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Abstract 

Asphalt concrete is one of the most widely used materials in modern road construction. Predicting its 

functional properties is crucial in the design of new asphalt concrete mixtures. However, current prediction 

models are limited in accuracy and applicability due to the complex nature of asphalt concrete properties. 

This thesis researches the use of machine learning algorithms to greatly improve upon existing prediction 

models. The input is limited to standardized test results in line with Dutch regulations, the output focusses 

on functional design parameters including stiffness, fatigue resistance, water sensitivity and resistance to 

permanent deformations. The performance of several machine learning algorithms and the effects of 

different regression methods are compared. Furthermore, a solution is found for the inverse problem, 

which allows for greater flexibility when using the models to design new asphalt concrete mixtures. The 

results show that machine learning algorithms outperform traditional models on accuracy while simplifying 

the model input parameters. Machine learning algorithms were also able to predict a greater range of 

output parameters, most of which with a high accuracy. The analysed possibility of modelling asphalt 

concrete mixtures directly from their desired functional properties is shown to be promising. The proposed 

machine learning models and their inverse problem counterparts have the potential to greatly improve the 

accuracy and practical usability of the prediction of asphalt concrete properties, ultimately leading to better 

mixture design and more durable roadways. 
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1. Introduction 

 Project introduction 

The inspiration for this project is two-fold. The first is the new Pavement Information Modelling software 

(PIM-software) for pavement constructors and engineers, which has gradually been implemented since 

2019 (CROW, 2021). This new software, produced by the cooperation of 8 road construction companies in 

the Netherlands, created the opportunity for a big data analysis. The second inspiration comes from recent 

studies into the link between asphalt mixture recipes and their test results. These focussed on either 

improving the accuracy of existing models or using inverse problem theory to back-calculate the effects of 

recycled asphalt concrete, usually with a small sample size.  

The objective of this work is to chart the relationship between asphalt concrete constituents and the 

asphalt concrete functional properties both for the forward problem and the inverse via an empirical big 

data analysis of standardised Dutch asphalt concrete mixtures. The goal is to do these analyses with only 

the data available in the Dutch standardised type tests and to use automated analysis via machine learning 

to get the results. Limiting the scope to the information used in standardised testing is an important 

feature as this allows other companies or students to easily replicate the results.  

 

Figure 1-1: General analysis model for the thesis 

Figure 1-1 forms a clear outline for the thesis work, 1. Input and 2. Output will be discussed in 

chapter 2.1 and 2.2 respectively. The forward and inverse models will be discussed in chapters 3.2 and 3.3.  

In general, the thesis is summarised in 4 sections: Input, Output, Forward Modelling and Inverse 

Modelling. The Input consists of the weight ratio and properties of materials which are mixed to get asphalt 

concrete. The Output consists of the standardised test results which are used in the Dutch pavement 

design methodology. Datasets containing Input and Output (found through testing) are available for use in 

the thesis. After compiling a dataset with both input and output, the links between these are sought. First 

in forward modelling where the test results are predicted from the asphalt mixture recipe. Then a solution 

to the inverse problem is sought where, by giving the desired test results an asphalt mixture may be 

found. While there have been solutions for the forward model in past research, this thesis looks to more 

output properties and keeps the scope limited to standardised tests and mixtures, as available in the PIM-

environment. This short project description is further explained in the following paragraphs. The primary 

literature study in chapter 2 tells the scope and how that defines the in- and output for the models. The 

secondary literature study in chapter 3 tells first how forward modelling is used to find the link between 

input and output in the specific case of asphalt concrete and functional property prediction. Chapter 3 also 

described how inverse modelling may be used in this specific case and how it has successfully been used in 

similar cases. 

1. Input 2. Output 
3. Forward 

Modelling 

4. Inverse Modelling 
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 Research questions 

1.2.1. The goal 

The main research question is: ‘How can a structural pavement design be made, based exclusively on its 

given design parameters and the available mixture ingredients?‘ A solution can be found by studying 

varying asphalt property prediction models via a big data analysis. 

The setup of this research first requires both a quick analysis script, using multiple asphalt mixture 

models, and a machine learning algorithm, so that a similar analysis in the future will only need the data in 

the right format. Secondly, it needs a script that derives possible asphalt mixture recipes from desired test 

results. This inverse modelling analysis script will either work with constants that are derived from the 

forward modelling analysis or with a machine learning algorithm. 

 

This requires the following sub-goals: 

- Building a testing and training database from the PIM-environment; 

- A complete worked out example of such a forward modelling analysis; 

- A forward sensitivity analysis on the materials used; 

- A worked out inverse modelling analysis; 

- A sensitivity analysis on the inverse solution. 

 

There are (at least) two possible flaws when working with machine learning that depend on the 

database: 

1. Too little data for a successful machine learning algorithm; 

2. Too much noise in the data for a concrete analysis. 

 

If the database contains too little data for a successful machine learning algorithm, there are ways 

to simplify the work for the algorithm so that a result can be achieved with less data. If there is too much 

noise for a concrete analysis, this also will be a valuable result. As the link between mixture recipes and 

functional properties is already established (in the use of type tests), noise or a lack of reliability in the 

models may be because the input parameters aren’t distinctive. Should this turn out to be the case, the 

reason why must be explored extensively. 

1.2.2. Research questions 

The overarching research question this thesis is going to be dealing with is: ‘How can a structural 

pavement design be made, based exclusively on its given design parameters and the available mixture 

ingredients?’ A main requirement for coming to an answer is an inverse modelling analysis of asphalt 

property prediction models, to then build on to. 

Adding to this analysis, this question requires a three-fold attack roughly categorised as follows (in 

the order in which they need to be solved (1 first, 3 last)): 

1. Big data analysis on modern modelling techniques; 

2. Machine learning algorithm vs modern modelling techniques; 

3. Inverse problem solving. 

 

These three main research categories are tackled by asking the following main- and sub research 

questions.  

1. How accurate are modern asphalt mixture modelling techniques when calculating Dutch asphalt 

mixtures (forward problem)? 

1.1. Which asphalt mixture modelling techniques are generally used? 

1.2. What additional material characteristics do these modelling techniques require? 

1.3. How can the output of these models be translated into functional properties? 

1.4. How accurate can these models predict the functional properties from the asphalt mix design? 

2. How does a machine learning model stack up against conventional models (addition to the forwards 

problem)? 
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2.1. Which machine learning algorithms may be used? 

2.2. Is additional material-information needed? 

2.3. Can the functional properties be simplified? 

2.4. Is it needed to link certain parameters? 

2.5. How accurate can the algorithm predict the mixture properties? 

2.6. What improvements may be considered in the future? 

2.7. How does the machine learning algorithm compare to the conventional modelling techniques? 

3. How accurate can inverse problem solving predict asphalt mixtures from their OIA-properties? 

3.1. Which asphalt mixture modelling techniques are good enough for this method (including the 

machine learning algorithm)? 

3.2. What additional material characteristics do these modelling techniques require? 

3.3. How can the output (asphalt mixture recipes) best be visualised? 

3.4. How does the code to predict asphalt mixture recipes from their OIA-properties work? 

3.5. How does the accuracy of the predictions compare to the forward problem? 

 

After answering these research questions the thesis is concluded. Recommendations for further 

research are included afterwards.  

 Approach 

1.3.1. Critical path 

A distinction is made between the main path and the critical path. The main path is based on all work being 

done by 1 person. The critical path shows the interdependencies of the work, visualised in Figure 1-2.  

 

The main path is as follows: 

- Startup: 

o Finishing up the research methodology; 

o Literature study on conventional asphalt mixture modelling; 

o Literature study on usable machine learning algorithms; 

o Literature study on a usable inverse problem theory; 

- Database-building: 

o Set up the databases; 

- Coding: 

o Write the code for the forwards problem with conventional predictive models; 

o Implementing the machine learning algorithms; 

o Implementing a usable inverse problem theory; 

- Testing and analysis: 

o Acquire the results; 

- Analysis of the database: 

o Analyse the results; 

o Discussions on the results; 

o Draw conclusions and give recommendations. 
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Figure 1-2: Project flowchart 

 

 Scope 

The scope is defined per category.  

Database sources: The database is limited to the Ballast Nedam database. In the initial idea the 

cooperation in the PIM environment allowed for the use of the databases of multiple companies. Keeping all 

the data strictly confidential per companies is an important additional risk for these companies. So, the 

choice is made to work with 1 dataset first and only expand when needed. No expansion beyond the Ballast 

Nedam database is needed to get significant results.  

Limits to the database: the data used is limited to standardised testing. The purpose of this is to 

develop models that are easy to use by companies in the future, without the need for additional tests. The 

scope is sharply defined by standardised tests for asphalt concrete in the Netherlands, further limited to 

asphalt concrete mixtures that are tested for stiffness and fatigue tests only.  

Models: The predictive models are limited to models already used successfully on asphalt concrete 

databases in the past (multiple linear regression and the catboost machine learning algorithm) (Martini, 

2019) and adjacent models that increase the analytical insight in the power of these models (sklearn ridge 

model and the sklearn decision tree model). 

 

Analysis of the 
database

Testing and 
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 Chapter overview 

Chapter 1 introduces the thesis with a research approach and the research questions. Chapter 2 lists the 

primary literature. Primary literature is defined as literature that defines the scope and consists of the 

standardisations of Dutch standardised asphalt concrete tests and information on the pavement 

engineering design methodology as standardised in Dutch pavement design software. Chapter 3 continues 

the literature study with secondary literature. The primary literature contains standardised norms and 

pavement modelling techniques as enforced by the Dutch governing bodies while the secondary literature 

study contains research-oriented literature. Chapter 4 starts with an overview of the database, and the 

pre-processing steps undertaken to get a final database ready to be analysed. The final database has a 

clearly defined input and output as shown (1 and 2) in Figure 1-1. Chapter 5 contains the analytical work 

on the forward model, shown as (3) In Figure 1-1. Firstly, conventional models are fitted to the database, 

then machine learning models are trained and reviewed. Chapter 6 analyses solutions to the inverse 

problem and gives a practical use-case for this technique. Shown as (4) in Figure 1-1. Chapter 7 

summarises the results, answers the research questions. Chapter 7 also contains the recommendations for 

further research.  
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2. Primary literature review 

This primary literature review focusses on the input and output structure of the general thesis model, as 

shown in Figure 1-1. For clarity a brief introduction in standard Dutch pavement designs is given in the 

transversal cross section in Figure 2-1. The longitudinal direction is the traffic travelling direction. The 

thesis is limited to the asphalt concrete materials defined as a surface layer (surf), binding layer (bin) and 

base layer (base).  

 

Figure 2-1: Standard Dutch pavement construction design 

 Standardised input in pavement design 

This chapter introduces asphalt concrete as the combination of its constituents as standardised in the 

Eurocodes (European Committee for Standardization, 2016). A brief introduction of all constituents and 

their parts in the material design is given.  

2.1.1. Asphalt mixture recipe 

An asphalt concrete mixture recipe contains all the constituents with their weight percentages that need to 

be mixed in an asphalt plant to get a specific asphalt concrete mixture. Each asphalt concrete mixture has 

its functional properties found via standardised testing. (European Committee for Standardization, 2016) 

A common asphalt concrete mixture exists of the following constituents: Aggregates (including 

sand), binder and filler. Additionally certain additives may be included.  

2.1.2. Aggregate 

The aggregate creates the ‘skeleton’ of the mixture which dissipates all forces from the top of the asphalt 

layer to the base layers underneath. In The Netherlands, aggregates always consist of broken stones. The 

stones are broken and fractioned according to different sieve sizes. For example: Scottish Granite 8/16 is 

the aggregate type of Granite sourced in Scotland that passed the 16 mm sieve but stayed in the 8 mm 

sieve. The sieve sizes are not definitive as some smaller stones and aggregate dust may still be included. 

The sieve sizes are also used in industrial sifters. 

Asphalt mixtures include a range of differently fractioned aggregates to get to the desired 

aggregate skeleton. This range may include a larger part of sand (sieves 0/2) to create a ‘sand skeleton’ as 

is the case in mortar asphalt or may include a gap to create a ‘gap-graded skeleton’, which results in 

porous asphalt. (VBW Asfalt, Benelux Bitume, 2006) 

2.1.3. Binder 

This thesis is limited to binders consisting of penetration bitumen or polymer-modified bitumen. While the 

binder does not have to necessarily consist of bitumen, use of different materials is either to gain a specific 

colour in the top layer or is highly experimental. For clarity, bitumen refers exclusively to the refined 

version, a hydro-carbon product of the crude oil industry. 
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When oil is extracted from oilwells, a large variety of hydrocarbons are pumped up, the lightest of 

which are methane gas and the heaviest of which is the tar-like substance called bitumen. Bitumen was 

initially regarded as a waste product, but soon a use was found in the pavement engineering industry as a 

flexible pavement material. 

