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a b s t r a c t 

A lattice-Boltzmann method has been employed to study the aeroacoustics and aerody- 

namics of airfoils equipped with leading edge treatments, namely the porous leading edge 

and leading edge serrations. The present study aims to identify the differences in noise re- 

duction mechanisms between the two treatments. Within the context of turbomachinery 

applications, the airfoils undergo aerodynamic excitation due to the impingement of tur- 

bulent wake shed by an upstream rod. Two airfoil profiles are considered: NACA 0012 and 

NACA 5406; the latter mimics geometrical features and aerodynamic loading distribution 

of the outlet-guide vane in a turbofan test rig. Simulations are carried out at a freestream 

Mach number of 0.22, corresponding to Reynolds number based on the rod diameter of 

48 0 0 0. The serrations are designed to follow a sinusoidal planform shape, whereas the 

porous leading edge is based on a Ni-Cr-Al metal-foam with homogeneous and isotropic 

properties. It is found that the porous leading edge attenuates noise by dampening sur- 

face pressure fluctuations due to the reduced blockage effect compared to the solid one. 

Differently, the leading edge serrations promote destructive interference of noise sources 

along the span. When applied against turbulent inflow with tonal characteristic, such as 

that induced by the impingement of Kàrmàn vortex street in the rod wake, the latter is 

more effective. On the other hand, both treatments are found to produce similar broad- 

band noise reduction. When comparing aerodynamic performances, it is found that under 

a lifting condition, cross-flow is present through the porous material which results in lift 

reduction and drag increase. A serrated porous leading edge is then proposed to com- 

bine the benefits of the two leading edge treatments. This results in optimal noise reduc- 

tion performances and lower aerodynamic penalty with respect to the fully porous leading 

edge. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

1. Introduction 

Turbulence-impingement noise, also referred to as leading edge (LE) noise, is a relevant noise generation mechanism in 

aircraft propulsion systems, such as turbofans and helicopter rotors. LE noise is generated by the aerodynamic interaction 

between a solid body and a turbulent inflow [1,2] . In a turbofan, this process occurs as the turbulent fan wake periodically
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impinges on the outlet-guide-vane (OGV) [3,4] . As future turbofans are designed with higher bypass ratio in order to achieve

better propulsive efficiency, the fan wake-OGV interaction is becoming more crucial considering that the axial distance 

between the fan and the OGV is reduced [5] . As a consequence, different types of novel noise mitigation techniques may

become necessary, and it is desirable to understand their acoustic and aerodynamic implications in early stage of design. 

Nevertheless, examining a complete turbofan system is likely to be expensive and challenging given its inherent complexity. 

Instead, it is more attractive to consider a simplified setup that focuses on the specific noise generation mechanisms. In 

particular, the rod-airfoil configuration has been proposed for the purpose of mimicking the aeroacoustic of fan wake-OGV 

interaction [6,7] . As a matter of fact, the turbulent Kármán vortex street in the rod wake impinges on the downstream

airfoil, generating sound with both quasi-tonal and broadband components, similar to that in a fan stage [8] . 

Several passive LE noise mitigation techniques have been proposed in literature, such as LE serrations [9–11] . LE ser-

rations were inspired by the tubercles of whale [12] and they were found to improve aerodynamic performance at stall

conditions [9,13,14] . Interestingly, serrations were also found to mitigate LE noise [13,15] . Gea-Aguilera et al. [16] used com-

putational aeroacoustics to predict the acoustics response of an airfoil equipped with LE serrations interacting with an 

anisotropic turbulent inflow. They discovered that LE serrations break the coherent scattering process at the LE. The authors 

concluded that the serration amplitude and wavelength are required to be at least twice the streamwise and spanwise inte- 

gral length scales of the inflow turbulence to achieve significant noise reduction. Chaitanya et al. [17] performed a parametric

study using a flat plate and a NACA 65(12)10 airfoil to retrieve the optimum serration design parameters. The authors ob-

served that noise reduction was the highest when the serration wavelength was 4 times the spanwise integral length scale 

of the inflow turbulence. Agrawal and Sharma [18] studied the effect of leading edge serrations on a rod-airfoil configuration

using a high-order LES. The serration amplitude and wavelength were 6% and 30% of the airfoil chord length respectively. 

The serrated airfoil was found to reduce noise mainly at higher frequencies. More recently, Casalino et al. [4] performed a

numerical study using lattice-Boltzmann method to assess the noise reduction when a leading edge undulation is applied to 

stator blades in a realistic aero-engine fan stage. They confirmed that the noise reduction scales with the ratio of turbulence

length scale to the serration amplitude. However, the maximum predicted noise reduction was in the order of 1.5dB and 

they argued that a design of serrated OGV should account for the radial variation of the turbulence length scales in the fan

wake. 

The applications of permeable materials to reduce LE noise have also received the attention of aeroacoustic community. 

Sarradj and Geyer [19] investigated the effects of varying the flow transport properties of porous materials on LE noise 

attenuation. They manufactured five porous SD 7003 airfoils using several materials with different permeability and poros- 

ity values. In a turbulent flow-field, the porous airfoils generated less noise compared to the solid ones. The authors also

reported that porous material with higher permeability generally increased the noise attenuation. Roger et al. [20] manu- 

factured a porous NACA 0012 airfoil by covering an aluminum flat-plate with steel wool, before wrapping it in a wiremesh.

When the airfoil is subjected to homogeneous turbulent inflow, the maximum noise reduction was found to be around 6dB. 

This was considered promising since the porous material was applied with no prior optimization guideline. More recently, 

Geyer et al. [21] studied the LE noise reduction for a thick cambered airfoil with perforated LE. The hole diameter and

inclination angle were varied and their effects on far-field noise intensity were examined. Substantial noise reduction was 

achieved in low to medium frequency range, while the aerodynamic performance at low angle-of-attack was relatively un- 

affected. There was also a slight noise increase at higher frequency which was attributed to the higher surface roughness 

due to the presence of the holes. 

Both LE serrations and porous LE are considered to be promising solutions for LE noise mitigation in the literature. 

Nevertheless, a better understanding of the different noise reduction mechanisms will allow for improved leading edge 

treatments to be realized. For this reason, LE serrations, for which a description of the noise reduction mechanisms and 

optimization approaches are known [16,17] , are compared with porous LE under the same inflow conditions. The main 

objective of this manuscript is, therefore, to identify the differences in aeroacoustic effects between the two LE treatments. 

In this context, the rod-airfoil configuration is selected as it has been previously proposed as a simplified model that mimics

several aeroacoustics aspects of a fan stage [6] . Moreover, a thin cambered airfoil is considered since it better represents the

geometrical features of an turbomachinery blade compared to the NACA 0012 of the classical rod-airfoil configuration [6] . 

The usage of a more realistic airfoil profile will also provide useful insights regarding the impact of the different noise

mitigation techniques on aerodynamic performance, which has also not been fully discussed in literature. 

This paper is organized as follows. Section 2 provides the description of the lattice-Boltzmann technique that has been 

used in this study. Section 3 presents the numerical setup of the rod-airfoil configuration, followed by the validation and 

verification of the methodology. Section 4 discusses the computational results on the applications of various noise mitigation 

techniques on the rod-airfoil configuration. The conclusion and outlook of this manuscript are reported in Section 5 . 

2. Methodology 

2.1. Flow solver 

The commercial software 3DS Simulia PowerFLOW 5.4b has been used to compute the flow-field in the simulation do- 

main. The software has been previously used to investigate other wake-body interaction cases [4,7,22] . The numerical tech- 

nique is based on lattice-Boltzmann method (LBM), which computes the advection and collision of fluid particles using a 
2 
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Fig. 1. The isometric view of the rod-airfoil simulation setup. One of the side plate has been hidden from view. The sponge zone boundary is drawn as 

the outer black circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

statistical gas kinetic model. The discretization used for this particular LBM application consists of 19 discrete velocities in 

three dimensions (D3Q19), involving a third-order truncation of the Chapman-Enskog expansion [23] . An explicit time inte- 

gration and a collision model based on Bhatnagar-Gross-Krook (BGK) [24] are used. The BGK model introduces a relaxation 

of the particle distribution function towards that of Maxwell-Boltzmann distribution that describes gas particles at rest. Flow 

variables, (i.e., density and momentum) are recovered by integrating the particle distribution functions over the 19 discrete 

state directions. Turbulent fluctuations are modelled by extending the LBM to include an effective turbulent relaxation time 

[25] , which replaces the relaxation time in the BGK model. The effective relaxation time is computed using the two-equation

k − ε renormalization group [26] model. As pointed out in Chen et al. [27] , this approach allows for taking into account the

non-linearity of the Reynolds stresses, and it is subsequently referred to as very-large eddy simulation (VLES). 

The unit lattice on which the lattice-Boltzmann scheme is applied, is referred to as voxel (i.e., volumetric element). 

The voxel dimension in the simulation domain can be adjusted on a region-by-region basis, such that the voxel size in

adjacent regions is allowed to vary by a factor of 2. Solid bodies are discretized as planar surfaces, referred to as surfels

(surface elements). Surfels are generated at places where a voxel intersects with the surface of the body. Furthermore, the 

fluid particle interaction with the solid surface is governed by the wall boundary condition, such as particle bounce-back 

process for no-slip wall and specular reflection for slip wall [28] . A wall function is applied on the first wall-adjacent grid

to approximate the wall shear stress. The function is based on the generalized law-of-the-wall model [29] , extended to

consider the effects of pressure gradient and surface roughness. 

