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Abstract

Online advanced media streaming services using HT'TP adaptive stream-
ing are increasingly popular. However in practice, the multi-protocol, multi-
format nature of adaptive streaming creates a lot of engineering effort and
costs for the operators, in the storage and preparation of the different
formats. In this work, we acknowledge these issues and we study a stream-
ing setup that can address these. Such streaming setup consist of a backend
cloud storage and a processing node that generates streaming presentations
for different devices on-the-fly. We analyze the streaming setup and its
performance by testing in cloud deployments. Through this evaluation, we
identify the performance limitations of the setup, imposed by the transfer
of data between the object storage and the processing node. We propose a
new backend storage caching scheme, based on rarely used existing feature
of dref in the specification of the MPEG-4 standard. Experimental results
show that the proposed scheme can improve the streaming performance,
such as reduced latency and increased outgoing traffic volume towards the
clients.
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Chapter 1

Introduction

On-line video distribution has become very popular today. Video traffic is
currently consuming a large share of network resources and by 2020 the total
traffic due to video services is expected to increase up to 80% of all internet
traffic [1] .

Hosting and deploying video streaming services, requires large amounts of
network bandwidth and storage, in order to serve millions of Internet users
simultaneously. In addition, based on the number of users connected, the
server infrastructure needs varies. For example in the evenings more users
are connected, so more bandwidth and servers are needed to serve content.
To deal with this varying demand, cloud-based deployment is beneficial as
it allows to match server and network resources based on demand, using
the infrastructure as a service paradigm (IaaS). Further cloud storage is
one of the key cloud services provided under the Iass, as it offers seemingly
unlimited storage space. This storage is also persistent and protected form
device failures.

Today, HTTP adaptive streaming (HAS) is the most popular method of
content distribution for Video on Demand (VoD) and live streaming (Live).
In HAS, the video content is usually divided into smaller video segments,
coded at multiple different bit-rates each. The client can decide which bit-
rate segment it requests via an HTTP GET request, adapting thus to the
network conditions.

There are different HAS protocols developed by different vendors, each
targeting a different subset of devices and media players. Most of these
specify the format of video segments and the structure of the manifest file,
which signals the available video segments and their respective locations.
But still, within a specific HAS protocol scheme there are several degrees of
freedom for deployment such as different codecs and encryption solutions.

In practice, this means that a VoD provider needs to prepare and store
multiple versions of a content. For large scale deployments, this will in-
crease significantly the storage costs. Further, such statically coded asset



repositories are hard to maintain: in case a new format comes out, a new
version of the file needs to be created, while it might still be necessary to
keep the old version to support legacy devices. Last, the time to prepare all
these contents and store them can be significant (introducing costly multiple
encoding of content), increasing the time to deployment.

An alternative approach, is to store a single version of each packaged/encoded
version and generate the HAS specific manifest and segment on-the-fly. This
enables smaller repositories, less content preparation work and better future
proofness when new formats are released and legacy support is still needed.

An interesting streaming architecture consist of a storage node backend
that communicates with an on-the-fly conversion server, for serving incoming
HTTP video requests. Such a setup has received little attention from aca-
demia, as most researches focus on the streaming frontend with a client and
a server. However this setup is becoming more important as its compatible
with future networks that employ NFV, edge computing, and network-based
applications by distributing (media) processing units in networks.

In such a setup, the communication between the on-the-fly conversion
server and the storage backend, could have a strong impact on the streaming
performance. Omne could wonder if this setup is efficient, as the volume
of the video traffic that needs to be transferred from the storage to the
processing node, is quite big. Furthermore a delay between a centralized
storage backend and on-the-fly conversion node deployed remotely, could
degrade significantly the streaming performance .

This thesis introduces a backend streaming framework based on an on-the-
fly conversion node and a cloud storage. Several experiments are performed
in a realistic cloud deployment to study the behaviour of the setup using
different streaming protocols. Further based on the behavior of the on-
the-fly conversion node, we propose a scheme for (remote) storage access
that can reduce the streaming latency and improve client throughput. The
scheme is based on caching of server manifest file and MPEG-4 index files.
The intuition behind the scheme can be used as a paradigm of improving
the performance of more complex media processing nodes in the network.
We test the setup in different (edge) cloud deployments and for large scale
deployments with a realistic load generator for scalability.

The rest of this thesis is organized as follows. Chapter 2 gives an over-
view of the related technologies and related work. Chapter 3 presents the
streaming setup and the performance of it through an experimental work
with different media formats and protocols. The optimization scheme is
presented in Chapter 4 together with the performance evaluation of this,
in different cloud configurations (a centralized cloud and an edge cloud).
Chapter 5 deals with configuring and testing the solution for highly concur-
rent video streaming traffic for high loads. Finally Chapter 6 concludes this
thesis and outlines future research directions.



Chapter 2

Technical Background and
Related Work

This chapter presents an overview of the technical background for video
streaming and the related work. At the end of the chapter we present an
outline of the research contributions of this thesis.

2.1 Live and On-Demand Streaming Model

Video Streaming is an increasingly popular method of delivering video con-
tent. Streaming enables the viewer to start video playback while the content
is being downloaded, differing from normal file download where the entire
content needs to be downloaded first.

Figure 2.1 shows a typical end-to-end delivery model for streaming video
on-demand and live, with on-the-fly packaging. In on-demand streaming,
the video files are in the storage and they are already compressed, encoded
and packaged to a chosen file format. In live streaming, the video data are
captured by a live source and then they are compressed and encoded in real-
time by an encoder. The streaming server packages the media data to the
different protocols and serves the videos to the client. Over-the-Top (OTT)
content providers use Content Distribution Networks (CDN) to distribute
content on a large scale. CDN chooses the best available streaming server to
serve the videos, based on the geographically proximity of the server and the
client. On the client-side, the receiving content is decoded by a video player
and is rendered on a display. In this research we focus only on-demand video
streaming instead of live streaming. This is because live streaming does not
use the backend storage and does not need large scale content storage.

4
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Figure 2.1: Live and On-demand Video Streaming.

2.2 Technical Background

2.2.1 Video Codecs

Video compression or decompression is used in all video streaming proto-
cols, to reduce the size of a media presentation. There are different co-
decs available and similarly with adaptive bitrate protocols, not all codecs
are supported by all media players. The most widely used video codecs
are based on standards such as H.264 or also known as Advanced Video
Coding(MPEG-4 Part 10, AVC)[6]. Using AVC, a video should be encoded
multiple times in order to obtain different representations that have differ-
ent quality(bitrate). Other popular video codec are MPEG’s High Efficiency
Video Coding (HEVC/H.265)[7], VP9 from On2(now Google)[8]. There are
also audio codecs such MPEG-1 Audio Layer 3[9], also known as MP3, and
Advance Audio Coding(AAC)[10].

2.2.2 Media File Formats

Media data streams are wrapped in a container format. The container in-
cludes the physical data of the media but also metadata that are neces-
sary for playback. For example it signals to the video player the codec
used, subtitles tracks etc. In video streaming there are two main formats
that are used for storage and presentation of multimedia content: MPEG-
2 Transport Streams (MPEG-2 TS)[25] and ISO Base Media File Formats
(ISOBMFF)[24](MP4 and fragmented MP4).

MPEG-2 Transport Streams are specified by [25] and are designed for
broadcasting video through satellite networks. However, Apple adopted
it for its adaptive streaming protocol making it an important format. In
MPEG-2 TS audio, video and subtitle streams are multiplexed together.

MP4 and fragmented MP4 (fMP4), are both part of the MPEG-4, Part
12 standard that covers the ISOBMFF. MP4 is the most known multimedia
container format and it’s widely supported in different operating systems
and devices. The structure of an MP4 video file, is shown in figure 2.2a.
As shown, MP4 consist of different boxes, each with a different function-
ality. These boxes are the basic building block of every container in MP4.



For example the file type box (’ftyp’), specifies the compatible brands (spe-
cifications) of the file. MP4 files have a Movie Box ('moov’) that contains
metadata of the media file and sample tables that are important for timing
and indexing the media samples (’stbl’). Also there is a Media Data Box
(‘'mdat’) that contains the corresponding samples. In the fragmented con-
tainer, shown in figure 2.2b, media samples are interleaved by using Movie
Fragment boxes ('moof’) which contain the sample table for the specific
fragment(mdat box).

4 P tears-of-stesl .mpd T ) :ear_s—of—steel—400k—bp.'s‘h'\:
] fyp oy
free = moov
- , Mmoo
| I rwvhd
.:u_ trak moof
“ trak mdat
“ trak moof
“ trak mdat
moot
mdat

(a) MP4 Container (b) Fragmented MP4 Container

Figure 2.2: Structure of Media Containers using MP4Explorer.

2.2.3 HTTP Adaptive Streaming

Video streaming today is based on HTTP adaptive streaming (HAS). The
use of adaptive streaming requires the content to be encoded at multiple
bitrates streams to support different qualities. This enables adaptation to
the network conditions. Further each bitrate stream is partitioned to small
video segments with duration 2-10 seconds. When content is requested from
a server, the client first receives a manifest file. Through this manifest file,
the video player becomes aware of the available bitrates and other relevant
information. Then the video segments are requested by the video player.
The bitrate requested for each segment is determined by a rate-adaption
logic integrated to the client’s video player.

There are different HAS protocols that differ in the manifest file type
and the format that they use for the video segments[3][2]. Among these,
the most used protocols are Apple’s HT'TP Live Streaming (HLS)[4] and
Dynamic Adaptive Streaming over HTTP (DASH)I[5].

HTTP Live Streaming

HLS is the media streaming protocol that is designed by Apple, and can be
used both for VoD and LIVE. HLS uses MPEG-2 TS as their main segment
file format. The manifest file that is used by HLS, is a traditional playlist
(m3u8), which lists the media segments that are available in a timed-order.
When multiple bitrates are available, there is a root playlist that referenced
other lower-level playlists, with each representing an alternate encoding.



MPEG-DASH

DASH is the first international standard for HAS developed by MPEG and
other standard groups (e.g 3GPP[11]). DASH is media codec agnostic and
defines segment container formats for both ISOBMFF and MPEG-2TS. Yet
in practice, mostly fragmented MP4 is used. This helps with the seamless
segment switching between different bitrates, since segments are aligned and
different bitrate representations share a common timeline. The manifest file
used is xml-based and is called Media Presentation Description (mpd). The
mpd contains information required by a DASH client to construct HTTP-
URLs of the segments.

2.2.4 Cloud Object Storage

For maintaining large video databases, cloud storage is often preferred by
content providers. For example Netflix has recently migrated to the Amazon
Cloud for their computing and storage needs[28]. In particular, object based
storage is usually preferred for content repositories. Object storage is de-
signed to be used at application level and it offers an HTTP based API for
storing and retrieving unstructured objects. Objects are addressable by a
unique identifier and not by their location, offering a flat object addressing.
Its key features include big amount of storage, durability, scalability and
security.

2.2.5 Media Processing Operations in the Network

With the multi-protocol nature of video streaming and the static repositories
that are used, multiple versions of the same content are distributed through
CDN, leading to redundant CDN caching and transport of media data. This
approach is clearly unsustainable and poses a lot of limitations for the media
domain to evolve and adapt in next generations network environments.

A more efficient approach that exploits the common source of media seg-
ments and considers the challenges of emerging network environments, is
given with the latest emerging MPEG streaming standard: Network-Based
Media Processing (NBMP)[29]. This standard allows media delivery with
media processing services/functions embedded in the network. The main
aim of NBMP is to define the reference framework and interfaces between
media sources and media processing functions in the cloud or the network
(the NBMP format). The reference architecture diagram is shown in figure
2.3. It shows how a media source connects to a media processing function
that takes care of the delivery to a client using different published formats.
NBMP has a good potential to handle many of the problems with video
streaming. Besides, is already proven by previous work[21] that moving a
media processing node in the edge can address some of the current lim-
itations. Further, the definition of standardized interfaces in NBMP will



help interoperable deployments in the cloud or in the network. For more
information about NBMP, we refer to the document of [29].

The research in this work is aligned with state of art streaming systems,
conforming to the NBMP reference architecture by using a media processing
node that in this case is an on-the-fly format conversion server. On-the-fly
format conversion deals with the existence of different formats and protocols.
An example of on-the-fly conversion is dynamic packaging and manifest
generation for multi-protocol video delivery from a single source.

Further, as this is an emerging standard, there is room for introducing
new concepts, insights and related metrics that describe its performance and
behaviour. This work takes a small first step in doing this, by implementing
a simple VoD streaming scenario that suites the NBMP architecture.

Media source Media Processing Entity Media sink
(e.g. Camera, (e.g. Player)

PC, storage,
live encoder) Control Functions

NBMP Format

Publish Format
Processing (e.g. CMAF,
Functions DASH, MPU,

HLS, MPEG-2 TS)

NBMP Format

.

Media Processing Entity

Figure 2.3: Framework of Network-Based Media Processing system [29].

2.3 Related Work

The emergence of DASH and the need for adaptive bitrate selection methods,
has trigger a lot of research on the rate adaption algorithms. Several studies
have exposed the performance problems of adaptive streaming in shared
networks [12][13]. There is quite a lot of work that focus in assisting the
bitrate selection in a way that will overcome these problems with the goal of
maximizing the quality of experience (QoE) of the end-user[15][14][16][18].
On the contrary, our work relates to the server side architecture and aims
to improve the communication interface between an object storage and a
dynamic packaging server. Moreover our setup is confirming the emerging
NBMP streaming architecture of MPEG.

Other work investigates the server-side deployment of adaptive streaming
which is more closely related to this work. Specifically there is a some
work that focuses on video transcoding and different strategies of trad-
ing transcoding cost and storage(for different bitrate encoded versions of
a content)[19][20]. Although transcoding is important and relates to the
storage problem, in this research, we focus on more lightweight conversions



like container conversion, manifest generation etc. Therefore, instead of
the trade-off between compute and storage, we focus on the communica-
tion interface between the media source (object storage) and the on-the-fly
converter.

A more related work that deals with dynamic packaging is presented in [22]
and [21]. [22] evaluates the performance of two different implementations
of on-the-fly packaging integrated in the client side. The results show that
when the dynamic packaging happens in the client side, the performance
(duration of conversion) can be slow. Mekuria et al.[21] present a multi-
protocol video delivery architecture, where protocol specific media segments
are generated on the fly. The conversion node is moved into the edge, and
caches both protocol-specific segments and raw media data retrieved from
the centralized storage. This way, the authors aim to reduce redundant
traffic and caching that happens in the CDN. The work that is presented
in that paper has a similar setup with the setup that we focus on, with a
dynamic packaging node and a storage node. However that paper focuses
on creating a smart edge cache and improving the efficiency of caching,
while this work aims at reducing the latency and overhead related to object
storage access.

2.4 Our Contribution

For practical video streaming that targets multiple protocols and large as-
set repositories, the combination of on-the-fly conversion, such as dynamic
packaging, with object based cloud storage is a powerful one. Furthermore
such a setup fits well with emerging future networks by decomposing me-
dia services, into flexibly configured network-based media processing nodes.
However, prior work on video streaming does not consider this architecture
and the possible performance bottleneck between the object storage and
the dynamic packaging node. This thesis studies this problem and presents
some improvement for such a setup.
In summary, this thesis presents the following contributions:

1. Performance evaluation of a state-of-the-art streaming framework with
on-the-fly conversion and object storage on a realistic workload, using
different file formats.

2. Analysis of the communication between object storage and dynamic
packager based on Unified Origin. This reveals parts of the media data
and its metadata, that are critical for the specific media processing
node.

3. Optimization scheme for back-end using the current HT'TP infrastruc-
ture and existing features of the MPEG-4 ISOBMFF technology, based



on analysis mentioned in 2. The scheme has shown reduced latency
and improved throughput.

In addition, the setup that we focus on, fits well with the NBMP frame-
work. We believe that insights on this emerging standard can be derived
from this work, by studying this setup and introducing a metric related with
the conversion efficiency of a media processing node, that could be useful in
assessing a future NBMP format.

10



Chapter 3

Evaluating Video Streaming
with Media Processing node
and backend cloud Storage

This chapter presents the video streaming setup with on-the-fly format con-
version and backend cloud storage. It presents the setup and related research
aspects and an implementation of an experimental testbed that is analyzed
for its functionality and performance.

3.1 Overview & Research Question

In this thesis we focus on a powerful video streaming setup that combines
object based cloud storage with a media processing compute node, such as
on-the-fly conversion. The streaming setup is shown in diagram 3.1. In
this setup, VoD providers can store a single source but stream in different
protocols. Such a setup enables smaller, more maintainable repositories and
better future proofness when new formats are released and legacy support is
still needed. Also is fully cloud based. Furthermore, more advanced versions
of such a setup can support other desirable media processing operations for
VoD providers, such as ad-insertion, dynamic content encryption etc.

This setup corresponds with the architecture of NBMP defined in MPEG
as the new emerging streaming standard for immersive media that is well
suited for future networks and address the needs of network-based emer-
ging applications (section 2.2.5). As the NBMP aims to define a file format
between the media processing and storage node, there is the need to study
the communication interface of the two and understand the role of the stor-
age format. This work takes a first step in doing this, by studying a simple
VoD streaming scenario that suites the NBMP architecture.

