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ABSTRACT:

Tree detection and tree crown delineation from Airborne LiDAR has been focusing mostly on utilizing the canopy height model
(CHM). This paper presents a method for individual tree crown delineation based on densities of high points (DHP) from the high
resolution Airborne LiDAR. The DHP method relies on the fact that the density of received laser pulses above a certain height is
high at the centre of a tree crown and decreases towards the edge of the crown. In this study, the performance of this method is
compared to the CHM approach. The results demonstrate that tree delineation based on DHP is at least comparable to the CHM
approach. The DHP based approach performs better compared to the CHM especially for trees with almost flat-top crown shape.
However, post-processing on tree crown segments is still necessary to improve the overall accuracy of tree detection and tree crown

delineation.

1. INTRODUCTION

In most cases, tree detection and crown delineation are based
on local maxima of the canopy height model (CHM) (Popescu
et al. 2002, Brandtberg et al. 2003, Popescu et al. 2003, Kini
2004, Pitkanen et al. 2004, Weinacker et al. 2004, Falkowski et
al. 2006). In addition, in most studies the Airborne LiDAR data
were recorded during summer i.e. during leaf-on condition. In a
previous study (Rahman and Gorte 2008b) we have shown that
high density Airborne LiDAR provides good information on
tree structure as well as undergrowth vegetation, especially in
the leaf-off forest condition. Forest information derived at a
detailed scale can be easily translated into coarser scales
depending on the requirements of an application. For example,
if the tree measurement is too detailed, it can be aggregated to
mean values per stand or per hectare (Brandtberg et al. 2003).

Tree detection and crown delineation based on CHM has
several disadvantages. Pitkanen, et al. (2004) developed
adaptive methods for individual tree detection based on CHM
derived from Airborne LiDAR data. The CHM in the first
method was smoothed using a Gaussian filter and the degree of
smoothing is defined by the heights of the pixels.
Subsequently, the local maxima of the smoothed CHM were
considered as tree locations. In the second method, an abundant
number of possible tree locations was selected based on the
local maxima or almost local maxima. The candidate pixels
were then reduced based on 1) the slope within the assumed
crown centre area and 2) the distance and valley depth between
a location and its neighbouring locations. The second and third
methods used a priori knowledge of the tree height and crown
diameter relationship as a parameter to adapt with the tree size.
It was pointed out that the results from these methods were not
good since only 40% of the trees could be found and it was
also reported that this was mainly caused by the large number
of local maxima but the result also contained a huge number of
false predictions. The results for fixed-scale Gaussian filtering
and height-based Gaussian filtering were almost similar. The
filtering process had slightly moved the predicted location of
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trees compared to the original image. However, for the method
that is dependent on tree height and crown size relationship, the
relation of tree height and crown width often is not modelled,
probably due to a lack of crown measurements. Another
disadvantage is caused by differences amongst tree species in
the relation between tree heights and crown widths. This was
also shown by Kini (2004) where the regression coefficients
between crown size and tree height of deciduous, pines, and
combined trees (deciduous and pines) were less than 0.6. This
would decrease the performance of the tree detection and crown
delineation process.

Weinacker et al. (2004) reported that tree segmentation based
on a smoothed CHM still contained a large number of wrong
segments, in which the regions are too small to be a tree, have
inappropriate crown shapes, or cover other trees and canopy
gaps. The segments were refined based on their shapes and
distance between tree tops. Brandtberg et al. (2003) used high
density Airborne LiDAR data acquired during winter to detect
and delineate individual trees. The tree crowns were delineated
based on the scale-space theory in which the CHM was
convolved with multi-scale Gaussian filters. The tree
segmentation results were compared to the reference tree
segments and it was shown that the segmentation approach had
only detected and correctly delineated fewer than half of the
trees in the study area. For this reason, Falkowski et al. (2006)
introduced a new technique based on the spatial wavelet
analysis (SWA) to automatically estimate the location, height
and crown diameter of individual trees within mixed conifers
using Airborne LiDAR. The advantage of this method is that no
prior knowledge of the relationship between tree height and
crown diameter is required. The performance of this method
was comparable to the variable window filtering based on priori
knowledge of the tree height and crown diameter relationship.
Utilizing high density Airborne LiDAR Reitberger et al. (2007)
introduced a method of tree detection based on stem detection
using robust algorithm of RANSAC. The method works well on
coniferous trees with a detection accuracy of 61%, but has a
relatively low detection rate of 44% in deciduous forest. This



method seems quite promising in accompanying conventional
ways of tree detection (i.e. based on CHM) especially when
there is a relatively small amount of undergrowth vegetation
under the dominant trees.

