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Computational Cognitive Color Perception 
 

 
 
 
 
 
 
 
 

Abstract—Comprehension of aesthetical color characteristics 
based on a computational model of visual perception and color 
cognition are presented. The computational comprehension is 
manifested by the machine’s capability of instantly assigning 
appropriate colors to the objects perceived. They form a scene 
with aesthetically pleasing characteristics. The present approach 
to computational cognition is principally the same as contrived 
earlier [1]. This work distinguishes itself from the earlier work 
through the involvement of color differences. The color 
difference computations are carried out based on a standard 
human color observer model. The color difference information is 
combined with geometric perception information using the 
method of fuzzy neural tree based on likelihood. The study 
exemplifies the suitability of the computational cognition for 
modeling cognition phenomenon. Cognitive color perception in 
computational form has generic relevance to applications 
involving human-like aesthetical appreciation, as is the case in 
building architecture, for instance and other design tasks. 

Keywords—visual perception; color difference; cognitive 
computing; genetic algorithm; fuzzy neural tree; auto-association 

I. INTRODUCTION  

When a human being has experience with solving prob-
lems in a certain field, for instance his professional area, then 
his cognition is developed in this area. Cognition is to form a 
situated right strategy that requires some form of abstraction 
and optimization. Comprehension is the detailed abstraction 
and instantiation of cognition. The more thorough the com-
prehension of the task, the more one will be able to provide 
best solution with minimal reasoning effort involved. That is, 
the response arises spontaneously in one’s mind without ex-
plicit remembrance of the concepts one had to familiarize one-
self with, when one was not yet an experienced professional. 
This description, albeit one could hardly disagree with it based 
on common experience, does entail two significant problems. 
The first problem is to specify what is meant by the terms 
cognition and comprehension with minimal ambiguity. The 
second problem is to explain, how cognition and comprehen-
sion are accomplished, so that they yield a spontaneous, best 
reaction even in complex task contexts. Both issues are ad-
dressed in this study, presenting a computational cognition 
and comprehension approach, and employing it for a task de-
scribed below that traditionally defies analysis, since, by defi-
nition, this task minimally involves abstractions in the form of 
linguistic concepts. The task is to comprehend the color aes-

thetics of a scene through visual perception. The comprehen-
sion entails the relations among geometry of environment, 
viewpoint, color of objects, perception of a scene, and aesthet-
ical quality, so that human, when faced with an arbitrary color 
composition for the scene, is able to spontaneously propose 
modifications to the colors of the objects converting a non-
aesthetical scene to an aesthetical one. This is one of the re-
markable capabilities of human designers, and its computa-
tional reproduction is the aim of this work. 

It is to emphasize that it is difficult to model cognition and 
comprehension, in particular in the domain of aesthetics. A 
judgment stemming from aesthetical comprehension appears 
to directly emanate from the perception act itself, i.e. without 
trace of intermediary reasoning and without reference to pur-
pose [2-6]. Although the traditional consensus about this ge-
neric character of aesthetics in the literature may be consid-
ered as an insight into the topic, nevertheless it implies a se-
vere challenge for modeling of the cognitive phenomenon. 
One possible direction one can think of to deal with the issue, 
is to develop non-parametric models of the relationship be-
tween a set of features of objects and an aesthetics label asso-
ciated with the objects, e.g. [7]. A flavor of associated persis-
tent issues in such data-driven modeling approach can be ob-
tained from the literature review [8]. A second direction to 
deal with the aesthetical cognition modeling problem is to 
develop theoretical measures of aesthetics and to restrict the 
purpose of experiment to the validation of the measures [9-
12]. Complexity has been considered as a property responsible 
for aesthetics, where generally high complexity of an object is 
deemed to yield high aesthetical appreciation of the object. An 
early work taking this view is due to Birkhoff [7]. The de-
pendence of aesthetics and complexity, however, appears 
questionable noting the abundant existence of aesthetical ob-
jects possessing high, as well as medium, or low complexity. 

The present approach to computational cognition is princi-
pally the same as given earlier [1]. This work distinguishes 
itself from the earlier work through the involvement of color. 
The details of the research will be given in sections II and III. 
Color difference computations are carried out based on a 
standard human color observer model [13], and the color dif-
ference information is combined with geometric perception 
information using the method fuzzy neural tree based on like-
lihood [14]. Invoking the perception computations, the cogni-
tion is established by evolutionary computation and brought 
into refined form through auto-associative radial basis func-
tion network (RBF). The validity of the resulting cognitive 
color perception is verified by computer experiments. 
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The organization of the paper is as follows. In section II 
the visual perception, as well as abstraction processes in-
volved in the color cognition are described. In section III a 
schematic overview of the computational cognitive color per-
ception is given. In section IV the color cognition and com-
prehension computations are presented. Their validity is veri-
fied by computer experiments in section V. This is followed 
by conclusions. 