A key question regarding the above setup, is the actual performance of
it in practical deployments. For example, the communication between the

11
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Figure 3.1: Setup with cloud storage and on-the-fly format conversion.

storage and the compute node may raise some performance limitations. This
could be because of limited features and functionality of the cloud storage
system (e.g. not supporting byte range request, limit on request rate, limited
access, limited API, policies). Also the connection to the object storage
could be limited in bandwidth or introduce some latency when the compute
node is deployed remote from the cloud storage. Another limitation could
be a low efficiency of the media processing node (more data is needed from
the storage than that is finally produced for the user).

As far as one can tell from the literature, these issues and in general such
a streaming architecture have not been studied by other work so far. In
this work we study the performance and information exchanges between the
cloud storage and a compute node responsible for dynamic packaging. The
main research question that we want to answer in this chapter is:

“What is the performance and information exchange of the setup when
different file formats are used, under heavy load? Specifically how is the
performance influenced by using MPJ and fMP4 as a storage format? Also
what is the information needed from the media files for generating HLS and
DASH presentations. Can some of the concepts and insights of the evalu-
ation be used for optimizing the media processing node, thus assisting the
NBMP framework? ”

In the next section of this chapter we will describe the experimental test-
bed that will be used to answer the above research question. Then a per-
formance evaluation of this setup is presented and the results are discussed.

3.2 Experimental Testbed: Video Streaming setup
with Origin and backend cloud storage

To address the research question, an experimental testbed was built, shown
in figure 3.2. Starting from the right side we have the cloud object-based
storage, which stores the content in two different file formats. The storage
that is used, is Amazon Simple Storage Solution (S3). Next, we have the
Origin Server which is the on-the-fly format conversion server. The on-the-
fly format conversion software that is used in the setup is Unified Origin [26]

12



and is described in section 3.2.1. Finally, on the left side we have the load
generator tool, that takes the role of simulating the client. More on this, in
section 3.2.3. The deployment details of the setup are given in section 3.2.4.

Below we give an overview of the high-level behaviour of this stream-
ing setup: When a client wants to stream video, it will initially request a
manifest file (mpd, m3u8, etc.) from the Origin Server. The Origin, then
fetches a special manifest file, called server manifest file (ism) in order to
generate the client manifest file. Then, the client will start requesting video
segments in a HAS protocol. For each segment request, the Origin will fetch
the necessary video files from the storage and will package on-the-fly the
video segment in the requested HAS protocol. Finally the protocol-specific
segment will be send to the client.

server manifst(izm),
video segments

client manifest
[mpd,m3uB)

[mp4, fmpd)
> PR _—
Load Origin Server
Generator .- -—
video segements in
HAS format (dash, ts)
Amazon Instance Amazon Istance ffﬂp4;f_ﬂp4
cdxlarge m3.xlarge files, ism

Figure 3.2: Experimental testbed deployed in Amazon cloud.

3.2.1 Unified Origin

Unified Origin[26] is the on-the-fly format conversion software that was
chosen in the experimental testebed. Unified Origin is a software plug-in
for popular web-servers and it supports dynamic packaging, manifest gen-
eration, on-the-fly encryption, different DRM systems and more.

In this setup Origin needs to communicate with the backend storage and
fetch the information that is needed to satisfy each client request. Most
of this information can be found in the actual video files (MP4 or fMP4).
Besides that, Origin uses a special ’server manifest’ file, with extension .ism,
that has important metadata information of the content (e.g available bitrate
representations, codec etc.) needed to generate the protocol-specific seg-
ments and manifests.

3.2.2 S3 Storage and File Preparations

The cloud based object storage used in this work, is Amazon’s S3 [31], offered
by Amazon Web Services (AWS) [30]. S3 is chosen as its simple and its used
from popular organizations in video streaming such as Netflix[28]. S3 has
all the benefits mention in section 2.2.4 such as HT'TP interface, durability
etc. Special care is given in populating the content database of S3, as the
content repository should reflect the challenges of a realistic repository.

13



Choosing a Media Container

To populate the content database we choose to use as storage format MP4
and fMP4. FMP4 was chosen since it is already enabled for adaptive stream-
ing and is used in DASH and other protocols (HDS, HSS and recently HLS).
MP4 was chosen because it has been used as a storage format a lot in the
past and is still being used, since converting all the content to fMP4 is time
consuming and costly.

Choosing and preparing the content

Three short videos are stored in S3: sintel!, tears of steel?> and elephants
dream®. These videos were chosen because they are open videos with no
copyright issues. The videos are available online as MP4 files, encoded
in a single bitrate. To enable adaptive streaming, each video is encoded
into multiple bitrates and multiple resolutions as shown in table 3.1, using
the ffmpeg tool[36]. Tears of steel is available only in 400 kpbs, 800 kbps,
1200 kpbs, 1900 kpbs and 3000 kpbs, because it was already available in an
encoded version. The chosen resolutions reflect the capabilities of typical
user devices such as smart-phones, tablets and HD TV.

Resolutions Video Bitrate(kbps)

480p: 640x480 200, 400, 750, 850, 1000
720p: 1280x 720 200, 400, 750, 900, 1000, 1200, 1500 ,2000
1080p: 1920 x1080 | 200, 600, 900, 1000, 2000, 2400, 2900, 3300

Table 3.1: Resolutions and Video Bitrates for Sintel and Elephants dream.

Each encoded video was then packaged to fragmented mp4 video using
Unified Packager [37] and finally the server manifest file is created using the
command shown in table 3.2.

sudo mp4split -o sintel 480p_fmp4.ism sintel_audio.ismv
sitnel 480p_200k.ismv sitnel 480p_400k.ismv sitnel 480p_750k.ismv
sitnel 480p_850k.ismv sitnel 480p_1M.ismv

Table 3.2: Creating the server manifest file(ism) for a fragmented video: The
manifest file references the .ismv files(fMP4) for each bitrate representation.

"https://durian.blender.org/
https://mango.blender.org/
3https://orange.blender.org/
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3.2.3 Load Generator Tools

The role of the load generator tool is to simulate video streaming clients
which request protocol specific manifests and video segments of different
bitrates. In this work we used two different benchmark tools: Tensor [35]
and Apache benchmark(AB) [32].

Tensor

Tensor is a tool for testing adaptive bitrate streaming by generating a real-
istic video streaming workload based on collected traces from a real video
player. Tensor is able to simulate a large number of concurrent connec-
tions in order to measure the server behavior under peak load conditions.
Tensor is based on two open source programs, WRK][33] and Performance
Co-Pilot(PCP)[34]. WRK is the actual load generator. With WRK, the
number of concurrent connections is increased every 5 seconds while the
number of requests in each connection is maximized in order to identify the
maximum throughout that the server is capable of. WRK gives the through-
put and latency metrics reported in the client side. Furthermore Tensor
collects hardware and software statistics from the origin server (throughput,
CPU usage, memory utilization) using PCP. These metrics are displayed in
a web-interface with graphs. Starting an experiment with Tensor is simply
done by supplying Tensor with the URL of a client manifest file of a spe-
cific video. The web interface of Tensor is shown in figure 3.3. Adaptive
bitrate streaming is possible because WRK gives the option of generating
a workload of HT'TP requests with different URL request thus requesting
video segments of different bitrates (different URL) simultaneously.

Apache Benchmark

AB is a popular tool that can generate various HT'TP workloads to measure
the server performance, by specifying the total number of requests and the
number of multiple requests to perform at a time. Unlike Tensor, only one
URL request can be selected for the whole workload. For this reason AB
is used to measure the performance of the streaming setup when delivering
either a manifest file or just a specific segment. AB tool reports applica-
tion layer statistics on HTTP behaviours (e.g reply rate, response time),
providing just a user-level view of the performance.

We choose to use two benchmarks, since each has a different testing range.
Tensor is used for testing large scale adaptive streaming and the workload is
more realistic. On the other hand, testing with AB is better for understand-
ing what is the performance in lowest-level operations of video streaming by
just doing individual requests either for a manifest or a video segment.
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Figure 3.3: Tensor web interface.

3.2.4 Setup Deployment

The test framework of figure 3.2, is deployed in a cloud environment, in
Frankfurt using AWS. In this preliminary performance evaluation all the
components of the setup run on the same cloud environment. In practice
the client should be further away but due to cost limitations, is placed in the
same cloud (data transfer fees for sending data outside AWS are higher). The
Origin server and the load generator tool, run on virtual servers in Amazon’s
Elastic Compute Cloud (EC2). The Origin runs on an Apache web-server
installed on an Amazon m3.xlarge instance[43] and the load generator runs
on a compute-optimize instance (c4 instance) in order to be able to handle
a big amount of connections.

3.2.5 Key Performance Indicators

The performance of the setup is measured by using three key performance
indicators (KPI). The first KPI is the average latency for a handled request
and the second is the achieved throughput in the server(or in the client in
case of using AB). The achieved throughput is measured with different ways
in AB and Tensor, as shown in table 3.3. The last KPI’s is a specific metric
for this setup, that we define later. We name this metric the ’conversion
efficiency’ for each file format and is the ratio of the outgoing traffic and the
incoming traffic in the server. This ratio can indicate the amount of more
data that the Origin needs to fetch from S3, related to what is actually
produced for the client.
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KPI Description

latency(ms) The average time it takes for a request to return a response

Tensor: Megabytes received/send per second(MB/s)

h h
throughput AB: amount of requests handled per second (request/s)

conversion efficiency | Ratio of outgoing traffic and incoming traffic in the server

Table 3.3: Summary of the three KPI’s.

These metrics are suitable for testing a streaming setup in large scale
with a big number of requests. Also they can pinpoint network impairments
which makes them suitable when focusing on the communication interface
of the Storage and the Origin. Even thought these metrics are QoS-based
and not QoE-based ([39],) they can still give an indication on the QoE of
the client. For example, lower latency indicates faster video playback and
lower start-up time.

3.2.6 Evaluation Methodology and Tested Workload

To identify what is the overhead of using a backend storage to the setup,
a comparable study is performed: using local storage and backend cloud
storage. When local storage is used, the original video files are stored in the
Origin, allowing dynamic packaging. Furthermore, some more experiments
are done with the backend storage in order to give some insights on how
different file formats influence the streaming performance.

Each test that is done (local storage, backend storage, different videos,
DASH and HLS) with Tensor, is repeated three times for cross-validation.
The throughput and latency metrics that we get for each repeated test have
a low standard deviation (4.5 for throughput and 6.9 for latency) so they
can be considered reliable. Any statistical information that is mentioned in
the following sections is derived by using the averages of each of the three
experiments.

3.3 Experimental Findings on Streaming Perform-
ance

3.3.1 Local Storage vs Cloud Storage

Figure 3.4 shows the incoming and outgoing traffic measured by Tensor,
for both local and backend storage (video stored as MP4 and fMP4). In
all cases, dynamic packaging is used and the video is requested in DASH.
Incoming traffic reflects on the backend data that the Origin fetches from
S3. The outgoing traffic is the traffic between the client and the Origin. The
figure reveals the important information regarding the performance of the
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setup that separates the media source from the Origin :

e Backend traffic is higher than the front end trafficc When backend
storage is used, in addition to the outgoing traffic there is also incoming
traffic. This is due to the raw media data (MP4/fMP4 data and ism)
that are send from S3 to the Origin. The backend traffic is actually
higher than the front end traffic.

e File format in remote storage matters: While with local storage the
outgoing throughput that is achieved for each video is similar for both
MP4 and fMP4, for the cloud storage this is not the case. The outgoing
throughput is different when the same video is stored as MP4 and as
fMP4.

e Throughput and conversion performance decreases: When backend
cloud storage is used the outgoing traffic is decreasing compared to
using local storage, even though the traffic between the client and the
Origin hasn’t changed. This is because the Origin needs to fetch some
more data from S3 than what it actually produces for the dynamic
packaging operation. Combining this with the previous point, we con-
clude that the conversion performance of Origin changes when backend
storage is added and this is also influenced by the file format. This is
why we introduce the ’conversion efficiency’ KPI that we discuss later.

e Latency increases: Latency is increased when using the backend stor-
age, because to satisfy every segment request, the Origin needs to make
additional requests to the remote storage. The figures of latency are
not shown here for space reasons.

e Rate Limit by virtual compute node: In all the tests, the maximum
throughput achieved in the server in a single interface(incoming) is
around 120MB/s(=1Gbit/sec). Thus we can conclude that Amazon
caps the in/out traffic on each instance. In the instance that is used
in these tests, this limit is 1Gbit/sec for each interface.

3.3.2 Conversion Coefficient and Differences between file formats

As said above, when the media storage is separated from Origin, the outgo-
ing throughput is decreased. Specifically the decrease in the case of fMP4
was found to by around 30% while for MP4 the decrease is 59% . Thus
the streaming performance is influenced by the file format that is used in
the storage in the case of remote storage. This is more clear by observing

4The numbers are calculated by using the average of the decrease noted for all three
videos
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Figure 3.4: Incoming and outgoing traffic for local and backend storage.

the saturated throughput measurements obtained by Tensor in table 3.4. In
all cases, storing the content as fMP4 results to higher outgoing throughput
than storing as MP4. This might be due to the fact that MP4 contains one
big 'moov’ box that contains not only the metadata but also the information
on accessing the media data. Further the saturated throughput in the out-
going link does not reach the maximum throughput of the Amazon instance
that the operator pays for, therefore resources go to waste.

This undesirable behaviour is due to the separation of the Origin and
the storage. The Origin needs to fetch more data from S3, than what it
produces. In fact the amount of data that it needs for packaging a segment,
differs per file format. To measure this amount, we define a coefficient that
we call 'conversion efficiency’. This coefficient is the ratio of the outgoing
traffic and incoming traffic and is an indication on the amount of more data
that the Origin needs to fetch from S3 related to what is actually produced
for the client after the conversion. This metric is specific for the on-the-fly
conversion node but it could be defined for any media processing function.
Table 3.4 shows that converting DASH segments from an fMP4 video source
does not create significant overhead (coefficient is almost 1) while when the
video is stored as MP4, the Origin needs almost double data (low efficiency
of 0.5).
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file format mp4 fmp4
source video ed sintel tears | ed sintel tears
in throughput(MB/s) 110,57 118,17 118,12{100,12 94,45 104,82
out throughput(MB/s) 56,80 53,08 35,7 |82,22 79,53 76,31
conversion efficiency(out/in)| 0,51 0,45 0,31 | 0,82 0,84 0,74

Table 3.4: Backend Storage results (video requested in DASH)

Testing with AB

As Tensor test the setup in large scale, we want to verify that using fMP4
in the storage gives better performance than storing MP4, also in terms of
latency. Thus AB is used to measure the latency when requesting just a
single segment. This way we can make a more clear comparison between
the two file formats. Using AB we generate a large number of DASH and
HLS requests (30000 requests) for a low bitrate segment (200kbps) and a
high bitrate segment (1Mbps) of sintel, 480p. The results are shown in the
following figure.

In summary, the results show the efficiency of using fMP4 in the storage
rather than mp4. The percentage difference of f-mp4 and mp4 in DASH case
is 78% for the low bitrate segment and 50% for the high bitrate segment.
In HLS case this difference is reduced by 20 (48% low bitrate, 30% high
bitrate), because in HLS more data are needed due to the multiplexed form
of segment(contains both video and audio). For a similar reason, the differ-
ence between mp4 and f-mp4 is less for the high bitrate segment, compared
to the difference that they have when a lower bitrate segment is requested.

Sintel,480p - DASH Sintel,480p - HLS
600 1400
[ I [ &I
[ Ifmp4 1200 [Jimpa
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Figure 3.5: Difference between MP4 and fMP4 for time per request when
segment is requested in DASH and HLS format.
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3.3.3 Discussion

The performance evaluation of the setup shown in figure 3.2, reveals that
the communication between the Origin and the backend storage creates an
overhead on the video streaming performance. The latency is increased,
the throughput between the client and the Origin is decreased and backend
traffic is higher than the front end traffic. This is an undesirable behaviour,
because the maximum throughput of the instance that the costumer pays,
cannot be achieved, therefore resources go to waste. This will also have a
negative impact on the QoE of the end user since it receives less MB/s.

The most interesting part of the performance evaluation is that the find-
ings reveal the fact that in order for the Origin to create a manifest file
or a video segment it needs some more data from S3 than what the client
will actually receive. Further this behaviour is influenced on the file format
used in the storage. One could say that this is due to the limitations of
the Origin but the good performance with local storage show that this is
not the case and is the result of separating the storage and the conversion
node. To understand why this happens we need to look deeper into the
communication between the Origin and the Storage and further understand
the functionality of the Origin. This is done in the next section. In any
case, this behaviour could be expected from any media processing node and
not just an on-the-fly conversion node. Therefore the conversion efficiency
metric that we introduce, although simple, is useful for assessing a future
NBMP format as this metric relates to the format used in the storage and
other important factors such as the processing node, the video content, the
client request and the protocol used for the communication of the Origin and
the storage. A future work that could model this metric as a solid function
on these factors, would be really useful for optimizing the processing node.

3.4 Communication Analysis of Origin and S3

Analyzing the communication between the Origin and the Storage is essen-
tial in the streaming setup that we focus, as the communication of the two
causes performance degradation and is affected by the media container used
in the storage. For this we inspect the HTTP traffic between the Origin
and S3, when a client requests either a manifest file or a segment (HLS and
DASH) while content is stored in S3 as MP4 and fMP4. This is done using
packet inspecting tools like tcp dump and Wireshark. Figure 3.6 depicts the
setup in this case. Packets are captured in the Origin using tcpdump and
saved in a file that is later used in Wireshark for analysis.
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Figure 3.6: Setup for capturing traffic between the Origin and the Storage.