Recently we used the density of high points (DHP) from the
high resolution Airborne LiDAR to detect individual tree
locations (Rahman and Gorte 2008a). The LiDAR data was
acquired during the winter season over a floodplain area in the
Netherlands. The DHP based tree detection and crown
delineation approach relies on the fact that the density of
received laser pulses above a certain height is high at the centre
of a tree crown and decreases towards the edge of the crown.
The tree detection process was done on four datasets with
different tree properties. It was shown that the DHP-based tree
detection method could correctly detect more than 70% of the
trees under different tree conditions.

The objective of this study is to compare the capability of the
DHP with the CHM based approach for tree detection, as well
as tree crown delineation. The comparison takes into account
the following aspects:

a. Capabilities of both approaches in detecting and
delineating the trees

b. Necessity of post-processing to improve the
quality of tree locations and tree crown segments

c. Differences in tree crown shapes, canopy gaps and

undergrowth vegetation
The tree segmentation results are compared to manually
delineated tree crown segments.

2. METHODOLOGY AND STUDY AREA
2.1 Study site description

The study site is in a forested area of the Duursche Waarden
floodplain, the Netherlands (see Figure 1). The floodplain is
situated along the IJssel River, the smallest distributary of the
Rhine River in the Netherlands. The area is partly covered by
meadow and arable land and a large part of the areas has
become nature.

2.2 LIiDAR data

The LiDAR data were captured using a FLI-MAP 400 system.
The FLI-MAP 400 is a helicopter mounted LiDAR system
designed to capture highly detailed terrain features with high
accuracy. This system combines GPS positioning, rotating
scanning laser and digital imagery in its data acquisition. It is
claimed that the absolute accuracy of FLI-MAP 400 data
measured over hard and level surfaces is 2.5 to 3.0 cm. The
system is capable of scanning with oblique angle (both 7
degrees forward and 7 degrees back from nadir) and this
increases the number of reflected pulses from the ground even
in a quite densely vegetated area (Fugro SESL Geomatics Ltd
2009). The Airborne LiDAR of FLIMAP-400 data with a
density of 70 points per meter square were acquired in 2007. In
this study, three small sample areas were selected in which
Dataset 1 covers about 1330 m?® area, dataset 2 with 1024 m>
and dataset 3 with 900 m? area (see Figure 1).
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Figure 1. Study area at the Duursche Waarden floodplain, the
Netherlands and the locations of sample datasets

These datasets differ in crown shape and density of undergrowth
vegetation. Dataset 1 and Dataset 2 represent deciduous tree,
while dataset 3 represents coniferous trees. Dataset 1 contains
quite dense undergrowth vegetation (see Figure 2(a)), while the
other two datasets (dataset 2 and 3) contain less undergrowth
vegetation or an almost clear ground surface.

Figure 2. Three sample areas are selected from the study area,
dataset 1 (a), dataset 2 (b) and dataset 3 (¢)

2.3 Tree crown delineation procedure

2.3.1 DHP of tree crown: We have shown (Rahman and
Gorte 2008a) for high density small footprint Airborne LiDAR
that the density of laser pulses from tree branches above a
certain reference height is highest at the centre of a tree crown
and decreases towards the edge of crown (see Figure 3(c)). This
is due to the fact that the total volume of tree branches is higher
in the centre part of the tree crown and becomes less towards
the edge of the crown (see Figures 3(a) and 3(b)). Furthermore it
was shown (Rahman and Gorte 2008a) that regardless of crown
shapes, this property remains unchanged. In the current study,
we also show that besides detecting individual trees, the high
point density properties can also be used for individual tree
crown delineation.
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Figure 3. Side view of a tree (a), aerial view of a tree (b) and
the distribution of DHP for tree crowns (¢)

In this study, the reference height is estimated automatically
based on method used by Rahman and Gorte (2008b) for a
single tree filtering from high density airborne LiDAR data
(see Figure 4). The histogram is assumed to consist of 3
Gaussian functions representing tree crown, undergrowth
vegetation and ground surface. The original histogram is
filtered with a one-dimensional (1D) Gaussian filter to remove
noise and to produce a smoother histogram shape. The first
peak of the histogram is fitted with a Gaussian function and the
reference height is defined as a 3¢ from the mean value.
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Figure 4. Reference level for group of trees