There is an ongoing effort by oil manufacturers to increase the amount of crude oil and lessen their 

waste products, which partly means lessening the bitumen output. A process called bitumen upgrading 

partly changes bitumen into synthetic crude oil. (Oil Sands Magazine, 2020) For the asphalt industry these 

efforts mean that the binder product ’bitumen’ has subtly, yet continuously, changed in functional 

properties. Bitumen forms 3% of European oil refineries crude oil products. So, while it is the most 

important asphalt concrete constituent, it is one of the least important oil refinery export products. Besides 

these ongoing efforts the source of crude oil used within the EU is changing. Figure 2-2 shows how the 

source countries have changed from 2000 to 2018 (Werkgroep Asfalt Impuls, 2021). Ongoing global 

conflicts like the 2022 Russian invasion of Ukraine may both change source locations further in the future 

and accelerate innovative investments in bitumen upgrading. (Zuk & Zuk, 2022) 

 

Figure 2-2: Source countries of crude oil used in Europe (workgroup Asfalt Impuls, Grip 

op Bitumen, CROW, 2021, Figure 7) 

It is important to note that bitumen is a viscoelastic material, and that asphalt is a mixture of constituents 

with no chemical alterations. This means that asphalt also behaves like a viscoelastic material and is 

unsuited for any construction type that does not restrain its flow over time. Asphalt behaviour is generally 

described as a Burgers material where its behaviour is characterised by two elastic springs, E1 and E2 and 

two viscous flows η1 and η2, see Figure 2-3. 
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Figure 2-3: Burgers model with accompanying deformations (VBW Asfalt, Benelux 

Bitume, 2006) 

The constituents that make up bitumen are generally classified by their solubility in four groups: 

Asphaltenes (insoluble in hydrocarbons), saturates (elution with n-heptane), aromatics (elution with 

toluene) and resins (elution with methanol). Other classification methods include solubility by polarity and 

by their hydrodynamic volumes. (Branthaver, et al., 1993)  

In The Netherlands, standard refined bitumen is classified as penetration grade bitumen and is 

characterised by the penetration test. (European Committee for Standardization, 2009). An example of 

penetration grade bitumen is pen grade 40/60, the penetration measurement lies between 40 and 60 

0.1mm. A higher pen grade in general means it is more viscous, has a lower stiffness, a higher fatigue 

resistance and better workability at lower working temperatures. Because the asphalt stiffness is one of the 

most important properties, there is a continuous search for the sweet spot between a high stiffness and a 

high resistance to fatigue.  Besides the penetration test the softening point test is also needed for full 

characterisation, though this does not influence the penetration grade. The softening point is defined as the 

temperature at which bitumen can no longer support a standardised metal ball which at that point sinks 

into the bitumen. Unfortunately, the standardised bitumen characterisation and classification do not link 

directly to the bitumen functional properties. The current standardised method for bitumen characterisation 

has been described as ‘risky for producers’ and ‘incomplete’. (Molenaar & Klarenaar, 2008) 

Another bitumen variant is polymer modified bitumen, commonly referred to as PMB. (Shell 

Bitumen, 2015) PMB is a catch-all term for penetration bitumen modified by different types of polymers. A 

2014 study investigated the optimization procedures for a standard penetration grade bitumen (70/100) 

using 3 different types of modifications: Polyethylene wax (PW), Styrene-Butadiene-Styrene copolymers 

(SBS) and Crumb rubber (CR). The study resulted in optimised blending charts. The modifications found 

were used to influence the bitumen susceptibility to weather and improve the resistance to rutting and 

cracking. It is important to note that rutting and cracking are similar, both originating from micro-cracks, 

but have completely different failure mechanisms. Rutting is a surface problem and cracking may have a 

variety of origins. However, if the origin of cracking is the asphalt layer itself (the fatigue failure 

mechanism) then it occurs from the bottom. The effectiveness of the PMB was determined using the 

penetration index, a value determined from penetration- and softening point-measurements. It has the 

same translation problem as regular bitumen but amplified because it treads outside the bounds of 

’penetration grade bitumen’. (Munera & Ossa, 2014) 

 

In the thesis dataset, the penetration and softening point are available. The penetration index is a 

method to combine the bitumen penetration and softening point into a single number to better compare 

different bitumen on a single scale. It is included as it may prove useful in modelling attempts. The 
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dimensionless aspects of PI in Equation 2-1 and the use of logarithms show that the function was 

(empirically) derived without regards to the equation input units. Use of this equation may be outdated and 

needs to be used with the proper context in mind. The penetration index is calculated as follows:  

 

𝑃𝐼 =
1952 − 500 log(𝑝𝑒𝑛25) − 20𝑆𝑃

50 log(𝑝𝑒𝑛25) − 𝑆𝑃 − 120
 

Equation 2-1: Penetration Index (Van der Poel, 1954) 

PI [-]: Penetration Index 

Pen25 [0.1mm]: Penetration at 25 ˚C, (standardised test NEN-EN 12591) 

SP [˚C]: Softening point (standardised test NEN-EN 12591) 

2.1.4. Filler 

Filler in an asphalt mixture has a role in the ‘asphalt mortar’. Together with the sand and bitumen it forms 

the paste that holds the aggregate together. Filler is similar to aggregate but specified as ’through the 

0.063μm sieve’.  

Filler has the following three roles to play in asphalt mix design: it is part of the aggregate mixture, 

improves the workability and improves the bonding between the bitumen and the aggregate. It does this 

by its relatively high specific surface area, which means there is a lot of surfaces for the bitumen to attach 

to compared to its volume. The filler, if completely submerged, increases the total volume of the mortar, 

especially where there is entrained air space between the aggregate. The bitumen will first fully bond with 

the filler, then with the sand and lastly with the aggregate, which means that too much filler will cost 

bonding power to the aggregate. (VBW Asfalt, Benelux Bitume, 2006)  

In the past, The Netherlands used gravel as an aggregate, which had hardly any filler on the 

stones. Therefore, traditionally additional manufactured filler was needed. This filler could be conventional 

aggregate material, pigments in coloured asphalt, or some form of bitumen-inhibitor. Nowadays limestone 

and lime hydrate are commonly used as filler, sometimes adjusted with various forms of fly ashes. (Van 

der Ven & De Jong, 2013)  

Even though gravel is no longer used in pavement grade asphalt in the Netherlands, the problem 

with too little dust still exists because aggregate is usually imported. The handling and transportation 

process removes a large part of the aggregate’s own dust, thus a small amount of additional filler is still 

added to the mixture where this may not be necessary in other countries.  

In the thesis dataset the filler is described by type and weight percentage in a mixture. The type 

refers to whether it is made up of residual dust or which type of added filler is used (no distinction between 

residual dusts is made).  

2.1.5. Additives 

Additives in general refer to pigments and/or drip inhibitors. In the production of asphalt concrete additives 

are optional, the term is a bit of a catch-all for anything that does not fit the other constituent groups. 

Because pigments, especially red pigments, come in the form of dust these are generally counted as filler. 

The materials counted as filler should be inert in asphalt concrete. Drip inhibitors are added to ensure a 

certain and even bitumen film thickness especially throughout the transportation. (VBW Asfalt, Benelux 

Bitume, 2006) 

The asphalt industry moves towards less greenhouse gas emissions. This created the incentive to 

lower the asphalt concrete mixing temperature. A 2020 study gave an overview the use of additives to 

lower the mixing temperature (up to slightly above 100 ˚C) while keeping the onsite workability. It was 

noted that this is an emerging technology and that, while the effects of certain additives are known, the 

underlying interactions and phenomena that cause these effects are not yet understood. (Caputo, Abe, 

Loise, & Porto, 2020)  
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2.1.6. Reclaimed asphalt 

Reclaimed asphalt consists of aggregate and leftover bitumen. The bitumen from reclaimed asphalt is 

combined with the added ‘fresh binder’ The penetration of the mixture is calculated from the fresh binder 

penetration and an assumed recycled binder penetration.  

Recycled asphalt is named for its source category, in the thesis database there are four distinct 

categories: 

▪ Base layer recycled asphalt; 

▪ Bin/-surf layer recycled asphalt; 

▪ Porous recycled asphalt; 

▪ ECO recycled asphalt. 

The base-, bin-, surf layer describes the original location of the recycled asphalt in the pavement 

structure (shown in Figure 2-1). Surf stands for surface layer and is the top layer in the construction, bin 

stands for binding layer and is usually the layer right below the surface layer. The base layers are usually 

the layers between the binding layer and the subbase material. Porous recycled asphalt has a gap-graded 

aggregate which may prove problematic in continuous graded mixtures. Finally, there is ECO recycled 

asphalt. This type is sourced from tar-contaminated asphalt which has been thermally cleaned until all tar 

is broken down. The cleaning process may impact the material properties which may lead to undesired 

effects when used as recycled asphalt, but recycling this material is desirable because it gives a second life 

to what would otherwise be a waste material.  

 Standardised output for pavement design 

First an overview is made as to what would constitute the functional properties of an asphalt concrete 

mixture. The functional specification of asphalt mixtures is standardised in the asphalt type test, a 

collection of standardised tests as set in NEN-EN 13108-20 (European Committee for Standardization, 

2016) 

2.2.1. Functional specification of asphalt concrete mixtures 

With the introduction of European rules and regulations (the Eurocodes) in 2008, the Netherlands has 

chosen to follow the path of functional specification in asphalt concrete. This effectively means that asphalt 

mixtures are tested in standardised tests the results of which relate to desired functional properties during 

the lifetime of an asphalt concrete pavement. (Sleuer & Stigter, 2014) The functional requirements are 

noted in the Standard RAW Bepalingen of which periodically a new version appears (2010, 2015, 2020). 

Over the years the methodology has shifted somewhat while knowledge and experience in functional 

specification grew with usage.  

Since 2018 CROW Asfalt Impuls has started, in cooperation with stakeholders (both public and 

private), to design and implement a systemic approach to functional verification.  

 

The method of functional specification answers the following questions:  

1. What are the functional properties of this asphalt mixture as tested in a laboratory? 

2. Is the asphalt mixture as found in a newly constructed pavement similar enough to the lab design 

to be assigned the mixture design specifications? 

 

Functional verification aims to change this to:  

1. What are the functional properties of this asphalt mixture as tested in a laboratory?  

2. Are the functional properties of the asphalt mixture as found in a newly constructed pavement 

comparable enough to the designed specifications? 

 

As this review focusses on asphalt concrete specification in the lab, the functional verification 

approach gives important insight into what specific functional properties are most relevant in asphalt 

concrete mixture design. The properties in use in the current functional verification approach are listed in 

Table 2-1. These functional properties will be further discussed in this chapter.  
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Property Functional specification 

method 

NEN-EN norm 

Mixture density Weighing above and underwater NEN-EN 12679-6 

Mixture stiffness 4-point bending NEN-EN 12697-26 

Resistance to fatigue 4-point bending NEN-EN 12697-24 

Resistance to deformation Cyclic compression test NEN-EN 12697-25 

Water sensitivity Static indirect tensile testing NEN-EN 12697-12 

Table 2-1: Functional properties, their specification method and the applicable NEN-EN 

norms 

In the standardised pavement design healing is an important parameter, which will therefore also 

be discussed. In this discussion it will become apparent why this was not considered a viable functional 

property for function verification. (CROW, 2012) The advised mixing temperature of an asphalt mixture is 

not directly a desired functional pavement property but is however directly linked to the CO2 footprint and 

therefore included in this review.  

2.2.2. Mixture density 

During pavement construction the asphalt concrete mixture density is one of the most important 

measurements for its ease of use and links to other functional properties. For this reason, the mixture 

density is considered as an output parameter in this review. As it stands however, it is inadvisable to 

include the mixture density of laboratory made specimens of asphalt concrete in the output section. During 

specimen preparation the mixture density is partly a forced outcome. When the mixture has been heated, 

mixed and ready to be compacted, the compaction is fine-tuned to reach the desired mixture density.  

Because the mixture stiffness is especially used during in situ work verification due to its predictive 

links with functional properties, using the calculated mixture density in forward models allows these links to 

be better established. Using the measured mixture density as an output parameter may not give much 

more information than the offset between the measured density and the calculated density. It is a subject 

that may be interesting when calibrating the test specimen preparation methodology, but not useful in a 

comprehensive asphalt concrete prediction model. An output parameter that may prove useful however is 

the amount of force or time needed during the compaction process. If a mixture is almost impossible to 

compact to its calculated density, then this may prove a problematic aspect of this mixture during 

construction.  

Instead of the mixture density itself it is therefore advised to use the number of gyrations needed 

during the preparation of gyration specimens. Gyration specimens are compacted by a gyrating movement 

of the bottom plate of the mould. This movement is countable and included in the dataset. If a link can be 

established between the number of gyrations, the gyration tablet height and the mixture design this may 

prove an important step in the determination of asphalt mixture design workability during construction. The 

number of gyrations is however also dependant on the way the gyrator was loaded, and the thesis dataset 

has no standardised method for this. (De Bruin, Jabobs, & Rering, 2011) 

2.2.3. Stiffness 

Asphalt stiffness is described as a temperature dependent curve where the variable coefficients are 

determined in a lab environment with standardised equipment. The curve is characterised at a temperature 

of 20 ˚C and a loading frequency of 8 Hz. (CROW, 2012). 

 

The curve is described in Equation 2-2. Of the model coefficients c1 to c4 only c1 is not pre-defined. The 

equation is empirically derived and has no meaningful way to distinguish between the units of the different 

coefficients. Care must be taken to use the right input units. 
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Ln(𝐸𝑎) = 𝑐1 + 𝑐2 ∙ 𝑇𝑎 + 𝑐3 ∙ 𝑇𝑎
2 + 𝑐4 ∙ 𝑇𝑎

3 

Equation 2-2: Stiffness from model coefficients (CROW, 2012) 

 

Stiffness model coefficient Value 

c1 [-] Equation 2-3 

c2 [-] -0.018400189 

c3 [-] -0.001098345 

c4 [-] 0 

Table 2-2: Stiffness model coefficients (CROW, 2012) 

 

𝑐1 = ln(𝐸𝑎,250 − ∆𝐸𝑎,250) + 0.80734 

Equation 2-3: Stiffness model coefficient 1 (CROW, 2012) 

 

Ea,250 [MPa] is the asphalt modulus as determined (European Committee for Standardization, 2012) 

ΔEa,250 is a reduction in asphalt stiffness depending on spread and number of times the test is repeated. Two 

tables are included in the norms for when either 18 prisms are tested per test or when 6 prisms are tested per test. The 

test is standardised for 20˚C at an interval of 8 Hertz.  

Ta [˚C] is the asphalt temperature. The standardisation includes a method to adjust the asphalt 

stiffness for the average vehicle speed by adjusting the asphalt temperature. 

