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1 CHAPTER

Introduction

T
his thesis discusses formal abstractions for automated verification
and synthesis of stochastic systems. In this chapter we introduce

the processes under study, verification problems, and an application in
power networks. We further briefly sketch our approach to solve these
problems, which will be further elaborated throughout the thesis. The
explanation of the organization of the thesis concludes this chapter.

1.1 Motivation

Stochastic processes were first studied rigorously in the late 19th century to aid in
understanding Brownian motion [17] and financial markets. The first person to
describe the mathematics behind Brownian motion was Thorvald N. Thiele in a
paper on the method of least squares published in 1880 [73]. This was followed
independently by Louis Bachelier in 1900 in his PhD thesis “The theory of spec-
ulation” [6], in which he presented a stochastic analysis of the stock and option
markets. Albert Einstein (in his 1905 papers on photo-electric effect [27]) and Mar-
ian Smoluchowski (1906) [70] brought the solution of the problem to the attention
of physicists, and presented it as a way to indirectly confirm the existence of atoms
and molecules. Their equations describing Brownian motion were subsequently
verified by the experimental work of Jean Baptiste Perrin in 1908 [24].

In probability theory, a stochastic process is a collection of random variables which
is often used to represent the evolution of some random value, or system, over
time. One approach to stochastic processes treats them as functions of one or
several deterministic arguments (called indexes, in most cases regarded as time)
whose values are random variables: non-deterministic quantities which have cer-
tain probability distributions. Random variables corresponding to various times
may be completely different. In the simple case of discrete time, as opposed to
continuous time, a stochastic process involves a sequence of random variables
and the time series associated with these random variables.

1



2 Introduction

Countable or finite state space Continuous or general state space
Discrete-time Markov chain Markov process on a general state space

Continuous-time
Continuous-time Markov

process

Any continuous stochastic process with
the Markov property, e.g. the Wiener

process or solutions of stochastic
differential equations

Table 1.1: Classes of Markov processes with their names used in this manuscript.

A stochastic process can be classified according to the cardinality of its index set
(usually interpreted as time) and state space: the process is in discrete time if
the index set is countable and has discrete space if its state space is countable.
A Markov process, named after the Russian mathematician Andrey Markov, is a
stochastic process that satisfies the Markov property: one can make predictions
for the future of the process based solely on its present state just as well as one
could knowing the process’ full history. In other words, conditional on the present
state of the process, its future and past are independent. A Markov process can be
used to model a random system that changes states according to a transition rule
that only depends on the current state. Table 1.1 gives an overview of the different
instances of Markov processes.

In this thesis we address the investigation of complex properties over Markov pro-
cesses evolving in discrete time and continuous (uncountable) state spaces [44, 63].
A discrete-time Markov Process (dtMP) is a tuple S = (S, Ts), where S is a con-
tinuous state space and Ts is a stochastic kernel that assigns to each state s ∈ S
a probability measure Ts(·|s), so that P(s(k + 1) ∈ A|s(k) = s) = Ts(A|s) for
every A ⊂ S. With regards to the probabilistic properties under investigation,
we consider formulae expressed via a modal logic known as PCTL [7] and Lin-
ear Temporal Logic (LTL). PCTL encodes probabilistic specifications that can be
equivalently expressed via value functions [68] and computed by recursive appli-
cation of known operators or by solving integral equations, as typical in dynamic
programming problems over continuous spaces [12].

To keep the discussion of the thesis clear, we zoom in on a particular PCTL specifi-
cation expressing probabilistic invariance. Given a stochastic process evolving over
a state space and a set of interest (known as invariance domain, or safe set) that
is a subset of the state space, the probabilistic invariance problem is concerned
with the computation of the probability that a realization of the process, started
anywhere in the state space, remains within the invariance set over a given time
horizon. Here we study the finite-time invariance problem and refer the reader to
[74, 75, 76] for the results on infinite-time horizon properties.

Probabilistic invariance (or its dual, reachability) has been investigated for vari-
ous models and with multiple techniques. Classical results on models with dis-
crete state spaces are recapitulated in [7], whereas recent work deals with hybrid
models in continuous- [18, 54] and discrete-time [4], respectively. The work in
[2] has put forward a formal connection between the study of probabilistic in-
variance over the process and the computation of a related property over a dis-
cretized version of the model, namely a Markov chain. A Markov chain (MC)
is a tuple P = (P , Tp) where P = {z1, z2, . . . , zp} is a finite set of states and



1.2 Research Goals and Original Contributions 3

Tp : P × P → [0, 1] is a transition probability matrix, such that Tp(z, z
′) char-

acterizes the probability of transitioning from state z to state z′. The probabilistic
invariance property over a Markov chain can be computed with a probabilistic
model checker, such as PRISM [45] or MRMC [50]. The work in [3] has extended
this approach to automata-based properties. Both contributions [2, 3] are formal
in that they allow an exact computation of a bound on the formula-dependent
approximation error.

The results of this thesis, presented for the probabilistic invariance problem, can
be generalized to the reach-avoid property, i.e. computation of the probability
that a realization of the process remains inside a safe set while hitting a target
set in a finite time horizon. Moreover, other properties expressed as finite-state
automaton [7] can be transformed to invariance properties of an auxiliary process
which is the product of the automaton and the process.

We are in particular interested in Markov processes with state spaces displaying a
hybrid structure, namely characterized by a finite collection of continuous domains
(typically taken to be subsets of Euclidean spaces). These models are known in the
literature as Stochastic Hybrid Systems (SHS) [14, 21]. We present our results for
processes over continuous state spaces and discuss extensions to SHS at the end
of each chapter.

A fascinating example of SHS is the model of thermostatically controlled loads
(TCL), which captures the behavior of temperature inside a building. The evo-
lution of the temperature of a TCL can be characterized by a stochastic differ-
ence equation. The temperature is regulated via a heating/cooling system and
an ON/OFF switching strategy, where the dynamics depend on the mode of op-
eration. Models for TCL have shown the potential to be employed in practical
applications ranging from load balancing to demand-response programs. The ab-
straction methods of this thesis are employed to develop a model for the aggrega-
tion and control of population of TCL.

The class of dtMPs studied in this thesis is equivalent to the class of discrete-time
dynamical systems that evolve according to s(k + 1) = f(s(k), w(k)), where s(k)
is the state of the process at time k, f is any (possibly nonlinear, discontinuous)
function, and {w(k), k = 0, 1, 2, . . .} are independent identically-distributed ran-
dom vectors with known distribution [48]. In other words, any dtMP S = (S, Ts)
admits such a representation as a dynamical system and vice versa. Throughout
the thesis we use any of the two representations depending on the suitability for
establishing the result.

1.2 Research Goals and Original Contributions

The broad aim of this PhD research is to develop a novel and general framework
with efficient algorithmic tools for formal verification and synthesis of discrete-
time Markov processes. The connection between the computation of a class of
dynamical properties and the verification of related specifications in PCTL logic
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has been investigated in [68] and extended in [3]. The contribution [4] has re-
cently characterized the fundamental problem of probabilistic invariance and put
forward an algorithm to compute this quantity. From a computational perspec-
tive, [2] has looked at the numerical evaluation of specifications discussed in [4].
This evaluation is possible by developing a formal abstraction that is based on the
partitioning of the state space of the original continuous space model, which orig-
inates a discrete time, finite space Markov chain (MC) from the original process.
The approach is formal in that it allows for the computation of explicit bounds on
the error associated with the abstraction.

Adaptive and sequential gridding procedures. We extend the applicability of
the technique developed in [2] by addressing its known bottleneck: the issue of
dimensional scalability of the abstraction, which is limited by the “curse of di-
mensionality” related to the partitioning procedure and subsequent dynamic pro-
gramming recursions. We propose adaptive and sequential gridding algorithms
based on local computation of the abstraction error to make the approach appli-
cable to larger dimensional processes.

Partially-degenerate stochastic processes. The computational approach of [2]
hinges upon regularity of the conditional density function of the process, i.e. its
Lipschitz continuity. Partially-degenerate stochastic processes do not satisfy such
assumptions (due to the existence of Dirac-delta function in their associated den-
sity function) and require us to develop new techniques specialized for this class
of processes. We have shown that the probabilistic invariance problem over such
processes can be separated into two parts: a deterministic reachability analysis,
and a probabilistic invariance problem that depends on the outcome of the first.
This decomposition approach leads to computational improvements.

Higher-order approximations. The results [2, 3, 28, 30] have leveraged piece-wise
constant interpolations of the kernels characterizing the discrete-time Markov pro-
cess under study, which has direct consequences on the derived error bounds. In
contrast, we provide approximation methods via higher-order interpolations of
the value functions that are aimed at requiring less computational effort. Us-
ing higher-order interpolations (versus piece-wise constant ones) can be benefi-
cial in terms of obtaining tighter bounds on the approximation error. Further-
more, since the approximation procedures depend on the partitioning of the state
space, higher-order schemes display an interesting trade-off between more parsi-
monious representations versus more complex local computation.

Controlled discrete-time Markov processes. We provide an abstraction scheme
to approximate a controlled discrete-time Markov process with a Markov decision
process over a finite set of states. The approach enables us to solve the problem
of obtaining maximally safe Markov policy for the Markov decision process and
design a control policy for the original model. We quantify the total error made by
the abstraction procedure and caused by exporting the result back to the original
process.

Application to the aggregation of TCL. We propose a new, formal two-step ab-
straction procedure to generate a finite stochastic dynamical model as the aggre-
gation of the dynamics of a population of TCL. The approach relaxes the limiting
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assumptions employed in [53] by providing a model based on the natural prob-
abilistic evolution of the single TCL temperature. We also describe a dynamical
model for the time evolution of the abstraction, and develop a set-point control
strategy aimed at reference tracking over the population total power consump-
tion.

Implementation. The abstraction algorithms discussed in this thesis have been
implemented as a MATLAB tool FAUST2 (abbreviation for “Formal Abstractions
of Uncountable-STate STochastic processes”). The first version of FAUST2 is freely
available for download at http://sourceforge.net/projects/faust2/.

1.3 Overview of the Thesis

This thesis discusses approaches to analysis that are based on finite-state abstrac-
tions of discrete-time Markov processes featuring general continuous or hybrid
state spaces. We dedicate our analysis to the probabilistic invariance problem and
apply the developed techniques to the problem of aggregation of TCL. This thesis
is organized as follows:

• Chapter 2 introduces the discrete-time Markov processes and the problem
statement (computation of probabilistic invariance). An abstraction algo-
rithm is proposed to relate a general state space model to a Markov chain
and the error in the abstraction procedure is quantified. Furthermore, re-
finements of the error computation based on local properties are presented
which results in the algorithmic generation of the abstraction in a sequential
and adaptive scheme. The results are also adapted to the Stochastic Hybrid
Systems model framework.

• Chapter 3 introduces the model class of partially-degenerate stochastic sys-
tems and discusses properties of the value functions that characterize prob-
abilistic invariance. Since the results of Chapter 2 are not applicable to this
class of systems, this chapter puts forward a new approximation scheme for
the computation of the probabilistic invariance over these systems. We show
that the problem can be separated into two parts: a deterministic reachabil-
ity analysis, and a probabilistic invariance problem on top of the first anal-
ysis. We explicitly characterize the approximation error and present a case
study from Systems Biology.

• Chapter 4 generalizes the result of Chapter 2 by introducing higher-order
approximation schemes over the value functions of interest. The introduced
error is first formulated for any general linear operator, employed for ap-
proximation, and then adapted to piece-wise polynomial functions obtained
via interpolation. Extension of the results to SHS models is also discussed.

• Chapter 5 generalizes the result of Chapters 2,4 to controlled discrete-time
Markov processes. We present an approach based on partitioning both state
and input spaces that abstracts the process to a Markov decision process.

http://sourceforge.net/projects/faust2/
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Markov policies are defined in this chapter and the solution of finding the
maximally safe policy for the process is formulated. Then we show that
the proposed abstraction approach can be employed to find a sub-optimal
policy and quantify the level of sub-optimality, i.e. the distance between the
sub-optimal and optimal quantities.

• Chapter 6 recapitulates the model of the single TCL dynamics as an SHS,
describes its abstraction as a Markov Chain, and further discusses the ag-
gregation of a homogeneous population of TCL. We quantify the errors in-
troduced by both steps and discuss TCL models endowed with a control
input. The synthesis of global (acting at the population level) controllers to
achieve regulation of the total consumed power is achieved by two alterna-
tive schemes.

• Chapter 7 presents the software tool FAUST2 that implements the results of
previous chapters on formal abstractions of discrete-time Markov processes
defined over continuous state spaces. This chapter describes the Graphical
User Interface that enhances the interaction of user with FAUST2.

• Chapter 8 summarizes the results of this thesis and outlines directions for
future research.

The diagram in Figure 1.1 shows the relation of these chapters which can be used
to select the chronological order of chapters to be studied by the reader.

1.4 Publications by the Author

Most of the material presented in Chapters 2,3,4, and 6 of this PhD thesis has
appeared in international conference proceedings, both in the area of systems &
control and in that of formal verification, or has been published in peer-reviewed
journals. In addition to developing the theory, we have implemented most algo-
rithms in this thesis as a MATLAB toolbox FAUST2 (presented in Chapter 7). The
connection between each chapter and the publications is as follows

• Chapter 2 is based on [28]. The interested reader may refer to [28, 31] for a
more extensive discussion and mathematical details.

• Chapter 3 is based on [30]. The interested reader may refer to [30, 35] for
more details and generalization of the developed methods to reach-avoid
specifications.

• Chapter 4 adapted the results of [29] to the invariance problem. The men-
tioned paper presents the approach for reach-avoid specifications.

• Chapter 5 discusses formal abstraction of non-autonomous Markov pro-
cesses to Markov Decision processes (with finite action and state spaces).
This result has not been published yet.
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1. Introduction

2. Adaptive and Sequential Gridding

3. Partially-Degenerate Systems 4. Higher-Order Approximations

5. Controlled Markov Processes

6. Aggregation of TCL

7. Implementation of FAUST2

8. Conclusions and Future Research

Figure 1.1: Relational structure of this thesis. Arrows indicate relations of inter-
dependence.

• Chapter 6 is based on [32] which is devoted to the aggregation of homoge-
neous populations of TCL by formal abstraction. The reader may refer to
[49, 33] for an extensive discussion on aggregation of heterogeneous popu-
lations of TCL and other modeling options.

• Chapter 7 is based on the manuscript [36].





2 CHAPTER

Adaptive and Sequential Gridding
for the Abstraction and Verification of

Stochastic Processes

T
his chapter is concerned with the generation of finite abstractions of
general state-space processes, to be employed in the formal verifica-

tion of probabilistic properties by means of automatic techniques such as
probabilistic model checkers. We employ an abstraction procedure based
on the partitioning of the state space, which generates a Markov chain
as an approximation of the original process. We put forward a novel
adaptive and sequential gridding algorithm that is expected to conform
to the underlying dynamics of the model and thus to mitigate the curse
of dimensionality unavoidably related to the partitioning procedure. The
results are also extended to the general modeling framework known as
Stochastic Hybrid Systems. While the technique is applicable to a wide
arena of probabilistic properties, with focus on the study of a particu-
lar specification (probabilistic safety or invariance, over a finite horizon),
the proposed adaptive algorithm is first benchmarked against a uniform
gridding approach taken from the literature, and finally tested on an ap-
plicative case study in Biology.

2.1 Introduction

In this chapter we study the problem of computing probabilistic properties for dis-
crete time Markov processes evolving over continuous (uncountable) state spaces.
We interpret the analysis of a given property as the formal verification of a re-
lated specification expressed in a probabilistic modal logic [7]. Theoretically, the
connection between the computation of a class of dynamical properties and the
verification of related specifications in PCTL logic has been investigated in [68]

9
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and extended in [3]. To keep the presentation focused, in this thesis we zoom in
on the fundamental problem of probabilistic invariance, or safety – and on its re-
lated specification. This problem has been recently investigated in [4], which has
characterized this concept and put forward an algorithm to compute this quantity.

From a computational perspective, [2] has looked at the numerical evaluation of
specifications discussed in [4], among which probabilistic invariance. This eval-
uation is possible by developing a formal abstraction that is based on the parti-
tioning of the state space of the original continuous space model, which derives
a discrete time, finite space Markov chain (MC) from the original process. The
approach is formal in that it allows for the computation of explicit bounds on the
error associated with the abstraction. This technique enables considering classes
of probabilistic specifications [3, 2] over continuous-space models and comput-
ing them over MC abstractions via available probabilistic model checkers [45, 50],
with explicit bounds on the errors introduced with the abstraction procedure.

This chapter looks at extending the applicability of the technique developed in
[2] by addressing its known bottleneck: the issue of dimensional scalability of the
abstraction, which is limited by the “curse of dimensionality” related to the par-
titioning procedure and subsequent dynamic programming recursions. This new
procedure is expected to adapt to the underlying dynamics of the model, which
is characterized by (a set of) stochastic kernels. In contrast to the abstraction pro-
posed in [2], which has leveraged a batch algorithm performing uniform parti-
tioning based on the quantification of a global error, this chapter puts forward an
adaptive and sequential procedure that exploits the knowledge of local quantities
and performs the normalization of dynamics operating on multiple spatial scales.
Furthermore, this chapter looks at the practical implementation of the adaptive
procedure, which hinges on: the choice of the shape of partition sets (making up
the states of the MC), the execution of the refinement step in the adaptive gener-
ation of the grid, as well as the generation of transition probabilities for the MC
over the partition sets (which involves a marginalization procedure). Addition-
ally, the issue of ill-conditioned dynamics (namely, widely separated dynamics
operating over slow and fast scales) is tackled by considering a further refinement
of the obtained errors based on state-space rescaling.

Owing to the explicit computation of the error bounds related to a given prop-
erty, we provide an approach to abstraction that is effectively property-dependent.
Furthermore, given the generality of the concepts of reachability and (dually) of
invariance and due to their connections to more general properties [3], this ab-
straction technique allows a general approach for the study of these properties.

Most of the reviewed literature on the subject of formal verification of stochas-
tic processes presents a penchant for models known as Stochastic Hybrid Systems
(SHS), which are general dynamical models with interleaved discrete, continuous,
and probabilistic dynamics. Fostered by their application in a number of diverse
domains [14, 21], the study of SHS has recently flourished and has witnessed in-
teresting advances at the intersection of the fields of Systems and Control [25] and
of Formal Verification [7]. In this chapter we develop results over abstract state
spaces and tailor them to SHS at a later stage (cf. Section 2.4 for the theory, and
Section 2.6 for a case study).
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From a different perspective and over classes of continuous time probabilistic hy-
brid models, [18] has formalized the notion of probabilistic reachability, [66] has
put forward a computational technique based on convex optimization, and [38]
has developed an approach based on satisfiability modulo theory, to attain the ver-
ification of similar probabilistic properties. Over models with similar semantics,
[54, 67] have quantified the concept of probabilistic reachability as the solution of
partial differential equations over the state-space, and put forward approximation
techniques for its computation, which also leverage the use of discrete-time MC
[56] – however, both approaches do not provide a quantification of the error made
in the approximation step, which is a distinguishing factor of this chapter.

This chapter is structured as follows. Sections 2.2.1 and 2.2.2 introduce the model
and the problem statement (computation of probabilistic invariance). Section 2.3.1
proposes an abstraction algorithm to relate a general state space model to a Markov
chain. Furthermore, with focus on the probabilistic invariance problem, the quan-
tification of the error in the abstraction procedure is presented in Section 2.3.2,
whereas Section 2.3.3 puts forward refinements of the error computation based
on local properties and state-space rescaling. Section 2.4 adapts the results to the
Stochastic Hybrid Systems model framework. Section 2.5 deals with the algorith-
mic generation of the abstraction and elaborates on a number of choices leading
to a sequential and adaptive scheme. Finally, Section 2.6 develops two numerical
studies: a benchmark compares the adaptive and sequential approach versus the
uniform procedure known from the literature [2], and tests the scalability of the
adaptive approach. Also, Section 2.6 presents a case study drawn from Systems
Biology – in particular Section 2.6.2 elucidates the results on a SHS model. Section
2.7 ends the chapter with conclusions and extensions.

2.2 Preliminaries

2.2.1 Model

We consider a discrete time Markov process s(k), k ∈ N0
.
= {0, 1, 2, . . .} defined

over a general state space. The model is denoted by S = (S, Ts) and characterized
by the following pair:

1. S is a continuous state space, which we assume to be endowed with a met-
ric and to be Borel measurable. We denote by (S,B(S),P) the probability
structure on S, with B(S) the associated sigma algebra, and P a probability
measure to be characterized shortly;

2. Ts is a conditional stochastic kernel that assigns to each point s ∈ S a prob-
ability measure Ts(·|s), so that for any set A ∈ B(S),

P(s(1) ∈ A|s(0) = s0) = Ts(A|s0) =
∫

A

Ts(ds|s0).
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The initial condition s(0) for the model is sampled from π : B(S) → [0, 1], a prob-
ability measure on S. Over a finite horizon ZN+1

.
= {0, 1, 2, . . . , N}, a Markov

process s(k), k ∈ ZN+1 evolves over the product space Ω = (S)N+1, which is
also endowed with a sigma algebra and thus allows computing the probability
of events related to trajectories – we will use again P to denote such probabil-
ity. Usually the state space is taken to be a finite-dimensional Euclidean domain,
S = R

n, n < ∞. In Section 2.4, we tailor this setup to a specific “hybrid” state
space, thus introducing a modeling framework known as Stochastic Hybrid Sys-
tems (see also Section 2.6.2 for a case study based on a SHS model).

2.2.2 Problem Statement

The problem of finite-horizon probabilistic invariance (alternatively referred to as
probabilistic safety) can be formalized as follows.

Problem Description 2.1 consider a bounded Borel set A ∈ B(S), representing a set of
safe states. Characterize and compute the probability that an execution of S, associated
with an initial condition s0 ∈ S (sampled from π), remains within set A during the finite
time horizon ZN+1:

ps0(A)
.
= P{s(k) ∈ A for all k ∈ ZN+1|s(0) = s0}. (2.1)

This quantity allows to extend the result to a general initial probability distribu-
tion π as

pπ(A)
.
= P{s(k) ∈ A for all k ∈ ZN+1} =

∫

S
ps0(A)π(ds0).

The following theorem provides a theoretical framework to study the probabilistic
invariance problem [4] and is directly related to an algorithm for the determina-
tion of an invariant linear subspace [80].

Proposition 2.1 (Bellman recursion) Consider value functions Vk : S → [0, 1], k ∈
ZN+1, computed by the following backward recursion:

Vk(s) = 1A(s)

∫

S
Vk+1(s̄)Ts(ds̄|s), s ∈ S,

and initialized with:

VN (s) = 1A(s) =

{

1, if s ∈ A,
0, else.

Then ps0(A) = V0(s0).

This result characterizes the finite-horizon probabilistic invariance quantity as the
solution of a dynamic programming problem in which the optimization domain
has cardinality equal to one. However, since its explicit solution is in general
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not available, the actual computation of the quantity ps0(A) requiresN numerical
integrations over the whole set A. This is usually performed with techniques
based on state-space discretization [11], which leads to two major questions:

1. whether the numerical output can be precisely related to the actual solution;
and

2. whether the approach is dimensionally scalable (e.g., as a function of n if
S = R

n), particularly in comparison with alternative known approaches in
the literature [2].

The goal of this chapter is to address these two issues. In the next section we an-
swer the first question by introducing an abstraction of the original model via a
numerical approximation, and by explicitly quantifying the error related to the
computation of the finite-horizon probabilistic invariance with the abstraction.
Furthermore, by focusing on the algorithmic implementation of the abstraction,
in the remainder of this chapter we investigate the scalability properties of the
proposed approach (computational complexity, memory usage), thus addressing
the second question.

The overall approach, here presented over the problem of probabilistic invariance,
can be directly extended to more general properties expressed in PCTL logic [68],
as well as over specifications characterized as certain labeled automata [3] – both
extensions can be reduced to computations of values functions related to that in
Proposition 2.1 characterizing probabilistic invariance.

2.3 Model Abstraction

2.3.1 Algorithmic Abstraction as a Finite-State Markov Chain

We recall a procedure presented in [2] to approximate a model S = (S, Ts), by a
finite state Markov chain (MC) P = (P , Tp). Here P = {z1, z2, . . . , zp} is a finite
set of states and Tp : P × P → [0, 1] is a transition probability matrix, such that
Tp(z, z

′) = P (z′|z) characterizes the probability of transitioning from state z to
state z′ and thus induces a conditional discrete probability distribution over the
finite space P .

Consider the bounded safe set A ∈ B(S). Algorithm 1 provides a procedure to
abstract model S by a finite state MC P. In Algorithm 1, Ξ : Ap → 2A represents a
set-valued map that associates to any point zi ∈ Ap the corresponding partition set
Ai ⊂ A. Furthermore, the map ξ : A → Ap associates to any point s ∈ A of S the
corresponding discrete state in Ap. Additionally, notice that the absorbing set ▽ is
added to the definition of the MC P in order to render the transition probability
matrix Tp stochastic.

Remark 2.1 Notice that Algorithm 1 can be applied to abstract a general model by a
finite state MC, regardless of the specifics of the probabilistic invariance problem studied
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Algorithm 1 Abstraction of model S by MC P

Require: input model S, set A
1: Select a finite partition of set A as A = ∪m

i=1Ai (Ai are non-overlapping), where
m represents the cardinality of the partition

2: For each Ai, select a single representative point zi ∈ Ai, {zi} = ξ(Ai)
3: Define Ap = {zi|i ∈ {1, 2, . . . ,m}} and take P = Ap ∪ {▽} as the finite state

space of the MC P (▽ being a dummy variable as explained in the text)
4: Compute the transition probability matrix Tp for P as:

Tp(z, z
′) =







Ts(Ξ(z
′)|z), z′ ∈ Ap, z ∈ Ap

1−∑z̄∈Ap
Ts(Ξ(z̄)|z), z′ = ▽, z ∈ Ap

1, z′ = z = ▽

0, z′ ∈ Ap, z = ▽

Ensure: output MC P

in this chapter (that is regardless of the given safe set A), by assuming that A = S. The
quantification of the abstraction error, to be carried out in Section 2.3.2, will however
require that the set A (thus, as needed, the state space S) is bounded.

Given a finite-state, discrete-time Markov Chain P = (P , Tp) and considering a
safe set Ap ⊂ P , the probabilistic invariance problem evaluates the probability
that a finite execution associated with the initial condition z0 ∈ P remains within
the discrete safe set Ap during the finite time horizon ZN+1, and can be stated as
follows:

pz0(Ap)
.
= P{p(k) ∈ Ap for all k ∈ ZN+1|p(0) = z0}.

We now formulate the discrete version of Proposition 2.1.

Theorem 2.1 ([2]) Consider value functions V p
k : P → [0, 1], k ∈ ZN+1, computed by

the backward recursion:

V p
k (z) = 1Ap(z)

∑

z̄∈P
V p
k+1(z̄)Tp(z, z̄), z ∈ P ,

and initialized with:

V p
N (z) = 1Ap(z) =

{

1, if z ∈ Ap,

0, if z = ▽.

Then pz0(Ap) = V p
0 (z0).

It is of interest to provide a quantitative comparison between the discrete outcome
obtained by Theorem 2.1 and the continuous solution that results from Proposi-
tion 2.1. The following section accomplishes this goal.
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2.3.2 Quantification of the Abstraction Error

We first introduce a bound, inspired by [2, Theorem 1], on the distance between
evaluations of the function Vk, k ∈ ZN+1 in Proposition 2.1. Consider a safe set
A ∈ B(S). For any pair of points s, s′ ∈ A and k ∈ ZN , notice that

|Vk(s)− Vk(s
′)| =

∣
∣
∣
∣

∫

A
Vk+1(s̄)Ts(ds̄|s)−

∫

A
Vk+1(s̄)Ts(ds̄|s′)

∣
∣
∣
∣

(2.2)

≤
∫

A
|Ts(ds̄|s)− Ts(ds̄|s′)| ,

since the value functions Vk are upper-bounded by the unity. Furthermore, for
k = N it holds trivially that VN (s) = VN (s′) = 1 ⇒ |VN (s)− VN (s′)| = 0.

The following Lipschitz continuity condition restricts the generality of the kernel
Ts characterizing the dynamics of model S.

Assumption 2.1 Assume that the kernel Ts admits density ts, and that the following
holds for a finite positive h:

|ts(s̄|s)− ts(s̄|s′)| ≤ h ‖s− s′‖ , ∀s̄, s, s′ ∈ A.

Assumption 2.1 allows to derive the following bound on the abstraction error al-
ready obtained in [2] (notice the emphasis of the result on the time instance k = 0).

Theorem 2.2 ([2], Theorem 2) Under Assumption 2.1, the invariance probability ps0(A)
for the model S initialized at s0 ∈ A satisfies:

|ps0(A)− pz0(Ap)| ≤ γδ, (2.3)

where pz0(Ap) is the invariance probability for the MC P obtained by Algorithm 1, and
initialized at the discrete state z0 = ξ(s0) ∈ Ap. The constant γ is

γ = NK, where K = hL (A),

and where δ is the largest diameter of the partition sets Ai ⊂ A:

δ = max{‖s− s′‖ |s, s′ ∈ Ai, i = 1, . . . ,m},

h comes from Assumption 2.1, and L (B) denotes the Lebesgue measure of any set B ∈
B(S).

Theorem 2.2 allows for the synthesis of finite abstractions of continuous-space
models with explicit, finite error bounds. The quality of the bounds is key in ob-
taining useful abstractions (that is, we are interested in bounds that are at least
smaller than the unity). Furthermore, if a specific error is the objective of the
study, then the quality of the error directly affects the cardinality (m) of the ab-
straction space, as well as the computational effort to obtain the abstraction – we
shall explore this tradeoff later in this chapter.
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In the next section we refine the abstraction error of Theorem 2.2 in three different
ways: first, by computing a local version of the error; second, by leveraging conti-
nuity requirements that go beyond the Lipschitz condition raised in Assumption
2.1, and finally by normalizing possibly ill-conditioned dynamics operating on
multiple spatial scales.

2.3.3 Refinement of the Abstraction Error

Local Computation of Abstraction Error

We relax Assumption 2.1 as follows.

Assumption 2.2 Assume that the kernel Ts admits density ts, and that the following
continuity assumption is valid:

|ts(s̄|s)− ts(s̄|s′)| ≤ h(i, j) ‖s− s′‖ , ∀s̄ ∈ Aj , ∀s, s′ ∈ Ai,

where i, j ∈ Nm
.
= {1, 2, . . . ,m}, the setAi form a partition of A (as required for instance

by Algorithm 1), and h(·, ·) are finite and positive constants.

Clearly, the global Lipschitz constant h in Assumption 2.1 represents an upper
bound for the quantities h(i, j) above. Equation (2.2) can be tailored to Assump-
tion 2.2, which leads to the following result.

Theorem 2.3 Suppose that the stochastic kernel of the model S satisfies Assumption 2.2.
Then the value functions Vk : S → [0, 1], characterizing the probabilistic invariance
problem for S over A ∈ B(S), satisfy the following Lipschitz continuity, k ∈ ZN+1:

|Vk(s)− Vk(s
′)| ≤ Ki ‖s− s′‖ ,

∀s, s′ ∈ Ai, i ∈ Nm, and where the constant Ki is given by: Ki =
m∑

j=1

h(i, j)L (Aj).

Proof: Using Equation (2.2) together with the inequality in Assumption 2.2, leads
directly to the following:

|Vk(s)− Vk(s
′)| ≤

∫

A
|Ts(ds̄|s)− Ts(ds̄|s′)| =

m∑

j=1

∫

Aj

|Ts(ds̄|s)− Ts(ds̄|s′)|

≤
m∑

j=1

h(i, j) ‖s− s′‖L (Aj) = Ki ‖s− s′‖ .

Notice that the bound provided in this Theorem improves that derived from Equa-
tion (2.2) and Assumption 2.1, since h ≥ max{h(i, j)|i, j ∈ Nm}. 2

The result in Theorem 2.3 can be employed to quantify the error between the value
pz0(Ap) and ps0(A), which leads to a refinement of Theorem 2.2.
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Theorem 2.4 Assume that Assumption 2.2 holds. Then the invariance probability ps0(A)
for model S, initialized at s0 ∈ A, satisfies:

|ps0(A) − pz0(Ap)| ≤ max{γiδi|i ∈ Nm}, (2.4)

where pz0(Ap) is the invariance probability for the MC P, initialized at the discrete state
z0 = ξ(s0) ∈ Ap, where δi is the diameter of the set Ai ⊂ A, namely

δi = max{‖s− s′‖ | s, s′ ∈ Ai},

and the constants γi are specified as γi = NKi, as per Theorem 2.3.

Proof: Let us recall that the function ξ : A → Ap maps any point s ∈ A to
the corresponding discrete state z ∈ Ap via a representative point ξ(s), and that
Ξ : Ap → 2A associates a continuous partition set to a discrete (representative)

point in Ap. Let us define a piecewise constant function V̂ p
k : A → [0, 1] with

V̂ p
k (s) = V p

k (ξ(s)) for all s ∈ A. Next we show that

|Vk(s)− V̂ p
k (s)| ≤ (N − k)max{Kiδi|i ∈ Nm}. (2.5)

For k = N the inequality is trivial, since |Vk(s) − V̂ p
k (s)| = |VN (s) − V̂ p

N (s)| =
1− 1 = 0. Suppose now that the inequality holds for k + 1, then at time step k we
have:

|Vk(s)− V̂ p
k (s)| = |Vk(s)− V̂ p

k (ξ(s))| ≤ |Vk(s)− Vk(ξ(s))| +
∣
∣
∣Vk(ξ(s)) − V̂ p

k (ξ(s))
∣
∣
∣

≤ Kiδi +
∣
∣
∣Vk(ξ(s)) − V̂ p

k (ξ(s))
∣
∣
∣ ,

where the index i ∈ Nm corresponds to the set Ai = Ξ(ξ(s)). On the other hand,

by exploiting the discrete feature of the function V̂ p
k evaluated at ξ(s) and its piece-

wise constant structure, we can observe that

V̂ p
k (ξ(s)) =

∑

z∈Ap

V̂ p
k+1(z)Tp(ξ(s), z) =

∑

z∈Ap

V̂ p
k+1(z)

∫

Ξ(z)

Ts(dω|ξ(s))

=

∫

A
V̂ p
k+1(ω)Ts(dω|ξ(s)),

which results in the following inequality:

∣
∣
∣Vk(ξ(s)) − V̂ p

k (ξ(s))
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∫

A
Vk+1(ω)Ts(dω|ξ(s))−

∑

z∈Ap

V̂ p
k+1(z)Tp(ξ(s), z)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

A
Vk+1(ω)Ts(dω|ξ(s))−

∫

A
V̂ p
k+1(ω)Ts(dω|ξ(s))

∣
∣
∣
∣

≤
∫

A

∣
∣
∣Vk+1(ω)− V̂ p

k+1(ω)
∣
∣
∣Ts(dω|ξ(s)).
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We then obtain:

|Vk(s)−V̂ p
k (s)| ≤ Kiδi +

∫

A

∣
∣
∣Vk+1(ω)− V̂ p

k+1(ω)
∣
∣
∣Ts(dω|ξ(s))

≤ Kiδi + (N − k − 1)max
i

{Kiδi}
∫

A
Ts(dω|ξ(s))

︸ ︷︷ ︸

≤1

≤ (N − k)max
i

{Kiδi}.

The results in Theorems 2.1, 2.1 and inequality (2.5) applied at k = 0 yield the
following bound:

|ps0(A)− pz0(Ap)| = |V0(s0)− V p
0 (ξ(s0))| = |V0(s0)− V̂ p

0 (s0)|
≤ N max{Kiδi|i ∈ Nm} = max{γiδi|i ∈ Nm},

which concludes the proof of the statement. 2

Notice that often in practice the (global or local) Lipschitz constants need to be
numerically computed or over-approximated, which relates to a computational
cost. This leads to propose a simplification of Assumption 2.2 and an adaptation
of Theorems 2.3, 2.4 accordingly. The new requirement is computationally less de-
manding, however as expected the related error bounds will be more conservative
(less tight).

Assumption 2.3 Assume that the kernel Ts admits density ts, and that the following
holds for a choice of a finite positive h(·):

|ts(s̄|s)− ts(s̄|s′)| ≤ h(i) ‖s− s′‖ , ∀s̄ ∈ A, ∀s, s′ ∈ Ai,

where i ∈ Nm and Ai form a partition of A (as obtained for instance from Algorithm 1).