2.3.2 Tree crown delineation for DHP and CHM : Tree
crown delineation for methods based on CHM and DHP were
done using the Inverse Watershed segmentation algorithm (this
algorithm will later refer to IW). The entire algorithm for tree
crown delineation is as follows:

1. Create a histogram for the dataset and define the
appropriate reference height

2. Select points above the reference height (see Figure 4)

3. Calculate the number of points in a column with a
specified window size (point buffer) for each point in the
dataset

4. “Convert the points to raster format with a specified
spatial resolution (cell size). Each raster cell contains the
highest value within that cell. In this study, the cell size is
fixed to 0.3 meter

5. Normalize the cell value (number of high points) to
weight that ranges from 0.1 to 1.0. The normalization is
applied only on the DHP surface to reduce range of values
for density

6. Apply 3x3 mean filter to the raster data

7. IW segmentation.

a.  Start the tree crown segmentation from the pixel
with the largest weight value

b. Grow the pixel to 8 neighbouring pixels and
label these pixels if their values are lower than
the seed pixel and more then zero. Stop the
growing process if there is no other lower
neighbouring pixels

c. Repeat steps 7a to 7b for the pixel with the next
largest weight value

* For the CHM based crown delineation, the maximum height is used
for point to raster conversion.

2.3.3 Post processing of tree crowns: The post-processing step
aims at improving the tree crown segments. The process is
based on four steps as follows:

1. Remove pixels that exceed a pre-defined maximum
tree crown radius. Each tree location was assigned
with a maximum tree crown radius and pixels that
exceed this value are removed.

2. Remove small tree crown segments. The minimum
tree crown segment is calculated based on the
minimum tree crown radius. The crown area is
calculated based on a circular shape of a tree crown.

3.  Re-classify pixels in steps (1) and (2) based on the
following consideration.

a.  Majority surrounding tree crown classes
b. The closest tree location
¢.  Maximum tree crown radius
4. Cavity filling process to fill holes inside the tree

crown.
cell | *point Min Maximum | Reference
. crown crown level
Dataset | size Buffer . .
m) m) radius radius (m)
(m) (m)
1 0.3 2.0 1.0 5.5 18.449
2 0.3 2.0 1.5 6.0 16.220
3 0.3 1.2 0.5 2.8 13.839

* Only applies to the DHP based method
Table 1.Parameters for tree crown delineation based on DHP
and CHM

Two parameters are required for the post-processing step
namely the maximum and minimum radius of tree crowns. In
this study, these are measured manually on the raw airborne
LiDAR dataset. Finally, a cavity-filling process is used to
remove holes inside a particular tree crown segment created by
the zero-value (weight or elevation) pixels by assigning zero-
value pixels to the surrounding tree segments (see Figure 5).
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Figure 5. Zero-value pixels (grey pixels) in (a) are assigned to

their surrounding tree segment (each colour belongs to a
particular tree crown segment) (b) and (c)

2.4 Evaluation

The evaluation step aims at comparing the results of tree
detection and crown delineation of the DHP and CHM
approaches to the reference tree location and tree crown
segments. With the FLI-MAP 400 dataset we can separate each
individual tree by manually observe the dataset. Therefore, the
reference data are manually delineated from the airborne
LiDAR data. There are 46 trees found in dataset 1, 24 trees in
dataset 2 and 64 trees in dataset 3. The evaluation takes into
account the capability of both methods to detect trees and
delineate tree crown. The results are evaluated based on four
aspects: 1) overall accuracy of tree detection, 2) omission and
commission errors in tree detection, 3) overall accuracy of tree
crown delineation and 4) omission and commission errors for
tree crown delineation. The calculation of overall accuracy,
omission error and commission etror is based on a conventional



approach of error matrix assessment (Girard 2003). In addition,
the evaluation is made on the performance of both approaches
with and without post-processing of tree crown segments. The
first step in the evaluation is to match the reconstructed tree
crown segments with the reference crown segments. Both
segments are considered matched if they have a maximum
intersected area (see grey area in Figure 6, segment a is
intersected with segment b and c. Segment a is matched with
segment C since they have the largest intersected area
compared to intersected area between segment @ and b.). This
information is used to estimate the overall accuracy. The other
trees are labelled as un-matched segments and this information
is used to calculate the omission and the commission errors.

c

Simulated tree crown segment
Reference tree crown segment

Intersected tree crown segment (grey area)
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Figure 6. Evaluation method

The overall accuracy, the omission error and the commission
error for tree detection are quantified using equations (1)-(3).