 

 

Figure 2-4: Temperature vs asphalt concrete stiffness for 2 mixture types 

Figure 2-4 shows an example of the stiffness over the temperature curve. For mixture A Ea,250-

ΔEa,250=7000 MPa and for mixture B Ea,250-ΔEa,250=5000 MPa. The curvature itself is pre-defined and set 

around Ta=20˚C because the average asphalt concrete temperature at the interface of the base layer and 

the subbase is approximately 20˚C. The pre-defined functions and lack of parity between the units show 

that these curves are based in statistical research and not grounded in physical relationships.  

2.2.4. Fatigue 

In asphalt concrete, fatigue is the main failure mechanism that occurs directly within the asphalt concrete 

and is not a surface layer issue. Therefore, fatigue calculations form the basis of Dutch structural pavement 

design. (CROW, 2012) 
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Fatigue occurs in the asphalt base layer (Figure 2-1). The asphalt construction in a standard design 

with mixed granulate has a much higher stiffness (a factor 10 to 30 higher) than the subbase underneath 

the asphalt. This causes the asphalt construction to work partly as a half-space and partly as a beam. The 

higher the difference in stiffness between the asphalt concrete and the subbase the more the asphalt 

concrete behaves like a continuously supported beam. A higher asphalt concrete stiffness also causes the 

stressed area from a passing wheel to be divided over a bigger area in the subbase and subgrade layers. 

Behaving in part like a beam during a wheel pass causes tensile stresses to occur in the bottom layer of the 

asphalt concrete and the binder, due to its viscous nature, will always deform slightly under tensile 

stresses.  

ln(𝑁𝑓𝑎𝑡) = 𝑐1 + 𝑐5 (ln(𝜀𝑎) + 𝑐2 ln(𝐸𝑎,𝑑𝑒𝑠𝑖𝑔𝑛)
2

+ 𝑐3 ln(𝐸𝑎,𝑑𝑒𝑠𝑖𝑔𝑛) + 𝑐4)
2
 

Equation 2-4: Pavement fatigue per strain-range (CROW, 2012) 

Nfat is the total amount of vehicles for that particular strain (εa) and stiffness (Ea,design).  

 

During the design process the occurring strain is calculated in a multi-layer half space for different 

axle loads and vehicle wheels. This thesis is only interested in the material properties used for the design, 

the design itself lies outside of its scope, though a brief explanation of how it is used may benefit 

understanding of the properties itself. For the fatigue model coefficients c1 to c5 only c4 and c5 are not pre-

defined. 

 

Fatigue model 

coefficient 

Value 

C1 [-] 0 

c2 [-] 0.33796 

c3 [-] -7.3642 

c4 [-] p 

c5 [-] Equation 2-5 

Table 2-3: Fatigue model coefficients (CROW, 2012) 

The variable p [-] is defined as the slope of a linear regression between the applied force (x-axis, 

logarithmic) and the amount of repetitions until failure (y-axis) The design stiffness is the same as the 

stiffness at that location (the stiffness of the asphalt layer in which the strain occurs, usually the base layer 

Figure 2-1). 

 

𝑐5 = ln(106) − 𝑐2 ln(1.2824 ∙ 𝐸𝑎,250)
2

− 𝑐3 ln(1.2824 ∙ 𝐸𝑎,250) − 𝑐4 ln(𝜀6) 

Equation 2-5: Fatigue model coefficient 5 (CROW, 2012) 

ε6 [m/m] is the occurring maximum strain in a theoretical fatigue test prism that can withstand 106 

load-cycles. In fatigue tests, a prism is considered destroyed when it is remaining stiffness is half its 

original stiffness (the stiffness slowly lowers during a fatigue test due to the formation of microcracks).  

It may have become apparent that the fatigue behaviour used during design is described 

completely by the combination of material properties ε6, p and Ea,250. These three will therefore acts as ’the 

material properties in the category fatigue’. 

2.2.5. Resistance to permanent deformation 

In asphalt concrete pavements the resistance to permanent deformation is linked to a resistance to rutting. 

As asphalt concrete is a viscoelastic material rutting does not stem from a destructive mechanism but from 

the permanent flow η1 from the Burgers model in Figure 2-3. Figure 2-5 shows an example of excessive 

permanent deformation in the form of rutting.  
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Figure 2-5: An example of rutting (Rotated and cropped, user Burda, CC BY-SA 3.0, via 

Wikimedia Commons) 

The tests for permanent deformation in asphalt concrete are standardised in NEN-EN 12697-25. 

This test is performed by cyclic loading of a specimen. Whereas during the stiffness- and fatigue tests 

specimens are loaded alternating on both sides of a prism both in compression and in tension, the test for 

permanent deformation uses a cylindrical specimen under exclusively a compressive force. The resistance 

to permanent deformation is then calculated by the cumulative axial strain after n load cycles (European 

Committee for Standardization, 2016).  

 

Figure 2-6: Test apparatus (NEN-EN 12697-25-2016 figure 3) 

𝜀𝑛 = (
𝑢𝑛

𝑡𝑖
) 

Equation 2-6: Cumulative strain in accordance with NEN-EN 12697-25 

𝜀𝑛 [m/m]: Cumulative strain after n loading cycles 

𝑢𝑛 [mm]: Cumulative permanent deformation 

𝑡𝑖 [mm]: Initial specimen thickness 
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2.2.6. Water sensitivity 

At the bitumen-aggregate interface three mechanisms are responsible for the formation of a bond (VBW 

Asfalt, Benelux Bitume, 2006):  

1. The bitumen anchors itself mechanically in small crevices of the aggregate; 

2. The bitumen-aggregate mixing results in a lessening of surface tension relative to a sum of its 

parts; 

3. Dipole interactions between the negatively charged aggregate and positively charged bitumen.  

 

As bitumen is hydrophobic, in a mixture of asphalt concrete and water the most favourable position 

for water molecules is within air pockets or at the bitumen-aggregate interface. Water inclusions in air 

pockets are not problematic but those at the bitumen-aggregate interface certainly are. These result in 

stripping which lessens the bonding power between the binder and the aggregate. To get to the binder-

aggregate interface water needs to travel through the hydrophobic bitumen, either by diffusion or via 

microcracks. As such, the binder forms an adjustable and tuneable boundary. (Sengoz & Agar, 2007) The 

diffusion of water through rock (specifically the type used in asphalt concrete) is negligible compared 

diffusion through entrained air and along the binder. Water sensitivity is especially important in porous 

asphalt and in asphalt with higher entrained air percentages. The expansion of freezing water at the 

interface during winter is especially problematic as this strains the bitumen which at lower temperatures 

has an increased brittleness. (De Jong, 2009) 

 

Figure 2-7: Typical example of frost damage in asphalt (De Jong, ZOAB vorstschade en 

onderhoud, VBW-Asfalt, 2009) 

The determination of the water sensitivity can happen in different ways in accordance with NEN-EN 

12697-12 (European Committee for Standardization, 2008). One of these methods is described to give an 

idea of the methodology. A water sensitivity test may follows these steps (note that this method has been 

simplified): 

1. Prepare 2 sets (dry and wet) of asphalt concrete specimens (tablets, d=150 mm); 

2. Place the wet set in a water bath for 68 to 72 hours at T=40˚C (store the dry set on a flat 

surface at room temperature); 

3. Bring the test specimen to the same temperature. Put the dry set in a plastic bag, place the dry 

set (in the bag) and wet set (directly) in a controlled water bath for 4 hours at T=20˚C; 

4. Dry the water bath specimens with a towel and immediately determine the indirect tensile 

strength of both sets; 

5. Calculate the water sensitivity in Equation 2-7. 

 

𝐼𝑇𝑆𝑅 =
𝐼𝑇𝑆𝑤

𝐼𝑇𝑆𝑑
 

Equation 2-7: Calculation of a measure for the asphalt concrete water sensitivity 

ITSR [%]: Indirect tensile strength ratio, a measure for water sensitivity 

ITSw [kPa]: Average indirect tensile strength of the wetted specimens 

ITSd [kPa]: Average indirect tensile strength of the dry specimens 
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2.2.7. Healing 

In asphalt concrete self-healing properties have been observed since its first use. An explanation for this 

lies in the viscoelastic properties of bitumen as discussed in chapter 2.1.3. A 1994 study addressed the 

important question ‘Healing in asphalt concrete pavements: Is it real?’. The results showed that, after a 

fatigue-induced decrease of the stiffness modulus, the stiffness modulus could increase after a rest period 

(40 minutes) or after heating the asphalt concrete (to 49 °C). Remarkable is that healing was shown during 

conditions that may occur in situ (nieuwsredactie nu.nl, 2022).  

The self-healing properties of asphalt concrete have since been defined as a process where load-

induced microcracks close during resting periods. (CROW, 2012) In the Dutch pavement design process, 

healing is taken into consideration as a partial factor on the characteristic fatigue strength.  

The healing factor value is limited to between 1.0 and 4.0. When modified bitumen or additives are 

used the healing factor equals 1.0. The healing factor may be calculated directly from the penetration value 

and the bitumen-percentage of the mixture,  Equation 2-8. (Dienst Grote Projecten en Onderhoud, 2016) 

 

𝑆𝐹ℎ𝑒𝑎𝑙𝑖𝑛𝑔 = max
4

(1 + 0.0000419 ∙ 𝑉𝑏
1.06 ∙ 𝑝𝑒𝑛2.45) 

Equation 2-8: Shift factor healing 

 

SFhealing [-]: Shift factor due to healing, applied to the characteristic fatigue strength of the asphalt. 

Pen [10-1 mm]: penetration of the (mixed) bitumen in accordance with NEN-EN 13108-1 ANNEX A. 

Vb [%m/m]: Bitumen percentage in accordance with NEN-EN 13108-7 article 5.2.3. 

 

Equation 2-8 shows that fatigue life increases when the mixture contains more bitumen and when 

the bitumen used is of a softer variety, as it may more easily flow back into formed microcracks. Equation 

2-8 again is an empirically derived function where no particular note was given to equating the units. Care 

must be taken in using the units as described. 
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3. Secondary literature review 

This chapter addresses literature that will not define the scope directly but lies adjacent to the research. 

First short description of the different asphalt types will be given, after that information will be given on 

methods to solve for the forward and inverse problems.   

 Different asphalt concrete types 

From a mechanical mixture design viewpoint 4 asphalt mixture types may be identified purely by their mix 

design (mortar vs aggregate vs voids, mortar is the mixture of binder, filler and sand): 

1. Mortar asphalt, sand skeleton asphalt or overfilled mixtures: the aggregate ’swim’ in a sea of 

mortar and are not interconnected. This mixture type is most common in asphalt concrete layers 

other than the top layer. 

2. Stone mastic asphalt or filled mixtures: The aggregate form a continuous skeleton throughout the 

asphalt concrete, the mortar filles up the voids in the aggregate so that the voids are not 

interconnected. In practice, this mixture type is used as top layer asphalt due to its stable 

character and slight noise-reducing capacity. 

3. Porous asphalt or underfilled mixtures: The aggregate form a continuous skeleton, the voids remain 

open and interconnected. The mortar binds aggregate to aggregate. This mixture type is used as a 

top layer for its noise-reducing and water bearing capabilities.  

4. Mastic asphalt: This asphalt mixture gets its strength from the mastic (binder + filler) where both 

the sand and aggregate do not interconnect. This is mainly used for its watertight properties. 

Mastic asphalt is left outside of the scope of this thesis.  

 

Only asphalt of type 1 has fatigue tests and extended stiffness tests as a part of their type test, this 

is because this is in general the only asphalt type used as the base layer and bin layer (See Figure 2-1) 

while the other types are used as surf layers or have a different function entirely. Fatigue in an asphalt 

pavement occurs in the bottom of the asphalt construction at the interface with the subbase where tensile 

forces occur. (VBW Asfalt, Benelux Bitume, 2006) 

 Forward Modelling 

The Forward Models discussed in this chapter deal exclusively with the modelling of the functional 

properties of asphalt concrete from the constituents and/or mixture design (Figure 1-1). In general, 

research has been handled per functional property. A complete model for all interlinked functional 

properties of asphalt concrete has not been attempted, though some researchers have tried to combine 

different properties. Regarding these existing models, the reviewed research has the following problems: 

1. Models do not translate well between different asphalt testing datasets; 

2. Models do not translate well between different asphalt types; 

3. Most asphalt literature focusses solely on predicting the asphalt stiffness.  

3.2.1. Early modelling attempts (pre-2010) 

Droogers researched the prediction of asphalt concrete stiffness noted the accuracy of 8 different models 

(the pre 2010 models) and tested these against a database consisting of 7 different Dutch asphalt 

mixtures. The tested models had all been verified during their creation against local asphalt mixtures, 

which could deviate from Dutch mixtures. It concluded that some models should be avoided due to their 

inaccuracy and inapplicability, while other models showed great promise (accuracy ±10%). It is noted that 

this predictive model used linear regression analyses (Jacobs model). (Droogers, 2018) 

3.2.2. Modern models 

One of the models from Droogers for the prediction of asphalt concrete stiffness was later adjusted by the 

author for the Dutch database that was used to verify the models. This became the adjusted ‘Droogers 
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Model’ based on linear regression analyses. Four different sets of predictive parameters (input) were tested 

to obtain the asphalt concrete stiffness (output). (Droogers, 2018) 

The three volume fractions in Table 3-1 together sum to 100%.  

 

Quantity Unit Description 

Sbit,blend MPa Stiffness of the bitumen blend 

Va m/m% Volume fraction Air 

Vg m/m% Volume fraction Aggregate 

Vb m/m% Volume fraction  Binder 

Penmix 0.1∙mm Penetration value of the binder mix 

TR+B ˚C Binder softening temperature 

Cu - Coefficient of uniformity 

Smix MPa Output: Asphalt concrete stiffness 

Table 3-1: Droogers Model parameters 

Of the four different sets of tested input parameters 3 parameters were found to be predictive and 

were used in the ‘Droogers Model’: Sbit,blend, Va and Vb. 

