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Abstract

Research has shown that GLOSA systems can help reduce the emission of CO2 by motor vehicles
and improve flow on urban road networks. However, existing GLOSA systems only work in com-
bination with a limited selection of Traffic Signal Controllers (TSCs) and therefore have not been
widely implemented. This research describes and evaluates the design of a system to model the
behaviour of the most common types of TSCs using data that is shared by road users, also known as
Floating Car Data (FCD). Almost every road user is able to share his location using a smartphone,
so this means that a system of this kind can be implemented everywhere in the world where people
are willing to participate, without requiring any changes to the infrastructure. It is chosen to model
TSC behaviour using Hidden Markov Models (HMMs), because they can be generated from unla-
belled data, as opposed to other machine learning techniques. More specifically, Explicit Duration
Hidden semi-Markov Models (EDHSMMs) are used, so that timing behaviour can be captured more
accurately than with standard HMMS. An adaptation to an existing learning algorithm is made to
decrease amount of data required for learning and to make sure the algorithm can cope with the
sparse nature of FCD. Additionally, a system is developed to combine generally known intersection
data and FCD to generate models that have transition parameters with low entropy and thus high
predictive powers. In this way, the system produces models that are accurate enough to be used
for the generation of GLOSA from relatively sparse data. In a simulated setting, it is shown that
the system can identify the true switching behaviour of the most common types of TSCs and that
it produces models whose duration probability distributions converge to the true situation when
provided with realistic amounts of data.
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1
Introduction

1.1. Motivation
As a result of urbanization and growing welfare, the pressure on urban road networks has been in-
creasing over the past decades, leading to more congestion and pollution. Hence, solutions such
as Green Light Optimal Speed Advice (GLOSA) systems are researched to make more efficient use
of the available roads in urban environments. GLOSA systems aim to improve traffic flow and min-
imize energy usage by advising road-users on the speed they need to travel at in order to catch
a green light without stopping. By doing so, braking and acceleration actions can be minimized,
which reduces harmful emissions and increases traffic flow at intersections. This is because vehi-
cle emissions are highest under acceleration and capacity drop negatively correlates with velocity,
meaning that queue discharge rates are higher if the queue is moving at a higher velocity [1]. Al-
though empirical relationships between velocity and queue discharge rates have thus far only been
established for highway traffic, it can be assumed that this is also the case for urban traffic. Sev-
eral GLOSA systems have been developed around infrastructure that broadcasts the current state
of traffic signals and time to green using Signal Phase and Timing messages [2–11]. Although these
systems promise to yield up to 22% reduction in CO2 emissions, they require new hardware to be
installed with estimated costs of roughly $50,000 per intersection [12]. Therefore it will take a long
time and considerable funds before these connected signals become the norm. In the Netherlands,
which has one of the most modern road networks in the world, there are roughly 5600 Traffic Sig-
nal Controllers (TSCs), of which only 707 are able to generate Signal Phase and Timing messages
at the time of writing [13]. At the current rate of installation, even traffic in countries with modern
road networks will be controlled by TSCs without communication possibilities for at least the next
decade. During this decade, the world is facing a turning point when it comes to climate change,
so there is a direct need for methods to lower the emission of greenhouse gasses. This provides
an incentive to research GLOSA systems that rely on a different, more readily available source of
data. Developments in the area of communication technologies mean that vehicles and people in
general are becoming more connected. There are already more than twice as many people with a
smartphone worldwide than there are cars, meaning that a large portion of road-users is expected to
be able to share their location in the form of Floating Car Data (FCD). Therefore, a system to model
the phasing and timing behaviour of common TSCs from FCD is developed in this research, with
the goal to pave the way to large scale implementation of GLOSA in the near future.

Figure 1.1 sketches the context of the system developed in this research, which is indicated in
green in Figure 1.1b. It can be seen that some road-users share FCD with a server, which in turn
provides the connected road-users with GLOSA. The GLOSA is generated based on a TSC-behaviour
model. Designing a system to generate these models from historical FCD and generally-available
map data is the goal of this research.

1
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TSC
Legend

= Connected Road-User

= Unconnected Road-User

= Unconnected TSCTSC

(a) Simplified representation of the assumed traffic situation. Both connected and unconnected road-users travel over a
signalized intersection. The connected road-users share their data wirelessly with the server depicted in Figure 1.1b, which
in turn provides them with GLOSA if it has enough data to do so for this intersection and the current traffic situation.

Server
Shared Data GLOSA

Historical
Data

Intersection
Data

TSC Behaviour
Model

GLOSA
Generation
Algorithm

TSC Behaviour
Modelling
System

Historical
Database

Intersection
Layout
Database

(b) Overview of the system to provide connected road-users with GLOSA, without communicating with the TSC. The TSC
Behaviour Modelling System is highlighted in green, because the development of this system is the goal of this thesis re-
search.

Figure 1.1: (a) shows a schematic representation of the traffic situation for which the system depicted in (b) provides
GLOSA.
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Several attempts have been made towards developing GLOSA systems by using shared data in
the form of FCD, but only for fixed-time TSCs [14–17]. Although fixed-time signals are common
some parts of the world, 85% of traffic signals in the Netherlands are vehicle-actuated [18]. There-
fore it is desirable that the developed system can also model the behaviour of vehicle-actuated TSCs,
which have the ability to change the combination of signals that is set to green based on the current
presence of vehicles.