Theorem 2.5 Suppose the stochastic kernel of the model S satisfies Assumption 2.3.
Then the value functions Vk : S → [0, 1], characterizing the probabilistic invariance prob-
lem for the model S over A ∈ B(S), satisfy the following Lipschitz continuity, k ∈ ZN+1:

|Vk(s)− Vk(s
′)| ≤ Ki ‖s− s′‖ ,

∀s, s′ ∈ Ai, i ∈ Nm, where the constant Ki is given by:

Ki = h(i)L (A),

and where L (B) denotes the Lebesgue measure of any set B ∈ B(S).

Proof: The proof can be directly adapted from that of Theorem 2.3, in particular
noticing that |Vk(s)− Vk(s

′)| ≤
∫

A |Ts(ds̄|s)− Ts(ds̄|s′)| ≤ h(i) ‖s− s′‖L (A). 2

Theorem 2.6 Under Assumption 2.3 the invariance probability ps0(A) for the model S,
initialized at s0 ∈ A, satisfies:

|ps0(A) − pz0(Ap)| ≤ max{γiδi|i ∈ Nm}, (2.6)
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where pz0(Ap) is the invariance probability for the MC P initialized at the discrete state
z0 = ξ(s0) ∈ Ap, the constants γi = NKi, as per Theorem 2.5, and where δi is the
diameter of the set Ai ⊂ A: δi = max{‖s− s′‖ |s, s′ ∈ Ai}.

Proof: The proof can be directly adapted from that of Theorem 2.4. 2

Variable rescaling and direct computation

We are interested in the application of the abstraction bounds on models with
kernels that present ill-conditioned dynamics, that is dynamics operating on mul-
tiple spatial scales or characterized by both slow and fast variables. This goal will
be further clarified in the light of the algorithmic procedures discussed in Sec-
tion 2.5. We start by investigating whether a rescaling of the dynamics affects
the abstracted Markov Chain and the associated computation of the local error,
according to Assumption 2.2 (as needed the results can be easily tailored to the
other two presented assumptions). Let us consider a stochastic kernel endowed
with a density function ts(s̄|s), and let us transform the state space by applying a
linear map s = Pr, where P is an invertible matrix.1

A generic set Ai ∈ B(S) is mapped into Ãi = {r ∈ S : s = Pr, s ∈ Ai}, which

is such that L (Ãi) = | det(P−1)|L (Ai). Furthermore, the new density function
tr(r̄|r) is related to the original one ts(s̄|s) by the equality

tr(r̄|r) = |J(r)| ts (P r̄|Pr) , (2.7)

where |J(r)| denotes absolute value of the determinant of the Jacobian

J(r) =

∣
∣
∣
∣

∂(s1, . . . , sn)

∂(r1, . . . , rn)

∣
∣
∣
∣
= det









∂s1
∂r1

· · · ∂s1
∂rn

...
. . .

...
∂sn
∂r1

· · · ∂sn
∂rn









= det(P ).

Suppose that the representative points zi, i ∈ Nm, of the abstracted Markov Chain
are also mapped to points vi : zi = Pvi, which leads to the entries of a new
transition probability matrix Tp specified, for any j ∈ Nm, by

Tp(vi,Ξ(vj)) =

∫

Ãj

tr(r̄|vi)dr̄ =
∫

Ãj

|det(P )| ts (P r̄|Pvi) dr̄

=

∫

Aj

ts(s̄|zi)ds̄ = Ts(zi,Ξ(zj)).

This equality shows that the Markov Chains obtained from the original and from
the rescaled Markov processes are equivalent.

1We leave to the reader the extension to an affine transformation, namely s = Pr + Q, where Q is
properly sized. It is easy to verify that the properties discussed below are shift invariant, and to adapt
them to the affine case accordingly.
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With focus on Assumption 2.2, we compute the local Lipschitz constants of the
new conditional distribution. Notice that the Lipschitz constant of a function is
not uniquely defined, since any finite upper bound is also a legitimate Lipschitz
constant. As a result, the abstraction error depends on the method employed
to compute local Lipschitz constants. A common method for computation of the
Lipschitz constant is maximization of the Euclidean norm of the function gradient.
Recall from Assumption 2.2 that |ts(s̄|s) − ts(s̄|s′)| ≤ h(i, j)‖s − s′‖, and assume
that the following method is used to compute h(i, j):2

h(i, j) = max
s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)
∥
∥
∥
∥
.

Then, in the new coordinates, we have that |tr(r̄|r) − tr(r̄|r′)| ≤ h̃(i, j)‖r − r′‖,
with the following Lipschitz constant:

h̃(i, j) = max
r∈Ãi,r̄∈Ãj

∥
∥
∥
∥

∂tr
∂r

(r̄|r)
∥
∥
∥
∥
.

Let us relate these two Lipschitz constants using Equation (2.7) and applying the
chain rule in the computation of partial derivatives:

h̃(i, j) = max
r∈Ãi,r̄∈Ãj

∥
∥
∥
∥

∂tr
∂r

(r̄|r)
∥
∥
∥
∥
= |det(P )| max

r∈Ãi,r̄∈Ãj

∥
∥
∥
∥

∂

∂r
ts (P r̄|Pr)

∥
∥
∥
∥

= |det(P )| max
r∈Ãi,r̄∈Ãj

∥
∥
∥
∥

∂ts
∂s

(P r̄|Pr)P
∥
∥
∥
∥
= |det(P )| max

s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)P
∥
∥
∥
∥
.

Then h̃ differs from h over two terms:

• The constant term |det(P )|. This constant has no effect on the computa-

tion of the abstraction error (cf. terms Ki in Theorem 2.4), since L (Ãj) =
| det(P−1)|L (Aj). Without loss of generality we can then restrict the atten-
tion to matrices with determinant that is equal to one.

• The matrix P within the norm. It provides a weighted sum of the partial
derivatives. We can exploit this matrix in order to balance the partial deriva-
tives over different directions. In particular, this scaling matrix can be useful
in the presence of ill-conditioned dynamics.

With the above discussion we have argued that the Lipschitz constant depends on
the coordinates where the distribution function is defined. Since we are interested
in the value of the Lipschitz constant as part of the approximation error formula
(as per Theorem 2.4), rescaling provides a degree of freedom in the error computa-
tion. This is discussed in the following theorem, which emphasizes improvements
of the approximation error bounds, again focusing on Assumption 2.2.

2In the following, we assume that all the optimization problems have been computed over the
closure of the corresponding optimization domain. However for the sake of notation simplification,
we simply refer to the optimization domains as they are given.
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Theorem 2.7 Consider the conditional distribution ts of S, any set A ∈ B(S), a parti-
tion ∪m

i=1Ai of A, and a properly-sized, square invertible matrix P . Then for all points
s, s′ ∈ Ai, s̄ ∈ Aj , it holds that

max
s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)
∥
∥
∥
∥

max
s,s′∈Ai

‖s− s′‖ ≥ (2.8)

≥ min
P

(

max
s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)P
∥
∥
∥
∥

max
s,s′∈Ai

∥
∥P−1(s− s′)

∥
∥

)

(2.9)

≥ max
s̄∈Aj

max
s,s′,ζ∈Ai

∣
∣
∣
∣

∂ts
∂s

(s̄|ζ)(s − s′)

∣
∣
∣
∣

(2.10)

≥ |ts(s̄|s)− ts(s̄|s′)|. (2.11)

Proof: The inequality (2.8)≥(2.11) is employed in the bound discussed in Theo-
rem 2.4, and is based on the maximum norm of the partial derivatives. The ex-
pression in (2.9)≥(2.11) is based on the idea of rescaling the state space as follows:

transform the inequality |tr(r̄|r)− tr(r̄|r′)| ≤ h̃(i, j)‖r − r′‖ into

|det(P )| |ts (P r̄|Pr)− ts (P r̄|Pr′) | ≤ h̃(i, j)‖r − r′‖,

which leads to

|ts (s̄|s)− ts (s̄|s′) | ≤
h̃(i, j)

|det(P )| ‖r − r′‖ = max
s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)P
∥
∥
∥
∥
‖P−1(s− s′)‖.

Selecting the matrix P to be equal to the identity matrix leads to the inequality
(2.8)≥(2.9). The mean value theorem for scalar fields implies the last inequality,
namely (2.10)≥(2.11). Let us finally relate (2.9) to (2.10) by using the Cauchy-
Schwartz inequality:

min
P

(

max
s∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|s)P
∥
∥
∥
∥

max
s,s′∈Ai

∥
∥P−1(s− s′)

∥
∥

)

=

= min
P

(

max
s,s′,ζ∈Ai,s̄∈Aj

∥
∥
∥
∥

∂ts
∂s

(s̄|ζ)P
∥
∥
∥
∥

∥
∥P−1(s− s′)

∥
∥

)

≥ max
s,s′,ζ∈Ai,s̄∈Aj

(

min
P

∥
∥
∥
∥

∂ts
∂s

(s̄|ζ)P
∥
∥
∥
∥

∥
∥P−1(s− s′)

∥
∥

)

≥ max
s,s′,ζ∈Ai,s̄∈Aj

(

min
P

∣
∣
∣
∣

∂ts
∂s

(s̄|ζ)PP−1(s− s′)

∣
∣
∣
∣

)

= max
s,s′,ζ∈Ai,s̄∈Aj

∣
∣
∣
∣

∂ts
∂s

(s̄|ζ)(s − s′)

∣
∣
∣
∣
.

This concludes the proof. 2

The above theorem does not pose any restriction on the choice of the invertible
matrix P . Notice that the bound in (2.9) is invariant under constant multiplica-
tions of matrix P : we can then reduce the optimization domain to the set of square
matrices with | det(P )| = 1. As an alternative to the above bounds, which hinge
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on the computation of quantities related to the Lipschitz constant, we put forward
the next result.

Corollary 2.1 Consider the conditional distribution ts of S, any set A ∈ B(S), and
a partition ∪m

i=1Ai of A. The continuous conditional distribution ts(s̄|s) satisfies the
inequality

|ts(s̄|s)−ts(s̄|s′)| ≤ max
s̄∈Aj

[

max
s∈Ai

ts(s̄|s)− min
s∈Ai

ts(s̄|s)
]

∀s, s′ ∈ Ai, ∀s̄ ∈ Aj . (2.12)

Proof: The distribution is assumed to be continuous over the closure of Ai, hence
it admits finite maximum and minimum, which leads to the following:

max
s,s′∈Ai,s̄∈Aj

|ts(s̄|s)− ts(s̄|s′)| = max
s̄∈Aj

[

max
s,s′∈Ai

|ts(s̄|s)− ts(s̄|s′)|
]

= max
s̄∈Aj

[

max
s∈Ai

ts(s̄|s)− min
s∈Ai

ts(s̄|s)
]

.

2

Notice that the quantity in (2.12) provides the optimal (lowest) upper bound over
(2.8)-(2.10), since (2.12) represents a particular instantiation of (2.11) and we have
shown that (2.11)≤(2.10).

Owing to the emphasis of this chapter on numerics, let us focus on the overhead
associated to the computation of the presented bounds. Assume that we are given
a Cartesian partition of the safe set A, which will be the underlying assumption
for the Algorithms developed in Section 2.5. This enables an analytic expression
of the distance between points in (2.8)-(2.10). Therefore the upper bounds (2.8)
and (2.10) are clearly related to the same computational cost (maximization over
the variables appearing in the partial derivatives). With regards to the bound
based on (2.9), the cost is also the same if a specific matrix P is selected – on the
contrary, the optimization over this matrix increases the computational overhead.
In general, matrix P in (2.9) can be treated either as an optimization variable or,
as discussed, as a transformation matrix for improving the effect of widely sep-
arated dynamics. The additional bound in (2.12), which does not depend on the
computation of the Lipschitz constant, requires an optimization over three vari-
ables and as such it is computationally heavier than (2.8) and (2.10); however it
can be matched to their complexity – at the expense of loss of tightness – by the
following simplification:

max
s̄∈Aj

[

max
s∈Ai

ts(s̄|s)− min
s∈Ai

ts(s̄|s)
]

≤ max
s∈Ai,s̄∈Aj

ts(s̄|s)− min
s∈Ai,s̄∈Aj

ts(s̄|s). (2.13)

Finally notice that, while the quantities defined in (2.8)-(2.10) are proportional to
the size of the partition sets, that in (2.12) is not. In the following, either of the
bounds (2.8)-(2.10) will be used to construct an adaptive partition, thereafter em-
ploying the improved bound in (2.12) as an a-posteriori analysis of the abstraction
error.
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Let us summarize the results in Theorem 2.7 and Corollary 2.1: we have pro-
vided four different methods for computing a local upper bound, call it k(i, j), as
|ts(s̄|s) − ts(s̄|s′)| ≤ k(i, j), for any s, s′ ∈ Ai, s̄ ∈ Aj , i, j ∈ Nm. The upper bound
k(i, j), in whatever form (2.8)-(2.10) or (2.12), can be directly used to quantify the
abstraction errors in Theorems 2.3 and 2.4 as:

E = max
i∈Nm







m∑

j=1

Nk(i, j)L (Aj)






. (2.14)

Notice the difference between the bound k(i, j) and the quantity h(i, j) (Lipschitz
constant), as used in Theorems 2.3 and 2.4. Similar to h(i, j), which can be relaxed
to h(i) as discussed in Assumption 2.3, the formulas for k(i, j) can also be relaxed:
for instance, the inequality (2.11)≤(2.10) would become

|ts(s̄|s)− ts(s̄|s′)| ≤ max
s̄∈A

max
s,s′,ζ∈Ai

∣
∣
∣
∣

∂ts
∂s

(s̄|ζ)(s− s′)

∣
∣
∣
∣
.

A similar adaptation can be applied over global bounds based on Assumption 2.1.

Let us remark that the Assumptions 2.2,2.3 based on local Lipschitz continuity not
only yield error bounds that are tighter than their global counterpart, but are also
practically less conservative. Discontinuous density functions are in fact not glob-
ally Lipschitz continuous and thus do not satisfy Assumption 2.1, however they
can satisfy Assumptions 2.2,2.3 if the discontinuity points lie on the boundaries
of the partition sets: this requirement can then be satisfied by a proper selection
of these sets. While we do not further focus on discontinuous kernels in the rest
of the manuscript, this discussion hints at the application of the abstraction pro-
cedure to a wider range of models, for instance models endowed with kernels
derived from data. Of course this comes at the expense of a more elaborated (and
likely slower) partitioning procedure. Along these lines, the Lipschitz continuity
assumptions over the densities can be generalized by looking at Lipschitz conti-
nuity over the kernels instead: more precisely, in the case of Assumption 2.3 we
would obtain

∫

A
|ts(s̄|s)− ts(s̄|s′)|ds̄ ≤ H(i), ∀s, s′ ∈ Ai, i ∈ Nm. (2.15)

The global error becomes then E = max {NH(i), i ∈ Nm}. This assumption is
practically less conservative since it allows dealing with discontinuous condi-
tional density functions, regardless of the chosen partitioning procedure. In con-
trast to (2.14), the error bound based on (2.15) does not explicitly depend on the
Lebesgue measure of the partition sets, and then provides a tighter upper bound
for the error. On the other hand, the computation of the parametersH(i) in (2.15),
requires an increased effort: the maximization needs to be performed over two
variables (s, s′) and each function evaluation requires a numerical integration. As
we shall see in the experiments of Section 2.6.2, the numerical integration makes
the computation much more time consuming than the other methods developed
above. In conclusion, the bound in (2.15) provides tighter error bound, can lead
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to memory savings, but also to more time consuming algorithms.

2.4 Application to Stochastic Hybrid Systems

In this section we tailor the presented results on error bounds for the abstraction
around models endowed with a particular state space that is “hybrid” in nature
[4]. Stochastic Hybrid Systems are Markov processes defined over a hybrid state
space S made up of a finite, disjoint union of continuous domains over a finite,
discrete set of locations (or modes) Q = {q1, q2, . . . , qm}, namely

S = ∪q∈Q{q} × R
n(q).

The continuous domains have a dimension n(q) that is mode dependent and char-
acterized by a bounded function n : Q → N. The conditional stochastic kernel
Ts : B(S)×S → [0, 1] on S is fully characterized by three kernels Tq, Tx, Tr, dealing
respectively with the discrete evolution over locations, the continuous evolution
in the domain of a given location, and the continuous reset between domains of
different locations.

Given a hybrid point s = (q, x) ∈ S and a Borel measurable set A = ∪q∈Q{q} ×
Aq,A ∈ B(S), the stochastic kernel Ts is further specified as follows [4]:

Ts({q̄} × Aq̄|(q, x)) = Tq(q̄|(q, x)) ×
{

Tx(Aq̄|(q, x)), if q̄ = q,

Tr(Aq̄|(q, x), q̄), if q̄ 6= q.
(2.16)

Here Ts is made up of three distinct conditional kernels. Tq : Q × S → [0, 1]
assigns to each s ∈ S a discrete probability distribution Tq(·|s) over Q. Based on
a sample of Tq, if the selected location q̄ coincides with the current mode q, then
Tx : B(Rn(·)) × S → [0, 1] assigns to each s ∈ S a probability measure Tx(·|s) over
the continuous domain associated with q ∈ Q. On the other hand, if q̄ 6= q, then
Tr : B(Rn(·)) × S × Q → [0, 1] assigns to each s ∈ S and q̄ ∈ Q a probability
measure Tr(·|s, q̄) over the continuous domain associated with q̄ ∈ Q.

We shall denote such a discrete-time stochastic hybrid model S = (Q, n, Tq, Tx, Tr),
and refer the reader to [4] for technical details on its topological and measurability
properties and for an algorithmic definition of its execution. Section 2.6.2 devel-
ops a case study based on a SHS model.

2.4.1 Abstraction and Error Computation

The abstraction of a SHS as a MC follows the same lines as in Section 2.3.1. Con-
sider the hybrid safe set A ∈ B(S),A = ∪q∈Q{q} × Aq, with Aq ∈ B(Rn(q)).
For all q ∈ Q, select a finite (mq-dimensional) partition of the local set Aq as
Aq = ∪mq

i=1Aq,i (Aq,i are non-overlapping). For each Aq,i, select a single repre-
sentative point (q, zq,i) ∈ Aq,i, and redefine Ap = {(q, zq,i)|i ∈ Nmq , q ∈ Q}. Fo-
cusing on bounds based on the Lipschitz constant of densities, the following is an
extension of Assumption 2.2 to the SHS framework.
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Assumption 2.4 Assume that the kernels Tx, Tr admit densities tx, tr respectively, and
that the following continuity assumptions are valid:

|Tq(q̄|(q, x)) − Tq(q̄|(q, x′))| ≤ hq(q, q̄, i) ‖x− x′‖ ∀x, x′ ∈ Aq,i

|tx(x̄|(q, x)) − tx(x̄|(q, x′))| ≤ hx(q, i, j) ‖x− x′‖ ∀x̄ ∈ Aq,j , x, x
′ ∈ Aq,i

|tr(x̄|(q, x), q̄)− tr(x̄|(q, x′), q̄)| ≤ hr(q, q̄, i, k) ‖x− x′‖ ∀x̄ ∈ Aq̄,k, x, x
′ ∈ Aq,i, q̄ 6= q,

where q, q̄ ∈ Q; i, j ∈ Nmq ; k ∈ Nmq̄ ; and hq(·), hx(·), hr(·) are finite positive constants.

Assumption 2.4 is the local Lipschitz continuity of the conditional density func-
tions Tq, tx, tr respect to the current state. This assumption can as well be applied
to SHS models with piecewise continuous density functions by proper selection
of partition sets (cf. the TCL model of Chapter 6).

Let us consider a SHS model, a (hybrid) invariant set A ∈ B(S), a finite time
horizon ZN+1, a point s0 ∈ S, and an abstraction procedure over S. The error
between the value pz0(Ap) for the MC from ps0(A) for the SHS can be quantified
as follows.

Theorem 2.8 Assume that Assumption 2.4 holds. Then the invariance probability ps0(A)
for the SHS S, initialized at s0 ∈ A, satisfies:

|ps0(A) − pz0(Ap)| ≤ max{γq,iδq,i|i ∈ Nmq , q ∈ Q}, (2.17)

where pz0(Ap) is the invariance probability for the MC P, initialized at the discrete state
z0 = ξ(s0) ∈ Ap, where δq,i is the diameter of the set Aq,i ⊂ Aq , namely

δq,i = max{‖x− x′‖ |x, x′ ∈ Aq,i},

and the constants γq,i are specified as γq,i = NKq,i, where

Kq,i =

mq∑

j=1

hx(q, i, j)L (Aq,j) +
∑

q̄∈Q

hq(q, q̄, i) +
∑

q̄ 6=q

mq̄∑

k=1

hr(q, q̄, i, k)L (Aq̄,k),

and where L (B) denotes the Lebesgue measure of any set B ∈ B(S).

Proof: Inequality (2.2) corresponds to the following:

|Vk(q, x) − Vk(q, x
′)| ≤

∫

Aq

|Tq(q|(q, x))tx(x̄|(q, x))− Tq(q|(q, x′))tx(x̄|(q, x′))| dx̄

+
∑

q̄ 6=q

∫

Aq̄

|Tq(q̄|(q, x))tr(x̄|(q, x), q̄)− Tq(q̄|(q, x′))tr(x̄|(q, x′), q̄)| dx̄.

As in Theorem 2.3, the local Lipschitz continuity of the value functions is estab-
lished by Assumption 2.4: for all x, x′ ∈ Aq,i,

|Vk(q, x)− Vk(q, x
′)| ≤

∫

Aq

Tq(q|(q, x)) |tx(x̄|(q, x)) − tx(x̄|(q, x′))| dx̄
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+

∫

Aq

tx(x̄|(q, x′)) |Tq(q|(q, x)) − Tq(q|(q, x′))| dx̄

+
∑

q̄ 6=q

∫

Aq̄

Tq(q̄|(q, x)) |tr(x̄|(q, x), q̄)− tr(x̄|(q, x′), q̄)| dx̄

+
∑

q̄ 6=q

∫

Aq̄

tr(x̄|(q, x′), q̄) |Tq(q̄|(q, x))− Tq(q̄|(q, x′))| dx̄

≤
mq∑

j=1

hx(q, i, j)L (Aq,j) + hq(q, q, i)

+
∑

q̄ 6=q

mq̄∑

k=1

hr(q, q̄, i, k)L (Aq̄,k) +
∑

q̄ 6=q

hq(q, q̄, i) = Kq,i.

The rest of the proof follows the same lines of Theorem 2.4. 2

2.5 Algorithms for Abstraction

In the previous sections we considered arbitrary partitions of the state space and,
with focus on the problem of finite-time probabilistic invariance over a given set
A, we derived bounds between the exact value ps0(A) and the approximation
pz0(Ap), based respectively on the model S and on its MC abstraction P. In this
section we focus on a few alternative techniques for the generation of the abstrac-
tion P = (P , Tp) from S = (S, Ts). We explicitly exploit the knowledge of the
(local) error to adapt the abstraction to the underlying dynamics of S, as well
as to the invariance problem of interest. Since the approach can be extended to
more general specifications, expressed as formulas in a particular probabilistic
modal logic [3], the approach effectively allows for a formula-based abstraction of
stochastic models.

In order to maintain focus and keep the notation light, we present the procedures
in the case where no rescaling of the state space has been performed. The abstrac-
tion procedure consists of two main steps (see Algorithm 1):

1. grid generation, namely the partitioning of S that yields P ; and

2. marginalization of Ts, which leads to Tp.

We proceed with the analysis of these two successive items.

2.5.1 Grid Generation

Let us first focus on the state space partitioning, which involves the generation of
a grid. The grid can be either uniform and generated instantaneously [2], or be
variable and generated adaptively. More precisely, for the problem at hand the
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generation of a uniform grid leverages the explicit knowledge of the global error
of Theorem 2.2 and is thus instantaneous. On the other hand, the adaptive parti-
tioning requires the knowledge of errors that are local to the existing partition sets
(see Theorems 2.4 and 2.6) and proceeds via a progressive refinement of the grid.
We will thus sequentially perform adaptive gridding either under Assumption 2.2
or under Assumption 2.3 (which give errors that are less tight) over the existing
partition sets, whereas Assumption 2.1 will be associated to the generation of a
uniform gridding [2]. Comparing Assumption 2.2 against Assumption 2.3, we
will argue that the first ensures tighter error bounds (which leads to smaller cardi-
nality of the partition), but requires error updates for possibly all the cells during
each refinement step (whereas the second will perform just local updates) and is
thus computationally more complex.

Let us discuss a few details about the adaptive grid generation. Consider for the
sake of discussion an n-dimensional model. There are two main options over the
shape of the cells of a grid [65, 78]: n-dimensional simplices, or Cartesian hyper-
rectangles. The first option leads to the known Kuhn triangulation [78] and is
widely used in numerical solution of partial differential equations. The second
approach generates hyper-rectangular cells aligned with the main axes which, for
our problem at hand, appears to be advantageous. Cartesian cells in fact better ac-
commodate the subsequent step that involves the marginalization of probability
laws, which generates the transition probability matrix Ts. Marginalization over
general convex polygons (in particular simplices) is known to be a computation-
ally expensive problem [71].

With focus on the refinement step, consider a single Cartesian cell. We are again
presented with two options for its further partitioning: to replace the cell with 2n

smaller cells by splitting it along its centroid; or to replace the cell with 2 smaller
cells by partitioning along one axis. The second approach is also known as vari-
able resolution approach [65]. While the first approach decreases the error (which
depends on the cell diameter, see Theorems 2.4 and 2.6) faster than the second, it is
also associated with the generation of partitions with larger cardinality. Since we
aim at economizing over the memory usage, we opt for the second option. Based
on this choice, the convergence speed of the procedure is optimized by selecting
the longest axis for the partitioning. This leads to the following result.

Proposition 2.2 For an n-dimensional model, the convergence rate of the computed error
bound for a partitioning procedure based on a Cartesian grid that proceeds by splitting the

longest axis, is lower bounded by the factor
√

1− 3
4n .

The grid generation procedures are formally presented in Algorithm 2 for the uni-
form error, and in Algorithms 3 and 4 for the local ones. In the first case, the union
of the partitioning sets is supposed to include the space S. In the latter case, the
initial partition can be any, and in particular it can coincide with the state space S.
Furthermore, notice the differences in step 4:, which leads to conclude that Algo-
rithm 3 is geared towards an abstraction with the least number of states, whereas
Algorithm 4 aims at faster generation time. More precisely, note than when we
split a cell Ai along its main axis the related local error is reduced firstly because
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of the decrease in its diameter δi, and secondly due to the possible reduction in the
local Lipschitz constants h(i, j) (other local errors may also be decreased because
of the update of local Lipschitz constants). Hence, if we split a group of cells, as
suggested in Algorithm 4, we possibly obtain a larger decrease of the error bound.
The actual computation of the errors in the Algorithms can be performed based
on any of the bounds in Section 2.3.3.

Algorithm 2 Generation of the uniform grid

Require: model S = (S, Ts) under Assumption 2.1; error threshold ǫ
1: pick a partition diameter δ based on bound (2.3) in Theorem 2.2 and on the

threshold ǫ
2: perform partitioning of S with uniformly-packed hypercubes

Ensure: P , error E = ǫ

Algorithm 3 Generation of the adaptive grid 1

Require: model S = (S, Ts) under Assumption 2.2 over initial partition; error
threshold ǫ

1: set initial partition over the hybrid state space S
2: compute the error E according to (2.4) in Theorem 2.4
3: if E > ǫ then
4: refine the partition by splitting the single cell with maximum local error

along its main axis
5: go to step 2
6: end if

Ensure: P , error E ≤ ǫ

2.5.2 Marginalization

The generation of a grid and the choice of representative points for each of the
resulting partition sets (let us recall that the choice of representative points is ar-
bitrary), fully characterizes the state space P of the MC P. The second step in the
generation of the abstraction involves the computation of the transition probabil-
ity matrix Tp. This computation necessitates the marginalization of the stochastic
kernel Ts, evaluated at the representative points, over the partition sets. While
the complexity of the procedure highly depends on the shape of the kernels Ts,
we have attempted to alleviate it 1) by working with hyper-rectangular partitions,
2) by exploiting vectorial representations of the quantities of interest, and 3) by
leveraging as much as possible the sparsity of the manipulated matrices.

The sparsity of the generated transition probability matrix (number of its non-
zero entries) depends on the kernels underlying Ts, particularly on their variance
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Algorithm 4 Generation of the adaptive grid 2

Require: model S = (S, Ts) under Assumption 2.3 over initial partition; error
threshold ǫ

1: set initial partition over the hybrid state space S
2: compute the error E according to (2.6) in Theorem 2.6
3: if E > ǫ then
4: refine the partition by splitting all the cells with error greater than threshold

ǫ along the main axis
5: go to step 2
6: end if

Ensure: P , error E ≤ ǫ

terms. Intuitively, a higher variance relates to a less sparse matrix, since the re-
lated probability law is more “spread out”. More interestingly, there is a tradeoff
between the sparsity of the transition probability matrix and its size, as a function
of the variance terms in the underlying dynamics: indeed, both are increased by
small variance terms, which are related both to dynamics that are spatially “con-
centrated” (and thus sparser), as well as to higher error bounds via the Lipschitz
constants.

It is possible to use and to tune a tolerance threshold in the marginalization step,
below which the transition probabilities are approximated with zero terms. As a
last remark, notice that in the uniform partitioning case the marginalization pro-
cedure is greatly simplified, given the regular arrangement of the partition cells.

2.6 Experiments

This section develops a numerical computational benchmark to compare the pre-
sented algorithms for abstraction, in particular with focus on grid generation and
marginalization steps. Additionally, a case study selects a SHS model and reflects
on the choice of the error bounds and on the role of rescaling (cf. Section 2.3.3).

2.6.1 Computational Benchmark

Let us consider an n-dimensional linear, controlled stochastic difference equation

x(k + 1) = Ax(k) +Bu(k) + w(k), k ∈ N0,

where w(k), k ≥ 0, is the process noise, taken to be Gaussian i.i.d. with zero mean
and covariance W : w(k) ∼ N (0,W ). The initial condition x(0) is independent of
w(k), k ≥ 0, and is Gaussian with zero mean and covariance X : x(0) ∼ N (0, X).
The input u(k) ∈ R

m, k ≥ 0, is designed according to a state feedback law mini-
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mizing the following quadratic cost function of the state and of the input:

J = lim
N→∞

1

N
E

(
N−1∑

k=0

(
xT (k)Qx(k) + uT (k)Ru(k)

)

)

,

with properly-sized, positive (semi-)definite weighting matrices Q � 0 and R ≻
0. The optimal control law for this stochastic control problem (also known as
stochastic linear quadratic regulator) is given as a stationary linear state feed-
back u(k) = Kx(k), where K represents the steady-state feedback gain matrix

K = −
(
R+BTPsB

)−1
BTPsA, and Ps is the solution of the following matrix

equation:

Ps = Q+ATPsA−ATPsB
(
R+BTPsB

)−1
BTPsA.

The closed loop system can be represented as

x(k + 1) = (A+BK)x(k) + w(k), k ∈ N,

which is a stochastic difference equation evolving over Rn. Given any point x ∈
R

n at any time, the distribution at the next time can be characterized by a tran-
sition probability kernel Tx(·|x) ∼ N ((A + BK)x,W ). The computation of the
Lipschitz constant of this kernel can be adapted from [2] and involves the calcula-
tion of partial derivatives of the density.

With focus on the closed loop model, let us consider the probabilistic invariance
problem on a safe set defined as A = [−1, 1]n, namely on a hypercube pointed at
the origin, and over a time horizon ZN+1. For the cost function, we have selected
the weighting matrices Q = In, R = Im (henceforth, Il, l ∈ N, will denote the l-
dimensional identity matrix). The control dimension has been chosen to be m = 1
and the time horizon has been fixed to N = 10. The state and control matrices A
andB have been randomly generated for each experiment, andA has been further
scaled so that max{|λi(A)|, i ∈ Nn} = 1, where λi(A) denotes the i-th eigenvalue
of matrixA. The variance of the initial condition has been selected to beX = 10 In.

Grid Generation

Let us select a noise variance W = 0.5 In. Figure 2.1 compares the partition size
(i.e., the number of grid cells) generated by Algorithm 3 for the adaptive gridding,
and by Algorithm 2 for the uniform one, given an (upper bound on the) abstraction
error ǫ for all the methods. The horizontal axis represents the threshold ǫ. The
error is based on, respectively, Equation (2.4) in Theorem 2.4 and Equation (2.3) in
Theorem 2.2. The local Lipschitz constants are computed based on (2.8) in Theo-
rem 2.7. This batch of computations is performed for dimensions n = 2, 3, 4. As
expected, for the adaptive algorithm the number of generated cells is always less
than that for the uniform procedure. Furthermore, the number of cells becomes
larger for smaller threshold values ǫ.

Figure 2.1 also plots the time required to generate the grid according to Algorithm
3 for the adaptive partitioning. The horizontal axis represents again the threshold
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Figure 2.1: Numerical benchmark. For dimensions n = 2 (a), n = 3 (b), and n = 4
(c) and for different levels of the error threshold ǫ (horizontal axis),
the plots display partition size (number of cells) generated by adap-
tive (Algorithm 3, labeled A-Ps) vs. uniform gridding (Algorithm 2,
labeled U-Ps), as well as time required to generate the adaptive par-
titioning (Algorithm 3, labeled A-T). The results represent an average
over 30 independent runs.
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Figure 2.2: Numerical benchmark. Errors obtained selecting the same number of
cells (same partition size), for dimensions n = 2 (a), n = 3 (b), n = 4 (c),
for the adaptive gridding of Algorithm 3 (labeled A) vs. the uniform
gridding of Algorithm 2 (labeled U).
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Figure 2.3: Numerical benchmark. Partition size (number of cells), for dimensions
n = 3 (a), n = 4 (b), n = 5 (c), and n = 6 (d), generated by the adap-
tive gridding of Algorithm 3 (labeled A3) vs. the adaptive gridding of
Algorithm 4 (labeled A4), for different levels of error threshold ǫ.



34 Adaptive and Sequential Gridding Procedures

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

 

 

ǫ

T
im

e
[s

]

A3
A4

(a) n = 3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−2

10
−1

10
0

10
1

10
2

10
3

 

 

ǫ

T
im

e
[s

]

A3
A4

(b) n = 4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−2

10
−1

10
0

10
1

10
2

 

 

ǫ

T
im

e
[s

]

A3
A4

(c) n = 5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

 

 

ǫ

T
im

e
[s

]

A3
A4

(d) n = 6

Figure 2.4: Numerical benchmark. Computation time, for dimensions n = 3 (a),
n = 4 (b), n = 5 (c), and n = 6 (d), required to generate the adaptive
partitioning of Algorithm 3 (labeled A3) and the adaptive gridding of
Algorithm 4 (labeled A4), for different levels of error threshold ǫ. The
outcomes are obtained as the average over 30 independent runs.
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ǫ on the error. This batch of computations is performed for dimensions n = 2, 3, 4
and the results are averaged over 30 runs. The discontinuities discernible in the
plots are intrinsic to the implemented refinement algorithm for the adaptive par-
titioning. Notice that, as expected, the time is larger for smaller thresholds. Recall
that for the uniform gridding the grid generation is a one-shot procedure and, as
such, independent of the choice of ǫ.

Figure 2.2 compares the error obtained by generating the adaptive gridding with
Algorithm 3 (see Theorem 2.4) against that obtained by generating the uniform
gridding of Algorithm 2 (see Theorem 2.2), given a fixed number of cells for both
methods (these values are represented on the horizontal axis). The experiments
are again performed for dimensions n = 2, 3, 4. The local Lipschitz constants are
computed based on (2.8). It is easily observed that the error associated to the
uniform gridding approach is always higher than that associated to the adaptive
method. (Notice that, for the probabilistic invariance problem under study, an
error greater than one as obtained in the uniform case is not practically useful.)