 
II. PERCEPTION AND ABSTRACTION IN COLOR COGNITION 

A. Perceiving objects and scene 

We consider a scene consisting of several objects num-
bered from 1 to ݊ that has been perceived by an observer. The 
likelihood an object has been perceived depends on the ful-
fillment of two conditions. One condition is the object occu-
pies the observer’s visual scope. Omitting color considerations, 
in [15] perception is modeled as a probabilistic event, obtained 
via the integral of a probability density that is given per unit 
solid vision angle. The probability density models visual at-
tention paid by the observer for objects within his visual scope. 
In the present work a likelihood approach to perception is tak-
en [16]. We consider the likelihood the object has been per-
ceived due to its geometric properties, and we denote it by ॷீ. 
The solid angle defining observer’s visual scope is denoted by 
 ௌ byߗ ௌ. We denote the angle subtended by an object insideߗ
Accordingly we define ॷீ .ߗ  by (1) 

0

1
,G S

S S

d
 

    
   

(1)

The second condition for perceiving an object is that its color 
should differ from the color of its background. A model of 
human color difference assessment is given in [13] in the form 
of a space known as the C.I.E. 1976 L*a*b* color space 
(CIELAB) having the  dimensions ܮ∗, ܽ∗, and ܾ∗. A color is 
represented by a point in this space. The CIELAB space is 
based on the standard observer model described in [17], the 
standard illuminants described in [18], and the experimentally 
obtained color matching functions given in [19]. The space is 
approximately perceptually uniform. This means the magni-
tude of a difference between two colors is given by the Euclid-
ian distance ∆ܧ௔௕∗ ൌ ඥሺܮଶ

∗ െ ଵܮ
∗ ሻଶ ൅ ሺܽଶ

∗ െ ܽଵ
∗ሻଶ൅ሺܾଶ

∗ െ ܾଵ
∗ሻଶ . Although 

the relative color difference is a deterministic quantity, it is by 
all means to be an essential probabilistic measure of color per-
ception, and therefore it is considered to be as likelihood. It 
conforms to all the conditions to be a likelihood [20]. It is the 
likelihood an object is perceived due to color difference. We 
denote this likelihood by ॷ஼  and define it by 

* * 2 * * 2 * * 2*
2 1 2 1 2 1

* * * 2 * * 2 * * 2
_ max max min max min max min

( ) ( ) ( )

( ) ( ) ( )
ab

ab
C

L L a a b bE

E L L a a b b

    
 
     

 (2)

where ∆ܧ௔௕_௠௔௫
∗  denotes the maximal color difference in the 

uniform color space. In the ensuing computer experiments   
௔௕_௠௔௫ܧ∆

∗ ൌ 375.6  which is determined by the gamut of the 
computer screen. It is to note that for the case an object oc-
cludes, and/or is occluded by multiple objects with different 
colors, which is the general case, then ∆ܧ௔௕

∗ 	in (2) should be 
replaced by a mean color difference as described in [16]. 

In the likelihood based approach to perception put forward 
in this work, both the perceptions of objects and the scene are 

modeled by a fuzzy neural tree (FNT) method [14]. In FNT 
the output of ݅-th terminal node is denoted ݕ௜ and it is intro-
duced to a non-terminal node; the output of ݅-th non-terminal 
node is denoted ௜ܱ 	and it is introduced to another non-terminal 
node. The detailed schemes of node connections are illustrated 
in the earlier publication, where the connection weights be-
tween two nodes are denoted by ݓ௜௝  for both connection cases. 
In the neural network terminology ݓ௜௝	is the synaptic strength 
between the neurons. The node outputs of a FNT have inter-
pretation as likelihood. Accordingly a weight w௜௝ is shown as 
the likelihood parameter ߠ௜ and the output of an inner node ݆ 
that is denoted by ௝ܱ in the earlier publication is shown as ॷ௝ 
in the following equations and figures. Let us consider a non-
terminal node ݆ that has two inputs, which are the outputs of 
two previous nodes denoted by ଵܱ and ܱଶ. As the two inputs 
to a neuron are assumed to be independent of each other, the 
fuzzy memberships at the inputs can be thought to form a joint 
two-dimensional fuzzy membership. In this case ॷ௝ is comput-
ed by 

   
   1 2

2 2
2 21 2

2 2
1 1

1 1 2 2

2 2j j
O O

j e e
 
  

  

     (3)

where ߪ௝  is a constant, maximizing satisfaction of the con-
sistency condition of possibility theory. For the two-input case 
௝ߪ ൌ 0.299. The likelihood parameters ߠଵ and ߠଶ are selected 

commensurate to the amount of information conveyed via the 
respective connections. This is done in accordance with Shan-
non’s information theorem. Further, the likelihood parameters 
must sum up to unity for defuzzification in the rule-chaining 
process from node to node. Due to these stipulations, the like-
lihood parameters in (2) are given by  

1 2

1 2 1 2
1 2

1 1
,

(1 ) (1 ) (1 ) (1 )

O O

O O O O
  
 

     
 

(4)

so that (4) becomes 
2 2

2 21 2
1 22 2

1 2 1 2

1 11 1
( 1) ( 1)

(1 ) (1 ) (1 ) (1 )2 2j j

O O
O O

O O O O

j e e 
    

      
          (5)

The output neuron of a fuzzy neural tree is termed as root 
node, denoted by ॹ. The inner nodes providing the input to 
the root node are instances of		ॷ௝ in (5). They are termed as 
penultimate nodes and denoted by	ॷ௞	. ॹ	is obtained via the 
weighted summation in (6), which represents the final defuzzi-
fication of the information processed through the neural tree. 