Generating a client manifest file

A manifest file (mpd or m3u8) contains metadata information of the content
and the available bitrate representations of the video. On the server side,
this information is stored in the server manifest file (ism) that is in the
storage. Thus this is fetched from the storage. Further, a client manifest
file contains information for constructing the segments URLs. In order to
construct this information, the Origin will need to access the timing and
indexing information of the samples, of each bitrate representation. This
is done by a number of byte range requests sent from the Origin to the
storage, for each file referenced in the server manifest file (audio file, available
bitrate representations). Since MP4 and fMP4 have a different structure,
the number of byte range requests are different for each format.

Table 3.5 shows the information that is requested from the Storage, upon
a manifest request from the client. Each cell of the table indicates one
byte range request sent. When the content is stored as MP4, 3 byte ranges
requests are done in order to fetch the ’ftyp’ box and the 'moov’ box for
each bitrate representation ('mvhd’ is the header of moov box). The moov
atom is needed because it contains metadata and the sample tables boxes
that give indexing information about the media data (’stbl’ box).

When the source video is stored as fMP4, an additional box named Movie
Fragment Random Access Box ('mfra’), which is part of the fMP4 container
is needed. This box contains the information of locating the moof box of
each sample. The mfra box is fetched with 2 byte range requests: first for
determining the size of the box and then retrieving the mfra box. Also
for DASH, the last moof atom is necessary to know where the presentation
finishes. When an HLS manifest is generated, there are just four byte range
requests since the last moof atom is not needed.

Generating a video segment

When the client requests a video segment of a specific bitrate, the Origin
needs again the server manifest file to locate the stream that contains the
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MP4 fMP4

ftyp ftyp

mvhd moov (hundreds of bytes)
moov (hundreds of KB) mfra size (16 bytes)

- mfra (a few KB)

- last moof header (16 bytes)
- last moof (few KB or less)

Table 3.5: Byte range requests to the storage for generating a manifest file.

Source video| Protocol # HTTP requests/responses
MP4 DASH/HLS|(num_bitrate_files*3 + 1 request for ism)*2
fMP4 DASH  |(num_bitrate_files*6 + 1 request for ism)*2

HLS (num_bitrate_files*4 + 1 request for ism)*2

Table 3.6: Number of HT'TP requests and responses exchange between the
Origin and backend storage when generating a manifest file (requests and
responses)

requested bitrate. Then it has to fetch metadata and media samples from
that bitrate representation (audio/video). Fetching this information is done
with a number of byte range requests.

For MP4, there are 4 byte range requests as shown in table 3.7. As men-
tioned, the moov atom is needed for locating the samples that are requested.
In the fMP4 case the mfra box needs to be fetched as well since with this
box the Origin can locate the related segment(moof and mdat box). The
segment, in this case is a pair of a moof box and mdat box which are both
retrieved by one byte range request. In an HLS segment, audio and video
are multiplexed, thus the number of byte range requests will be doubled for
both MP4 and fMP4 cases.

Note that Origin uses byte range request in order to fetch the necessary
data from S3, instead of fetching the whole video file which would be huge.
Using multi-byte range requests could decrease the amount of requests send
to S3, but multi-byte range requests are still not supported by S3 and some
other cloud storage.

3.4.1 Discussion

The analysis done in this section has served in a various ways the under-
standing of the performance of the streaming setup and in general gives
some important insights for network-based media applications:

First regarding the performance of our setup, we have seen that using
fMP4 in the storage is more efficient (throughput is higher, transport coef-
ficient close to 1) than MP4. This is caused by the size of the moov atom
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MP4 fMP4

ftyp ftyp

mvhd (16 bytes) moov (hundreds of bytes)
moov (hundreds of KB) mfra size (16 bytes)
mdat (just the related bytes) mfra (few KB)

- moof,mdat

Table 3.7: Byte range requests to the storage for generating a DASH seg-
ment.

Source video | Protocol | # HTTP requests/responses
MP4 DASH (4 + 1 request for ism)*2=10
HLS ( 8 + 1 request for ism)*2=18
fMP4 DASH (5 + 1 request for ism)*2 =12
HLS (10 + 1 request for ism)*2=22

Table 3.8: HTTP traffic exchange between the Origin and backend storage
when generating a segment(requests and responses)

that is needed for both manifest and segment generation. The size of the
moov atom in MP4 files is bigger than in fMP4 (since it contains sample
boxes) and therefore the responses of S3 to Origin will have a bigger size.

Next, although this work is Origin-specific, we have shown that Origin
requests in an optimal way (byte range requests) only the necessary inform-
ation required by DASH and HLS, for generating a segment or a manifest
file. Therefore we can consider that any dynamic packaging software that
behaves reasonably as Origin does, could be used in this work.

Also, through the communication analysis, we see that there are parts of
the media data, that are critical for the on-the-fly conversion server. This
can be true for any media processing function. In our case this part is
the moov atom and the sample tables. This information is very important
for devising a scheme that improves the communication of the Origin and
the Storage and solve the issues mention in section 3.3.3. This scheme is
presented in the next chapter.

Finally, this work shows that file formats influence the media processing
node and its conversion efficiency, as some parts of the container are critical
for the processing. In this regard, we can conclude that it make sense to
have a NBMP format that will be designed to optimize the processing node.
For assessing such a format, the conversion efficiency metric could be used.
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Chapter 4

Proposed Optimization using
dref MPEG-4 files

This chapter describes the optimization scheme for the backend storage ac-
cess that is proposed in this research. This scheme was first introduced by
Unified Streaming in [40]. The design and implementation of the scheme is
presented. Finally the experimental evaluation of the proposed optimization
is given.

4.1 Optimization Scheme

As we have seen, the streaming setup that combines an on-the-fly format
conversion server and a cloud storage, has some performance limitations due
to the communication of the two components. To address this, we propose a
simple optimization scheme that can reduce the number of requests that are
send from the Origin to the Storage. This is done by placing a smart cache
between the Origin and the Storage, as shown in figure 4.1. This cache does
not store media data, as this would eventually expand the storage volume
of the cache. Instead, it caches only the metadata of the content and the
server manifest file.

storage in the cloud On-the-fly format conversion

VoD
[impd, mpd ] E‘ k]

cache [ism, dref]

Figure 4.1: Adding a cache between the backend cloud storage and the
Origin.
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Caching just the metadata, is possible by leveraging an existing technology
of the ISOBMFF standard in a novel way. This technology refers to the dref
MPEG-4 box which is part of the specification of ISOBMFF but is not

commonly used in practice.

The dref is basically a data reference 'box’

defined in ISOBMFF as follows: “The data reference object contains a table
of data references (normally URLs) that declare the location(s) of the media

data used within the presentation.”.

In other words, the dref box, which is part of the moov box, specifies the
location of the related media data. Containers, that hold only metadata of
a content and no physical media data, will be called dref files. In such a
container, shown in figure 4.2.b, the media data samples are located in a
separate file, that is pointed by the URL of the dref box. In contrast, a
normal MP4 container will contain both moov box and an mdat box, thus
the URL of the dref box points to the same file (figure 4.2.a). We propose
caching the lightweight dref file, together with the server manifest file (ism).
This will help the Origin to obtain the necessary metadata without the need

to contact the Storage.

%:ears-of—steel-‘..mp:l 4 ﬁtears—of—steel-‘_-mp-‘lﬂ
Jttyp Ifyp
free free
4 @ moay 4 @ moov
| Jn"'.fh:l | ._|n"'.fh:|
4 m:ra-z 4 Bl trak
| tkhd | tkhd
4 B8 mdia 4 pAmdia
Jrrd"c _|rrd"c
| hdir | hdir
4 Bl minf 4 BB minf
Jwmhd Jumhd
4 Bl dinf 4 BB dinf
4 dref 4 dref Data Entry Url Box
e Data Entry Url Box
. jan: tears-of-stesl-1Lmp4
B sthl Location: Same file Bl stbl Location:  tears-of-steel-1.mp4
mdat
(a) (b)

Figure 4.2: (a)Dref points to the same file, because the media data are in
the same file. (b)Dref points to a different file, which contains the media

data.

4.1.1 Motivation of caching the dref

The communication analysis of the Origin and S3 (section 3.4), revealed
critical data needed for dynamic packaging, that also influence the commu-
nication. These were the server manifest file (ism) and the moov box of
each bitrate representation. The dref file of representation contains only
the moov box. Therefore caching it, will cause less requests to the backend
storage. Specifically there will be a single byte range request for accessing
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the media data for each requested segment.

Figure 4.3 shows the sequence diagram and message exchange between the
Origin and the Storage, when a client request a video segment. The cache
stores only the dref and the ism file, while the media data are still served
from the back-end storage. The cache is implemented on the streaming
server for quick access to the data.

'-

Request segment L Reguestism file

Return ism fila

Request drffile
Return drffile -
Ry g ————
Request media bytes -
Return segment Return media bytes -
A i — T - L L T Tryera.

Figure 4.3: Sequence diagram of the optimization scheme. The communic-
ation indicated with red, will happen just once.

4.2 Implementation of the proposed scheme

The implementation of the proposed scheme consist of creating the dref
MPEG-4 files for the video contents and setting up a cache in the Origin
server that stores the dref and the ism files.

4.2.1 Creating the dref MPEG-4 file

The dref file should be created for every available bitrate representation of
a content. In this work we use Unified Packager to create the dref MPEG-4
files using the command shown in 4.4 .Further the server manifest file for
each content is created again, to reference the dref’s of each bitrate repres-
entation, instead of the whole file(MP4 or fMP4) for each representation.

sudo mp4split -o sintel_720p_1000k_mp4.drf —use_dref sintel_720p_1000k.mp4

Figure 4.4: Creating the dref MPEG-4 file for an mp4 file encoded to
1000kbps
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4.2.2 Implementation of the Cache

To implement the cache, we use Apache cache [41] for simplicity reasons,
since the Origin runs in an Apache server. Apache cache is controlled by the
modules mod_cache_disk and mod_cache of the Apache server. Mod_cache
controls the cacheability of an HTTP response by implementing the RFC
2616 compliant HTTP content caching filter. Mod_cache_disk is used to
store the cached responses on a disk, which is useful when proxying from a
remote location.

To integrate the cache in the setup with the Origin and the Storage, a
new virtual host is added to the configuration file of Apache. The Origin
sits in the default virtual host(port 80) and uses the special custom directive
IsmProxyPass to generate the byte range requests. When cache is used,
these requests are redirected to the new virtual host that the cache is sitting
(8080). If the request are for a dref file or the server manifest file (.ism)
then the range header is removed, before the request is redirected to the
Storage, with the Apache directive ProryPass. This is done because Apache
cache does not support caching of partial content and the Origin uses byte
range requests to fetch data from the storage. Therefore with removing the
range header from the dref requests, the dref is requested with one request
instead of 2 range requests. This in not a problem since the Origin needs
the whole dref anyway. The procedure that is described here is written in
the configuration file of Apache. A part of the configuration file of is shown
in figure 4.5. As shown, cache is enabled just for the dref files and the server
manifest file (.ism).

Internally, for each byte range request generated by the Origin the follow-
ing takes place:

1. Origin sends request to Cache with IsmProxyPass.

2. Request is forwarded to Storage with ProzyPass .

3. Storage sends an HTTP response to the cache with the requested file
(ism or dref or fMP4/MP4 data).

4. Response is cached if is contains ism or dref. Then, in any case, the
response is forwarded to the Origin (port 80).

When there is a cache hit, the steps 2 and 3 are eliminated. The correct
behaviour of cache was tested using using Wireshark. The testing is not
shown here for space considerations.
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<VirtualHost *:80>
ServerName usp-Origin ..
<Directory /var/www /s3-video>
IsmProxyPass http://localhost:8080/
< /Directory>

<VirtualHost *:8080>
ServerName usp-cache ..
<LocationMatch .ism>
CacheEnable disk
< /LocationMatch>

<LocationMatch .drf>
RequestHeader unset Range
CacheEnable disk

< /LocationMatch>

Figure 4.5: IsmProxyPass redirects Origin’s request to the cache (8080) and
then these are sent to S3.

4.3 Performance Evaluation: Experimental Test-
bed and Methodology

4.3.1 Testbed Deployment and Configurations

To evaluate the proposed setup, we carried out a set of experiments over a
testbed, deployed in virtual servers in the cloud using AWS as illustrated in
figure 4.6. In this setup we have added Apache cache and the dref files in the
storage. The Origin runs on Apache web-server on an Amazon m3.xlarge
instance and the client on an m3.medium instance[43].

As a first step in evaluating the optimized setup, we choose to use Apache
Benchmark (AB) instead of Tensor. This is because Tensor gives a bigger
overview of the streaming performance while testing in large scale and the
results are more difficult to interpret. On the contrary, AB test the lowest-
level operation of video streaming and thus is easier to understand and
evaluate the effect of caching.

The proposed optimization is tested with three different configurations.
Each configuration differs on the location of each component of the setup .
These configurations are the following:

1. Setup 1: Client & Origin & Storage in the same cloud environment.
2. Setup 2: Origin & Storage in one cloud. Client in a different cloud.

3. Setup 3: Origin and Client in one cloud. Storage in a different cloud.
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Figure 4.6: Experimental testbed for evaluating the proposed scheme.

In Setup 1, all the components are in the same cloud environment located
in Frankfurt, just like the experiments described in section 3.3.2. In Setup
2, the client is moved in Ireland, far from the Origin, to simulate a more
realistic scenario where client is in the edge. In the third configuration, the
Origin is moved together with the client to the same cloud, to simulate the
scenario of moving the Origin to the edge. Such a scenario can minimize
the traffic in the CDN (generation of segments is done near the client) and
increase the efficiency of CDN caching. In this case the Origin and the client
instances are located in Frankfurt while the storage is moved in Ireland.

Note that the proposed scheme can have 2 caching flavours. The flavour
that only caches the server manifest file (.ism) and the flavour that caches
both the manifest file and the dref. Caching just the server manifest file
is a known backend caching that might seem trivial and might be already
implemented by the industry. However caching the dref is a smart caching
that we propose and we belive that this can achieve greater performance.
To show the effect of each flavour, both are shown in the results.

4.3.2 Tested Workload

The setups are tested with AB, by generating a significant amount of re-
quests in a short period of time, with a specific concurrency level. The
requests can be of two types: request for a manifest file and for a video
segment (DASH and HLS). Each test is performed for two cases: storing
the video content as MP4 an as fMP4. Each configuration is tested with
different workloads, varying in a number of parameters (video, type of re-
quest, concurrency level and requests) to see how the setup performs under
different loads. An overview on the tests that were performed can be found
in table 4.1. For space considerations some of these results are given in the
Appendix.

4.3.3 Key Performance Indicators

The performance of each setup is measured by the two KPI’s collected by
AB in the client side: average latency and the amount of requests that can
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Setup Type of Request Video Concurrency|Requests
1,10,20,35 1000
. . . 10,20 500
Setup 1 | Segment(low & high bitrate) sintel 90 9700
150 30000
Setup 2 | Segment(low & high bitrate) |sintel, elephants dream 10 1000
Segment(low and high bitrate)|sintel, elephants dream 10 1000
Setup 3 Manifest sintel, elephants dream 110 1100000

Table 4.1: Overview of experiments that are performed for each configura-
tion.

be handled per second. The second KPI reflects on the client throughput.

4.4 Performance Evaluation: Results

The performance evaluation of the proposed scheme is presented in two
parts: First we test with performing video segment requests with AB, testing
the first three configurations and second with performing manifest requests,
in the same manner.

As table 4.1 indicates, different tests were done for setups 1 to 3. Here we
only present the tests with 1000 requests and 10 level of concurrency. The
rest of the tests are given in the Appendix. The information and conclusions
that are derived from the results are discussed while presenting the results.
Note that in the rest of the text the term server manifest file and ism are
used interchangeably.

4.4.1 Segment Request (AB)

Figures 4.7 to 4.10, show the first two KPI’s obtained from AB, for the
setups 1 to 3, when requesting video segments of sintel, 480p and elephant’s
dream, 720p. The blue bars of the graphs, indicate the results when only
the ism is cached, and the rest show the results when the dref’s are also
cached. Further the numbers in the bars, indicate the average percentage
increase(or decrease) that is achieved when the dref is used on the results
that are obtained from caching just the ism file (average of MP4 and fMP4
increase).

As shown, caching the dref and ism file performs best, for all setups. The
highest gain is achieved when testing Setup 3 by requesting segments of
sintel, 480p (figure 4.7). There, the amount of requests that are handled
is tripled in all cases (different segments of sintel) and the latency is de-
creased by 70%. However, when requesting a big segment of elephants
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dream, encoded into 2Mbps there is little or none improvement when the
dref is cached. This is because a segment of elephant’s dream, 720 resolu-
tion, encoded into 2Mbps has a size 11 times bigger than the same segment
encoded into 200Kbps. Even when the dref is cached, still the client has to
handle a big size of responses, thus the average requests/second will be low.

For a similar reason, we notice that DASH performs better (higher re-
quest/sec and lower time per request) than HLS (almost double the per-
formance in most cases), since an HLS segments contains both video and
audio data. Thus the responses will be almost twice as large as the responses
for DASH segments.

Another interesting observation is that when dref is cached the file format
of the source video does not matter and MP4 and fMP4 have almost similar
performance, as anticipated by this approach. This allows one to avoid
repackaging media collections stored using non fragmented MP4 file format.