Let us now select a noise variance W = In and benchmark the two adaptive
gridding approaches. Figure 2.3 compares the number of cells generated by the
adaptive gridding of Algorithm 3 vs. the adaptive gridding of Algorithm 4. This
batch of experiments is performed for dimensions n = 3, 4, 5, 6. Similarly, Figure
2.4 compares the run time required for generating the adaptive partitioning of
Algorithm 3 and the adaptive gridding of Algorithm 4. The outcomes of this
batch of experiments are averages over 30 runs. Figure 2.3 confirms that, since
the continuity bounds related to Assumption 2.3 are less tight, Algorithm 4 ends
up requiring a larger number of cells, given any threshold ǫ. However (cf. Figure
2.4), Algorithm 4 works faster than Algorithm 3 in the partition refinement step,
since it requires a local error update for the partitions with error greater than the
given threshold, whereas Algorithm 3 requires in the worst case a global update
of the error of each cell based on the largest obtained error. Thus, for smaller
accuracy threshold ǫ and larger dimensions (and large number of generated cells)
the method based on Algorithm 4 ends being the faster (Figure 2.4). Algorithm 3
can alternatively be made faster by substituting its refinement step (4:) with that
of Algorithm 4 (notice that this, however, will not mitigate the possible global
update of the error).

Marginalization

The time requirements for the marginalization procedure are recapitulated by the
data on Figure 2.5. These figures are are obtained by taking the average over 100
independent runs, and display the marginalization time in relative terms versus
the time required for the partitioning procedure, which has been discussed in the
previous section. More specifically, we have focused on the adaptive gridding ob-
tained according to Algorithm 3, and compared the time spent generating the grid
to that needed in performing the marginalization step. The data display that the
marginalization step requires more time, relative to the partitioning procedure,
as the error level ǫ decreases (that is, as the abstraction precision increases). This
trend is consistent regardless of the model size (n).
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Figure 2.5: Time spent on the gridding procedure (according to Algorithm 3) as a
percentage of the total time needed for grid generation and marginal-
ization. The figure presents the results for various dimensions (n =
2, 3, . . . , 6) as a function of threshold ǫ for the error. The required data
are obtained by running averages over 100 independent runs.

Parameter ka = kd kr γr kp γp
Value 0.001 0.0078 0.0039 bγr, b = 11 0.0007

Table 2.1: Parameters for the case study, taken from [19], and expressed in [s−1].

2.6.2 Case Study

This section applies the abstraction approach developed in this chapter to the
study of a probabilistic invariance problem over a template chemical reaction net-
work. We introduce a model for eukaryotic gene regulation. The stoichiometry
(set of chemical reactions) underlying the system is the following:

(1) D
ka−→ D⋆ D⋆ kd−→ D

(2) D⋆ kr−→M +D⋆ M
kp−→ P +M

(3) M
γr−→ ∅ P

γp−→ ∅
(2.18)

The reactants represent respectively the number of an inactive and active gene (D
and D⋆ respectively), of m-RNA (M ), and of a protein (P ). There are three kinds
of reactions: (1) conversion (between inactive and active state of the gene), (2)
catalytic production (transcription of m-RNA and translation into a protein), and
(3) degradation (of m-RNA and protein). The reaction and degradation rates (ap-
pearing above the arrows) are directly taken from [19] and summarized in Table
2.1.

The dynamics of chemically reacting environments can be described by the gen-
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eral Chemical Master Equation (CME) [40], which has seldom an analytical so-
lution and is usually quite hard to integrate. Alternatively, species dynamics in
time are studied via the Stochastic Simulation Algorithm (SSA) [39, 40], a com-
putational scheme that has recently attracted much research [8, 69]. Among the
various approaches employed to approximate the SSA and thus expedite its run-
ning time, the works in [41, 51] have investigated a technique based on the use
of second-order approximations, which assigns probabilistic dynamics (stochastic
differential equations) to species concentrations. We leverage this latter approach
below.

Global Stochastic Approximation

Let us introduce the state vector x = [D,D⋆,M, P ]
T

describing the concentration
of the reactants present in (2.18). Since the new variables are indeed concentra-
tions, they are non-negative reals, rather than natural numbers as in (2.18). We
can associate to this state continuous dynamics over time, which can be character-
ized by a stochastic differential equation of the form [41, 51]

dx = f(x)dt+ σ(x)dw.

Time is discretized with constant sampling interval ∆, according to a Euler-Maruyama,
first-order scheme [52], obtaining:

x(k + 1) = x(k) + f(x(k))∆ + σ(x(k))
√
∆w(k),

where f(x) = Ax and

A =







−ka kd 0 0
ka −kd 0 0
0 kr −γr 0
0 0 kp −γp






,

and

σ(x) =







√
kaD + kdD⋆ 0 0

−√
kaD + kdD⋆ 0 0

0
√
krD⋆ + γrM 0

0 0
√
kpM + γpP






.

The noise term is given by w(k) = [w1(k), w2(k), w3(k)]
T , where wi(k), i = 1, 2, 3

and k ∈ N0, are independent standard Gaussian random variables, which are also
independent of the initial condition of the process. The steady-state values for the
dynamics are directly computed as in [51]:

• Pss = 65 [nM ],

• Mss =
γp

kp
Pss = 1.0606 [nM ],

• Dss = D⋆
ss =

γr

kr
Mss =

γr

kr

γp

kp
Pss =

γp

bkr
Pss = 0.5303 [nM ].
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Notice that, given the parameters choice in Table 2.1, the steady-state concentra-
tions assume values that span different dimensions. This will later motivate the
use of state-space rescaling.

Since the dynamics of D and D⋆ are coupled, it is possible to eliminate either of
the variables – here we remove D. The equality ka = kd leads to the following
discrete-time probabilistic dynamical system:







x1(k + 1) = (1− 2kd∆)x1(k) + 2kd∆D
⋆
ss +

√
2kd∆D⋆

ssw1(k)

x2(k + 1) = kr∆x1(k) + (1− γr∆)x2(k) +
√

kr∆x1(k) + γr∆x2(k)w2(k)

x3(k + 1) = kp∆x2(k) + (1− γp∆)x3(k) +
√

kp∆x2(k) + γp∆x3(k)w3(k),

(2.19)
where we have denoted [x1, x2, x3]

T
= [D⋆,M, P ]

T
.

Based on the recursive expression in (2.19), the associated conditional probability
density function can be defined as:

tx(x̄|x) = tx(x̄1|x1)tx(x̄2|x1, x2)tx(x̄3|x2, x3), (2.20)

where

tx(x̄1|x1) ∼ N (µ1(x1), σ
2
1),

tx(x̄2|x1, x2) ∼ N (µ2(x1, x2), σ
2
2(x1, x2)),

tx(x̄3|x2, x3) ∼ N (µ3(x2, x3), σ
2
3(x2, x3)),

and

µ1(x1) = (1− 2kd∆)x1 + 2kd∆D
⋆
ss, σ2

1 = 2kd∆D
⋆
ss,

µ2(x1, x2) = kr∆x1 + (1− γr∆)x2, σ2
2(x1, x2) = kr∆x1 + γr∆x2,

µ3(x2, x3) = kp∆x2 + (1− γp∆)x3, σ2
3(x2, x3) = kp∆x2 + γp∆x3.

It can be observed that, due to differences in variables and parameters ranges, the
domain of the density function in (2.20) is compact along the first two variables,
while being stretched along the third one. Such an asymmetric shape of the prob-
ability density calls for the use of a rescaling by coordinate transformation. The
quantities in (2.19)-(2.20) characterize the model of reference for the remainder of
the case study.

Probabilistic Invariance for Global Stochastic Approximation: In order to in-
troduce a probabilistic invariance problem for the model of interest, we select a
hyper-box around the above steady state values for the variables x1, x2, x3. We
plan to assess the probabilistic invariance of the process therein, over a finite time
horizon. The hyper-box is parameterized by the quantities r1, r2, and r3:

∣
∣
∣
∣

x1 −D⋆
ss

D⋆
ss

∣
∣
∣
∣
≤ r1,

∣
∣
∣
∣

x2 −Mss

Mss

∣
∣
∣
∣
≤ r2,

∣
∣
∣
∣

x3 − Pss

Pss

∣
∣
∣
∣
≤ r3.
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This box is set to show 10% variations around the steady state values, i.e. ri =
0.1, i = 1, 2, 3.

Let us define the abstraction errors computed based on global and local version
of (2.14) under Assumptions 2.1 and 2.2, respectively. More precisely, let Ei, i =
1, 2, 3, represent the abstraction error using upper bounds (2.8)-(2.10), respectively.
Furthermore, let us consider the upper bounds E4, E5 obtained via (2.12), (2.15).
In order to provide a comparison for these different bounds, two sets of experi-
ments have been set up. Both employ uniform Cartesian gridding based on hyper-
rectangular partition sets. In the first set of experiments the edges of the partition
sets have been selected to be proportional to the length of the edges of the safe set,
whereas in the second set of experiments the partition sets have been chosen to be
close to cubic cells.

The upper bounds in (2.8)-(2.10) are tailored to Cartesian partitions as follows.
Suppose the uniform grid is made up of partition sets characterized by a vector δ
containing its edges. The grid size δ equals to the Euclidean norm of δ. Assuming
that P is a diagonal matrix, whose elements are proportional to the entries of δ,
the upper bounds expressed in (2.8)-(2.10) are simplified as follows for the local
form (Assumption 2.2):







k1(i, j) = δmaxs∈Ai,s̄∈Aj

∥
∥∂ts

∂s (s̄|s)
∥
∥ ,

k2(i, j) =
∥
∥P−1δ

∥
∥maxs∈Ai,s̄∈Aj

∥
∥∂ts

∂s (s̄|s)P
∥
∥ ,

k3(i, j) = maxs∈Ai,s̄∈Aj

∣
∣∂ts
∂s (s̄|s)

∣
∣ δ;

(2.21)

and as follows for the global form (Assumption 2.1):







k1 = δmaxs,s̄∈A
∥
∥ ∂ts

∂s (s̄|s)
∥
∥ ,

k2 =
∥
∥P−1δ

∥
∥maxs,s̄∈A

∥
∥∂ts

∂s (s̄|s)P
∥
∥ ,

k3 = maxs,s̄∈A
∣
∣∂ts
∂s (s̄|s)

∣
∣ δ.

(2.22)

In order to elucidate the outcomes in Tables 2.2 and following, let us discuss the
computational overhead related to the different bounds. For the bounds (2.8)-
(2.10), the number of optimizations in the local form of (2.21) and in the global
form of (2.22) are m2 and one, respectively. The computation of abstraction error
(2.12) in local form can be simplified by using (2.13). Both (2.12) and (2.13) have
the same complexity order as the first three upper bounds. Finally, the compu-
tation of E5 based on the local and global form of (2.15) requires respectively m
optimizations and a single one, however it also needs an integration step: this will
lead to higher computational times compared to the errors E1 − E4.

The time horizon N has been set to be equal to 10 for both experiments. The first
set of runs (edges of the partition sets are proportional to the length of the edges
of the safe set) is performed with the following specifications:

• length of edges of the (three dimensional) safe set: (0.1061, 0.2121, 13);
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Error bound E1 E2 E3 E4 E5

Inequality used for bound (2.8) (2.9) (2.10) (2.12) (2.15)
Global form (Assumption 2.1) 7095.1 1376.5 799.3 230.9 13.6
Local form (Assumption 2.2) 1577.3 283.4 167.3 48.6 13.5
Number of optimizations (local form) 4096 4096 4096 8192 64
Computation time 3 (m) 3 (m) 3 (m) 6 (m) 17.9 (h)

Table 2.2: Global stochastic approximation: error comparison for the first set of
experiments, using a uniform grid with partition sets that are propor-
tional to the length of the edges of the safe set. The computational over-
head for the bounds in local form is also reported.

• length of edges of the partition cells: δ = (0.0265, 0.0530, 3.25);

• resulting number of bins per dimension: (4, 4, 4);

• resulting total number of cells: m = 43 = 64;

• resulting partitions diameter: δ = 3.2505.

Table 2.2 summarizes abstraction errors for this set of parameters. The number
of optimization steps, as well as the optimization time, has been reported as a
measure of the complexity in the error computation.

The second set of runs (partition sets are close to cubic cells) is performed with the
following parameters:

• length of edges of the (three dimensional) safe set: (0.1061, 0.2121, 13);

• length of edges of the partition cells: δ = (0.1061, 0.2101, 0.3171);

• resulting number of bins per dimension: (1, 1, 41);

• resulting total number of cells: m = 41;

• resulting partitions size: δ = 0.3949.

Table 2.3 summarizes abstraction errors for this second set of parameters. Note
that in this second case we have used a lower number of cells, and at the same
time obtained lower abstraction errors and shorter run times. This is due to the
underlying ill-conditioned dynamics and to a safe set that is stretched along one
axis. This outcome shows the importance of rescaling and of the selection of cubic
partition cells for the uniform grid.

For both batches of experiments we have considered relatively coarse partitions in
order to clearly highlight differences in the computed error bounds. As such, the
errors are not practically useful since, being larger than 1, they cannot be used in
the approximation of probabilistic quantities. Of course, since they monotonically
converge to zero as the partition size δ goes to zero, the error bounds can be sim-
ply reduced by considering finer partitions, at the expense of longer optimization
times.
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Error bound E1 E2 E3 E4 E5

Global form (Assumption 2.1) 864.3 402 300 219.2 13.6
Local form (Assumption 2.2) 90.3 42.4 33.5 24.1 7.8
Number of optimizations (local form) 1681 1681 1681 3362 41
Computation time 1.5 (m) 1.5 (m) 1.5 (m) 3 (m) 16.7 (h)

Table 2.3: Global stochastic approximation: error comparison for the second set
of experiments, using a uniform grid with partition sets that are chosen
to be cubic. The computational overhead for the bounds in local form
is also reported.

We now test the adaptive partitioning approach under rescaling. The direct im-
plementation of Algorithms 3 and 4 leads to some computational issues: if the
algorithms are initialized over a uniform grid as in the first setup above, they
proceed splitting the partitions along the longest edge in order to try obtaining
cubic-shaped cells. On the other hand, if initialization of the algorithm is set over
cubic partition cells, the system dynamics along the shortest direction tend to be
lost. To cope these difficulties we have performed a rescaling of the state space, so
that all the dynamics evolve in a comparable range. More precisely, consider the
affine map x = Py +Q with matrices

P =





r1 0 0
0 r2 0
0 0 r3



 , Q =





D⋆
ss

Mss

Pss



 ,

which projects the safe set A to the cube [−1, 1]3. The dynamics in the new state
space become:







y1(k + 1) = (1− 2kd∆)y1(k) +
√
∆

r1

√
2kdD⋆

ssw1(k)

y2(k + 1) = r1
r2
γr∆y1(k) + (1− γr∆)y2(k) +

√
∆

r2

√
krr1y1 + γrr2y2 + 2γrMssw2(k)

y3(k + 1) = r2
r3
γp∆y2(k) + (1− γp∆)y3(k) +

√
∆

r3

√
kpr2y2 + γpr3y3 + 2γpPssw3(k).

Over the new coordinates we have implemented Algorithm 3, which hinges on
Assumption 2.2. As an outcome of this Algorithm, Figures 2.6(a), 2.6(b), and 2.6(c)
present the three level sets px0

(A) = 0.0015, px0
(A) = 0.0013, and px0

(A) = 0.0011
respectively, for any x0 ∈ A (these figures are in accord with the uniform results
obtained above). The obtained number of cells is 15236 for an error E1 = 7.68
(based on (2.8)), which is as expected lower than that in Tables 2.2 and 2.3. An
a-posteriori computation of the error bound based on (2.12) results in the quantity
E4 = 1.94.

Stochastic Hybrid Approximation

We next present a simplification of the probabilistic dynamics in (2.19)-(2.20) as
a stochastic hybrid model, as defined in Section 2.4. Recall that the conditional
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Figure 2.6: Level set px0
(A) = 0.0015, px0

(A) = 0.0013, and px0
(A) = 0.0011 for

original (non-hybrid) model, performed after rescaling under affine
mapping, and with an adaptive approach based on Algorithm 3.
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density of x1 is Gaussian as

tx(x̄1|x1) ∼ N (µ1(x1), σ
2
1),

where the mean is an affine function exclusively of the conditional variable x1,
and the variance is a constant, namely:

µ1(x1) = (1− 2kd∆)x1 + 2kd∆D
⋆
ss, σ2

1 = 2kd∆D
⋆
ss.

As such, the conditional density tx is independent of x2, x3. This suggests per-
forming a simplification of the dynamics over the sole variable x1. Let us intro-
duce two sets that partition R, the domain of x1:

q1 = {x1 ≤ D⋆
ss}, q2 = {x1 > D⋆

ss}.

The first set q1 indicates that the concentration of active genes is lower than its
steady-state (we call this the “inactive” mode), whereas the second set q2 refers to
a concentration of active genes that is higher than its steady-state (this is named
the “active” mode). These two occurrences make up the discrete modes as Q =
{q1, q2}. Let us additionally select two generic points, one for each of the two
modes l1 ∈ q1, l2 ∈ q2. We associate to both modes the continuous domain R

2, as
needed for the dynamics of the two variables x2, x3.

We characterize the discrete probability matrix for the transitions between modes,
namely Tq(qj |(qi, x)), x = (x2, x3), as follows:

Tq(q1|(qi, x)) = P{x̄1 ≤ D⋆
ss|qi} = φσi(D

⋆
ss − µi(li)), (2.23)

where φσ(α) =
1

σ
√
2π

exp
(

− α2

2σ2

)

is the Gaussian density function with zero mean

and standard deviation σ. Then we explicitly obtain:

Tq(q1|(q1, x)) = φσ1
(D⋆

ss − µ1(l1)) = φσ1
((1 − 2kd∆)(D⋆

ss − l1))
.
= p1,

Tq(q1|(q2, x)) = φσ2
(D⋆

ss − µ2(l2)) = φσ2
((1 − 2kd∆)(D⋆

ss − l2))
.
= p2,

Tq(q2|(q1, x)) = P{x̄1 > D⋆
ss|q1} = 1− p1,

Tq(q2|(q2, x)) = P{x̄1 > D⋆
ss|q2} = 1− p2.

Notice that the probabilities in above equations (see in particular the second equal-
ity in (2.23)) depend on the arbitrary choice of the points li ∈ qi, i = 1, 2. We select
such points l1, l2 so that the variable x1 has the same conditional expectation be-
fore and after the introduction of the partition sets q1, q2. More precisely, with
reference to equations (2.19)-(2.20), given an x1 ∈ R, for any x̄1 ∈ R,

E{x̄1|x1} = µ(x1) = (1− 2kd∆)x1 + 2kd∆D
⋆
ss,

whereas for any q̄ ∈ Q, and given the selected li ∈ qi,

E{q̄|q1} = E{q̄|l1} = p1l1 + (1 − p1)l2,

E{q̄|q2} = E{q̄|l2} = p2l1 + (1 − p2)l2.
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This leads to the following two equations, which are nonlinear since p1, p2 are
nonlinear functions of l1, l2:

{

p1l1 + (1− p1)l2 = (1− 2kd∆)l1 + 2kd∆D
⋆
ss

p2l1 + (1− p2)l2 = (1− 2kd∆)l2 + 2kd∆D
⋆
ss.

Applying the following variable transformation:

{

ℓ1 = (1− 2kd∆)(D⋆
ss − l1)/σ

ℓ2 = (1− 2kd∆)(D⋆
ss − l2)/σ,

we obtain {

ℓ1φ1(ℓ1) + ℓ2(1 − φ1(ℓ1)) = (1− 2kd∆)ℓ1

ℓ1φ1(ℓ2) + ℓ2(1 − φ1(ℓ2)) = (1− 2kd∆)ℓ2.

This set of nonlinear equations has a trivial solution ℓ1 = ℓ2 = 0, which is not in-
teresting. Its second solution can be computed by the following recursive scheme:





ℓk+1
1

ℓk+1
2



 = (1 − 2kd∆)





φ1(ℓ
k
1) 1− φ1(ℓ

k
1)

φ1(ℓ
k
2) 1− φ1(ℓ

k
2)





−1 



ℓk1

ℓk2



 ,

which, for the above nominal values, leads to the quantities ℓ1 = 3.0902, ℓ2 =
−3.0902. These correspond to the points l1 = 0.4295, l2 = 0.6311, and finally to the
probabilities p1 = 0.9990, p2 = 0.0010. These values fully characterize the discrete
kernel Tq. Further, the continuous kernels Tx = Tr can be directly derived, as done
for (2.19)-(2.20), from the following system of stochastic difference equations:

{

x2(k + 1) = kr∆q(k) + (1− γr∆)x2(k) +
√

kr∆q(k) + γr∆x2(k)w2(k)

x3(k + 1) = kp∆x2(k) + (1− γp∆)x3(k) +
√
kp∆x2(k) + γp∆x3(k)w3(k).

(2.24)

Probabilistic Invariance for Stochastic Hybrid Approximation: We implement
a uniform gridding with partition cells that are proportional to the edges of the
safe set. Note that the safe set in the hybrid state space is made up of two iden-
tical sets Aq1 , Aq2 for modes q1, q2, respectively. As discussed before, both sets
coincide over R2 and are defined as rectangles spanning a 10% variation from the
steady state values of the variables x2, x3. The analysis run is performed with the
following parameters, defined for each of the two modes q1, q2:

• length of edges of the (two dimensional) safe set: (0.2121, 13);

• length of edges of the partition cells: δ = (0.0424, 2.60);

• resulting number of bins per dimension: (5, 5);

• resulting total number of cells: 2× 52 = 50;
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Error bound E1 E2 E3 E4 E5

Global form (Assumption 2.1) 3352 1420.1 1003.8 364.7 15.59
Local form (Assumption 2.2) 614.89 250.18 178.95 66.04 15.58
Computation time (sec.) 37 38 42 89 478

Table 2.4: Stochastic hybrid approximation: error comparison for the first set of
experiments, based on a uniform grid. The computational overhead for
the bounds in local form is also reported.

• resulting partition size δ = 2.6003.

Notice that the safe set and the partition sets are mode invariant. Let us denote
the safe set by A and its partition by ∪m

i=1Ai. Since the probability distribution Tq
does not depend on the state x, we have that kq(q, q̄, i) = 0. Furthermore, since
tr(x̄|(q, x), q̄) = tx(x̄|(q, x)), then

kr(q, q̄, i, j) = kx(q, i, j) ≥ |tx(x̄|(q, x)) − tx(x̄|(q, x′))|, ∀x, x′ ∈ Ai, x̄ ∈ Aj .

These observations simplify local error computations to:

Eq,i = 2N

m∑

j=1

kx(q, i, j)L (Aj), q ∈ {q1, q2}, i ∈ Nn.

The local form of the abstraction error is max{Eq,i|q ∈ {q1, q2}, i ∈ Nn}, while
its global form is E = 2NL (A)kx. The upper bound kx(q, i, j) is computable
as done for the non-hybrid case. The computation of E5 is simplified to E5 =
maxq,i 2NH(q, i) where

∫

A
|tx(x̄|(q, x)) − tx(x̄|(q, x′))|dx̄ ≤ H(q, i), ∀x, x′ ∈ Ai, q ∈ {q1, q2}.

Table 2.4 reports the abstraction error for the chosen set of parameters. For the
bounds in the global form, two maximization problems (one per mode) need to
be solved. The optimization time for the local error computations is also reported
in the table.

Again with the uniform discretization approach, let us increase number of bins
per dimension (from 5) to 30 and compute a more accurate approximation for the
safety problem. The resulting total number of cells is thus 2×302 = 1800, which is
dimensionally higher than the previous instance, as well as than the experiments
in the global case presented in Tables 2.2 and 2.3. This of course comes at a com-
putational cost (cf. with optimization time in Table 2.4). The output of the safety
invariance problem is presented in Figures 2.7(a) and 2.7(c).

As a second step, we have implemented Algorithm 3 to generate an adaptive grid.
The associated errors have been computed based on local Lipschitz constants of
the distribution, using the error quantification of Theorem 2.8. Notice that the
reset kernel does not depend on the next mode and coincides with tx, which
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Error bound E1 E2 E3 E4 E5

Global form (Assumption 2.1) 558.67 236.68 167.30 111.56 15.59
Local form (Assumption 2.2) 53.67 28.58 20.69 20.04 8.36
Computation time (hours) 5.84 6.42 8.93 15.98 16.73

Table 2.5: Stochastic hybrid approximation: error comparison for the second set
of experiments, which again use a uniform grid but with higher preci-
sion. The computational overhead for the bounds in local form is also
reported.

does not imply hr(q, q̄, i, k) = hx(q, i, k) in general. Consequently, the adaptive
grid is in general mode dependent. Figures 2.7(b) and 2.7(d) present the adaptive
grid together with the invariance probability for points over the state space of the
stochastic hybrid system. The grid has been generated for an error E1 (based on
(2.8)) equal to 14.47 and has resulted in a total of 3504 cells. The run time has
amounted to 87 seconds. An a-posteriori analysis of the adaptive grid, based on
(2.15), insures an improved abstraction error equal to E5 = 5.21.

2.7 Conclusions

In this chapter we have presented an abstraction procedure based on a partition-
ing of the state space, and discussed an adaptive gridding generation technique
exploiting a local formula-based error computation and a state-space rescaling.
By conforming to the underlying dynamics of the model, the method alleviates
the “curse of dimensionality” that is in general related to partitioning procedures.
While the focus of this chapter has been on the study of probabilistic safety over a
finite horizon, the technique can be employed in the formal abstraction and veri-
fication of stochastic models over more general probabilistic properties, by means
of model checkers.

In the next chapter we extend the results towards more general dynamics, i.e. par-
tially degenerate stochastic systems which do not satisfy continuity assumptions
proposed in this chapter. Chapter 5 presents extension of the current approach to
controlled Markov processes. In Chapter 7 we discuss the software tool FAUST2

which is developed based on the presented theoretical results of this chapter.
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Figure 2.7: Visualization of the quantity px0
(A) (probabilistic invariance), over the

grid points of the two discrete modes of the stochastic hybrid model.
On the left, outcomes obtained using uniform grids, whereas on the
right, outcomes obtained using adaptive grids.





3 CHAPTER

Probabilistic Invariance of
Partially-Degenerate Stochastic

Systems

T
his chapter is concerned with the computation of probabilistic in-
variance (safety) over a finite horizon for partially-degenerate

stochastic (that is, mixed deterministic-stochastic) processes evolving in
discrete time over a continuous state space. The models of interest consist
of two fully coupled dynamical parts: the first part is described by deter-
ministic maps (vector fields), whereas the second depends on probabilis-
tic dynamics that are characterized by stochastic kernels. In contrast with
a fully probabilistic approach (which is possible since the two dynamical
components are coupled), we show in this chapter that the probabilistic
invariance problem can be characterized – and thus computed – in two
sequential steps: the first is a simple deterministic reachability analysis,
which is then followed by a probabilistic invariance problem depending
on the outcome of the first step. This characterization leads to implemen-
tation advantages over a fully probabilistic approach and allows synthe-
sizing a computational algorithm with explicit error bounds.

3.1 Introduction

In this chapter we deal with models with explicit mixed deterministic-stochastic
dynamics, which naturally arise in a number of situations or application domains.
For instance, this feature is expected in models with variables that take values
within ranges that are dimensionally different.

Mixed deterministic-stochastic models are composed of two complementary sets
of variables, possibly coupled between each other. The first set of variables has

49
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associated dynamics that depend on deterministic maps, namely vector fields.
The complement set has dynamics characterized by a stochastic kernel.

A naïve approach to the probabilistic invariance problem for mixed deterministic-
stochastic models would merely tackle it as a safety verification instance over
degenerate systems (by degenerate systems we refer to probabilistic laws that
are concentrated deterministically, i.e. whose support consists of a single point).
This would not only be a computationally expensive solution, but also lead to
the inability to leverage computational techniques that apply exclusively to non-
degenerate systems, e.g. the techniques developed in the previous chapter.

This chapter originally shows that the probabilistic invariance problem can be
separated into two parts: a deterministic reachability analysis, and a probabilistic
invariance problem that depends on the outcome of the first. Deterministic reach-
ability analysis is a rather mature field of research with ample software tool sup-
port, whereas the second problem can harvest recent developments [4, 18, 54]. We
argue that this decomposition approach can lead to computational improvements
– for instance, whenever the first deterministic problem yields a “false” outcome
(i.e., no states are deterministically safe over the given time horizon), no further
probabilistic invariance calculation is necessary. This advantage of the proposed
approach also leads to an approximation algorithm to compute the quantity of
interest with explicit error bounds.

This chapter is structured as follows. Section 3.2 introduces the model class and
quickly reviews the invariance problem from previous chapter. Section 3.3 focuses
on the properties of the value functions that characterize probabilistic invariance.
Section 3.4 puts forward an approximation scheme for the computation of the de-
sired quantities based on the discretization of the state space, and explicitly char-
acterizes its error. Section 3.5 specializes the error to affine deterministic dynamics
with polytopic invariant sets. Section 3.6 applies the results to a case study from
Systems Biology.

3.2 Preliminaries

We consider discrete time Markov processes, described in the previous chapter
(Section 2.2.1), which are characterized by the state space S and stochastic ker-
nel Ts. The class of Markov processes is equivalent to the class of discrete-time
dynamical systems (Kallenberg [48]) characterized by the dynamical equation

s(k + 1) = f(s(k), w(k)), k ∈ N0, (3.1)

where s(k) is the state of the system at time k, f is any vector field, and {w(k), k ∈
N0} are independent identically-distributed (i.i.d.) random vectors with known
distribution. In other words, there is a representation (3.1) for any stochastic ker-
nel Ts and vice versa. In this chapter we study those processes driven by the
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following mixed deterministic-stochastic dynamics:

{
s1(k + 1) = f1(s1(k), s2(k), w(k))
s2(k + 1) = f2(s1(k), s2(k)).

(3.2)

In model (3.2),

• {w(k) : Ω → R
n1 , k ∈ N0} is an i.i.d. random sequence on a sample space Ω

with known distribution;

• {s1(k) : Ω → R
n1 , k ∈ N0} is a vector-valued random sequence on Ω with

dynamics that are directly affected by the random variable w(·) at a given
time through the vector field f1 : Rn1 × R

n2 × R
n1 → R

n1 ;

• {s2(k) : Ω → R
n2 , k ∈ N0} is a vector-valued random sequence on Ω with

dynamics characterized by a given vector field f2 : Rn1 × R
n2 → R

n2 .

Denote by

s(k) =

[
s1(k)
s2(k)

]

∈ R
n = S, n = n1 + n2,

the state variable of the whole model in (3.2). The knowledge of the distribution
of random vector w(·) at a given time allows us to characterize a stochastic kernel
Ts(·|s) for the Markov process. The special structure of model (3.2) leads us to
express the conditional density function of the stochastic kernel Ts as follows:

ts(s̄|s) = ts1(s̄1|s1, s2)δ(s̄2 − f2(s1, s2)), (3.3)

for s = [sT1 , s
T
2 ]

T and where δ(s − a) is the continuous Dirac delta function lo-
cated at the point a. The first term ts(s̄1|s1, s2) depends on the stochastic part of
the dynamical model, whereas the second term δ(s̄2 − f2(s1, s2)) hinges on the
deterministic vector field.

Over such models we are interested to solve the probabilistic invariance problem
which was defined in Section 2.2.2 and its solution was characterized by Bellman
recursion in Proposition 2.1. Let us recall this backward recursion for the invari-
ance problem over the bounded set A ∈ B(S) as the safe set and the finite time
horizon ZN+1:

Vk(s) = 1A(s)

∫

S
Vk+1(s̄)Ts(ds̄|s), VN (s) = 1A(s), (3.4)

and remind that the solution of the invariance problem is ps0(A) = V0(s0).

In Chapter 2 we presented a discretization approach with proven error bounds,
under continuity conditions of the stochastic kernel Ts. We also refined the error
bounds by leveraging an adaptive partitioning approach with improved (local)
error computations.

The goal of this chapter is first to tailor problem (2.1) to the structure of model
(3.2), then to provide a technique to compute the solution of (2.1) by a numerical
scheme with associated errors.
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3.3 Properties of the Value Functions

3.3.1 On the Support of the Value Functions

With focus on the recursion step in Equation (3.4), let us define the support of
function Vk as:

supp(Vk) = {s ∈ S|Vk(s) 6= 0}, k ∈ ZN ,

and supp(VN) = A. The support of the value functions Vk plays an important role
in the problem definition, as elaborated in the following observations:

• since Vk(s) = 0 for all s /∈ A, then supp(Vk) ⊆ A for all k ∈ ZN+1;

• by direct inductive argument, it can be shown that 0 ≤ Vk(s) ≤ Vk+1(s) for
all s ∈ A, k ∈ ZN , which leads to conclude that supp(Vk) ⊆ supp(Vk+1).

Notice that, because of the constant value of the cost function on the complement
of the set A, the integral in (3.4) is effectively computed only over A (rather than
on S). Furthermore, the observations above suggest that it is possible to adapt the
integration domain in (3.4) to the actual support of the value functions, as follows:

Vk(s) = Vk(s1, s2) =

∫

supp(Vk+1)

Vk+1(s̄1, s̄2)ts(s̄1|s1, s2)δ(s̄2−f2(s1, s2))ds̄2ds̄1, (3.5)

where we have used the expression in (3.3). Characterizing the sets supp(Vk), k ∈
Zn, becomes thus critical for the optimization of the original recursion in (3.4).
However, in general it is complicated to exactly determine the sets supp(Vk), in
particular due to the need to characterize supp(ts(·|s)) as a function of s.

To mitigate this complication, let us introduce two projection maps as follows:

Πi : R
n → R

ni , Πi

([
s1
s2

])

= si, i = 1, 2.

We can determine an over-approximation of the sets supp(Vk) as follows:

supp(Vk) ⊆ {(s1, s2) ∈ supp(Vk+1)|f2(s1, s2) ∈ Π2(supp(Vk+1))}.

Notice that in general the above inclusion is strict. This suggests to over-approximate
the sets supp(Vk) by Γk, as defined by the following recursive procedure:

ΓN = A, Γk = {(s1, s2) ∈ Γk+1|f2(s1, s2) ∈ Π2(Γk+1)}, k ∈ ZN . (3.6)

The sequence {Γk, k ∈ ZN+1} is endowed with the following facts:

• supp(Vk) ⊆ Γk, then ps0(A) = 0 for all s0 /∈ Γ0;

• A = ΓN ⊇ ΓN−1 ⊇ ΓN−2 ⊇ ... ⊇ Γ0;

• if there exists a positive integer k0 ∈ ZN such that Γk0
= Γk0+1, then for all

0 ≤ k ≤ k0,Γk = Γk0
;
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s̄1

s̄2

Π2(Γk+1)
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Γk

f2(·)

(a) Visualization of backward reachability
(3.6) for the computation of support sets Γk

s̄1

s̄2

Γ̄k(s2)

Γ̄k(s
′
2)

s2
s′2

Π2(Γk)
Γk

(b) Visualization of the set-valued function
Γ̄k(·) defined in (3.7)

Figure 3.1: Illustration of the backward recursion over the support sets Γk and
over the set-valued function Γ̄k (cf. Section 3.6).

• more generally, if there exists a positive integer k0 ∈ ZN such that Π2 (Γk0
) =

Π2 (Γk0+1), then for all 0 ≤ k ≤ k0,Γk = Γk0
.

These properties highlight the dependence of the sets Γk (we will denote them
simply as support sets) on the deterministic vector field f2, particularly over the
points that are mapped by f2 outside of the support sets.

3.3.2 Simplifying the Bellman Recursion

With focus on the support sets introduced in (3.6), define additionally the follow-
ing set-valued function Γ̄k : Π2(Γk) → 2Π1(Γk). for any k ∈ NN , as

Γ̄k(s2) = {s1 ∈ Π1(Γk)|(s1, s2) ∈ Γk}, ∀s2 ∈ Π2(Γk). (3.7)

Recall the recursive formula in (3.5) for Vk. By definition of Γk, we know that Vk
is equal to zero outside of the set Γk. We can then simplify the recursive formula
to the following:

Vk(s) =

∫

Γ̄k+1(f2(s))

Vk+1(s̄1, f2(s))ts(s̄1|s)ds̄1, ∀s ∈ Γk. (3.8)

This formulation characterizes the value functions Vk in terms of the sets Γk. The
computation of sets Γk based on (3.6) is a known deterministic backward reach-
ability procedure over the map f2. Deterministic reachability analysis is a rather
mature field of research [42] with ample software tool support [1]. Figure 3.1 il-
lustrates the backward recursion over the support sets Γk for a two dimensional
system (cf. case study in Section 3.6), and displays the construction of the set-
valued function Γ̄k.



54 Partially-Degenerate Stochastic Systems

3.3.3 Continuity Properties of the Value Functions

We are interested in establishing continuity properties of the value functions over
their support, which will be key for the computational schemes that will be intro-
duced later. To achieve this, the following set of assumptions is needed.