1.1.1. Motivation for using HMMs
Many modelling techniques could be considered to create the system described above, of which
Hidden Markov Models (HMMs) [19] are used for this research. Over the years, several researchers
have investigated using some form of Markovian model to describe the behaviour of TSCs [20–22].
The most recent research assumes that the current state of the traffic signals at an intersection is
communicated by the TSC and that its control behaviour is known in the form of a transition prob-
ability matrix like the ones used in HMMs [22]. However, historical TSC behaviour data is not gen-
erally available, so constructing such a transition matrix is not a straightforward task and is also not
described in the research. Still, there are four reasons why HMMs seem particularly suited as the
basis of a system to model TSC behaviour from FCD.

Firstly, HMMs are specifically intended to infer hidden information about the system that they
model [19]. Therefore, it can be expected that a well learned HMM of TSC behaviour can imply the
colour of signals, even at moments when these are not observed. This means HMMs can potentially
be used to infer the correct colour of all signals at an intersection using real-time FCD, even though
FCD typically can only provide explicit information about the colour of a portion of the signals at a
given time [14, 17, 23, 24].

Secondly, the parameters of a HMM can be learned using unlabelled data [19], which saves the
labour intensive step of labelling data manually. For the context of this research, FCD therefore only
has to be converted into observations of the colour of individual signals, but the true state of the TSC
does not have to be known, as is required for some existing TSC behaviour modelling methods [25,
26], or general Deep Learning approaches [27]. Automated methods have been developed already
to execute this conversion [14, 23, 24].

Thirdly, HMMs are generative models, meaning that they can be used to generate all possible
future state sequences from a certain starting point and indicate the probability of each of them
[19]. This means that HMMs can be used to predict future TSC behaviour if the current state is
known. Additionally, because the probabilities of each future state sequence can be determined
explicitly, it can be chosen to only broadcast a speed advice if a certain probability threshold has
been exceeded. A speed advice generation method that explicitly takes this uncertainty into account
has already been developed [22].

Lastly, because it can be easily interpreted what each parameter of a HMM represents, prior
knowledge of the system that is being modelled or certain boundary conditions can be easily in-
cluded in initial models. This potentially means that little data is needed to learn relatively complex
models. Likewise, features of the modelled system can be extracted from learned models. For ex-
ample, the minimum and maximum green time of each signal at an intersection could be extracted
from a HMM of its behaviour, depending on the way the states of this HMM are defined. This infor-
mation on its own can be used to make rough predictions of the behaviour of the modelled TSC at
times when little to no real-time data is available.

1.2. Problem statement
As described in Section 1.1, reducing emission of greenhouse gasses is one of humanity’s greatest
challenges in the near future. GLOSA systems have the potential to contribute to this reduction,
but so far they either rely on expensive hardware, or only work for a limited number of TSCs. To
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make GLOSA available for as many intersections as possible in the near future, a system must be
developed to model the behaviour of the most common TSCs, including vehicle-actuated TSCs,
using FCD. It must be ensured that the system requires as little data as possible, while generating
models with sufficient predictive power to generate GLOSA, i.e., the resulting models must be parsi-
monious. The modelling system has to be able to cope with the sparse nature of FCD. Section 1.1.1
has explained that HMMs have features which make them an attractive candidate to perform the
described modelling of TSC behaviour. The system should therefore generate HMMs. Because not
much research has been conducted on the modelling of TSCs with HMMs, it must be focused on lay-
ing the foundations of the modelling system and evaluating the data quantities needed to generate
accurate models. From these findings, it should become clear which developments are necessary
before the system can be used in practice.

1.3. Research approach
The main contribution of this thesis research is the design of a Hidden Markov modelling method.
This method is designed so that it can model the phasing and timing behaviour of common TSCs,
including those that are traffic-actuated. While the phasing behaviour of TSCs can be captured
by the transition matrix of general HMMs, they are limited in their ability to model duration be-
haviour. Therefore, to more accurately model the TSC timing behaviour, Hidden semi-Markov Mod-
els(HSMMs) [28] are used, which explicitly model the duration probability distributions of all model
states.

An important aspect of the design of the modelling method is finding a trade-off between gen-
erating models that are simple enough to be learned using realistic quantities of FCD, while being
flexible enough to accurately model true-TSC behaviour. To this end, an existing algorithm to learn
the parameters of Hidden semi-Markov Models (HSMMs) [28] is adapted so that instead of one, it
can also process none or multiple observations at a single time-step. By doing so, models that are
a combination of a Dynamic Naive Bayesian Classifier (DNBC) [29] and a HSMM are obtained. It
will be explained why this approach yields models with far fewer parameters, without them losing
predictive power, which means that they are more parsimonious.

This document is structured as follows; first, Chapter 2 presents relevant information and re-
search from the fields of traffic signal control, Hidden Markov modelling and their combination.
Then, Chapter 3 condenses this information into a design problem and solves it by describing the
design of a TSC behaviour modelling system. This design is evaluated by performing the experi-
ments described in Chapter 4, which also analyses their results. Chapter 5 concludes the research
and presents recommendations for future work.



2
Background

This section introduces background information on the state of the art of fields that are relevant
for the design of the system described in Section 1.2. First, Section 2.1 presents the most common
approaches to control signalized intersections. This information is later used in Section 3.2 to de-
scribe which features of TSCs are modelled and how. Second, Section 2.2 summarizes the research
on GLOSA-systems and what prevents them from being implemented on a large scale and thereby
identifies the research gap that this thesis aims to fill. Section 2.3 then describes which sources of
shared traffic data exist and what information about TSC behaviour can be extracted from them.
Together, these three sections describe the system that needs to be modelled, what the output of
the modelling system is used for and what its input is respectively. Based on this information, Sec-
tion 3.1 formulates the goals of the modelling system and under which assumptions it is developed.