Comparing the Setups:

Among the three setups, setup 1 performs best since everything is closer
to the client, thus the client is served more quickly. When the client is
moved far from the Origin (setup 2), more time is needed to fetch segments,
thus the latency of request increases and the amount of requests per second
decreases. When the Origin moves in the same cloud with the client (setup
3) and the cache only stores the manifest file, even more time is needed per
request. This is because the Origin will be further away from the Storage,
and there will be additional delay in fetching the media and meta data
from the Storage. However, when the cache is enabled to store also the
metadata, the requests to the Storage will be decreased and the fact that the
Storage is further away will have less impact on the performance compared
to when caching just the ism. Thus we see, that for Setup 3, when dref is
cached (yellow and green bars), the time per request is less than Setup 2 and
the amount of requests/second is higher (in most of the cases). Therefore,
comparing Setup 2 and 3, we can conclude that Setup 3 is more beneficial
when using dref, because of the results shown here and the other benefits
that it offers (less traffic and caching in CDN).
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Figure 4.7: Requests/second when requesting a DASH and HLS segment
from sintel,480p in two different bitrates.
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Figure 4.8: Requests/second when requesting a DASH and HLS segment
from elephants dream,720p in two different bitrates.
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Figure 4.9: Time per request when requesting a DASH and HLS segment
from sintel,480p in two different bitrates.

200kbps,DASH 200kbps,HLS
800 800
- mp4{caching ism}
= [ fmp4(caching ism) -
E 600 T dref(mpd) £ 600
= I ivef(fmp4) =
@ @
E] 5
& 400 T 400
g g -
° 24% = b 65%
£ 200 2 200
= 656% =
o 0
Setup 2 Setup 3 Setup 2 Setup 3
2Mbps,DASH 2Mbps,HLS
800 g
800
‘g 600 g
= = 600 1856, 27%
] &
] E]
=3 o
g 400 % 400
@ o
a a
@ @
E 200 E 200
0 0
Setup 2 Setup 3 Setup 2 Setup 3

Elephants Dream, 720p

Figure 4.10: Time per request when requesting a DASH and HLS segment
from elephants dream,720p in two different bitrates.
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4.4.2 Manifest Request (AB)

Testing the performance when a client request a manifest file, is important
as these results can indicate what is the impact of the proposed scheme in
the start-up delay which is a key QoE metric. This is because before video
playback, the video player needs the client manifest file and the initialization
segment, which contains metadata. Origin generate those by using the ism
file and dref, thus when these are stored in the cache, the client requests
will be served faster, reducing thus the start-up latency. For space consider-
ations we only show the latency results for the Setup 3, in figure 4.12 when
requesting the DASH and HLS manifest for sintel and elephants dream.

Figure 4.12 shows the results when the DASH and HLS manifest file is
requested 1000 times. The results show that the time per request is de-
creased up to 97% (for both DASH and HLS) when the dref is cached. This
is because to generate the manifest file the information needed by Origin
are the ism file and the dref files. Thus, when these are cached there will be
no requests to the remote Storage. This is a promising result that indicates
the reduction of the start-up delay. For this, we have make some simple
experiments to measure the start-up delay. These are shown in the next
subsection

Further, there are also other information that can be extracted from the
figure and explained having in mind the communication analysis done in
section 3.4:

e When the content is stored as MP4 and only the ism is cached, the
HLS and DASH tests show similar performance.

This is because, when the content is stored as MP4, the number of
requests that are sent from the Origin to the Storage is the same for
both HLS and DASH (table 3.6).

e When the content is stored as fMP4 and only the ism is cached, the
latency in the DASH case is bigger than in the HLS case.

This is because, for the fMP4 case the number of requests that the
Origin does to the storage to generate a manifest file, is more in the
DASH case than in the HLS case (table 3.6).

e Requesting the manifest file of Sintel,480p gives better performance
than when requesting the manifest file of elephants dream, 720p.

This is because the amount of request to the centralized Storage will
be more when more bitrate representations are available, thus more
time will be needed per request.
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Figure 4.11: Setup 3: Time per request for 1000 requests when client request
the manifest file of sintel, 480p and elephant’s dream, 720p.

Measuring the startup delay

As said, the previous show that the start-up delay of video playback could
decrease. For this, we have performed an experiment to measure the startup
delay when streaming video.

The startup delay that the user observes when streaming a video, can be
found by measuring the time from when the viewer intends the video to play
(selects play), to when the first frame of the video is displayed (according to
the viewer). As this can be a short interval (few seconds) measuring the time
manually with a timer would be a very rough approximation. Therefore we
have measured this time with a different way: First we use an online video
player to stream a video and at the same time we record the whole procedure
with a screen recorder software. Later, once the streaming is done, we used
a video player with high precision timing (showing milliseconds) and we
replayed the whole procedure in the slower speed. Then we simply note the
time that the viewer selects the play button, and the time that the first
frame is being noticeable. In this measurement there might be some margin
of error due to the ambiguity around when exactly to note the time as this
depends on the user(e.g when does the user observer the first frame can be
different among users). Still it is a simple and reproducible experiment that
can be considered valid even though more sophisticated approaches exist
(take measurements from video player source code).

The online video player that is used in these experiments is the DASH
reference video player dash.js 2.5.0 player [47], with auto-play (video stats
as soon as the video is loaded -no preload). This video player is developed
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by the DASH Industry Forum (DASH-IF) which develops an open source
reference client implementation for DASH-AVC/264. The stream recording
software that was used is Icecream Screen Recorder [45] and the video player
with high precision timing is the Media Player Classic Home Cinema [46].
Further we have used two videos sintel, and tears of steel, with just one
bitrate enabled for simplicity. We have performed the above procedure 10
times to measure the startup delay for each video in two streaming setups:
the baseline and the proposed setup with dref caching. In both cases, we
have used the configuration of setup 3, where the storage is remote from the
Origin, since the distance can make the differences between the two setups
more noticeable.

The bar graph below, gives the average start up delay taken by the 10
experiments. As shown, the startup delay in the proposed setup is decreased
by half a second for tears of steel and for sintel almost 2 seconds. We consider
these results a significant achievement, considering that a long startup delay
is one of the main reasons that causes user abandonment of a video and
according to Akamai’s reports [44], the tolerance duration of viewers waiting
the startup of a video is close to 2 seconds.

Tears of Steel Sintel

1.8

16

14

1.2

Average Startup Delay (s)
Average Startup Delay (s)

No Caching Caching dref & ism

No Caching Caching dref & ism

Figure 4.12: Average startup delays.

4.5 Conclusions

In this chapter, we evaluated the proposed scheme by testing the perform-
ance that is achieved for the lowest level operations in video streaming which
consist of generating a video segment and manifest file for the client. For
this, three different variations of the setup were used (Setups 1 to 3, sec-
tion 4.3.1). Through this we have seen that caching the dref files and the
server manifest file achieves the best performance in terms of throughput
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and latency. More importantly, we have seen a significant reduction in the
time of receiving a client manifest file. This could be an indication of redu-
cing the start-up delay of the video playback. By performing a few simple
experiments we have seen that indeed there is a reduction of the startup
delay for at least 30%. Having in mind that a the startup delay is a very
influential metric on the end user satisfaction, we consider this an important
achievement.

Note that the results obtained here are not testing a streaming service
as a whole, but just separate request of segments and manifest. A more
realistic workload is requests with different ULRs that are recorded from a
real video player. In fact, this is what Tensor does, in large scale. This is
tested in the next chapter, by first tuning the streaming server to be suitable
for high concurrent video streaming traffic.
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Chapter 5

Testing Origin with Highly
Concurrent Video Streaming
Traffic

This Chapter completes the experimental evaluation of the proposed setup
by testing it with high concurrent video traffic with a realistic workload,
using Tensor. In order to do this the Apache server needs to be tuned to
be able to withstand high concurrency and traffic. For this an experimental
work is performed to find an Apache configuration suitable for high concur-
rency.

5.1 High concurrency in Web Servers

Web applications have to cope with increasing concurrent demand and scale
to larger user bases. These applications are based on web-servers that need
to handle concurrent connections and use the available resources such as
CPU, RAM, and network interface capabilities. However handling high
concurrent traffic in web servers while maintaining high throughput and low
latencies, is not trivial. This problem has been studied a lot in the past, with
the famous famous C10K problem [49] that has shown that the hardware is
no longer the bottleneck for high connection concurrency, but handling large
number of TCP connections given some OS constrains and limitations. For
this, different I/O models(synchronous/asynchronous, blocking/non block-
ing) and concurrency strategies have been developed and have been imple-
mented in the web servers. These has lead to two main competitive server
architectures: thread-based architectures and event-based server architec-
tures, each handling the incoming HTTP connections in a different way.
For thread-based server architectures each incoming connection is associ-
ated with a separate thread (for mutli-threading architectures) or process
(multi-process architecture) with a blocking way. In this case concurrency
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is achieved by employing multiple threads at the same time. Webservers
like Apache have employed this strategy. On the other hand, event-driven
server architectures map a single thread to multiple connections by using
an non-blocking I/O model and queuing the I/O events of each connection
while handling others. The web server Nginx has adopted this architecture.

Still, using these concurrency models is not as simple as plug-and-play.
Some customization on the webservers concurrent models might be needed.
Consider for example that the multi-threading concurrency model, might
have some limitations with utilizing efficiently the hardware resources such
as limiting the number of simultaneous connections to the number of threads,
high CPU and memory consumption due to context switching and the map-
ping of thread stack to each connection. For this, servers like Apache, have
developed different strategies in overcoming these issues by offering mod-
ules that can be configured according to the application needs. For example
Apache offers an event module that handles the connections in an asyn-
chronous way.

Therefore, the webservers solve the C10K problem by offering software
that can be configured for deploying web applications with high concurrent
connections. Considering that video streaming applications have a client-
intensive nature and high data volume, these aspects need to be considered
and the webservers might need tuning to meet these needs. Our proposed
setup is no exception and as we want it to be functional for large scale
deployments, we test how it behaves in such high concurrency scenarios.

5.2 Tuning Apache for highly concurrent video stream-
ing traffic

As the server performance and the achieved concurrency can be limited by
the connections handling, when the server is subjected under heavy load,
proper tuning of the server could take place to optimize the performance for
scenarios of high concurrency and traffic. This is important in our setup,
where multiple activities need to be handled at the same time (client con-
nections, Storage connections, data transfer between cache and Origin) and
should be able to serve large scaled deployments.

In fact, this is evident by testing the proposed setup in large scale using
Tensor. When a high number of concurrent connections was used (around
90) the Apache server would crash, with the log file indicating that the
maximum number of threads is reached. This can be possible be considering
the following: For each client request, the Origin spawns multiple range
requests in a blocking way. Thus, the threads that handle those requests,
will be blocked until they receive a response. These requests are sent to
the cache and then the cache will need to redirect some of these requests
to S3. However if all threads are already blocked, then the cache that is
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implemented as part of the Apache server, will not be able to handle the
requests to S3, thus all threads could remain in waiting state, resulting to
deadlock. Under heavy load, this scenario could be more frequent. Simply
allowing more threads, wouldn’t solve the problem as then other issues could
appear (e.g memory swapping). Thereby, if the server is not carefully tuned
for high concurrency, it can become the bottleneck in the streaming service
and have a negative impact on the throughput and the latency.

To overcome these problems and avoid failures, we have performed an
experimental work to tune the Apache server for highly concurrent video
traffic. Towards this goal, first we study the architecture of Apache to
understand how the connections are handled and how we can configure this
in a different way, to achieve high concurrency.

5.2.1 Apache Architecture

Apache has a modular architecture comprised by a small core and a number
of modules. The Apache core is responsible for the basic functionality of
an HTTP server (listening connections, serving requests) while the different
modules extend the functionality of the core. Modules can be developed
separately and loaded to the server. Each module is concerned with handling
one or more phases of the HT'TP request processing (parsing request, map
URL to file system, authentication etc). In fact the Origin that is used in
the set-up, is a module of the Apache server. Figure 5.1 shows the basic
architecture of Apache.

Figure 5.1: Apache Architecture from [48].

The module that can be used for tuning the server for scenarios of high
concurrency and traffic, is a special-propose module called the Multi-processing
module (MPM). The MPM module is the only module that can access the
operating system directly, since it manages Apache operations at system
level such as maintaining and managing a pool of thread and processes.
Apache offers three MPM modules, differing in the way of handling threads
and processes so one can use the module that best suits the application:

41



e Prefork Module: Based on process pre-forking where each process
contains just one thread, handling one connection per time. Thus,
more processes are needed to handle a lot of request resulting to a large
memory-footprint compared to the other two multi-threaded MPMs.

e Worker Module: A multi-threaded module where each child process
manages a pool of threads. Each thread can handle one connection
and thus more connections can be handled simultaneously with fewer
resources (fewer processes). This module is recommended for high
traffic servers.

e Event Module: Similar with the worker module but keep alive con-
nections are handled more efficiently. When a keep alive connection is
established, the thread that handles this connection will not be blocked
waiting for more requests from that connection, but instead it passes
the control to a listener thread, so it will be available to server other
requests. The event module can handle high loads more easily and
is recommended to servers with extremely high hit rates. However
the event MPM does not work with secure HTTP (HTTPS) and the
Origin and requires a thread-safe polling function available in the OS
(epoll).

In our work we have use the default module in our server which is the
worker module. The MPM worker module is controlled by a number of
directives such as total number of threads, initial number of processes etc.
These directives can have a big impact on the streaming performance and
they can be changed in order to select the configuration that best suits to
the application and the desired characteristics of the server. For example
the directive that controls the maximum number of total threads that can be
lunched in the server, indicates the maximum number of request that can
be served simultaneously. More information on these directives and their
functionality can be found in Appendix B.1.

5.2.2 Experimental work and final configuration

To tune the MPM worker module of Apache for highly concurrency, we
have performed an experimental work. Through the experimental work we
have shown how the worker’s directives affect the performance and we have
found a configuration of the worker module that gives the best results in
terms of latency, throughput and CPU usage for the tested videos. This
configuration is given in figure B.9. For details on the experimental work
for Apache tuning, we refer an interested reader to the Appendix B.
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<IfModule mpm_worker_module>
ServerLimit 32

StartServers 4

MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 8

MaxRequest Workers 256
MaxConnectionsPerChild 1500
KeepAlive Off

<IfModule>

Figure 5.2: Final Configuration

5.3 Large Scale Testing of Proposed setup

This section presents a large scale testing of the proposed setup with Tensor,
by testing the whole streaming procedure with requests to the Origin, that
are based on HTTP request sequences obtained from the respective DASH
manifest. In this experiments, we have used the final tuned configuration of
Apache that was found in section B.2.3.

5.3.1 Experimental Testbed and Tested workload

For this evaluation, the experimental setup used, is the same as the one in
figure 4.6. For this test, the client, Origin and the Storage are all located in
the same Amazon cloud in Frankfurt. Tensor is used as the benchmarking
tool by using 90 concurrent connections and maximizing the number of
requests for approximately 2 minutes. The tests are done by requesting
only the DASH manifest file of the three videos in all available resolutions.
Tensor is running on an c4.xlarge instance and Origin m3.xlarge. These
results can be compared against the results obtained in section 3.3.

5.3.2 Key Performance Indicators

The KPI’s used in this evaluation are the ones described in section 3.2.5:
average latency, throughput on the server and conversion efficiency.

5.3.3 Results
Throughput

Figure 5.3 and table 5.1! shows the average saturated incoming and outgoing
traffic measured in Origin, when the dref and the ism are cached.

! Average results for all resolutions

43



Elephants Dream  fps s Sintel PP P Tears of Steel

Figure 5.3: Large scale Testing: Incoming and outgoing traffic

file format MP4 fMP4
source video ed sintel tears| ed sintel tears
in throughput(MB/s) 113,14 114,72 116,36|112,63 113,90 109,56
out throughput(MB/s) 94,89 99,07 86,65 | 95,10 98,21 82,66
conversion efficiency(out/in)| 0,84 0,86 0,74 | 0,84 0,86 0.75

Table 5.1: Backend Storage results with cache (video requested in DASH).

The results show that backend traffic is still higher than the front end
traffic, since media data still need to be fetched from S3. However the out-
going traffic has increased in all cases. Figure 5.4 shows the gain for differ-
ent resolutions of sintel and elephant’s dream, comparing with the baseline
results obtained in section 3.3. For the MP4 case, the increase is higher
(throughput on outgoing interface is doubled in sintel, 480p) since the MP4
case was really bad when caching was disabled. For tears of steel, the pro-
posed scheme achieves an increase of 143% and 8% for the case of storing as
MP4 and fMP4, respectively. In addition, the ’conversion efficiency’ for the
MP4 case has improved a lot for all the videos, reaching almost 1. This is an
indication that using and caching the dref, is a suitable way for optimizing
the on-the-fly conversion node. Further, there is no performance variation
between storing the content as MP4 or as fMP4.