 

𝑆𝑚𝑖𝑥 = 24.131 ∙ 𝑆𝑏𝑖𝑡,𝑏𝑙𝑒𝑛𝑑 − 1113.6 ∙ 𝑉𝑎 − 826.35 ∙ 𝑉𝑏 + 22062 

Equation 3-1: Droogers model 

 

In a database containing only penetration bitumen (no polymer binder modifications), a verification 

of this model led to R2=0.85. The Droogers Model is not compatible with polymer modified bitumen, only 

mixtures with penetration grade bitumen. After fitting the model to the PMB-modified mixture, it resulted in 

the stiffness of the bitumen playing a more significant role (times 114.23 instead of times 24.131). The 

model refitted to the PMB-modified dataset resulted in a poor correlation, possibly because the dataset size 

filtered for PMB-modified bitumen was too small. Droogers concluded that more research was needed in 

this specific field.  

 

A 2019 study by Martini successfully used machine learning algorithms, specifically the gradient 

boosted decision tree machine learning model CatBoost, to predict multiple functional properties of asphalt 

concrete with standardised lab input parameters. The two types of algorithms were compared: Multiple 

Linear Regression and Gradient Boosted. (Martini, 2019)  

The multiple linear regression algorithm is comparable to the work of Droogers and led to 

comparable results, while the gradient boosted algorithm significantly outperforms the use of multiple 

linear regression. For the asphalt concrete stiffness RMLR
2=0.79 while RGB

2=0.97. This research was done 

using the NL-Lab Dataset. 

Martini addressed the  Jacobs and Droogers models, which both performed poorly on the NL-Lab 

dataset. The Jacobs Model predicted stiffness: R2=0.55 with refitted coefficients. The Droogers Model 

predicted stiffness R2=0.49 with its original coefficients and R2=0.37 with refitted coefficients. How the 

author managed to decrease the accuracy of the Droogers model by refitting them is not clearly explained. 

In a solution for the forwards problem Martini proved MLR-models to be inflexible when exported 

from the dataset used to verify them, whereas GB-models looked promising. A problem with the NL-lab 

Dataset was that it used input parameters which were not standardised and readily available in the PIM-

environment (mixing method and compaction method). A GB-model without these parameters has also 

been included and it resulted in a similar fit%. The GB-model parameters using standardised quantities are 

summarised in Table 3-2. 
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Quantity Unit Description 

Normalised  

importance 

ρmix Kg/m3 Asphalt density 1 

Penmix 0.1mm Penetration value of the binder mix 3 

Vf m/m% Volumetric parameter: Filler 4 

Vb m/m% Volumetric parameter: Binder 2 

Smix MPa Output: Asphalt concrete stiffness  

Table 3-2: GB-model parameters 

Figure 3-1 shows the difference between Multiple Linear Regression- and Gradient Boosted 

Algorithms. This figure is copied from figure 6.16 in (Martini, 2019) and shows the relationship between 

stiffness and the independent variables for MLR- and GB-algorithms. Note how the range of gradient 

boosted relationships is consistently smaller than that of linear regression and that the gradient boosted 

sets can include step functions.  

 

Figure 3-1: Difference between multiple linear regression and gradient boosted 

algorithms (Martini, 2019) 

Martini also researched additional parameters: Resistance to permanent deformation and the 

indirect tensile strength (which is used in the water sensitivity parameter). Predicting the resistance to 

permanent deformation was achieved with an accuracy of RMLR
2=0.67 while RGB

2=0.92. The indirect tensile 

strength was modelled with an accuracy of RMLR
2=0.69 while RGB

2=0.88 (accuracies based on the complete 

dataset, training + testing).  
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3.2.3. Decision tree algorithms and Gradient boosted regression methods 

The new methodologies in predicting asphalt concrete properties, shown in paragraph 3.2.2, show great 

promise compared to the earlier models. A brief introduction in the mechanics of specific machine learning 

algorithms is therefore given. 

The first step in deciding on a machine learning model is based on the availability of data. In 

asphalt concrete property prediction, the goal is to calculate from the asphalt mix design (input) the 

laboratory test results (output). All models discussed in paragraph 3.2.1 and 3.2.2 are based on a dataset 

where input and output is available. Modern methods split the dataset in a testing and training set and use 

supervised (machine learning) algorithms.  Supervised machine learning algorithms are machine learning 

algorithms where the input- and output data are classified by the researcher.  

Supervised machine learning algorithms may be further classified in two categories, classification 

models and regression models. Classification models define the input in classes from which follows an 

output (i.e., by if-then statements) while regression models map the input space unto an output value. 

(Nateski, 2017) Asphalt concrete test results databases consist of mostly numerical input values and some 

categorical input values, an example from Martini’s model is which compactor was used in testing. (Martini, 

2019) Another example may be the use of penetration grade- or PMB-bitumen.  

A flexible choice in supervised machine learning with both numerical and categorical input their and 

a tolerance to irrelevant or redundant data is the use of a decision trees algorithm. (Osinanwo, et al., 

2017) The choice is flexible because there are different ways of building a decision tree.  

 

Decision tree algorithms consists of nodes where each node may lead to either a different node or 

an output value, depending on the attribute values (input or manipulated input value). (Nateski, 2017) 

Figure 3-2 visualises a decision tree. Each decision node is an if-then statement which may be categorical 

or numeral. Each leaf node gives a predicted output value. The tree grows by changing a leaf node into a 

sub-tree. The flexibility in decision tree algorithms arises from the size and limits set on the sub-trees. A 

sub-tree with 2 decision layers (and 4 leaf nodes) needs more computing power but simultaneously adjusts 

the 3 decision nodes for the outcome of 4 leaf nodes, while the smaller sub-tree shown in Figure 3-2 needs 

less computing power per decision tree and is capable of building a bigger total decision tree in the same 

amount of time.  

 

Figure 3-2: Decision tree breakdown (Navlani, 2018) 

The model developed by Martini, as discussed in paragraph 3.2.2, uses the gradient boosted 

decision tree model CatBoost, developed by Yandex. Gradient boosting is often combined with decision tree 

algorithms, specifically so that categorical and numerical features may be part of the input space. 

(Dorogush, Ershov, & Gulin, 2017). 

Gradient boosting uses a learning rate factor where the step taken in adjusting the leaf nodes in 

each new node is adjusted by the learning rate. Figure 3-3 gives a visual representation of the idea of fast 

learners vs slow learners. In general, a large amount of small steps in the right direction is more accurate 

than a smaller amount of bigger steps. Large vs small learning rates both have their positives and 

negatives, however. While a small learning rate may be more accurate on average, there is the possibility 

of ending in a low accuracy local minimum. A large learning rate may get into a positive feedback loop 
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where each step needs to adjust for the previous step but overshoots and needs correcting in the next 

step. (Goodfellow, Bengio, & Courville, 2016) Gradient boosting usually outperforms decision trees and 

random forest algorithms.  

 

Figure 3-3: Visual representation of fast learners vs slow learners 

 Inverse modelling 

The Inverse Models discussed in this chapter deals exclusively with the prediction of the asphalt concrete 

constituents from (desired) properties (Figure 1-1). As this method has not yet been used in this specific 

setting it the chapter deals more with methods used in similar problems and with possible roadblocks.  

3.3.1. Inverse Problem Theory 

Inverse problem theory concerns itself with finding a priori information from a set of measurements. An 

example of this is finding the location of the epicentre of a seismic event from multiple measurements of 

seismic waves. Each measurement gives the arrival time of the seismic wave, so a single measurement 

would only be able to give a sphere in which the seismic event took place. Multiple measurements with 

their uncertainties can narrow the answer further down depending on their relative location to the seismic 

event. (Tarantola, 2005) This is an example of a problem where the a priori information is unknown, the 

physical relationship between the event and the measurements is known and a multitude of measurements 

of the same type are used to give the answer. The problem description of asphalt concrete mixture design 

is slightly different. The physical relationship between the mixture design and the functional specifications 

are unknown and the functional specifications are all a different type i.e., each has their own relationship to 

the mix design.  

In nonlinear inverse problems where no analytical expression for the forwards problem is possible 

and where linearization of the problem is unsuccessful a mathematical approach is impossible. In these 

cases, Monte Carlo methods may prove useful in finding input parameters given a certain output. A 2002 

study proposes this methodology. Monte Carlo simulations are essentially brute force attacks on the 

problem where randomised sample of the input space are analysed to find the resulting output space. A 

given output can then be coupled with an (approximate) input space. (Mosegaard, 2002) 

Chaotic complex systems require more attention in inverse problem theory as slight changes in the 

initial settings may lead to radically different outcomes. Methods to successfully find probable input 

parameters in chaotic systems have been established, the focus shifts from directly finding the input 

parameters to a maximum likelihood parameter estimation. A 2011 study proposed this approach in state-

space systems (particularly for the nonlinear Van der Pol oscillator) noting that the approach may be useful 

for a broad range of estimation problems. (Pence, Fathy, & Stein, 2011) 

3.3.2. Use of Machine Learning in Inverse Problem Theory 

A forward model is not necessarily necessary with modern machine learning techniques. Paragraph 3.3.1 

shows that if a forward model is possible, it may be reversed to approximate the input from the output. If a 

reversible forward model may be created, it may also be possible to find the inverse model directly via 
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machine learning. A 2012 study successfully used this method to the pavement layer stiffnesses, 

subdivided in an asphalt layer stiffness, subgrade layer stiffness and base layer stiffness from falling weight 

deflectometer measurements. (Gopalakrishnan, Angrawal, Ceylan, Kim, & Choudhary, 2013)  
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4. Dataset under study 

 The standardised database 

4.1.1. Origin of the datasets 

The dataset under study is from Ballast Nedam, an active partner in the development of the PIM software. 

PIM software collects data from lab technicians in a centralised database. A copy of this database is made 

available daily to the PIM partner companies for business analytics of which this thesis is one.  

For reproducibility the exact names of the tables are given with their meaning and use:  

▪ Bitumengrade: Bitumen type and whether the polymer modified bitumen is used. 

▪ Mengselontwerp: Mixture design, this table contains information about the structure of the mixture 

such as the bitumen mixed penetration, bitumen softening point, amount of bitumen and the 

amount of contained air, but the shiftfactor healing which is a calculated output.  

▪ DefinitiefMengselontwerp: Final mixture design, this table contains all tested output, results from 

the standardised tests. 

▪ NominaleKorrelDiameter: The maximum aggregate size. 

▪ BouwstofType: Constituent type, this table is used to categorize MengselontwerpBouwstof by type 

▪ Korrelgroep: Sieve groups, this table is used to categorize MengselontwerpBouwstof by aggregate 

size, only aggregates are considered for this.  

▪ MengselontwerpBouwstof: Mixture design constituents, per mixture design the amount in weight 

percentage of constituents is given. 

 

These raw tables are combines and structured into 3 tables: 

▪ Properties per mixture. 

▪ Amount of constituents in weight percentage per mixture 

▪ Amount of aggregate per sieve group per mixture 

 

The three tables may then be combines into one big table with all the input- and output data per 

mixture. The reason 3 tables are needed as a steppingstone to the one big table is because each table has 

its own calculations. Properties per mixture is straightforward, no further calculations needed. Amount of 

constituents in weight percentage per mixture contains the sum the constituents by constituent type. If, for 

example, 2 different types of filler are used, which is almost always the case, then the sum of these is 

combined under constituent type ‘filler’. The amount of aggregate per sieve group per mixture sums the 

constituents by sieve group instead of constituent type. Not all mixture types need stiffness and fatigue 

testing, therefor the resulting dataset is filtered by mixtures that have these requirements.  

4.1.2. Dataset overview 

The dataset resulting from the steps in chapter 4.1.1 contains 728 mixture designs of which 214 mixtures 

contain data from standardised stiffness and fatigue testing. Figure 4-1 shows the distributions for all 

parameters in the database. The figure is meant as a quick overview, a complete overview is given in the 

annexes.  
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Figure 4-1: Database distributions per input- and output-parameter 

4.1.3. Dataset pre-processing 

To keep the work accessible the amount of dataset pre-processing is kept to a minimum. In line with the 

standardised division of aggregate into filler (<63 µm), sand (63 µm to 2 mm) and aggregate (>2 mm), all 

the aggregate types will be sorted in these three categories by their sieve sizes and/or categories in weight 

percentages. Because these three categories plus the bitumen weight percentage sum to a total of 100%, 

giving all weight percentages as input parameters is an overdetermined system. As input parameters this 

causes no issues, but when the solution to the inverse is solved, this does lead to a problem. Each 

parameter has its own model attached to it and is individually determined. This method leads to 

mismatches in overdetermined system. The easiest way to solve this is to leave one parameter out when 

the inverse problem is solved. The parameter left out is the aggregate volume percentage. Sand, filler and 

bitumen volume percentages are easier to adjust in a mixture, from a mix design viewpoint these values 

are more important.  

 Parameters 

4.2.1. Predictive parameters (Input) 

Table 4-1 lists the input parameters and their information type. 
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Name Summary Information 

type 

Asphalt Density [kg/m3] Calculated mixture density in kg/m3 as measured in 

the laboratory 

Float 

Bitumen Type Use of polymer modified bitumen of penetration 

bitumen 

Binary 

Binder content [W%] Total amount of binder in the mixture in mass 

percentage 

Float 

Binder softening point 

[°C] 

Softening point of the mixed binder Float 

Binder penetration [0.1 

mm] 

Penetration of the mixed binder Float 

Entrained air [V%] Amount of entrained air in the mixture in volume 

percentage 

Float 

Filler [W%] Total amount of filler in the mixture in mass 

percentage 

Float 

Sand [W%] Total amount of sand in mass percentage Float 

Aggregate [W%] Total amount of aggregate, bigger than 2 mm, in 

mass percentage 

 

Max aggregate size [mm] Maximum aggregate sieve size Categorical 

Recycled asphalt type Source of the recycled asphalt: ‘Base’, ‘bin/surf’, 

‘ZOAB’ 

Categorical 

Thermally cleaned sand 

[W%] 

Amount of thermally cleaned recycled asphalt in 

mass percentage 

Float 

Table 4-1: Predictive parameters (input) used in the models 

4.2.2. Predictable parameters (Output) 

Table 4-2 contains the output parameters along with their information types.  