The LBM scheme is inherently compressible and unsteady. Combined with the low dispersion and dissipation charac- 

teristics of the solution, LBM allows for resolving the acoustic field within the computational domain (i.e., direct acoustics 

computation) with a cutoff frequency that corresponds to approximately 15 voxels per wavelength [30] . This would require 

a relatively high voxel resolution at the far-field region that would cause a tremendously high computational cost. As an 

alternative, an acoustic analogy based on that of Ffowcs-Williams & Hawkings (FW-H) [31] has been utilized. In particular, 

the formulation 1A of Farrasat [32] with forward-time solution [33] is employed. The sound source integration is carried 

out on a permeable surface enclosing the near-field region and as a result, the contribution of dipole sources at the surface

of solid objects and that of quadrupole sources in the turbulent flow-field are included. 

2.2. Simulation setup 

An isometric view showing the arrangement of the rod-airfoil setup is shown in Fig. 1 . The simulation replicates the

rod-airfoil setup of Jacob et al. [6] which consists of an airfoil with chord length c = 100 mm positioned downstream of a

rod with diameter D = 10 mm . The airfoil leading edge is separated from the rod base by 100 mm (i.e., 10 D or c). The rod

center is located at 15 D or 1 . 5 c downstream of a rectangular open-jet nozzle. Both the rod and the airfoil have a span of

300 mm (i.e., 30 D or 3 c) and are mounted between sideplates. Consequently, a spanwise correlation correction (e.g., Kato’s

[34] ), which is commonly employed for simulations with narrower span models, is not required for acoustic computation. 

Moreover, it has been reported previously [18] that the spanwise correction models still have limitations, and it remains an

argument of whether those are applicable for airfoils with different LE treatments. 

A total of three airfoil profiles are considered as shown in Fig. 2 (i.e., NACA 0012, 0 0 0 6, and 540 6), although the ap-

plication of LE treatments is investigated only for NACA 0012 and 5406 airfoils. For the sake of brevity, the NACA prefix

will not be mentioned hereafter. The 0012 is used for validating the simulation setup and to examine the effects of the

different LE treatments for a reference airfoil. The 5406 profile has been chosen since it shares similar geometrical features 
3 



C. Teruna, F. Avallone, D. Casalino et al. Journal of Sound and Vibration 494 (2021) 115880 

Fig. 2. The types of airfoil and noise reduction techniques considered in this numerical study; SLE (straight-LE), PLE (porous-LE), SPLE (streamlined porous- 

LE), BLE (blocked porous-LE), WLE (serrated/wavy-LE), WPLE (serrations-porous-LE). The porous section of the airfoil is shown with lower opacity. Insets 

provide the zoomed-in lateral view at the LE. Note that for the insets of WLE/WPLE configurations, the top-down view is shown instead. 

Fig. 3. The nomenclature for the rod-serrated airfoil (WLE) configuration. 

 

 

 

 

 

 

 

 

 

 

typically found in turbomachinery blades, such as a relatively small thickness and pronounced camber. Moreover, the cam- 

bered profile also allows examining the effects of the LE treatments on aerodynamic performance. The 0 0 06 profile, which

has an identical LE radius as the 5406, is considered to verify that the camber in the latter does not significantly affect the

far-field noise [35,36] . Both 0012 and 0006 are installed at zero angle of attack. The 5406 has an incidence of 8degrees to

approximate the mean loading distribution on a stator vane in the NASA-Glenn Source Diagnostics Test (SDT) rig [8,37] at

90% of the outer span when the engine is at approach settings. The 5406 is also shifted upward by 4 mm ( 0 . 4 D ) to account

for the rod wake deflection induced by the aerodynamic loading of the airfoil. 

Several types of LE treatments for noise reduction are considered in this study, including: (1) LE serrations, which are 

also referred to as wavy LE (WLE) [17,38,39] , (2) porous treatments (PLE, BLE, and SPLE), and (3) a combination of the LE

serrations and the porous material (WPLE). The description of acronyms for each LE treatment is provided in the caption 

of Fig. 2 . A sketch of the top-down view for an airfoil with LE serrations is shown in Fig. 3 . LE serrations are characterized

by amplitude H (i.e., the chordwise distance between the serration tip and root) and wavelength (i.e., spanwise distance 

between adjacent serration tips) �. Both parameters can be tuned to achieved maximum noise reduction according to the 

integral length scales of inflow turbulence L [16,17,40] such that �/L � 4 and H/L > 2 . To meet these requirements, H and �

are chosen to be 3 D ( 0 . 3 c), after following the estimation procedure that will be discussed in Section 3.3 . Thus, the entire

airfoil span equals to 10 serration wavelengths. 

The LE serrations are applied by modifying the chord length of airfoil section c WLE along the spanwise direction ( z).

Following the procedure used by Chen et al. [11] , the chord length of the modified airfoil c WLE at a given spanwise position

z is defined as: 

c WLE (z) = c + 

H 

2 

cos 

(
2 πz 

�

)
(1) 
4 
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Table 1 

The properties of the Ni-Cr-Al metal foam with d c = 800 μm. 

d c (μ m) φ(%) R V (N s/m 

4 ) R I (m 

−1 ) 

800 91.65 6728 2613 

Fig. 4. The arrangement of the porous medium model for the 0012-BLE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LE serrations are integrated into the rest of the airfoil by modifying its surface coordinates ( x WLE ) upstream of a chordwise

extent ( x lim 

); coordinates downstream of x lim 

remain unchanged. 

x WLE = 

(
x SLE 

x lim 

)
[ c WLE (z) − c + x lim 

] − ( c WLE (z) − c ) (2) 

The porous LE is modeled using an equivalent fluid region approach [41,42] . For materials whose pores are much smaller

than the characteristic length of the body, this approach requires less computational resources as opposed to fully-resolve 

the internal topology of the porous medium. In the simulation, the porous LE is modeled as a combination of two layers

of porous medium models, namely the “Acoustic Porous Medium” (APM) and the “Porous Medium” (PM). Both models 

introduce additional momentum loss into the flow-field inside the porous medium according to Darcy’s law. The APM is 

slightly different than the PM model such that the former considers a porosity that governs the transpiration at the porous

medium interface. The porosity φ is defined as follows: 

φ = 1 − ρp 

ρs 
(3) 

where ρp and ρs are density of the porous material sample and that of the skeletal portion (matrix) of the sample, respec-

tively. The flow resistivity is described by the Hazen-Dupuit-Darcy equation [43,44] as follows: 

1 

ρ

Δp 

h 

= 

μ

Kρ
v d + Cv 2 d (4) 

where the left hand side refers to a pressure drop Δp across a porous material sample of thickness h, μ and ρ are the

dynamic viscosity and density of the fluid respectively, and v d is the Darcy velocity refers to the fluid velocity inside the 

porous medium. The Hazen-Dupuit-Darcy equation forms a second order polynomial in term of the Darcy velocity. The first 

coefficient is associated with the viscous losses in the porous medium, which can be expressed as the viscous resistivity 

R V = μ/ (Kρ) . The form coefficient C in the second term refers to the inertial resistivity R I = C due to local flow acceleration

inside the pores. This non-linear term becomes more significant when the Reynolds number inside the porous media is large 

[44] . Equation (4) is valid for porous media whose pore size is much smaller than the characteristic length (e.g., thickness)

of the sample [43,44] . In this study, the porous medium is based on an open-cell Ni-Cr-Al metal-foam with a mean pore

diameter d c = 800 μ m, as summarized in Table 1 [45] . 

As reported by Dukhan et al. [46] and Baril et al. [47] , the resistivity of a porous material consists of two components: (1)

the thickness-dependent resistivity associated with the entrance/exit effect (i.e., flow unsteadiness near the porous medium 

surface), and (2) the bulk resistivity that is independent of the sample thickness (i.e., asymptotic resistivity). The values 

listed in Table 1 refer to the asymptotic resistivity, which are valid for h > h crit , where h crit is a critical thickness. To simplify

the definition of the resistivity for present application, a two-layer APM-PM approach is employed [48] . Such approach is

intended to isolate regions that are dominated by the entrance/exit effect from the rest of the porous medium. Naaktgeboren 

et al. [49] have reported that the entrance/exit effect is limited to an entrance length, which is about one pore diameter for

metal-foams. Following this, the APM layer of the porous LE has a constant thickness of 1 mm, while the remaining volume

underneath is treated as PM region. The APM-PM approach has been previously verified by the authors [48] , in which a test

rig for characterizing the porous material resistivity [50] has been numerically replicated. 