Latency

Figure 5.5 shows the average latency obtained by Tensor when the cache is
disabled, when the ism is cached and when both the ism and the dref are
cached. Two different resolutions are shown for both the case of storing the
content as MP4 and fMP4. The average latency depends on the content and
resolution. The numbers in the bars indicate the percentage decrease that
is achieved related to the results when no caching takes place.
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5.4 Conclusions

In this section, we have tested the proposed scheme in large scale. For this
we had to perform an experimental work to tuned the Apache server for high
concurrent traffic. Through this evaluation we have seen that using the dref
has improved the conversion efficiency metric and solve the conversion over-
head that is created when using backend storage. With the use of this metric
we can conclude two things: First the proposed scheme indeed improves the
video streaming performance and is a container-agnostic solution, since the
variations in the performance when using as storage format MP4 and fMP4
are diminished. This gives great benefits for the content owners that use
traditional MP4 media files. Second, this metric can be useful and valid for
assessing the use of a new storage format (in our case is not really new since
we use the dref) that can be used to optimized a media processing node in
the network, which is the goal of the NBMP emerging standard.
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Chapter 6

Conclusions and Future
Work

In this thesis, we have looked into a streaming setup that consist of the an
on-the-fly format conversion server and a cloud object-based storage. Such a
setup deals with the multi-protocol nature of video streaming in an efficient
way by reducing the storage costs and the content preparation effort. A per-
formance evaluation of the setup was performed using different file formats
and we were able to identify the performance limitations that are imposed
by the communication of the object storage and the conversion server. Fur-
ther we have looked into the data that are exchanged between the storage
and the conversion server. This was useful for understating the evaluation
findings. Also through the communication analysis, we were able to identify
critical data for the on-the-fly format conversion server, that are imposed by
the different standards. Based on this, a simple optimization caching scheme
based on the dref box of the ISOBMFF standard was used. This scheme can
reduce the number of requests to the object storage by caching the critical
data for the on-the-fly conversion operation. We have evaluated the pro-
posed scheme in realistic cloud configurations with realistic workloads. The
results have shown that this approach has improved network performance
with increasing the throughput and decreasing the latency. Furthermore,
simple experiments have shown that the starup delay of the video playback
can be reduced, with a maximum reduction of 60% for sintel.

An important research aspect of this work is the fact that the setup that
we have looked into, is aligned with the architecture of the NBMP emerging
standard of MPEG, where the media processing node is separated from the
media source. We consider this as an important feature of the thesis, as this
standard can help the media domain to evolve and adapt in the next genera-
tions network environments. We believe that through the work of this thesis,
some important insights can be derived that can be useful for the NBMP
standard. For example, we have shown that parts of the media containers are
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critical for a media processing operation and they way these are stored, can
influence the efficiency of the media processing node. This shows two things:
First, it makes sense to have a common NBMP format that will be designed
in a way that the critical data will be efficiently stored to optimize the media
processing node. Also considering the fact that the critical data for a media
processing node can be imposed by the media protocols e.g DASH, these
can be used to indicate inefficiencies in the existing protocols that can be
improved. Second, the conversion efficiency metric that we introduce, could
be useful for assessing a future NBMP format, since we have seen that this is
related to the format used in the storage and it can be defined for any media
processing node. In this case, the metric should by studied more in order to
define in a solid way how this affected by the storage format. Through our
work, we have seen that this metric is not only affected by the storage format
but is a function of different factors: format in the storage (MP4/fMP4),
client request and protocol (DASH/HLS), communication protocol between
storage and processing node (HTTP /file access), the media processing unit
and last the requested content. Future work could focus on defining this
function that will fully describe the conversion efficiency.

In addition, in the future, the overall implementation of the scheme could
be improved by using a different approach to implement the cache of the
proposed scheme, as mention in B.2.4. Furthermore this work could be ex-
tended by using a more complex media processing function . For example
the media processing function could be an on-the-fly conversion server that
is also responsible for stitching content from different sources e.g for person-
alization streams and advertisements. Then the setup differs as there is an
additional media source entity. In this case, it would be interesting to see
how the dref approach performs.

48



Bibliography

[1] Cisco Global Cloud Index:Forecast and Methodology, 20152020, Cisco
technical report

[2] Microsoft. Smooth Streaming Protocol. [MS-SSTR] - v20150630, June
2015. http://download.microsoft.com/download/9/5/E/95EF66AF-
9026-4BB0-A41D-A4F81802D92C/ [MS-SSTR] . pdf . (visited on
20/12/2017.)

[3] Adobe Systems Incorporated. HTTP dynamic streaming specifica-
tion. Version 3.0, August 2013. http://wwwimages.adobe.com/content/
dam/Adobe/en/devnet/hds/pdfs/adobe-hds-specification.pdf (vis-
ited on 20/12/2017.)

[4] Pantos, R., May, W. 2010. HTTP Live Streaming. IETF draft, Novem-
ber  2015.https://tools.ietf.org/pdf/draft-pantos-http-live-
streaming-18.pdf

[5] I. Sodagar, ”The MPEG-DASH Standard for Multimedia Streaming
Over the Internet,” in IEEE MultiMedia, vol. 18, no. 4, pp. 62-67, April
2011.

[6] H.264/14496-10 AVC Reference Software Manual (revised for JM 19.0)

[7] G.J. Sullivan, J. R. Ohm, W. J. Han and T. Wiegand, ” Overview of the
High Efficiency Video Coding (HEVC) Standard,” in IEEE Transactions
on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-
1668, Dec. 2012.

[8] VP9 [Online] Available: https://www.webmproject.org/vp9/ (visited
on 20/12/2017.)

[9] MP3 [Online] Available: https://en.wikipedia.org/wiki/MP3 (vis-
ited on 20/12/2017.)

[10] ISO (1997). "ISO/IEC 13818-7:1997, Information technology — Generic
coding of moving pictures and associated audio information — Part 7:
Advanced Audio Coding (AAC)”.

49


http://download.microsoft.com/download/9/5/E/95EF66AF- 9026-4BB0-A41D-A4F81802D92C/[MS-SSTR].pdf.
http://download.microsoft.com/download/9/5/E/95EF66AF- 9026-4BB0-A41D-A4F81802D92C/[MS-SSTR].pdf.
http://wwwimages. adobe.com/content/dam/Adobe/en/devnet/hds/pdfs/adobe-hds- specification.pdf
http://wwwimages. adobe.com/content/dam/Adobe/en/devnet/hds/pdfs/adobe-hds- specification.pdf
https://tools.ietf.org/pdf/draft-pantos-http-live-streaming-18.pdf
https://tools.ietf.org/pdf/draft-pantos-http-live-streaming-18.pdf
https://www.webmproject.org/vp9/
https://en.wikipedia.org/wiki/MP3

[11] 3rd Generation Partnership Project (3GPP) [Online] Available :
http://www.3gpp.org/about-3gpp (visited on 20/12/2017.)

[12] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen, “What
happens when HTTP adaptive streaming players compete for band-
width?,” in Proc. NOSSDAV, 2012, .

[13] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari,
“Confused, timid, and unstable: picking a video streaming rate is hard,”
in IMC ’12: Proceedings of the 2012 ACM conference on Internet meas-
urement conference. New York, New York, USA

[14] J. W. Kleinrouweler, S. Cabrero, R. van der Mei and P. Cesar, ”Model-
ing Stability and Bitrate of Network-Assisted HT'TP Adaptive Streaming
Players,” 2015 27th International Teletraffic Congress, Ghent, 2015,

[15] Ricky K. P. Mok, Xiapu Luo, Edmond W. W. Chan, and Rocky K. C.
Chang. 2012. QDASH: a QoE-aware DASH system. In Proceedings of the
3rd Multimedia Systems Conference (MMSys ’12). ACM, New York, NY,
USA.

[16] Abdelhak Bentaleb, Ali C. Begen, and Roger Zimmermann. 2016. SDN-
DASH: Improving QoE of HTTP Adaptive Streaming Using Software
Defined Networking. In Proceedings of the 2016 ACM on Multimedia
Conference (MM ’16). ACM, New York, NY, USA.

[17] Panagiotis Georgopoulos, Yehia Elkhatib, Matthew Broadbent, Mu
Mu, and Nicholas Race. 2013. Towards network-wide QokE fairness us-
ing openflow-assisted adaptive video streaming. In Proceedings of the
2013 ACM SIGCOMM workshop on Future human-centric multimedia
networking (FhMN ’13). ACM, New York, NY, USA.

[18] Jan Willem Kleinrouweler, Sergio Cabrero, and Pablo Cesar. 2016. De-
livering stable high-quality video: an SDN architecture with DASH assist-
ing network elements. In Proceedings of the 7th International Conference
on Multimedia Systems (MMSys ’16). ACM, New York, NY, USA.

[19] F. Jokhio, A. Ashraf, S. Lafond and J. Lilius, ”A Computation and
Storage Trade-off Strategy for Cost-Efficient Video Transcoding in the
Cloud,” 2013 39th Euromicro Conference on Software Engineering and
Advanced Applications, Santander, 2013.

[20] H. Zhao, Q. Zheng, W. Zhang, B. Du and H. Li, A Segment-Based
Storage and Transcoding Trade-off Strategy for Multi-version VoD Sys-
tems in the Cloud,” in IEEE Transactions on Multimedia, vol. 19, no. 1,
pp- 149-159, Jan. 2017.

50



[21] Rufael Mekuria, Jelte Fennema, and Dirk Griffoen. 2016. Multi-
Protocol Video Delivery with Late Trans-Muxing. In Proceedings of the
2016 ACM on Multimedia Conference (MM ’16). ACM, New York, NY,
USA.

[22] Daniel Silhavy, Stefan Pham, and Stefan Arbanowski. 2017. Per-
formance considerations of HTML5-based dynamic packaging for media
streaming. In Proceedings of the 27th Workshop on Network and Operat-
ing Systems Support for Digital Audio and Video (NOSSDAV’17). ACM,
New York, NY, USA, 7-12.

[23] Marina Kalkanis, Video Factory: Transcoding Video for BBC iPlayer.
[Online| Available: http://www.bbc.co.uk/blogs/internet/entries/
eb9d3ca8-56bb-39a0-b990-07e14c5996£4 (visited on 20/12/2017)

[24] ISO/IEC 14496-12:2005 Information technology — Coding of audio-
visual objects — Part 12: ISO base media file format

[25] International Organization for Standardization, "ISO/IEC Interna-
tional Standard 13818: Generic coding of moving pictures and associated
audio information”, October 2007,

[26] CodeShop B.V., ”Unified Streaming,” 5 4 2016. [Online]. Available:
www.unified-streaming.com. (visited on 20/12/2017)

[27) Wowza [Online] Available: https://www.wowza.com (visited on
20,/12/2017)

[28] Yury Izrailevsky, Stevan Vlaovic and Ruslan Meshenberg,
Completing the Netflix Cloud Migration [Online] Available:
https://media.netflix.com/en/company-blog/completing-the-
netflix-cloud-migration (visited on 20/12/2017)

[29] ISO/IEC JTC1/SC29/WG11 MPEG2017/N17262, Network Based Me-
dia Processing, Use cases and draft requirement for NBMP (v2).

[30] Amazon Web Services [Online] Available: https://aws.amazon.com/
(visited on 20/12/2017)

[31] Amazon Simple Storage Solution [Online] Available: https://aws.
amazon.com/s3/ (visited on 20/12/2017)

[32] Apache HTTP server benchmarking tool[Online| Available: http://
httpd.apache.org/docs/current/programs/ab.html

[33] W. Glozer, ”WRK Modern HTTP benchmarking tool,” 8 4 2016. [On-
line]. Available: https://github.com/wg/wrk. (visited on 20/12/2017)

o1


http://www.bbc.co.uk/blogs/internet/entries/eb9d3ca8-56bb-39a0-b990-07e14c5996f4
http://www.bbc.co.uk/blogs/internet/entries/eb9d3ca8-56bb-39a0-b990-07e14c5996f4
www.unified-streaming.com.
https://www.wowza.com
https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration
https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration
https://aws.amazon.com/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
http://httpd.apache.org/docs/current/programs/ab.html
http://httpd.apache.org/docs/current/programs/ab.html
https://github.com/wg/wrk

[34] Performance Co-Pilot [Online] Available: http://pcp.io/ (visited on
20/12/2017)

[35] Abe Wiersma. 2016. Determining meaningful metrics for Adaptive Bit-
rate Streaming HTTP video delivery Bachelor thesis. University of Ams-
terdam (UVA), Amsterdam, The Netherlands

[36) FFMPEG tool. [Online]. Available: https://www.ffmpeg.org/ (vis-
ited on 20/12/2017)

[37] Unified Packager. [Online]. Available:  http://docs.unified-
streaming.com/documentation/package/index.html  (visited on
20/12/2017).

[38] Unified Capture. [Online]. Available: http://docs.unified-
streaming.com/documentation/capture/index.html  (visited on
20/12/2017).

[39] M Seufert, S Egger, M Slanina, T Zinner, A survey on quality of ex-
perience of HT'TP adaptive streaming

[40] Remote Storage Reducing Latency [Online]. Available: http:
//docs.unified-streaming.com/documentation/vod/optimizing-
storage-caching/creating-the-index-mp4-files (visited on
20/12/2017)

[41] Apache Caching Guide: https://httpd.apache.org/docs/2.4/
caching.html

[42] Hypertext Transfer Protocol — HTTP/1.1 Section 13 o fRFC2616-
HTTP caching

[43] Amazon EC2 Instance Types [Online] Available: https://aws.
amazon.com/ec2/instance-types/

[44] S. Shunmuga Krishnan and Ramesh K. Sitaraman. 2012. Video
stream quality impacts viewer behavior: inferring causality using quasi-

experimental designs. In Proceedings of the 2012 Internet Measurement
Conference (IMC ’12). ACM, New York.

[45] Icecream Screen Recorder tool [Online] Available:  https://
icecreamapps.com/Screen-Recorder/

[46] Media Player Classic-HS [Online| Available: https://mpc-hc.org/

[47] DASH Industry Forum- DASH Reference Client 2.5.0 [Online] Avail-
able: http://dashif.org/reference/players/javascript/v2.5.0/
samples/dash-if-reference-player/index.html

52


http://pcp.io/
https://www.ffmpeg.org/
http://docs.unified-streaming.com/documentation/package/index.html
http://docs.unified-streaming.com/documentation/package/index.html
http://docs.unified-streaming.com/documentation/capture/index.html
http://docs.unified-streaming.com/documentation/capture/index.html
http://docs.unified-streaming.com/documentation/vod/optimizing-storage-caching/creating-the-index-mp4-files
http://docs.unified-streaming.com/documentation/vod/optimizing-storage-caching/creating-the-index-mp4-files
http://docs.unified-streaming.com/documentation/vod/optimizing-storage-caching/creating-the-index-mp4-files
https://httpd.apache.org/docs/2.4/caching.html
https://httpd.apache.org/docs/2.4/caching.html
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://icecreamapps.com/Screen-Recorder/
https://icecreamapps.com/Screen-Recorder/
https://mpc-hc.org/
http://dashif.org/reference/players/javascript/v2.5.0/samples/dash-if-reference-player/index.html
http://dashif.org/reference/players/javascript/v2.5.0/samples/dash-if-reference-player/index.html

[48] Nick Kew, The Apache Modules Book: Application Development with
Apache

[49] Kegel,Dan: The C10k Problem, Tech. Rep., Kegel.com

53



Appendix A

Additional Results when
Evaluating the proposed
setup using AB

In this section we present some additional results of the experiments that
were done as part of the evaluation of the proposed setup in Chapter 4.
Specifically we show some of the experiments described in table 4.1, mostly
for Setup 1.

A.1 Experiments with high concurrency level (Setup
1)

The tests with high concurrency (90 and 150)! are mainly used to compare
the proposed setup with the baseline setup (Chapter 3), when no caching
takes place. This is because the same experiment is performed with the
baseline setup, so its fair to compare them. The following figures (A.1-
A.4), show the two KPI'S collected by AB, when requesting a segment of
sintel (specific bitrate and protocol) in three different cases: the baseline
configuration and the two flavors of the proposed optimization: caching
ism and caching ism and dref. Figures A.1 and A.3 show the results when
performing 2700 requests and figures A.2 and A.4, the results for 30000
requests. From the figures, we make the following observations:

e Caching only the ism file, does not give significant gain in most cases,
compared to not using a cache, probably due to the small size of it
(a few KB). The highest gain achieved when caching the ism, is ob-
served in the case of requesting 2700 DASH fmp4 segments encoded
into 1Mbps (increase number of requests/second by 74% and decrease

'Tuned configuration is used(chapter 5)
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time per request by 43%). There is a case when the setup reacts very
irregular and caching the ism performs worst. This is when requesting
a dash segment of 200kbps. This might be caused by an overhead
created by sending everything (metadata and video files) through the
additional proxy host of the cache, while the cache is not storing any-
thing expect the ism.

Over the three cases (no cache, cache the ism, cache ism and dref),
caching the dref and ism file performs best or as good as the baseline
results. The gain that is achieved depends in the concurrency level, the
bitrate of the segment and the protocol used. The percentage increase
(or decrease for time per second) of using dref, over the baseline results
are indicated in the figures.

The results verify the fact that when dref is cached, mp4 and fmp4
perform similar, in contrast with the case of not using cache, where
fmp4 and mp4 have different performance.

When delivering a segment of higher bitrate, a lower requests/second
amount is achieved (and higher latency) compared to delivering a lower
bitrate segment. This is because a segment encoded into higher bitrate
has a bigger size than a lower bitrate segment.