Assumption 3.1 Suppose that the kernel Ts admits a density function ts as in (3.3). Fur-
thermore, suppose that the density function ts1 , the vector field f2, and the parametrized
sets Γ̄k satisfy the following conditions:

1. |ts1(s̄1|s)− ts1(s̄1|s′)| ≤ hk‖s− s′‖, for any s̄1 ∈ Π1(Γk+1) and s, s′ ∈ Γk;

2. ‖f2(s)− f2(s
′)‖ ≤ h̄k‖s− s′‖, for any s, s′ ∈ Γk;

3. L (Γ̄k(s2)△ Γ̄k(s
′
2)) ≤ θk‖s2 − s′2‖, for any s2, s

′
2 ∈ Π2(Γk),

where hk, h̄k, θk are finite constants, for k ∈ ZN+1. Here L is the Lebesgue measure over
R

n1 , whereas △ denotes the symmetric difference of two sets (A△B = (A\B)∪(B\A)).

The first two are continuity assumptions on the probabilistic density and on the
vector field, whereas the third is a regularity requirement on the variation of the
(projection along the s1 variables of the) support sets, as a function of the s2 coor-
dinates. This last assumption depends on the actual shape of the support sets Γk

and on f2, as displayed in Figure 3.1.

Theorem 3.1 If Assumption 3.1 is valid, then the value functions Vk are Lipschitz con-
tinuous over Γk,

|Vk(s)− Vk(s
′)| ≤ λk‖s− s′‖, ∀s, s′ ∈ Γk, (3.9)

where the finite Lipschitz constant λk satisfies the recursive formula:

λk = (hkLk+1 +Mkh̄kθk+1) + h̄kM
⋆
kλk+1, k ∈ ZN ,

initialized with λN = 0, and where:

Lk
.
= L (Π1(Γk)) , M⋆

k
.
= sup

{
∫

Π1(Γk+1)

ts1(s̄1|s)ds̄1
∣
∣
∣
∣
s ∈ Γk

}

Mk
.
= sup {ts1(s̄1|s)|s ∈ Γk, s̄1 ∈ Π1(Γk+1)} .

Remark 3.1 For the sake of clarity, let us simplify Assumptions 3.1 and express the
bounds in Theorem 3.1 anew. Notice that 0 ≤M⋆

k ≤ 1 and that, because Γk ⊆ Γk+1,

hk ≤ hk+1, h̄k ≤ h̄k+1, Lk ≤ Lk+1,Mk ≤Mk+1, ∀k ∈ ZN .

Then setting the following (global) continuity assumptions for all s̄1 ∈ Π1(A), s, s′ ∈ A,

‖f2(s)− f2(s
′)‖ ≤ h̄‖s− s′‖, |ts1(s̄1|s)− ts1(s̄1|s′)| ≤ h‖s− s′‖,
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and defining the time-independent constants L,M,M⋆ as

Lk ≤ L
.
= L (A), M⋆

k ≤M⋆ .
= sup

{
∫

Π1(A)

ts1(s̄1|s)ds̄1
∣
∣
∣
∣
s ∈ A

}

Mk ≤M
.
= sup{ts1(s̄1|s), x ∈ A, s̄1 ∈ Π1(A)},

we can express the bound in (3.9) with the constant λk = hL + h̄(Mθk+1 +M⋆λk+1),
for all k ∈ ZN , and λN = 0.

3.4 Approximation Scheme and Error Quantification

We propose an approximation scheme to do the computations in (3.8). In order to
keep the notations light, we replace the generic integration domain Γ̄k+1(f2(s)),
k ∈ ZN , by Π1(A), and comment on how the procedure applies similarly to the
more general case.

We adapt Algorithm 1 from the previous chapter to our model at hand. Select
an arbitrary partition of the support set A = ∪m

i=1Ai, Ai1 ∩ Ai2 = ∅, i1, i2 = Nm,
i1 6= i2, where m represents the cardinality of the partition. A partition of the
whole state space S is obtained by adding the complement set Am+1 = S\A. Pick
any point zi = (zi1, z

i
2) ∈ Ai, i ∈ Nm+1. Notice that Π1(A) = Π1 (∪m

i=1Ai) =
∪m
i=1Π1(Ai), however the sets Π1(Ai) produce in general a cover (not necessarily

a partition) of the set Π1(A). To make up for this, let us additionally select an
arbitrary (q dimensional) partition Π1(A) = ∪q

j=1Xj for the projection of the safe
set along the first variable. This allows to express, for all s ∈ A,

Vk(s) =

∫

Π1(A)

Vk+1(s̄1, f2(s))ts1(s̄1|s)ds̄1 =

q
∑

j=1

∫

Xj

Vk+1(s̄1, f2(s))ts1(s̄1|s)ds̄1.

Let us now approximate the value functions Vk by piecewise constant functions
V̄k , which are computed over the selected points {zi ∈ Ai, i ∈ Nm+1}, as follows:

V̄k(s) =
m+1∑

i=1

V̄k(zi)1Ai(s), ∀s ∈ A, k ∈ ZN ,

initialized as V̄N (zi) = 1, i ∈ Nm, and V̄N (zm+1) = 0. Introduce the simplified
notation V i

k
.
= V̄k(zi). These functions are recursively computed as follows:

V i
k =

q
∑

j=1

∫

Xj

V̄k+1(s̄1, f2(zi))ts1(s̄1|zi)ds̄1. (3.10)

In this formulation the values of V̄k+1 over the hyperplane Xj × {f2(zi)} are
needed. Thus, in order to implement the procedure discretely, the function V̄k+1

should be constant over this hyperplane. This feature is achieved by raising the
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following assumption on the partition sets Xj of Π1(A):

∀i ∈ Nm, ∀j ∈ Nq, ∃i′Nm : Xj × {f2(zi)} ⊆ Ai′ .

Notice that this assumption does not depend on step k, and is immediately sat-
isfiable by selecting two partitions Π1(A) = ∪jXj and Π2(A) = ∪rYr, and then
constructing the partition for A as a subset of the cross product of these two par-
titions: A ⊆ Π1(A)×Π2(A) = ∪j,rXj × Yr.

Consider a map i′ = R(i, j), which assigns to each partition set Xj and value
f i
2
.
= f2(zi) the corresponding partition set Ai′ containing Xj×f i

2. Finally, starting
from the recursive procedure (3.8), the discrete version of the (continuous) step
(3.10) can be formulated as:

V i
k =

q
∑

j=1

V i′

k+1

∫

Xj

ts1(s̄1|zi)ds̄1. (3.11)

Let us again emphasize that the above steps, developed for set A, can be tailored
to the integration domain based on the knowledge of Γk. Furthermore, notice that
in the above procedure we allow for additional approximation error, since there
may exist partition sets that cross the boundaries of the support sets, and which
are not contained in neither Γk nor S\Γk. In order to avoid this error, we select a
partition for the smallest support set Γ0 and, iteratively, extend the partition of set
Γk ⊆ Γk+1 to obtain a proper partition of Γk+1.

The approximation scheme is summarized in Algorithm 5, and its error can be
explicitly quantified as follows.

Algorithm 5 Approximation scheme for probabilistic invariance of (Ts,S)

Require: mixed deterministic-stochastic system (Ts,S), safe set A ∈ B(S), finite
time horizon N ; sequence of support sets Γk, k ∈ ZN+1,ΓN = A

1: Select partitions ∪jXj of Π1(Γk) and associated partitions ∪iAi of set Γk, k ∈
ZN+1

2: Compute the map i′ = R(i, j) based on the chosen partition sets
3: Compute marginalization matrix P , with entries Pij =

∫

Xj
ts1(s̄1|zi)ds̄1

4: At step k ∈ ZN+1, use support set Γk to set entries equal to zero, namely
V i
k = 0 for all i such that Ai ⊂ S\Γk

5: Compute recursively value functions V i
k =

∑q
j=1 PijV

i′

k+1 as in (3.11), where

V i
N = 1, i ∈ Nm, V

m+1
N = 0

Ensure: V i
0 , i ∈ Nm+1, approximate solution of the safety problem over set A

Theorem 3.2 Suppose that the value functions Vk are approximated by the piecewise
constant functions V̄k, as described above. Then the approximation error is upper bounded
by the quantity

|Vk(s)− V̄k(s)| ≤ Ek, ∀s ∈ Γk,
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where Ek = λkδ +M⋆
kEk+1, initialized by EN = 0, and where δ is the partition size

of ∪m
i=1Ai (namely, δ = maxmi=1 δi, where δi is the diameter of Ai), λk is the Lipschitz

constant of the value function Vk, and M⋆
k is defined as in Theorem 3.1.

Remark 3.2 Notice that the error critically depends on the quantities λk,M
⋆
k from The-

orem 3.1, which are computed as function of the support sets Γk. Leaving the question of
continuity of the value functions aside, had we not characterized and computed the sets Γk

via deterministic reachability and instead used the original safe set A, we would have ob-
tained a larger error, and attained a discretization in time with higher cardinality. In other
words, computing the sets Γk via deterministic reachability leads to better approximations
and faster computations of the probabilistic quantities.

3.5 Affine Deterministic Dynamics on Polytopic In-

variant Sets

It is in general difficult to find an explicit or an exactly computable bound for
Condition 3 in Assumption 3.1, which depends on the shape of the sets Γk and
on the map f2. However, such a bound can be derived in the relevant instance of
models in (3.2) with deterministic dynamics that are affine and of an invariant set
A that is a bounded convex polytope [16]. Under these conditions, the following
lemma gives an explicit representation for the invariant sets Γk, which is later
used to derive the desired error bounds.

Lemma 3.1 Suppose that the deterministic dynamics in (3.2) are characterized by affine
functions, namely:

f2(s1, s2) = F1s1 + F2s2 + F3,

whereF1 ∈ R
n2×n1 , F2 ∈ R

n2×n2 , F3 ∈ R
n2×1. Furthermore, suppose that the invariant

set A is a bounded convex polytope, described by the following set of linear inequalities:

A =
{
(s1, s2) ∈ R

n|A1
Ns1 +A2

Ns2 ≤ BN

}
.

Then the support sets Γk, k ∈ ZN , are also bounded convex polytopes as in (3.12).

Proof: Based on Equation (3.6), we can compute the sets Γk, k ∈ ZN , as:

Γk = f−1
2 (Π2(Γk+1)) ∩ Γk+1.

Suppose Γk+1 is compact and convex then Π2(Γk+1) is also a compact and convex
set since the operator Π2 is linear. Additionally, as the function f2 is linear (and
continuous), then f−1

2 (Π2(Γk+1)) is also compact and convex. Suppose now that
set Γk+1 is a polytope in R

n, characterized by the following set of linear inequali-
ties:

Γk+1 =
{
(s1, s2) ∈ R

n|A1
k+1s1 +A2

k+1s2 ≤ Bk+1

}
.

Then Π2(Γk+1) is also a polytope in R
n2 and is characterized by

Π2(Γk+1) = {s2 ∈ R
n2 |Ck+1s2 ≤ Dk+1} .
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The matrices Ck+1, Dk+1 in the definition of Π2(Γk+1) can be directly obtained
from Γk+1 by taking the perpendicular projection of bounded polytopes: [47]
proved that the polyhedral projection is equivalent to the feasibility of a para-
metric linear programming problem. Computationally, the MPT toolbox [57] per-
forms this operation first constructing a vertex representation of Γk+1, having its
half-space representation (vertex enumeration problem); it then projects these ver-
tices based on the Π2 operator; and finally it obtains a half-space representation of
Π2(Γk+1) from its vertex representation (facet enumeration problem).

Having matrices Ck+1, Dk+1 from the expression of Π2(Γk+1), set Γk can be found
as

Γk = {(s1, s2) ∈ Γk+1|Ck+1F1s1 + Ck+1F2s2 ≤ Dk+1 − Ck+1F3}.
Then Γk is a convex and bounded polytope with the following half-space repre-
sentation

Γk =
{
(s1, s2) ∈ R

n|A1
ks1 +A2

ks2 ≤ Bk

}
, (3.12)

where

A1
k =

[
Ck+1F1

A1
k+1

]

, A2
k =

[
Ck+1F2

A2
k+1

]

, Bk =

[
Dk+1 − Ck+1F3

Bk+1

]

.

Note that this representation is not unique: it is in particular possible to eliminate
redundant half-spaces in the representation of Γk at each step k. 2

The following theorem derives an explicit bound for Condition 3 in Assumption
3.1.

Theorem 3.3 Suppose Γk is a bounded convex polytope with the representation in (3.12).
Then the sets Γ̄k(s2) are polytopes in R

n1 , which satisfy the Condition 3 in Assumption
3.1 with the following constant:

θk =

mk∑

i=1,A1
k
(i) 6=0

ck(i)
‖A2

k(i)‖
‖A1

k(i)‖
.

In the formula, vectors A1
k(i) and A2

k(i) represent the ith row of A1
k and A2

k, respectively.
The constant mk accounts for the number of inequalities in the half-space representation
of Γk, that is mk is equal to the number of rows of A1

k (we do not account for the rows of
A1

k that are identically equal to zero). The constant ck(i) is computed as follows:

1. if n1 = 1 then ck(i) = 1 for any i ∈ Nmk
;

2. if n1 ≥ 2, project Π1(Γk) along the normal to the ith hyperplane, i.e. along vector
A1

k(i), resulting in Π⊥(Π1(Γk)), which is a polytope in R
n1−1. Then ck(i) =

L (Π⊥(Π1(Γk))) or any upper bound for the given Lebesgue measure.

For the sake of completeness, let us explicitly derive the Lipschitz constant re-
quired for Condition 2 in Assumption 3.1, for a map f2 with affine deterministic
dynamics. With reference to the affine function f2(s1, s2) = F1s1 + F2s2 + F3, we
can express ‖f2(s1, s2)− f2(s

′
1, s

′
2)‖ ≤ ‖[F1, F2]‖2‖(s1, s2)− (s′1, s

′
2)‖.
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3.6 Case Study

Consider the case study introduced in Section 2.6.2 of previous chapter. We elim-
inate the process noises w2, w3 in (2.19) due to the fact that the related variables
are dimensionally different from x1. Then we have the following dynamical equa-
tions







x1(k + 1) = (1− 2kd∆)x1(k) + 2kd∆D
⋆
ss +

√
2kd∆D⋆

ssw1(k)

x2(k + 1) = kr∆x1(k) + (1− γr∆)x2(k)

x3(k + 1) = kp∆x2(k) + (1 − γp∆)x3(k),

where {w1(k), k ∈ N0} are independent standard Gaussian random variables. No-
tice that the model is now mixed deterministic-stochastic: namely, determinis-
tic over the dynamics of x2 (concentration of m-RNA M ) and of x3 (protein P ),
whereas stochastic for x1 (active genes D⋆). Notice that in (3.2) we would have
variables s1 = x1 and s2 = (x2, x3). Further, to connect the model with the rep-
resentation in (3.3), the kernel for the dynamics in s1 is Gaussian and admits a
density ts1(s̄1|s1) ∼ N (µ1(s1), σ

2
1), where the mean is an affine function of the

conditional variable s1, whereas the variance is constant:

µ1(s1) = (1− 2kd∆)s1 + 2kd∆D
⋆
ss, σ2

1 = 2kd∆D
⋆
ss.

3.6.1 Computation in a Two Dimensional System

Observe that the dynamics over the variables s1, s2 are decoupled from that of
variabe s3. In order to visually elucidate the concepts introduced above, this sec-
tion sets up the computation of probabilistic invariance for the mixed deterministic-
stochastic system comprising variables s1 (D⋆, with stochastic dynamics), and s2
(M , with deterministic dynamics). The safe set is selected to be the following
bounded polygon, centered at the steady-state point for the model:

A =

{

(s1, s2) ∈ R
2,

∣
∣
∣
∣

s1 −D⋆
ss

D⋆
ss

∣
∣
∣
∣
≤ r1,

∣
∣
∣
∣

f̄2(s1, s2)− f̄2(D
⋆
ss,Mss)

f̄2(D⋆
ss,Mss)

∣
∣
∣
∣
≤ r2

}

.

where f̄2(s1, s2) = (γr∆ − 1) s1 + kr∆s2 is selected such that functions f2 and
f̄2 are orthogonal. We consider the parameter values r1 = 1, r2 = 0.2 for the
size of the polygon, and the time horizon N = 10. The deterministic backward
reachability procedure over set A shows that the sets Γk are all convex polytopes,
and in particular rectangles, with the following descriptions:

Π2(ΓN−k) =

{

s2 ∈ R :

∣
∣
∣
∣

s2 −Mss

Mss

∣
∣
∣
∣
≤ 0.2 + 0.3× 0.6k

}

,

ΓN−k−1 =

{

(s1, s2) ∈ R
2 :

∣
∣
∣
∣

f2(s1, s2)−Mss

Mss

∣
∣
∣
∣
≤ 0.2 + 0.3× 0.6k,

∣
∣
∣
∣

f̄2(s1, s2)−D⋆
ss

D⋆
ss

∣
∣
∣
∣
≤ 0.2

}

,
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(a) Support sets Γk , shrinking backwards in time.
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Figure 3.2: Representation of the support sets of the value functions in time, and
of the solution of the probabilistic invariance problem, for a two di-
mensional case study.

Π1(ΓN−k−1) =

{

s1 ∈ R :

∣
∣
∣
∣

s1 −D⋆
ss

D⋆
ss

∣
∣
∣
∣
≤ 0.44 + 0.48× 0.6k

}

.

Figure 3.2(a) shows the dynamics of the invariance sets Γk, starting from A = Γn

(external polygon). Notice that the sequence of support sets shrinks, converging
as the time horizon grows (this can possibly lead to the study of the problem
over an infinite horizon). The Lipschitz constants hk are computed based on the
maximum norm of the partial derivative of the density function with respect to
the conditional variable s1,

hk = max

{∣
∣
∣
∣

∂ts1
∂s1

(s̄1|s1)
∣
∣
∣
∣
: s1 ∈ Π1(Γk), s̄1 ∈ Π1(Γk+1)

}

=
(1 − ka − kd)e

−1/2

σ2
√
2π

.

which leads to hk = 56.58 that is independent of the time step. Constants Mk

and M⋆
k have been considered independent of the step k and take the following

values:

Mk =
1

σ
√
2π
, M⋆

k = 2

∫ r2
0.6σD⋆

ss

0

1√
2π

exp

[

−u
2

2

]

du = erf

(
r2

0.6σ
√
2
D⋆

ss

)

,

which leads to Mk = 6.125 and to M⋆
k = 0.9934 (here erf is the error function as-

sociated to a Gaussian distribution). Finally, the following constants are required
for the computation of the error: h̄k = 1, θk = 8/3,L (ΓN ) = D⋆2

ss ,L (ΓN−k) =
0.8D⋆2

ss (0.4 + 0.6k). The accrued error, as in Theorem 3.2, is equal to E0 = 1371.1δ:
the linear dependence over the discretization parameter δ allows tuning it as de-
sired. The partitioning sets have been introduced as tight over-approximations of
the Γk by a uniform grid aligned with the coordinates. The approximate solution
of the probabilistic safety is presented in Figure 3.2(b). The probability is plotted
within set Γ0, since it is constantly equal to zero in the complement of this set. No-
tice that as expected the output is maximal in a neighborhood of the equilibrium
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point for the dynamics.

3.6.2 Computation in a Three Dimensional System

This section applies the results derived in this chapter to the whole three dimen-
sional model introduced in Section 3.6. Let us select the safe set A as a box around
the steady state values defined above, and compute probabilistic invariance over
A, for a time horizon N = 10. The size of the box is characterized by the parame-
ters r1 = 0.20, r2 = 0.10, r3 = 0.05, as:

A =

{

(s1, s2, s3) ∈ R
3 :

∣
∣
∣
∣

s1 −D⋆
ss

D⋆
ss

∣
∣
∣
∣
≤ r1,

∣
∣
∣
∣

s2 −Mss

Mss

∣
∣
∣
∣
≤ r2,

∣
∣
∣
∣

s3 − Pss

Pss

∣
∣
∣
∣
≤ r3

}

.

The chosen parameters lead to a variance σ = 0.32 and to the following constants:
h1 = 1.82, h2 = 4.43,M = 12.25,M⋆ = 0.99. The deterministic procedure for
computing the time-varying support sets Γk yields sets ΓN ,ΓN−1 and ΓN−2 = Γk,
for all k ∈ ZN−2. Notice also that Π1(Γk) = Π1(A) for any k, which leads to a
constant L = Lk = L (Π1(A)) = 0.21.

Figure 3.3 displays the support sets ΓN ,ΓN−1 and Γ0. Notice that the sets shrink
as time decreases, as expected. The computations have been performed with a
partition size δ = 0.03. The probabilistic invariance is computed over the support
sets Γk.

Figure 3.4 displays the level set Vk(s) = 0.1, for varying time instants k = 2, 4, 6, 8.
As intuitive, the level sets shrink backwards in time. Figure 3.5 displays the level
sets of V0(s) = ps(A), for varying invariance levels: 0, 0.02, 0.04, 0.06, 0.08, 0.1.
Notice that the set of points V0 = 0 cover a region that is the complement of Γ0

in A (cf. the top left plot in Figure 3.5 with the bottom plot in Figure 3.3). As
intuitive, the level sets shrink as the invariance level grows. Notice that the last
(bottom-right) plot of Figure 3.5 would also fit the sequence of Figure 3.5, had we
additionally considered k = 0.

3.7 Conclusions

In this chapter we have presented a novel approach to compute probabilistic in-
variance over a finite horizon for mixed deterministic-stochastic, discrete-time
processes. The computational technique, based on state-space discretization, has
been associated to an explicit error bound. On the theoretical side, we have showed
that the problem under study can be separated into a deterministic reachability
problem, and a probabilistic invariance one that depends on the outcome of the
first. The technique has been tested on the case study modeling a chemical reac-
tion network.
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Figure 3.3: Representation of the support sets ΓN ,ΓN−1, and Γ0, where Γk =
Γk−1, for all k ∈ NN−2 and where N = 10.
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Figure 3.4: Representation of the level set Vk(s) = 0.1, for varying time instants
k = 2, 4, 6, 8. The curves within the plots contain points that are in-
variant with a probability greater than or equal to 0.1, for the residual
time span {k, k + 1, . . . , N}.
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Figure 3.5: Representation of the level sets of V0(s) = ps(A), for varying probabil-
ity levels {0, 0.02, 0.04, 0.06, 0.08, 0.1}. The curves within the plots con-
tain points that are invariant with a probability greater than or equal
to the specific probability level, over the complete time span ZN+1.



4 CHAPTER

Higher-Order Approximations for
Verification of Stochastic Systems

T
his chapter presents new algorithms, based on higher-order function
approximation, for the efficient computation of approximate solu-

tions of probabilistic invariance problem. The approach provides explicit
bounds on the error which can be substantially lower than those for piece-
wise constant (zeroth-order) approximations presented in Chapter 2 and,
unlike the latter, can display convergence in time to a finite value. Further-
more, higher-order approximation procedures, which depend on the par-
titioning of the state space, can lead to lower partition cardinality than the
related piecewise constant ones. The result is first presented for Markov
processes over Euclidean spaces and thereafter extended to hybrid spaces
characterizing Stochastic Hybrid Systems.

4.1 Introduction

We investigated the development of enhanced computational approaches with
tightened bounds on the error in Chapter 2, to translate a Markov process into
a MC with the end goal of model checking the safety property. In approximat-
ing the Markov process as MC, the surveyed results of [2, 3] and Chapters 2, 3
have leveraged piecewise constant interpolations of the kernels characterizing the
model under study, which has direct consequences on the derived error bounds.
In contrast, this chapter provides approximation methods via higher-order inter-
polations of the value functions that are aimed at requiring less computational
effort.

More precisely, drawing on the expression of reachability properties as value func-
tions [2, 3, 68], this chapter builds on the premises in Chapter 2 and puts forward
higher-order approximation methods, obtained via interpolation procedures, in
order to express the value functions under study as compactly as possible. The

65
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claim is that using higher-order interpolations (versus piecewise constant ones)
can be beneficial in terms of obtaining tighter bounds on the approximation er-
ror. Furthermore, since the approximation procedures depend on the partitioning
of the state space, higher-order schemes display an interesting tradeoff between
more parsimonious representations versus more complex local computation – this
chapter explores the computational compromise between partition size and local
interpolation. In assessing the computability of the results, an underlying tenet
is that the total number of integrations required in the interpolation is a proxy
for total computational time. An additional advantage of the present study over
previous chapters is that in some cases the approximation error converges over
time, which allows the applicability of the method to the approximate solution of
infinite-horizon specifications [75].

This chapter is structured as follows: Section 4.2 introduces a function operation
view to the computation of value functions characterizing the solution of prob-
abilistic invariance problem. Section 4.3 considers higher-order approximation
schemes over the value functions, and quantifies explicitly the introduced ap-
proximation error over the formula (or problem). Section 4.4 tailors the results
to the abstraction algorithm of Chapter 2, and specializes the proposed approach
to explicit schemes for low-dimensional models and known interpolation bases.
Section 4.5 extends the results to SHS models. Finally, Section 4.6 discusses a few
numerical case studies to test and benchmark the proposed schemes.

4.2 Function Operation View of Probabilistic Invari-

ance

We consider discrete time Markov processes, described in Section 2.2.1, which are
characterized by a general state space S and a stochastic kernel Ts. We are inter-
ested to solve the probabilistic invariance problem over such models. Recall that
solution of this problem can be expressed by introducing time-dependent value
functions Vk : S → [0, 1], k ∈ ZN+1. Proposition 2.1 characterized these value
functions by Bellman recursion: for the invariance problem over the bounded set
A ∈ B(S) as the safe set and the finite time horizon ZN+1,

Vk(s) = 1A(s)

∫

S
Vk+1(s̄)Ts(ds̄|s), VN (s) = 1A(s), (4.1)

which leads to the expression Ps(A) = V0(s) for the solution.

The Bellman recursion in (4.1) indicates that the supports of value functions are
contained in the set A (namely, they are equal to zero over the complement of
A). We are thus only interested in computing the value functions over the set A,
which allows simplifying the recursion in (4.1) as follows

Vk(s) =

∫

A
Vk+1(s̄)Ts(ds̄|s), VN (s) = 1, ∀s ∈ A, k ∈ ZN . (4.2)
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Let us denote with B(A) the space of bounded and measurable functions f : A →
R, and let us assign to this space the infinity norm to this space:

‖f‖∞ = sup{|f(s)|, s ∈ A}, ∀f ∈ B(A).

The linear operator RA, defined over B(A) by

RAf(s) =

∫

A
f(s̄)Ts(ds̄|s), ∀s ∈ A, f ∈ B(A), (4.3)

characterizes the solution of the recursion in (4.2) as Vk(s) = RN−k
A (VN )(s), for

any k ∈ ZN+1. Moreover, we suppose that the transition kernel Ts(ds̄|s) of the
Markov process admits a density function ts(s̄|s), such that Ts(ds̄|s) = ts(s̄|s)ds̄.

4.3 Approximation Schemes and Error Quantification

The goal of this section is to propose numerical schemes for approximating the
value functions Vk, k ∈ ZN , with an explicit quantification of the approximation
error. While Chapters 2 and 3 proposed approximations of the value functions Vk
by piecewise constant functions, in this chapter we are interested in considering
approximations via higher-order interpolations.

4.3.1 Error Quantification of a Projection Over a Function Space

Consider a function space Φ = span{φ1(s), φ2(s), . . . , φn(s)} as a subset of B(A),
and a projection operator ΠA : B(A) → Φ that satisfies the inequality

‖ΠA(f)− f‖∞ ≤ E(f) (4.4)

under some regularity conditions on f (beyond f ∈ B(A), see assumptions in
Theorem 4.1), and where the bound E depends on the properties of the function
f . With focus on a linear projection operator, the next result provides a useful tool
for approximating the solution of the invariance problem.

Theorem 4.1 Assume that a linear operator ΠA satisfies the inequality

‖ΠA(ts(s̄|·))− ts(s̄|·)‖∞ ≤ ǫ, ∀s̄ ∈ A, (4.5)

and that there exists a finite constant M, such that

∫

A
|ΠA(ts(s̄|s))| ds̄ ≤ M, ∀s ∈ A. (4.6)

Define the value functions V̄k as approximations of the value functions Vk (cf. (4.3)), by

V̄k = (ΠARA)
N−k(VN ), k ∈ ZN+1. (4.7)
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Then it holds that
‖Vk − V̄k‖∞ ≤ Ek, k ∈ ZN+1, (4.8)

where the error Ek satisfies the difference equation

Ek = MEk+1 + L (A)ǫ,

initialized by EN = 0, and where L (A) denotes the Lebesgue measure of the set A.

Corollary 4.1 Under the assumptions raised in (4.5)-(4.6), the error Ek can be alterna-
tively expressed explicitly as

Ek = ǫL (A)
1 −MN−k

1−M , for M 6= 1, and Ek = ǫL (A)(N − k), for M = 1.

One possible general choice for the constant M is M = 1+ ǫL (A).

Notice that the above error converges if M < 1 as N goes to infinity, which makes
the result applicable to the approximate computation of the infinite-horizon safety
property with a finite approximation error.

4.3.2 Construction of the Projection Operator

In the ensuing sections we focus, for the sake of simplicity, on a state space that
is Euclidean, namely S = R

d, where d is its finite dimension. In Section 4.5 we
extend the upcoming results to be valid over Stochastic Hybrid Systems.

We discuss a general form for the interpolation operator. Let φj : D ⊂ R
d →

R, j ∈ Nn be independent functions defined over a generic set D. The interpo-
lation operator ΠD is defined as a projection map into the function space Φ =
span{φ1(s), φ2(s), . . . , φn(s)}, which projects any function f : D → R to a unique
function ΠD(f) =

∑n
j=1 αjφj , using a finite set of data {(zj, f(zj))|zj ∈ D, j ∈ Nn}

and such that ΠD(f)(zj) = f(zj). The operator ΠD is guaranteed to verify the in-
equality in (4.4), namely ‖ΠD(f) − f‖∞ ≤ ED(f), under some regularity assump-
tions on its argument function f (cf. Corollary 4.2).

With focus on the invariance problem described in Section 2.2.2, let us select a
partition {Ai}mi=1 for the set A, with finite cardinalitym. Using a basis {φij}nj=1, let
us introduce the interpolation operators ΠAi for the projection over each partition
set Ai, which is done as described above by replacing the domain D with Ai.
Finally, let us introduce the (global) linear operator ΠA on a function f : A → R

by

ΠA(f) =
m∑

i=1

1AiΠAi(f |Ai), (4.9)

where f |Ai represents the restriction of the function f over the partition set Ai.
The following result holds:

Theorem 4.2 The operator in (4.9) satisfies the inequality in (4.4) with constant E(f) =
max{EAi(f |Ai), i ∈ Nm}, and where ‖ΠAi(f |Ai)− f |Ai‖∞ ≤ EAi(f |Ai).
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Corollary 4.2 The result in Theorem 4.1 can be tailored to the operator in (4.9) and ap-
plied to the density ts = f , under the assumptions (4.5)-(4.6) on ts and using the follow-
ing two quantities:

ǫ = max
i
ǫi, where ‖ΠAi(ts(s̄|·)|Ai)− ts(s̄|·)|Ai‖∞ ≤ ǫi, for all s̄ ∈ A;

M = max
i

Mi, where

∫

A
|ΠAi(ts(s̄|s))| ds̄ ≤ Mi, for all s ∈ Ai.

Here ǫi represents the interpolation error on the density function over the partition set Ai.

4.3.3 Approximation Algorithm

An advantage of the interpolation operator in (4.9) is that ΠA(f) is fully charac-
terized by the interpolation coefficients αij , such that

ΠA(f) =
m∑

i=1

n∑

j=1

αijφij1Ai .

The set of interpolation coefficients αij are computable by matrix multiplication
based on the data {(zij , f(zij)), i ∈ Nm, j ∈ Nn}, where the matrix depends on
the interpolation points zij and on the basis functions φij and can be computed
off-line (see step 4 in Algorithm 6).

Let us now focus on the recursion in (4.7), V̄k = ΠARA(V̄k+1), given the initial-
ization V̄N = 0, for the approximate computation of the value functions. This
recursion indicates that the approximate value functions V̄k, k ∈ ZN , belong to
the image of the operator ΠA. Let us express these value functions by

V̄k =

m∑

i=1

n∑

j=1

αk
ijφij1Ai ,

where αk
ij denote the interpolation coefficients referring to V̄k (at step k). This

suggests that we need to store and update the coefficients αk
ij for each iteration in

(4.7). Writing the recursion in the form V̄k = ΠA
(
RA(V̄k+1)

)
indicates that it is

sufficient to evaluate the function RA(V̄k+1) over the interpolation points in order
to compute the coefficients αk

ij . In the following, the pair i, r indicate the indices
of the related partition sets, namely Ai, Ar, whereas the pair of indices j, u show
the ordering positions within partition sets. For an arbitrary interpolation point
zru we have:

RA(V̄k+1)(zru) =

∫

A
V̄k+1(s̄)ts(s̄|zru)ds̄ =

m∑

i=1

n∑

j=1

αk+1
ij

∫

Ai

φij(s̄)ts(s̄|zru)ds̄.

Introducing the following quantities Qij(r, u) =
∫

Ai
φij(s̄)ts(s̄|zru)ds̄, we have
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that

V̄k(r, u) = RA(V̄k+1)(zru) =

m∑

i=1

n∑

j=1

αk+1
ij Qij(r, u).

Algorithm 6 provides a general procedure for the discrete computation of the in-
terpolation coefficients and of the approximate value functions.

Algorithm 6 Approximate computation of the value functions V̄k

Require: Density function ts(s̄|s), safe set A
1: Select a finite m-dimensional partition of the set A = ∪m

i=1Ai (Ai are non-
overlapping)

2: For eachAi, select interpolation basis functions φij and points zij ∈ Ai, j ∈ Nn

3: Compute Qij(r, u) =
∫

Ai
φij(s̄)ts(s̄|zru)ds̄, where i, r ∈ Nm and j, u ∈ Nn

4: Compute matrix representation of operators ΠAi

5: Set k = N − 1 and V̄N (i, j) = 1 for all i, j
6: if k ≥ 0 then
7: Compute interpolation coefficients αk+1

ij given V̄k+1(i, j), using matrices in
step 4

8: Compute values V̄k(r, u) based on V̄k(r, u) =
∑

i

∑

j α
k+1
ij Qij(r, u)

9: k = k − 1
10: end if
Ensure: Approximate value functions V̄k, k ∈ ZN+1

Next, we provide a condition on the selection of the basis functions and of the
interpolation points, leading to a simplification of Algorithm 6.

Theorem 4.3 ([59]) Assume that there exists a choice of interpolation points zij and of
basis functions φij such that

det






φi1(zi1) · · · φin(zi1)
...

. . .
...

φi1(zin) · · · φin(zin)




 6= 0, ∀i ∈ Nm.

Then, there additionally exists an equivalent basis made up of functions ψij such that

span{ψi1, ψi2, . . . , ψin} = span{φi1, φi2, . . . , φin}

for all i ∈ Nm, and which is related to the interpolation coefficients αk
ij = V̄k(i, j).

Theorem 4.3 ensures that by utilizing the basis functions ψij step 4 in Algorithm
6 can be skipped, and that the main update (steps 7 and 8) can be simplified as
follows:

V̄k(r, u) =

m∑

i=1

n∑

j=1

V̄k+1(i, j)Qij(r, u), V̄N (i, j) = 1.
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A sufficient condition for the satisfaction of the assumption in Theorem 4.3 is the
selection of a basis {φi1, . . . , φin} as a Chebyshev (or Haar) system [59], for all
i ∈ Nm. In this case, the choice of the distinct interpolation points zij can be made
freely, for each partition set Ai (instances of this selection will be given below).

In Algorithm 6, the interpolation points zij are in general pair-wise distinct. Ex-
tending the domain of interpolation Ai to its closure Āi, it is legitimate to use
boundary points as interpolation points, which can lead to a reduction of the
number of integrations required in Algorithm 6. However, special care should
be taken, since the interpolation operator should produce a continuous output
over the boundaries of the neighboring partition sets. In the ensuing sections, we
will exploit this feature upon selecting equally spaced points.