1 1

, 1k

n n

k k
k k

w w
 

     (6)

In (6) n denotes the number of scene objects. In the absence of 
a priori preferences among scene objects, an important weight 
vector ሺݓଵᇱ , ଶݓ

ᇱ , … , ௡ᇱݓ ሻ is the one that is aligned to the feature 
vector	ሺॷଵ, ॷଶ, … , ॷ௡ሻ. It maximizes the output of the defuzzi-
fication operation with the fuzzy logic principles, taking the 
information from each input into account commensurate with 
the information’s relative fuzziness. That is, the influence of a 
root node’s input on the node’s output is proportional to the 
likelihood associated with the input, namely ݓ௞

ᇱ ൌ ܿॷ௞		, ∀݇ ∈
ሼ1, 2, … , ݊ሽ  where ܿ  is a scale factor and a constant. The 
aligned defuzzification corroborates with common human 
vision experience. An object’s attributes influence the percep-
tion of a scene’s attributes proportional with the perception of 
the object. Fulfilling the conditions of defuzzification, ܿ is to 
be selected in such a way that the components of ࢝′ sum up to 
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unity as stipulated in (6). In this case the root node output be-
comes [21] 
   2

1 1

/
n n

k k
k k 

     
(7)

Based on the above considerations, the FNT to compute per-
ception is shown in figure 1.  

 
 Fuzzy neural tree for perception of a scene Fig. 1. 

Each inner node is associated to one scene object, and it has 
two inputs that are the likelihoods given by (1) and (3). Ana-
log to (4) the likelihood parameters of the perception FNT are 
given by 

1

(1 ) (1 )C
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c
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L

L L  (9)

The output of an inner node of the perception FNT represents 
the likelihood the associated scene object has been perceived. 
We denote the likelihood of perception by	ॷ௣. Due to (5) 	ॷ௣ 
is obtained by 
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 (10)

The root node output of the perception FNT models the per-
ception of the scene, which is the probability the scene has 
been seen. It is denoted by	ℙ. Analog to (7) ℙ	is obtained via 
aligned defuzzification of the objects’ perception likelihoods 
given by  

 2
1 1

/
n n

p p

 

  � k k

k k

 (11)

B. Perceiving chromatic properties of objects and scene 

Next to perceiving objects and scene, i.e. noticing their ex-
istence, in an aesthetical judgment on the scene’s color, the 
color parsimony of objects and hence of the scene is a relevant 
quantity [16]. CIE Lab Chroma, denoted by ܥ௔௕

∗  is defined as 
the Euclidian distance of a color from the lightness axis ܮ∗ in 
the perceptually uniform CIELAB space ܥ௔௕∗ ൌ ඥܽ∗ଶ ൅ ܾ∗ଶ  [13]. 
The chromatic aspect of color parsimony of an object is de-
fined in this work as the likelihood a color has few chroma. It 
is denoted by ॷ஼ೌ್∗  and given by 

* * *2 2 *2 2 *2 *2
_ min

* * * 2 2 * 2 2 * 2 * 2
_ max _ min max max max max

*
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    
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In the ensuing computer experiments in this work ܥ௔௕_௠௔௫
∗ ൌ

ඥܽ௠௔௫
∗ ଶ ൅ ܽ௠௔௫

∗ ଶ ൌ 134, which is determined by the gamut of the 
computer monitor. The second condition to fulfilled at the 
same time is an object’s ܮ∗	component should be equal to sce-
ne’s aesthetical reference lightness value denoted by ܮ௥∗ . The 
lightness of a white reference object has the maximal lightness 
value, ܮ௠௔௫∗ ൌ 100	 [13]. Pitch black color has the minimum 
lightness value, ܮ௠௜௡

∗ ൌ 0. The likelihood, the observer per-
ceived an object’s lightness to be the same as the scene’s ref-
erence lightness, is denoted by ॷ௅∗ and given by 

*

* * * *

** *
maxmax min

1 1
r r

L
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LL L
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Based on the above considerations the fuzzy neural tree for 
color parsimony is shown in figure 2. Each inner node is asso-
ciated to one scene object, and it has two inputs that are the 
FNT terminal nodes given by (12) and (13). Analog to (4) the 
likelihood parameters of the color parsimony FNT are given 
by 
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(14)

 
 Fuzzy neural tree for perceived color parsimony of a scene Fig. 2. 
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The output of an inner node of the FNT represents the likeli-
hood the associated scene object is achromatic and while hav-
ing the same lightness as the reference ܮ௥∗ . We term this quan-
tity as the likelihood of color parsimony and denote it by	ॷ஼೚∗௅ೝ∗ . 
Due to (5) it is obtained by  
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(16)

The root node output of the color parsimony FNT models the 
perception of the chromatic properties of the scene. It is de-
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noted by	ℙ஼೚∗௅ೝ∗  and obtained via aligned defuzzification of the 
color parsimony and lightness conformity likelihoods given by 
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(17)

Where the parameter n denotes the number of scene objects. 
One notes that in (17) the vector ࢝ is not aligned to the vector 
ቀॷ஼೚∗௅ೝ∗ _ଵ, 	ॷ஼೚∗௅ೝ∗ _ଶ, … , 	ॷ஼೚∗௅ೝ∗ ೙ቁ	consisting of the objects’ color parsimo-
ny likelihoods from (16); but it is aligned to the vector 
൫	ॷ௣_ଵ, 	ॷ௣_ଶ, … , 	ॷ௣_௡	൯ consisting of the objects’ perception likeli-
hoods from (10). This is done so that an objects’ chromaticity 
influences the perception of a scene’s chromatic properties 
commensurate with the object’s likelihood of perception [16]. 