For airfoils with porous LE, the porous medium region is applied to the first 15% of the chord length. Thus, the extent

of airfoil planform that is modified with either LE serrations or porous LE is identical. Aside from the regular porous LE

application (0012-PLE and 5406-PLE), there are two other configurations with additional modifications. The 0012-BLE, which 

is shown in Fig. 4 , has a solid core along the symmetry plane of the airfoil starting from x/c = 0 . 05 (i.e., 5 percent of the

chord). This is intended to study the effect of partially blocking the porous medium, such that the flow from one side of the

airfoil is prevented from reaching the other side. Differently, the 5406-SPLE in Fig. 2 (c2) is considered in order to investigate

the effect of streamlining the shape of solid-porous junction. The porous medium is also applied as an extension at the root

region of the LE serrations for the 5406-WPLE (serration-porous-LE), as shown in Fig. 2 (c4). The porous extension covers
5 
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Fig. 5. ( a ) Side view of the simulation domain for the rod-airfoil configuration; the outer boundaries are not drawn to scale. Blue crosses indicate micro- 

phone locations for far-field noise computation. A closer view on the baseline rod-NACA 0012 configuration (0012-SLE) is provided on the right ( b). Vertical 

dashed lines indicate the locations where the velocity statistics are sampled and shown in Fig. 6 . Red dots (F and G) indicate the location where velocity 

fluctuation spectra are computed and shown in Fig. 7 . (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25% of the serration amplitude (i.e., 0 . 075 < x/c < 0 . 15 ) and its surface contour follows that of the baseline 5406 airfoil. This

treatment is considered in order to further suppress the sound source intensity at the serration root [11,39] , which might

result in improved noise reduction compared to the regular serrations. 

A sketch of the simulation domain with the boundary conditions is provided in Fig. 5 . The entire simulation domain is

a cube whose sides are 4 m ( 400 D or 40 c) long, which is centered at the midspan of the airfoil leading edge. A mass flow

is prescribed at the nozzle inlet to obtain the mean freestream velocity of 72m/s across the outlet. Domain boundaries are

specified with zero-velocity inlet aside from the downstream face, where an outlet with a static pressure of 10 0 0 0 0 Pa is 

prescribed. All solid surfaces are no-slip walls with the exception of the nozzle which is specified as a slip wall. An acoustic

buffer zone is defined outside a spherical boundary that encloses the near-field region such that outward-travelling sound 

waves are prevented from being reflected by the domain boundaries. The simulation domain is subdivided into 13 voxel 

refinement regions. The finest voxel resolution is applied next to the rod and airfoil surfaces. The finest grid dimension is

8 × 10 −3 D such that a total of 125 voxels are assigned across the diameter of the rod. This corresponds to the average y + 

of the first wall-adjacent cell of 25 on the rod and 15 on the airfoil. On average, domain discretization results in a total

of approximately 200 × 10 6 voxels for the finest voxel resolution. Airfoils with porous treatments would require a larger 

number of voxels due to the discretization of the porous medium region. More details of the domain statistics will be

provided in Section 3.2 . 

For far-field noise computation, the FW-H analogy is employed on a permeable surface enclosing the rod-airfoil configu- 

ration. In order to mitigate the influence of pseudo-sound (i.e., non-radiating aerodynamic fluctuations) at the downstream 

termination of the FW-H permeable surface, an additional stack of 6 planar surfaces is added downstream of the existing 

face with a separation of 2 D . These stacked surfaces allow for averaging-out the pseudo-sound contribution (e.g., from the

airfoil wake and the open-jet shear layer) while preserving the acoustic ones. This strategy has also been applied in a sim-

ilar study of wake interaction noise [22] . The permeable FW-H surface records acoustic pressure at a rate of 29.5 kHz. The

power spectral density of the acoustics pressure is obtained using Welch’s method [51] , in which a Hanning window with

50% has been applied to obtain a frequency resolution of 100 Hz. 

The simulations are carried out with a physical timestep of 1 . 33 × 10 −7 s for 67 flow passes along the airfoil chord (i.e.,

total physical time of 0.108 s), excluding the initial transient of 10 flow passes. The simulation time is also equal to 150

vortex shedding cycles produced by the rod. The required computational hours varies with different LE treatment, which is 

reported in Section 3.2 . 

3. Validation of methodology and grid independence study 

3.1. Validation of the rod-airfoil configuration 

A validation study is carried out for the baseline rod-airfoil configuration (0012-SLE) [6] , in which aerodynamic and 

acoustic results are compared to reference data from literature. Plot ( b) in Fig. 5 illustrates the side view of the 0012-SLE

configuration with the coordinate system, in which velocity statistics are extracted along the lines A to E and at points F and

G. At each location, the velocity time history is sampled at 15 kHz for 130 vortex shedding cycles. The velocity profiles for
6 
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Fig. 6. Profiles of mean and root-mean-square (RMS) of fluctuations of the axial velocity component at different locations along the rod-airfoil configura- 

tion. Note that reference data from Jiang et al. [52] are only available for plots B and C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lines A to E are presented in Fig. 6 , where present results are compared against previous numerical [7,52] and experimental

[6] data. The overall agreement is satisfactory, although velocity profiles at C, D, and E (i.e., aside and downstream of the

airfoil) show a y/c shift with respect to the experimental ones. This might be attributed to the fact that the vertical shift

of the airfoil position is not considered in the simulation. Additionally, it has been reported [53] that the airfoil in the

experiment has surface imperfections at the suction side, which might result in lower mean velocity and higher fluctuations 

in comparison to simulation results. 

The streamwise velocity fluctuation spectra φuu at points F and G are plotted in Fig. 7 . φuu has been normalized with

a reference velocity of 1 m/s and the frequency axis is expressed as the Strouhal number based on the rod diameter St D =
f D/U ∞ 

. The simulation results are in line with previous LES works of Chen et al. [11] , Giret et al. [53] , and Eltaweel et al.

[54] , although minor discrepancies with the experiment are still present. For instance, the peak of the tone from the present

simulation is located at St D = 0 . 195 , which is higher that of the experiment, i.e, St D = 0 . 19 . This frequency shift usually

arises from a small difference in the boundary layer separation point on the rod [11] that is often influenced by turbulence

modeling [55] . 

The surface pressure statistics on the rod and the airfoil surfaces are shown in Fig. 8 . The time-averaged surface pressure

is expressed as pressure coefficient C p, mean , while the root-mean-square (RMS) of surface pressure fluctuations p RMS is nor- 

malized with the freestream dynamic pressure q ∞ 

= 0 . 5 ρ∞ 

U 

2 ∞ 

. The rod C p, mean is plotted in cylindrical coordinate system

with the zero angle reference towards the upstream direction. The surface pressure distribution on the rod is in line with

experimental measurements, although the region surrounding the rod base agrees better with Apelt and West [56] rather 

than that of Szepessy and Bearman [57] . The C p, mean distribution is also found to be comparable to the LES results of Giret

et al. [53] and Jiang et al. [52] . A discrepancy between numerical and experimental results can also be observed in the
7 
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Fig. 7. Power spectral density of streamwise velocity fluctuations φuu at points (F) ( x/c = −0 . 87 , y/c = 0 . 05 ) and (G) ( x/c = 0 . 25 , y/c = 0 . 08 ). The S uu is 

normalized with a reference velocity of 1 m/s. 

Fig. 8. Surface pressure statistics on the rod and the 0012-SLE airfoil. 

 

 

 

 

 

 

 

 

 

 

airfoil C p, mean distribution. This behavior has been reported to be due to the surface imperfection of the airfoil model in the 

experiment [53] . Nonetheless, the airfoil C p, mean distributions of the present results are in good agreement with other LES 

results from literature. The C p, RMS distribution on the airfoil is also found to be similar to that of Jiang et al. [52] , although

it slightly underpredicts that of Giret et al. [53] . 

For evaluating the acoustic response of the rod-airfoil configuration, the far-field noise is computed at several observer 

points along an arc in the x − y plane with a radius of 185 D centered at the airfoil leading edge [6] . The points are separated

with 5-degree increment, ranging from 0 to ±160 degrees with the zero reference in the downstream (i.e., x/c > 0 ) direc-

tion; they are shown as blue crosses in Fig. 5 . The resulting sound pressure spectra and overall sound pressure level (OSPL)

directivity pattern are shown in Fig. 9 . The sound pressure level (SPL) has been normalized with a reference pressure of

20 μPa. Spectra obtained from the simulation show good prediction of both spectral broadening and amplitude of the fun- 

damental tone. Moreover, current result is comparable to those of Satti et al. [7] and Giret et al. [53] . The OSPL directivity

pattern in plot ( b) clearly shows dipole-like lobes corresponding to the lift fluctuation induced by the rod wake impinge-

ment. The overall trend of present simulation is still in line with those of Jacob et al. [6] and Giret et al. [53] , although

there is a noticeable discrepancy towards the shallow angle in the downstream direction. This is due to the omission of

the downstream face of the FW-H permeable surface in the simulation of Giret et al. [53] whereas in the present case, the

FW-H permeable surface completely encloses the rod-airfoil setup. 

To further assess the reliability of the simulation, Fig. 10 compares the sound spectra obtained using the solid-surface 

FW-H approach and that using the permeable surface enclosing the near-field region. In the figure, the spectra labeled 

“Total (FW-H Permeable)” are taken from that labeled “Present (LBM-VLES)” in Fig. 9 which have been obtained using the 
8 
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Fig. 9. ( a ) Sound spectra in the far-field, computed at a location directly above the airfoil LE ( θ = 90 ◦, i.e., x/c = 0 and y/c = 9 . 25 ) and ( b) OSPL directivity 

pattern with zero degree reference towards the downstream direction. 