Section 2.4 explains the basic principles and challenges of modelling with HMMs. Also, the field
of information theory is introduced, which is commonly used to compare models during model
generation and selection processes. Section 2.5 subsequently describes Hidden semi-Markov Mod-
els (HSMMs) and presents the details of a Forward Backward algorithm that is used to learn the
parameters of HSMMs.

Finally, Section 2.6 concludes the findings and summarizes the elements that are important for
the development of the methodology in Chapter 3.

2.1. Signalized intersection control
Traffic signals ensure safe and efficient usage of road sections that are used by multiple traffic streams,
by giving cyclic right of way to conflicting streams. The colour of each individual signal is controlled
by a central TSC, which can be programmed with various strategies. The most important factor that
influences the control strategy is the traffic demand on the individual traffic streams, i.e., how many
road-users are entering and exiting the intersection in each direction per unit of time. Addition-
ally, availability of road-user detectors or the funds to install them determines whether a control
type that reacts to the current presence of road users can be used. Other factors such as the con-
trol of neighbouring intersections, necessity to favour certain traffic streams or to facilitate public
transport influence how traffic signal controllers are programmed.

All in all, this means that a bespoke signal controller is designed for each signalized intersection.
Therefore, modelling the behaviour of a signal controller whose true control tactics are unknown
is not a straightforward task. When this behaviour can only be observed indirectly, partially and
irregularly by analysing FCD it becomes even more complex. However, all TSCs must adhere to
general rules and most are designed on the same principles, so knowledge of these principles can
provide some welcome guidance for this modelling task. This section therefore introduces the most
common types of TSCs and describes the basics of their control structure.

5



6 2. Background

Because the terminology differs between countries and researchers, it is first defined how terms
are used in this document.

2.1.1. Terminology
In literature, some common terms have different meaning from one work to another. To avoid con-
fusion, this section therefore introduces the terminology regarding intersections as it will be used in
this research.

Traffic stream: a flow of road-users with a particular heading

Direction: a traffic stream towards or away from an intersection

Movement: a traffic stream that connects two directions on an intersection. Movements are
referred to by a number, according to the Dutch standard, which is explained in Appendix A

Signal group: one or more traffic signals that control one or more movements. One signal
group consists of multiple signals if there are multiple lanes for the same movement. Multiple
movements are controlled by one signal if they share a lane. In this case the signal group is
numbered by the through going movement as explained in Appendix A

Realisation: turning a signal group to green

Conflict group: a set of movements of which all members have a conflict with all other mem-
bers

No-conflict group: a set of movements of which none of the members has a conflict with any
of the other members

Maximum conflict group: the conflict group with the largest number of members for a par-
ticular intersection

Maximal no-conflict group: a no-conflict group to which no other movement of the intersec-
tion can be added without it ceasing to be a no-conflict group

Phase: a set of movements that is realised simultaneously. Under the assumption that con-
flicting directions can not have a green signal simultaneously, this is always a no-conflict
group

Stage: a maximal no-conflict group that is part of the control structure of the TSC

TSC-state: the combination of factors that define the current control output of the TSC. This
includes the currently active stage, its past duration, detector activations and their timing

TSC phasing behaviour: The collection of phases that can be realised by the TSC and their
possible ordering. If multiple phases can follow a certain phase, the transition probability
to each of the possible successors is part of the phasing behaviour. All factors that influence
which phase is realised are part of the phasing behaviour, e.g., when a phase is realised every
other cycle, or is only realised when a particular combination of detectors is activated.

TSC timing behaviour: The duration probability function of each phase that can be realised
by the TSC. All factors that influence the duration of realisations are part of the duration be-
haviour

Clearance time: time from the moment that a signal controlling a certain movement is set to
red until the moment that the signal controlling a conflicting direction is set to green. Clear-
ance times are calculated such that conflict areas are cleared by traffic from one movement
before traffic from a different movement can be expected to reach the conflict area
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2.1.2. Control structure
The control structure of a TSC defines which phases it can realise and in which order, i.e., what the
stages of the TSC are [30]. Which phases make up the stages and in which order they are realized
depends on the intersection layout and its traffic situation. Generally, maximal no-conflict groups
are used as stages, so that as many signals are green as possible during each stage. For most TSCs,
the number of stages is equal to the size of the maximum conflict group [18, 30]. This is also the
minimum number of stages, because each movement must be part of at least one stage and by
definition, the members of the maximum conflict group can not be part of the same stage. In rare
situations, it can be better to implement a control structure with more stages, for example if there
is an incentive to not realise certain movements as often as others. Figure 2.1 shows an example of
a flow diagram of a TSC for an intersection with movements 1 to 12. The figure suggests that there
is no overlap between the stages. This can generally be assumed to be true, because conflicting
directions can never have a green light simultaneously. However, there is one exception to this,
because some countries, such as Germany and Switzerland, allow a negative clearance time [30].
Sometimes it can be expected from the intersection’s layout that traffic from one movement will
clear a conflict area before traffic from another movement can reasonably be expected to reach
that area even if the signal for the first movement is switched to red after the signal for the second
movement is switched to green. The two movements can then have a simultaneous green signal
for a short period of time. However, this is not common practice and in the Netherlands this is not
allowed [30].

