, VGGNet demonstrated
that a very deep network could achieve excellent performance by using a simple and uniform
architecture [20]. It exclusively used very small 3x3 convolutional kernels, showing that depth
was a critical component for performance.

Residual Networks (ResNets)
As researchers tried to build deeper networks (like VGG), they encountered the vanishing gradient
problem. In very deep networks, the gradients (the signals used to update the network’s parameters
during training) can become extremely small as they are propagated backward from the output layer.
This effectively stops the earlier layers from learning anything, and addingmore layers can paradoxically
decrease the network’s performance.

Residual Networks (ResNets), introduced by Kaiming He et al. in 2015, provided an elegant solution
[7]. The core idea is to use “skip connections” or “shortcuts” that allow the gradient to be directly
backpropagated to earlier layers. A “residual block” learns a function F (x) that is added to the original
input x. This means the block is trying to learn the residual (the difference). It’s easier for the network
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to learn to push the residual to zero (if a layer is not needed) than to learn an identity mapping. This
innovation allowed for the successful training of networks that were hundreds or even thousands of
layers deep, leading to a new level of performance. An illustration of the residual block is provided in
Figure 3.5.

Figure 3.5: A ResNet residual block. [7]

3.1.3. Vision Transformers
For years, CNNs have been the gold standard for image-related tasks. Their architecture is inherently
designed to recognize patterns locally through filters and build up a hierarchical understanding of an
image. However, a 2017 paper introduced the Transformer architecture, which achieved state-of-the-
art results in Natural Language Processing (NLP) tasks like machine translation [22]. Transformers
excelled at understanding the relationships between words in a sentence, no matter how far apart they
were. This prompted a question: could this same architecture be applied to images? Researchers
demonstrated that it could and introduced the Vision Transformer (ViT) [3]. The core idea was to treat
an image not as a grid of pixels, but as a sequence of smaller image patches, similar to a sequence of
words in a sentence.

Unlike a CNN that processes an image pixel by pixel through sliding filters, a ViT takes a more direct,
global approach.

1. Image patching: The input image is split into a grid of fixed-size, non-overlapping patches. For
example, a 224x224 pixel image might be broken down into 196 patches, each being 16x16
pixels.

2. Flattening & linear embedding: Each of these 2D patches is then “flattened” into a single long
vector of numbers. This vector is then projected into a fixed-dimensional space through a lin-
ear transformation, creating what are called “patch embeddings”. This process is analogous to
looking up a word in a dictionary to get its corresponding vector representation.

3. Adding positional embeddings: By breaking the image into a sequence, we lose all spatial
information. The model doesn’t know if a patch came from the top-left corner or the bottom-right.
To solve this, a learnable positional embedding is added to each patch embedding. This is a
vector that encodes the original (x, y) position of the patch, ensuring that the model has the spatial
context necessary to understand the image structure.

Self-Attention
The sequence of embedded patches is then fed into the core of the model: the Transformer Encoder.
Its key component is the self-attention mechanism. Self-attention allows the model to weigh the
importance of all other patches in the sequence when interpreting a single patch. For instance, to
understand a patch corresponding to a cat’s ear, the model might “pay more attention” to other patches
corresponding to the cat’s face and less to a patch of the background. This is achieved by creating
three vectors from each input patch embedding: a Query (Q), a Key (K), and a Value (V).

• Query: Represents the current patch’s “question”, i.e., “what should I look for?”
• Key: Represents the “label” or identity of all other patches in the sequence.
• Value: Represents the actual content of the other patches.
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The model calculates a similarity score between the Query of one patch and the Key of every other
patch. These scores are then used to create a weighted sum of all the Value vectors. The formula for
this “Scaled Dot-Product Attention” is:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

where dk is the dimension of the Key vectors. This allows the ViT to build a rich, context-aware repre-
sentation of each patch based on a global understanding of the entire image.

The Transformer Encoder
The self-attention mechanism is part of a larger block called a Transformer Encoder. This block is
stacked multiple times (e.g., 12 or 24 times) to progressively refine the patch representations. Each
encoder block consists of:

1. A Multi-Head Self-Attention layer (which runs the attention mechanism in parallel multiple times
and concatenates the results).

2. A simple Feed-Forward Neural Network (MLP).

After passing through all the encoder layers, a special [CLS] (classification) token, which was added
to the sequence at the beginning, is used to aggregate the information from all patches. This token’s
final output vector is fed into a small MLP head to produce the final classification (e.g., “cat”, “dog”).

Figure 3.6: The overall architecture of the Vision Transformer for image classification. [3]

ViTs vs. CNNs
CNNs have a strong inductive bias. Their convolutional and pooling layers are inherently designed
to respect the 2D spatial structure of images (locality and translation equivariance). This is a helpful,
built-in assumption that makes them very data-efficient. They can learn well from smaller datasets.

ViTs have a much weaker inductive bias. They make no initial assumption about the image structure,
treating it merely as a sequence. This flexibility is a double-edged sword:

• Data Hungriness: On small or medium-sized datasets, ViTs often underperform compared to
CNNs because they have to learn the spatial relationships from scratch.

• Scalability: When trained onmassive datasets (e.g., >14million images), ViTs can learn these re-
lationships and surpass the performance of even the best CNNs. Their ability to model long-range
dependencies without the constraints of a local receptive field becomes a significant advantage.
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While initially designed for image classification, the ViT architecture has been successfully adapted
for many other computer vision tasks. These include object detection, image segmentation, medical
imaging, and even video analysis.