Fig. 10. Comparisons of far-field noise contributions between the rod, the airfoil, and both combined. Sound spectra are computed at x/c = 0 , and y/c = 

9 . 25 . 
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permeable-surface FW-H approach. Differently, noise spectra obtained using the solid-surface FW-H approach only considers 

a distribution of equivalent dipoles at a wall. Consequently, other noise contributions, including quadrupoles (e.g., the open- 

jet shear layer) and installation effects, are neglected. Nevertheless, it is possible to separately quantify the far-field noise 

contribution of different objects in the simulation domain using the solid-surface FW-H approach. Fig. 10 shows that the 

sum of the individual noise contribution of both rod and airfoil (i.e., red solid line) is very similar to the total noise of the

setup (i.e., black solid line), except at very high frequencies ( St c > 0 . 7 ). This implies that over most of the frequency range

of interest, other noise source contributions and installation effects are relatively small. The figure also indicates that the 

noise contribution of the rod is much smaller than the airfoil; note that the noise from the airfoil includes the effects of the

aerodynamic perturbation resulting from the rod wake impinging the airfoil LE. Consequently, the figure evidences that the 

far-field noise is dominated by that produced by the aerodynamic interaction between the rod-wake and the airfoil. 

This subsection has shown that the methodology and simulation setup allows for an accurate prediction of the aeroa- 

coustics of the rod-airfoil configuration. However, given the wide range of airfoil types and LE treatments that are being 

considered, a grid independence study is also performed to ascertain that the grid resolution is sufficient to achieve con- 

verged solutions. 

3.2. Grid independence study 

Grid independence studies have been performed for each airfoil type (i.e., 0 012, 0 0 0 6, and 540 6) and LE treatment,

however, for the sake of brevity, only the following cases are reported in this subsection: 5406-SLE, 5406-PLE, and 5406- 

WLE. For each case, three different grid resolutions are considered with refinement ratio of 
√ 

2 , namely coarse, medium , and

fine . The convergence trends of the simulation results are evaluated based on the mean lift and drag coefficients ( C l, mean and

 d, mean ) of the airfoil, and the acoustic source power level (PWL). The simulation configurations for the grid independence

study are reported in Table 2 . Although the grid resolution settings for the three cases are identical, the total number of
9 
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Table 2 

Comparison of the domain statistics for rod-5406 configurations. 

Type Resolution (voxels/ D ) Voxel count ( 10 6 ) CPU hours ( 10 3 ) 

5406-SLE 

Coarse 62.5 43.5 6.6 

Medium 88.4 89.5 19.2 

Fine 125 200.5 60.8 

5406-PLE 

Coarse 62.5 44.1 7.4 

Medium 88.4 91.1 21.1 

Fine 125 205.1 67.1 

5406-WLE 

Coarse 62.5 45.7 6.9 

Medium 88.4 91.9 19.9 

Fine 125 205.8 62.3 

Fig. 11. The trend of the time-averaged lift C l, mean and drag C d, mean with the number of voxels in the simulation domain ( N voxel ). 

 

 

 

 

 

 

 

 

 

 

 

 

voxels are larger for PLE and WLE cases since extra voxels are required to discretize the porous medium region and to

resolve the more complex edge curvature of the LE serrations. 

Fig. 11 shows the convergence trends of C l, mean and C d, mean . The abscissa shows the voxel count corresponding to each

resolution setting in logarithmic scale. The grid resolution level is indicated as numbers next to the data points. Straight lines

are used to connect data points between resolution level 3 (coarse) to 1 (fine), while Richardson extrapolations at resolution 

level 0 are plotted using dashed lines. Although the aerodynamic forces appear to approach convergence qualitatively, they 

are also examined quantitatively by computing the grid convergence index ( GCI). For instance, the GCI 1 , 2 = 0 . 0298 % and

GCI 0 , 1 = 0 . 0 0 09 % for C l, mean of the SLE case with the GCI ratio equals to 1 . 0099 ≈ 1 . The small GCI value and the GCI ratio

being close to unity indicate that the computational grids are within the asymptotic range of convergence [58] . It has been

verified that the GCI values and ratios for the other cases exhibit similar trend. 

The effect of varying the grid resolution to the far-field noise is depicted in Fig. 12 . In the graph, the sound power level

for the three 5406 configurations are plotted for 0 . 05 < St D < 1 . Comparing the results for different grid resolutions, the low

(i.e, St D < 0 . 1 ) and high frequency ( St D > 0 . 6 ) regions appear to be more sensitive than the rest. The latter can be associated

with the cut-off frequency associated with the voxel size at the permeable FW-H surface. The discrepancy at low frequency 

might be related to the installation effect (e.g., the scattering of the shear layer by the nozzle lip). Nonetheless, the figure

shows that the results have converged for the finest grid resolution at the frequency range where LE noise is the most

relevant (i.e., 0 . 08 < St D < 0 . 8 ). 

3.3. Integral length scales in the rod wake 

The turbulent integral length scales in the rod wake are estimated in order to obtain an optimal design for the LE

serrations [17] . Following the procedure outlined in Pope [59] , the integral length scales are estimated as follows: 

L m 

i j ( x , l) = 

∫ ∞ 

0 

R 

m 

i j ( x ) dl = 

∫ ∞ 

0 

〈
u i ( x + l e m 

) u j ( x ) 
〉〈

u i ( x ) u j ( x ) 
〉 dl (5) 
10 
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Fig. 12. The influence of the grid resolution on the sound power level (PWL) of different LE treatments on the 5406 airfoils. 

Table 3 

The integral length scales L m 
i j 

in the rod 

wake at 2 . 5 D upstream of the airfoil LE. 

Airfoil L x uu /D L y vv /D L z ww /D 

NACA 0012 1.50 1.10 0.73 

NACA 5406 1.42 1.09 0.73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where R m 

i j 
( x ) is the correlation coefficient evaluated based on a reference location x , u i and u j are the turbulent velocity

fluctuations components in i th and j th directions respectively, e m 

the unitary vector in the m th direction, and l = l · e m 

is the

separation length from the reference location. 〈·〉 is the temporal-averaging operator with the assumption that the turbulent 

fluctuations in the rod wake are ergodic. This estimation procedure was also employed in the LE serrations investigation by 

Gea Aguillera et al. [16] . 

Table 3 summarizes the integral length computed using Eq. (5) for the 0012-SLE and 5406-SLE cases at a reference lo-

cation 2 . 5 D upstream of the airfoil LE in the mid-section plane. The discrete integration in Eq. 5 is performed for a spatial

separation equals 0 . 1 D along the streamwise ( x ), vertical ( y ), and spanwise ( z) directions, for which the corresponding ve-

locity components are denoted u, v , and w respectively. The spatial separation is much larger than the local voxel size and

it has been verified that using smaller value does not change the observed trends. The length scales in the rod wake are

longer in the streamwise direction rather than the spanwise, which is similar to those found in the NASA SDT turbofan rig

[4,60] . The length scales are slightly reduced in streamwise and tangential directions for the rod-airfoil configuration using 

the 5406 profile. Nevertheless, the serration amplitude and wavelength of 3 D ( 0 . 3 c) satisfy the requirements of H/L x uu ≥ 2

and �/L z ww 

� 4 for both airfoil profiles [16,17] . 

4. Analyses of results 

4.1. Acoustics response of different LE treatments 

Far-field noise computations for the baseline airfoils (SLE) are illustrated in Fig. 13 . In plot ( a ), the PWL spectra of the

0 012, 0 0 0 6, and 540 6 airfoils are compared. The 0 0 0 6 and 540 6 airfoils show an increase at the fundamental tone fre-

quency by ≈ 3 dB over that of the 0012. Furthermore, the tone harmonics and high-frequency broadband components are 

also increased significantly for the thinner airfoils. This behavior can be attributed to the stronger vortical distortion due to 

a higher velocity gradient near a LE with small radius (i.e., thin LE) [36] . The noise increase caused by the thinner airfoils is

also evident in the far-field directivity plot in ( b), where their average OSPL is 2.5dB higher compared to that of the 0012.

Since both 5406 and 0 0 06 airfoils show similar PWL values and directivity patterns, it is implied that the LE noise is weakly

influenced by small modifications of angle of attack and camber, which has also been reported by Devenport et al. [35] .

Hence, this justifies using the 5406 profile instead of the 0 0 06 for this study as the former also allows for investigating the

effects of the LE treatments on aerodynamic performance of an airfoil profile used in turbomachinery. 

The effects of the different LE treatments on the PWL are depicted in Fig. 14 , where the plots for the 0012 airfoils are

given in ( a ). The 0012-WLE reduces the tonal peak intensity by ≈ 9 dB relative to that of the SLE. While this reduction is

significant, it is still smaller than the difference between the individual noise contribution from the airfoil and the rod that is

previously shown in Fig. 10 . In contrast to the WLE, the tonal peak of the porous treatments (PLE and BLE) remains at similar

level as the SLE one. Broadband noise components near the fundamental tone and at higher frequencies are also attenuated 

by the WLE treatment, with an average reduction between 4 to 5dB. The PLE shows noticeable broadband attenuation only 

for St > 0 . 25 , whereas the BLE only affects the high-frequency tonal peaks. The PWL values for the three LE treatments
D 

11 
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Fig. 13. The comparison of the sound power level (PWL) ( a ) and the far-field directivity pattern ( b) of the baseline airfoils. 