4.4 Special Forms of the Projection Operator

In this section we leverage known interpolation theorems for the construction of
the projection operator ΠA. These theorems are presented over a general domain
D and are then used to derive specific error bounds for the problem of interest
presented in Section 4.2. 1

4.4.1 Piecewise Constant Approximations

We focus on the approximation of a function by a piecewise constant one, which
has inspired the chapters 2 and 3. For this purpose we select n = 1 and the basis
functions φi1(s) = ψi1(s) = 1, for all s ∈ Ai, i ∈ Nm. The procedure is detailed in
Algorithm 7 which is essentially Algorithm 1 (presented in Chapter 2) combined
with the approximate solution of the safety problem over the abstracted Markov
chain. As we discussed in Chapter 2, the associated error is equal to NL (A)hδ
where h is the Lipschitz constant of the conditional density function (cf. Theorem
2.2).

For piecewise constant approximation of this section, the constant M of Theorem
4.1 is simplified to

M = max

{∫

A
ts(s̄|s)ds̄, s ∈ A

}

,

which is upper bounded by one. This constant might be less than one in some
cases [75], depending on the conditional density function and the safe set, which
leads to an error (cf. Corollary 4.1) that converges as time horizon N grows.

Let us compare Algorithms 6 and 7 in terms of their computational complexity.
Algorithm 6 requires mn(mn+1) integrations in the marginalization steps (3 and
4), whereasm(m+1) integrations are required in Algorithm 7. Furthermore, steps
5 and 8 in Algorithm 6 can be skipped only if a Chebyshev (Haar) system can be

1In the rest of this chapter, we employ normal typeset for bounds derived from general interpola-
tion theorems, whereas calligraphic letters are used for theorems developed specifically for this chap-
ter.
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Algorithm 7 Piecewise constant computation of the value functions V̄k

Require: Density function ts(s̄|s), safe set A
1: Select a finite partition of the set A = ∪m

i=1Ai (Ai are non-overlapping), where
m represents the cardinality of the partition

2: For each Ai, select one representative point zi ∈ Ai

3: Compute matrix P with entries P (r, i) = Qi(r) =
∫

Ai
ts(s̄|zr)ds̄, where i, r ∈

Nm

4: Set k = N − 1 and V̄N (i) = 1 for all i ∈ Nm

5: if k ≥ 0 then
6: Compute the column vector V̄k based on V̄k = P V̄k+1

7: k = k − 1
8: end if

Ensure: Approximate value functions V̄k, k ∈ ZN+1

selected, whereas these steps are not needed at all in Algorithm 7. As a bottom
line, higher interpolation orders increase the computational complexity of the ap-
proximation procedure, however this can as well lead to a lower global approxi-
mation error. Since the global approximation error depends on the local partition-
ing sets (their diameter, size, and the local continuity of the density function), for
a given error higher interpolation procedures may require partitions with lower
cardinality.

4.4.2 Higher-Order Approximations For 1-Dimensional Systems

In this section we study higher-order interpolations over the real axis, where the
partition sets Ai are real intervals. We use this simple setting to quantify the error
related to the approximate solution of the invariance problem. In order to assess
the effect of the choice of the interpolation points on the approximation error and
on the computational complexity of the method, we compare two different sets of
interpolation points: equally spaced points and Chebyshev nodes.

Theorem 4.4 ([59]) Let f be a real (n + 1)-times continuously differentiable function
on the bounded (one-dimensional) interval D = [α, β]. For the interpolation polynomial
ΠD(f) ∈ span{1, s, s2, . . . , sn}, with (n+1) pair-wise distinct points {z0, z1, . . . , zn} ⊂
D, and condition ΠD(f)(zj) = f(zj), j ∈ Zn+1, there exist a ξ ∈ D such that

f(s)− ΠD(f)(s) =
f (n+1)(ξ)

(n+ 1)!

n∏

j=0

(s− zj), ∀s ∈ D.

Equally-Spaced Interpolation Points. The following result can be adapted from
[59].
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Theorem 4.5 Consider equally spaced interpolation points {zj = α+j β−α
n , j ∈ Zn+1}.

The interpolation error is upper bounded by

‖f −ΠD(f)‖∞ ≤ Mn

4(n+ 1)

(
β − α

n

)n+1

, Mn = max
{

|f (n+1)(s)|, s ∈ D
}

.

Application to the Invariance Problem. Consider a one dimensional invariance
problem with a partitioning of A = ∪m

i=1Ai which is such thatAi = [αi, βi]. Define
the interpolation operator ΠAi (ts(s̄|·)|Ai) over the basis Φ = span{1, s, s2, . . . , sn}
using equally spaced interpolation points {zij ∈ Ai, j ∈ Zn+1}. Then we can
easily derive the following constants:

Mn = max

{∣
∣
∣
∣

∂n+1ts(s̄|s)
∂sn+1

∣
∣
∣
∣
, s, s̄ ∈ A

}

, ǫ =
Mn

4(n+ 1)

(
δ

n

)n+1

,

and δi = βi −αi, i ∈ Nm, δ = maxi δi. Changing the basis of interpolation gives us
the opportunity to obtain another value for M to be used in the error computation.
Let us select the interpolation basis functions to be Lagrange polynomials:

Lij(s) =

n∏

u=0,u6=j

s− ziu
zij − ziu

.

This leads to a projection with a special form, namely

ΠAi (ts(s̄|s)|Ai) =
n∑

j=0

αijs
j =

n∑

j=0

ts(s̄|zij)Lij(s).

Computing the constants κi = max
{
∑n

j=0 |Lij(s)|, s ∈ Ai

}

yields the following

choice of M:
∫

A
|ΠAi(ts(s̄|s)|Ai)| ds̄ ≤ κi

∫

A
ts(s̄|zij)ds̄ ≤ κi, and M = max

i
κi.

Having the values of ǫ and M we are ready to implement Algorithm 6 for equally
spaced points and polynomial basis functions of degree at most n, with the pre-
specified error of Theorem 4.1.

Chebyshev Nodes. The following statement can be adapted from [59].

Theorem 4.6 Let f be a real (n + 1)-times continuously differentiable function on the
interval D = [α, β]. For the interpolation polynomial ΠD(f) ∈ span{1, s, s2, . . . , sn}
with Chebyshev nodes

zj =
α+ β

2
+
β − α

2
cos

(
2j + 1

2(n+ 1)π

)

j ∈ Zn+1,
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n 1 2 3 4 5 6 7 8 9 10 11 12
ǫ2
ǫ1

0.50 0.50 0.42 0.33 0.25 0.19 0.14 0.10 0.07 0.05 0.04 0.03

Table 4.1: Ratio between equally spaced pints (ǫ1) versus Chebyschev nodes (ǫ2),
expressed with double digit precision, for different interpolation orders
(n).

and values ΠD(f)(zj) = f(zj), we have

‖f −ΠD(f)‖∞ ≤ Mn

2n(n+ 1)!

(
β − α

2

)n+1

, Mn = max{|fn+1(s)|, s ∈ D}.

Application to the Reach-Avoid Problem. We can implement Algorithm 6 for
Chebyshev nodes and Chebyshev polynomials of degree n, given a pre-specified
error in Theorem 4.1, and with the following value of ǫ:

ǫ =
Mn

2n(n+ 1)!

(
δ

2

)n+1

,

where the quantity Mn is that defined for equally spaced points. The only differ-
ence between the selection of equally spaced points and of Chebyshev nodes is the
value of ǫ. The ratio of ǫ for these two cases (denoted respectively ǫ1 and ǫ2) is pre-
sented in Table 4.1 as a function of n (interpolation order). The advantage gained
by using Chebyshev nodes is distinctive over larger values of the interpolation
order.

It is worth mentioning that, unlike the piecewise constant case of Chapters 2 and
3, the global error of higher-order approximation approaches is a nonlinear func-
tion of the partition size δ, namely it depends on a power of the partition size
contingent on the order of the selected interpolation operator.

4.4.3 Bilinear Interpolation For 2-Dimensional Systems

We directly tailor the results above to a general 2-dimensional system.

Theorem 4.7 Consider a partially differentiable function f(s1, s2), defined (for simplic-
ity) over the unit square D = [0, 1]2. For the interpolation operator

ΠD(f)(s1, s2) =a1 + a2s1 + a3s2 + a4s1s2

=s1(1− s2)f(1, 0) + s1s2f(1, 1)

+ (1− s1)(1− s2)f(0, 0) + (1− s1)s2f(0, 1),

the error is upper bounded by

‖f −ΠD(f)‖∞ ≤ 1

8

[

Ms2
1
+Ms2

2
+ 2Ms2

1
s2 + 2Ms2

2
s1

]

,



4.4 Special Forms of the Projection Operator 75

where
∣
∣
∣
∂2f
∂s2i

∣
∣
∣ ≤Ms2i

,
∣
∣
∣

∂3f
∂s2i s3−i

∣
∣
∣ ≤Ms2i s3−i

, i = 1, 2, for all (s1, s2) ∈ D.

Application to the Invariance Problem.

With focus on a 2-dimensional invariance problem, consider a uniform partition
(using squared partition sets) of diameter δ for the set A. We employ a bilin-
ear interpolation within each partition set Ai = [αi1, αi2] × [βi1, βi2] with basis
{φ1(s) = 1, φ2(s) = s1, φ3(s) = s2, φ4(s) = s1s2}, or with Lagrange polynomials

ψi1(s) =
(αi2 − s1)(βi2 − s2)

(αi2 − αi1)(βi2 − βi1)
, ψi2(s) =

(αi2 − s1)(s2 − βi1)

(αi2 − αi1)(βi2 − βi1)
,

ψi3(s) =
(s1 − αi1)(βi2 − s2)

(αi2 − αi1)(βi2 − βi1)
, ψi4(s) =

(s1 − αi1)(s2 − βi1)

(αi2 − αi1)(βi2 − βi1)
,

and compute the associated error, given the following value for ǫ:

ǫ =
δ2

16

[

Ms2
1
+Ms2

2
+ δ

√
2Ms2

1
s2 + δ

√
2Ms2

2
s1

]

,

where
∣
∣
∣
∣

∂2ts
∂s2i

(s̄|s)
∣
∣
∣
∣
≤ Ms2i

,

∣
∣
∣
∣

∂3ts
∂s2i s3−i

(s̄|s)
∣
∣
∣
∣
≤ Ms2i s3−i

, i = 1, 2, ∀s, s̄ ∈ A.

Note that the basis function ψij is non-negative on the partition set Ai and that
∑4

j=1 ψij(s) = 1, which leads to a constant M = maxs∈A

∫

A
ts(s̄|s)ds̄ ≤ 1.

4.4.4 Trilinear Interpolation For 3-Dimensional Systems

We now apply the results above to a general 3-dimensional system.

Theorem 4.8 Consider a partially differentiable function f(s1, s2, s3), defined (for sim-
plicity) over the unit cube D = [0, 1]3. For the interpolation operator

ΠD(f)(s1, s2, s3) =a1 + a2s1 + a3s2 + a4s3

+ a5s1s2 + a6s1s3 + a7s2s3 + a8s1s2s3

=(1− s1)(1 − s2)(1− s3)f(0, 0, 0) + s1s2s3f(1, 1, 1)

+ s1(1− s2)(1− s3)f(1, 0, 0) + (1− s1)s2s3f(0, 1, 1)

+ (1− s1)s2(1− s3)f(0, 1, 0) + s1(1− s2)s3f(1, 0, 1)

+ (1− s1)(1 − s2)s3f(0, 0, 1) + s1s2(1− s3)f(1, 1, 0),

the error is upper bounded by the expression

‖f −ΠD(f)‖∞ ≤ 1

8
[Ms2

1
+Ms2

2
+Ms2

3
+ 2Ms2

1
s2 + 2Ms2

2
s1 + 2Ms2

1
s3

+ 2Ms2
3
s1 + 2Ms2

2
s3 + 2Ms2

3
s2 + 6Ms1s2s3 ],
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where
∣
∣
∣
∂2f
∂s2i

∣
∣
∣ ≤Ms2i

,
∣
∣
∣

∂3f
∂s2i sj

∣
∣
∣ ≤Ms2i sj

,
∣
∣
∣

∂3f
∂s2

1
s2s3

∣
∣
∣ ≤Ms1s2s3 , ∀s = (s1, s2, s3) ∈ D.

Application to the Invariance Problem. With focus on a 3-dimensional invari-
ance problem, consider a uniform partition (using cubic sets) of diameter δ for the
set A. We employ a trilinear interpolation within each partition set and compute
the associated error, given the following value for ǫ:

ǫ =
δ2

24

[

Ms2
1
+Ms2

2
+Ms2

3

]

+
δ3

12
√
3

[

Ms2
1
s2 +Ms2

2
s1 +Ms2

2
s3 +Ms2

3
s2 +Ms2

1
s3 +Ms2

3
s1 + 3Ms1s2s3

]

,

where
∣
∣
∣
∂2ts
∂s2i

(s̄|s)
∣
∣
∣ ≤Ms2i

,
∣
∣
∣
∂3ts
∂s2i sj

(s̄|s)
∣
∣
∣ ≤Ms2i sj

, and
∣
∣
∣

∂3ts
∂s2

1
s2s3

(s̄|s)
∣
∣
∣ ≤ Ms1s2s3 , for all

s = (s1, s2, s3), s̄ = (s̄1, s̄2, s̄3) ∈ D. Similar to the bilinear interpolation case, the

function ψij is non-negative on the partition set Ai and
∑8

j=1 ψij(s) = 1, which

leads to a constant M = maxs∈A
∫

A ts(s̄|s)ds̄ ≤ 1.

4.5 Extension to Stochastic Hybrid Systems

Consider the stochastic hybrid model S = (Q, n, Tq, Tx, Tr) defined in Chapter 2.
As we discussed in Section 2.4, this model is a Markov process with the hybrid
state space S = ∪q∈Q{q} × R

n(q) and the stochastic kernel Ts described in (2.16).

Suppose the conditional kernels Tx, Tr admit density functions tx, tr. Consider a
safe set A = ∪q∈Q{q} ×Aq with Aq ∈ B(Rn(q)) and define the operator RA acting
on f ∈ B(A) as

RAf(q, x) = Tq(q|(q, x))
∫

Aq

f(q, x̄)tx(x̄|(q, x))dx̄

+
∑

q̄ 6=q

Tq(q̄|(q, x))
∫

Aq̄

f(q̄, x̄)tr(x̄|(q, x), q̄)dx̄, ∀x ∈ Aq, q ∈ Q.

Given a partition Aq = ∪mq

i=1Aq,i and a basis of interpolation functions {ψq,ij(x)},
we can construct the projection operator ΠA on B(A) by separately interpolating
over the continuous domains associated to each discrete location. The following
holds:

Theorem 4.9 Suppose the conditional kernels of the SHS model satisfy the following
inequalities

‖ΠA(Tq(q|(q, ·))tx(x̄|(q, ·))) − Tq(q|(q, ·))tx(x̄|(q, ·))‖∞ ≤ Ex, ∀q ∈ Q, ∀x̄ ∈ Aq,

‖ΠA(Tq(q̄|(q, ·))tr(x̄|(q, ·), q̄))− Tq(q̄|(q, ·))tr(x̄|(q, ·), q̄)‖∞ ≤ Er,
∀q, q̄ ∈ Q, q̄ 6= q, ∀x̄ ∈ Aq̄,
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then the following error bound can be established:

‖Rk
A(VN )− (ΠARA)

k(VN )‖∞ ≤ Ek, VN = 1A,

Ek = λ(Ex + (m− 1)Er) + κEk+1, EN = 0,

where λ = maxq L (Aq), κ = max
{
∑

j |ψq,ij(x)|, x ∈ Aq,i, i ∈ Nmq , q ∈ Q
}

, and m

is the cardinality of the set of discrete locations.

4.6 Case Studies

We develop a few case studies in different dimensions to investigate the proposed
higher-order approximation approach.

4.6.1 A 1-Dimensional Case Study

Consider a probabilistic safety problem with the safe set A = [0, 2] and the time
horizonN = 10, over a model characterized by the kernel Ts(ds̄|s) = g(s+c−s̄)ds̄,
where c = 1.3035, and the function g is defined as:

g(u) =







3.57485
1

u2
exp

(

−u− 1

u

)

, u > 0,

0, u ≤ 0.

Selecting an approximation error E0 = 0.01, we compute the required number of
partition sets to abide by such figure. Using piecewise constant approximations
based on a global Lipschitz constant (cf. Section 4.4.1) yields a value h = 6.90 and
the error function E0 = NL (A)hδ. This leads to a required number of partition
sets m = 27616 and a total number of integrations m(m+1) = 7.6× 108 (the num-
ber of integrations is here conceived as a proxy for computational complexity).

Now consider algorithms and error bounds developed for higher-order approxi-
mations. The constants Mn are

M1 = 88.93, M2 = 2063.65, M3 = 79064.41, M4 = 5428040,

whereas M is computed based on the following optimization problem:

M = max
s∈A

∫

A
ts(s̄|s)ds̄ = max

s∈A

∫ 2

0

g(s+ c− s̄)ds̄ = max
s∈A

∫ s+c

s+c−2

g(u)du,

which leads to sopt = 0.82 and M = 0.96.

Table 4.2 compares the number of partition sets and the number of integrations
required to reach an approximation error E0 = 0.01, using equally spaced points
and Chebyshev nodes. Notice that the two methods coincide for n = 0. The
formulas for the number of integrations are an adaptation of the corresponding
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uniform partitioning total number of partitions number of integrations
E0 = 0.01 m1 m2 m1(n+ 1)(m1n+ 1) m2

2(n+ 1)2

piecewise constant, n = 0 23357 23357 5.5 · 108 5.5 · 108
piecewise linear, n = 1 275 194 1.5 · 105 94864
piecewise quadratic, n = 2 67 53 27135 25281
third-order, n = 3 36 29 15696 13456
fourth-order, n = 4 28 22 15820 12100

uniform partitioning total number of partitions number of integrations
E0 = 0.001 m1 m2 m1(n+ 1)(m1n+ 1) m2

2(n+ 1)2

piecewise constant, n = 0 233563 233563 5.5 · 1010 5.5 · 1010
piecewise linear, n = 1 868 614 1508584 1507984
piecewise quadratic, n = 2 143 114 123123 116964
third-order, n = 3 64 52 49408 43264
fourth-order, n = 4 43 35 37195 30625

Table 4.2: Number of partition sets and integrations for equally spaced points (in-
dexed by 1) and for Chebyshev nodes (indexed by 2), given two error
bounds E0 = 0.01, 0.001.

ones developed to assess Algorithm 6 (this case deals with invariance, rather than
the more general reach-avoid for Algorithm 6). Similar outcomes, performed for
an experiment with error E0 = 0.001, are also reported. These results show that
Chebyshev nodes require in general a lower number of partition sets and therefore
fewer integrations. The values are comparable since the ratio ǫ2/ǫ1 is smaller for
larger values of n, as per Table 4.1. Notice further that equally spaced points give
the opportunity to select common boundary points over adjacent partition sets as
interpolation points, which can lead to a reduction on the associated number of in-
tegrations. However, interestingly the complexity is in general not monotonically
decreasing with the order.

4.6.2 A 2-Dimensional Case Study

Consider the computational benchmark of Section 2.6.1 with a 2-dimensional state
space. Let us select the covariance matrix W = 0.5 I2 for the process noise and
discuss the probabilistic invariance problem over the safe set A = [−1, 1]2 and the
time horizon ZN+1. The following constants are needed to compute the error:

M = 0.71, Ms2
1
= 2.23, Ms2

2
= 0.72, Ms2

1
s2 = 3.80, Ms1s22

= 2.17.

Table 4.3 compares the complexity of piecewise constant and bilinear approxi-
mations, for different values of the global error E0. Similarly, Figure 4.1(a) (on the
left) compares the two approximations (blue lines). The vertical axis represents the
global approximation error, whereas the horizontal axis indicates the correspond-
ing number of integrations, pointing to the computational complexity of each
method. For a given computational complexity, bilinear interpolations approxi-
mate the solution with less error and their performance is dimensionally better in
compared to the piecewise constant approximations. Similarly, for a given error
threshold, less computations are required when using bilinear interpolations.
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piecewise constant bilinear

error
number of partitions

per dimension
number of

integrations
number of partitions

per dimension
number of

integrations
E0 m1 m2

1 m2 4(m2 + 1)2

0.1 206 4.2 · 104 18 1444
0.01 2053 4.2 · 106 49 104

0.001 20525 4.2 · 108 145 8.5 · 104
0.0001 205241 4.2 · 1010 448 8.1 · 105

Table 4.3: Piecewise constant versus bilinear approximations.
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Figure 4.1: Error comparison between piecewise constant versus higher-order ap-
proximations, as a function of their computational complexity, for
three case studies.

4.6.3 A 3-Dimensional Case Study

Consider the computational benchmark of Section 2.6.1 with three dimensional
state space, covariance matrix W = 0.5 I3, and the safe set A = [−1, 1]3. The
following constants are needed to compute the error:

M = 0.60,Ms2
1
= 2.66,Ms2

2
= 0.33,Ms2

3
= 1.50,Ms2

1
s2 = 3.47,Ms2

2
s1 = 1.28,

Ms2
2
s3 = 0.95,Ms2

3
s2 = 1.92,Ms2

1
s3 = 8.37,Ms2

3
s1 = 6.27,Ms1s2s3 = 2.56.

Table 4.4 compares piecewise constant and trilinear approximations, for different
values of the global errorE0. Similarly, Figure 4.1(a) (on the left) compares the two
approximations (magenta lines). Recall that there is a tradeoff between local com-
putations and global error for higher-order interpolations. Thus, if we consider
a large global error, piecewise approximations may be computationally favorable
(left of the crossing in the magenta curves). However, for small error bounds the
performance of trilinear interpolations is much better in comparison with that of
piecewise constant approximations.
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piecewise constant trilinear

error
number of partitions

per dimension
number of

integrations
number of partitions

per dimension
number of

integrations
E0 m1 m3

1 m2 8(m2 + 1)3

0.1 383 5.6 · 107 30 2.4 · 105
0.01 3825 5.6 · 1010 78 3.9 · 106
0.001 38250 5.6 · 1013 220 8.6 · 107
0.0001 382498 5.6 · 1016 681 2.5 · 109

Table 4.4: Piecewise constant versus trilinear approximations.

4.6.4 Case Study For a Hybrid Model

Consider the stochastic hybrid model of the chemical reaction network described
in Section 2.6.2. The model has two locations Q = {q1, q2} indicating a gene in
active or inactive mode and the continuous dynamics described in (2.24). Again
we select the safe set A to cover an interval of 10% variation around the steady
state of the model and N = 10.

Figure 4.1(b) compares the approximation errors of piecewise constant and first-
order approximations. The total number of integrations differ roughly only by a
factor of two. Furthermore, considering for instance 1000 bins per dimension, the
piecewise constant (zeroth-order) approximation has a global error equal to 32.64,
whereas the first-order approximation leads to an error equal to 0.62, with only
twice as many integrations involved in the procedure.

4.7 Conclusions

In this chapter we presented new algorithms, based on higher-order function ap-
proximation, for the efficient computation of approximate solutions of probabilis-
tic invariance problem. The approach extends the results of Chapters 2, 3 using
interpolation theory and is applicable to processes with hybrid state spaces. In
the next chapter we extend our abstraction techniques to controlled Markov pro-
cesses.



5 CHAPTER

Abstraction of Controlled
Discrete-Time Markov Processes

T
his chapter is concerned with the generation of finite abstractions of
Controlled Discrete-Time Markov Processes with general state and

input spaces, to be employed for the formal verification of probabilistic
properties by means of automatic techniques such as probabilistic model
checking (with related software tools). As an extension of the work pre-
sented in earlier sections, we employ an abstraction procedure based on
the partitioning of the state and input spaces, which generates a Markov De-
cision Process as an approximation of the original model. While the tech-
nique is applicable to a wide arena of probabilistic properties, with focus
on the study of a particular specification (maximal invariance probability,
over a finite horizon), maximally safe Markov policies of the abstracted
model are used to design sub-optimal policies for the original continuous
model. As before, we further provide upper bounds on the distance of
such policies to the optimal solutions. The proposed algorithm is tested
on a SHS model of a thermal load.

5.1 Introduction

In this chapter we study the problem of computing probabilistic properties for
controlled discrete time Markov processes (dtMPs) evolving over continuous (un-
countable) state and input spaces. We focus on the fundamental problem of com-
puting the maximal invariance probability. This problem has been first studied in
[4], which has characterized this concept and put forward an algorithm to com-
pute this quantity. From a computational perspective, [2] has looked at the numer-
ical evaluation of this specification for autonomous Markov processes. In Chapter
2 we have proposed adaptive and sequential procedures to extend the result of [2]
and make it applicable to a wider class of models.

81
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From a different perspective, approximation of controlled dtMP models for the
problem of maximizing a reward function has been studied in [26]. The authors
approximated the dtMP with a Markov Decision Process (MDP) and formulated
the error associated with the dynamic programming characterization of the opti-
mal solution, which hinges on the continuity properties of the stochastic kernel
operator of the process and of the reward function. This result is not applicable
to the maximal invariance probability, since the reward function is assumed to be
additive while the reward function associated to the maximal invariance problem
is multiplicative. Moreover, the cost-per-stage is assumed to be continuous, while
it is specifically discontinuous in our setting.

MDP approximation of controlled Markov processes has also been investigated in
the book by Kushner and Dupuis [56]. Their study lacks explicit quantification of
the error made in the approximation which necessitates the study of formal MDP
approximation methods for this class of models. The current chapter discusses
formal MDP approximation of controlled dtMPs to address this weakness.

This chapter extends the result of Chapter 2 to controlled dtMPs by employing
a partitioning procedures for the state and the input spaces of the process. The
dtMP model is abstracted to an MDP and its invariance property is translated
to the same property over the MDP. The maximal invariance probability is com-
puted over the MDP and is exported to the original model with guaranteed error
bounds: the approximation error of [26] grows exponentially with the time hori-
zon, while in our case the error is a linear function of time horizon. To keep the
discussion more focused, we first assume that the sets of feasible inputs are in-
dependent of the current state. In section 5.6 we show how the approach can be
applied to state-dependent input spaces.

This chapter is structured as follows. Section 5.2 introduces the controlled dtMP
models and the problem statement (computation of the maximal invariance prob-
ability and maximally safe policies). Section 5.3 discusses the sensitivity of the
maximal invariance probability to the conditional density function of the dtMP.
Section 5.4 proposes an abstraction algorithm based on the analysis of Section 5.3,
to relate the general space controlled dtMP model to an MDP. Furthermore, with
focus on the maximal invariance probability, the quantification of the error in the
abstraction procedure is presented in Section 5.4. Section 5.5 deals with the algo-
rithmic generation of the abstraction and the construction of policies which are
within a given distance from the maximally safe policy. Section 5.6 adapts the
results to the controlled dtMP models featuring state-dependent input spaces. Fi-
nally, Section 5.7 develops a numerical study and uses the results of this chapter
to solve the optimal temperature control problem for the SHS model of a thermal
load. Section 5.8 completes the chapter with conclusions and extensions.

5.2 Controlled Discrete-Time Markov Process

A controlled discrete-time Markov process is a tuple

Sc
.
= (S,U , {U(s)|s ∈ S}, Ts) ,
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where S = R
n is the continuous state space and U is a bounded input space.

The set {U(s)|s ∈ S} is a family of non-empty measurable subsets of U , where
U(s) is the set of feasible inputs when the system is at state s ∈ S. The evolution
of the Markov process is characterized by a Borel-measurable stochastic kernel
Ts : B(Rn) × S × U → [0, 1], which assign to any s ∈ S and u ∈ U(s) a probability
measure on the Borel space (Rn,B(Rn)). For the sake of simplicity we assume that
the set of feasible inputs are state-independent, i.e. U(s) = U for all s ∈ S, and
postpone the discussion on the state-dependent input sets to Section 5.6. In the
rest of this chapter we assume that the stochastic kernel of the process admits a
conditional density function, namely Ts(ds̄|s, u) = ts(s̄|s, u)ds̄.
A Markov policy µ for the Markov process Sc is a sequence µ = (µ0, µ1, µ2, . . .)
of universally measurable 1 maps [12] µk : S → U , k ∈ N0. The set of all Markov
policies over the pair (S,U) is denoted by Mc. The invariance problem was de-
fined in Chapter 2 for autonomous Markov processes. In this chapter we provide
the definition on controlled processes for a given policy and study the maximal
solution of the invariance problem.

Definition 5.1 Let A ∈ B(S) be a bounded Borel set as the safe set. We define the
invariance problem under the Markov policy µ over the time horizon ZN+1 as follows:

pµs0(A)
.
= P

µ
s0{s(k) ∈ A for all k ∈ ZN+1|s(0) = s0}.

The maximal invariance probability is defined as

p∗s0(A) = sup
{
pµs0(A), µ ∈ Mc

}
, for all s0 ∈ A.

A Markov policy µ∗ is maximally safe if pµ
∗

s0 (A) = p∗s0(A) for all s0 ∈ A.

It is worth mentioning that the above invariance problem can be defined over
a more general set of policies, namely the sequences of universally measurable
stochastic kernels [12], which are conditioned on the history of the process and
account for randomization. The work [77] has proved that the maximally safe
policies belong to the class of Markov policies, which motivated us to restrict our
attention to this class of policies.

The next theorem characterizes the quantity p∗s0(A) and the maximally safe Markov
policy using the value functions Vk, V

∗
k which are computed by the Bellman recur-

sion.

Theorem 5.1 Define the value functions Vk : S ×U → [0, 1] and V ∗
k : S → [0, 1] by the

following recursion:

Vk(s, u) = 1A(s)

∫

S
V ∗
k+1(s̄)Ts(ds̄|s, u) ∀s ∈ S, u ∈ U ,

V ∗
k (s) = sup {Vk(s, u), u ∈ U} ∀s ∈ S,

1Consider Borel spaces X, Y . A set A ⊂ X is called universally measurable if it is µ−measurable
for every finite measure µ on X . The function f : X → Y is called universally measurable if the set
f−1(B) is universally measurable in X for every B in the Borel σ−algebra of Y .
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initialized with V ∗
N (s) = 1A(s), s ∈ S. Then V ∗

0 (s0) = p∗s0(A). If µ∗
k : S → U is

such that µ∗
k(s) ∈ arg supu∈U Vk(s, u), then µ∗ = (µ∗

0, µ
∗
1, µ

∗
2, . . .) is a maximally safe

Markov policy.

The maximally safe policy of a dtMP does not admit a closed form in general.
We are thus interested in computing policies that are close to the maximally safe
policy. The next definition formally introduces this notion of approximation.

Definition 5.2 A Markov policy µ is ε–maximally safe if |p∗s0(A) − pµs0(A)| ≤ ε for all
s0 ∈ A.

In the next section we study the dependence of the maximal invariance proba-
bility from the stochastic kernel of the process. Such an analysis is essential in
developing abstraction methods for the computation of ε–maximally safe policies
with any given ε.

5.3 Sensitivity Analysis of the Invariance Probability

In this section we study the sensitivity of the maximal invariance probability to
the conditional density function of the process. In other words, assume that two
Markov processes are defined over the same state and input spaces but with dif-
ferent density functions: what is the distance between their maximal invariance
probability as a function of the distance between their density functions? The next
theorem quantifies the effect of perturbations on the conditional density function,
which answers this question.

Theorem 5.2 Let Sc = (S,U , Ts) and Pc = (S,U , Tp) be two Markov processes with
the same state and input spaces. Assume that Ts, Tp admit density functions ts, tp such
that

|ts(s̄|s, u)− tp(s̄|s, u)| ≤ ǫ ∀s, s̄ ∈ A, u ∈ U .
If we implement the recursion of theorem 5.1 for Markov processes Sc,Pc with value
functions Vk, V

∗
k , and Wk,W

∗
k respectively, then

|V ∗
k (s)−W ∗

k (s)| ≤ (N − k)ǫL (A) ∀s ∈ S, k ∈ ZN+1.

Theorem 5.2 enables us to replace the density function of the given process with a
second density function that may have a simpler structure; to efficiently compute
the maximal invariance probability on it; and then to provide a guarantee over
the maximal probability of the original process. There are two main questions to
be answered at this point: how to select the density function tp(·|s, u) and how to
compute distance ǫ for this specific selection.

Construction of the density function tp(·|s, u). We construct the density func-
tion tp(·|s, u) based on the partitioning approach used in the previous chapters:



5.3 Sensitivity Analysis of the Invariance Probability 85

select a partition for the bounded input space U = ∪mu

j=1Uj , choose a partition for
the safe set A = ∪ma

i=1Ai, and construct a partition for the state space S = ∪ms

i=1Ai

with ms = ma+1 andAms
= S\A. We choose representative points for these par-

tition sets {zi ∈ Ai, i ∈ Nms
} and {vj ∈ Uj , j ∈ Nmu

}, and define the conditional
density function tp as

tp(s̄|s, u) =
mu∑

j=1

ms∑

i=1

ts(s̄|zi, vj)1Uj (u)1Ai(s). (5.1)

Note that tp is piecewise constant respect to the conditioned state and input pair
(s, u).

Computation of the approximation quantity ǫ. We raise a continuity assump-
tion on the density function of the process in order to establish Lipschitz continu-
ity of the value functions as in Theorem 5.1 for the quantification of the term ǫ in
Theorem 5.2.

Assumption 5.1 Assume that the kernel Ts admits density ts, and that the following
inequalities hold for finite positive constants hs, hu,

|ts(s̄|s, u)− ts(s̄|s′, u)| ≤ hs‖s− s′‖ ∀s, s′, s̄ ∈ A, u ∈ U ,
|ts(s̄|s, u)− ts(s̄|s, u′)| ≤ hu‖u− u′‖ ∀s, s̄ ∈ A, u, u′ ∈ U .

Assumption 5.1 allows us to derive the following bound on ǫwhich in turn can be
used in Theorem 5.2.

Lemma 5.1 Under Assumption 5.1, the density function tp of (5.1) satisfies the inequal-
ity

|ts(s̄|s, u)− tp(s̄|s, u)| ≤ hsδs + huδu ∀s, s̄ ∈ A, u ∈ U ,
where hs, hu are defined in Assumption 5.1 and δs, δu are the max diameters of the parti-
tions {Ai, i ∈ Nma

}, {Aj, j ∈ Nmu
}, formally defined as

δs = sup
{
‖s− s′‖

∣
∣s, s′ ∈ Ai, i ∈ Nma

}
,

δu = sup
{
‖u− u′‖

∣
∣u, u′ ∈ Uj , j ∈ Nmu

}
.

Employing the quantity ǫ = hsδs + huδu in Theorem 5.2 enables us to quantify the
error introduced by using tp of (5.1) for the computation of the maximal invariance
probability.

Corollary 5.1 Suppose that we implement the recursion in Theorem 5.1 for Markov pro-
cess Sc,Pc, characterized by the density function ts(·|s, u) and its piecewise constant
approximation tp(·|s, u) of (5.1), respectively. Then

|V ∗
k (s)−W ∗

k (s)| ≤ (N − k)(hsδs + huδu)L (A),

for all s ∈ S and k ∈ ZN+1.
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Notice that the case of k = 0 gives an upper bound on the distance of the solu-
tions of maximal invariance probability over the two processes. Corollary 5.1 can
be seen as an extension of Theorem 2.2 in Chapter 2 for autonomous Markov pro-
cesses: the additional term huδu appears in the error due to the discretization of
the input space.

In Section 5.4 we provide an algorithm to abstract the process Sc to an MDP. We
prove that solution of the maximal invariance problem on the constructed finite-
state MDP is equivalent to the same problem for Pc.

5.4 Algorithmic Abstraction of a Controlled dtMP as

an MDP

In this section we propose an approach to abstract the controlled dtMP into an
MDP, with the goal of approximate computation of p∗s0(A) with guaranteed error
bounds on the approximation.

The MDP D = (Sd,Ud, Td) is constructed according to Algorithm 8, which is a
generalization of the earlier Algorithm 1 proposed for the abstraction of Markov
chains. Here Sd = {zi, i ∈ Nms

} is the finite set of states and Ud = {vj , j ∈ Nmu
}

is the finite set of inputs. Td : Sd × Ud × Sd → [0, 1] is the state transition matrix
such that Td(z, v, z

′) is the probability that the MDP D moves into its new state z′

when the input v is applied at state z, and thus induces the following conditional
discrete probability distribution over the finite space Sd:

Td(z, v, z
′) = P (z(k + 1) = z′| z(k) = z, v(k) = v) .