DASH performs better(higher request/sec and lower time per request)
than HLS (almost double the performance). This can be explained
by the fact that an HLS segment includes both video data and audio
data.
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A.2 Experiments with increasing concurrency level
(Setup 1)

Figures A.5 to A.8 show how the two KPI’s of section 4.3.3, are influenced
by increasing the concurrency level. Again, the two cache versions are shown
here: caching just the ism, caching ism and the dref. The results of caching
only the ism file are indicated with the bars denoted as mp4 and fmp4.
Figures A.5 and A.6 give the results when the number of request to be
performed at a time are 1, 10, 20 and 35 with 1000 requests and figures A.5
and A.8 show the results when the concurrency level is increased from 10 to
20 for 500 requests.

The most important observation in these results, is that in all cases, using
the dref performs better than just caching the ism file. Also when the
concurrency increases, the requests per second increases as more requests
can be send at once.
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A.3 Requesting the manifest

Figure A.9 show the results when the DASH and HLS manifest file is re-
quested 1000 times, with 1 connection, for Setup 3. As discussed in section
4.4.2 the latency for a manifest has a huge decrease when the server mani-
fest file and the dref are cached. Further figure A.10 show the results when
requesting the manifest file from sintel, for the three setups.
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Appendix B

Tuning Origin for Highly
Concurrent Video Streaming
Traffic

In this Chapter we show the experimental work that is performed in order
to tune the Origin server for high concurrent video streaming traffic. The
experimental work is done by generating a high load on the server using
Tensor and monitoring the server behaviour while twiddle specific knobs
of the worker multi-threaded module of Apache. Through this we specify
a configuration of the module that is suitable for high concurrency in our
setup.

Note that analyzing concurrency concepts and techniques is a huge topic
by itself and is out of the scope of this thesis. In this work we just give some
basic insights on how different parameters affect the streaming performance
and how is better to change them when using such a setup. This experi-
mental work can also be useful for others that use different setups and want
to tuned their streaming server for high concurrency.

B.1 Multi-processing Worker module

In our work we have use the default module in our server which is the worker
module. The MPM worker module is controlled by a number of directives.
These directives can be changed in order to select the configuration that
best suits to the application and the desired characteristics of the server.
The way the module works and the control of each directive is described
below (figure B.1):

Initially the parent process, lunches a number of child process specified
by StartServers. Each child process, maintains a pool of a fixed number
of threads that is specified by ThreadsPerChild, and a listener thread.
The listener thread listens for new incoming requests, and once a request
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arrives it pass the request to an idle thread within the process. When all
the threads of a process are busy with handling requests, the listener thread
will not longer listen to incoming requests. The maximum number of total
threads that can be lunched in the server is specified by MaxRequest-
Workers which indicates the maximum number of request that can be
served simultaneously. The maximum number of child processes is found by
dividing the total number of threads to the number of threads per child and
is set using the directive ServerLimit. The server always maintains a pool
of idle threads that can serve new incoming requests. The number of idle
threads is controlled by MinSpareThreads and MaxSpareThreads. De-
pending on the number of idle threads, the server will either kill or spawn
new threads, to meet the minimum and maximum values. Finally Max-
ConnectionsPerChild specifies the number of connections that a process
can serve before it dies.

child process child process
e

I R

ThreadsPerChild ™ ThreadsPerChild ™

I -]
58 3 KB
L= ZEQZE

Listener |
Thread

MaxRequestWorkers

Figure B.1: Apache MPM module.

B.2 Tuning the Apache Server

B.2.1 Methodology

To tune Apache for high traffic load, an experimental work is performed,
where incremental changes are done to the worker module while monitoring
the performance.

The most important parameters of the MPM worker module are Thread-
sPerChild, MaxConnectionsPerChild and MazRequestWorkers. For each
parameter we perform a number of tests while varying the value of it and
monitoring the effect of each value, in order to find the best setting. The
experimental testbed that is used, is the same setup as figure 4.6, with us-
ing Tensor as the benchmark tool. Tensor is used since it can generate a
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heavy load and gives server-side characteristics which are more helpful for
these experiments. Tensor runs an Amazon instance c4.xlarge to be able
to handle the heavy load. Each test runs for approximately 2 minutes with
90 connections. The number of connections remains constant since with 90
connections the throughput has already reached the saturation point.

B.2.2 Experimental Work

As mentioned the experimental work consist of incremental changes on three
parameters of MPM worker module:

Varying ThreadsPerChild:

First we vary the parameter ThreadsPerChild, while keeping constant the
other parameters of the module. We choose to decrease this value from 64
to 32, 16 and eventually to 8 threads. This is because threads from the same
process can be dependent, as they can handle request that depend on each
other (request from client, causes multiple byte range requests to cache).
A high number of dependent threads under heavy load, can cause a slow
processing of the requests and can result to low throughput. Further, the
synchronization needed between these threads, could increase CPU usage.
Also, if the number of ThreadsPerChild is high when a process crashes, more
client connections will be affected. These facts, indicate that decreasing the
number of threads per process might be better.

The configuration that is used for this experiment is shown in figure B.2.
This will is the starting configuration for all the experiments and its changed
during the experimental work.

<IfModule mpm_worker_module>
ServerLimit 250

StartServers 4

MinSpareThreads 5
MaxSpareThreads 10
ThreadsPerChild 64

MaxRequest Workers 256
MaxConnectionsPerChild 500
KeepAlive off

<IfModule>

Figure B.2: Configuration used when changing ThreadsPerChild

Table B.1 shows the results for each experiment when testing with the
video tears of steel stored as MP4, and when dref is cached.The results show
that when ThreadsPerChild decreases, the outgoing throughput is increasing
with the performance of the sever becoming more stable, indicated by a
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decrease in the standard deviation of the throughput samples obtained by
Tensor. However the low throughput that we get for ThreadsPerChild=64
and 32, could be due to the low value of MaxConnectionsPerChild. Using
64 or 32 threads, are too many when the process handles less connections
(500 in this case) and most of them will probably be unused. This will be
discussed later in the section dedicated for MaxConnectionsPerChild. Still,
even when MazConnectionsPerChild is higher, the throughput for these two
cases(64 and 32) is still lower than the other cases. Figure B.3 summarized
in a graphic way, the average results for throughput, indicating that using
8 threads per process gives higher throughput.

Tears of steel(mp4) - DASH

120

100

Jh 1

0

throughput(MB/s)

20

PerChild=8  ThreadsPerChid=16 ThreadsPerChid=32 ThreadsPerChid=64

Figure B.3: Average incoming and outgoing throughput for different Thread-
sPerChild values. (tears of steel, stored as mp4, requested in DASH).

ThreadsPerChild 64 32 16 8
incoming throughput (MB/s) | 39,2 | 66,44 |101,03|113,75
outgoing throughput (MB/s) 39,2 | 47,35 | 83,41 | 88,64

outgoing traffic standard deviation|25,11| 20,46 | 23,74 | 17,69

CPU system (mean) 16% | 22% | 22% | 23%
CPU user (mean) 10% | 14% | 17% | 18%
mean latency(ms) 484 1383,87(364,30(316,39

Table B.1: Results when requesting DASH streaming of with tears of steel,
which is stored as mp4.Dref is cached.
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Changing MaxConnectionsPerChild:

To find the most the most appropriate value for MazConnectionsPerChild
different values were tested. The values that are tested are 500, 1000, 1500,
3000 and unlimited, which means processes never expire. We choose to in-
crease this value since with a low value, processes will be often restarted. The
disadvantage of this is that restarting processes will interrupt on-processing
connections and requests will need to be dropped. This can cause instabil-
ity on the throughput of the Origin and increase the latency. On the other
hand, a high value will cause long running processes that will accumulate
memory and increase the probability of memory leaks.

Interesting results were observed when testing with different videos. For
low bitrate videos (480p) the throughput increases when MaxConnections-
PerChild increases. On the other hand, for higher bitrate videos (e.g tears
of steel), there is not significant difference in the throughput when changing
the parameter. (figure B.4%).

120

90

throughput (MB/s)

@
o

—%— tears of steel(mp4)
—+—sintel 480p(mp4)
—— glephants dream,480p (fmp4)
—&— sintel, 1080p(mp4d)

~
=]

60
500 1000 1500 3000 unlimited

MaxConnectionsPerChild

Figure B.4: Average saturated outgoing throughput versus MaxConnection-
sPerChild for different videos.

Moreover, the parameter MaxConnectionsPerChild affects the stability on
the server performance. This is indicated by the amount of standard devi-
ation on the throughput samples, since Tensor saturates the throughput, so
ideally it should remain constant. For example when MaxzConnectionsPer-
Child is set to a relatively low value (500), the throughput measurements
have a big standard deviation for all videos (figure B.5) and the perform-
ance in not stable indicated by high and low peaks in the throughput graphs
obtained from Tensor. This non stability can be caused by the frequent re-
start of a process. Also, different videos have different optimal setting of this
parameter. For example, tears of steel has the lowest standard deviation at
1500 while sintel at 3000 (B.6 and B.7). This might be due to the different

'The line graph does not imply linear relationship. Is just used for visualization pur-
poses
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encoding process or that the two videos have a different bitrate range.

From these tests we concluded that the setting of MaxConnectionsPer-
Child=1500, gives satisfactory results in terms of throughput and stability
for all videos.

]
=

—#—tears of steel(mpd)

—+— sintel 480p(mp4}

—*— elephants dream,480p (fmp4)
—B— sintel, 1080p(mp4)

/1

[~]
=]

o

standard deviation for outgoing throughput
@ o

0
500 1000 1500 3000 unlimited
MaxConnectionsPerChild

Figure B.5: Standard deviation of throughput samples versus MaxConnec-
tionsPerChild. The samples have less dispersion around the value 1500.

@cthlin @cth0in
eth0 out eth0 out
138.66 133.61
100.00| 100.00|
50.00 | 50.00 |
/ |
|
0.00——~ 0.00 __/
— time — time
(a) MazConnectionsPerChild=1500 (b) MaxzConnectionsPerChild=500

Figure B.6: Throughput for tears of steel (MP4)

Changing MaxRequest Workers:

Last, we deal with the MaxRequest Workers parameter. Setting correctly this
parameter is very important so the server will have enough threads in order
to serve all the requests on time, while keeping the total number of threads
low. If a higher number of threads is allowed than what the available RAM
can handle, memory swapping is possible to happen. Memory swapping
should be avoided as it can increase significantly the latency of requests.
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Figure B.7: Throughput for sintel,480p (mp4).

A good indication of the appropriate value for MazRequestWorkers is
found by dividing the total available RAM, with the average size of an
Apache process, while leaving some memory for the other processes on the
server: MaxRequestWorkers _ (TotalMem;ry—}?r]iticalSegyicesMemory)

pacher"rocessoize

The available RAM in the origin is 14308MB. The memory needed by
other services is best determined by observing the memory usage, without
the webserver running. The size of an Apache Process can be found by
using the ps command and looking at the residence size of each process.
Still the size of each process is not constant and depends on the scripts that
are running and the load that is being served. For example when there
is no load on the server, the average size of an Apache process is 5 MB.
When a user streams video the average size can be 10 MB and under heavy
load it can reach 22 MB. Therefore a rough approximation for the total
number of threads is (1430 — 300)/22 = 636. This high number indicates
that the server has enough memory to support a high number of threads.
Still we want to use a lower value to avoid excessive context switching and
memory consumption. Under heavy load a multithreaded server consumes a
lot of memory due to the fact that each connection is associated to a thread
resulting to a thread stack per connection. The default value was 150, but
this has proven to be too little as there were not enough threads to serve all
requests.

To find the appropriate value for MaxRequest Workers, we followed a trial-
and-error method, where different values were tested while monitoring the
server performance. Four different values were tested : 192, 248, 256 and
400. In all the cases the number of threads per process is kept 8 and Mazx-
ConnectionsPerChild is set to 1500.

By observing the server status during the experiments, we see that the
maximum number of simultaneous requests is never bigger than 256. Even
when the number of total threads is allowed to reach 400 and origin handles
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a big load the total number of threads is never reached. On the other
hand when the number of total threads is decreased to 192, the number of
total threads is not enough to serve the clients and incoming request will be
queued and eventually rejected. Thus we use choose to use 256 workers.
The measurements obtain from Tensor for the values 400, 248 and 256
for videos tears of steel and sintel,480p are shown in tables B.2 and B.3
respectively. The results show that there are not significant differences in
throughput and CPU usage, when 248 and 256 workers are used.

MaxRequest Workers | 400 248 256
incoming traffic (MB/s) | 111,55 | 118,6 | 116,2
outgoing traffic (MB/s) | 81.8 87,3 | 84,4
outgoing throughput s.d. 7,8 8,2 12,5
CPU system (mean) 22% | 25% | 25%
CPU user (mean) 18% | 20% | 19%
mean latency(ms) 325,86 | 332,74 | 338,9

Table B.2: Results for tears-of-steel when changing total number of threads

MaxRequestWorkers | 400 248 256
incoming traffic (MB/s) | 104,19 | 113,6 | 114,7
outgoing traffic (MB/s) | 95,05 | 103,3 | 106
outgoing throughput s.d. | 21,7 10,9 9,59
CPU system (mean) 32% | 36% | 33%
CPU user (mean) 2% | 30% | 28%
mean latency(ms) 320,4 | 252,47 | 227,12

Table B.3: Results for sintel when changing total number of threads

Handling KeepAlive Connections

KeepAlive enables persistent connections allowing multiple requests to be
sent from the same TCP connection. This parameter is outside of the MPM
module but its very important for the server performance and it can tie in
closely with the MPM choices.

In high traffic servers, persistence connections can degrade the perform-
ance of the server because threads might be blocked for a long time waiting
more requests from one connection. While the threads are blocked they
occupy RAM that could be used to service other requests. In the worst
case scenario, all threads might be blocked in the KeepAlive state, limiting
concurrency the resulting to low throughput.

Indeed, in our case when KeepAlive is on and the server is under heavy
load, the maximum number of workers is reached immediately and Apache
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crashes. As shown by figure B.8, the scoreboard is full and a lot of threads
are in the K state( keepalive). Thus we choose to turn KeepAlive off.

CPU Usage: u3.86 s4.68 cu0 cs0 - 16.4% CPU load
232 requests/sec - 35.6 MB/second - 223 .6 kB/request
256 requests currently being processed, 0 idle workers

WLl KRBT KN IR I T LA R LT W el IO LT KW IR I WKW K KWK
WKWK KKIWEK K KKK KK R KR KWK K KK KWK WK KKK KWWK KWK
NI KK KR KTt KT I K Tind ol K S KK S bl KRR K W I KK KWWK KW KK KK
BRI B W BCLCR BC LA RO WIRRCACK KCR R B R IR KWK

Figure B.8: A lot of workers are stuck in the KeepAlive state.

B.2.3 Final Configuration

From the above experiments, we concluded that the configuration shown
below will give the best results in terms of latency, throughput and CPU
usage for the tested videos. Note that this configuration is not unique.
There might be different configurations that can give the same performance
that is achieved using this one. Given more time and a broader design space
exploration, more solutions can be found.

<IfModule mpm_worker_module>
ServerLimit 32

StartServers 4

MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 8
MaxRequestWorkers 256
MaxConnectionsPerChild 1500
KeepAlive Off

<IfModule>

Figure B.9: Final Configuration

B.2.4 Conclusions

In this chapter, we acknowledge the problems that can be caused in the
streaming performance when the webserver has to handle large concurrent
connections We have used the different modules offered by the server for
this propose, to tune the server for high concurrent video traffic.

Also, through the experimental work we have notice that different videos,
have different optimal setting points of the MPM _worker module. For in-
stance, the three videos had different optimal values for the directive Max-
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ConnectionsPerChild. This is an interesting point that could be further
studied to understand what aspect of the content create these differences
e.g the bitrate (could be useful for content-aware streaming). Still, even
thought such different optimal point exists, a generic configuration can be
found that performs well with all the content.

A different approach that we could follow instead of tuning the Apache
server would be to use a different web-server. Although Apache is good as
a media application server, using an event-driven web server, like Nginx,
is probably more suitable for implementing a server for highly concurrent
usage. Nginx handles multiple requests in a single event loop thus less re-
sources are used. Alternatively, we could even use Apache as the application
server and Nginx as the cache server. This would limit the amount of con-
currency needed in Apache, since the cache’s connections would be processed
by a different server, removing this load from the Origin server. Note that
in demanding situations where the Origin cannot handle the load, scaling
horizontally with more servers and using a load balancer is also an option.

However, for this work, we assume that existing infrastructure will have to
do the job.
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Appendix C

(Co)-authored submitted
paper

This work was been submitted and is under review for the ACM Multi-
media Systems Conference (MMSys 2018) held from June 12 - 15, 2018 in
Amsterdam, The Netherlands. Below you can find the submitted paper.
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Abstract

Online advanced media streaming services using HT TP adap-
tive streaming are increasingly popular. In practice, the multi-
protocol, multi-format nature of adaptive streaming creates
a lot of engineering effort and costs for the operators, in
the storage and preparation of the different formats. In this
work, we acknowledge these issues and we study a streaming
setup that can address these. Such streaming setup consist of
abackend cloud storage and a processing node that generates
streaming presentations for different devices on-the-fly. We
analyze the streaming setup and its performance by testing in
cloud deployments. Through this evaluation we identify the
performance limitations of the setup imposed by the transfer
of data between the object storage and the processing node.
We propose a new backend storage caching scheme based on
rarely used existing feature of dref in the specification of the
MPEG-4 standard. Experimental results show that the pro-
posed scheme can improve the streaming performance such
as reduced latency and increased outgoing traffic volume
towards the clients.
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1 Introduction

Video streaming has evolved rapidly in the last years, with
the emergence of an international standard [3] and some
large scale deployments [1]. Video providers rely on HTTP
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adaptive streaming (HAS) to deliver their content to different
client devices. The use of adaptive streaming itself requires
the content to be encoded at multiple bitrates. In the context
of video on demand (VoD), this implies storing the content
in multiple bitrate versions. Considering the existence of the
different HAS protocols such as Apple’s HTTP Live Stream-
ing (HLS) [2] and Dynamic Adaptive Streaming over HTTP
(DASH) [3], this means that the storage requirements for a
VoD provider are very high.