Overall Accuracy (tree detection) = 100 (Ny,) / (N — Ny,) + (N
- Nm) + Nm)
1)

Omission error (tree detection) = 100 (N, — N,,) / N,) )

Commission error (tree detection) = 100 ((Ng — Ny) / Ny),
3)

where N, is a total number of matched tree polygons, N, is a
total number of reference trees, and N; is a total number of
reconstructed trees.

Equations (4)-(6) are used to quantify the overall accuracy,
omission and commission errors of tree crown delineation.

Overall Accuracy (crown delineation) = 100 (T;) / ((T,— T)) +
(Ts - T + Ty)
“)

Omission error (crown delineation) = 100 (T, — T;) / T,

(5)
Commission error (crown delineation) = 100 ((T, — T;) / T), (6)

where T, is a total intersected area of the matched tree
polygons, T, is a total area of the reference tree crowns, and T
is a total area of the simulated tree crowns.

3. RESULTS AND DISCUSSIONS

3.1 Overall
delineation

results for tree detection and crown

In general, the overall accuracies of tree detection and tree
crown delineation based on DHP for deciduous forest (dataset

1 and 2) are better than those for CHM (see Figure 7). However,
for coniferous forest (dataset 3), the overall accuracy of tree
detection and tree crown delineation based on CHM are slightly
better than DHP. In general, the DHP based approach has
successfully detected at least 60% of the trees with at least 45%
accuracy in delineating the tree crowns. The CHM on the other
hand has detected at least 51% of the trees and successfully
delineates at least 30% of the tree crowns. Detailed explanation
on the effect of post-processing, shape of tree crown and canopy
gaps is discussed in the next sections.

Dataset

Overall accuracy (%)

B Overall accuracy of tree crown delineation after the post-processing of tree crown (CHM)
B Overall accuracy of tree crown delineation before the post-processing of tree crown (CHM)
B Overall accuracy of tree crown delineation after the post-processing of tree crown (DHP)
@ Overall accuracy of tree crown delineation before the post-processing of tree crown (DHP)
B Overall accuracy of tree detection after the post-processing of tree crown (CHM)

@ Overall accuracyof tree detection before the post-processing of tree crown (CHM)

@ Overall accuracy of tree detection after the post-processing of tree crown (DHP)

@ Overall accuracy of tree detection before the post-processing of tree crown (DHP)

Figure 7. Overall accuracy of tree detection and tree crown
delineation

3.2 Effects of post-processing on tree crown segments

The results have shown that without the post-processing of tree
crown segment, the tree detection based on DHP has better
overall accuracy compared to CHM with the difference of 31%
and 26% for dataset 1 and dataset 2 respectively (see Figure 7).
The overall accuracy of tree detection based on CHM for
dataset 3 is slightly better than DHP by 5%. On the other hand,
tree crown delineation based on DHP has better accuracy
compared to CHM by 21% and 16% for dataset 1 and dataset 2
respectively. However, the accuracy of tree crown delineation
based on CHM is slightly higher compared to DHP by 7%. With
the post-processing of tree crown segments the accuracy of tree
detection has been improved quite significantly compared to the
accuracy of tree crown delineation. As shown in Figure 8, the
commission error has a dominant portion of the total errors of
tree detection. This is caused by large number of wrong tree
locations, especially produced by the CHM based approach.
This error somehow tends to increase the commission error of
tree crown delineation as depicted in Figure 9. The commission
error of tree detection has been reduced quite significantly after
the post-processing. The post-processing has increased the
omission error of tree detection, especially for dataset 1 and
dataset 2. However, this is still minor since the overall accuracy
of tree detection increases after the post-processing.



3.3 Effects of different shapes of tree crown

The DHP approach produces more accurate results for
deciduous trees (dataset 1 and dataset 2) in which trees in both
datasets have an almost flat-top crown shape (see figures 2(a)
and 2(b)).