Name Summary Information 

type 

Stiffness Stiffness of the asphalt concrete in MPa Float 

Stiffness deviation Variation in the stiffness measurements in MPa Float 

ε6min Maximum strain at 106 cycles during standardised 

testing, a measure for the long-term low force 

fatigue behaviour 

Float 

Sxy Variation in the fatigue measurements Float 

fcmax Resistance to permanent deformation Float 

ITSR 
Indirect Tensile Strength Retained, a measure for 

the water sensitivity of asphalt concrete 

Float 

Amount of gyrations 

Amount of gyrations needed in the process of 

creating gyration specimen, possibly a measure of 

workability for the asphalt 

Float 

SF Healing Shiftfactor for healing, value between 1 and 4 Limited float 

Mixing temperature Advised mixing temperature in degrees Celsius Float 

Table 4-2: Output parameters used in the models 
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 Statistical methodologies 

4.3.1. Randomizing and splitting 

The dataset entire dataset as described in chapter 4.2 has the row numbers randomised and is split in a 

training- and a testing set. The different models are then fitted to the training dataset. This is so that the 

model can be tested on a dataset that was not part of its own training. The training/testing ratio is 

70%/30%. For randomizing and splitting the python module ‘train_test_split’ from 

‘sklearn.model_selection’ is used. This module allows for the randomization process to work from a specific 

seed so that the process is repeatable given the same dataset.  

4.3.2. Coefficient of determination R2 

In the comparison between predicted results and measured results the ratio should ideally be 1:1 meaning 

the predictions are equal to the measurements. An example is given in Figure 4-2 where the blue dots 

represent the training dataset and the red dots represent the testing dataset. The 1:1 line is also given in 

these types of charts.  

 

 

Figure 4-2: Example of a measured-predicted graph with a 1:1 line 

 

The coefficient of determination (R2) is a measure of how good a set of datapoints follow a linear 

line and can be any value under 1. It works by comparing the distance of every dot from the model to that 

of a horizontal line. The horizontal line in practice means that the model just gives the average value for 

each modelling attempt. When the value is 1 the model either works perfectly or something has gone 

wrong in the modelling. When the value is 0 the model has no predictive value. When R2 < 0 the predictive 

model is worse than just taking the average value each time. The coefficient of determination is given per 

predictive parameter as follows: 

- R2 training: 0.90 

- R2 test: 0.86 

- R2 total: 0.89 

R2 works only as a measure for linear models and is in this work only used to compare the accuracy 

of predicted values to the measured values.  

4.3.3. Pearson correlation coefficient for linear models (PCC) 

The Pearson correlation coefficient, commonly denoted as PCC, is a value between -1 and 1 that denotes 

the linear correlation between two datasets. When the value is negative the correlation is inverted (a 

higher X means a lower Y and vice versa). If the value is 1 or -1 the linear correlation is perfect. In the 

linear modelling attempts PCC is used to compare the predictive capabilities of the different input 

parameters.  
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4.3.4. Feature importance for decision tree models 

The feature importance for decision tree models is a measure for each parameter how important its 

contribution is to the predicted value. It gives a value as a percentage, the percentages of all parameters 

sum to 100%.  

Equation 2-1 gives the function for the determination of the feature value. The feature value for 

each parameter is the sum of the change it is responsible for. As each leaf only deals with a single 

parameter the amount of change is already categorised so that it can all be summed and divided by the 

total to get how important the parameter is to the end result.  

𝐹𝐼 =  ∑ (𝜐1 −
𝜐1 ∙ 𝑐1 + 𝜐2 ∙ 𝑐2

𝑐1 + 𝑐2
)

2

𝑐1 + (𝜐2 −
𝜐1 ∙ 𝑐1 + 𝜐2 ∙ 𝑐2

𝑐1 + 𝑐2
)

2

𝑐2

𝑡𝑟𝑒𝑒,𝑙𝑒𝑎𝑓,𝑠𝑓

 

Equation 4-1: Function for the feature importance of a decision tree 

FI [%]: Feature importance 

𝜐1 [-]: 1
st function value of a decision node 

𝜐2 [-]: 2
nd function value of a decision node 

𝑐1 [-]: amount of objects in the 1st node 

𝑐2 [-]: amount of objects in the 2nd node 
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5. Forwards problem analysis 

This chapter deals with the forward modelling, step 3 in Figure 1-1. First 2 multiple linear regression 

models are examined, then a decision tree machine learning method and finally a gradient boosted decision 

tree machine learning model is tested. Whereas the two multiple linear regression models are quite 

comparable, the two decision tree models vary greatly in methodology, thus the two decision tree models 

are handled in different chapters. In the end a comparison between the models is given.  

Multiple linear regression models have historically seen a high amount of use in the prediction of 

asphalt concrete functional properties. The gradient boosted decision tree algorithm has recently been used 

to achieve good results in property prediction. A ‘standard’ decision tree algorithm has also been included 

to better understand the gradient boosted decision tree algorithm.  

 Multiple linear regression models 

In this chapter the two algorithms ordinary linear regression and Ridge regression are discussed. Both are 

multiple linear regression models that are relatively comparable with their difference in the regression 

methodology.   

5.1.1. Module and object descriptions 

Two types of linear regression are used in this analysis: Linear Regression and Ridge. Both models cannot 

use interdependence in outputs to improve the model per output, so the model runs for each desired 

output independently. The Python object linear regression from the module Scikit Learn 

(sklearn.linear_model.LinearRegression) is the most basis form of multiple linear regression. The linear 

regression model makes use of unweighted ordinary least squares linear regression. Ridge 

(sk.learn.linear_model.Ridge) is a similar method but the square sizes in the least squares regression is 

squared, the result of this is that negative- and positive squares no longer cancel each other and there is a 

harsher bias in ridge regression towards outliers.  

5.1.2. Ordinary linear regression model analysis 

Figure 5-1 shows the measured output results versus the ordinary multiple linear regression predicted 

results. The blue dots represent training data, and the red dots represent testing data. The line follows the 

1:1-line, ideally all testing- and training results follow this line. Some output parameters have strong 

outliers, an example of this is ‘Deviation in stiffness’. Note that the outliers are on the horizontal axis thus 

this was an outlier in the measurements.  
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Figure 5-1: Results from the ordinary linear regression method 
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 Stiffness Stiffness 

deviation 

ε6 Sxy fc ITSR AoG Healing 

Bitumen Type 1625 -91,01 6,175 -0,093 -0,055 1,410 8,458 0,320 

Asphalt Density -3,637 0,528 0,230 0,000 0,000 0,123 -0,346 -0,012 

M% Binder -1102 -85,38 37,13 -0,080 0,032 9,65 -0,261 -0,069 

Binder softening point -67,38 0,338 2,157 0,003 0,001 0,133 -0,284 -0,020 

Binder penetration -101,3 -3,673 1,481 0,002 0,000 -0,065 -0,039 0,018 

V% Air -129,0 -18,65 -5,803 0,001 0,012 -4,061 4,613 0,239 

Density mineral 

aggregate 

29,24 1,025 -0,014 0,000 -0,001 -0,046 0,286 0,003 

M% Filler 598,4 22,95 -6,500 0,001 0,015 3,099 2,249 -0,106 

M% Sand -102,6 -10,86 3,082 0,005 -0,002 -0,348 0,541 -0,029 

Max aggregate size 20,76 -1,372 1,258 0,009 0,008 -0,652 -1,476 0,021 

M% RA ‘base’ 42,74 -1,818 0,876 0,003 -0,001 0,361 0,452 -0,045 

M% RA ‘bin and surf’ 17,38 -2,508 0,743 0,003 0,001 0,377 0,353 -0,032 

M% RA ‘ZOAB’ 9,83 2,926 1,134 0,002 0,002 0,340 0,676 -0,011 

M% Thermically 

cleaned sand 

-76,84 8,821 -0,952 -0,002 0,000 -0,095 0,078 -0,013 

Table 5-1: Coefficients of the ordinary linear regression model 

 

𝑀𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 ∙ 𝑉𝐼𝑛𝑝𝑢𝑡
̅̅ ̅̅ ̅̅ ̅̅ = 𝑉𝑂𝑢𝑡𝑝𝑢𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Equation 5-1: Multiple linear regression model 

𝑀𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠: A 13x7 matrix of the coefficients in Table 5-1 (transposed) 

𝑉𝐼𝑛𝑝𝑢𝑡
̅̅ ̅̅ ̅̅ ̅̅ : A vector of length 13 of the desired input parameters 

𝑉𝑂𝑢𝑡𝑝𝑢𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅: A vector of length 7 of the calculated output parameters  

 

Table 5-1 gives the coefficients for all the different parameters. These coefficients can be used to 

recreate the model from scratch with Equation 5-1. In the input parameter column is also noted whether 

the coefficient works categorical [CAT] or by regression [%]. The categorical coefficients can only be 

compared pairwise to other categorical coefficients and regression coefficients with regression coefficients. 

Negative signs mean the influence of that parameter lowers the output parameter.  

 

 R2
Training R2

Test R2
Total 

Stiffness 89% 86% 88% 

Stiffness deviation 58% 55% 58% 

ε6 84% 83% 84% 

Sxy 35% 18% 32% 

fc 29% 28% 29% 

ITSR 73% 71% 73% 

Amount of gyrations 52% -49% 30% 

Healing 79% 85% 81% 

Table 5-2: Accuracy of the ordinary linear regression model (see chapter 4.3.2) 

 

Table 5-2 gives a quick overview of the results for the ordinary linear regression model. In 

Droogers (Droogers, 2018) literature review Stiffness was the easiest and most predictable parameter with 

an accuracy of R2 up to 80%. R2 for the testing set reaches 86% and for the training set R2 = 89%. 

Overall, the result is comparable when switching the input parameters to standardised parameters.  

There is simply put no decent fit for the stiffness and fatigue deviations, so this model may not be 

adequately used to predict the reproducibility of asphalt prisms, for which this is a measure. A more 

remarkable find is the results for ε6, a measure for fatigue, where the training set fits up to 84% and the 
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testing set to 83%. Even though fatigue (ε6) is one of the most important design parameters in pavement 

design, predicting this so well with such a simple model gives hope for the more sophisticated models. Both 

ITSR and healing also show decent results. Healing is not a lab-tested output, but the healing factor is 

calculated directly from the amount of binder and binder penetration (see chapter 2.2.7). That the result is 

calculated instead of tested may explain the good accuracy.  

 

 Stiffness Stiffness 

deviation 

ε6 Sxy fc ITSR AoG Healing 

Bitumen Type -45,8% -35,4% 60,2% 8,7% -15,4% -15,3% -7,1% 27,1% 

Asphalt Density 27,6% 26,7% -24,1% 38,6% -17,8% -50,1% -46,8% -23,9% 

M% Binder -51,6% -44,3% 47,4% -46,7% 24,0% 59,6% 51,3% 41,7% 

Binder 

softening point -41,2% -23,8% 69,0% 18,7% -6,5% 8,9% -16,3% -3,0% 

Binder 

penetration -82,6% -62,5% 64,2% -5,1% 14,1% -12,5% 19,9% 74,9% 

V% Air 17,1% 14,7% -28,3% 27,5% -8,2% -50,5% -16,2% -15,7% 

Density mineral 

aggregate -52,9% -42,1% 56,1% -29,1% 8,1% 29,0% 39,4% 46,7% 

M% Filler -58,3% -50,8% 41,7% -17,7% 9,7% -18,1% 25,4% 71,8% 

M% Sand -64,2% -53,1% 47,4% -20,9% 6,1% -19,1% 32,8% 71,9% 

Max aggregate 

size 46,2% 45,3% -27,9% 46,3% -5,5% -34,3% -58,8% -48,1% 

M% RA ‘base’ 69,8% 57,0% -45,5% 31,5% -26,1% -5,7% -36,7% -77,8% 

M% RA ‘bin and 

surf’ -9,8% -12,7% -4,5% -17,4% 30,4% 36,2% 14,5% 8,1% 

M% RA ‘ZOAB’ 3,5% 26,5% -4,4% -0,7% 8,5% 13,7% 14,8% -9,7% 

M% Thermically 

cleaned sand 19,2% 43,2% -19,7% 14,5% -13,5% -15,6% -11,5% -35,4% 

Table 5-3: Pearson correlation coefficients for the MLR model (see chapter 4.3.3) 

5.1.3. Ridge regression model analysis 

Figure 5-2 shows the measured output results versus the predicted results by the ridge regression model. 

The blue dots represent training data, and the red dots represent testing data. The line follows the 1:1-line, 

ideally all testing- and training results follow this line. The outlier of ‘Deviation in stiffness’ is not predicted 

any better than in the MLR model.  
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Figure 5-2: Results from the Ridge regression model 
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 Stiffness Stiffness 

deviation 

ε6 Sxy fc ITSR AoG Healing 

Bitumen Type 1505 -80,05 4,598 -0,082 -0,051 1,016 7,632 0,291 

Asphalt Density -2,311 0,665 0,171 0,000 0,000 0,107 -0,345 -0,012 

M% Binder -1061 -75,62 33,89 -0,070 0,031 8,800 -0,506 -0,072 

Binder softening point -65,55 0,162 2,182 0,003 0,001 0,139 -0,271 -0,019 

Binder penetration -100,3 -3,748 1,489 0,002 0,000 -0,063 -0,032 0,018 

V% Air -141,3 -17,42 -5,853 0,002 0,012 -4,045 4,477 0,233 

Density mineral 

aggregate 

27,81 0,888 0,043 0,000 -0,001 -0,031 0,286 0,003 

M% Filler 587,6 23,57 -6,614 0,002 0,015 3,020 2,175 -0,107 

M% Sand -100,3 -10,77 3,026 0,005 -0,002 -0,361 0,549 -0,029 

Max aggregate size 21,26 -1,125 1,194 0,009 0,008 -0,665 -1,486 0,021 

M% RA ‘base’ 42,19 -1,689 0,837 0,003 -0,001 0,347 0,446 -0,045 

M% RA ‘bin and surf’ 16,57 -2,436 0,723 0,003 0,001 0,368 0,348 -0,032 

M% RA ‘ZOAB’ 7,454 3,118 1,105 0,002 0,002 0,330 0,659 -0,012 

M% Thermically 

cleaned sand 

-73,88 8,623 -0,936 -0,002 -0,001 -0,092 0,096 -0,013 

Table 5-4: Coefficients of the Ridge linear regression model 

Table 5-4 gives the coefficients for all the different parameters. These coefficients can be used to 

recreate the model from scratch with Equation 5-1, just like the MLR model as the difference between the 

MLR model and the Ridge model is the regression method.  