III. OVERVIEW OF THE  
COGNITIVE COLOR PERCEPTION MODELING  

Establishment of cognition in computational form is initi-
ated in this work by multiobjective evolutionary search. The 
resulting non-dominated parameters form the basis for color 
cognition, as they are considered to be representatives of the 
smooth continuum of relationships among them. The relation-
ships are stored in an auto-associative radial basis function 
network (RBF), which provides the actual continuum. This is 
the basis of computational cognition considered in the present 
work, and its formation is schematically shown in figure 3. 
The inputs are color components assigned to the scene objects 
and specified in red, green, blue (RGB) color space, and they 
are converted to ܮ∗ܽ∗ܾ∗	color coordinates as indicated in the 
figure. The evolutionary search is guided by consecutive in-
stantiation, perception and abstraction processes that are re-
peated multiple times, providing the feed-back that drives the 
evolutionary process. The result of the search is a set of solu-
tions that are conforming to the abstractions in Pareto optimal 
sense. In contrast to conventional multiobjective optimization 
occurring without reference to cognition, in computational 
cognition, the selection of a solution among the Pareto optimal 
ones for execution is not merely based on the objective func-
tion values of the solutions, but it also include consideration of 
detailed features of the solutions. In the present case of color 
cognition, these features are the detailed components of a col-
or, such as amount of red, green and blue light that constitute 
the color. In the figure, instantiation refers to the assignment 
of possible colors to the objects of a scene.  

IV.  MULTIOBJECTIVE SEARCH & AUTOASSOCIATION 
FOR AESTHETICAL COLOR COGNITION 

A. Multiobjective Evolutionary Search for Color Cognition  

As described in [16] a certain color composition of a scene 
should be termed as aesthetical, when it fulfills the following 
condition for a certain L*

r ∈{L*r:0≤L*r≤100}. There exists no 
other color composition for this scene that at the same time 
yields a greater scene perception ℙ	AND greater color parsi-
mony 	ℙ஼೚∗௅ೝ∗ _௦ . In the special case that L*

r≈100, then the aes-
thetics is of beautiful kind; when L*

r≈0 then it is of sublime 
kind. The condition described is the non-dominance criterion 
used in Pareto-based multi-objective optimization, when (11) 
and (17) are considered as two objectives subject to simulta-
neous maximization. The optimization should be carried out 
by a stochastic optimization algorithm due to the nonlinearity 
involved in the objectives.  In this work we use an evolution-
ary algorithm to find Pareto front of aesthetical color composi-
tions for a certain scene. The details of the scene will be ad-
dressed in the ensuing sections. For now we concentrate on 
the general role Pareto optimal solutions play in cognition 
formation. 

Pareto front for the aesthetical perception problem is shown 
in figure 4a for the case of beautiful color compositions, and in 
figure 4b for the case of sublime compositions. 

    
 (a) (b) 

 Pareto front of beautiful color compositions where L*
r=100 Fig. 4. 

(a); of sublime compositions where L*
r=0 (b) 

As to multiobjective optimization, selection of a solution 
among the Pareto solutions is generally due to considerations 
in objective function domain exclusively. In contrast to this, in 
cognition, selection among non-dominated solutions is due to 
preferences for specific combinations of decision variable 
values. That is, cognitive considerations concern the decision 
variable domain. Systematic selection of one of the Pareto 

 
Fig.3.   Scheme showing computational components involved in cognition modeling 
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solutions found by an appropriate search method due to pref-
erences in the decision variable domain is defined as computa-
tional cognition in this study [22]. Cognition can lead to com-
prehension, when the relationship pattern inherent to the re-
stricted number of non-dominant solutions is generalized in 
such a way, that it encompasses a theoretically infinite number 
of hitherto unknown non-dominated solutions. 

B. Cognitive Perception by Autoassociative Radial Basis 
Function Network 

From the Pareto optimal solutions, cognitive color percep-
tion is obtained by establishing the autoassociative radial basis 
function (RBF) network seen in figure 5.  

    
 Structure of the radial basis function network  Fig. 5. 

modelling cognitive color perception  

This network is referred to as perceptual cognitive network. 
Autoassociation implies that the input and output vectors are 
identical, each consisting of chromaticity coordinates associ-
ated with every object of the scene. Due to the present com-
puter implementation, the chromaticity is expressed by red (ܴ), 
green (ܩ ), and blue (ܤ ) coordinates in the standard RBG 
(sRGB) color space [23]. The subscript at each coordinate 
indicates the scene object it belongs to. The network is trained 
by data pairs respectively formed by each Pareto solution vec-
tor and a duplicate of it. Clearly, due to the training, a non-
dominated vector at the model input is to produce an exact 
copy of itself at the model output. The essential contribution 
of cognitive perception is that for a dominated input vector it 
produces an output that is also nearly non-dominated. The 
naturally high number of hidden layer neurons of the network 
ensures that the difference between input and output vector is 
desirably small at the same time. Through the network training 
the explicit abstract conditions to be fulfilled have been con-
verted into relations among the decision variables, so that their 
presence became implicit. The effect of cognitive perception 
during the pursuit of an aesthetical color composition is shown 
in figure 6. The Pareto frontier implies a hypersurface in the 
decision variable space [22], which is the color space in our 
case. Namely from a desired solution ࡰ that is located at some 
distance from the Pareto frontier, comprehension produces 
solution ࡯ that is near to the Pareto front nearby ࡼ. This mod-
els the common observation that human with established cog-
nition rarely displays suboptimal behaviour. Manifestations of 
cognition generally satisfy a second condition; namely the 
resulting solution minimally differs from the corresponding 
stimulus in the decision variable domain, i.e. in color space. 
Indications of this characteristic of cognition can be found in 
human behavior. For instance an architect generally makes 
relatively small modifications to his design at every creative 
step during the design process. Yet, 

 
 Effect of stimulating the RBF network with a dominated solu-Fig. 6. 

tion at its input manifesting comprehension 

with every step he aims to maximally improve the design’s 
performance with respect to the objectives. The perceptual 
cognitive network by RBF displays similar behavior as fol-
lows. We consider a suboptimal response ࡰ that is obtained by 
modifying a few ݔ values of a non-dominated solution ࡼ. This 
is shown in figure 7a, in the three-dimensional space formed 
by a subset of the decision variables.  