Dataset

0 10 20 30 40 50 60 70 80 90 100
Error (%)

B Commission error of tree detection after the post processing of tree crown (CHM)
B Commission error of tree detection before the post processing of tree crown (CHM)
B Commission error of tree detection after the post processing of tree crown (DHP)

0 Commission error of tree detection before the post processing of tree crown (DHP)
B Omission error of tree detection after the post processing of tree crown (CHM)

@ Omission error of tree detection before the post processing of tree crown (CHM)

@ Omission error of tree detection after the post processing of tree crown (DHP)

O Omission error of tree detection before the post-processing of tree crown (DHP)

Figure 8. Omission and commission of tree detection

Error (%)

B Commission error of tree crown delineation after the post processing of tree crown (CHM)
B Commission error of tree crown delineation before the post processing of tree crown (CHM)
B Commission error of tree crown delineation after the post processing of tree crown (DHP)
O Commission error of tree crown delineation before the post processing of tree crown (DHP)
B Omission error of tree crown delineation after the post processing of tree crown (CHM)

@ Omission error of tree crown delineation before the post processing of tree crown (CHM)

@ Omission error of tree crown delineation after the post processing of tree crown (DHP)

@ Omission error of tree crown delineation before the post-processing of tree crown (DHP)

Figure 9. Omission and commission of tree crown delineation

With this crown property, a single tree crown would exhibit
multiple local maxima. Inevitably, this would reduce the
capability of CHM approach to accurately detect the trees and
it tends to create multiple segments for a single tree crown (see
Figure 10). This problem becomes more serious for trees with a
small crown gap (i.e. dataset 2). This is shown in dataset 2,
where the accuracy of tree detection and crown delineation

based on CHM is the lowest. As explained in section 2.3.1,
compared to CHM the DHP approach would maintain its
property regardless of tree crown shape. With this property the
DHP surface might have a single tree location for a single tree
crown (see Figure 10). Thus, the IW segmentation would easily
grow from the centre of the crown towards the edge of tree
crown. However, the DHP surfaces still contain irregularities
that are caused by irregular distribution of DHP from the centre
of tree crown to edge of crown.

The irregularities of the DHP surface may be caused by very
dense undergrowth vegetation, as for example in dataset 1.
Especially when the height of undergrowth vegetation is over
the reference height it would create false signs of tree locations,
so it is possible to get multiple tree crowns within a single tree..
On the other hand, it is shown that the CHM based approach is
slightly better compared to DHP for tree detection and crown
delineation over coniferous trees. For this forest type, we may
expect to get a single local maximum for a single tree crown.
This should give an advantage compared to CHM based tree
detection and tree crown delineation. However, the results of
both methods do not show a significant difference. In this study,
the low pass filter is used to reduce the irregularities on DHP
and CHM surfaces, but this step affects the boundary of crown
segments and the tree location shifted. Furthermore, the low
pass filter suppresses small trees especially those located very
near to larger trees.

4. CONCLUSION AND OUTLOOK

The results demonstrate that DHP based tree detection and tree
crown delineation performs better than the CHM based
approach. Only for coniferous trees the CHM based approach
performs slightly better than the DHP approach. It is also shown
that post-processing on tree crown segments is necessary
especially for CHM based method to improve the overall
accuracy of tree detection and tree crown delineation. It is
proven that the crown shape would have a significant impact on
tree delineation and by only relying on height information we
might introduce a significant number of commission errors in
both tree detection and tree crown delineation. In this study,
separate evaluations have been made on tree detection and tree
crown delineation. Since no algorithm can perfectly detect the
trees and delineate the tree crowns, both assessments should be
used together to describe the performance of tree delineation
method. The results show that if one method is good in tree
detection it does not necessarily good in tree crown delineation
and vice versa. Therefore, it is crucial to find a method that has
a good balance between tree detection and tree crown
delineation. The overall framework of the individual tree
delineation introduced in this study does not require any priori
knowledge on tree height and crown diameter relationship.
Thus the framework can be easily applied on different datasets.
The datasets used in this study is rather small the ground surface
is quite flat, thus the dataset are not normalized to the ground
surface. However, for hilly area the normalization becomes
necessary to get appropriate value for reference level. Future
works is on going to combine the DHP based approach with a
single tree filtering method introduced by Rahman and Gorte
(2008b). This is a good combination since the product allows
direct tree variable measurement from point clouds. In addition
this method should be further tested on larger forest area which
includes varieties of forest types and forest conditions.
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Figure 10. Results of tree crown delineation for DHP and CHM
methods
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