 
 R2

Training R2
Test R2

Total 

Stiffness 89% 86% 88% 

Stiffness deviation 58% 55% 57% 

ε6 84% 83% 84% 

Sxy 35% 17% 32% 

fc 29% 28% 29% 

ITSR 73% 72% 73% 

Amount of gyrations 52% -49% 30% 

Healing 79% 85% 81% 

Table 5-5: Accuracy of the Ridge regression model (explained in chapter 4.3.2) 

Table 5-5 gives a quick overview of the results for the Ridge regression model. Good results are 

achieved for the calculation of stiffness and ε6 (fatigue) and the shiftfactor for healing.  

 The stiffness result in literature the focus lies on predicting the stiffness methods where with linear 

regression an accuracy of up to 80% is to be expected. R2 for the testing set reaches 86% and for the 

training 89%. Overall, the result is comparable even with the differences in the input parameters. There is 

simply put no decent fit for the stiffness and fatigue deviations, so this model may not be used to predict 

the reproducibility of asphalt prisms, for which this is a measure. A more remarkable find is the results for 

ε6, a measure for fatigue, where the training set fits up to 84% and the testing set to 83%. Even though 

fatigue (ε6) is one of the most important design parameters in pavement design, predicting this so well 

with such a simple model gives hope for the more sophisticated models. The last decent results are for 

ITSR and healing. Healing is not a tested output, but the healing factor is calculated directly from the 

amount of binder and binder penetration. A good result may be therefore be expected.  

  



 

 

 

 

16-6-2023 Page 42 of 63 L.J. Hopman 

  nr. 4214161 

 
 Stiffness Stiffness 

deviation 

ε6 Sxy fc ITSR AoG Healing 

Bitumen Type -45,8% -35,4% 60,2% 8,7% -15,4% -15,3% -7,1% 27,1% 

Asphalt Density 27,6% 26,7% -24,1% 38,6% -17,8% -50,1% -46,8% -23,9% 

M% Binder -51,6% -44,3% 47,4% -46,7% 24,0% 59,6% 51,3% 41,7% 

Binder 

softening point -41,2% -23,8% 69,0% 18,7% -6,5% 8,9% -16,3% -3,0% 

Binder 

penetration -82,6% -62,5% 64,2% -5,1% 14,1% -12,5% 19,9% 74,9% 

V% Air 17,1% 14,7% -28,3% 27,5% -8,2% -50,5% -16,2% -15,7% 

Density mineral 

aggregate -52,9% -42,1% 56,1% -29,1% 8,1% 29,0% 39,4% 46,7% 

M% Filler -58,3% -50,8% 41,7% -17,7% 9,7% -18,1% 25,4% 71,8% 

M% Sand -64,2% -53,1% 47,4% -20,9% 6,1% -19,1% 32,8% 71,9% 

Max aggregate 

size 46,2% 45,3% -27,9% 46,3% -5,5% -34,3% -58,8% -48,1% 

M% RA ‘base’ 69,8% 57,0% -45,5% 31,5% -26,1% -5,7% -36,7% -77,8% 

M% RA ‘bin and 

surf’ -9,8% -12,7% -4,5% -17,4% 30,4% 36,2% 14,5% 8,1% 

M% RA ‘ZOAB’ 3,5% 26,5% -4,4% -0,7% 8,5% 13,7% 14,8% -9,7% 

M% Thermically 

cleaned sand 19,2% 43,2% -19,7% 14,5% -13,5% -15,6% -11,5% -35,4% 

Table 5-6: Pearson correlation coefficients for the Ridge model (see chapter 4.3.3) 

5.1.4. Conclusion multiple linear regression models 

 

 Ordinary linear regression Ridge regression 

R2
Training R2

Test R2
Total R2

Training R2
Test R2

Total 

Stiffness 89% 86% 88% 89% 86% 88% 

Stiffness deviation 58% 55% 58% 58% 55% 57% 

ε6 84% 83% 84% 84% 83% 84% 

Sxy 35% 18% 32% 35% 17% 32% 

fc 29% 28% 29% 29% 28% 29% 

ITSR 73% 71% 73% 73% 72% 73% 

Amount of gyrations 52% -49% 30% 52% -49% 30% 

Healing 79% 85% 81% 79% 85% 81% 

Table 5-7: Results of the multiple linear regression methods (see chapter 4.3.2) 

Table 5-7 gives the accuracy of both models. It is remarkable how similar the results are, even when no 

significant accuracy is found the lack of accuracy is similar in both models. Because the difference in 

methodology is expressed in the weight given to outliers a similar result means that outliers in the dataset 

are uncommon enough to not significantly change the accuracy of the models.  

 Decision tree machine learning models 

5.2.1. Module and object description 

The Python object decision tree from the module Scikit Learn (sklearn.tree.DecisionTreeRegressor) is used 

for the decision tree machine learning model. This model can use the interdependence of different outputs 

to improve the model per output, so the model needs to only run once for the entire dataset. The decision 

tree algorithm uses Classification And Regression Trees (CART) to construct the decision tree. With CART 
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binary trees are constructed where the new node is optimised to the largest gain of information. The 

regressor optimises for the Mean Squared Error (MSE).   

5.2.2. Results with the standardised database 

 

Figure 5-3: Decision tree machine learning model 

Figure 5-3 shows the measured output results versus the predicted results by the decision tree model. The 

blue dots represent training data, and the red dots represent testing data. Table 5-8 gives an overview of 
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the accuracy per model. The stiffness, ε6, ITSR and Healing parameters can be found with modest to good 

accuracy.  

The other four parameters, stiffness deviation, Sxy, resistance to permanent deformation and amount of 

gyrations, all show a remarkably similar pattern with decent training results and terrible testing results. 

The results of the testing dataset show that the good results cannot be reproduced on an unknown dataset. 

This is often a clear sign of overfitting, the true accuracy of the model is more in line with the testing 

accuracy.  

 

 R2
Training R2

Test R2
Total 

Stiffness 92% 86% 90% 

Stiffness deviation 68% 19% 56% 

ε6 90% 86% 89% 

Sxy 58% 20% 50% 

fc  56% 35% 49% 

ITSR 75% 67% 72% 

Amount of gyrations 58% 32% 52% 

Healing 84% 80% 83% 

Table 5-8: Accuracy of the decision tree model (see chapter 4.3.2) 

5.2.3. Sensitivity analysis 

 

 Stiffness Stiffness 

deviation 

ε6 Sxy fc ITSR AoG Healing 

Bitumen Type 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 3,3% 0,0% 

Asphalt Density 2,1% 3,5% 0,0% 45,4% 1,5% 0,0% 0,0% 0,0% 

M% Binder 9,5% 9,8% 24,9% 0,0% 0,0% 51,4% 0,0% 0,0% 

Binder softening 

point 18,4% 1,7% 66,4% 1,3% 36,3% 4,4% 1,3% 8,2% 

Binder 

penetration 67,6% 56,8% 0,0% 19,8% 0,0% 0,0% 0,0% 12,2% 

V% Air 1,3% 0,5% 6,8% 4,9% 1,6% 13,0% 0,0% 0,0% 

Density mineral 

aggregate 1,0% 0,6% 0,8% 18,9% 38,2% 0,9% 26,2% 0,0% 

M% Filler 0,0% 27,1% 0,4% 8,4% 0,0% 0,1% 9,3% 77,8% 

M% Sand 0,0% 0,0% 0,7% 0,0% 16,0% 27,8% 3,7% 0,8% 

Max aggregate 

size 0,0% 0,0% 0,0% 1,3% 0,0% 0,0% 54,8% 0,0% 

M% RA ‘base’ 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 

M% RA ‘bin and 

surf’ 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 

M% RA ‘ZOAB’ 0,0% 0,0% 0,0% 0,0% 6,4% 0,0% 1,3% 0,0% 

M% Thermically 

cleaned sand 0,0% 0,0% 0,0% 0,0% 0,0% 2,3% 0,0% 0,9% 

Table 5-9: Feature importance for the decision tree model (see chapter 4.3.4) 

 

Table 5-9 shows the feature importance of the different input parameters per output parameter. A lot of 

parameters remain at 0% which means that they have no effect on the output parameter according to the 

model. While this may be factual it is also possible that there are (small) effects but the decision tree 

algorithm cannot model it effectively. As this algorithm searches continually for the most important 

parameter in a new leaf, some parameter may be forever ‘the second most important’ and never show up.  
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The importance of the binder penetration on the stiffness and the binder softening point on the ε6 

fatigue parameter suggests the existence of an ideal binder that is optimised for both stiffness and fatigue. 

This may be worth exploring. The 3 binder parameters together determine the outcome of the stiffness 

parameter by 95.5%. The combination filler and binder is seen as the paste that holds the aggregate 

together. If the percentage filler is included the ε6 fatigue parameter is predicted for 95.4% by the 

combination binder/filler. This can be at least partially explained as the binder material is the softest 

constituent and fatigue cracks goes along the aggregate, through the binder (not through the aggregate as 

is the case with hardened concrete).  

That the mass percentage of filler is so important in the prediction of healing is remarkable as 

healing is the only calculated output and the mass% of sand is not one of the input parameters. The input 

parameters are the mass percentage of bitumen and the binder penetration.  

 Gradient boosted decision tree model 

5.3.1. Module and object description 

For the gradient boosted decision tree model Catboost Regressor (catboost.CatBoostRegressor) is used. 

Gradient boost varies from normal decision tree models by building an ensemble of weak decision trees 

with a weight factor. The weight factor forces a new ensemble to take only a small step in the right 

direction. Many small steps in the right direction in general outperforms regression with a smaller amount 

of bigger steps. Another important detail of gradient boosting is that a newly added ensemble is slightly 

bigger, existing of multiple branches, than a random forest approach. This allows for more interconnection 

between the different input parameters as it is allowed for a bigger combination of input parameters to 

increase the accuracy of a new ensemble.  



 

 

 

 

16-6-2023 Page 46 of 63 L.J. Hopman 

  nr. 4214161 

5.3.2. Results with the standardised database 

 

Figure 5-4: Gradient boosted decision tree models 
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Figure 5-4 shows the measured output results versus the predicted results by the decision tree model. The 

blue dots represent training data, and the red dots represent testing data. Table 5-10 gives an overview of 

the accuracy per model. In the training dataset all output parameters show a good accuracy, this may be 

because there are more input parameters than output parameters which increases the chance of 

overfitting. The Testing dataset gives insight into the scale of this problem. The problem of overfitting 

seems to be mostly a problem with the stiffness deviation and Sxy, all other output parameters achieve a 

test result of higher than 90%.  

 

 R2
Training R2

Test R2
Total 

Stiffness 100% 92% 97% 

Stiffness deviation 89% 67% 83% 

ε6 100% 96% 99% 

Sxy 99% 68% 92% 

fc 100% 93% 97% 

ITSR 99% 91% 96% 

Amount of gyrations 98% 90% 97% 

Healing 95% 90% 94% 

Table 5-10: Accuracy of the gradient boosted decision tree model (see chapter 4.3.2) 

5.3.3. Sensitivity analysis 

 

 Stiffness Stiffness 

deviation 

ε6 Sxy fc ITSR AoG Healing 

Bitumen Type 3,0% 1,9% 11,6% 4,2% 0,2% 1,0% 0,6% 0,6% 

Asphalt Density 5,4% 6,9% 3,7% 11,3% 8,1% 9,0% 7,4% 4,1% 

M% Binder 11,6% 4,4% 6,7% 8,2% 3,9% 23,0% 9,8% 2,4% 

Binder softening 

point 21,3% 6,8% 46,3% 12,4% 17,8% 6,1% 4,8% 7,8% 

Binder 

penetration 27,8% 18,0% 9,0% 6,0% 10,7% 4,2% 3,2% 26,9% 

V% Air 4,7% 7,2% 2,0% 10,6% 12,3% 17,2% 6,4% 7,1% 

Density mineral 

aggregate 5,9% 11,8% 5,6% 20,0% 11,9% 6,6% 6,3% 1,4% 

M% Filler 1,6% 9,2% 2,4% 6,3% 11,1% 9,5% 17,8% 14,8% 

M% Sand 5,5% 8,1% 3,3% 3,9% 6,3% 10,6% 8,1% 9,6% 

Max aggregate 

size 3,7% 12,1% 3,8% 9,9% 9,3% 7,6% 27,8% 8,3% 

M% RA ‘base’ 6,0% 6,2% 3,2% 0,4% 0,2% 1,7% 0,4% 14,3% 

M% RA ‘bin and 

surf’ 0,8% 0,6% 0,6% 4,4% 5,1% 2,3% 3,0% 0,9% 

M% RA ‘ZOAB’ 0,5% 4,0% 0,8% 0,1% 2,5% 0,3% 2,9% 0,5% 

M% Thermically 

cleaned sand 2,1% 2,9% 1,0% 2,2% 0,6% 0,9% 1,5% 1,3% 

Table 5-11: Feature importance for the gradient boosted decision tree model (see 

chapter 4.3.4) 

Table 5-11 gives the feature importance per input parameter for all output parameters. All features have 

some importance and no input parameter has an importance higher than 50%, according to the GB model. 