Fig. 14. The comparison of the sound power level (PWL) for the different LE treatments. 

 

 

 

 

 

 

 

 

 

 

 

are similar for St D > 0 . 65 . Nevertheless, it is clear that the WLE exhibits the highest noise reduction among the different

LE treatments. The PWL for 5406 airfoils are provided in Fig. 14 ( b). The 5406-WLE reduces the fundamental tone level by

≈ 8 dB , which is the largest among all of the LE treatments. Both 5406-PLE and SPLE show smaller noise reduction than

the WLE one, although the latter is able to further reduce the intensity of the first harmonic (i.e., St D = 0 . 39 ). The WPLE

configuration also performs slightly worse compared to its WLE counterpart, indicating that covering the serration root with 

the porous medium does not necessarily improves the noise reduction. 

The overall PWL (OAPWL) difference between the baseline airfoil and those with the LE treatments is summarized in 

Fig. 15 . The figure shows two main components of the PWL spectra; the tonal component ( 0 . 15 < St D < 0 . 25 ) and the broad-

band one ( St D > 0 . 25 ). Only 0012-WLE and 5406-WLE are found to exhibit substantial reduction of tonal noise component.

In contrast, porous treatments (PLE, BLE, and SPLE) produce higher attenuation of the broadband noise component than 

the tonal one. The 5406-WPLE shows smaller noise reduction compared to the 5406-WLE, in particular for the tonal noise 

component. This suggests that the porous extension has an adverse effect on the noise reduction mechanism of serrations 

[38,39] , which will be discussed further in Section 4.3 . Following the analytical model proposed by Lyu et al. [61] , the noise

reduction level of the serrations at a particular frequency increases with St H = ωH/U ∞ 

, where ω = 2 π f . For instance, the

St H for WLE equals 3.68 for the fundamental tone frequency, but St H = 2 . 76 for WPLE assuming that the porous extension 

decreases the effective amplitude of the serrations. In logarithmic scale, the difference in St H between the WLE and WPLE 

leads to 1.3 dB lower noise reduction for the latter, which is comparable to the difference between the two as shown in

Fig. 15 . 

The far-field directivity patterns for different LE treatments are plotted in Fig. 16 . In addition, the relative OSPL differences

between modified airfoils and baseline ones are shown in Fig. 17 . The OSPL is obtained by integrating the sound pressure
12 
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Fig. 15. The OAPWL difference between the LE treatments (LET) cases and the baseline (SLE) for tonal ( 0 . 15 < St D < 0 . 25 ) and broadband noise components 

( St D > 0 . 25 ). 

Fig. 16. The comparison of the far-field noise directivity pattern for the different LE treatments. 

Fig. 17. The difference between the OASPL of different LE treatments (LET) and the baseline case. 
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Fig. 18. Comparison of source power level reduction ( ΔPWL SLE , LET = PWL SLE − PWL LET ) between the simulation results and the corresponding analytical 

prediction for LE serrations [17,61] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spectra in the frequency range of 0 . 08 < St D < 0 . 8 . In both figures, plot ( a ) shows the values for the 0012 airfoils and ( b) for

the 5406 ones. It is evident that the LE treatments on the 0012 do not cause a significant change in the directivity pattern.

Nevertheless, the 0012-WLE shows two main lobes, i.e. at ±115 ◦ and ±60 ◦, which indicates a non-compact source behavior. 

The 0012-PLE shows a slight noise increase at shallow angles, i.e. between ±30 ◦, but noise reduction is achieved in the

other directions with an average of 1.5dB. The 0012-BLE shows higher noise level than the PLE variant, particularly towards 

the upstream direction, although its noise level at shallow angles is similar to the SLE one. In plot ( b), the 5406-WLE also

shows two main lobes, similar to its 0012 counterpart, which implies that the non-compactness aspect of the sources on 

the serrations is present for both airfoil profiles. Unlike the 0012-PLE, the 5406-PLE exhibits an asymmetric directivity, in 

which noise increase can be observed at 20 ◦ < θ < 30 ◦ and a noise decrease at −40 ◦ < θ < 0 ◦. The asymmetric directivity

is also found for the SPLE and WPLE configurations, which might be attributed to the mean loading effect, which enhances

the surface pressure fluctuations at the airfoil suction side. 

4.2. Noise reduction comparison against analytical models 

There are several analytical models that have been proposed to predict the noise reduction level for LE serrations, such 

as those described by Lyu and Azarpeyvand [61] , Chaintanya et al. [17] , and more recently by Turner and Kim [62] . These

analytical models describe a self-similar trend of noise reduction with respect to the Strouhal number based on the serration 

amplitude St H . The former proposed a linear function whereas the latter a Bessel function of the first kind. The comparisons

between the noise reduction prediction from the analytical models with the simulation results are presented in Fig. 18 . Re-

sults from analytical models are plotted as solid lines, with the black one corresponding to that of Chaintanya et al. [17] and

the red one to Lyu and Azarpeyvand [61] . The analytical model of Chaintanya et al. is plotted for serrations with “optimum”

wavelength, which is 4 times the inflow turbulence length scale; the same design applied for the serrations in present study.

The model also assumes the following: 1) sources along the serrations have similar intensity and fully correlated, and 2) the

phase relation of the aerodynamic response on the airfoil is identical to that of the inflow turbulence. Both assumptions

are rarely satisfied in actual serrations since the source intensity could vary significantly between serration peak and root, 

and the inflow turbulence is distorted as it approaches the LE [63,64] . Nevertheless, both analytical models consider the 

spanwise phase interference of noise sources along the serration span as the primary noise mitigation mechanism. 

In Fig. 18 , the frequency axis is presented as Strouhal number based on the rod diameter St D ; an appropriate scaling from

St H to St D for the analytical models has been taken into account. For the WLE airfoils, the simulation results show decent

agreement with the Bessel function up to the fundamental tone frequency. Since this tone corresponds to the quasi-periodic 

upwash/downwash induced by the impinging vortex street, it is possible to consider the process to be harmonic, for which 

the spanwise phase interference effect is more influential. However, the agreement becomes worse at higher frequency, 

which can be related to the smaller spanwise correlation length (i.e., lower coherence between sources at the serration 

peak and root). Nevertheless, the peak ΔPWL SLE , LET at the second tone still coincides with the universal trend. This might 

be due to the fact that the analytical models represent the theoretical limit of noise reduction when the inflow turbulence

is dominated by a single gust component, which is hardly the case for the vortex street in the rod wake. 

For PLE airfoils, the agreement is generally poor as their noise reduction is several dB lower than the trends of the

analytical models. Interestingly, the gradient of the ΔPWL SLE , LET for the porous airfoil appears to generally follow the linear 

function, although this is also limited at lower frequencies. While the analytical models are not expected to be applicable 

for the porous treatments, this comparison also suggests that the spanwise phase interference effect plays a minor role 

in term of noise reduction mechanism for porous LE cases. In fact, as alluded earlier in this manuscript, porous LE and

LE serrations have different effects on the airfoil aeroacoustics. A detailed discussion on this aspect is presented in the 

subsequent subsections. 
14 
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Fig. 19. Root-mean-square of surface pressure fluctuations C p, RMS = p RMS / 0 . 5 ρ∞ U 2 ∞ distribution along the airfoil chord. For the 5406 airfoils, the values on 

the pressure side are plotted using lighter colour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. The effects of leading edge treatments on noise source characteristics 

In the previous subsections, it is observed that the noise reduction of the porous LE is generally smaller than that of the

LE serrations. To better understand the reason for this behavior, noise source characteristics on different LE treatments are 

investigated in this subsection. Following Curle’s acoustic analogy [65] and Amiet’s LE noise model [1] , noise is produced as

the consequence of fluctuating aerodynamic forces on a solid body that effectively serve as equivalent dipole sources. Hence, 

far-field noise level is proportional to the intensity and spatial coherence of the dipole sources at the airfoil surface. Based

on these, noise attenuation can be achieved by : (1) mitigating the surface pressure fluctuations to reduce the sound source

intensity and (2) reducing the coherence level or inducing destructive interference between the sound sources. These are 

referred to as source reduction and spanwise interference effects respectively and both will be discussed in the following. 