   
 (a)  (b) (c) 
 Cognitive color perception by radial basis functions, yielding solu-Fig. 7. 

tion ࡯ from ࡰ, where ࡰ has several identical color components as ࡼ  

One notes that we consider the difference between ࡰ and ࡼ	to 
be exclusively with respect to the three decision variables that 
form the space in figure 7a, while for the remaining 12 deci-
sion variables ܴ௦௪, …,௦௪ܩ , ௖௟௠ܤ  solution ࡰ and ࡼ are consid-
ered to have identical values. Figure 7b shows the same solu-
tions in the space formed by two exemplary decision variables 
and the first objective, given by (11). Figure 7c shows them in 
the space formed by the same two exemplary decision varia-
bles and the second objective, given by (17). Stimulating the 
cognition network by ࡰ	then the solution ࡯ produced at the 
network output is bound to be similar to ࡼ in terms of their ࢞ 
data vectors as seen in figure 7b and 7c. This behavior is due 
to the multi-dimensionality of the dataset, where the autoasso-
ciative relation is established via combinations among all in-
put variables as seen in figure 5. This is illustrated in figure 7a 
by the ellipsoids representing the multidimensional Gaussian 
basis functions of the cognition network. Point ࡰ is represent-
ed chiefly by the basis function belonging to point ࡼ, and two 
aesthetical solutions 2ܣ	and 3ܣ that are the Pareto points with 
greatest affinity to ࡰ  in the decision variable domain. As 
many decision variables values are identical to ࡼ, only slight 
movement away from ࡰ in the multi-dimensional space suf-
fices to produce a solution with significantly different objec-
tive function values. With respect to the objective function 
domain, the response ࡯	will be close to the location of ࡼ on 
the Pareto front as shown in figure 6. This is due to the local 
representation nature of the radial basis functions, which en-
sures that the population members that are near to the original 
point ࡼ in the multi-dimensional response space are commen-
surately more effective in representing [1] ࡯. 
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V. COMPUTER EXPERIMENTS 

The above theoretical considerations are verified by means of 
computer experiments. An architectural scene is considered 
consisting of the following five objects: a wall oriented ap-
proximately perpendicular to the central perception direction 
and referred to as frontal wall; a wall oriented laterally to the 
perception direction and referred to as side wall, a floor, a 
ceiling and a column. For this scene a Pareto front of aesthet-
ical color compositions is obtained using a multiobjective ge-
netic algorithm based on non-dominated sorting [24]. The 
decision variables are 3 chromaticity coordinates per object, 
namely the red (ܴ), green (ܩ), and blue (ܤ) variables specify-
ing the object’s color in the standard RGB (sRGB) color space. 
The variables are the same as those used in the network in 
figure 5. The problem is maximizing (11) and (17) where	ܮ௥∗ ൌ
100  in (14). This means beautiful color combinations are 
sought. In the genetic search the population size is 300, and 
the algorithm parameters are set to standard values. Among 
the resulting 300 Pareto solutions 26 are used for the percep-
tual cognitive network training, where the sigma of the radial 
basis functions is set to ߪ ൌ 1.04 . The selection of the 26 
training samples is based on having sufficient diversity in the 
data for effective network training. Using the trained percep-
tual cognitive network, two sets of experiments are carried out 
in the following subsections. One notes that the colors in ensu-
ing figures depicting the architectural scene subject to cogni-
tive perception analyses are bound to appear somewhat incor-
rect in printed copies of the paper. This is due to the restricted 
color space gamut of printing process compared to that of 
electronic representation on computer screen. One also notes 
that the field of view of the virtual camera, from which the 
pictures in the figures were rendered, matches the scope of the 
probabilistic vision model that was used to establish the cogni-
tive color perception for the experiments. 

A. Experiment Set Nr. 1: Behavior for randomized stimuli 

The first set concerns the general behavior of the perceptu-
al cognitive network for partly or totally random stimuli 
shown in figures 8-11. The figures include the objective func-
tion space, respectively labeled as figure (a) and (b), where the 
Pareto optimal solutions are displayed by means of black col-
ored, small dots.  

a.)  Injecting random color values to the existing Pareto set  

Figure 8a shows modified versions of the 300 Pareto solu-
tions that are referred to as perturbed Pareto solutions in this 
and subsequent figures. In the figure, for each Pareto solution, 
the green color component of the front wall, the red 
component of the floor, and the green component of the 
column are replaced by a random value. The corresponding 
variables are denoted by ܩ௙௪  , ௙ܴ  and ܩ௖௟௠  in figure 5. The 
random values are generated within the boundaries specified 
by the minimum and maximum values in the Pareto set for the 
respective variable. From figure 8a it is seen that the random 
injection causes most of the Pareto solutions to deviate from 
their original location on the Pareto front, and the deviation is 
most severe in the region of high color parsimony. The 300 
perturbed solutions are used as input to the cognitive 

   
 (a) (b) 

   
 (c)  (d) 

 
(e) 