The small steps method and the allowance of the 2nd and 3rd most important parameter during the creating 

of a new leaf allows the model to consider more nuanced effects which may explain the difference with the 

decision tree model’s feature importance in Table 5-9.  
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 Conclusions forward model 

A summary and conclusion on the different models will be given.   

5.4.1. Overview and comparison 

To get an overview of the accuracy of the models R2 of the testing datasets is compared in Table 5-12.  

 

R2
test MLR Ridge DT GBDT 

Stiffness 86% 86% 86% 92% 

Stiffness deviation 55% 55% 19% 67% 

ε6 83% 83% 86% 96% 

Sxy 18% 17% 20% 68% 

fc 28% 28% 35% 93% 

ITSR 71% 72% 67% 91% 

Amount of gyrations -49% -49% 32% 90% 

Healing 85% 85% 80% 90% 

Table 5-12: R2 for the forward models (testing datasets) (see chapter 4.3.2) 

The Ridge model and MLR model are incredibly similar, only when they are both terrible predictors 

there is a slight difference. Further optimizing linear models does not lead to a change in accuracy. The 

decision tree model is for ε6 a slight improvement and for ITSR and healing a slight decrease in accuracy. 

Only 4 of the 8 parameters, Stiffness, ε6, ITSR and Healing are predictable above R2=60%.  

On accuracy alone it is remarkable how well the gradient boosted decision tree scores above the 

rest. It is the only model that can predict the resistance to permanent deformation and the amount of 

gyrations and it is able to do so accurately. Furthermore, it is able to predict all 8 out of 8 parameters to a 

degree higher than R2
test=60%.  

Comparing the feature importance of the Decision Tree (Table 5-9) and the Gradient Boosted 

Decision Tree (Table 5-11) gives further insight into what allows the Gradient Boosting to improve the 

result so much. The DT model adds a new leaf each cycle, splitting the training dataset with the most 

distinguishing single parameter. Some of the parameters have a feature importance of 0%, this means that 

these parameters were never the most distinguishing parameter. When compared to the Gradient Boosted 

model not a single parameter has a feature importance of 0%. The GB model works by adding a set of 

leaves each step, so the top 3 distinguishing parameters are used per step. While parameters may never 

be the most important, they may be the second or third most important. The DT model is not able to take 

second and third places into account, but the GB model is able to do so. The unexpectedly high 

predictability of the sand mass% on the healing factor in the DT model is no longer visible in the GB model, 

with the sand mass% being the 2nd most influential parameter. Though it is still unexpected that healing is 

not exclusively predicted by the bitumen mass% and the binder penetration, as these two are the only 

input values in the calculation of the healing parameter.  

The gradient boosted decision tree machine learning algorithm is clearly the most accurate model 

and will be used for the inverse analysis.  
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6. Inverse problem analysis 

This chapter deals with step 4 from Figure 1-1: The inverse analysis. By the end of this chapter a method is 

given with which the input parameters may be found based on the desired functional properties. This is 

done with the gradient boosting decision tree algorithm which was also used in chapter 5.3. A sensitivity 

analysis of the different functional properties is also included.  

 Input-output description 

The input and output in this chapter is the reverse of chapter 0. This creates an interesting problem, in the 

forward model all predicted output parameters are variables with only the healing shift factor containing a 

step function (the variable must lie between 1 and 4). Only the decision tree model of chapter 5.2 

accurately handled the step function part with even the gradient boosted decision tree model going slightly 

above and below the limits.  

The parameters ‘Bitumen type’ and arguably ‘maximum aggregate size’ are not variable but 

categorical. Bitumen type is an influential binary factor where it is either polymer modified bitumen or 

penetration bitumen. Maximum aggregate size is arguably categorical because the values represent actual 

maximum sizes which could theoretically lay on a spectrum. The argument for a categorical approach of 

the maximum aggregate size is that, even though aggregates come in all shapes and sizes, it actually 

describes the sieve through which aggregates need to go through, with passing aggregates going on to be 

used in the mixture. The sieves come in sized categories and no continuous spectrum is available. The 

algorithm advising the use of a sieve size other than the standardised sieve sizes would be undesirable as 

no sieve sizes would be available for production. This is why the maximum aggregate size is kept 

categorical.  

 Gradient boosted decision tree for the inverse model 

6.2.1. Module and object description 

The Catboost Regressor machine learning algorithm used in chapter 5.3 outperformed all other algorithms 

and is therefore also used for the inverse problem.  

 

For the gradient boosted decision tree model Catboost Regressor (catboost.CatBoostRegressor) is 

used. Gradient boost varies from normal decision tree models by building an ensemble of weak decision 

trees with a weight factor. The weight factor forces a new ensemble to take only a small step in the right 

direction. Many small steps in the right direction in general outperforms regression with a smaller amount 

of bigger steps. Another important detail of gradient boosting is that a newly added ensemble is slightly 

bigger, existing of multiple branches, than a random forest approach. This allows for more interconnection 

between the different input parameters as it is allowed for a bigger combination of input parameters to 

increase the accuracy of a new ensemble.  
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6.2.2. Results with the standardised database 

 

Figure 6-1: Inverse gradient boosted decision tree results (1/2) 
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Figure 6-2: Inverse gradient boosted decision tree model results (2/2) 

Figure 6-1 and Figure 6-2 show, just like in chapter 0, measured parameters against their predicted 

counterparts. All dots would ideally lie on the 1:1-line (meaning the prediction algorithm works perfectly). 

Blue and red again specify the training- and testing datasets respectively. Because there are more input 

parameters than functional parameters these figures consist of 14 parameters.  

Table 6-1 gives the exact accuracies belonging to the figures. Only the mass percentage Bin and 

Surf recycled asphalt has an R2 test below 80%. The gradient boosted machine learning model works in 

line with the forward model. It is notable that the binder, filler and sand mass percentages all have R2 test 

accuracies ≥95%, these parameters have in the past formed the basis of an asphalt mixture design 

methodologies. That some of the different recycled asphalt content mass percentages are harder to predict 

may be because these parameters are not used in all mixtures (resulting in a lower amount of training- and 

testing sets if you do not count 0 M%). These also all serve a similar role in asphalt concrete which may 

make it hard for an algorithm to differentiate between the four. That the algorithm scores R2
Test=68% for 

M% Bin and Surf RA is an oddity especially. The other three still score good and also show that, even 

though their role is similar, the algorithm can find a distinction between them based on their functional 

properties.   
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 R2
Training R2

Test R2
Total 

Bitumen Type 100% 81% 94% 

Asphalt Density 97% 98% 98% 

M% Binder 100% 99% 100% 

Binder Temperature 100% 99% 100% 

Binder mix Penetration 97% 89% 95% 

V% Air 97% 93% 96% 

Aggregate Density 96% 87% 94% 

M% Filler 99% 96% 98% 

M% Sand 99% 95% 98% 

Maximum Aggregate size 100% 94% 98% 

M% Base RA 99% 91% 97% 

M% Bin and Surf RA 100% 68% 91% 

M% Porous RA 99% 97% 98% 

M% ECO 99% 95% 98% 

Table 6-1: Accuracy of the Inverse gradient boosted decision tree model (see chapter 

4.3.2) 

6.2.3. Sensitivity analysis 

 

 Bitumen 
Type 

Asphalt 
Density 

M% 
Binder 

Binder 
softening 
point 

Binder 
penetration 

V% Air Aggregate 
density 

Stiffness 9,7% 9,5% 20,1% 13,1% 21,4% 8,2% 18,1% 

Stiffness  
deviation 7,5% 8,0% 1,9% 5,2% 15,2% 13,6% 9,4% 

ε6 35,9% 13,7% 4,0% 31,2% 10,8% 18,6% 11,6% 

Sxy 22,4% 15,4% 18,9% 17,8% 5,1% 10,1% 17,1% 

fc 4,7% 7,0% 3,6% 6,8% 8,0% 9,5% 9,0% 

ITSR 5,4% 27,4% 40,2% 4,1% 6,6% 22,3% 16,2% 

AoG 8,4% 11,5% 6,7% 5,3% 6,0% 7,0% 8,1% 

Healing 5,9% 7,4% 4,5% 16,6% 27,0% 10,7% 10,4% 

Table 6-2: Feature importance for the inverse gradient boosted decision tree model (see 

chapter 4.3.4) 1/2 

 

 M% 
Filler 

M% 
Sand 

Max 
aggregate 

size 

M% RA 
‘base’ 

M% RA 
‘bin and 

surf’ 

M% RA 
‘ZOAB’ 

M% 
‘ECO’ 

Stiffness 9,3% 6,7% 9,2% 16,4% 9,5% 5,9% 9,5% 

Stiffness  
deviation 5,7% 7,0% 8,4% 4,3% 6,8% 38,7% 12,2% 

ε6 8,7% 8,2% 11,9% 6,4% 7,0% 7,9% 39,5% 

Sxy 7,5% 5,5% 14,3% 4,3% 23,3% 5,3% 11,3% 

fc 7,4% 6,9% 18,4% 2,5% 9,9% 13,3% 2,6% 

ITSR 5,6% 7,3% 11,9% 5,3% 22,9% 5,6% 9,8% 

AoG 8,1% 6,5% 20,6% 8,6% 9,3% 18,0% 3,5% 

Healing 47,8% 51,8% 5,2% 52,4% 11,2% 5,2% 11,7% 

Table 6-3: Feature importance for the inverse gradient boosted decision tree model (see 

chapter 4.3.4) 2/2 

Table 6-2 and Table 6-3 give the feature importance of each functional property on the input parameters. 

The first observation is that the feature importance is for a large part evenly distributed with some outliers. 
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With 8 parameters a completely even distribution would result in 12.5% each. Each input parameter 

reaches an importance of more than 12.5% for some functional property.  

One that stands out is AoG (amount of gyrations), a property that was hard to predict in chapter 5 

but here is an important parameter in the prediction of the binder M%. While the amount of gyrations is 

definitely influenced by the amount of liquid in the mixture (at the time of compaction). That its importance 

in predicting the amount of binder is so strong was unexpected because other parameters are measured 

more accurately and also strongly depend on the amount of binder. AoG may have been so important 

because it is the only measurement at a high temperature (at compaction temperature) when the binder 

properties are the most distinguishable.  

Another observation is the importance of ‘healing’ for 5 functional properties: Binder softening 

point, Binder penetration, M% Filler, M% Sand and M% RA ‘base’. Healing is a calculated value directly 

dependent on the binder type, penetration and volume percentage, so a high importance to some of these 

parameters is expected. That M% Sand and Filler are included is a bit odd. Perhaps these are important 

because their correlation to the binder M% in mix design. That the binder M% is not strongly predicted by 

healing was however unexpected.  

 Practical applications of the inverse model 

This paragraph discusses the practical applications of the inverse model. The use of machine learning 

algorithms is flexible and versatile, but the use of a specifically trained model is limited to what it has been 

trained to. In the case of the model trained in chapter 6.2, it means that all functional properties are 

needed to get the asphalt mixture recipe. Not all functional properties are important in a practical sense. To 

show how this technique can be used to get practical information from a dataset, first the functional 

properties are further limited and then a new model is trained.  

6.3.1. Further limitations on the dataset 

For the further limitations Tables 81.2.16 and 81.2.8(5) of the standard RAW 2020 is referenced. The 

information needed for this exercise is summarised in Table 6-4. In standardised contracts in the 

Netherlands asphalt concrete is categorised in 4 groups by their functional properties. The name ‘OL’ 

stands for ‘Onderlaag’, the asphalt concrete base layer. The categories ‘A, B and C’ correspond to light, 

medium and heavy traffic. ‘OL-A’ is used in cycle paths while ‘OL-C’ is used in highways. ‘IB’ (‘Intens 

belast’) is for heavy and slow traffic, e.g. truck stops or roundabouts.  

 

 OL-IB OL-A OL-B OL-C 

Definition VA ≤ 250, 

v ≤ 15 km/h 

VA ≤ 50 VA > 50, 

VA ≤ 2500 

VA > 2500 

V% Air 2.0 – 7.0 2.0 – 7.0 2.0 – 7.0 2.0 – 7.0 

ITSR ≥ 70 ≥ 70 ≥ 70 ≥ 70 

Stiffness 7000 - 14000 4500 - 11000 5500 - 14000 7000 – 14000 

fc ≤ 0.2 ≤ 1.4 ≤ 0.8 ≤ 0.4 

ε6 ≥ 90 ≥ 100 ≥ 80 ≥ 90 

VA: Number of trucks per day per direction 

v: Average speed in km/h 

Table 6-4: Limitations per asphalt concrete base layer category 

For this exercise the model will be trained using the 5 parameters V% Air, ITSR, Stiffness, fc and ε6 

as input. As output the model will predict mix design parameters M% binder, M% filler, M% sand and the 

mixed penetration grade of the bitumen. 
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6.3.2. Model accuracy 

 

Figure 6-3: Practical model results 

 

 R2
Training R2

Test R2
Total 

M% Binder 100% 99% 100% 

M% Filler 98% 94% 97% 

M% Sand 98% 93% 96% 

Binder mix Penetration 98% 83% 94% 

Table 6-5: Accuracy of the Practical model (see chapter 4.3.2) 

Figure 6-3 and Table 6-5 show the results for the practical model in the same way as has been done for the 

other models. With R2
test>80% the model achieves good results as well, remarkable for such a limited 

database.  

6.3.3. Model results 

The model was used to find mixtures within the parameters for asphalt category OL-C described in Table 

6-6.  