Figure 2.1: Example of a flow diagram of a TSC with four stages, controlling the signals of an intersection with twelve
movements. Only movements with a green signal are shown.

2.1.3. Types of TSCs
Multiple types of TSCs exist, each with different limitations to their phasing and timing behaviour.
This section introduces the types of TSC that make up the majority of those installed. The main fo-
cus is on locally controlled intersections, but some well known controllers that optimize the control
for road networks as a whole will also be mentioned.

Fixed-time controllers The simplest type are Fixed-Time TSCs (FTTSCs), also known as interval
control or pre-timed control, which have a control scheme where all stages have a pre-set duration.
This type of controller does not require sensors to measure the current traffic situation. However,
if the intersection contains traffic signals for active transport modes, these are usually equipped
with detectors such that their signals are included in the cycle only if there is a request. Although
records are not kept, it can be expected that FTTSCs are the most common type of traffic signal
globally, because they are cheap to install and maintain. Another advantage of FTTSCs is that they
can easily be coordinated with other traffic signals if the placement of intersections relative to each-
other allows it [30]. Urban areas in the USA are particularly suited for coordinating traffic signals,
because the streets in these areas are build in a block pattern, with roughly equal spacing between
intersections. This layout makes it possible to create green waves in both directions. In situations
where intersections are not equally spaced, it can still be possible to coordinate traffic signals in one
direction. It is then usually chosen to switch the direction of coordination depending on the time of
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day, to account for rush hour traffic mostly moving into, or out of the city. A commonly used tool to
optimize the control of coordinated traffic signals is TRANSYT [31], which can calculate the optimal
fixed-time control strategy offline for a given network and traffic load.

A drawback of FTTSCs is that they are programmed for one particular traffic situation. This
means that if the true traffic situation differs from that for which the controller is programmed,
road-users will experience unnecessary delays. Especially when there is little traffic it can occur
that road-users have to wait for a red signal lasting almost a complete cycle, while no other traffic is
using the intersection. This leads to frustration, which in turn can lead to red light running, causing
potentially dangerous situations.

Vehicle-Actuated controllers Vehicle-Actuated TSCs (VATSCs), also called phase control [30], can
overcome the drawbacks of FTTSCs by adapting their control action to the current presence of road
users. This requires detectors to be installed at the intersection, which makes VATSCs more expen-
sive to install and maintain. However, these controllers can guarantee efficient use of the intersec-
tion under more traffic conditions than FTTSCs can.

Amongst VATSCs, there are two main types. Firstly, semi-actuated is used to control intersec-
tions where two or more traffic streams cross, of which one has a considerably higher traffic load
[30, 32]. The movements belonging to this traffic stream are set to green by default, which is called
waiting in green, and are only set to red when traffic is detected for one of the minor flows. This
means that only the minor flows need to be equipped with detectors. Secondly, if all movements are
equipped with detectors, the intersection can be controlled using fully-actuated control. With this
type of control, waiting in green can also be implemented [18]. Therefore, semi-actuated control
can be seen as a sub-type of fully-actuated control, so for remainder of this document, all actuated
controllers are referred to as VATSC.

VATSCs can operate with varying levels of adaptivity. Simpler types only vary the duration of
stages, but not their order and composition. In Germany, this type is often combined with a fixed
cycle time, hence most of the GLOSA research conducted by German researchers is focussed on this
type of control [15, 17, 20, 33].

A type of VATSC that is common in North America is the ring and barrier approach [32], an
example of which is shown in Figure 2.2. The controller can realise combinations of phases from
different rings that are between the same barriers. Once a signal group has been switched to red, it
has to wait for the next cycle before it can be realised again [32]. For the example from Figure 2.2,
this results in the control structure shown in Figure 2.3.

Figure 2.2: Example of a ring and barrier control system [32]. Only movements with a green signal are shown. Permitted
movements are indicated with a dashed arrow, which means that they have a conflict with another movement, but that
this conflict is permitted. Pedestrian movements are indicated with a double-headed arrow. Between barriers, phases of
different rings can be realised simultaneously.
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Figure 2.3: Control structure belonging to the ring and barrier controller shown in Figure 2.2. The text underneath the
blocks indicates which phases from Figure 2.2 are combined in that block. Blue double-headed arrows indicate pedes-
trian movements.

VATSCs with even higher adaptivity are common in the Netherlands. These do not have a fixed
cycle time and can adapt their control action to the current traffic demand by deviating from their
stages. This is called flexibility if movements from the next stage are realised in combination with
movements from current stage [18]. If a movement from a stage that is not the next stage is re-
alised with the current stage, this is called an alternative realisation [18]. Flexibility or alternative
realisations can take place if some movements from the current stage do not have a request, but a
movement from a different stage that does not conflict with the currently realised phase does have
a request. To facilitate this, signals of the current stage only get a green signal if they have a request,
meaning that the realised phase can differ from the current stage. Figure 2.4 shows a flow diagram
of a VATSC with flexibility. As stated in Section 1.1, this type of controller makes up 85% of the TSCs
in the Netherlands [18]. When comparing Figure 2.3 and Figure 2.4 it is clear that these types of
VATSC are similar for the examples given here. The ring and barrier type can be seen as a sub type of
a VATSC with flexibility, because the latter can realise more different combinations of movements.