 Pareto solutions where the color components ܩ௙௪ , ௙ܴ and ܩ௖௟௠ in Fig. 8. 
figure 5 have been replaced by random values (a); resulting solutions from 
cognitive color perception (b); one of the perturbed solutions (c) and its 
cognitive perception counterpart (d); comparison among the two solutions 
as to their decision variable values (e) 

perception network, and the 300 solutions produced by the 
network are shown in figure 8b. From the figure it is seen that 
those solutions that deviated significantly from the Pareto 
front are brought close to the front, so that all solutions result-
ing from the perceptual cognitive network are nearly non-
dominated. Figure 8c and 8d show one of the perturbed solu-
tions in figure 8a and its cognitive perception counterpart in 
figure 8b respectively. The solutions are marked by a diamond 
shape in figures 8a and 8b. Figure 8e shows the difference 
between the solutions in figures 8c and 8d as to the decision 
variables. One notes that the disharmony in figure 8c, caused 
by the relatively strong chroma of the front wall and the col-
umn is taken care of by the cognition model. The color differ-
ence between the floor and the blue front wall is maintained 
by equalizing the floor’s red and green components making it 
yellowish, as seen from figure 8e.. 

Figure 9 shows a second experiement based on another set 
of perturbed solutions. This time for each solution, the green 
component of the front wall, red component of the floor, and 
blue component of the column are replaced by a random 
value. So, compared to the privous experiment, instead of the 
green component of the column the blue one is modified. The 
respective variables are denoted by ܩ௙௪	, ௙ܴ  and ܤ௖௟௠ 
corresponding to figure 5. Again the random values are 
generated within the boundaries specified by the minimum 
and maximum values in the Pareto set for the respective 
variable. Comparing figure 8a and 9a it is seen that the ran-
dom injection causes less deviation from the Pareto front in 
the second experiment. This indicates that in this design prob-
lem, in order to reach an aesthetical scene, there is generally 
more tolerance about the blue component of the column com-
pared to its green one. Using the perturbed stimulus, the out-
put from the perceptual cognitive network is shown in figure 
9b, demonstrating the method’s effectiveness also 
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 (a) (b) 

  
 (c)  (d) 

 
(e) 

 Pareto solutions where the color components ܩ௙௪ , ௙ܴ and ܤ௖௟௠ in Fig. 9. 
figure 5 have been replaced by random values (a); resulting solutions from 
cognitive color perception (b); one of the perturbed solutions (c) and its 
cognitive perception counterpart (d); comparison among the two solutions 
as to their decision variable values (e) 

for this case. One notes from figures 8b and 9b that the region 
along the Pareto front, where the comprehension is most effec-
tive, remains the same as in the first experiment. Figure 9c and 
9d show one of the perturbed solutions in figure 9a, as well as 
its cognitive perception counterpart in figure 9b respectively. 
Figure 9e shows the difference between the solutions in fig-
ures 9c and 9d as to the decision variables. From figure 9e one 
notes that through minimal modifications to the decision vari-
ables the cognition network manages to maintain the same 
intensity of perception while increasing the color parsimony of 
the scene. This is a complex accomplishment, as it involves 
multiple implicit reasons. The modest color difference be-
tween frontal wall and floor, despite the wall’s outstanding 
chroma, is increased by slightly reducing the green component 
of the frontal wall. A second positive effect of this modifica-
tion is the increased color difference between column and 
wall. The ceilings redness is very slightly reduced without 
sacrificing the color difference with the sidewall, due to the 
sidewall’s existing redness. This permits reducing some 
greenness at the column, so that the modest blue-yellow dif-
ference of the scene is enforced.  

b.)  Cognition for random color stimuli generated within the 
Pareto set boundaries 

In a third experiment, instead of merely three, all 15 com-
ponents of the input vectors are randomized, abandoning the 
previous strong resemblance of the cognition stimulus to the 
Pareto optimal solutions. The only information used from the 
Pareto set are the 15 pairs of minimum and maximum values 
forming the set boundary in the decision variable domain, as 
the random vectors are generated within these boundaries. The 
random solutions are shown in figure 10a. As one should  

  
 (a) (b) 

  
 (c) (d) 

 
(e) 

 Color vectors, where all 15 variables in figure 5 have been re-Fig. 10. 
placed by random values within the extreme values occurring in the Pareto 
set (a); solutions from cognitive color perception (b) one of the random 
vectors (c) and its cognitive perception counterpart (d); comparison among 
the two scenes as to their decision variable values (e) 