The influence of the LE treatments on unsteady aerodynamic forces on the airfoil is examined using the RMS of surface

pressure fluctuations ( p RMS ) plots in Fig. 19 . In the figure, the p RMS is normalized with freestream dynamic pressure q ∞ 

=
0 . 5 ρ∞ 

U 

2 ∞ 

and expressed as C p, RMS . Results for the 0012 series are provided in plots ( a ) and ( b), while those for 5406 series 

are in plots ( c) to ( e ). Compared to the 0012-SLE, the PLE and BLE variants are shown to reduce the peak C p, RMS level

at the LE. This indicates a smaller blockage effect imposed by the permeable leading edge on the impinging turbulence 

compared to the solid one [20,64] . However, while the intensity of pressure fluctuations for the SLE decays rapidly further

downstream, it remains higher for both PLE and BLE. In fact, the sum of C p, RMS in the range of 0 < x/c < 0 . 15 for the PLE

is 6% lower than that of the SLE, while there is almost no difference in the case of BLE. Such minor reduction in C p, RMS 

can be linked to the relatively small noise attenuation for the 0012 airfoils with porous treatments. The 0012-WLE shows 

that the C p, RMS at the serration root is slightly higher than the SLE one, but the intensity at the serration mid and tip

is significantly lower. As a result, the spanwise average of the C p, RMS on the WLE is smaller than that on the SLE, which

contributes to a substantial noise reduction. The C p, RMS decreases at serration mid since the local edge contour is skewed

against the impinging vortex street [1,38,66] . Differently, the C p, RMS reduction at the serration tip can be attributed to the

secondary vortex system generated by the serrations [39] . This is shown using the flow visualization in Fig. 20 ; note that the

vorticity sign follows the right-hand rule. The figure depicts a clockwise-rotating vortex impinging the serration tip, which 

induces downwash at the LE. However, this also leads to the production of clockwise-rotating streamwise vorticity along the 

serration mid, such that the serration tip experiences additional upwash while at the serration root, a downwash. Due to 

the influence of this secondary vortex system, the aerodynamic fluctuations at the serration tip are partially cancelled out, 

while they are enhanced at the serration root. 
15 
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Fig. 20. Instantaneous flow visualization for the 5406-WLE, bandpassed at 0 . 19 < St D < 0 . 21 . The cut plane shows the contour of spanwise vorticity 	z . 

The iso-surface corresponds to λ2 = −3 × 10 7 s −2 , colored with streamwise vorticity 	x values. Vorticity is normalized against the characteristic time scale 

D/U ∞ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 5406 airfoils show very similar trends as the 0012 ones. The peak C p, RMS level at x/c = 0 of the PLE and SPLE con-

figurations is approximately 85% lower than that of the SLE, but the pressure fluctuations on the suction side are higher

at downstream positions (see the inset in Fig. 19 ( c)). Furthermore, high C p, RMS level is found close to the location of solid-

porous junctions for each porous treatment (i.e., x/c = 0 . 15 for PLE and x/c = 0 . 1 for SPLE). Since the solid-porous junction

represents an impedance discontinuity (i.e., a sudden change in permeability), it is expected that acoustic scattering would 

also occur at this location [67] . For the WLE, the C p, RMS at the serration tip and mid is substantially smaller than that of the

SLE although the intensity at the root is higher. Pressure fluctuations downstream of the LE serration (i.e., x/c > 0 . 15 ) decays

rapidly and matches the level of the SLE, implying that noise sources are concentrated along the serrations themselves. The 

WPLE treatment shows similar distribution of pressure fluctuations as the WLE at the serration tip and mid. However, the 

sharp peak previously found at the serration root of the WLE has been substituted by a wider one with lower peak inten-

sity. Nevertheless, the sum of the C p, RMS in the range 0 . 08 < x/c < 0 . 3 (i.e., between the edge of the porous extension and

the location where the WPLE trend converges to the SLE one) for the WPLE is ≈ 10 % higher compared to that of the WLE,

which can be related to the smaller noise reduction of the WPLE. Moreover, since the C p, RMS distribution on the WPLE is

the highest at the edge of the porous extension instead of the serration root, this corroborates the assumption in previous

subection that porous extension decreases the effective serrations amplitude as perceived by the impinging turbulent inflow. 

This would eventually reduce the efficacy of the serrations, and result in smaller noise reduction [61] . 

Based on Fig. 19 , the porous LE treatments are able to substantially mitigate the surface pressure fluctuations, whereas

on the LE serrations, this is observed only at the serration tip and mid. Nonetheless, the LE serrations are able to produce

higher noise reduction than the porous treatments, which have been previously reported due to phase interference among 

noise sources along the serration span [38,39] . To verify this, two-point cross-correlation coefficients of the surface pressure 

fluctuations are computed at different spanwise positions, as defined in the following: 

R pp ( z , Δz) = 

〈 p( z ) p( z + Δz) 〉 √ 〈 p 2 ( z ) 〉 √ 〈 p 2 ( z + Δz) 〉 (6) 

where p( z ) is the time series of surface pressure fluctuations at a reference spanwise location z , 〈·〉 is the temporal-average

operator, and Δz is the spanwise separation from the z . For computing R pp , surface pressure fluctuations are sampled for 

135 vortex shedding cycles at 15 kHz. The spanwise separation equals 0 . 375 D such that there are 9 sampling points per

serration wavelength. The reference spanwise location is at the airfoil midspan ( z/D = 0 ), while the chordwise coordinate

varies for different LE treatments depending on where C p, RMS is the highest (see Fig. 19 ). 

The R pp plots are shown in Fig. 21 where the spanwise coordinate is normalized with the rod diameter. The calculation

is performed in the range of 0 < z/D < 9 , which is equivalent to 3 serration wavelengths for WLE and WPLE configurations;

the correlation coefficients for the SLE airfoils approaches zero at z/D ≈ 8 . In plot ( a ), the R pp for porous treatments (PLE

and BLE) show a monotonous R pp decay that is initially faster than the SLE one, but becomes slower for z/D > 4 . This sug-

gests that the porous LE enhances the breakdown of the smaller eddies whereas the larger ones still persist. Differently, the

WLE produces an alternating R pp trend, which decreases to negative values near the serration root (e.g., z/D = 1 . 5 , 4 . 5 , 7 . 5 )

and recovers to positive values at locations near the neighbouring serration tip (e.g., z/D = 3 . 0 , 6 . 0 , 9 . 0 ). The stark con-

trast in correlation value at the serration tip and root implies a substantial destructive interference between sources at the 

two locations. This can be attributed to the phase delay between turbulence impingement at serration tip and root due to

their chordwise separation. Correspondingly, the serration tips show positive R pp values since they are located at the same 

streamwise position. However, their peak R pp along the span also follows the downward trend that can be found in other

types of LE treatments. 
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Fig. 21. The spanwise correlation R pp of the surface pressure fluctuations for the different LE treatments. The locations of serration tips and roots for the 

WLE are indicated in the plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The correlation plots for 5406 airfoils in plot ( b) are also exhibiting similar behaviors as the 0012 ones. For instance,

both PLE and SPLE also show a decreasing trend that initially outpaces that of the SLE, but further away this trend is

reversed. The quasi-periodic correlation behavior can also be observed for both WLE and WPLE. However, unlike the WLE, 

the WPLE exhibits minor variations at locations where the porous extension is applied (e.g., 1 < z/D < 2 ). At these locations,

the R pp of the WPLE does not reach values that are as low as the WLE ones. Since the negative correlation value is linked

to the streamwise separation between the noise sources at the serration tip and root, this supports the hypothesis that the

serration amplitude of the WPLE is effectively smaller than that of the WLE, which has the consequence of impeding the

noise reduction mechanism of the serration planform [61] . 

The correlation analysis is extended into frequency domain in order to look into the spanwise phase interference effect 

for different LE treatments. The cross-spectral density of the surface pressure fluctuations G pp ( f ) is defined as in Eq. (7) ,

where r pp ( z , Δz, t) is the temporal cross-correlation function between a reference location z and another one located Δz

away, j = 

√ −1 , T equals the sampling length, and A pp is the phase angle. 

G pp ( z , Δz, f ) = 

∫ T 

0 

r pp ( z , Δz, t) e −j 2 π f t dt 

= | G pp ( z , Δz, f ) | [ cos A pp ( z , Δz, f ) + j sin A pp ( z , Δz, f ) ] (7) 

The cross-spectral density plots are illustrated in Fig. 22 . The | G pp ( f ) | is computed with the reference at the airfoil

midspan against two other locations ( a ) Δz/D = 0 . 75 and ( b) Δz/D = 1 . 5 , which correspond to the location of serration

mid and root respectively for the WLE and WPLE airfoils. In all plots, the peak of the cross-spectral density coincides with

the fundamental tone frequency and its harmonics. This is expected since the turbulent fluctuations in the rod wake are 

dominated by the coherent large spanwise vortices previously shown in Fig. 20 and Fig. 21 . The cross-spectral density plots

for the 0012 airfoils are shown at the first row of Fig. 22 . It is apparent that the spanwise source coherence is weakened

for airfoils with LE treatments, which corresponds to lower noise radiation. The | G pp ( f ) | reduction is more prominent at

the serration mid location ( z/D = 0 . 75 ) for the 0012-WLE, due to the C p, RMS being lower at the serration mid compared to

the root. At the bottom row of the figure, 5406 airfoils are also showing similar phenomena. Nevertheless, in plot ( b), the

| G pp ( f ) | level of airfoils with LE serrations (WLE and WPLE) is higher than that of porous ones (PLE and SPLE) despite the

former producing larger noise reduction. This is due to the difference in the source phase relation along the airfoil span

which will be discussed in the following. 