Figure 2.4: Example of a control structure for a TSC with four stages and flexibility. Only movements with a green signal
are shown. It can be seen that the controller can deviate from the main stages by realising a flexibility phase, which is a
non-conflicting combination of the movements of two consecutive stages. Transitions between stages are indicated by
grey arrows. Transitions to and from flexibility phases are indicated by green arrows.

Lastly, VATSCs exist that are structure free, meaning that they do not follow a control scheme
with stages, but instead can realise any sequence of phases, based on what best suits the current
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presence of road users. However, these types of controllers are rare.

Traffic-Adaptive controllers Traffic-adaptive TSCs optimize the control of multiple signalized in-
tersections in a network based on the current traffic situation in the network. The most used traffic-
adaptive systems are SCATS [34] and SCOOT [35]. Roughly 250 of these systems have been installed
worldwide, which covers about 70.000 intersections [36].

These TSCs coordinate the phases of neighbouring intersections. However, the difference with
fixed-time approaches, such as TRANSYT, is that the timing of phases can vary from cycle to cy-
cle. This means that the behaviour of signals controlled by these TSCs is similar to that of signals
controlled by a VATSC without flexibility. The only difference is that the timing of traffic-adaptive
controllers is based on the traffic conditions in the whole network, instead of on the traffic condi-
tions in the direct surroundings of the intersection.

It is important to note here that providing road-users with GLOSA in an area with a network opti-
mized signal control system could disrupt the workings of this system. The optimization algorithms
of traffic-adaptive TSCs namely assume that road users drive at roughly the speed limit between
intersections, but this is no longer the case when road users follow speed advice. Therefore, it can
be expected that the efficiency of the network as a whole decreases, which directly opposes the in-
tention of both traffic-adaptive TSCs and GLOSA.

2.1.4. Time variance of control
Because traffic loads vary over the course of the day or week, TSCs are programmed to behave dif-
ferently at different times. For example, during the morning rush-hour timing and phasing can be
different from that during the evening rush-hour. This means that TSCs can be seen as time-variant
systems. Due to changing traffic loads, this time-variance also occurs for VATSCs even if their pro-
gramming does not change over the course of the day. However, if TSCs are observed during a short
enough period, the traffic load and TSC behaviour can be seen as time-invariant. When modelling
TSC behaviour, it is therefore common practice to create different models for the same intersection.
Researchers have investigated how many models are needed to describe all situations [37, 38]. They
concluded that traffic conditions and TSC behaviour can be divided into eleven groups of days, as
can be seen in Table 2.1. Days that belong to the same group were found to have similar traffic loads
at similar times. To account for changing traffic conditions during the course of the day, each type of
day is subdivided into fifteen minute long segments. To model a single intersection for each possi-
ble traffic situation, it is therefore necessary to construct 11∗ 24

0.25 = 1056 different models according
to these researchers. Although it seems unrealistic to model TSC behaviour if it requires learning
this many models, it is important to realize that some of the groups from Table 2.1 represent a much
larger fraction of the year than others. Additionally, some time-frames within these groups capture
many more traffic movements than others. Therefore, by creating only a couple of models, repre-
senting the busiest situations on the most common days, it is possible to model a large fraction of
all traffic movements. It can thus be expected that a significant portion of road users can receive
GLOSA from only a few models. Additionally, it can be expected that it is easier to create models
for periods with higher traffic loads for two reasons. Firstly, a higher traffic load means that more
road-users are interacting with the TSC. If it is assumed that data is shared by road-users, this means
that there is more data available for busier periods. Secondly, it can be assumed that the behaviour
of VATSCs becomes more predictable under higher traffic loads, because it will approach the be-
haviour of a FTTSC. This can be explained as follows: VATSCs are in fact deterministic systems, but
because they adapt to traffic, which behaves in a stochastic way, their behaviour appears stochas-
tic. Each unique combination of current TSC-state and detector activation will lead to a unique
control action. Under high traffic loads however, it can be assumed that all detectors are activated
continuously, which leads to a continuously repeating cycle of the same control actions.



2.2. Green Light Optimal Speed Advice systems 11

1: Monday (regular) 2: Monday (vacation)
3: Tuesday-Thursday (regular) 4: Tuesday-Thursday (vacation)
5: Friday (regular) 6: Friday (vacation)
7: Saturday (regular) 8: Saturday (vacation)
9: Sunday (regular) 10: Sunday (vacation)
11: Holiday

Table 2.1: Types of day with unique traffic loads and TSC behaviour, according to [37, 38]

Researchers have also investigated methods to identify when TSCs change their control action
[15, 39]. However, these methods only work for FTTSCs.

2.2. Green Light Optimal Speed Advice systems
The main reason to model TSC behaviour is because these models can be used to provide road-
users with GLOSA. This section gives an overview of the research that has been done on GLOSA. As
stated in Section 1.1, GLOSA systems can greatly reduce vehicle emissions and potentially improve
the capacity of existing road networks by improving traffic flow.

The first GLOSA system was developed in 1989 by Volkswagen [40]. It was no immediate success,
so the research was put to rest until the late 2000’s [2, 20, 41]. However, GLOSA is still not generally
available to all road-users on all intersections. This is mainly because only a few research projects
have resulted in real-world implementation of a GLOSA system and all these examples only work
within a limited area [2, 9, 10, 42]. This is either because the system only works in combination with
TSCs that can communicate with road-users, or because the system only works for a particular type
of TSC. Additionally, because these systems are often developed in cooperation with vehicle manu-
facturers, they can only be used by people driving relatively new vehicles from those manufacturers
[43]. It was shown that the positive effects of GLOSA are more pronounced if a higher percentage of
road-users has access to it and if it is available at more intersections [4]. As stated above, no meth-
ods have thus-far been developed that can provide a substantial portion of road-users with GLOSA
on a substantial portion of all intersections.