 OL-C 

V% Air Between 2.0 and 7.0 

ITSR [%] 70 

Stiffness [MPa] Between 5500 and 14000 

fc [m/m] 0.8 

ε6 [106 cycles] 80 

Table 6-6: Parametrisation of the practical model 
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Figure 6-4: Colour chart of possible highway mixtures (Sand vs Filler vs Binder) 

 

Figure 6-5: Colour chart of possible highway mixtures (Binder information vs Stiffness) 

In the created mixture dataset 2 sets of data were of particular interest, shown in Figure 6-4 and Figure 

6-5. These 3D (colour as the third dimension) are of particular interest because the graphs show diagonal 

clustering, the 3 parameters are dependent of each other.  
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The first combination, M% Binder, M% Filler and M% Sand show for example that when the 

mixtures have a low amount of filler and sand, there is also a low amount of binder. A possible (simple) 

explanation may be that when there is a high amount of relatively big aggregate the total amount of 

mortar (mix of filler, sand and binder) can be less.  

The second interesting trio, M% Binder, Mix penetration and stiffness, also shows clustering around 

a low M% Binder. The amount of binder and its penetration grade is inverse correlated to the stiffness. This 

does not come as a surprise because the binder is by far the softest constituent in an asphalt mixture.  
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7. Conclusions 

This chapter first addresses the answers to the research questions as devised in chapter 1.2, then some 

additional conclusions will be given. The recommendations for future research also includes an additional 

analysis of different machine learning algorithms that came too late to include in its proper chapter in this 

thesis, but was nonetheless included as it may form a basis for future research.  

 Answers to the Research Questions 

First the sub-questions are answered, then the main research question is answered.  

7.1.1. Sub-questions 

The original research question that was set was:  

 

1. How accurate are modern asphalt mixture modelling techniques when calculating Dutch asphalt 

mixtures (forward problem)? 

1.1. Which asphalt mixture modelling techniques are generally used? 

1.2. What additional material characteristics do these modelling techniques require? 

1.3. How can the output of these models be translated into OIA-parameters? 

1.4. How accurate can these models predict OIA-parameters from the asphalt mixture? 

 

Historically functional property prediction models were either set up empirically in the form of a 

multiple linear regression model. Or they were set up as physical models. Of these two, the empirical 

models were historically more accurate. These models can predict the asphalt concrete stiffness with an 

accuracy of up to R2
Total=79%. (No train/test split unfortunately). This accuracy has been improved upon in 

the dataset with R2
Total=88% with a multiple linear regression model. The MLR-model uses only input 

parameters available in standard asphalt concrete mixture type tests. The functional properties stiffness, 

fatigue (ε6) and healing had good results (R2
test≥75%) and ITSR had decent results (R2

test≥70%). The 

stiffness deviation, fatigue deviation (Sxy), resistance to deformation and amount of gyrations had no 

significant results. Two methods for regression were tried (MLR- and Ridge-regression) but this did not 

result in a significant, or even noticeable, change in accuracy.  

 

2. How does a machine learning model stack up against conventional models (addition to the forwards 

problem)? 

2.1. Which machine learning algorithms may be used? 

2.2. Is additional material-information needed? 

2.3. Can the OIA-output be simplified? 

2.4. Is it needed to link certain parameters? 

2.5. How accurate can the algorithm predict the mixture properties? 

2.6. What improvements may be considered in the future? 

2.7. How does the machine learning algorithm compare to the conventional modelling techniques? 

 

Two machine learning algorithms were used: A decision tree algorithm and a gradient boosted 

decision tree algorithm. The decision tree algorithm preformed similar to multiple linear regression. The 

gradient boosted decision tree algorithm proved far more accurate than the other models for all functional 

properties: Stiffness, fatigue (ε6), resistance to permanent deformation (fc), water sensitivity (ITSR), 

amount of gyrations and healing had outstanding results (R2
test≥90%). Stiffness deviation and fatigue 

deviation (Sxy) had decent results (R2
test≥65%). No additional parameters besides those available in a 

standard type test were used.  

 

3. How accurate can inverse problem solving predict asphalt mixtures from their OIA-properties? 

3.1. Which asphalt mixture modelling techniques are good enough for this method (including the 

machine learning algorithm)? 
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3.2. What additional material characteristics do these modelling techniques require? 

3.3. How can the output (asphalt mixture recipes) best be visualised? 

3.4. How does the code to predict asphalt mixture recipes from their OIA-properties work? 

3.5. How does the accuracy of the predictions compare to the forward problem? 

 

The gradient boosted decision tree algorithm can predict all input parameters with an accuracy 

R2
test≥80% except the mass% Bin and Surf recycled asphalt (R2

test=72%). There are no additional 

characteristics necessary for this technique besides what is available in standardised testing. The 

accuracies are comparable/slightly better than the gradient boosted decision tree algorithm in the forwards 

problem. In chapter 6.3 a practical example of this technique is shown. There the database was further 

reduced to 5 input parameters in line with the standardised characterising parameters for Dutch asphalt 

types. The output parameters were further reduced to the mass percentages binder, sand and filler, and 

the binder mix penetration. Within the parameters for asphalt type ‘OL-C’ possible asphalt mixtures were 

explored, shown visually in  Figure 6-4 and Figure 6-5. 

7.1.2. Main research question 

‘How can modern machine learning techniques help in asphalt concrete mixture 

design?’ 

 

Before asphalt concrete mixtures may be used in (Dutch) public road construction the functional properties 

must first be determined. The properties are determined by standardised type tests. Over the years road 

construction companies have created databases of asphalt concrete mixture recipes and their standardised 

type test results. These databases may be used to train machine learning algorithms. By inputting mixture 

ingredients and training for the asphalt concrete functional properties it is possible to simulate the type 

test. Different machine learning models have been tested, the accuracy varies per model and per functional 

property, shown in Table 5-12. The Gradient Boosted Decision Tree model especially achieved noteworthy 

results.  

By inversing the training in- and output the machine learning algorithm solves for an asphalt 

concrete mixture design when given the desired type test results. This offers the possibility of a new non-

iterative design method. The accuracy varies per constituent and is noted in Table 6-1, overall significant 

accuracies were found.  

The methodology is proven successful in practical applications in chapter 6.3 and is ready for 

implementation in asphalt concrete mixture research environments. It is now possible to predict the 

functional properties of a new asphalt concrete mixture before the type test is completed.  

 Recommendations 

The usual recommendations derived from the thesis work are shown in chapter 7.2.1. Nearing the end of 

the study, this author became aware of a method which quickly and easily assesses a large range of 

different machine learning algorithms from the SciKit-Learn package. The algorithm generates a list of 

recommendations for machine learning models per output variable. While it was too late to include this 

information in the thesis, it can be valuable for future research, especially for studies that do not have 

access to big databases like in this thesis. Therefor the author has chosen to include the outcome from the 

algorithm in these final recommendation chapters.  

7.2.1. Recommendations for future research 

The following recommendations follow directly from the research and literature study.  

Only a limited number of machine learning models have been tested, broadening this scope may 

improve results. There is some research included in paragraph 7.2.2 meant as a steppingstone to this.  

Recycled asphalt as a constituent is included in new asphalt mixtures ‘as is’. As a constituent it 

consists of (degraded) bitumen, aggregate, sand and filler. The current categorisation of recycled asphalt is 

relatively broad while the low carbon footprint of recycled asphalt means new asphalt concrete mixtures 
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are optimising for high mass% of recycled asphalt. Improving knowledge on the functional categorisation of 

recycled asphalt will improve the current optimisation trend to high mass% of recycled asphalt. 

Standardising the functional categorisation of recycled asphalt may in the future allow for more targeted 

use of this constituent and an improvement in the deviations of our pavement quality.  

The dataset used is only from one company and specifically for the Dutch market. This could easily 

be expanded to more datasets and the European market thanks to standardised testing.  

Chapter 6.3 shows the use of machine learning algorithms in a practical scenario. This can easily be 

expanded upon. One interesting example may be the optimisation of specific constituents in a known 

mixture to achieve certain results. This would need a hybrid model with some input parameters and all 

output parameters known. 

7.2.2. Recommendations for easy machine learning algorithm comparisons 

The research question ‘Which machine learning algorithm works best for the forwards problem’ is 

deliberately not part of the thesis as this would broaden the scope too much. However, during the end 

phase of the thesis project the author became aware of an algorithm that allows for an easy comparison of 

all the machine learning algorithms in the SciKit-Learn package (the gradient boosted decision tree 

algorithm is not part of this package). This method is too easy and delivers too much insight into the 

differences between the different output parameters to skip. Due to time constraints the results of this 

analysis are not used to build upon further in this thesis. So, while the logical place for an analysis between 

machine learning algorithms would be before chapter 5, because this part stands alone with the specific 

goal to help future research it stands here as the last chapter.  

 

 Stiffness ε6 fc ITSR Healing 

GradientBoostingRegressor 91,7% 99,7% 93,4% 93,5% 92,3% 

ExtraTreesRegressor 93,7% 99,6% 87,0% 93,3% 94,9% 

XGBRegressor 85,7% 99,9% 94,2% 89,3% 93,1% 

RandomForestRegressor 92,2% 98,3% 82,0% 85,4% 91,5% 

DecisionTreeRegressor 90,9% 99,0% 80,9% 88,4% 89,4% 

BaggingRegressor 92,2% 96,1% 69,2% 82,6% 93,6% 

AdaBoostRegressor 89,0% 96,4% 78,0% 84,6% 84,5% 

HistGradientBoostingRegressor 94,1% 92,6% 71,2% 79,0% 86,4% 

LGBMRegressor 94,7% 93,2% 67,6% 76,6% 86,8% 

ExtraTreeRegressor 93,8% 99,5% 93,6% 44,2% 80,0% 

KNeighborsRegressor 88,0% 87,5% 36,4% 64,1% 88,3% 

HuberRegressor 80,9% 79,1% 32,2% 68,7% 86,0% 

TransformedTargetRegressor 83,3% 83,1% 22,3% 72,4% 85,2% 

LinearRegression 83,3% 83,1% 22,3% 72,4% 85,2% 

Ridge 83,5% 83,3% 21,5% 72,5% 85,2% 

LassoLarsIC 83,5% 83,1% 20,7% 72,4% 84,7% 

RidgeCV 83,5% 83,3% 18,5% 72,4% 85,2% 

BayesianRidge 83,5% 83,2% 16,2% 71,9% 84,3% 

SGDRegressor 83,6% 83,1% 10,0% 72,0% 83,7% 

PoissonRegressor 81,9% 90,7% 8,2% 71,9% 79,0% 

LassoCV 83,5% 82,4% 3,4% 72,5% 84,2% 

LassoLarsCV 83,4% 82,1% 1,9% 72,4% 83,9% 

OrthogonalMatchingPursuitCV 77,2% 83,2% -7,4% 72,5% 83,1% 

LarsCV 79,3% 82,1% 0,4% 72,4% 73,3% 

ElasticNetCV 58,2% 82,7% 3,4% 72,6% 84,2% 

TweedieRegressor 68,7% 70,5% 15,1% 59,0% 75,4% 

GammaRegressor 67,1% 70,6% 14,0% 58,9% 75,2% 

PassiveAggressiveRegressor 77,8% 81,7% -15,2% 55,7% 66,3% 
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ElasticNet 74,7% 76,7% -0,7% 60,5% 38,7% 

Lasso 83,3% 83,2% -0,7% 64,7% -1,4% 

Lars 83,3% 83,1% -23,8% 72,4% 6,2% 

OrthogonalMatchingPursuit 71,7% 41,3% -7,4% 50,6% 62,1% 

NuSVR 0,4% 9,9% 77,7% 33,2% 92,2% 

LassoLars 83,4% 76,0% -0,7% -0,5% -1,4% 

SVR 0,4% 7,0% -1,1% 34,2% 91,9% 

RANSACRegressor 66,9% 50,8% -124,1% 32,8% 63,3% 

DummyRegressor -0,3% -0,5% -0,7% -0,5% -1,4% 

QuantileRegressor -0,2% -13,5% -9,7% -2,5% -2,6% 

GaussianProcessRegressor 35,7% 34,2% 61,8% -403,1% 43,8% 

LinearSVR -824,2% -39,9% 35,9% 37,4% 84,8% 

MLPRegressor -840,9% -386,2% 50,9% -2757,9% 89,9% 

KernelRidge -678,9% -587,4% -283,4% -5752,9% -626,5% 

Table 7-1: R2
total of the SK Learn regressors for the main 5 functional properties 
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Annex I. Database Distributions 

To increase insight in the database used some graphs were made that show the distribution of the different 
parameters. The graphs are in the same order as Table 4-1 and Table 4-2 . 
 

 



 

 

 

 

16-6-2023 Page 65 L.J. Hopman 

  nr. 4214161 

 

 

 



 

 

 

 

16-6-2023 Page 66 L.J. Hopman 

  nr. 4214161 

 

 



 

 

 

 

16-6-2023 Page 67 L.J. Hopman 

  nr. 4214161 

 

 

 



 

 

 

 

16-6-2023 Page 68 L.J. Hopman 

  nr. 4214161 

 

 

 



 

 

 

 

16-6-2023 Page 69 L.J. Hopman 

  nr. 4214161 

 

 

 



 

 

 

 

16-6-2023 Page 70 L.J. Hopman 

  nr. 4214161 

 

 

 



 

 

 

 

16-6-2023 Page 71 L.J. Hopman 

  nr. 4214161 

 

 

 



 

 

 

 

16-6-2023 Page 72 L.J. Hopman 

  nr. 4214161 

 

 

 



 

 

 

 

16-6-2023 Page 73 L.J. Hopman 

  nr. 4214161 

 

 

 



 

 

 

 

16-6-2023 Page 74 L.J. Hopman 

  nr. 4214161 

 

 

 



 

 

 

 

16-6-2023 Page 75 L.J. Hopman 

  nr. 4214161 

 

 
  



 

 

 

 

16-6-2023 Page 76 L.J. Hopman 

  nr. 4214161 

 

Annex II. Python code example 

 
