expect, among the random vectors almost none is close to the 
Pareto front. Using the random stimulus, the output from the 
perceptual cognitive network is shown in figure 10b. From the 
figure one notes that all of the random stimuli are brought 
close to the Pareto front by the perceptual cognitive network, 
manifesting the robust nature of the model, and explaining the 
same property of its actual counterpart. Considering the densi-
ty of resulting solutions one notes that from most of the ran-
dom stimuli the perceptual cognitive network produces solu-
tions in the zone along the Pareto front, where color parsimo-
ny is rather low, while the scene perception is rather high. The 
cause of this behaviour lies in the nature of the aesthetical 
problem. One notes that it is more difficult to reach solutions 
having low chromaticity while minimally sacrificing percep-
tion intensity, compared to reaching solutions with high per-
ception and some moderate chromaticity parsimony. This is 
because the conflict between the two dimensions is more ‘se-
vere’ for the former condition compared to the latter. The se-
verity is in the following sense. When an object has a certain 
color with low chroma, the region of other colors in the color 
space that also have a low chroma while yielding a high color 
difference with the first color at the same time, is relatively 
small. This is a property of the shape of the perceptually uni-
form CIE Lab space, and it originates in the pronounced me-
tamerism of human vision nearby the color white [25]. In con-
trast, when the stipulation of low chromaticity is relaxed, then 
there exist a large amount of color combinations producing 
equally high contrast with a second color. Therefore solution 
density is generally significantly lower at the front’s extremity 
of high color parsimony, compared to the extremity of high 
scene perception. This character of the aesthetical problem 
should show up even more conspicuously, the less ‘Pareto-
like’ a stimulus for cognition is. Before addressing this it is 
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noteworthy to mention that in contrast to the previous two 
experiments, although the solutions in figure 10b are near to 
the front, around the knee point of the front, they do not touch 
the front. This indicates that perceptual cognitive network 
created solutions that, from decision vector viewpoint, may 
have little in common with the original Pareto solutions. This 
is quite remarkable, since it shows that the perceptual cogni-
tive network structure implies vast flexibility in reaching the 
goals at hand, and that in deed it did grasp the goals. This in-
dicates the explanatory potential of the cognition model, as it 
provides a reproduction of the original, goal oriented character 
we commonly observe in human creativity. Figure 10c and 
10d show one of the random scenes highlighted in figure 10a, 
as well as its cognitive perception counterpart in figure 10b 
respectively. Figure 10e shows the difference between the 
solutions in figures 10c and 10d as to the decision variables. 
Due to the cognition, the saturation of the column’s purple 
color is increased, and the blue components of both floor and 
ceiling are reduced. This yields several gains. First the color 
differences between column and floors as well as column and 
ceiling are increased. Second, the yellow aspect of floor and 
ceiling is pronounced. Therefore the ceiling and floor have a 
greater color difference with the two walls. The experiment 
exemplifies that even for a random stimulus; the network is 
able to maintain basic characteristics of the stimulus, such as 
the general hue pattern among the objects, while, through sub-
tle modifications, it yields aesthetical enhancement.  

In a fourth experiment the stimuli for the perceptual cogni-
tive network are totally random color vectors, i.e. the bounda-
ries for the random generator are taken to be utmost extensive, 
namely they are the boundaries of the RGB color space. The 
random stimuli are shown in figure 11a. The figure confirms 
the analysis in the previous paragraph, that encountering a 
solution with high color parsimony is a rarer event compared 
encountering a solution with high scene perception. The result 
produced by the perceptual cognitive network is shown in 
figure 11b. As in the previous experiment all solutions are 
close to the Pareto front, while the majority of solutions occur 
nearby the region of high scene perception and moderate color 
parsimony. One should stress the remarkable character of this 
result. Although the stimulus to color comprehension contains 
no information at all about Pareto optimal solutions, and partly 
is unknown to the network, cognition yields satisfactory re-
sults. Certainly, from practical viewpoint this behavior may 
not be valuable, since in general cognition is particularly con-
cerned with the exact decision variable combination. However, 
from a theoretical viewpoint it substantiates the earlier indica-
tions, the cognitive perception modelling approach presented 
indeed does corroborate with the common manifestations of 
human cognition. The result gives an explanation, how it is 
possible that any perceptual stimulation of a developed human 
brain, even background noise, may be subject to conversion to 
a reasonable response. The quality of the conversion appears 
to be exclusively a matter of the degree, by which the brain 
embodies the required cognition in the form of applicable 
cognition network. For instance, a trained pianist is able to 
perform a piece while thinking of unrelated matters or not 
thinking at all. Based on this work we can assert that this abil-
ity is due to the large number of interconnections constituting   

  
 (a) (b) 

   
 (c) (d) 

 
(e) 

 Color vectors, where all 15 variables in figure 5 have been re-Fig. 11. 
placed by random values within the entire gamut of the color space (a); 
solutions from cognitive color perception (b); one of the random vectors 
(c) and its cognitive perception counterpart (d); comparison among the 
two scenes as to their decision variable values (e) 

perceptual cognitive network, even considering a moderate 
problem having 15 input variables. Therefore, there are a great 
many of possible ways to imbue the non-dominance property 
into a stimulus, and as all the samples used to establish the 
cognition model are Pareto points, then any stimulus to the 
network will be represented by means of membership degrees 
from Pareto points. Therefore a response by the cognitive out-
put is bound to conform to the Pareto front [22]. This property 
of the model sheds some light on the enigmatic coincidence of 
immediacy and approximate adequacy that characterizes a 
creative act, as it occurs for instance during the early phase of 
design, planning, or art creation. Figure 11c and 11d show one 
of the random scenes in figure 11a, as well as its cognitive 
perception counterpart in figure 11b respectively. Figure 11e 
shows the difference between the solutions in figures 11c and 
11d as to the decision variables. Comparing figures 10e and 
11e, one note that the cognition network modifies the stimulus 
more drastically in the latter case in order to reach aesthetical 
scene, as one may expect. However, comparing figures 11c 
and 11d one notes that the response still maintains some char-
acteristics of the scene, namely aspects of the basic hue pat-
tern. The results confirm corroboration of the model with the 
behaviour manifested by design professionals. 

B. Experiment Set Nr. 2: Detailed Analyses of the Color 
Comprehension 

The second set of experiments concerns analyses of the com-
prehension mechanism in detail, namely verifying its effect on 
the decision variables. More precisely, the theoretical consid-
erations illustrated in figure 7 are verified. For a small modifi-
cation of a Pareto solution’s decision variable values, the  
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 (a) (b) 

  
 (c) (d) 

  
  (e)  (f) 

 Objective function space (a); selected Pareto solution P (b); desired Fig. 12. 
solution D (c); solution by cognitive perception C (d); differences among P, 

D, and C as to parameter space (e);  as to perception likelihoods (f) 

resulting solution should minimally differ from the corre-
sponding stimulus in the decision variable space. To investi-
gate the fulfillment of this condition by the perceptual cogni-
tive network, three experiments are carried out, and the results 
are shown in figure 12-14.  