Therefore it is necessary that a method is developed that can cost-effectively provide all road-
users that are willing to participate with GLOSA, for as many intersections as possible. This method
would have to work with the most common TSCs and without relying on communication with TSCs.
Therefore, data would have to come from different sources. The most obvious source is shared GPS-
data, also known as FCD. The potential of using this type of data for GLOSA systems has been inves-
tigated by several researchers [14–17]. It was shown that even with low penetration rates (<1%), the
switching behaviour of FTTSCs could be predicted with accuracy that makes it usable for GLOSA.
However, as described in Section 2.1, FTTSCs are uncommon in some parts of the world, so to also
be able to predict the behaviour of more common VATSCs, a new method is needed. In current liter-
ature, there are two works that attempt to develop such a system, the first of which uses the manual
counting of vehicles as a data source [21], which greatly reduces the scalability of the method. Ad-
ditionally, this method only models phasing behaviour, as will be described in Section 2.2.1. The
system developed in the other research only works for VATSCs where the green-durations depend
vary within tight limits, while the cycle-time and phasing behaviour are constant [44]. This type of
VATSC can be found in Germany, but more dynamic types are common in the Netherlands [18].

In conclusion, no methods exist to model the behaviour of common VATSCs from FCD. To pro-
vide a starting point for the research described in this document, the next section highlights relevant
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aspects of research that has modelled TSC behaviour using some form of Markovian modelling ap-
proach.

2.2.1. Modelling traffic signal controller behaviour using HMMs
Section 1.1.1 describes which features make HMMs a promising candidate for modelling TSCs.
However, at the time of writing, there are only three researches that have used some form of Markov
model to represent the behaviour of TSCs.

The earliest example of Markov modelling in the context of predicting TSC behaviour was con-
ducted in 2008 by researchers at Audi AG [20]. They assumed a TSC with a fixed cycle time and
communication capabilities. A switching probability matrix is constructed for each second of the
control cycle, based on historic data. The probability of switching moment is predicted by mul-
tiplying the current state vector with the switching matrix belonging to the current cycle-second.
This method requires that the current state is known and therefore is not a true HMM. For the same
reason it can not be trained using unlabelled data and can therefore not be used with FCD or any
other type of shared data that only contains partial information about the true TSC-state. Also, as
described in Section 2.1, not all TSCs have a fixed cycle time, so the method in [20] is limited in its
application.

Another research investigated modelling the behaviour of intersection signal controllers using
HMMs [21]. This research created relatively short, but dense observation sequences by counting all
vehicles at an intersection during a couple of minutes and denoting their movement. By doing so,
the length of the observation sequence used to learn the parameters of the HMM, is determined by
the number of vehicles that is counted. The result of this is that the model is not based on true time,
but on numbers of vehicles that cross the intersection. TSCs on the other hand use timers, which
leads to a discrepancy between model steps and system steps. Additionally, the researchers strug-
gled with fast state switching, because state duration in standard HMMs is only determined by the
self-transition probabilities ai i . The state duration probability distribution is therefore essentially a
geometric distribution:

P (di ) = ad−1
i i (1−ai i ) (2.1)

P (di ) denotes the probability of state si lasting for a duration of d time-steps. Figure 2.5 shows the
resulting state duration distributions for different values of self transition probability ai i . The au-
thors of [21] noted that using high values of self transition probabilities can prevent fast state switch-
ing, but will never lead to state duration distributions that accurately model traffic signal switching
behaviour. To clarify why the modelling performance of the models created by the research in [21]
does not yield accurate models of traffic signal switching behaviour, we look at a useful feature that
HMMs normally have, namely that they are generative models and can thus be used to generate
data that is representative of the process that they model. If the HMMs created using the method
described in [21] are used to generate a Markov chain Q, it is inevitable that the most common state
duration is d = 1. This is not representative of TSC behaviour if a practical time-step sizes in the
range of 0.1 : 1 are used, because the minimum green time of traffic signals is typically several fac-
tors larger than one second. Although this analysis is not made by the authors of [21], they suggest
that using a HSMM can provide a better solution to the fast state-switching behaviour that they
observed. Section 2.5 explains the differences between standard HMMs and HSMMs and which
variant is chosen for this thesis research.

Lastly, one research describes a method to provide cyclists with speed advice that is optimized
for the goals of individual cyclists [22]. This method assumes that a state transition model of the TSC
behaviour is available, in a format that is similar to the transition matrix of a HMM. The method can
cope with the uncertainty that is inherent to predictions that are made using this type of transition
model.

The research uses a state description that is a combination of all signals that are green and their
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Figure 2.5: State duration distributions for state si for different values of the self transition probability ai i . It can be seen
that a higher self transition probability leads to a higher probability of longer state durations. However, the state duration
probability is always maximal for d = 1 and decays for higher durations, meaning that it is not a representative duration
distribution for stages of traffic signal controllers.

individual elapsed green times. Using this state description, every possible signal output can be
modelled. However, the research does not describe how such models can be constructed or learned.
The flexibility provided by the state description means that a rather high number of states will be
needed to describe the behaviour of TSCs at more complex intersections, which potentially makes
the learning of parameters from sparse data impossible. Section 2.5.3 describes Variable Transition
HSMMs, which have a similar structure as the models described in [22].