One of the most important trends in video streaming is
using object-based cloud storage for storing the content as-
sets. Cloud storage offers seamingly unlimited storage space.
In addition, this storage is persistent and protected form
device failures and it provides other features such as HTTP
interface. Moreover, in video streaming, cloud infrastructure
offers compute power as well. This compute power can be
used for media processing operations in the cloud such as
transcoding, dynamic packaging or any other processing or
conversion operation.

By combining object based cloud storage with a compute
node with media processing, such as on-the fly conversion,
a powerful video streaming setup is achieved. In this setup,
VoD providers can store a single source, but stream using
different protocols or encryption schemes by using on the fly-
conversion in the compute node. This makes it easier for VoD
providers to support newer and legacy formats. In addition
this solution reduces the storage needs and is fully cloud
based. Furthermore, more advanced versions of such a setup
can support other desirable media processing operations
for VoD providers, such as ad-insertion, dynamic content
encryption etc.

A key question regarding the above setup, is the actual
performance of it in practical deployments. For example,
the communication between the storage and the compute
node may raise some performance limitations. This could
be because of limited features and functionality of the cloud
storage system (e.g. not supporting byte range request, limit
on request rate, limited access, limited APJ, policies). Alter-
natively, the efficiency of the media conversion could be low
and the connection to the object storage could be limited
in bandwidth or introduce some latency. Latency and band-
width limitation could for example be a problem when the
compute node is deployed remote from the cloud storage (e.g.
in an edge computing scenario). These aspects could reduce
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the video streaming performance and the final quality at the
end users (QoE).

In this work we want to study these issues and thus we
focus in a setup with a realistic on-the-fly conversion and
cloud storage. This work performs several experiments in
a realistic cloud deployment to study the behavior using
different streaming protocols. Based on the behavior of the
on-the-fly conversion server, we propose a scheme for (re-
mote) storage access that can reduce the streaming latency
and improve client throughput. We test the proposed setup
in different (edge) cloud deployments.

The rest of this paper is organized as follows. Section 2
gives an overview of the related technologies and related
work. Section 3 presents the streaming setup and the perfor-
mance of it, through an experimental work with different
media formats and protocols. The optimization scheme is
presented in section 4. The performance evaluation of the
scheme is given in section 5. Finally, section 6 concludes this
paper and outlines future research directions.

2 Background and Related Work
2.1 Media file formats

In VoD there are two main formats used for storage and pre-
sentation of multimedia content: MPEG-2 Transport Streams
(MPEG-2 TS)[5] and ISO Base Media File Format (ISOBMFF)
[6].

MPEG-2 TS were initially designed for broadcasting video
through satellite networks and physical media delivery solu-
tions. However, Apple adopted it for it’s adaptive streaming
protocol making it an important format. In MPEG-2 TS, au-
dio, video and subtitle streams are multiplexed together. Mp4
and fragmented mp4 (fmp4), are both part of the MPEG-4,
Part 12 standard that covers the ISOBMFF.

Figure 1 demonstrates the structure of an mp4 and f-mp4
file. As shown, each container consist of different ’boxes’,
each with a different functionality. The traditional mp4 file
has a Movie Box ('moov’) that contains all the metadata of
the media presentation file and sample tables that are im-
portant for timing and indexing the media samples (’stbl’).
There is also a Media Data Box ('mdat’) that contains the
corresponding samples. In the fragmented container, me-
dia samples are interleaved by using Movie Fragment boxes
(’moof’) which contain the sample table for the specific frag-
ment(mdat box). Further fmp4, has an additional box named
Movie Fragment Random Access Box (‘mfra’) which is used
for indexing movie fragments.

Fragmented mp4 was chosen in the recent specification of
common media application format (CMAF)[7]. This standard
is aiming to create a subset of container formats and codec
settings to be supported by the different HAS protocols.
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(b) f-MP4 container

(a) MP4 Container

Figure 1. Structure of media containers.

2.2 On-the-fly conversion

On-the-fly format conversion is important in video stream-
ing systems, to deal with the existence of different formats,
encryption schemes and protocols and to reduce storage re-
quirements. Examples of on-the-fly conversion are dynamic
packaging and manifest generation for multi-protocol. With
this there is no need to prepare and store the video segments
and manifests multiple times, hence saving costs and storage
capacity. There are different on-the-fly format conversion so-
lutions in the industry offered by Amazon (elemental delta),
Azure, Wowza [18], Unified Origin [19] etc. In addition to
dynamic packaging they may offer other media processing
functions like on-the-fly encryption, transcoding or subtitle
conversion.

On the-fly format conversion fits well with the latest
emerging MPEG streaming standard: Network-Based Media
Processing (NBMP) [20]. This is an emerging standard that al-
lows media delivery with media processing services/functions
embedded in the network, such as on-the-fly format conver-
sion. In such framework the media source is connected to
media processing functions that takes care of the delivery
to a client using different published formats (DASH, HLS,
CMAF). NBMP has a good potential to handle many of the
problems with video streaming by deploying on-the-fly con-
version functions. Further, the definition of standardized
interfaces in NBMP will help interoperable deployments in
the cloud or in the network. The research in this work is
aligned with state of art streaming systems, conforming the
NBMP reference architecture.

2.3 Related Work

The emergence of DASH and the need for adaptive bitrate
selection methods, has triggered a lot of research on the
rate adaption algorithms. Several studies have exposed the
performance problems of adaptive streaming [8][9]. There is
quite a lot of work that focus on assisting the bitrate selection
and overcoming these problems [11][10][12][13]. Our work
relates to the server side architecture and aims to improve
the communication interface between an object storage and
a dynamic packaging server.
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Other work investigates the server-side deployment of
adaptive streaming which is more closely related to this
work. Specifically there is a some work that focuses on
video transcoding and different strategies of trading transcod-
ing cost and storage (for different bitrate encoded versions
of a content) [14] [15]. Although transcoding is important
and relates to the storage problem, in this research, we fo-
cus on more lightweight conversions like container con-
version, manifest generation etc. As these conversions are
lightweight, instead of the trade-off between compute and
storage, the main focus is on the communication between the
media source (object storage) and the on-the-fly converter.

A more related work that deals with dynamic packaging
is presented in [17] and [16]. [17] evaluates the performance
of two different implementations of on-the-fly packaging
that is integrated in the client side. The results show that
when the dynamic packaging happens in the client side, the
performance (duration of conversion) can be slow. Mekuria et
al. [16] present a multi-protocol video delivery architecture,
where protocol specific media segments are generated on
the fly. The conversion node is moved into the edge and
caches both protocol-specific segments and raw media data
retrieved from the centralized storage. This way, the authors
aim to reduce redundant traffic and caching that happens
in the CDN. The work that is presented in that paper has a
similar setup with the setup that we focus on, with a dynamic
packaging node and a storage node. However that paper
focuses on creating a smart edge cache and improving the
efficiency of caching, while this work aims at reducing the
latency and overhead related to object storage access.

2.4 Contribution

For practical video streaming that targets multiple protocols
and large asset repositories, the combination of on-the-fly
conversion, such as dynamic packaging, with object based
cloud storage is a powerful one. However, prior work on
video streaming does not consider this architecture and the
possible performance bottleneck between the object storage
and the dynamic packaging node. This work studies this
problem and presents some improvement for such a setup,
based on media streaming aware backend storage caching.
In summary, this paper presents the following contributions:

1. Performance evaluation of a state-of-the-art streaming
framework with on-the-fly conversion and object stor-
age on a realistic workload, using different file formats.
The communication of the two is analyzed to reveal
part of the file formats, critical for the specific media
processing node.

2. Optimization scheme for back-end using the current
HTTP infrastructure and rarely used existing features
of the MPEG-4 part 12 specification in ISOBMFF, show-
ing reduced latency and improved throughput.

3 Video Streaming with on-the-fly
conversion and backend storage

The setup that we focus in this work is shown in figure
2. This setup consist of an object based cloud storage and
a media processing node, responsible for dynamic packag-
ing. In this setup, a single version of each encoded content
version is stored in the storage. The on-the-fly conversion
server communicates with the backend node to retrieve the
information needed in order to generate the HAS specific
manifest and segments formats, on-the-fly, targeting all user
devices.

Such a setup enables smaller and more maintainable repos-
itories, less content preparation work and better future proof-
ness when new formats are released and legacy support is
still needed. Further, the separation of the storage and the
conversion server, protects the content asset repository from
possible corruptions when the streaming server crashes due
to request load. This setup corresponds with the architecture
of NBMP [20] defined in MPEG as the new emerging stream-
ing standard for immersive media, where media source is
separated by media processing operations distributed in the
network/cloud.

A key question regarding the above setup, is the actual
performance of it in practical deployments. For example,
the communication between the storage and the compute
node may raise some performance limitations. This could
be because of limited features and functionality of the cloud
storage system (e.g. not supporting byte range request, limit
on request rate, limited access, limited API, policies). Also
the connection to the object storage could be limited in band-
width or introduce some latency when the compute node
is deployed remote from the cloud storage. Another limita-
tion could be a low efficiency of the media processing node
(more data is needed from the storage than that is finally
produced for the user). As preliminary results showed that
typically incoming and outgoing link bandwidth is capped
in processing nodes in the cloud, this reduces the outgoing
data rate.

In this section we perform a performance evaluation of
the setup by experimenting with different file formats in the
storage in order to specify the bottlenecks of such a setup.
Next we describe the experimental testbed that we used and
the results.

Different
Formatse.g
CMAF
DASH

HLS

Figure 2. Setup with cloud storage and on-the-fly format
conversion
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3.1 Experimental Testbed

We describe the components and implementation of the ex-
perimental testbed in the following sections.

3.1.1 Unified Origin

In this work we experiment with the Unified Origin server
[19] which is the on-the-fly format conversion software. Uni-
fied Origin is a software plug-in for popular web-servers
and it supports dynamic packaging, manifest generation,
on-the-fly encryption, different DRM systems and more. In
this setup Origin needs to communicate with the backend
storage and fetch the information that is needed to satisfy
each request. The Origin is used as an on-the-fly conversion
node for generating manifest and protocol segments. It is
deployed on a compute node in the cloud.

3.1.2 Cloud Storage and Content Preparation

The object cloud storage that is used in this work, is Amazon
Simple Storage Solution (S3) [22]. To populate the content
database we choose to use as storage format mp4 and f-mp4.
Fmp4 was chosen since it is already enabled for adaptive
streaming and is used in DASH and other protocols (CMAF
and recently HLS). On the other hand, mp4 has been as a
storage format a lot in the past and is still being used, since
converting all the content to fmp4 is time consuming and
costly.

Three videos are stored in S3: sintel [24], tears of steel
[23] and elephants dream [25]. To enable adaptive streaming,
each video is encoded into multiple bitrates and multiple
resolutions as shown in table 1. Tears of steel is available
only in 400 kpbs, 800 kbps, 1200 kpbs, 1900 kpbs and 3000
kpbs, because it was already available in an encoded version.
The chosen resolutions reflect the capabilities of typical user
devices such as smart-phones, tablets and HD TV. Then each
encoded video was packaged to fragmented mp4 and finally
a server manifest file is created that can contains the track
information.

Resolutions Video Bitrate(kbps)

480p: 640x480 200, 400, 750, 850, 1000

720p: 1280x 720

200, 400, 750, 900, 1000, 1200, 1500 ,2000

1080p: 1920 x1080

200, 600, 900, 1000, 2000, 2400, 2900, 3300

Table 1. Resolutions and Video Bitrates for Sintel and Ele-
phants dream.

3.1.3 Load Generator Tools

The role of the load generator tool is to simulate the video
streaming clients of the figure 2, which request protocol
specific manifests and video segments of different bitrates.
In this work we used two different benchmark tools: Tensor
[28] and Apache benchmark(AB) [26].
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Tensor is a tool for testing adaptive bitrate streaming by
generating a realistic video streaming workload based on
collected traces from a real video player. Tensor is able to
simulate a large number of concurrent connections in order
to measure the server behavior under peak load conditions.
Tensor is based on two open source programs, WRK[31]
and Performance Co-Pilot(PCP)[32]. WRK is the actual load
generator that Tensor uses. With WRK, the number of con-
current connections is increased every 5 seconds while the
number of requests in each connection is maximized in or-
der to identify the maximum throughout that the server is
capable of. Then WRK gives the throughput and latency
metrics reported in the client side. Furthermore Tensor col-
lects hardware and software statistics from the origin server
(throughput, CPU usage, memory utilization) using PCP.
These metrics are displayed in a web-interface with graphs.
Starting an experiment with Tensor is simply done by supply-
ing Tensor with the URL of a client manifest file of a specific
video. The requests are based on HTTP request sequences
obtained from the respective DASH or HLS manifests.

AB can generate various HTTP workloads to measure
the server performance, by specifying the total number of
requests and the number of multiple requests to perform at a
time. Unlike Tensor, only one URL request can be selected for
the whole workload. For this reason AB is used to measure
the performance of the streaming setup when delivering
either a manifest file or just a specific segment. AB tool
reports application layer statistics on HT TP behaviours (e.g
reply rate, response time), providing just a user-level view
of the performance.

We choose to use two benchmarks, since each has a dif-
ferent testing range. Tensor is used for testing large scale
adaptive streaming and the workload is more realistic. On
the other hand, testing with AB is better for understand-
ing what is the performance in lowest-level operations of
video streaming by just doing individual requests either for
a manifest or a video segment.

3.14 Cloud deployment

Figure 3 shows the experimental tesbed that is used for
evaluation. The testbed is deployed in a cloud environment,
in Frankfurt using Amazon Web Services [21]. The Origin
server and the load generator tool, run on virtual servers in
Amazon’s Elastic Compute Cloud (EC2). The Origin runs on
an Apache web-server installed on an Amazon m3.xlarge
instance [27] and the load generator runs on a compute-
optimize instance (c4 instance) in order to be able to handle
a large amount of connections.

3.2 Key Performance Indicators

The performance of the setup is measured by using three key
performance indicators (KPI). The first KPI is the average
latency for a handled request and the second is the achieved
throughput in the server(or in the client in case of using AB).
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Figure 3. Experimental testbed deployed in Amazon cloud.

In AB the throughput is measured by the number of requests
that are handled per second in the client. Tensor measures
the amount of Megabytes received or send per second, in
the server. We use the throughput saturation point given
by Tensor, where throughput cannot increase more, even
if the connections are increasing, due to the physical limits
of the network interface. The last KPI’s is a specific metric
for this setup, that we define later. We name this metric the
"conversion efficiency’ for each file format and is the ratio of
the outgoing traffic and the incoming traffic in the server.
These metrics are suitable for testing a streaming setup
in large scale with a big number of requests. Also they can
pinpoint network impairments which makes them suitable
when focusing on the communication interface of the Stor-
age and the Origin. Even thought these metrics are QoS-
based and not QoE-based ([29],) they can still give an indica-
tion on the QoE of the client. For example, lower latency in-
dicates faster video playback and lower start-up time. Higher
data-rate will result in higher quality representations at the
end users (especially when the number of total users is low).

3.2.1 Methodology and Tested Workload

To identify what is the overhead of using a backend storage
to the setup, a comparable study is performed: using local
storage and using cloud object storage. When local storage is
used, the original video files are stored in the Origin, allowing
dynamic packaging. Furthermore, some more experiments
are done with the backend storage in order to give some
insights on how different file formats influence the streaming
performance.

Each test that is done (local storage, backend storage, dif-
ferent videos, DASH and HLS) with Tensor, is repeated three
times for cross-validation. The throughput and latency met-
rics that we get for each repeated test have a low standard
deviation (4.5 for throughput and 6.9 for latency) so they
can be considered reliable. Any statistical information that
is mention in the following sections is derived by using the
averages of each of the three experiments.

3.3 Performance Evaluation and Discussion
3.3.1 Local Storage vs Cloud Storage

Figure 4!. shows the incoming and outgoing traffic measured
by Tensor, for both local and backend storage (video stored

! Average results for all resolutions

as mp4 and fmp4). In all cases, dynamic packaging is used
and the video is requested in DASH. Incoming traffic reflects
on the backend data that the Origin fetches from S3. The
outgoing traffic is the traffic between the client and the Ori-
gin. The figure reveals important information regarding the
performance of the setup that separates the media source
from the Origin:

e While with local storage the outgoing throughput that
is achieved for each video is similar for both mp4 and
fmp4, for the cloud storage this is not the case. The
outgoing throughput is different when the same video
is stored as mp4 and as fmp4.

e When backend cloud storage is used the outgoing traf-
fic is decreasing compared to using local storage, even
though the traffic between the client and the Origin
hasn’t changed. This is because the Origin needs to
fetch some more data from S3 than what it actually
produces for the dynamic packaging operation. Com-
bining this with the previous point, we conclude that
the conversion performance of Origin changes when
backend storage is added and this is also influenced
by the file format.

e Latency is increased when using the backend storage,
because to satisfy every segment request, the process-
ing node needs to make additional requests to the
remote storage. The figures of latency are not shown
here for space constraints.