Previously, Fig. 21 suggests that the noise sources on LE serrations have a large spanwise phase variation, which promotes 

destructive interference that results in noise attenuation. To verify this, the cross-spectrum phase angle A pp is plotted in 

Fig. 23 . The A pp has been averaged along a serration wavelength ( 0 < z/D < 3 ) as the spanwise correlation level is still

relatively high ( R pp > 0 . 5 ) within this distance as shown in Fig. 21 ; phase interference between sources at regions with

lower correlation level would have less influence on far-field noise. The phase angle is expressed using its cosine value ( −1 <

cos (A pp ) < 1 ), where higher number indicates stronger in-phase relation. For solid airfoils (0012-SLE and 5406-SLE), the 

phase angle generally decreases in the high frequency range as smaller eddies lose coherence at a faster rate than the larger

ones (e.g., the large vortices corresponding to St D = 0 . 2 ). Among the different LE treatments, only airfoils equipped with

LE serrations (0012-WLE, 5406-WLE, and 5406-WPLE) are able to significantly decrease the phase angle at St D = 0 . 2 that

corresponds to large tonal noise reduction. Conversely, the phase angle of the airfoils with porous treatments surrounding 

the fundamental tone frequency is comparable to that of the SLE. Given that the porous treatments slightly decrease the 

coherence level at the this frequency, this leads to a relatively small tonal noise reduction. However at higher frequencies, 
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Fig. 22. The magnitude of cross-spectral density | G pp | at two locations separated by ( a ) Δz/D = 0 . 75 and ( b) Δz/D = 1 . 5 from the airfoil midspan. The top 

row corresponds to 0012 airfoils, while the 5406 ones are at the bottom. 

Fig. 23. The spanwise-averaged ( 0 < z/D < 3 ) phase angle of the cross-power-spectra of surface pressure fluctuations A pp for the different LE treatments. 

 

 

 

 

their phase angle values tend to be lower than the SLE one. This is in line with the information in Figs. 14 and 15 where

the noise reduction of the porous treatments is more substantial for the broadband noise component at higher frequencies. 

Both source reduction and spanwise interference effects of different LE treatments have been evaluated in this subsec- 

tion. Subsequently, in order to determine which mechanism plays a more dominant role in noise attenuation, a comparison 

between the noise (OSPL) attenuation against the lift fluctuations ( C l, RMS ) reduction is provided in Table 4 . This comparison

follows the application of Curle’s analogy for a compact dipole source (i.e., where the characteristic length of the source is

much smaller than the acoustic wavelengths), which relates the far-field sound pressure p a with the unsteady force F (t) on

a body, as the following: 

〈
p 2 a 

〉
= 

(
1 

4 πa ∞ 

)2 cos 2 (θ ) 

r 2 

〈 (
∂F (t) 

∂t 

)2 
〉 

(8) 
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Table 4 

The comparison between the reduction in lift fluctu- 

ations and noise mitigation for airfoils with LE treat- 

ments relative to the solid ones; LET: leading edge 

treatment. 

20 log ( 
C l, RMS , LET 

C l, RMS , SLE 
) �OSPL LET , SLE (dB) 

0012-WLE −3 . 71 −10 . 25 

0012-PLE −1 . 38 −1 . 17 

0012-BLE −0 . 94 −0 . 80 

5406-WLE −3 . 69 −7 . 78 

5406-PLE −1 . 45 −1 . 10 

5406-SPLE −2 . 06 −2 . 42 

5406-WPLE −3 . 43 −4 . 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where a ∞ 

is the freestream speed of sound, θ and r are the observer angle and distance relative to the source respectively,

and 〈 ·〉 is the temporal average operator. 

In Table 4 , the OSPL attenuation values are based on those in Fig. 16 averaged along the observation angles 60 ◦ < θ <

130 ◦ (i.e., along the main dipole lobe). The C l, RMS is first computed on sectional basis and spanwise-averaging is performed 

afterward. The C l, RMS ratio in the table is expressed in logarithmic scale to allow for comparison with the noise attenuation.

The table evidences that both values are comparable for airfoils with porous LE (0012-PLE/BLE and 5406-PLE/SPLE), which 

implies that such treatment reduces noise mainly by attenuating the sound source intensity. In contrast, the C l, RMS reduction 

underpredicts the �OSPL for 0012-WLE and 5406-WLE by a significant amount. Thus, it is possible to conclude that the 

spanwise interference effect is the more dominant noise reduction mechanism for LE serrations. The 5406-WPLE shows 

a slightly smaller C l, RMS reduction as its WLE counterpart but with substantially lower noise reduction. This implies that 

the porous extension at the serration root decreases the efficacy of the spanwise interference effect of the serrations, as 

demonstrated earlier in this subsection. 

4.4. The aerodynamic effects of the leading edge treatments 

The LE treatments have been shown in the previous subsection to attenuate far-field noise to various extents. However, 

this benefit might also be accompanied by flow-field alterations that affect aerodynamic performance. Thus, this subsection 

assesses the effects of the LE treatments on the aerodynamics of different airfoil profiles. Firstly, Fig. 24 displays the distri-

bution of time-averaged surface pressure coefficients C p, mean . To assist the interpretation of the plots, particularly for airfoils 

with porous treatments (0012-PLE/BLE and 5406-PLE/SPLE), velocity magnitude contours at the airfoil midspan are shown 

in Fig. 25 . 

The comparisons between 0012 airfoils are provided in Fig. 24 plots ( a ) and ( b) while those for 5406 ones are in ( c) to

( f ). In plot ( a ), 0012-PLE and BLE exhibit lower C p, mean at x/c < 0 . 15 which can be attributed to the flow transpiration into

the porous medium [68] . In Fig. 25 , although pathlines are shown to be deflected outside of the porous LE, some eventually

penetrate into the porous medium before being ejected further downstream, near the solid-porous junction. Downstream 

of the solid-porous junction (i.e., x/c > 0 . 15 ), the C p, mean of the porous airfoils matches that of the baseline airfoil, which

indicates that major flow-field alterations are localized near the porous medium region. Nevertheless, as shown in Fig. 26 ( a )

the porous treatments cause a noticeable velocity deficit in the boundary layer, which indicates an increase in momentum 

thickness which leads to a higher pressure drag. This process is also evidenced by Fig. 25 ( c) and ( e ) as the flow ejection

from the porous medium region leads to a faster boundary layer growth. 

The C p, mean distribution on the 0012-WLE varies depending on the spanwise position as depicted in Fig. 24 ( b). The suction

peaks at the serration tip and mid are similar to that of SLE, but they are spread across larger chordwise distance which

indicates a milder flow acceleration. Differently, the suction peak at the serration root is more prominent than the SLE one,

followed by a higher adverse pressure gradient as the pressure distribution approaches that of the SLE at x/c > 0 . 4 . However,

the adverse pressure gradien influence on the airfoil performance appears to be minor since the boundary layer profile at 

the trailing edge of the 0012-WLE still matches well with that of SLE ( Fig. 26 ( a )). 

Plot ( c) of Fig. 24 compares the pressure distribution of the 5406-SLE and those with porous treatments (PLE and SPLE).

The C p, mean peak at the suction side of the airfoil disappears, while on the other side, the surface pressure is lower compared

to that of the SLE. The smaller C p, mean difference between both sides of the porous LE implies a pressure balance process that

also leads to lift reduction. This behavior is also depicted in Fig. 25 , in which pathlines are shown to penetrate the porous

medium from the pressure side and later ejected at the suction side. Downstream of the solid-porous junction, the C p, mean 

distribution of the 5406-PLE and SPLE is still noticeably different compared to the SLE one, particularly on the suction side.

This behavior is also reflected in the boundary layer profile in Fig. 26 ( b), where a large velocity deficit caused by the porous

treatments can be found. This is also present in Fig. 25 ( d) and ( f ) where the mean cross-flow through the porous medium

results in a rapid boundary layer growth on the suction side. Conversely, due to the flow suction at the pressure side of the

PLE and SPLE treatments, the boundary layer becomes more energetic as evidenced in Fig. 26 , where the mean velocity in

the lower part of the boundary layer becomes higher than that in the SLE case. 
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Fig. 24. Time-averaged surface pressure distribution C p, mean for the different LE treatments. For the 5406 airfoils, the trends for the pressure side are 

plotted using lighter colour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The C p, mean for the 5406-WLE is plotted in Fig. 24 ( d). The suction peaks at both serration tip and mid are lower than the

SLE one, and consequently they contribute less to the total lift of the airfoil. In contrast, the suction peak at the serration

root is significantly higher than that of the SLE, which partially compensates the lift reduction at the serration tip and mid.

At x/c > 0 . 4 , the C p, mean distributions at the three spanwise locations become almost identical to that of the SLE. Plot ( e )

shows the C p, mean for the 5406-WPLE. Along the serration tip and mid, the surface pressure distribution of the 5406-WPLE 

resembles that of the WLE. However, the serration root shows a significantly lower suction peak, which is similar that 

observed in PLE and SPLE cases. Because of this, the WPLE is expected to produce smaller lift compared to the WLE variant.

In addition, Fig. 26 evidences that the WPLE configuration causes a more noticeable velocity deficit at the suction side 

compared to the WLE one. This indicates that the porous extension of the WPLE is also responsible for a more significant

drag increase. 