2.3. Data sources
Until now, all shared road user data has been referred to as FCD in this document, because this
is the term that is most commonly used in research to indicate data of vehicle movements that
is measured and shared by road users instead of detectors installed in the road or at the roadside
[15, 17, 23, 45–49]. Although FCD, also known as probe data, is most common in literature, other
data sources exist that can potentially be used to provide data to the system developed in this re-
search. The data sources that are most commonly mentioned in literature are listed below, together
with the sort of data they can produce:

1. Trajectory data collected and shared by smartphone-users, navigation systems or connected
vehicles, i.e., true FCD:

(a) road-user stationary in front of signal: movement has pending request

(b) road-user passing stop-line: corresponding signal is green

2. V-log data, logged by the TSC [20, 25, 26]:

(a) full history of the full control action of TSC: colour of all signals over time

(b) full history of all detector activations: which directions have a pending request or flowing
traffic

Note that accessing this type of data requires permission from road authorities, therefore it is
not considered for this research.

3. Vehicle-mounted cameras [50, 51]:

(a) colour of all signals in field-of-view of camera

(b) moving road-users for directions in field-of-view of camera
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4. Stationary cameras at roadside [52]:

(a) colour of signals in field-of-view of camera

(b) traffic is flowing: signal is green

(c) presence of queue: movement has pending request

From the listed sources, true FCD has the largest potential, because it can be shared without ef-
fort by anyone with a smartphone. Given that 1.8 million car drivers use the Flitsmeister application
[46], most of whom live in the Netherlands, it can be expected that more than 10% of car drivers is
interested in using an app that can save them time. It is therefore not unlikely that a similar percent-
age of road-users will use an application for GLOSA if that can save them time and fuel. However,
the willingness of people to share their location data must be investigated.

2.4. Hidden Markov Models
This section describes the fundamentals of HMMs and introduces the terminology as it is used for
the scope of this document.

2.4.1. Introduction to HMMs
HMMs are used to model systems whose outputs show temporal patterns and for which it is costly
or impossible to directly observe the true system states. HMMs model the behaviour by learning
the temporal relationships between system states and the relationships between system states and
system outputs from observation data. The behaviour of the modelled system is represented by a
Markov chain Q. Q is a sequence of states which is generated by a Markov process. The process can
be in any one of N states from the set S= {s1, s2, ..., sN }. The state at time t is denoted by qt . Each state
has a certain probability of transitioning to another state. These transition probabilities are defined
in transition matrix A as shown by (2.2). Element ai j represents the probability of transitioning from
qt = si to qt+1 = s j . The Markov assumption says that only the elements in A determine the state
transitions, meaning that the system has a memory of one time-step. HMMs are called hidden be-
cause the states of the modelled system can not be directly observed, instead, at each time-step the
system produces one of M possible observations from the set V = {v1, v2, ..., vM }. The observation at
time-step t is denoted by ot and the full observation sequence of length T is O = o1,o2, ...,oT . Each
of these observations can be emitted by any of the states with a certain probability. These emission
probabilities are represented in emission matrix B as shown by (2.3). Element bi k represents the
probability that state si emits observation vk . To determine the most likely state sequence from an
observation sequence, a probability distribution for the first state of the sequence is needed. The
probability of state si being the first state, q1 is πi . VectorΠ contains the probabilities for all states
of being state q1. Together, A, B andΠmake up all the parameters of a HMM. The symbolΛ is used
to denote all parameters together: Λ={A,B,Π}.

A =


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN 1 aN 2 · · · aN N

 (2.2)

B =


b11 b12 · · · b1M

b21 b22 · · · b2M
...

...
. . .

...
bN 1 bN 2 · · · bN M

 (2.3)
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Figure 2.6: Overview of the HMM.

HMMs are doubly stochastic models, because both the underlying state transition process and
the emission of observations are stochastic processes. This doubly stochastic nature fits the mod-
elling of traffic signals using shared data, because the switching behaviour of traffic signals is de-
pendent on the stochastic traffic supply and the production of observations is dependent on both
the traffic supply and the distribution of data-sharing agents.

Three fundamental problems for HMMs exist:

1. The evaluation problem: evaluating the likelihood of a certain observation sequence given
the HMM parameters λ, i.e. calculating P [O|λ].

2. The decoding problem: inferring the state sequence of the underlying process given an ob-
servation sequence and the HMM parameters λ.

3. The learning problem: learning the model parameters λ to maximize the likelihood of an
observation sequence.

The algorithms that are commonly used to solve these three problems for the standard HMM
are not discussed here, but provided as reference in Section B.1. A variant of HMMs that requires
different algorithms will be used for this research, which is described in Section 2.5.