MP4 TEARS OF STEEL FMP4
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) ol ﬂ
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Figure 4. Local Storage vs Backend Storage: Incoming and
outgoing traffic.

3.3.2 Conversion Coefficient and Differences
between file formats

Figure 4 shows that when we use backend storage, the per-
formance that we get in terms of throughput depends on
the file format used in the storage. Specifically, when mp4 is
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file format

mp4 fmp4

source video ed

sintel tears| ed sintel tears

in throughput(MB/s)

110,57 118,17 118,20{100,12 94,45 113,67

out throughput(MB/s)

56,80 53,08 36,30 | 82,22 79,53 83,91

conversion efficiency(out/in)| 0,51

045 031082 084 0,74

Table 2. Backend Storage results (video requested in DASH).

used, the outgoing throughput is lower than in case of f-mp4.
This is more clear by observing the saturated throughput
measurements obtained by Tensor in table 2.

The table shows that storing the content as fmp4 results to
higher outgoing throughput than storing as mp4. This might
be due to the fact that mp4 contains one big ‘'moov’ box that
contains not only the metadata but also the information on
accessing the media data. As said before, the Origin needs to
fetch more data from S3, than what it actually produces. In
fact the amount of data that it needs differs per file format.
To measure this amount of data per file format, we define
a metric that we call ’conversion efficiency’ for each file
format. This metric is the ratio of the outgoing traffic and
incoming traffic and is an indication on the amount of more
data that the media processing needs to fetch from S3, related
to what is actually produced for the client. The table shows
that transporting data from an f-mp4 video source has a
higher conversion efficiency than the case of mp4, where
at least double data are needed to be fetched from S3, than
what will actually produced for the client.

As Tensor test the setup in large scale, we want to verify
that using fmp4 in the storage gives better performance than
storing mp4, also in terms of latency. Thus AB is used to
measure the latency when requesting just a single segment.
This way we can make a more clear comparison between
the two file formats. Using AB we generate a large number
of DASH and HLS requests (30000 requests) for a low bitrate
segment (200kbps) and a high bitrate segment (1Mbps) of
sintel, 480p. The results are shown in figure 5.

In summary, the results show the efficiency of using fmp4
in the storage rather than mp4. The percentage difference
of f-mp4 and mp4 in DASH case is 78% for the low bitrate
segment and 50% for the high bitrate segment. In HLS case
this difference is reduced by 20 (48% low bitrate, 30% high
bitrate), because in HLS more data are needed due to the
multiplexed form of segment (contains both video and audio).
For a similar reason, the difference between mp4 and f-mp4 is
less for the high bitrate segment, compared to the difference
that they have when a lower bitrate segment is requested.
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Figure 5. Difference between mp4 and fmp4 for time per
request when segment is requested in DASH and HLS format.

4 Communication Analysis & Proposed
Improvement Scheme

4.1 Analysis of communication between Origin and
Storage

The previous results revealed that the setup of figure 3 has
two performance limitations: low outgoing throughput and
increased latency. These are mainly caused by the communi-
cation between the Origin and the Storage, thus we present
here an analysis of this communication. To do this we use
packet inspecting tools like tcp dump and Wireshark, to iden-
tify the information exchanged when a client request either
a manifest file or a segment (HLS or DASH).

4.1.1 Generating a client manifest file

A manifest file (DASH or HLS) contains metadata informa-
tion of the content and the available bitrate representations
of the video. On the server side, this information is stored
in the server manifest file (ism). Thus this is fetched from
the storage. Further, a manifest file contains information
for constructing the segments URL. In order to construct
this information, the Origin will need to access the timing
and indexing information of the samples. This is done by a
number of byte range requests sent from the Origin to the
storage. Since mp4 and fmp4 have a different structure, the
number of byte range requests are different for each format.

Table 3 shows the information that is requested from the
Storage, upon a manifest request from the client. Each cell of
the table indicates one byte range request. When the content
is stored as mp4, 3 byte ranges requests are done in order
to fetch the ’ftyp’ box and the ‘'moov’ box for each bitrate
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representation ‘'mvhd’ is the header of moov box). The *ftyp’
box specifies the compatible brands of the files. The moov
box is needed because it contains metadata and the sample
tables boxes that give indexing information about the media
data (’stbl’ box).

In the case of storing the source video as fmp4, the ‘'mfra’
box is also requested as it contains the information of locat-
ing the moof box for each sample. The mfra box is fetched
with 2 byte range requests: first for determining the size of
the box and then retrieving the mfra box. Also for DASH, the
last moof box is necessary to know where the presentation
finishes. When an HLS manifest is generated, there are just
four byte range requests. The last moof box is not needed.

mp4 fmp4
manifest segment| manifest segment

ftyp ftyp ftyp ftyp

mvhd mvhd moov moov

moov moov mfra size mfra size
- mdat mfra box mfra
- - moof header moof mdat
- - moof

Table 3. Byte range requests to the storage for generating a
DASH manifest file and a DASH segment.

4.1.2 Generating a video segment

When the client requests a video segment of a specific bitrate,
the Origin needs again the server manifest file to locate the
stream that contains the requested bitrate. Then it has to
fetch metadata and media samples from that bitrate repre-
sentation (audio/video). Fetching this information is done
with a number of byte range requests.

For mp4, there are 4 byte range requests as shown in table
3. As mentioned before, the moov box is needed for locating
the samples that are requested. In the fmp4 case the mfra box
needs to be fetched as well since with this box the Origin can
locate the related segment. The segment, in this case is a pair
of a moof box and mdat box which are both retrieved with
one byte range request. In an HLS segment, audio and video
are multiplexed, thus the number of byte range requests will
be doubled.

Note that Origin uses byte range request in order to fetch
the necessary data from S3, instead of fetching the whole
video file which would be huge. Using multi-byte range
requests could decrease the amount of requests send to S3,
but multi-byte range requests are still not supported by S3
and some other cloud storage.

4.1.3 Discussion

Through the communication analysis we have understood
that using fmp4 in the storage is more efficient than mp4

because the size of the moov box in mp4 files is bigger than
in fmp4 files. Further we have seen that there are parts of
the media data, that are critical for the on-the-fly conversion
to DASH and HLS. In our case this part is the moov box and
the sample tables. This information is very important for
devising a scheme that improves the communication of the
Origin and the Storage. This scheme is presented in the next
section.

4.2 Proposed scheme using dref MPEG-4 files

In this section we propose a simple optimization scheme that
can reduce the number of requests that are send from the
Origin to the Storage. This is done by placing a smart cache
between the Origin and the Storage. This cache does not
store media data, as this would eventually expand the storage
volume of the cache. Instead, it caches only the metadata of
the content and the server manifest file (.ism).

Caching just the metadata, is possible by leveraging an
existing technology of the ISOBMFF standard in a novel way.
This technology refers to the dref MPEG-4 box. The dref
MPEG-4 box is part of the specification of ISOBMFF[6] but
is not commonly used in practice. The dref is basically a
data reference 'box’ defined in ISOBMFTF as follows: The data
reference object contains a table of data references (normally
URLs) that declare the location(s) of the media data used within
the presentation.[6]. In other words, the dref box which is
part of the moov box, specifies the location of the media data.
Containers, that hold only the metadata of a content inside
a moov box and no physical media data, will be called dref
files. We propose caching this lightweight dref file, together
with the server manifest file (ism). This will help the Origin
to obtain the necessary metadata without the need to contact
the Storage. Furthermore, when dref is used for indexing our
media content, it doesn’t matter what is the original format
of the media data (mp4 or f-mp4). The performance should
be the same. Thus this container-independent solution will
diminish the variation in performance between mp4 and
fmp4, that we saw in section 3.3.2.

Figure 6 shows the sequence diagram and message ex-
change between the Origin and the Storage, when a client
request a video segment. The cache stores only the dref and
the ism file, while the media data are still served from the
back-end storage.

4.2.1 Implementation

The implementation of the proposed scheme consist of creat-
ing the dref MPEG-4 files for the video contents and setting
up a cache in the Origin server that stores the dref and the
ism files.

Creation of the dref MPEG-4 file: The dref file should
be created for every available bitrate representation of a con-
tent. Unified Packager[4] is used for this purpose. Further
the server manifest file for each content is created again,
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Figure 6. Sequence diagram of the optimization scheme. The
communication indicated with red, will happen just once.

to reference the dref files generated for each bitrate repre-
sentation, instead of the whole file(mp4 or fmp4) for each
representation.

Implementation of the cache: To implement the cache,
we use Apache cache [30] for simplicity reasons, since the
Origin runs in an Apache server. To integrate the cache in
the setup with the Origin and the Storage, a new virtual
host is added to the configuration file of Apache. The Origin
sits in the default virtual host (port 80) and uses the special
custom directive IsmProxyPass to generate the byte range
requests. When cache is used, these requests are redirected
to the new virtual host that the cache is sitting. If the request
are for a dref file or the server manifest file (.ism) then the
range header is removed, before the request is sent to the
storage using the Apache directive ProxyPass. This is done
because Apache cache does not support caching of partial
content, so the dref will be fetched with just one request.
The response is then forwarded to Origin.

5 Performance evaluation
5.1 Experimental Conditions

To evaluate the proposed setup, we used the testbed of figure
3, but in this case the cache is added to the Origin server
node.

The proposed optimization is tested with four different
configurations. Each configuration differs on the location of
each component of the setup . These configurations are the
following:

1. Setup 1: Client & Origin & Storage in the same cloud
environment.

2. Setup 2: Origin & Storage in one cloud. Client in a
different cloud.

3. Setup 3: Origin and Client in one cloud. Storage in a
different cloud.

4. Setup 4: Large scale testing.

In Setup 1, all the components are in the same cloud envi-
ronment, just like the experiments described in section 3. In
Setup 2, the client is moved in Ireland, far from the Origin,
to simulate a more realistic scenario where client is in the
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edge. In the third configuration the Origin is moved to the
same cloud as the client, to simulate the scenario of moving
the Origin to the edge. Such a scenario can minimize the
traffic in the CDN (generation of segments is done near the
client) and increase the efficiency of CDN caching. These
three setups are tested using AB with single requests (for
video segment and manifest) because the results are easier
to interpret and to understand the effect of caching. Setup 4
is the large scale testing of the streaming procedure, using
Tensor. For this test, the three components are in the same
cloud and the results can be compared against the results
obtained in section 3.3.

Note that the proposed scheme can have 2 caching flavours.
The flavour that only caches the server manifest file (a generic
manifest containing simple information of the media pre-
sentation in SMIL format) and the flavour that caches both
the manifest file and the dref. Caching the dref is a smart
caching that we propose and we claim that this can achieve
greater performance. To show the effect of each flavour, both
are shown in the results

5.2 Tested Workload

The first three setups are tested with AB, by generating
a significant amount of requests in a short period of time.
Specifically 1000 requests are generated in total. The requests
can be of two types: request for a manifest file and for a video
segment (DASH and HLS). Each test is performed for two
cases: storing the video content as mp4 an as fmp4. The
final setup, is tested with Tensor, by opening 90 concurrent
connections and maximizing the number of requests. The
tests are done by requesting only the DASH manifest file of
the three videos in all available resolutions.

5.3 Key Performance Indicators

The KPT’s used in this evaluation are the ones described 3.2:
average latency, throughput on the server and conversion
efficiency (for the large scale testing).

5.4 Results and Discussion

First the results for segment and manifest request are given,
for the first three setups. Large scale testing is presented last.

5.4.1 Segment Request (AB)

Figures 7 and 8, show the first two KPI’s for the three setups,
when testing with 2 different video segments of sintel, 480p
and elephant’s dream, 720p. The blue bars of the graphs,
indicate the results when only the ism is cached, and the rest
show the results when the dref’s are also cached. Further
the numbers in the bars, indicate the average percentage
increase(or decrease) that is achieved when the dref is used,
on the results that are obtained from caching just the ism
file. As shown, caching the dref and ism file performs best,
for all setups. The highest gain is achieved when testing
Setup 3 by requesting segments of sintel, 480p (figure 7.a).
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There, the amount of requests that are handled is tripled
in all cases (different segments of sintel) and the latency is
decreased by 70%. However, when requesting a big segment
of elephants dream, encoded into 2Mbps there is little on
none improvement when the dref is cached. This is because
a segment of elephant’s dream, 720 resolution, encoded into
2Mbps has a size 11 times bigger than the same segment
encoded into 200Kbps. Even when the dref is cached, still the
client has to handle a big size of responses, thus the average
requests/second will be low.

Another interesting observation is that when dref'is cached
the file format of the source video does not matter and mp4
and fmp4 have almost similar performance, as anticipated by
this approach. This allows one to avoid repackaging media
collections stored using non fragmented mp4 file format.

Among the three setups, setup 1 performs best since ev-
erything is closer to the client. When the client is moved far
from the Origin (setup 2), more time is needed to fetch seg-
ments, thus the latency of request increases and the amount
of requests per second decreases. When the Origin moves
in the same cloud with the client (setup 3), and the cache
only stores the manifest file, even more time is needed per
request. This is because the Origin will be further away from
the Storage, and there will be additional delay in fetching
the media and meta data from the Storage. However, when
the cache is enabled to store also the metadata, the requests
to the Storage will be decreased and the fact that the Storage
is further away will have less impact on the performance
compared to when caching just the ism. Thus we see, that
for Setup 3, when dref is cached (yellow and green bars),
the time per request is less than Setup 2 and the amount
of requests/second is higher (in most of the cases). There-
fore, comparing Setup 2 and 3, we can conclude that Setup
3 is more beneficial when using dref, because of the results
shown here and the other benefits that it offers (less traffic
and caching in CDN).

5.4.2 Manifest Request (AB)

Testing the performance when a client request a manifest file,
is important as these results can indicate what is the impact
of the proposed scheme in the start-up delay which is a key
QoE metric. This is because before video playback, the video
player needs the client manifest file and the initialization
segment, which contains metadata. Origin generate those by
using the ism file and dref, thus when these are stored in the
cache, the client requests will be served faster, reducing thus
the start-up latency. For space considerations we only show
the latency results for the Setup 3, in figure 9 when requesting
the DASH and HLS manifest for sintel and elephants dream.

The results show that the time per request is decreased
up to 97% (for both DASH and HLS) when the dref is cached.
This is because to generate the manifest file the informa-
tion needed by Origin are the ism file and the dref files.
Thus, when these are cached, there will be no requests to

the remote Storage. This is a promising result that indicates
the reduction of the start-up delay but further experiments
should be performed to measure this accurately.

5.4.3 Large Scale Testing (Tensor)

Large scale testing is done using Tensor. Figure 10 and table
4 shows the average incoming and outgoing traffic measured
in Origin, when dref and ism are cached 2,

Backend traffic is still higher than the front end traffic,
since media data still need to be fetched from S3. However the
outgoing traffic has increased in all cases. Figure 11 shows
the gain for different resolutions of sintel and elephant’s
dream, comparing with the baseline results. For the mp4 case,
the increase is higher (throughput on outgoing interface is
doubled in sintel, 480p) since the mp4 case was really bad
when caching was disabled. For tears of steel, the proposed
scheme achieves an increase of 143% and 8% for the case
of storing as mp4 and fmp4, respectively. In addition, the
"conversion efficiency’ for the mp4 case has improved a lot
and there is no performance variation between storing the
content as mp4 or as fmp4. Figure 12 shows the average
latency obtained by Tensor when the cache is disabled, when
the ism is cached and when both the ism and the dref are
cached. Two different resolutions are shown for both the case
of storing the content as mp4 and fmp4. From this figure
we see that even with just caching the manifest file, there
is a decrease in the average latency. As we see, the average
latency depends on the content and resolution.

6 Conclusions

In this work we deal with a video streaming setup that consist
of a cloud object-based storage and an on-the-fly format con-
version server. This setup offers flexibility and a number of
advantages such as reducing the storage requirements. A per-
formance evaluation of the setup reveals that the setup suffer
from two bottlenecks that are imposed by the communica-
tion of the storage and the server: throughput is decreased
and the latency is increased. Throughout an analysis of the
communication we were able to understand why this hap-
pens and how the different file formats used in the storage,
influence these bottlenecks. To overcome this we proposed
the use of a smart cache that stores the server manifest file
and metadata of the content, and that would reduce the num-
ber of requests send to the storage. The proposed scheme is
evaluated under different cloud configurations. The results
have shown that this approach has improved network per-
formance with increasing the throughput and decreasing the
latency in most of the cases. Furthermore this solution is
container-independent making it ideal for content owners.
As future work we would like to perform an experimental

2 Average results for all resolutions
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Figure 8. Time Per Request for Sintel, 480p and Elephants dream, 720p

file format mp4 fmp4
source video ed sintel tears| ed sintel tears
in throughput(MB/s) 113,14 114,72 116,36|112,63 113,90 109,56
out throughput(MB/s) 94,89 99,07 86,65 | 95,10 98,21 82,66
conversion efficiency(in/out)| 0,84 0,86 0,74 | 0,84 0,86 0.75
Table 4. Backend Storage results with cache

analysis using a set of QoE metrics that will be used to calcu-
late the user satisfaction in order to see what is the impact
of the proposed setup in the user experience.
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Figure 9. Setup 3: Time per request for 1000 requests when
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