In Algorithm 8, Ξs : Ad → 2A represents a set-valued map that associates to any
point zi ∈ Ad the corresponding partition setAi ⊂ A. We also define Ξu : Ud → 2U

as the set-valued map that associates to any point vj ∈ Ud the corresponding
partition set Uj ⊂ U (this map will be used in Section 5.5). Furthermore, the map
ξ : A → Ad associates to any point s ∈ A of Sc the corresponding discrete state in
Ad. Additionally, notice that the absorbing set ▽ is added to the definition of the
MDP D in order to render the state transition matrix Td stochastic.

Remark 5.1 Notice that Algorithm 8 can be applied to abstract a general controlled dtMP
by an MDP with finite state and input spaces, regardless of the specifics of the maximal
probabilistic invariance problem studied in this chapter (that is regardless of the given safe
set A), by assuming that A = S. The quantification of the abstraction error, to be carried
out in Theorem 5.4, will however require that the set A (thus, as needed, the state space
S) is bounded.

Given an MDP D = (Sd,Ud, Td) with finite state and input spaces, and considering
a safe setAd, the invariance problem under the Markov policy ϑ = (ϑ0, ϑ1, ϑ2, . . .),
ϑk : Sd → Ud, over the time horizon ZN+1, is defined as follows:

pϑz0(Ad)
.
= P

ϑ
z0{z(k) ∈ Ad for all k ∈ ZN+1|z(0) = z0}.
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Algorithm 8 Abstraction of model Sc = (S,U , Ts) by MDP D

Require: input model Sc, set A
1: Select a finite partition of set A as A = ∪ma

i=1Ai (Ai are non-overlapping), where
ma represents the cardinality of the partition

2: Select a finite partition of the input space U as U = ∪mu

j=1Uj (Uj are non-
overlapping), where mu represents the cardinality of the partition

3: For each Ai, select single representative point zi ∈ Ai, {zi} = ξ(Ai)
4: For each Uj , select single representative point vj ∈ Uj

5: Define Ad = {zi, i ∈ Nma
} and take Sd = Ad ∪ {▽} as the finite state space of

the MDP D (▽ being a dummy variable as explained in the text)
6: Define Ud = {vj , j ∈ Nmu

} as the finite input space of the MDP D

7: Compute the state transition matrix Td for D as:

Td(z, v, z
′) =







Ts(Ξs(z
′)|z, v), z′ ∈ Ad, z ∈ Ad, v ∈ Ud

1−∑z̄∈Ad
Ts(Ξs(z̄)|z, v), z′ = ▽, z ∈ Ad, v ∈ Ud

1, z′ = z = ▽, v ∈ Ud

0, z′ ∈ Ad, z = ▽, v ∈ Ud

Ensure: output MDP D = (Sd,Ud, Td)

The maximal invariance probability for the MDP D is defined as

p∗z0(Ad) = max
{
pϑz0(Ad), ϑ ∈ Md

}
,

for all z0 ∈ Ad, where Md is the set of all Markov policies over the pair (Sd,Ud).
A Markov policy ϑ∗ is maximally safe if pϑ

∗

z0 (Ad) = p∗z0(Ad) for all z0 ∈ Ad.

The next theorem is the discrete version of Theorem 5.1, which formulates the
maximal invariance probability for the MDP D through value functions Dk, D

∗
k.

Theorem 5.3 Consider value functions Dk : Sd × Ud → [0, 1], D∗
k : Sd → [0, 1],

k ∈ ZN+1, computed by the backward recursion:

Dk(z, v) = 1Ad
(z)

∑

z̄∈Sd

D∗
k+1(z̄)Td(z, v, z̄) ∀z ∈ Sd, v ∈ Ud,

D∗
k(z) = max

v∈Ud

Dk(z, v), ∀z ∈ Sd,

and initialized with:

D∗
N (z) = 1Ad

(z) =

{

1, if z ∈ Ad,

0, if z = ▽.

Then p∗z0(Ad) = D∗
0(z0).

Since the state and input spaces of MDP D are finite, the maximally safe Markov
policy always exists. It is of interest to provide a quantitative comparison between
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the discrete outcome obtained by Theorem 5.3 and the continuous solution that
results from Theorem 5.1. For this purpose we relate the discrete value functions
Dk, D

∗
k to the continuous value functions Wk,W

∗
k of Pc. Lemma 5.2 accomplishes

this goal which is subsequently used in Theorem 5.4 to compute the error of ab-
straction, presented in Algorithm 8, for maximal invariance probability.

Lemma 5.2 The value functions associated to Pc and D are related together with

Wk(s, u) =

ms∑

i=1

mu∑

j=1

Dk(zi, vj)1Uj (u)1Ai(s) s ∈ S, u ∈ U ,

W ∗
k (s) =

ms∑

i=1

D∗
k(zi)1Ai(s) s ∈ S.

In other words, the value functions Wk ,W ∗
k of Pc are piecewise constant functions and

the constants in each domain of continuity is specified by the related values of Dk and D∗
k

for the MDP D.

Theorem 5.4 Under Assumption 5.1 the maximal invariance probability p∗s0(A) for the
model Sc initialized at s0 ∈ A satisfies:

|p∗s0(A)− p∗z0(Ad)| ≤ N(hsδs + huδu)L (A), (5.2)

where p∗z0(Ad) is the maximal invariance probability for the MDP D obtained by Algo-
rithm 8, and initialized at the discrete state z0 = ξ(s0) ∈ Ad. The constants hs, hu are
defined in Assumption 5.1, where δs and δu are the largest diameters of the partition sets
{Ai, i ∈ Nma

} and {Uj, i ∈ Nmu
}, respectively.

Theorem 5.4 enables us to approximate the maximal invariance probability with
any desired accuracy provided that the density function is Lipschitz continuous
with respect to the conditioned state and input variables. Beyond the approxi-
mate computation of p∗s0(A), we seek to find a Markov policy µ to be applied to
the model Sc and to guarantee such a (sub-optimal) invariance probability. The
next section characterizes the set of policies that lead to the approximate maximal
invariance probability value.

5.5 Construction of the ε–Maximally Safe Policies

In the previous section we have discussed how a controlled dtMP can be ab-
stracted as an MDP, and have further provided an upper bound on the approx-
imation error of the quantity p∗s0(A). In this section we focus on the construction
of a policy for the original dtMP Sc that is ε–maximally safe. For this purpose
we first construct the set of maximally safe policies for model Pc based on the
maximally safe policy of the MDP D.
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Lemma 5.3 The MDP D has at least one maximally safe policy, indicated by ϑ∗ =
(ϑ∗0, ϑ

∗
1, . . .), where ϑ∗k : Sd → Ud, such that ϑ∗k(z) ∈ argmaxv{Dk(z, v), v ∈ Ud}. The

dtMP Pc has infinitely many maximally safe policies, represented by ̺∗ = (̺∗0, ̺
∗
1, . . .),

where ̺∗k : S → U , such that ̺∗k(s) ∈ arg supu{Wk(s, u), u ∈ U}, and which are
characterized as

̺∗k(s) =
ms∑

i=1

fki(s)1Ai(s), fki : Ai → Ξu(ϑ
∗
k(zi)), (5.3)

where fki is any arbitrary function with domain Ai and range Ξu(ϑ
∗
k(zi)) for i ∈ Nms

,
k ∈ ZN . One of these maximally safe policies has the simple piecewise constant form

̺∗k(s) =
ms∑

i=1

ϑ∗k(zi)1Ai(s).

Once the policy ϑ∗ is obtained for the MDP D, we use (5.3) to construct the policy
̺∗ for the model Pc and apply this policy to Sc. The next theorem compares ̺∗

with the maximally safe policy of the model Sc.

Theorem 5.5 Suppose ̺∗ is one of the maximally safe policies of Pc, characterized in
Lemma 5.3. Under Assumption 5.1, the following inequality holds when we apply this
policy to the original Model Sc:

|p∗s0(A)− p̺
∗

s0 (A)| ≤ 2NL (A)(hsδs + huδu) ∀s0 ∈ S. (5.4)

Proof: The solution of the invariance problem over the models Sc,Pc, for the
fixed policy ̺∗ = (̺∗0, ̺

∗
1, ̺

∗
2, . . .), can be obtained by the recursions

V ̺∗

k (s) = 1A(s)

∫

S
V ̺∗

k+1(s̄)ts(s̄|s, ̺∗k(s))ds̄ ∀s ∈ S,

W̺∗

k (s) = 1A(s)

∫

S
W̺∗

k+1(s̄)tp(s̄|s, ̺∗k(s))ds̄ ∀s ∈ S,

initialized with V ̺∗

N (s) = W̺∗

N (s) = 1A(s), s ∈ S. Since the policy is given,
the models Sc,Pc can be thought of a time-inhomogeneous autonomous dtMPs
with density functions ts(sk+1|sk, ̺∗k(s)), tp(sk+1|sk, ̺∗k(s)) respectively. It can be
shown that under Assumption 5.1 we have, for all s ∈ S, that

|V ̺∗

k (s)−W̺∗

k (s)| ≤ (N − k)L (A)(hsδs + huδu). (5.5)

Using the triangular inequality we can write

|p∗s0(A)− p̺
∗

s0 (A)| ≤ |p∗s0(A)− p∗z0(A)|+ |p∗z0(A)−W̺∗

0 (s0)|+ |W̺∗

0 (s0)−V ̺∗

0 (s0)|.

The first term is upper bounded by NL (A)(hsδs + huδu) in the inequality (5.2).
The third term is also upper bounded by the same quantity (replace k = 0 in the
inequality (5.5)). The second term is equal to zero due to the specific construction
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of policy ̺∗ (5.3) in Lemma 5.3. Summing up the three upper bounds results in
the inequality (5.4). 2

The error computed in (5.4) can be used to provide a uniform gridding approach
for abstraction of the dtMP Sc to an MDP D which is presented in Algorithm 9.
Moreover, the set of all ε–maximally safe policies can be computed using Algo-
rithm 10.

Algorithm 9 Generation of the uniform grid for the abstraction

Require: model Sc = (S,U , Ts) under Assumption 5.1; threshold ε for the ab-
straction error

1: pick partition diameters δs and δu based on bound (5.4) such that

2NL (A)(hsδs + huδu) ≤ ε

2: perform partitioning of S and U using uniformly-packed hypercubes with di-
ameters δs and δu

Ensure: D, error ε

Algorithm 10 Computation of ε–maximally safe policies

Require: model Sc = (S,U , Ts) under Assumption 5.1; threshold ε
1: Use Algorithm 9 to generate uniform grids for state and input spaces
2: Use Algorithm 8 to abstract Sc to the MDP D

3: Use Theorem 5.3 to compute maximally safe policies of D, ϑ∗

4: Use Lemma 5.3 to construct all ε–maximally safe policies ̺∗ for Sc

Ensure: The set of all ε–maximally safe policies ̺∗

The characterization of all ε–maximally safe policies enables us to optimize a per-
formance criterion, while maintaining a desired level of safety. This characteriza-
tion is through the functions fki(·) in (5.3). For instance one could maximize at
each time step, over the ε–maximally safe policies, the probability of reaching a
target set B ⊂ A in the next time step:

sup
uk

{∫

B

ts(sk+1|sk, uk)dsk+1, uk ∈ Ξu (ϑ
∗
k(ξ(sk)))

}

,

which means keeping a desired level of safety on the system trajectories while
forcing the system to reach the target set B.

To complete our discussion on the class of controlled Markov processes we gener-
alize our results to dtMPs with state-dependent input sets in the next section.
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5.6 Extension to Models with State-Dependent Input

Spaces

In the previous sections we assumed that the set of feasible inputs at each state
is independent of the current state. In this section we generalize the previous
results to the case u ∈ U(s) ⊂ U when the process is at state s ∈ S. Consider the
controlled dtMP Sc = (S,U , {U(s)|s ∈ S}, Ts). Let us define the product of state
and input spaces as

K := {(s, u) ∈ S × U|u ∈ U(s)}
and assume that it is a measurable subset of S × U . Ts is a stochastic kernel on S
given K and admits the conditional density function ts(s̄|s, u).
Algorithm 11 is adapted from Algorithm 8 to include state-dependent input sets.
In order to construct the MDP D we again partition the safe set A = ∪ma

i=1Ai and
select representative points {zi ∈ Ai, i ∈ Nma

}. The main difference is the se-
lection of arbitrary finite partitions for input sets U(zi) and representative points
vij ∈ U(zi). Note that the cardinality of the selected partition and representative
points of partition sets is now state-dependent.

Algorithm 11 Abstraction of model Sc = (S,U , {U(s)|s ∈ S}, Ts) by MDP D

Require: input model Sc with a state-dependent input space, set A
1: Select a finite partition of set A as A = ∪ma

i=1Ai, where ma represents the cardi-
nality of the partition

2: For each Ai, select single representative point zi ∈ Ai

3: For each i ∈ Nma
, select a finite partition of the input set U(zi) as U(zi) =

∪mui

j=1Uij where mui represents the cardinality of the partition of U(zi)
4: For each Uij , select single representative point vij ∈ Uij

5: Define Ad = {zi, i ∈ Nma
} and take Sd = Ad ∪ {▽s} as the finite state space of

the MDP D (▽s being the dummy variable of the state space)
6: Define Ud = {vij , j ∈ Nmui

, i ∈ Nma
} as the finite input space of the MDP D,

Ud(zi) = {vij , j ∈ Nmui
} as the set of feasible inputs when D is at state zi, and

Ud(▽s) = {▽u} (▽u being the dummy variable of the input space)
7: Compute the state transition matrix Td for D as:

Td(z, v, z
′) =







Ts(Ξs(z
′)|z, v), z′ ∈ Ad, z ∈ Ad, v ∈ Ud(z)

1−∑z̄∈Ad
Ts(Ξs(z̄)|z, v), z′ = ▽s, z ∈ Ad, v ∈ Ud(z)

1, z′ = z = ▽s, v = ▽u

0, z′ ∈ Ad, z = ▽s, v = ▽u,

Ensure: output MDP D = (Sd,Ud, {Ud(z)|z ∈ Sd}, Td)

The error quantification of the MDP abstraction approach, presented in Algorithm
11, requires to study the dependence of the input sets from the states. For this
purpose, we assign the Hausdorff distance to the family of non-empty subsets of
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U , which is defined as

dH(X,Y ) = max

{

sup
x∈X

inf
y∈Y

‖x− y‖, sup
y∈Y

inf
x∈X

‖x− y‖
}

∀X,Y ⊂ U .

Assumption 5.2 poses a regularity condition on state-dependent input sets.

Assumption 5.2 There exists a constant λu ∈ R such that the family of state-dependent
input sets {U(s)|s ∈ S} satisfies the Lipschitz inequality

dH(U(s),U(s′)) ≤ λu‖s− s′‖ ∀s, s′ ∈ S.

The maximal invariance probability p∗s0(A) can be computed using the value func-
tions V ∗

k : S → [0, 1],

V ∗
k (s) = sup

u∈U(s)

1A(s)

∫

S
V ∗
k+1(s̄)Ts(ds̄|s, u) ∀s ∈ S, (5.6)

initialized with V ∗
N (s) = 1A(s) (notice the differences with the formulation of The-

orem 5.1). The next lemma establish continuity of these value functions on As-
sumptions 5.1 and 5.2, which is essential for the error quantification.

Lemma 5.4 Under Assumptions 5.1 and 5.2, the value functions V ∗
k (·) of the recursion

(5.6) are Lipschitz continuous, namely |V ∗
k (s) − V ∗

k (s
′)| ≤ λ‖s − s′‖, for all s, s′ ∈ A,

where λ = (hs + huλu)L (A). The constants hs, hu were defined in Assumption 5.1 and
λu is according to Assumption 5.2.

Lemma 5.4 enables us to quantify the error of MDP abstraction of Algorithm 11
on the maximal invariance probability p∗s0(A) for the model Sc as follows

|p∗s0(A)− p∗z0(Ad)| ≤ N(hsδs + huλuδs + huδu)L (A), (5.7)

where p∗z0(Ad) is the maximal invariance probability for the MDP D obtained by
Algorithm 11, and initialized at the discrete state z0 = ξ(s0) ∈ Ad. The constants
δs and δu are the largest diameters of the selected partitions {Ai, i ∈ Nma

} and
{
Uij , j ∈ Nmui

, i ∈ Nma

}
, respectively. Construction of the ε–maximally safe pol-

icy follows the same lines of Section 5.5 and is omitted for brevity.

Remark 5.2 The inequality (5.7) generalized (5.2) by adding the term huλuδs to the er-
ror to account for approximation of the state-dependent input sets: for the case of state-
independent input sets, Assumption 5.2 is automatically satisfied with λu = 0.

For the case of finite input space, i.e. when U is finite, all the discussions of this
chapter remain valid by putting δu = 0: the input space does not need any dis-
cretization. This fact is used in the optimal temperature control problem of the
next section.
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5.7 Case Study: Optimal Temperature Control Prob-

lem

In this section we study the problem of optimal temperature control for thermal
loads. The aggregation and control of a population of such loads, based on the
formal techniques discussed in this thesis, are extensively discussed in the next
chapter.

Evolution of the temperature in a cooling thermal load can be characterized by
the following stochastic difference equation [20, 58]:

θ(k + 1) = a θ(k) + (1 − a)(θa −m(k)RPrate) + w(k), (5.8)

where θa is the ambient temperature, Prate is the rate of energy transfer to the
load, C and R indicate the thermal capacitance and resistance respectively, and
the parameter a = e−h/RC with a discretization time step h. The process noise
w(k), k ∈ N0, is made up by i.i.d. random variables characterized by a density
function tw(·). We denote with m(k) = 0 and m(k) = 1 a thermal load in the OFF
and ON mode at time step k.

The optimal temperature control for a thermal load is defined as follows: find the
state feedback laws m(k + 1) = ̺k(m(k), θ(k)), k ∈ ZN that maximize the proba-
bility that the temperature trajectory remains within a given interval [θmin, θmax]
over the time horizon ZN+1. The optimal feedback laws can be non-linear and
time variant in general.

To solve this problem we construct a controlled SHS model with the hybrid dy-
namical equations

θ(k + 1) = a θ(k) + (1− a)(θa −m(k)RPrate) + w(k),

m(k + 1) = u(k).

The hybrid state space is characterized by a variable s = (m, θ) ∈ S = {0, 1} × R

with two components, a discrete (m) and a continuous (θ) one. The input space of
the process is U = {0, 1}. The one-step transition density function of this stochastic
process, ts(·|s, u), can be computed as

ts
(
(m̄, θ̄)|(m, θ), u

)
= δd[m̄− u]tw(θ̄ − a θ − (1− a)(θa −mRPrate)), (5.9)

where δd[·] denotes the discrete unit impulse function.

Then the optimal temperature control problem is equivalent to finding a maxi-
mally safe policy ̺∗ = (̺∗0, ̺

∗
1, . . . , ̺

∗
N−1) over this SHS model with the safe set

A = {0, 1} × [θmin, θmax] and the time horizon N . We employ the abstraction
approach of this chapter to solve the problem. The process noise is assumed to
be Gaussian w(·) ∼ N (0, σ2), thus the density function (5.9) satisfies Assumption

5.1 with the constants hs = ae−1/2

σ2
√
2π
, hu = 0. Numerical values of Table 5.1 are

used for the dynamical equation (5.8). The temperature interval [θmin, θmax] =
[19.75, 20.25] is considered to reflect the user preference on the desired tempera-
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Parameter Interpretation Value
θa ambient temperature 32 [◦C]
R thermal resistance 2 [◦C/kW ]
C thermal capacitance 10 [kWh/◦C]
Prate power 14 [kW ]
h time step 10 [sec]

Table 5.1: Nominal values of parameters for a residential air conditioner [20].

ture. The time horizon N = 20 and the standard deviation σ = 0.01
√
h are also

selected.

Algorithm 9 is used to generate a uniform grid for partitioning the state space S.
The input space U is finite and does not need partitioning (δu = 0). The error of
ε = 0.1 on the maximally safe policies requires the partition diameter δs = 10−4.
Given the partition, the SHS model is abstracted to an MDP D using Algorithm 8.
Theorem 5.3 is employed to compute the maximal invariance probability p∗z0(Ad)
over D which is an approximation of p∗s0(A) with the guaranteed error 0.05. Figure
5.1 presents the maximal invariance probability p∗s0(A) over the SHS model as a
function of the initial state s0 = (m0, θ0).

The set of maximally safe policies of D is used according to Algorithm 10 to find an
ε–maximally safe policy for the SHS model. Numerical implementation indicates
that the policy ̺∗ = (̺∗0, ̺

∗
1, . . .) comprises the switching strategies ̺∗k(m, θ) of the

form

̺∗k(m(k), θ(k)) =







0 θ(k) < θ−(k)

1 θ(k) > θ+(k)

1−m(k) else,

(5.10)

is ε–maximally safe for the SHS model. The quantities θ−(k), θ+(k) in (5.10) are
constant which depend on time and parameters of the SHS model. The function
̺∗0 is presented in Figure 5.2.

5.8 Conclusions

In this chapter we have presented an abstraction procedure based on a partition-
ing of the state as well as of the input spaces. The focus of this chapter has been on
the study of the maximal invariance probability over a finite horizon for controlled
discrete-time Markov processes. The presented approach is a generalization of
the results of Chapter 2 to controlled models. While only the uniform gridding
procedure is discussed in this chapter, the study enables the adaptive gridding
procedure using local continuity properties of the model, to mitigate the curse of
dimensionality unavoidably related to the partitioning procedure.

We have applied the approach to the problem of optimal temperature control of
a thermal load. The obtained optimal policy is quite similar to the switching con-
trol strategy that is widely used empirically for temperature regulation of thermal
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Figure 5.1: Maximal invariance probability p∗s0(A), when the process is initialized
at s(0) = s0 = (m0, θ0), approximated with p∗z0(Ad) such that z0 =
ξ(s0). The initial mode is OFF in the top panel and is ON in the bottom
panel.
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Figure 5.2: The ε–maximally safe policy function ̺∗0(m0, θ0) which is a switching
strategy.
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loads, which are also known as Thermostatically Controlled Loads (TCLs). Chapter 6
discusses modeling and control of a population of TCLs using our formal abstrac-
tion methods. The abstraction approach of this chapter has been implemented as
a part of the software tool FAUST2, which is presented in Chapter 7.



6 CHAPTER

Aggregation of Thermostatically
Controlled Loads by Formal

Abstractions

T
his chapter discusses a two-step procedure, based on the use of
formal abstractions, to generate a finite-space stochastic dynamical

model as an aggregation of the continuous temperature dynamics of a
homogeneous population of Thermostatically Controlled Loads (TCLs).
The temperature of a TCL is described by a stochastic difference equation
and the TCL status (ON, OFF) by a deterministic switching mechanism.
The procedure is deemed to be formal, as it allows quantification of the
error introduced by the abstraction. As such, it builds and improves on
a known, earlier approximation technique used in the literature. Further,
this chapter investigates the problem of global (population-level) power
reference tracking and load balancing for TCLs that are explicitly depen-
dent on a control input. The procedure is tested on a case study and
benchmarked against the mentioned existing approach in the literature.

6.1 Introduction

Models for Thermostatically Controlled Loads (TCLs) have shown potential to
be engaged in power system services such as load shifting, peak shaving, and
demand response programs. The regulation of the total power consumption of
large populations of TCLs, with the goal of smoothing the uncertain demand over
the grid or tracking the uncertain power production, while abiding by strict re-
quirements on users’ comfort, can lead to economically relevant repercussions for
an energy provider. The modeling of TCLs in view of their application to load
control has a rich history, which can be traced back to the work [23], where the
model of a TCL is used to describe the evolution of the thermostat state. A diffu-
sion approximation framework is notably introduced in [58], and a discrete-time
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simulation model is developed in [64]. Building on these foundations, recent stud-
ies have focused on the development of practically usable models for aggregated
populations of TCLs. In particular, [20] provides an approximate analytical so-
lution to the coupled Fokker–Planck equations originally developed in [58] for a
population of homogeneous TCLs (meaning that TCLs are assumed to have the
same dynamics and parameters), and puts forward a Linear Time-Invariant (LTI)
population model, where the coefficients of its transfer function are estimated by
means of system identification techniques. The contribution in [9] develops a bi-
linear PDE model and designs a Lyapunov stable controller. The work in [53] pro-
poses a new technique, based on the partitioning of the TCL temperature range,
to obtain an aggregate state-space model for a population of TCLs that is now
heterogeneous over the thermal capacitances of the single TCLs. The full infor-
mation of the state variables of the model is used to synthesize a control strategy
over the model output (namely, the total power consumption), in order to attain
tracking via a (deterministic) Model Predictive Control (MPC) scheme. The contri-
butions in [60, 62] extend the results in [53] by considering a population of TCLs
that are heterogeneous over all their parameters: the general setup requires the
use of the extended Kalman filter to estimate the states of the model and to iden-
tify its characteristic transition matrix. The control of the population is performed
by switching ON/OFF a portion of the TCL population. Additional recent con-
tributions have targeted the application of the approaches in [53, 60, 62], towards
higher-order dynamics [81, 82] and energy arbitrage [61].

Matrices and parameters of the state-space aggregate model can be computed an-
alytically or via on system identification techniques [20, 9, 53, 60, 62]. The only
available analytical derivation of the state-space aggregate model [53] works in
discrete time and is based, under two rather restrictive assumptions, on the un-
derlying model of the TCL: first, the TCL temperature evolution is assumed to be
deterministic, thus leading to a deterministic state-space model; second, after par-
titioning the temperature range in separate intervals, the temperatures of the TCLs
within each bin are assumed to be uniformly distributed in the population. More-
over, from a practical standpoint there seems to be no clear connection between
the precision of the aggregation and the performance of the aggregated model:
more specifically, an increase in the number of state bins (that is, a decrease in the
width of the introduced temperature intervals) does not necessarily improve the
performance of the aggregated model. The approach based on system identifica-
tion on the other hand estimates the parameters of an LTI aggregate model based
on data.

This chapter proposes a new, formal two-step abstraction procedure to generate a
finite stochastic dynamical model as the aggregation of the dynamics of a popu-
lation of TCLs. The approach relaxes the limiting assumptions employed in [53]
by providing a model based on the natural probabilistic evolution of the single
TCL temperature. The abstraction comprises two separate parts: (1) employing
the results of Chapter 2 to translate a continuous-space model for a single TCL to
a finite state-space model, which generates a Markov chain; and over a population
of TCLs (2) taking the cross product of the single Markov chains and lumping the
obtained model, by finding its coarsest probabilistically bisimilar Markov chain
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[7]. The approach makes it possible to quantify the abstraction error of the first
step, and furthermore in the homogeneous case the error of the overall abstraction
procedure can be quantified – this is unlike the approach based on approximations
in [53] and the approach based on system identification in [20, 60, 62].

This chapter also describes a dynamical model for the time evolution of the ab-
straction, and shows asymptotic results as the population size grows: increasing
number of state bins always improves the accuracy, leading to a convergence of
the introduced abstraction error to zero. This result is aligned with the work in
[9, 10] on the aggregation of continuous-time deterministic thermostatic loads.
The explicit relationship between aggregate model and population parameters
enables the development of a set-point control strategy aimed at reference track-
ing over the population total power consumption (cf. Figure 6.2): a conditional
Kalman filter [22] is employed to estimate the state of the model and the power
consumption of the population is regulated via a simple one-step prediction ap-
proach. As such, the control architecture does not require knowledge of the states
of all TCLs, but leverages directly the measurement of the total power consump-
tion. Alternatively, a stochastic model predictive control scheme is proposed. Both
procedures are tested on a case study and the abstraction technique is bench-
marked against the analytical approach proposed in [53].

This chapter is organized as follows. Section 6.2, after introducing the model of
the single TCL dynamics, describes its abstraction as a Markov Chain, and further
discusses the aggregation of a homogeneous population of TCLs – the errors in-
troduced by both steps are quantified. Section 6.3 discusses TCL models endowed
with a control input, and the synthesis of global (acting at the population level –
cf. Figure 6.2) controllers to achieve regulation of the total consumed power – this
is achieved by two alternative schemes. Finally, all the discussed techniques are
tested on a case study described in Section 6.4. Throughout this chapter we denote
vectors with bold typeset and use the corresponding indexed letter with normal
typeset for its elements.

6.2 Formal Abstraction of a Homogeneous Population

of TCLs

6.2.1 Continuous Model of the Temperature of a TCL

The evolution of the temperature in a TCL can be characterized by the following
stochastic difference equation [20, 58]:

θ(k + 1) = a θ(k) + (1 − a)(θa ±m(k)RPrate) + w(k), (6.1)

where θa is the ambient temperature, Prate is the rate of energy transfer, C and R
indicate the thermal capacitance and resistance respectively, and a = e−h/RC with
a discretization step h. The process noisew(k), k ∈ N0, is made up by i.i.d. random
variables characterized by a density function tw(·). We denote with m(k) = 0 a
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TCL in the OFF mode at time k, and with m(k) = 1 a TCL in the ON mode.
In equation (6.1) the symbol ± signifies the following: a plus sign is used for a
heating TCL, whereas a minus sign for a cooling TCL. We focus on a population of
cooling TCLs, with the understanding that the case of heating TCLs can be treated
similarly. The distributions of the initial temperature and mode are denoted by
π0(m, θ), respectively. The temperature dynamics for the cooling TCL is regulated
by a control signal m(k + 1) = f(m(k), θ(k)) based on discrete switching as

f(m, θ) =







0, θ < θs − δ/2
.
= θ−

1, θ > θs + δ/2
.
= θ+

m, else,

(6.2)

where θs denotes a temperature set-point and δ a dead-band, and together char-
acterize an operating temperature range. The power consumption of the TCL at
time k is equal to 1

ηm(k)Prate, which is equal to zero in the OFF mode and positive

in the ON mode, and where the parameter η is the coefficient of performance. The
constant 1

ηPrate, namely the power consumption of a TCL in the ON mode, will

be shortened as PON in the rest of this chapter.

6.2.2 Finite Abstraction of a TCL by State-Space Partitioning

The composition of the dynamical equation in (6.1) with the algebraic relation in
(6.2) allows one to consider a TCL as a SHS model (cf. Chapter 2 Section 2.4),
namely as a dtMP evolving over a hybrid state space, which is characterized by a
variable s = (m, θ) ∈ {0, 1} × R with two components, a discrete (m) and a con-
tinuous (θ) one. The one-step transition density function of the stochastic process,
ts(·|s), made up of the dynamical equations in (6.1), (6.2), and conditional on point
s, can be computed as

ts ((m
′, θ′)|(m, θ)) = δd[m

′ − f(m, θ)]tw(θ
′ − a θ − (1− a)(θa −mRPrate)),

where δd[·] denotes the discrete unit impulse function. This interpretation allows
leveraging the abstraction technique of Chapter 2 to reduce the model into a finite-
state Markov chain. Consider an arbitrary, finite partition of the continuous do-
main R = ∪n

i=1Θi, and arbitrary representative points within the partitioning re-
gions denoted by {θ̄i ∈ Θi, i ∈ Nn}. Introduce a finite-state Markov chain M,
characterized by 2n states sim = (m, θ̄i),m ∈ {0, 1}, i ∈ Nn. Algorithm 1 indicates
that the transition probability matrix related to M is made up of the following
elements

P(sim, si′m′) =

∫

Θi′

ts
(
(m′, θ′)|m, θ̄i

)
dθ′, ∀m′ ∈ {0, 1}, i′ ∈ Nn. (6.3)

The initial probability mass for M is obtained as p0(sim) =
∫

Θi
π0(m, θ)dθ. For

simplicity of notation we rename the states of M by the bijective map ℓ(sim) =
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Figure 6.1: Partitioning of the temperature axis for the abstraction of the dynamics
of a TCL.

mn+ i,m ∈ {0, 1}, i ∈ Nn, and accordingly we introduce the new notation

Pij = P(ℓ−1(i), ℓ−1(j)), p0i = p0(ℓ
−1(i)), ∀i, j ∈ N2n.

Notice that the conditional density function of the stochastic system capturing the
dynamics of a TCL is discontinuous, due to the presence of equation (6.2). This can
be emphasized by the following alternative representation of the discontinuity in
the discrete conditional distribution, for all m,m′ ∈ {0, 1}, θ ∈ R:

δd [m
′ − f(m, θ)] = m′1(θ+,∞)(θ)+ (1−m′)1(−∞,θ−)(θ)+ (1− |m−m′|)1[θ−,θ+](θ),

where 1A(·) denotes the indicator function of a general set A. The selection of
the partitioning sets then requires special attention: a convenient way to obtain
that is to select a partition for the dead-band [θ−, θ+], thereafter extending it to a
partition covering the whole real line R (cf. Figure 6.1). Let us select two constants
l,m ∈ N, l < m, compute the partition size υ = δ/2l and quantity L = 2mυ. Now
construct the boundary points of the partition sets {θi}i=m

i=−m
for the temperature

axis as follows:

θ±l = θs ± δ/2, θ±m = θs ± L/2, θi+1 = θi + υ, i ∈ Nn−2,
Θ1 = (−∞, θ−m), Θn = [θm,∞), Θi+1 = [θ−m+i−1, θ−m+i),
R = ∪n

i=1Θi, n = 2m+ 2,
(6.4)

and let us render the Markov states of the infinite-length intervals Θ1,Θn re-
flecting. Let us emphasize that the discontinuity in the discrete transition kernel
δd [m

′ − f(m, θ)] and the above partition induce the following structure on the
transition probability matrix of the chain M:

P = [Pij ]i,j =

[
Q11 0 Q31 0
0 Q22 0 Q42

]T

, (6.5)

where Q11, Q42 ∈ R
n×(m+l+1), whereas Q22, Q31 ∈ R

n×(m−l+1), which leads to
P ∈ R

2n×2n.

Clearly, the abstraction of the dynamics in (6.1)-(6.2) over this partition of the state
space leads to a discretization error: in Section 6.2.5 we formally derive bounds
on this error as a function of the partition size υ and of the quantity L, which
guarantees the convergence (in expected value) of the power consumption of the
abstracted model to that of the entire population.
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6.2.3 Aggregation of a Population of TCLs by Bisimulation Rela-
tion

Consider now a population of np homogeneous TCLs, that is a population of TCLs
which, after possible rescaling of (6.1)-(6.2), share the same set of parameters1

θs, δ, θa, C,R, Prate, PON (and thus η), h, and noise terms tw(·). Each TCL can then
be abstracted as a Markov chain M with the same transition probability matrix
P = [Pij ]i,j , where i, j ∈ N2n, which leads to a population of np homogeneous
Markov chains. The initial probability mass vector p0 = [p0i]i might still vary
over the TCL population.

The homogeneous population of TCLs can be represented by a single Markov
chain Ξ , built as the cross product of the np homogeneous Markov chains, and
endowed with the state

z = [z1, z2, . . . , znp ]
T ∈ Z = N

np

2n,

where zj ∈ N2n represents the state of the jth Markov chain. We denote by PΞ the
transition probability matrix of Ξ .

It is understood that Ξ , having exactly (2n)np states, can in general be quite large,
and thus cumbersome to manipulate computationally. As the second step of the
abstraction procedure, we are interested in aggregating this model and we employ
the notion of probabilistic bisimulation [7] to achieve this. Let us introduce a finite
set of atomic propositions as a constrained vector with a dimension corresponding
to the number of bins of the single TCL M:

AP =

{

x = [x1, x2 . . . , x2n]
T ∈ Z

2n
np+1

∣
∣
∣
∣

2n∑

r=1

xr = np

}

.

The labeling function L : Z → AP associates to a configuration z ofΞ a vector x =
L(z), which elements xi ∈ Znp+1 count the number of thermostats in bin i, i ∈ N2n.
Notice that the setAP is finite with cardinality |AP | = (np+2n−1)!/(np!(2n−1)!),
which for np ≥ 2 is (much) less than the cardinality (2n)np of Ξ .

Let us define an equivalence relation R [7] on the state space of Z , such that

(z, z′) ∈ R ⇔ L(z) = L(z′).

A pair of elements of Z (each of them a vector representing a state ofΞ) is in the re-
lation whenever the corresponding number of TCLs in any of the introduced bins
is the same (recall that the TCL population is assumed to be homogeneous). Such
an equivalence relation provides a partition of the state space of Z into equiv-
alence classes belonging to the quotient set Z/R, where each class is uniquely
specified by the label associated to its elements. We plan to show that R is an
exact probabilistic bisimulation relation on Ξ [7], which requires proving that, for

1This homogeneity assumption might seem to be restrictive which induces limitation on the prac-
tical application of the results of this chapter. The reader may refer to [33] in which we have extended
the results to the heterogeneous populations of TCLs.
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any set T ∈ Z/R and any pair (z, z′) ∈ R

PΞ(z,T ) = PΞ(z
′,T ), (6.6)

This is achieved by Corollary 6.1 in the next Section. We now focus on the stochas-
tic properties of Ξ , which we study via its quotient Markov chain obtained with
R.