3.2. Gaze Estimation
3.2.1. Task Introduction
Gaze estimation is a computer vision task that aims to determine where a person is looking. At its
core, it is the technology that powers eye-tracking systems, transforming the subtle movements of the
human eye into a rich source of data about cognitive states, focus, and intent. The task is generally
divided into two primary objectives:

• 2D Point-of-Gaze (PoG) estimation, which predicts the specific (x, y) coordinates where a per-
son’s line of sight intersects with a 2D plane, such as a computer or mobile device screen. This
is primarily used for human-computer interaction (HCI).

• 3D Gaze Vector estimation, which predicts a 3D unit vector representing the orientation of the
eyeball in three-dimensional space. For ease of model training and to reduce the dimensionality
of the regression problem, this 3D vector is often parameterized as two angles: pitch (vertical
rotation) and yaw (horizontal rotation). Unlike 2D PoG, 3D gaze vector estimation is not tied to
a specific screen or surface. This is a more general task, often used in applications like driver
monitoring systems where the target is not confined to a screen.

The ability to understand human attention has profound implications across a multitude of domains.
For instance, in Human-Computer Interaction (HCI), gaze can be used as an input modality, enabling
hands-free control of devices for individuals with motor impairments or providing novel interactive ex-
periences in virtual and augmented reality [2]. In automotive safety, driver monitoring systems employ
gaze estimation to detect distraction or drowsiness, thereby preventing accidents [9]. Furthermore,
gaze patterns are increasingly recognized as important biomarkers in the medical field for diagnosing
and understanding neurological conditions such as Autism Spectrum Disorder (ASD) and Attention-
Deficit/Hyperactivity Disorder (ADHD) [23]. In marketing and usability studies, tracking consumer gaze
provides invaluable insights into attention and engagement with advertisements and products [19].

The Angular Error Evaluation Metric
The standard performance metric for 3D gaze estimation is the mean angular error, which measures
the angle in degrees between the predicted gaze vector (ĝ) and the ground-truth gaze vector (g). For
a single sample, it is calculated using the dot product:

θerror = arccos(g · ĝ)

The final reported metric is the mean of this error across all test samples.

The interpretation of this error is highly application-dependent. State-of-the-art appearance-based
methods achieve errors of approximately 3-5 degrees on challenging “in-the-wild” benchmarks. For
high-precision tasks like assistive technology, an error of even 2-3 degrees can be restrictive. How-
ever, for coarse gaze zone classification, such as determining if a driver is looking at the road or a
mirror, an error of 4-5 degrees is often acceptable [21]. It is also important to note that a small angular
error can translate to a large error in the estimated depth (Z-axis) of the point of regard, which is a
challenge for 3D interaction in VR/AR [15].

3.2.2. Appearance-Based Gaze Estimation
Gaze estimationmethods are broadly divided into two paradigms: model-based and appearance-based
[6].

• Model-based (geometric) methods create an explicit 3D geometric model of the eye. They rely
on detecting specific features like the pupil center and corneal reflections (glints) from an active
infrared (IR) light source. This approach can be highly accurate but typically requires specialized
and expensive hardware, limiting its use to controlled lab settings. [1]

• Appearance-based methods reframe the task as a direct regression problem, learning a map-
ping function g = f(I) from the raw pixel values of an image I (of the eye or full face) to the gaze
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direction g. This approach leverages machine learning, particularly deep neural networks (CNNs
and ViTs), to automatically learn relevant features from the data. The primary advantage is its
ability to function with standard, low-cost RGB cameras found in consumer devices like webcams
and smartphones, thus making the technology more accessible. [1]

The success of appearance-basedmethods is heavily dependent on the power of deep learning models
to approximate the highly complex and non-linear mapping function. However, this learning process is
complicated by significant “in-the-wild” challenges, including variations in illumination, occlusions (e.g.,
from hair or eyeglasses), and extreme head poses, all of which alter the input image’s appearance
[1]. To mitigate the difficulty of learning under free head movement, a crucial pre-processing step
known as data normalization is often employed. This technique synthetically warps the input image
to a canonical pose, relieving the network of the burden of learning head pose invariance and thereby
improving accuracy and training efficiency [1].

3.2.3. Datasets used
The advancement of robust, appearance-based models is entirely linked to the development of large-
scale, diverse datasets that capture “in-the-wild” conditions [1]. Two of the most influential datasets are
MPIIFaceGaze and ETH-XGaze.

The MPIIGaze [25] dataset was a pioneering effort to collect gaze data in natural, unconstrained set-
tings. It contains over 213,000 images gathered from 15 participants using their personal laptops
over several months, resulting in significant variability in appearance and illumination. The later MPI-
IFaceGaze dataset extended this by providing the corresponding full-face images, which proved crucial
for allowing models to implicitly learn and account for head pose, significantly improving performance.
Together, they became a standard benchmark for person-independent gaze estimation research.

While MPIIGaze captured naturalistic data, it did not exhaustively cover the full physiological range of
motion. The ETH-XGaze [24] dataset was created to address this by systematically sampling extreme
head poses and gaze angles. Using a custom rig of 18 high-resolution DSLR cameras, researchers
collected over one million images from 110 diverse participants. The dataset covers head poses up to
±70◦ and gaze directions up to ±50◦, including samples with varied illumination and subjects wearing
glasses. ETH-XGaze serves as the primary benchmark for developing the next generation of highly
robust gaze estimators capable of handling extreme, real-world conditions.

Other key datasets have driven progress in specific areas:

• GazeCapture [12]: Focused on massive scale for mobile devices, collecting nearly 2.5 million
frames from over 1,450 people via a crowdsourced iOS app for 2D PoG estimation.

• Gaze360 [10]: Targeted physically unconstrained 3D gaze in both indoor and outdoor environ-
ments, using a 360-degree camera to capture video with wide head pose variation.

• RT-GENE [5]: Designed for real-time applications, this dataset used mobile eye-tracking glasses
to get precise ground-truth labels and then used GANs to digitally remove the glasses from the
images, creating realistic training data.
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