One of the Pareto optimal color compositions is selected 
and denoted by ܲ in figure 12a. The corresponding scene is 
shown in figure 12b. Nine color properties of ܲ are modified 
as marked by the red arrows in figure 12e, yielding solution ܦ 
that is shown in figure 12c. The modification concerns the 
color of the frontal wall from cyan to purple, the ceiling from 
beige to an intensely saturated green, and the column from a 
purplish white to steel grey. Stimulating the perceptual cogni-
tive network with solution ܦ yields solution ܥ shown in figure 
12d. Referring to figure 12e one notes that solution ܥ is simi-
lar to solution ܦ	with respect to the frontal wall color and the 
color of the column, while the color of the floor and ceiling 
are quite strongly altered, for ܥ to be located near to ܲ on the 
front as seen in figure 12a. This behaviour can be elucidated 
from the perception plot in figure 12f. In order to let ܥ be near 
to ܲ on the beauty frontier, the intense perception of the ܦ’s 
ceiling is lowered and the floor perception is increased by 
cognition. As both objects have highest likelihood of percep-
tion in the scene, the mutual balance among their perceptions 
is most important to maintain the beauty of the scene, while 
the other objects’ perceptions remain less affected.  

A second Pareto optimal color compositions is selected 
and denoted by ܲ in figure 13a. The corresponding scene is 
shown in figure 13b. Three color properties of ܲ are modified 
as marked by the red arrows in figure 13e, yielding solution ܦ 
that is shown in figure 13c. The modification concerns the  

  
 (a) (b) 

    
  (c) (d) 

 
 (e) (f) 

 Objective function space (a); selected Pareto solution P (b); desired Fig. 13. 
solution D (c); solution by cognitive perception C (d); differences among P, 

D, and C as to parameter space (e);  as to perception likelihoods (f) 

color of the frontal wall from purple to blue, and the floor 
from green to a saturated purple. Bringing ܦ back to the Pare-
to the front as ܥ	shown in figure 13d, comprehension is able to 
largely accommodate the demand for blue frontal wall by tak-
ing some red out from ceiling and sidewall and adding some 
red to the floor. However, comprehension rejects the demand-
ed diminishment of the green component of the floor. The 
floor should have sufficient green component, otherwise the 
floor would not have enough contrast with the two walls that 
are now both lacking in red, whereas originally the side wall 
was lacking in green, not in red. Compared to the comprehen-
sion event in figure 12, change in object perception is only 
minimally occurring in figure 13.  

A third Pareto optimal color compositions is selected and 
denoted by ܲ	in figure 14a. The corresponding scene is shown 
in figure 14b. A single color properties of ܲ is modified as 
marked by the red arrow in figure 14e, yielding solution ܦ that 
is shown in figure 14c. The modification concerns the color of 
the frontal wall from green to turquoise. One notes that in this 
case ܦ is very near to the Pareto front in contrast to the previ-
ous two experiments. The cognitive color perception model 
yields solution ܥ in figure 14d located on the Pareto front. It 
partly accommodates the requested color change for the 
frontal wall by minimally modifying several color components 
of the other objects.  

The three experiments confirm the corroboration between 
the model and manifestations of human cognition, namely a 
common behavior of designers: The dosage of change exerted 
to a stimulus is commensurate with the already present affinity 
of the stimulus to the goals at hand. 
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 (a) (b) 

   
 (c)  (d) 

  
 (e)  (f) 

 Objective function space (a); selected Pareto solution P (b); desired Fig. 14. 
solution D (c); solution by cognitive perception C (d); Differences among 

P, D, and C as to parameter space (e);  as to perception likelihoods (f) 

CONCLUSIONS 

Computational human’s cognitive color perception is present-
ed. The research reflects several commonly observed proper-
ties of cognition phenomenon. In particular the ability of an 
experienced human designer, to obtain aesthetical color com-
positions without explicit involvement of reasoning and search 
processes, is computationally reproduced by the cognitive 
perception model. The theoretical considerations are verified 
by means of computer experiments, showing the effectiveness 
of the work. Next to yielding aesthetical solutions for a scene 
at hand, analysis of cognition network behaviour is demon-
strated to yield novel, deep insight into the nature of the aes-
thetical problem at hand; for instance, which region of the 
aesthetical domain is more difficult to reach than others. 
Computational cognitive perception also provides unique in-
sight into the cognition phenomenon. The model reveals how 
a designer adjusts the dosage of change to a scene commensu-
rate with the affinity the scene already has to the aesthetical 
goals at hand. His ability to identify small modification of 
objects’ colors, that turn out to stem from astonishingly com-
plex implicit reasoning, yielding multiple desirable effects, is 
reproduced. This gives an explanation to the mysterious ‘crea-
tive leap’ phenomenon designers commonly experience: Ap-
parently from nowhere, a quite suitable solution appears in a 
designer’s mind, satisfying multiple complex objectives. The 
model also explains how designers are inexhaustibly capable 
of producing novel solutions that are all different in detail, yet 
similar in their aesthetical effect. Color aesthetics is shown to 
be a possible subject for computation. Next to its practical 
value for diverse design and industrial applications, the novel 
insight gained into the cognitive aspect of perception contrib-
utes to the underlying theoretical bases of such implementa-
tions. 
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