6.2.4 Properties of the Aggregated Quotient Markov Chain

We study the one-step probability mass function associated to the codomain of the
labeling function (that is, to the labels set), conditional on the state of the chain Ξ .

Lemma 6.1 The conditional random variable (xi(k + 1)|z(k)), i ∈ N2n, has a Poisson-
binomial distribution over the sample space Znp+1, with the following mean and variance:

E[xi(k+1)|z(k)] =
np∑

r=1

Pzr(k)i, var(xi(k+1)|z(k)) =
np∑

r=1

Pzr(k)i(1−Pzr(k)i). (6.7)

Conditional on an observation x = [x1, x2, . . . , x2n]
T at time k over the Markov

chain Ξ , it is of interest to compute the probability mass function of the condi-
tional random variable (xi(k+1)|x(k)) as P(xi(k+1) = j|x(k)), for any j ∈ Znp+1

— notice the difference with the quantity discussed in (6.7) where the condition-
ing is over variable z(k). For any label x = [x1, x2, . . . , x2n]

T there are exactly
np!/(x1!x2! . . . x2n!) states of Ξ such that L(z) = x. We use the notation z →֒ x to
indicate the states in Ξ associated to label x, that is z : L(z) = x. Based on the law
of total probability for conditional probabilities, we can write

P(xi(k + 1) = j|x(k)) =
∑

z(k)→֒x(k) P(xi(k + 1) = j|z(k))P(z(k))
P(x(k))

= P(xi(k + 1) = j|z(k))
∑

z(k)→֒x(k) P(z(k))

P(x(k))

= P(xi(k + 1) = j|z(k)), (6.8)

where the sum is over all states z(k) of Ξ such that L(z(k)) = x(k): in these states
we have x1(k) Markov chains in state 1 with probability P1i, x2(k) Markov chains
in state 2 with probability P2i, and so on. The simplification above is legitimate
since the probability of having a label x = [x1, x2, . . . , x2n]

T is exactly the sum of
the probabilities associated to the states z generating such a label. This further
allows expressing the quantities in (6.7) as

E[xi(k + 1)|z(k)] =
np∑

r=1

Pzr(k)i =

2n∑

r=1

xr(k)Pri.
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The generalization of the previous results to vector labels leads to the following
statement.

Theorem 6.1 The conditional random variables (xi(k + 1)|x(k)) are characterized by
Poisson-binomial distributions, whereas the conditional random vector (x(k + 1)|x(k))
by a generalized multinomial distribution. Mean, variance, and covariance are described,
∀i, j ∈ N2n, i 6= j, by

E[xi(k + 1)|x(k)] =
2n∑

r=1

xr(k)Pri,

var(xi(k + 1)|x(k)) =
2n∑

r=1

xr(k)Pri(1− Pri),

cov(xi(k + 1), xj(k + 1)|x(k)) = −
2n∑

r=1

xr(k)PriPrj .

Theorem 6.1 indicates that the distribution of the conditional random variable
(x(k + 1)|x(k)) is independent of the underlying state z(k) →֒ x(k) of Ξ . With
focus on equation (6.6), this result allows us to claim the following [7].

Corollary 6.1 The equivalence relation R is an exact probabilistic bisimulation over the
Markov chain Ξ . The resulting quotient Markov chain is the coarsest probabilistic bisim-
ulation of Ξ .

Without loss of generality, let us normalize the values of the labels x by the total
population size np, thus obtaining a new variable X. The conditional variable
(X(k + 1)|X(k)) is characterized by the following parameters:

E[Xi(k + 1)|X(k)] =

2n∑

r=1

Xr(k)Pri,

var(Xi(k + 1)|X(k)) =
1

np

2n∑

r=1

Xr(k)Pri(1 − Pri), (6.9)

cov(Xi(k + 1), Xj(k + 1)|X(k)) = − 1

np

2n∑

r=1

Xr(k)PriPrj ,

for all i, j ∈ N2n, i 6= j. Based on the expression of the first two moments of
(X(k + 1)|X(k)), we apply a translation (shift) on this conditional random vector
as W(k) = X(k + 1)− E[X(k + 1)|X(k)], where W(k) = [ω1(k), . . . , ω2n(k)]

T and
ωi(k) are guaranteed to be (dependent) random variables with zero mean and
covariance described by (6.9) and dependent on the state X(k). Such a translation
allows expressing the following dynamical model for the variable X:

X(k + 1) = PT
X(k) +W(k). (6.10)
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Remark 6.1 We have modeled the evolution of the TCL population with the abstract ag-
gregated model (6.10), characterized by a stochastic difference equation. The dynamics in
(6.10) represent a direct generalization of the model abstraction provided in [53]. A closer
look on the covariance terms in (6.9) is that they are bounded by the quantity 1/np, and
thus decrease to zero as np grows, independent of the number of bins n.

We employ the Lyapunov central limit theorem [13] to prove the following asymp-
totic result.

Theorem 6.2 The random variable (Xi(k + 1)|X(k)) can be explicitly expressed as

Xi(k + 1) =

2n∑

r=1

Xr(k)Pri + ωi(k), (6.11)

where the random vectorW(k) = [ω1(k), . . . , ω2n(k)]
T has a covariance matrixΣ(X(k))

as in (6.9), and converges (in distribution) to a multivariate Gaussian random vector
N (0, Σ(X(k))), as np ↑ ∞.

Theorem 6.2 practically states that the conditional distribution of the random vec-
tor W(k) for a relatively large population size can be effectively replaced by a
multivariate Gaussian distribution with known moments. We shall exploit this
result in the state estimation step using Kalman filter, as in Section 6.3. Notice that
the above conclusion can be applied to any population of homogeneous TCLs,
which are characterized by Markov chains that have the same transition probabil-
ity matrix. The initial distributions of the single Markov chain can instead vary.

In the previous theorem we have developed a model for the evolution of Xi(k),
which in the limit includes a Gaussian noise ωi(k). As discussed in (6.9), these
Gaussian random variables are dependent. The covariance matrix in (6.9) is guar-

anteed to be positive semi-definite for all Xr ∈ {0, 1
np
, 2
np
, . . . ,

np−1
np

, 1}, provided

that
∑2n

r=1Xr = 1. In order to enable a more general use in (6.10), we next show
that the covariance matrix remains positive semi-definite when the model is ex-
tended over the variables Xr ∈ [0, 1].

Proposition 6.1 The covariance matrix Σ(X) is positive semi-definite for all Xr ≥ 0.

The entries of the random vector W are dependent on each other, since
∑2n

r=1 ωr = 0

whenever
∑2n

r=1Xr = 1. Condition
∑2n

r=1Xr(0) = 1 implies that
∑2n

r=1Xr(k) = 1, for
all k ∈ N.

6.2.5 Explicit Quantification of the Errors of the Abstraction and
of the Aggregation Procedures

Let us now quantify the power consumption of the aggregate model, as an exten-
sion of the quantity discussed after equation (6.2). The total power consumption
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obtained from the aggregation of the original models in (6.1)-(6.2), with variables
(mj , θj)(k), j ∈ Nnp , is

y(k) =

np∑

j=1

mj(k)PON . (6.12)

With focus on the abstract model (with the normalized variable X), the power
consumption is

yabs(k) = HX(k), H = npPON [0n, 1n], (6.13)

where 0n and 1n are row vectors with all the entries equal to zero and one, respec-
tively. For the quantification of the error we consider a homogeneous population
of TCLs with dynamics affected by Gaussian process noise w(·) ∼ N (0, σ2), and
the abstracted model constructed based on the partition introduced in (6.4). The
main result of this section hinges on two features of the Gaussian distribution, its
continuity and its decay at infinity. In order to keep the discussion focused we
proceed considering Gaussian distributions, however the results can be extended
to any distribution with these two features. Since the covariance matrix in (6.9)
is small for large population sizes, the first moment of the random variable y(k)
provides sufficient information on its behavior over a finite time horizon. The to-
tal power consumption in (6.12) is the sum of np independent Bernoulli trials over
the sample space {0, PON}, each with different success probability. Then for the
quantification of the modeling error we study the error produced by the abstrac-
tion over the expected value of the binary TCL mode (ON, OFF).

Consider a single TCL, with initial state s0 = (m0, θ0). Also select a desired final
time Td and discrete time horizon N = Td/h, where h is the discretization step.
Based on the evolution equation of the discrete mode (6.2), the TCL is in the ON
mode at time step N , namely m(N) = 1, if and only if m(N − 1) ∈ A, where
A = {1}× [θ−,+∞)∪{0}× [θ+,+∞). Then the expected value of its mode at time
N , m(N), can be computed as

E[m(N)|m0, θ0] = P (m(N) = 1|m0, θ0) = P (s(N − 1) ∈ A|m0, θ0) . (6.14)

This quantity can be characterized via value functions Vk : S → [0, 1], k ∈ NN ,
which are computed recursively as follows:

Vk(sk) =

∫

S
Vk+1(sk+1)ts(sk+1|sk)dsk+1, ∀k ∈ NN−1, VN (s) = 1A(s). (6.15)

Knowing these value functions, we have that E[m(N)|m0, θ0] = V1(m0, θ0). Com-
putationally, the calculation of these quantities can leverage the results of Chapter
2, which however require extensions 1) to conditional density functions of the pro-
cess that are discontinuous, and 2) to an unbounded state space. The first issue is
addressed by the following lemma.

Lemma 6.2 The density function ts(s
′|·) is piecewise-continuous within the continuity

regions

{0} × (−∞, θ+], {0} × (θ+,+∞), {1} × (−∞, θ−), {1} × [θ−,+∞).
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The value functions Vk(s) are piecewise-Lipschitz continuous, namely:

|Vk(m, θ)− Vk(m, θ
′)| ≤ 2a

σ
√
2π

|θ − θ′|,

where a, σ represent respectively the TCL parameter and the variance of the process noise,
and where (m, θ), (m, θ′) is any pair of points belonging to one of the four continuity
regions of the density ts.

In order to cope with the second issue, we study the limiting behavior of the value
functions at infinity, apply a truncation over the state space, as proposed in Section
6.2.2, and properly select the value of the functions outside of this region. Lemma
6.3 shows that limθ→−∞ Vk(m, θ) = 0, limθ→+∞ Vk(m, θ) = 1, and provides an up-
per bound on the distance between Vk(m, θ) and its limiting values, which hinges
on the parameter L. This parameter represents the length of the truncated part
of the temperature range [θ−m, θm], which is further partitioned to construct the
abstract Markov chain. An upper bound on the error of the value functions pro-
duced by state-space truncation and partitioning is further quantified in Theorem
6.3.

Lemma 6.3 For the partitioning procedure in (6.4) we have that

Vk(m, θ) ≤ (N − k)ǫ ∀θ ≤ θ−m = θs − L/2 m ∈ {0, 1},
Vk(m, θ) ≥ 1− (N − k)ǫ ∀θ ≥ θm = θs + L/2 m ∈ {0, 1}, (6.16)

where ǫ =
e−γ2/2

γ
√
2π

, and where

γ =
1− a

2σ

[
aNL+ δ

1− aN
− λ

]

, λ = RPrate + |2(θs − θa) +RPrate|. (6.17)

Notice in particular the linear dependence of γ on L, the temperature interval of
interest.

Theorem 6.3 If we abstract a TCL as a Markov chain based on the procedure of Section
6.2.2, compute the solution of problem (6.15) over the Markov chain, and construct a
piecewise-constant approximation function W1(m, θ) using the solution of (6.15) over
the Markov chain, then the approximation error can be upper bounded as follows:

|V1(m, θ)−W1(m, θ)| ≤ (N−1)

[
N − 2

2
ǫ+

2a

σ
√
2π
υ

]

∀(m, θ) ∈ {0, 1}× [θ−m, θm].

Notice that the error has two terms: one term accounts for the error of the approx-
imation over infinite-length intervals ǫ, whereas the second is related to the choice
of the partition size υ.

Collecting the results above, the following theorem quantifies an upper bound on
the abstraction error over the total power consumption.
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Corollary 6.2 The difference in the expected value of the total power consumption of
the population y(N), and that of the abstracted model yabs(N), both conditional on the
corresponding initial conditions, is upper bounded by

∣
∣E[y(N)|s0]− E[yabs(N)|X0]

∣
∣ ≤ npPON (N − 1)

[
(N − 2)

2
ǫ+

2a

σ
√
2π
υ

]

, (6.18)

for all s0 ∈ ({0, 1} × [θ−m, θm])
np . The initial state X0 is obtained as a function of the

initial states in the TCL population s0, as can be evinced from the definition of the state
vector X.

The result in Corollary 6.2 allows tuning the error over the total power consump-
tion of the population made with the abstraction procedure. In practice, it can
be reduced to a desired level by increasing the abstraction precision: this can be
achieved by increasing γ and the number of state bins (by decreasing their size).
This results in a larger-dimensional model in (6.10). To address this issue, model-
order reduction techniques like balanced realization and truncation or Hankel singular
values [5] can be employed to obtain a low dimensional model describing the dy-
namics of the population power consumption. These known techniques follows
the observation that the dynamics of the linear model are mostly determined by
the largest eigenvalues of the transition probability matrix.

6.3 Abstraction and Control of a Population of Non-

Autonomous TCLs

One can imagine a number of different strategies for controlling the total power
consumption of a population of TCLs. With focus on the dynamics of a single TCL,
one strategy could be to vary the rate of the energy transfer Prate, for instance by
circulating cold/hot water through the load with higher or lower speed. Another
approach could be to act on the thermal resistance R, for instance opening or
closing doors and windows at the load end. Yet another strategy could be to
apply changes to the set-point θs, as suggested in [20].

Let us observe that the first two actions would modify the dynamics of (6.1),
whereas the third control action would affect the relation in (6.2). While abstract-
ing the TCL model as a finite-state Markov chain, a control action results in a
modification of the elements of the transition probability matrix. With reference
to (6.5), the entries of the matrices Q11, Q22, Q31, Q42 are computed based on (6.1),
while the size of these matrices is determined based on (6.2). Since the set-point θs
affects only equation (6.2), a set-point alteration affects the structure of the prob-
ability matrix in (6.5), whereas other approaches affect the value of its non-zero
elements. It follows that in view of the abstraction procedure the control by set-
point variation has the advantage of requiring a single computation of marginals,
while the other discussed methods would require this computation to be a func-
tion of the allowed control inputs.
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Based on the discussion above, we consider case where the control input is taken
to be the set-point θs of the TCL. We intend to apply the control input to all TCLs
uniformly (cf. Figure 6.2), which does not require differentiating among the states
of different TCLs. Moreover, in order to retain validity of the definition of state
bins X(·) regardless of the applied input signal, we discretize the domain of al-
lowable set-points by the same parameter ν used for the partition size.

Considering closed-loop control schemes in the literature, [53] assumes full knowl-
edge of the state vector X(k) and employs a Model Predictive Control architecture
to design the control signal. Moving forward, [60, 62] consider different scenarios
for the configuration of the control architecture: states are measured completely,
or known partially and a Kalman filter is used for state estimation, or states and
transition matrix are estimated by use of an Extended Kalman filter. The mini-
mum required infrastructure for the practical implementation of the strategies in
[60, 62] ranges from a TCL temperature sensor and a two-way data connection for
transmitting the state information and control signal, to a one-way data connec-
tion for sending the specific control signal to the single TCLs. The presence of a
local decision maker is essential in all the scenarios: each TCL receives a control
signal at each time step, determines its current state, and generates a local control
action. In contrast, the set-point control strategy in this chapter does not require
single TCL to know its individual state, which makes the approach applicable
regardless of the thermometer precision [20].

In the following we attempt to mitigate the above limitations by showing that the
knowledge of the actual values of the TCL states or of vector X(k) in the aggre-
gated model are not necessary. Given the model parameters, all that is needed is
an online measurement of the total power consumption of the TCL population,
which allows estimating the states in X(k) and using the set-point θs to track a
given reference signal. The control action comprises a simple signal for the set-
point, which is applied to all TCLs uniformly: no local decision maker is then
required.

6.3.1 State Estimation and One-Step Regulation

Suppose we consider a homogeneous population of TCLs with known parame-
ters. As discussed earlier, we assume that the control input is discrete and takes
values over a finite set, θs(k) ∈ {θ−l, θ−l+1, . . . , θl−1, θl}, ∀k ∈ N0: the parameter
l is arbitrary and has been chosen to match the abstraction parameter in Figure
6.1 and the scheme in (6.4). Based on (6.10), we set up the following discrete-time
switched stochastic system:

X(k + 1) = Fσ(k)X(k) +W(k),

where by switched model we mean that the state matrix Fσ(k) takes values in

{PT (θ−l), P
T (θ−l+1), . . . , P

T (θl−1), P
T (θl)},



110 Aggregation of TCLs by Formal Abstractions

for all k ∈ N0, (cf. (6.10)), and the switching signal σ(·) : N0 → Z2l+1 is a map
specifying the set-point θs, and hence the TCL dynamics, as a function of time. The
process noise W(k) is normal with zero mean and the state-dependent covariance
matrix Σ(X(k)) in (6.9). The total power consumption of the TCL population is
measured as ymeas(k) = HX(k) + v(k), where v(k) ∼ N (0, Rv) is a measurement
noise characterized by

√
Rv, the standard deviation of the real-time measurement

in the power meter instrument.

Since the process noise W is state-dependent, the state of the system can be esti-
mated by the conditional Kalman filter [22] with the following time update:

X̂
−(k + 1) = Fσ(k)X̂(k),

P−(k + 1) = Fσ(k)P(k)F
T
σ(k) +Σ(X̂(k)),

and the following measurement update:

Kk+1 = P−(k + 1)HT
[
HP−(k + 1)HT +Rv

]−1
,

P(k + 1) = [I −Kk+1H ]P−(k + 1),

X̂(k + 1) = X̂
−(k + 1) +Kk+1[ymeas(k + 1)−HX̂

−(k + 1)].

When the state estimates X̂ are available, we formulate the following optimization
problem based on a one-step output prediction, in order to synthesize the control
input at the next step:

min {|yest(k + 2)− ydes(k + 2)|, σ(k + 1) ∈ Z2l+1}

such that

{

X̂(k + 2) = Fσ(k+1)X̂(k + 1)

yest(k + 2) = HX̂(k + 2),

where ydes(·) is a desired reference signal and X̂(k + 1) is provided by the condi-
tional Kalman filter above. The obtained optimal value for σ(k + 1) provides the
set-point θs(k + 1), which is applied to the entire TCL population at the follow-
ing (k+ 1)th iteration. Figure 6.2 illustrates the closed-loop configuration for state
estimation and one-step regulation of the power consumption.

6.3.2 Regulation via Stochastic Model Predictive Control (SMPC)

We can perform power tracking by formulating and solving the following SMPC
problem [46]:

min
σ(τ)

Jk = E

[
T∑

τ=k+1

[yabs(τ)− ydes(τ)]
2 + κTX(T )

∣
∣
∣
∣
X(k)

]

(6.19)

such that

{

X(τ + 1) = Fσ(τ)X(τ) +W(τ), yabs(τ) = HX(τ),

σ(τ) ∈ Z2l+1, ∀τ ∈ {k, k + 1, . . . , T − 1}.
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Population

Conditional Kalman filter with state-dependent process noise

One-step regulation

Z−1

X̂(k + 1)θs(k)
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ymeas(k + 1)

ydes(k + 2)

X̂(0)

Rv

population
parameters

TCL1(θ1,m1)

TCL2(θ2,m2)
...

TCLnp(θnp ,mnp)

population
parameters

Time update:

X̂
−(k + 1) = Fσ(k)X̂(k)

P−(k + 1) = Fσ(k)P(k)F
T
σ(k) +Σ(X̂(k))

Measurement update:

Kk+1 = P−(k + 1)HT
[
HP−(k + 1)HT +Rv

]−1

P(k + 1) = [I −Kk+1H ]P−(k + 1)

X̂(k + 1) = X̂
−(k + 1) +Kk+1[ymeas(k + 1)−HX̂

−(k + 1)]

minσ(k+1)∈Z2l+1
|yest(k + 2)− ydes(k + 2)|

subject to:

X̂(k + 2) = Fσ(k+1)X̂(k + 1)

yest(k + 2) = HX̂(k + 2)

Figure 6.2: State estimation and one-step regulation for the closed-loop control of
the power consumption.

The function Jk is called the conditional cost-to-go [72] which comprises a run-
ning cost for tracking and a terminal cost. The terminal cost is assumed to be a
linear combination (with weighting vector κ) of the model states at final time T ,
and practically accounts for possible penalty weights over the number of TCLs
within the temperature intervals. The expectation is taken over the underlying
probability space for the trajectories of the process over the time interval [k+1, T ].
The dynamics are nonlinear due to the switching nature of the control signal. The
average evolution of the states and output of the system can be expressed by the
following deterministic difference equation:

E[X(τ + 1)] = Fσ(τ)E[X(τ)], E[yabs(τ)] = HE[X(τ)].

The associated state transition matrix Φσ(T, k) = Fσ(T−1)Fσ(T−2) . . . Fσ(k) pro-
vides a closed form for the average evolution over the interval [k, T ]:

E[X(T )] = Φσ(T, k)E[X(k)], E[yabs(T )] = HΦσ(T, k)E[X(k)].

Thanks to the linearly state-dependent covariance matrix, we can establish the
following result.

Theorem 6.4 The cost function of the SMPC problem can be computed explicitly as

Jk =

T∑

τ=k+1

[HΦσ(τ, k)X(k) − ydes(τ)]
2
+Ψσ(T, k)X(k), (6.20)

where the matrix

Ψσ(T, k) = κTΦσ(T, k) +
1

np

T∑

τ1=k

T∑

τ2=τ1+1

R(HΦσ(τ2, τ1 + 1), Fσ(τ1))Φσ(τ1, k),

and where R : R1×2n × R
2n×2n → R

1×2n is a matrix-valued map with R(C,D) =
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C◦2D− (CD)◦2, where the operator ◦2 is the Hadamard square of the matrix (element-
wise square).

Proof: The proof is derived by computing the summation of Jk in (6.19) back-
wards, conditioning the expected value to the intermediate states and utilizing
the equality νΣ(X)νT = 1

np
R(ν, PT )X, for any ν ∈ R1×2n. 2

The obtained explicit cost function is the sum of a quadratic cost for the deter-
ministic average evolution of the system state and of a linear cost related to the
covariance of the process noise.

Remark 6.2 For both formulations of the power tracking problem, the reference signal
ydes(·) is assumed to be given. This is in practice the case when the TCL population
is controlled to provide ancillary services. Moreover, this holds when a power utility
company (or aggregator) participating in an energy market: it can observe the profile
of the energy price, solve an optimization problem at a higher level minimizing the total
energy cost based on an energy storage model, and thus obtain the power reference signal
[61].

Example 6.1 The SMPC formulation can accommodate problems where the population
participates in the energy market to minimize the energy costs. In the real-time energy
market the Locational Marginal Pricing algorithms result in the profile of energy price for
time intervals of 5-minutes [79]. Given that profile, the population can save money by
minimizing the total cost of its energy usage within the given time frame, i.e. consuming
less energy when the price is high and more energy when the price is low, under some
constraints, in the next 24 hours. Suppose the final time T is selected such that T = 24/h,
where h is the length of the sampling time (5 minutes), and let the sequence {λτ , τ =
k + 1, k + 2, . . . , T } be the profile of the energy price provided by the energy market. The

total energy consumption of the population is then
∑T

τ=k+1 λτyabs(τ)h. The following
optimization problem can be solved, given the model dynamics, in order to minimize the
expected value of the energy consumption:

min
σ(τ)

E

[
T∑

τ=k+1

λτyabs(τ)h

∣
∣
∣
∣
X(k)

]

= min
σ(τ)

T∑

τ=k+1

λτhHΦσ(τ, k)X(k).

6.4 Numerical Case Study and Benchmarks

In this section we compare the performance of the aggregation procedure with
that developed in [53], which as discussed obtains an aggregated model with dy-
namics that are deterministic, and has in fact been shown to be a special (limiting)
case of the model in this chapter (cf. Remark 6.1). We further synthesize global
controls over the temperature set-point to perform tracking of the total power
consumption of the population.
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Parameter Interpretation Value
θs temperature set-point 20 [◦C]
δ dead-band width 0.5 [◦C]
θa ambient temperature 32 [◦C]
R thermal resistance 2 [◦C/kW ]
C thermal capacitance 10 [kWh/◦C]
Prate power 14 [kW ]
η coefficient of performance 2.5
h time step 10 [sec]

Table 6.1: Nominal values of parameters for the case study as from [20].

For all simulations we consider a population size of np = 500, however recall
that our abstraction is proved to work as desired for any value np of the pop-
ulation size. As a benchmark, we have run 50 Monte Carlo simulations for the
TCL population based on the dynamics in (6.1)-(6.2) and aggregated explicitly,
and computed the empirical average total power consumption.

6.4.1 Aggregation of a Homogeneous Population of TCLs

Each TCL is characterized by parameters that take value in Table 6.1. All TCLs
are initialized with a temperature at the set-point (θ(0) = θs), half of them in the
OFF mode (m(0) = 0), and the other half in the ON model (m(0) = 1). Unlike the
deterministic dynamics considered in [53], the model in (6.1) includes a process

noise: we select initially a small value for its standard deviation as σ = 0.001
√
h =

0.0032.

The abstraction in [53] is obtained by partitioning exclusively the dead-band and
by “moving the probability mass” outside of this interval to the nearest bin in
the opposite mode. Recall that in the new approach put forward in this chap-
ter we need to provide a partition not only for the dead-band but for the larger
range of temperatures (cf. Fig. 6.1). Sample trajectories of the TCL population are
presented in Figure 6.3: the second set of trajectories, obtained for a larger value
of noise level, confirms that we need to partition the whole temperature range,
rather than exclusively the dead-band. The abstraction in [53] depends on a pa-
rameter nd, denoting the number of bins: we select nd = 70, which leads to a total
of 140 states. The selection of nd has been steered by empirical tuning, targeted
toward optimal performance; however, in general there seems to be no clear cor-
respondence between the choice of nd and the overall precision of the abstraction
procedure in [53].

For the formal abstraction proposed in this chapter, we construct the partition as
in (6.4) with parameters l = 70,m = 350, which leads to 2n = 1404 abstract states.
Here notice that the presence of a small standard deviation σ for the process noise
(not included in the dynamics of [53]) requires a smaller partition size to finely
resolve the jumping probability between adjacent bins. Let us emphasize again
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Figure 6.3: Sample trajectories of the TCL population for two different values of
the standard deviation of the process noise, σ = 0.0032 and σ = 0.032.

that an increase in nd for the method in [53] does not lead to an improvement of
the outcomes.

The results obtained for a small noise level σ = 0.0032 are presented in Figure
6.4 (top). The aggregate power consumption has an oscillatory decay, since all
thermostats are started in a single state bin (they share the same initial condition)
and are thus “synchronized” at the outset. This outcome matches that presented
in [53]: the deterministic abstraction2 in [53] produces precise results for the first
few (2-3) oscillations, after which the disagreement increases.

Let us now select a larger standard deviation for the process, to take the value

σ = 0.01
√
h = 0.032, all other parameters being the same as before. We now

employ nd = 5 (by empirical optimal tuning), and l = 7, and m = 35, which
leads to 10 and 144 abstract states, respectively. Figure 6.4 (bottom) presents the
results of the experiment. It is clear that the model abstraction in [53] is not capa-
ble to generate a valid trajectory for the aggregate power, whereas the output of
the formal abstraction proposed in this chapter nicely matches that of the average
aggregated power consumption. Let us again remark that increasing number of
bins nd does not seem to improve the performance of the deterministic abstrac-
tion in [53], but rather renders the oscillations more evident. On the contrary, our
approach allows the quantification of an explicit bound on the error made: for
instance, the error on the normalized power consumption with parametersN = 2
and l = 70 is equal to 0.226 (absolute quantity). As a final remark, let us emphasize
that the outputs of both the abstract models converge to steady-state values that

2Let us again remark that by “deterministic abstraction” we mean that the aggregate model X(k +
1) = PT

X(k) obtained in [53] is a deterministic equation. However, the process noise is included in
the temperature evolution of the TCLs.
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Figure 6.4: Comparison of the deterministic abstraction from [53] with the formal
stochastic abstraction, for a small process noise σ = 0.0032 (top panel)
and a larger value σ = 0.032 (bottom panel).

may be slightly different from those obtained as the average of the Monte Carlo
simulations for the model aggregated directly. This discrepancy is due to the in-
trinsic errors introduced by both the abstraction procedures, which approximate
a concrete continuous-space model (discontinuous stochastic difference equation)
with discrete-space abstractions (finite-state Markov chains). However, whereas
the abstraction in [53] does not offer an explicit quantification of the error, the
formal abstraction proposed in this chapter does, and further allows the tuning
(decrease) of such an error bound, by choice of a larger cardinality for the parti-
tions set. However as a tradeoff, recall that increasing the number of partitions
demands managing a Markov chain abstraction with a larger size.

6.4.2 Abstraction and Control of a Population of TCLs

With focus on the abstraction proposed in this chapter for a homogeneous pop-
ulation (again of np = 500 TCLs), the one-step output prediction and regulation
scheme of Section 6.3.1 is applied with the objective of tracking a randomly gener-
ated piecewise-constant reference signal. We have used discretization parameters
l = 8, m = 40, and the standard deviation of the measurement (

√
Rv) has been

chosen to be 0.5% of the total initial power consumption. Figure 6.5 displays the
tracking outcome (top), as well as the required set-point signal synthesized by
the above optimization problem (bottom). Notice that the set-point variation is
bounded to within a small interval, which practically means that the users in the
TCLs are unaffected by that.

Finally, we have employed the SMPC scheme described in Section 6.3.2, combined
with the conditional Kalman state estimator of Section 6.3.1, to track a piecewise-
constant reference signal over a homogeneous population of TCLs. A prediction
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Figure 6.5: Tracking of a piecewise-constant reference signal (top panel) by set-
point control (bottom panel) in a homogeneous population of TCLs
abstracted by the formal probabilistic approach.

horizon of T − k = 5 steps has been selected. The discrete nature of the optimiza-
tion variable in (6.19) requires us, at each time step, to compute the cost function
Jk for each sequence of σ(·) and find the optimal one. In order to reduce compu-
tational burden of the optimization we introduce the following constraint on the

variation of the set-point has been considered:
∣
∣dθs
dt

∣
∣ ≃

∣
∣
∣
θs(k+1)−θs(k)

h

∣
∣
∣ ≤ υ = 0.025.

Figure 6.6 presents the power consumption of the population (top) and the re-
quired set-point variation (bottom). The displayed response consists of a transient
and of a steady-state phases. It takes 3 minutes to reach the steady-state phase be-
cause of the limitations on the max rate of set-point changes. This can be seen
from the plot of the set-point control signal, which first decreases and then in-
creases within the transient phase with a constant rate. In order to obtain a faster
transient phase, the upper bound for the set-point changes may be increased.

6.5 Conclusions

This chapter has put forward a formal approach for the abstraction of the dynam-
ics of TCLs and the aggregation of a population model. The approach starts by
applying the Markov chain abstraction algorithm of Chapter 2 to the dynamics of
the single TCL. Given the transition probability matrices of the obtained Markov
chains, it is possible to write down the explicit state-space model of the popula-
tion and further aggregate it. In this chapter we have also discussed approaches
to perform controller synthesis over the aggregated model. It is worth mentioning
that the error bound derived for the autonomous populations can be extended to
the case of controlled populations of TCL.
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Figure 6.6: Tracking of a piecewise-constant reference signal (top panel) by set-
point control (bottom panel) for a homogeneous population of TCLs
using the SMPC scheme.

Looking forward, developing approaches for the heterogeneous case, synthesiz-
ing improved control schemes, and ameliorating the error bounds are directions
that are research-worthy in order to render the approach further applicable in
practice.





7 CHAPTER

FAUST2: Formal Abstractions of
Uncountable-STate STochastic

processes

F
AUST2 is a software tool that generates formal abstractions of (possi-
bly non-deterministic) discrete-time Markov processes (dtMP) de-

fined over uncountable (continuous) state spaces. A dtMP model is
specified in MATLAB and abstracted as a finite-state Markov chain or a
Markov decision process. The abstraction procedure runs in MATLAB
and employs parallel computations and fast manipulations based on vec-
tor calculus. The abstract model is formally put in relationship with the
concrete dtMP via a user-defined maximum threshold on the approxima-
tion error introduced by the abstraction procedure. FAUST2 allows ex-
porting the abstract model to well-known probabilistic model checkers,
such as PRISM or MRMC. Alternatively, it can handle internally the com-
putation of PCTL properties (e.g. safety or reach-avoid) over the abstract
model, and refine the outcomes over the concrete dtMP via a quantified
error that depends on the abstraction procedure and the given formula.
The toolbox is available at

http://sourceforge.net/projects/faust2/.

7.1 Models: Discrete-Time Markov Processes

The focus of this thesis and the applicability of FAUST2 is given to the class of
discrete-time Markov processes. A dtMP s(k), k ∈ N0 is defined over a general
state space, such as a finite-dimensional Euclidean domain [63] or a hybrid state
space [4]. As we discussed in Chapter 2, the model is denoted by the pair S =
(S, Ts). S is a continuous (uncountable) but bounded state space, e.g. S ⊂ R

n, n <
∞. We denote by B(S) the associated sigma algebra. The conditional stochastic
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Figure 7.1: Graphical User Interface of FAUST2, overlaid with numbered boxes

kernel Ts : B(S) × S → [0, 1] assigns to each point s ∈ S a probability measure
Ts(·|s), so that for any setA ∈ B(S), k ∈ N0, P(s(k+1) ∈ A|s(k) = s) =

∫

A Ts(ds̄|s).
(Please refer to Chapter 2 for more details on the definition and observe the code
or the case study of Section 7.5 for a modeling example.)

Implementation: The user interaction with FAUST2 is enhanced by a Graphical
User Interface. A dtMP model is fed into FAUST2 as follows. Select the Formula
free option in the box Problem selection 1 in Figure 7.1, and enter the bounds on
the state space S as a n×2 matrix in the prompt Domain in box 8 . Alternatively if
the user presses the button Select 8 , a pop-up window prompts the user to enter
the lower and upper values of the box-shaped bounds of the state space. The tran-
sition kernel Ts can be specified by the user (select User-defined 2 ) in an m-file,
entered in the text-box Name of kernel function, or loaded by pressing the button
Search for file 7 . Please open the files ./Templates/SymbolicKernel.m for
a template and ExampleKernel.m for an instance of kernel Ts. As a special case,
the class of affine dynamical systems with additive Gaussian noise is described
by the difference equation s(k + 1) = As(k) + B+ η(k), where η(·) ∼ N (0, Sigma).
(Refer to the case study of Section 7.5 on how to express the difference equation
as a stochastic kernel.) For this common instance, the user can select the option
Linear Gaussian model in the box Kernel distribution 2 , and input properly-sized
matrices A,B,Sigma in the MATLAB workspace. FAUST2 also handles Gaussian
dynamical models s(k + 1) = f(s(k)) + g(s(k))η(k) with nonlinear drift and vari-
ance: select the bottom option in box 2 and enter the symbolic function [f g]
via box 7 . �

The software also handles models with non-determinism [77]: a controlled dtMP
is a tuple S = (S,U , Ts), where S is as before, U is a continuous control space (e.g.
a bounded set in R

m), and Ts is a Borel-measurable stochastic kernel Ts : B(S) ×
S × U → [0, 1], which assigns to any state s ∈ S and input u ∈ U a probability
measure Ts(·|s, u). Please refer to Chapter 5 for a more detailed definition.

Implementation: In order to specify a non-deterministic model in FAUST2, tick
the relevant check Controlled/non-deterministic model 3 , and enter the bounds
on the space U as a m× 2 matrix in the window Input set 8 . �
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7.2 Formal Finite-State Abstractions of dtMP Models

This section discusses the basic procedure to approximate a dtMP S = (S, Ts)
as a finite-state Markov chain (MC) P = (P , Tp), as implemented in FAUST2.
The software uses Algorithm 1 to abstract a general model S as a finite-state MC
P, regardless of the specifics of the probabilistic invariance problem studied in
Chapter 2 by assuming that A = S. The quantification of the abstraction error
requires that the state space S is bounded.