The effects of the LE treatments on aerodynamic forces are summarized in Fig. 27 . The time-averaged lift ( C l, mean ) and

drag ( C d, mean ) coefficients in the table are presented in term of relative difference to that of the SLE case for each respective

airfoil type. Although not shown in the figure, it has been verified that the C d, mean of the rod in all cases is ≈ 1 , similar to

that of an isolated rod [69,70] at subcritical Reynolds number. The results for the 0012 airfoils are listed in plot ( a ). Among

the different LE treatments, the porous ones (PLE and BLE) cause a drastic drag increase by almost 30%, which implies that

the solid core in the BLE does not have a significant influence on the airfoil drag. This is reflected in Fig. 26 ( a ) as there is no

noticeable difference between the boundary layer profiles of the BLE and PLE. The drag increase of the porous treatments 

can be attributed to the unsteady flow transpiration at the porous medium surface that enhances the boundary layer growth 

[48,71,72] . Unlike the porous treatments, the WLE configuration produces a minor drag increase, which can be attributed to 

the higher APG downstream of the serration root [11] . 

Fig. 27 ( b) lists the aerodynamic forces of the 5406 airfoils. Both 5406-PLE and SPLE cause a substantial drag increase by

more than 55%. This is due to the pressure balance process across the porous medium that greatly enhances flow instability

in the boundary layer on the suction side, resulting in a massive increase in momentum thickness ( Fig. 26 ( b)). Nevertheless,

the SPLE variant shows slightly lower aerodynamic penalty compared to the PLE, which suggests that streamlining the solid- 

porous junction is beneficial for maintaining aerodynamic performance. Among the different LE treatments, the WLE shows 
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Fig. 25. Pathline plots and contours of time-averaged velocity magnitude | U| /U ∞ at the midspan of airfoils with porous LE ( c to f ) in comparison to the 

SLE ( a to b). Note that some pathlines may enter or leave the sampling plane in the direction normal to this page. 

Fig. 26. The time-averaged streamwise velocity profile at x/c = 1 for each LE treatment. The plots are sampled at the midspan ( z/c = 0 ), except for WLE 

and WPLE configurations, where the values are averaged for one serration wavelength. 
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Fig. 27. Time-averaged aerodynamic forces of the airfoils with LE treatments relative to their SLE counterparts. 

Fig. 28. The isometric view of 5406-SPLE, 5406-WLE, and 5406-PWLE. The porous section of the airfoil is shown with lower opacity. The inset for SPLE 

shows a lateral view of the airfoil; for WLE/PWLE configurations, the insets show the top-down view of the planform. 

 

 

 

 

 

 

 

 

 

the least lift and drag penalties, followed by the WPLE variant. This evidences that the addition of the porous extension at

the serration root is detrimental to aerodynamic performance as previously indicated by Fig. 24 ( e ) and 26 ( b). 

4.5. Optimizing the combination of serrations and porous material 

It has been discussed in the previous sections that there are two main approaches for achieving LE noise mitigation: 

1) by attenuating the lift fluctuations on the airfoil surface, and 2) by inducing phase interference between noise sources 

along the airfoil span. The porous LE promotes mainly the former whereas the LE serrations also have the advantage of the

latter. In term of noise reduction, the present porous LE application appears to be effective only against broadband noise 

component at high frequency, while the LE serrations are also able to address the low-frequency tonal noise component. 

Additionally, the aerodynamic penalty caused by the LE serrations is significantly smaller than that of the porous LE. Thus, 

by considering the advantages and limitations of both types of LE treatments, it is possible to obtain a combination of both

to maximize noise reduction while limiting the aerodynamic penalty. 

It is proposed that an optimal combination of the LE serrations and the porous LE to have the following: 1) a small por-

tion of the LE volume made of porous material, and 2) a serration-like planform. The porosity of the LE reduces the blockage

effect in com parison to a solid one, which enables gradual dissipation of small-scale eddies (i.e, for high-frequency noise re-

duction) [20,64] . The sinusoidal planform of the serrations induces strong spanwise interference effect, which mitigates the 

scattering of large coherent eddies that are mainly responsible for low frequency noise and tones. Based on these require- 

ments, the 5406-PWLE configuration is introduced. It incorporates a porous LE with similar planform area and streamlined 

solid-porous junction as the SPLE variant, but the planform follows that of the serrations (i.e., WLE). A comparison between 

the geometries of 5406-SPLE, WLE, and PWLE airfoils is provided in Fig. 28 . 

The comparisons of the acoustic and aerodynamic performance between the PWLE and other LE variants are given in 

Fig. 29 . The PWLE configuration is found to produce a noticeable improvement of broadband noise reduction over the WLE,

whereas the tonal noise reduction remains similar. In term of aerodynamic performance, the PWLE incurs smaller aerody- 

namic penalty than the SPLE one. Nevertheless, the aerodynamic penalty of the PWLE is still significantly higher than that 

of WLE. Based on the information in Table 5 , it is found that the PWLE has a comparable C l, RMS reduction as the WLE one,

which is much lower than its �OSPL . This indicates that the spanwise interference effect also plays a major role in the noise

reduction mechanisms of the PWLE treatment. Interestingly, although it is expected for the PWLE to have higher source re- 

duction effect due to the application of porous material, the table indicates that the porous serrations enhance the spanwise 

interference effect in comparison to the WLE one. 
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Fig. 29. Comparisons of ( a ) source power level and ( b) time-averaged lift and drag coefficients between the 5406-PWLE and those with different LE 

treatments. The values are relative to the 5406-SLE. 

Table 5 

The comparison between the lift fluctuations reduction and 

noise mitigation for 5406-SPLE, WLE, and PWLE relative to 

the SLE; LET: leading edge treatment. 

20 log ( 
C l, RMS , LET 

C l, RMS , SLE 
) (dB) �OSPL LET , SLE (dB) 

5406-SPLE −2 . 06 −2 . 42 

5406-WLE −3 . 69 −7 . 78 

5406-PWLE −3 . 50 −8 . 30 

 

 

 

 

 

 

 

 

 

 

5. Conclusion and outlook 

This manuscript has presented a numerical study using the lattice-Boltzmann method to elucidate the effects of applying 

porous LE and serrations on the aeroacoustics and aerodynamics of a rod-airfoil configuration. Two airfoil profiles are con- 

sidered: NACA 0012 and NACA 5406, each with a chord length c = 0 . 1 m . The simulation replicates the experimental setup of

Jacob et al. [6] , in which the freestream Mach number equals 0.22 and the corresponding Reynolds number based on the rod

diameter is 48 0 0 0. The simulation results for the baseline rod-airfoil configuration are found to be in good agreement with

reference data. The LE treatments modify the first 15% of the airfoil chord. The LE serrations follow a sinusoidal planform

with wavelength and amplitude of 0 . 3 c, which are optimized for noise reduction based on turbulence integral length scales

in the rod wake. The porous material is modeled based on Ni-Cr-Al metal-foam using an equivalent fluid region governed 

by the Darcy’s law. 

This study shows that porous leading edge and leading edge serrations attenuate noise with two different mechanisms: 

the former mainly reduces the source intensity (i.e., the intensity of the surface pressure fluctuations) as the impinging 

turbulence is allowed to permeate into the porous medium; the latter mainly induces destructive interference between 

noise sources along the sinusoidal leading edge, in agreement with previous literature [17,39] . It is also found that induc-

ing destructive interference is a more effective noise reduction technique against the quasi-periodic excitation with the 

investigated length scales, which can be achieved using optimally designed leading edge serrations. Unfortunately, this phe- 

nomenon is weakly present in the current implementation of porous treatments, resulting in lower overall noise reduction 

in comparison to the optimized serrations. Both porous treatments and leading edge serrations cause lift reduction and 

drag increase, in which the former producing more significant impact. The drag increase in the porous leading edge case is

mainly attributed to the unsteady flow transpiration through the porous medium and the geometrical discontinuity at the 

solid-porous junction. It is also found that streamlining the solid-porous junction allows for improving aerodynamic perfor- 

mance. When the airfoil is at lifting conditions, e.g., for NACA 5406 cases, the pressure difference between the pressure and

suction sides of the leading edge results in cross flow inside the porous leading edge that further deteriorates aerodynamic 

performance. Differently, the lift reduction in the case of leading edge serrations is caused by the lower aerodynamic load- 

ing generated nearby the serration tip. By taking into account the aforementioned characteristics of the two leading edge 

treatments, an airfoil with serrated-porous leading edge has been introduced. It exhibits improved noise reduction over that 

of the regular serrations, yet the aerodynamic penalty is substantially lower compared to the regular porous leading edge. 

Within the context of present study, it is also important to realize that the rod wake has relatively uniform turbulence

properties along its span, which favours the noise mitigation mechanism of the leading edge serrations. However, such 

idealized condition is rarely the case, for instance, in the fan stage of a turbofan, where the fan wake impinges onto the

downstream vanes with different turbulent intensity, convection velocity, and length scale along the radial direction. As a 
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result, the performance of LE serrations could be impeded when applied in a fan stage [73] . Moreover, the serrations mod-

ify the vane planform that might be subject to geometrical constraints in future ultra-high-bypass turbofans as the axial 

distance between the fan and the OGV is reduced. In such situation, the porous LE may turn out to be a more promis-

ing solution since it retains original vane geometry while only modifying the material permeability. Nonetheless, further 

investigations are warranted to better understand the relationship between their physical properties and aeroacoustic char- 

acteristics. which would greatly help identifying suitable optimization approaches. 
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