Consider the representation of the kernel Ts by its density function ts : S × S →
R

≥0, namely Ts(ds
′|s) = ts(s

′|s)ds′ for any s, s′ ∈ S. The abstraction error over
the next-step probability distribution introduced by Algorithm 1 hinges on the
Lipschitz continuity of the function ts: the next-step abstraction error is E =
hsδsL (S), where hs is the Lipschitz constant of the density function (cf. Assump-
tion 2.1), δs is the max diameter of the state-space partition sets and L (S) is the
volume of the state space. When interested in working over a finite, N -step time
horizon, the error results in the quantity EN . Notice that the error can be reduced
via δs by considering a finer partition, which on the other hand results in a MC P

with a larger state space (cf. Theorem 2.2).

Implementation: FAUST2 enables the user to enter the time horizon N of interest
(box Number of time steps 5 ), and a threshold on the maximum allowed error
(box Desired abstraction error 5 ). The software generates a Markov chain with
the desired accuracy by pressing the button Generate the abstraction 6 . Among
other messages, the user is prompted with an estimated running time, which is
based on an over-approximation of the Lipschitz constant of the kernel, on a uni-
form partitioning of the space S 1, and on the availability of parallelization proce-
dures in MATLAB, and is asked whether to proceed. �

In the case of a non-deterministic dtMP, FAUST2 uses Algorithm 8 to abstract the
model Sc = (S,U , Ts) as an MDP D = (Sd,Ud, Td), regardless of the specifics of
the maximal probabilistic invariance problem studied in Chapter 5 by assuming
that A = S. The next-step abstraction error can be formally quantified as E =
2(hsδs + huδu)L (S), where δu is the max diameter of the input-space partitions
and hu is the Lipschitz constant of the density function with respect to the inputs
(cf. Assumption 5.1 and Theorem 5.4).

Implementation: The user may tick the check in 3 to indicate that the dtMP is
controlled (non-deterministic), specify a box-shaped domain for the input in box
Input set 8 , enter a time horizon in box Number of time steps 5 , and require an
error threshold in box Desired abstraction error 5 . FAUST2 automatically gener-
ates an MDP according to the relevant formula on the error.

Notice that the quantification of the abstraction error requires state and input
spaces to be bounded. In case of an unbounded state space, the user should trun-
cate it to a bounded, box-shaped domain: selecting the Formula free option in the
box Problem selection 1 , the domain is prompted in box Domain 8 . Algorithms

1At the moment we assume to have selected options Uniform gridding and Lipschitz via integral
among the lists in box 4 . Comments on further options are in Section 7.3.
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1,8 used for the abstraction automatically assign an absorbing abstract state to the
truncated part of the state space. �

The states of the abstract model P may be labeled. The state labeling map L :
P → Σ, where Σ is a finite alphabet, is defined by a set of linear inequalities:
for any α ∈ Σ the user characterises the set of states L

−1(α) as the intersection
of half-planes (say, as a box or a simplex): the software automatically determines
all points z ∈ P belonging to set L−1(α). The obtained labeled finite-state model
can be automatically exported to well-known model checkers, such as PRISM and
MRMC [45, 50], for further analysis. In view of the discussed error bounds, the
outcomes of the model checking procedures over the abstract model P may be
refined over the concrete dtMP S – more details can be found in Chapter 2 on
adaptive abstraction algorithms.

Implementation: Labels are introduced in FAUST2 as follows: suppose that the
intersection of half-planes Aαz ≤ Bα (where Aα, Bα are properly-sized matrices)
tags states z by label α ∈ Σ. The user may add such a label by pressing button

Add 10 and subsequently entering symbol α and matrices Aα, Bα in the pop-up
window. The user can also edit or remove any previously defined label using

buttons Edit, Remove in 10 , respectively. The button States with selected label
10 shows the sets associated with the active label over the plot in 13 .

The user may click the buttons in 11 to export the abstracted model to PRISM
or to MRMC. Alternatively, FAUST2 is designed to automatically check or opti-
mize over (quantitative, non-nested) PCTL properties, without relying on external
model checkers: Section 7.3 elaborates on this capability. �

7.3 Formula-Dependent Abstractions for Verification

Probabilistic Computation Tree Logic (PCTL) [43] are used to describe properties
over stochastic systems. PCTL is an extension of Computation Tree Logic (CTL)
which allows for probabilistic quantification of described properties. It includes a
probabilistic operator to write specifications of the system. PCTL is a useful logic
for stating soft properties, e.g. “eventually reach A and then B with probability
greater than 0.9 within 10 time steps”. The syntax of PCTL is composed of state
and path formulas. The state formulas include the property that a path formula
has a probability in a given interval. The path formulas include next (X), bounded
until (U≤N ), and until (U) operators.

Algorithms 1,8, presented in Chapters 2,5, can be employed to abstract a dtMP as
a finite-state MC/MDP, and to directly check it against properties such as proba-
bilistic invariance or reach-avoid, that is over (quantitative, non-nested) bounded-
until specifications in PCTL. Next, we detail this procedure for the finite-horizon
probabilistic invariance (a.k.a. safety) problem, which was formalized in Section
2.2.2. The invariance probability ps0(A) can be employed to characterize the sat-
isfiability set of a corresponding bounded-until PCTL formula, namely

s0 |= P∼ǫ{true U
≤N (S\A)} ⇔ ps0(A) ∽ 1− ǫ,
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where S\A is the complement of A over S, true is a state formula valid everywhere
on S, the inequality operator ∼∈ {>,≥, <,≤}, and ∽ represents its complement.

FAUST2 formally approximates the computation of ps0(A), ∀s0 ∈ S, as follows. S
is abstracted as an MC P via Algorithm 1. Given the obtained MC P = (P , Tp)
and considering the finite safe set Ap ⊂ P , FAUST2 internally computes the safety
probability over P via Bellman recursion of Theorem 2.1 along with the associated
abstraction error which is now tailored to the PCTL formula of interest.

Implementation: The user may select option PCTL Safety in the list within box 1 ,
enter the boundaries of the Safe set within box 8 , and press button 6 to proceed
obtaining the abstraction and computing the probability of the selected formula.

The computed value of ps0(A) is displayed in box Probability given s0 14 , for any

user-selected initial state s0 that is input in box Initial condition s0 14 . The user

can optionally press button Properties of s0 14 to get more information about
the concrete state s0, including the related discrete state z = ξ(Ξ(s)) of the MC,
as well as the associated labels. Furthermore, the quantity ps0(A) can be plotted,
as a function of the initial state s0, by pressing buttons Plot grid and Color grid
in 13 . Clearly these outputs are exclusively available for models of dimensions
n = 1, 2, 3. �

It is of interest to obtain tight bounds on the error associated with the abstraction
procedure since, given a user-defined error threshold, tighter bounds would gen-
erate abstract models P with fewer states. The abstraction error bound in FAUST2,
tailored around the discussed safety problem, can be efficiently decreased under
different types of regularity assumptions on the conditional density function of
the dtMP S. FAUST2 uses the adaptive Algorithms 3,4 to generate the abstracted
MC based on local computation of the error.

Implementation: FAUST2 allows the user to select three different gridding pro-
cedures in box Gridding procedure 4 : the reader is referred to Chapter 2 for the
details of these three options. The Uniform gridding option leads to a one-shot (non
sequential) procedure, as already discussed in Section 7.2, whereas the two Adap-
tive gridding options result in sequential and adaptive procedures leading to bet-
ter errors and to smaller abstractions, but in general requiring more computation
time. The error bound quantification hinges on the constants introduced in Theo-
rem 2.7, which are made available in box Assumptions on kernel 4 : tighter errors
lead to longer computations. In order to provide with full control on the chosen
inputs, for any possible selection of gridding procedure, desired abstraction error,
and error bound computation, the user is prompted in a pop-up window with an
estimated running time, and asked whether to proceed.

This range of algorithms and procedures are also implemented for probabilistic
reach-avoid (constrained reachability) problems, which are encompassed by gen-
eral bounded-until PCTL formulas P∼ǫ{Φ U

≤NΨ}. The user can select this option
in box Problem selection 1 , and is asked to input sets Φ,Ψ as safe and target sets
in the boxes of 8 .

Let us remark that the described abstraction algorithms and procedures are as
well available for the formula-free abstraction discussed in Section 7.2. �
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Computation of the maximal safety probability and maximally safe policies for a
controlled dtMP were discussed in Chapter 5. Similarly we can compute the min-
imally safe policy, or an optimal policy for the reach-avoid problem.

Implementation: FAUST2 computes a suboptimal policy for a given problem over
an MDP, with a given threshold on the distance to the optimal safety probability,
and quantifies the corresponding approximate quantity pµ

∗

s0 (A). The approximate

optimal policy can be stored by pushing button Save results 12 , which provides
the user with two options: either storing it on the disk as a .mat file, or loading it
to the workspace. �

7.4 Accessing and Testing FAUST2

The toolbox is available at http://sourceforge.net/projects/faust2/.
This toolbox has been successfully tested with MATLAB R2012a, R2012b, R2013a,
R2013b, on machines running Windows 7, Apple OSX 10.9, and OpenSUSE Linux.
FAUST2 exploits the command integral of MATLAB (introduced in version R2012a)
for numerical integrations. (The previous versions of MATLAB contain instruc-
tion quad and its variations, which will be removed in the future versions of
MATLAB – we have thus opted for the most up-to-date version.) Optimization
and symbolic computation toolboxes of MATLAB are necessary. FAUST2 auto-
matically checks the presence of these packages and displays an error to the user
in their absence. The software also takes the advantage of the MATLAB parallel
computation toolbox if present. The use of parallel computation toolbox is cur-
rently disabled for Apple operating systems due to a conflict.

The user can download FAUST2 from Sourceforge. The files are organized in the
main folder as follows: the sub-folder Autonomous Models contains the codes
for deterministic systems (without input); the sub-folder Controlled Models
includes the codes for non-deterministic systems (input dependent); the sub-folder
Templates contains templates and examples for the definition of symbolic con-
ditional density functions; the sub-folder Case Study contains the files used in
the next Section to test the software on a practical study. The file README can be
opened with your preferred text editor and contains instructions on how to set up
and run the software. As a starting point, FAUST2 can be tested on a case study
as elaborated in the next Section. To perform this test, set the current directory of
MATLAB to the folder where the software is stored and run FAUST2.m from the
MATLAB command line.

7.5 Case Study

FAUST2 can be used to obtain all the results of Chapters 2,5. To illustrate the
use of our software we apply FAUST2 to compute optimal control strategies for
the known room temperature regulation benchmark [37]. Probabilistic models for

http://sourceforge.net/projects/faust2/
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the underlying dynamics are based on [58] and on [4]. We consider the temper-
ature regulation in multiple rooms via cooling water circulation. The amount of
extracted heat is changed via a flow-control valve. Then the input signal is the per-
centage of the valve in the open position. The dynamics of the room temperature
evolve in discrete time according to the equations

s1(k + 1) = s1(k) +
∆

Cra
((s2(k)− s1(k))kcwu(k) + (Ta − s1(k))kout) + ηra(k),

s2(k + 1) = s2(k) +
∆

Ccw
((s1(k)− s2(k))kcwu(k) +Q) + ηcw(k), (7.1)

where s1 is the air temperature inside the room, s2 is the cooling water tempera-
ture, Ta is the ambient temperature, ∆ is the discrete sampling time [min], and
ηra(·), ηcw(·) are stationary, independent random processes with normal distri-
butions N (0, σ2

ra∆) and N (0, σ2
cw∆), respectively. Equations (7.1) can be encom-

passed in the condensed two-dimensional model

s(k + 1) = f(s(k), u(k)) + η(k), η(·) ∼ N (0, Ση),

which results in a stochastic kernel that is a Gaussian conditional distribution
N (f(s, u), Ση), where Ση = diag(∆[σ2

ra, σ
2
cw]). The file Chiller_Kernel_2d.m

appearing with the first release of the software provides numerical values and
physical interpretations of the parameters in equations (7.1), as well as the sym-
bolic structure of the conditional density function. The dynamical model in (7.1)
can be as well extended to a two-room temperature control (which results in a
three-dimensional model), and its conditional density function can be found in
file Chiller_Kernel_3d.m. We will run FAUST2 on both 2D and 3D setups.

We are interested in keeping the temperature of the room(s) within a given tem-
perature interval over a fixed time horizon: this can be easily stated as a (proba-
bilistic) safety problem, where we maximise over the feasible inputs to the model.
We instantiate and compute this problem over the model above as described in
the main text, while providing a step-by-step guide to the user.

In order to select the problem and import the model in FAUST2, please follow
these steps: select PCTL Safety in box 1 , choose User-defined in box 2 , tick the
check-box 3 to indicate a controlled model, and write the name Chiller_Kernel_2d.m
in the text of box 7 to load the density function of the two-dimensional model
(7.1).

In the next stage we perform the abstraction and compute the quantity of interest
(maximal safety probability). Select the most straightforward (but coarsest) ab-
straction algorithm, by choosing options Uniform gridding and Lipschitz via inte-
gral in 4 . Proceed entering the problem parameters as follows: input the number
of time steps as 3 and select a desired abstraction error equal to 0.5 in box 5 ; enter
the safe temperature intervalA as [19.7,20.3; 4.7,5.3], as well as the input
space U as [0,1] in the text within box 8 .

At this point the software can proceed with the main computations. Please press
the button in box 6 , in order to generate the abstract MDP, to compute the opti-
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Figure 7.2: Room temperature control problem. Left: obtained uniform partition
of the safe set, along with optimal safety probability for each partition
set (colour bar on the right). The safety probability is equal to zero
over the complement of the safe set. Right: optimal Markov policy at
step N − 1, as a function of the state.

mal policy and the related maximal safety probability. When the computation is
complete, let us proceed with some post-processing: press the buttons Plot grid
and Color grid in box 13 , to generate Figure 7.2 (left) representing the maximal
safety probability. The result of the computation can be stored for further analysis

by pressing button 12 : for instance Figure 7.2 (right) is generated by retrieving
the optimal state-dependent Markov policy at step N − 1.

A similar procedure can be followed to study the same probabilistic safety prob-
lem over a two-room temperature control, instantiated via the density function
Chiller_Kernel_3d.m. Figure 7.3 presents the outcomes obtained using the
Adaptive gridding and Lipschitz via integral options, selected in box 4 . The ab-
straction parameters used in this problem is as follows: number of time steps 3,
safe temperature interval [19.5,20.5; 19.5,20.5; 4.5,5.5], input space
[0,1; 0,1]. We have selected a large abstraction error equal to 12 in box 5
to be able to visualize the adaptive grid generated by the software. The user can
choose a smaller error at the cost of a larger computation time.

7.6 Summary of the Commands in the Graphical User

Interface

We provide a summary of the commands of the GUI in FAUST2, as they appear in
the boxes highlighted in Figure 7.1.

1 The box Problem selection provides a list with three options: select Formula
free to obtain an abstraction of the model which can be exported to PRISM
or to MRMC for further analysis; choose PCTL Safety in order to abstract
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Figure 7.3: Two-room temperature control problem. Obtained partition of the safe
set, together (bar) with optimal safety probability.

the model and compute a safety probability; or opt for PCTL Reach-Avoid
to get the abstraction tailored around the computation of the reach-avoid
probability.

2 The box Kernel distribution gives three options in a list: select Linear Gaus-
sian model if the model belongs to the class of Linear Gaussian difference
equations (cf. Section 7.1) and define matrices A,B,Sigma in the MATLAB
workspace; choose Non-linear Gaussian model if the process noise is Gaus-
sian and the drift and variance are non-linear (cf. Section 7.1), enter the drift
and variance as a single symbolic function with two outputs via box 7 ; oth-
erwise choose User-defined and enter your kernel as a symbolic function
using 7 .

3 Check this box if the model is non-deterministic (controlled).

4 Box Gridding procedure provides three options: select Uniform gridding to
generate a grid based on global Lipschitz constant h (cf. Section 7.2), where
the state space is partitioned uniformly along each dimension; choose Adap-
tive gridding: local->local to generate the grid adaptively based on local
Lipschitz constants h(i, j) (cf. Assumption 2.2), where the size of partition
sets is smaller where the local error is higher; select Adaptive gridding: lo-
cal->global to generate the grid adaptively based on local Lipschitz con-
stants h(i) (cf. Assumption 2.3). The first option is likely to generate the
largest number of partition sets and to be the fastest in the generation of the
grid. The second option is likely to generate the smallest number of partition
sets but to be the slowest in the grid generation. For the detailed comparison
of these gridding procedures, please see Chapter 2.
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The box Assumptions on kernel provides three choices: option Lipschitz
via integral requires the density function ts(s̄|s) to be Lipschitz continuous
with respect to the current state s, and the quantity Tp(z, z

′) = Ts(Ξ(z
′)|z)

is used in the marginalization (integration) step; option Lipschitz via sam-
ple requires the density function ts(s̄|s) to be Lipschitz continuous with re-
spect to both current and the next states s, s̄, and the quantity Tp(z, z

′) =
Ts(z

′|z)L (Ξ(z′)) is used in the marginalization step; option Max-Min (cf.
equation (2.13)) does not require any continuity assumption, but takes longer
time in the computation of the error.

5 The time horizon of the desired PCTL formula or of the problem of interest,
and the required upper bound on the abstraction error should be input in
these two boxes. For the case of formula-free abstraction you may enter 1 as
the number of time steps.

6 Press this button after entering the necessary data to generate the abstrac-
tion: this runs the main code. First, various checks are done to ensure the
correctness of the inputed data. Then the partition sets are generated via
gridding, the transition matrix is calculated, and the probability and the op-
timal policy are computed if applicable.

7 This box is activated for options User-defined and Non-linear Gaussian model
in 2 . For the first option, the conditional density function must be an m-file
that generates ts(s̄|s, u) symbolically. Please refer to SymbolicKernel.m
for a template and ExampleKernel.m for an example. The name of kernel
function should be entered in the text-box or the function should be loaded
by pressing the button Search for file. For the option Non-linear Gaussian
model, the non-linear drift and variance must be specified as a single sym-
bolic function with two outputs. Please refer to NonLinKernel.m for a
template and NonLinKernelExample.m for an example.

8 If the Formula-free option is selected in 1 , the user can enter the bounds of
the state space in the first of the boxes, named Domain. In case any of the ad-
ditional two options in 1 are selected, the boundaries of the safe set should
be entered in the first text-box named Safe set. If the PCTL Reach-Avoid op-
tion in 1 is selected, the second box is activated and the boundaries of the
target set should be entered in the text-box named Target set. If the model
is non-deterministic and the check in box 3 is ticked, the third box is also
activated and the boundaries of the Input space may be entered in the box
named Input set. In all cases the boundaries are to be given as a matrix with
two columns, where the first and second columns contain lower and upper
bounds, respectively. Alternatively, the user can press the Select button and
separately enter the lower and upper bounds in the pop-up window.

9 The resulting error of the abstraction procedure, which is less than or equal
to the desired abstraction error introduced in 5 . This box shows the error
associated with the abstracted model.

10 The user can add, remove, or edit labels associated with the abstract states.
The set of states with any label α ∈ Σ can be represented by the intersection
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of half-planes Aαz ≤ Bα. In order to tag these states with the associated
label, the user presses button Add and subsequently enters symbol α and
matrices Aα, Bα in a pop-up window. The user can also edit or remove any
previously defined label by activating its symbol in the static-box and using
buttons Edit, Remove. The button States with selected label will show the
set of states associated with the active label in 13 . Adding labels is essential
in particular for exporting the result to PRISM or to MRMC.

11 The abstracted Markov chain or MDP can be exported to PRISM or to MRMC
using these buttons. FAUST2 enables two ways of exporting the result to
PRISM: as a .prism format that is suitable for its GUI, or as the combina-
tion of .tra and .sta files, which are appropriate for the command line.

12 Use this button to store the results. A pop-up window appears after pushing
the button and the user can opt for storing the date over the workspace, or
on disk as an .mat file.

13 The user can plot the generated grid for the state space using the first button.
Pressing this button opens a new window showing the partitioned input
space for the controlled model. The solution of the safety and of the reach-
avoid probability can also be visualized by pressing the second button. This
option obviously works exclusively for dimensions n = 1, 2, 3.

14 The user can enter any initial state s0 in the first box and calculate the safety
or the reach-avoid probability of the model starting from that initial state,
by pressing the button Calculate. The button Properties of s0 gives the ab-
stracted state associated to s0, namely z = ξ(Ξ(s0)) (cf. Algorithm 1), and all
the labels assigned to this state.

7.7 Extensions and Outlook

FAUST2 is presently implemented in MATLAB, which is the modelling software
of choice in a number of engineering areas. We plan to improve part of its func-
tionalities on a lower-level programming language. We further plan to extend
the applicability of FAUST2 to models with discontinuous and degenerate kernels
(Chapter 3), to implement higher-order approximations (Chapter 4), and to em-
bed formal techniques to obtain spatial truncations of the model dynamics [34].
Finally, we plan to look into developing bounds for infinite horizon properties.





8 CHAPTER

Conclusions and Future Research

T
his chapter summarizes the thesis and shortly discusses the main
contributions presented in the manuscript. We also provide some

directions of research are presently pursued by the author.

8.1 Conclusions

In this thesis we discussed finite abstractions of discrete-time Markov processes.
With focusing on probabilistic safety problem we showed how the abstraction
can be done formally based on regularity assumptions on the model. We relaxed
the proposed assumptions and also developed further efficient methods under
stronger assumptions. We used the abstraction technique to formally construct
an aggregate model for a population of TCL. In the following we summarize our
main contributions.

• Adaptive and sequential gridding procedures. We addressed the issue of
curse of dimensionality in Markov chain abstraction of discrete-time Markov
processes over general (continuous or hybrid) state space. We showed that
the abstraction can be done adaptively respect to the local error made by the
abstraction.

• Abstraction of partially-degenerate stochastic processes. We observed that
this class of systems does not satisfy the Lipschitz continuity assumption.
We developed new techniques for abstraction and error computation of these
systems which hinges upon the regularity of the vector field characterizing
the dynamical equation of the system.

• Higher-order approximations. We showed that if the conditional density
function of the system satisfies stronger regularity assumptions, i.e. hav-
ing higher-order partial derivatives, we could increase efficiency of the pro-
posed numerical algorithms by using piece-wise polynomial interpolants.
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• Controlled discrete-time Markov processes. We proved that such processes
can be abstracted to a finite-state MDP. We showed that the abstraction er-
ror is composed of three terms: state-space discretization, input-space dis-
cretization, and state-dependent input spaces.

• Application to aggregation of TCL. We applied our techniques to the model
of a single TCL and proposed a two step abstraction approach to describe
the behavior of a population of TCL with a finite state system. Furthermore,
we constructed a stochastic difference equation for the population dynamics
and used stochastic MPC to regulate the total power consumption of the
population.

• Implementation. We have implemented the abstraction methods as a soft-
ware tool, which is available for download online.

8.2 Recommendations for Future Research

In this section we discuss some interesting topics that ought to considered as fu-
ture research lines.

• Partially-observed Markov processes. In the results presented in this thesis
we assume that the system states are fully accessible, while only the out-
put information is available in real applications. This fact requires develop-
ing new techniques for abstraction of partially observed Markov processes
and in particular partially observed SHS. The candidate for the abstract model
would be hidden Markov chains or partially observable Markov decision
processes. Such techniques can be integrated into FAUST2.

• Structured systems. The adaptive gridding approach of Chapter 2 increases
the scalability of the abstraction technique. Real systems like models of
multi-robot environments, are of large dimensions but featuring a certain
structure (hierarchy or loops) for the dependency between the evolution of
states. We could exploit such a structure to overcome the curse of dimen-
sionality utilizing the directed graph associated with the system equations.
This idea is aligned with the decomposition and lumping techniques devel-
oped for Markov chains. In order to further scale up the algorithms used for
verification, compositional model checking in the known assume-guarantee
reasoning style [15] is proposed in the literature: this approach uses proof
techniques to decomposed a property to easier, localized ones, and verifies
assumptions made by the local statements to infer the the desired global
property.

• Pure-jump Markov processes. New abstraction methods are required for
continuous-time stochastic systems. The literature provides approximation
methods which are based on time and space discretization [55]. However,
these asymptotic results are not formal in the sense that they do not pro-
vide a priori bounds for the quality of approximation. One could develop
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formal abstraction methods for this class of systems and extends them to
continuous-time SHS where the jumps are triggered by a discrete-space pro-
cess.

• Approximation of the moments of a Markov process. The described ab-
straction techniques can be applied to the density and moment approxima-
tion of a Markov process in time. Mean-field game problems and aggregate
model of hybrid systems can benefit from these methods for the computa-
tion of optimal strategies.

• Tighter connection of FAUST2 to probabilistic model checking software.
The tool FAUST2 presented in this thesis, generates formal abstractions of
stochastic processes defined over continuous state spaces and allows ex-
porting the abstract model to PRISM and MRMC. These well-known proba-
bilistic model checkers can then be employed to check safety and other rich
properties of the process. Future versions of FAUST2 ought to tighten the
connection with available probabilistic model checkers.

• Heterogeneous population of TCLs. While all the discussions of Chapter 6
are focused on homogeneous population of TCLs, real thermal loads feature
heterogeneity in their set of parameters. An extensive scientific study needs
to be done on aggregation of heterogeneous population of TCLs.

• Aggregation of dynamical systems. The two-step abstraction approach of
Chapter 6 can be generalized to develop an aggregate model for any popula-
tion of dynamical systems characterized by stochastic difference equations.

• Numerical stability of the proposed algorithms. All the results of this the-
sis are founded on the assumption of performing arithmetic operations with
exact precision. Moreover, it is assumed that the marginalization step for
creation of the transition probability matrix of the constructed Markov chain
is performed without any error. These two assumptions are obviously vio-
lated in the simulation results of this thesis. Future research is needed to
provide upper bound for these type of error introduced in the final compu-
tation of the quantities of interest.
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Summary

Formal Abstractions for Automated Verification and Synthesis of
Stochastic Systems

Sadegh Esmaeil Zadeh Soudjani

S
tochastic hybrid systems involve the coupling of discrete, continuous, and
probabilistic phenomena, in which the composition of continuous and dis-

crete variables captures the behavior of physical systems interacting with digi-
tal, computational devices. Because of their versatility and generality, methods
for modeling, analysis, and verification of stochastic hybrid systems (SHS) have
proved invaluable in a wide range of applications, including biology, smart grids,
air traffic control, finance, and automotive systems. The problems of verification
and of controller synthesis over SHS can be algorithmically studied using method-
ologies and tools developed in computer science, utilizing proper symbolic mod-
els describing the overall behaviors of the SHS.

A promising direction to address formal verification and synthesis against com-
plex logic specifications, such as PCTL and BLTL, is the use of abstraction with
finitely many states. This thesis is devoted to formal abstractions for verifica-
tion and synthesis of SHS by bridging the gap between stochastic analysis, com-
puter science, and control engineering. A SHS is first considered as a discrete-
time Markov process over a general state space, then is abstracted as a finite-state
Markov chain to be formally verified against the desired specification.

We generate finite abstractions of general state-space Markov processes based on
the partitioning of the state space, which provide a Markov chain as an approxi-
mation of the original process. We put forward a novel adaptive and sequential
gridding algorithm based on non-uniform quantization of the state space that is
expected to conform to the underlying dynamics of the model and thus to mitigate
the curse of dimensionality unavoidably related to the partitioning procedure.

PCTL and BLTL properties are defined over trajectories of a system. Examples of
such properties are probabilistic safety and reach-avoid specifications. While the
developed techniques are applicable to a wide arena of probabilistic properties,
the thesis focuses on the study of the particular specification probabilistic safety
or invariance, over a finite horizon.
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Abstraction of controlled discrete-time Markov processes to Markov decision pro-
cesses over finite sets of states is also studied in the thesis. The proposed ab-
straction scheme enables us to solve the problem of obtaining a maximally safe
Markov policy for the Markov decision process and synthesize a control policy
for the original model. The total error is quantified which is due to the abstraction
procedure and caused by exporting the result back to the original process. The
abstraction error hinges on the regularity of the stochastic kernel of the process,
i.e. its Lipschitz continuity. Furthermore, this thesis extends the results in the
following directions:

• Partially degenerate stochastic processes suffer from non-smooth probabilis-
tic evolution of states. The stochastic kernel of such processes does not
satisfy Lipschitz continuity assumptions which requires us to develop new
techniques specialized for this class of processes. We have shown that the
probabilistic invariance problem over such processes can be separated into
two parts: a deterministic reachability analysis, and a probabilistic invari-
ance problem that depends on the outcome of the first. This decomposition
approach leads to computational improvements.

• The abstraction approach have leveraged piece-wise constant interpolations
of the stochastic kernel of the process. We extend this approach for systems
with higher degrees of smoothness in their probabilistic evolution and pro-
vide approximation methods via higher-order interpolations that are aimed
at requiring less computational effort. Using higher-order interpolations
(versus piece-wise constant ones) can be beneficial in terms of obtaining
tighter bounds on the approximation error. Furthermore, since the approx-
imation procedures depend on the partitioning of the state space, higher-
order schemes display an interesting tradeoff between more parsimonious
representations versus more complex local computation.

From the application point of view, an example of SHS is the model of thermostat-
ically controlled loads (TCLs), which captures the evolution of temperature inside
a building. This thesis proposes a new, formal two-step abstraction procedure to
generate a finite stochastic dynamical model as the aggregation of the dynamics of
a population of TCLs. The approach relaxes the limiting assumptions employed
in the literature by providing a model based on the natural probabilistic evolu-
tion of the single TCL temperature. We also describe a dynamical model for the
time evolution of the abstraction, and develop a set-point control strategy aimed
at reference tracking over the total power consumption of the TCL population.

The abstraction algorithms discussed in this thesis have been implemented as a
MATLAB tool FAUST2 (abbreviation for “Formal Abstractions of Uncountable-
STate STochastic processes”). The software is freely available for download at
http://sourceforge.net/projects/faust2/.

http://sourceforge.net/projects/faust2/


Samenvatting

Formele Abstracties voor Automatische Verificatie en Synthese van
Stochastische Systemen

Sadegh Esmaeil Zadeh Soudjani

S
tochastische hybride systemen beschrijven de koppeling van discrete, conti-
nue en probabilistische fenomenen, waarbij de combinatie van continue en

discrete variabelen bijvoorbeeld het gedrag beschrijft van fysische systemen die
interageren met digitale rekenapparatuur. Vanwege hun veelzijdigheid en alge-
mene toepasbaarheid hebben methoden voor het modelleren, analyseren en verifi-
ëren van stochastische hybride systemen (SHS) bewezen van onschatbare waarde
te zijn in een breed scala van wetenschapsgebieden waaronder de biologie, smart
grids, regeling van vliegverkeer, financiën en automobielsystemen. De problemen
van verificatie voor SHS en van het samenstellen van regelwetten voor SHS kun-
nen vanuit een algorithmisch oogpunt bestudeerd worden met methoden en met
hulpmiddelen die ontwikkeld zijn binnen de informatica, gebruikmakend van
passende symbolische modellen voor het gedrag van SHS.

Een veelbelovende onderzoeksrichting is om het gedrag van SHS te vergelijken
met complexe specificaties door gebruik te maken van logica’s, zoals PCTL en
BLTL. Dit kan door middel van een abstractie van een SHS naar een automaat
met een eindig aantal toestanden. Dit proefschrift is gewijd aan formele abstrac-
ties voor verificatie en synthese van SHS waarmee het gat wordt gedicht tussen
stochastische analyse, informatica en regeltechniek. Allereerst wordt een SHS be-
naderd als een discrete-tijd Markov-proces met een algemene toestandsruimte.
Daarna wordt het geabstraheerd tot een Markov-keten met een eindig aantal toe-
standen om formeel geverifiëerd te worden ten opzichte van de gewenste specifi-
catie.

We genereren eindige abstracties van Markov-processen met een algemene toe-
standruimte op basis van een partitie van de toestandsruimte. Dit geeft een Mark-
ov-keten als benadering van het originele proces. We laten een innovatief adaptief
en recursief rooster-algoritme zien dat is gebaseerd op een niet-uniforme verde-
ling van de toestandsruimte en dat naar verwachting voldoet aan de onderlig-
gende dynamica van het model. Deze aanpak verzwakt de problemen met de
complexiteit die onlosmakelijk verbonden zijn met de partitieprocedure.
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PCTL- en BLTL-eigenschappen worden gedefinieerd op de ruimte van systeem-
trajectoriën. Voorbeelden van zulke eigenschappen zijn probabilistische veilig-
heidsspecificaties en specificaties om een bepaalde deelverzameling van de toe-
standsruimte juist wel of juist nooit te bereiken. Alhoewel de ontwikkelde tech-
nieken toepasbaar zijn op een breed scala aan probabilistische eigenschappen, is
dit proefschrift in het bijzonder gericht op de probabilistische veiligheids- of in-
variantiespecificatie over een eindige horizon.

Hiernaast wordt in dit proefschrift de abstractie van een discrete-tijd stochastisch
regelsysteem naar een eindige-toestands Markov-beslissingsprocess behandeld.
Het voorgestelde abstractieschema maakt het mogelijk om een maximaal veilige
Markov regelwet voor het Markov-beslissingsproces te verkrijgen en om een re-
gelwet te bepalen voor het oorspronkelijke systeem. De benaderingsfout in de
kosten als gevolg van de abstractieprocedure en als gevolg van het converteren
van de regelwet naar een regelwet voor het oorspronkelijke systeem wordt in een
formule samengevat. De benaderingsfout van de abstractie is afhankelijk van de
regulariteit van de stochastische kern (de kansdichtheid van de transitiemaat) van
het proces, namelijk diens graad van Lipschitz-continuïteit. Daarnaast breidt dit
proefschrift resultaten uit in de volgende richtingen:

• Stochastische processen die gedeeltelijk gedegenereerd zijn, lijden aan niet-
gladde (non-smooth) toestandstransitiefuncties. De stochastische kern van
zulke processen voldoet niet aan de Lipschitz-continuiteitsvoorwaarden wa-
ardoor het nodig is nieuwe technieken te ontwikkelen die specifiek zijn voor
deze klasse van processen. We laten zien dat het probabilistische invarian-
tieprobleem voor zulke processen opgesplitst kan worden in twee delen: (1)
een deterministische bereikbaarheidsanalyse en (2) een probabilistisch inva-
riantieprobleem dat afhankelijk is van de uitkomst van de bereikbaarheids-
analyse. Deze decompositie-aanpak leidt tot rekenkundige verbeteringen.

• De abstractiemethode maakt kundig gebruik van stuksgewijs-constante in-
terpolaties van de stochastische kern van het proces. We breiden deze me-
thode uit naar systemen met hoge graden van gladheid in hun probabilisti-
sche evolutie en stellen benaderingsmethoden voor via hoge-orde interpola-
ties die minder rekenkracht vereisen. Het gebruik van hoge-orde interpola-
ties in plaats van stuksgewijs-constante interpolaties kan nuttig zijn voor het
behalen van nauwe grenzen op de benaderingsfout. Omdat de benaderings-
methoden afhankelijk zijn van de partitie van de toestandsruimte, laten re-
kenschema’s van hoge orde daarnaast een interessante wisselwerking zien
tussen een meer beperkte voorstelling en een meer gecompliceerde lokale
berekening.

Een voorbeeld van een SHS is het modelleren van thermostatisch-geregelde een-
heden (termostaticaly-controlled loads (TCLs)), die de veranderingen van de tem-
peratuur binnen een gebouw beschrijven. Dit proefschrift stelt een nieuwe for-
mele abstractieprocedure met twee stappen voor om een eindig stochastisch sys-
teem te genereren door de samenvoeging van de dynamica van een populatie van
TCLs. De methode verzwakt de beperkende voorwaarden die in de literatuur
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worden gebruikt door een model voor te stellen dat gebaseerd is op de natuurlijke
probabilistische veranderingen van een enkele TCL-temperatuur. We beschrijven
tevens een dynamisch model voor de tijdsevolutie van de abstractie en ontwik-
kelen een regelwet met een streefpunt gericht op het volgen van een referentie-
waarde voor het totale energieverbruik van de TCL-populatie.

De abstractie-algoritmes die in dit proefschrift behandeld worden, zijn geïmplem-
enteerd als MATLAB-pakket genaamd FAUST2 (afkorting voor “Formal Abstract-
ions of Uncountable-STate STochastic processes”). Deze software kan men gratis
downloaden van het adres http://sourceforge.net/projects/faust2/.

http://sourceforge.net/projects/faust2/
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