2.4.2. Challenges of modelling with HMMs
HMMs can be generated in several ways, but it depends on the application which approaches are
possible and which of those is best. In some situations, the states of the system are obvious and
its transition and emission behaviour is known from historical data. In such cases, the topology of
the model, i.e., which parameters are initialized with a non-zero value, can be set before learning
the final parameter values from an observation sequence. However, more often it is not directly
clear what the order, i.e., the number of states N , should be or which observations will be emitted
by which state. In these situations, a model selection process is needed to identify which model
topology best suits the situation that is being modelled. In general the aim of this process is to
identify the model with the highest parsimony, meaning that it should be as simple as possible
while possessing good predictive powers, thereby striking the right balance between under- and
overfitting [53]. Although this goal sounds reasonable, its precise mathematical meaning is vague
and more importantly, there is no consensus on which measure is best at comparing the parsimony
of competing models [54–56]. Often an information criterion is used, of which the Bayesian (BIC)
and Aikake information criteria (AIC) are most used. All information criteria are used to score a
model by weighing its goodness of fit against its complexity. The first is represented by the likelihood
of the observation data for the given model and the latter by the number of parameters in the model.
In this way, these criteria aim to identify the model that maximizes the information per parameter
and thus has the highest predictive power possible relative to the number of parameters.
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The criteria differ in how they weigh the importance of both measures and therefore they serve
different purposes. Most importantly, the BIC was proven to always select the correct model if it is
part of the candidate models, whereas the AIC does not have this property. Instead, the AIC assumes
that none of the candidates is correct and selects the one that resembles the true situation most
closely [57]. This can lead to the AIC selecting models that are more complex than necessary.

On a conceptual level, parsimonious models are generally obtained by minimizing the amount
of model parameters, while pushing their values to the extremes. This means it must be looked for
models that have few parameters, which ideally are either 1 or 0, meaning that there is no alternative
for the event that the parameter represents or that the event will never happen. In a mathematical
sense, this can be evaluated using the concept of entropy. The entropy of a probability mass function
can be calculated using (2.4):

H(X ) =−
n∑

i=1
P (xi ) log(P (xi )) (2.4)

where X is a discrete random variable with n possible outcomes x1, . . . , xn . It can be clearly seen
that the entropy is zero for an element with the value zero, because the first term goes to zero. In
the same manner, the entropy goes to zero for an element with a value close to one. A distribution
thus has a high predictive power if its entropy is low, hence a logical goal when designing a model
generation system for HMMs is to construct models with low entropy. Note that a model with many
parameters can have a lower entropy than a model with fewer parameters if a large portion of its
parameters is zero. However, if a model has more parameters, it can be expected that there are more
local optima, so finding the correct, global optimum requires more data. Following this reasoning,
there is a trade-off between the learnability of models, i.e., with how little data or effort the intended
models can be learned, and model complexity, i.e., how many parameters a model has and how
many situations it can therefore model.

Parameter initialization and learning The parameters of a HMM are iteratively updated for an
observation sequence O until the likelihood of the model having produced O no longer increases.
The most common method to update the parameters is the Baum-Welch algorithm [19], which is an
Expectation Maximization method. Expectation Maximization algorithms converge to the nearest
local optimum, but whether this is the intended global optimum depends on the initialization of
the model parameters. Once the parameters of a HMM are learned, the likelihood of O can be
evaluated for the resulting model and directly compared to that of models with the same amount
of parameters. Usually, multiple models with the same number of parameters are learned with
the same O from different random initializations. The model that yields the highest likelihood is
selected and potentially compared to the best models with different amounts of parameters using
an information criterion. How many different random initializations are needed depends on the
system that is modelled and it can not be guaranteed that the correct model is found, since the
amount of possible different initializations is infinite [56].

An example of a situation that is typically hard to find using random initializations is presented
in [56] and shown in Figure 2.7.

A shows the signal that is modelled and it can be seen that it roughly takes on three distinguish-
able values. Most initializations will lead to the model shown in B , because once S3 has the highest
emission probability for values around the middle, all observations of these values will be assigned
to S3. However, it can be clearly seen that there is a pattern in the signal that is not captured by B ,
namely that once the signal goes from the low value to the middle value, it will always continue to
the high value and not back to the low value. The same is true when moving from the top value to
the middle value. C captures this pattern by splitting S3 into S3 and S4, so that each state can only
transit to one other state. (2.5) and (2.6) show the transition matrix and its entropy of B and C re-



2.5. Hidden semi-Markov Models 17

Figure 2.7: Example of a model that is hard to find using random initialization. A shows the signal that is modelled. B
shows the model that is found from most initializations and C shows the model with the lowest entropy [56].

spectively, under the assumption that there are no self transitions. It can be clearly seen that C has
the lowest entropy and can therefore be used to make predictions with higher certainty.

Unfortunately, states S3 and S4 have the exact same parameters in B, which means that the most
initializations will start favouring either one of them and therefore lead to B . This example shows
that the best model is not always the model with the least parameters and can not always be found
easily.

AB =
 0 0 1

0 0 1
0.5 0.5 0

 , HB = 0.3466 (2.5)

AC =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 , HC = 0 (2.6)

2.5. Hidden semi-Markov Models
As described in Section 2.2.1, the state duration modelling possibilities of standard HMMs are lim-
ited and insufficient to model TSC behaviour. This section shows in what way HSMMs overcome
this shortcoming of HMMs. HSMMs release the Markov assumption by assuming that the next state
is not only dependent on the current state, but also on the duration of the current and/or next state.
Multiple variants with varying applications exist [28], but the most common type of HSMMs is the
Explicit Duration HSMM, which is described in Section 2.5.1. Another type of HSMM is the Variable
Transition HSMM, which offers more flexibility, as is explained in Section 2.5.3.

2.5.1. Explicit Duration HSMM

Explicit Duration HSMM theory expands standard HMM theory, by adding a duration probability
distribution for each state [28]. Additionally, it is assumed that states have zero probability of self
transmission, so all values on the diagonal of the transition matrix become zero. Instead, the prob-
ability that the system resides in a certain state for a certain duration is modelled by the additional
duration probability matrix D, which can be seen in (2.7). In this matrix, pi ,d indicates the prob-
ability that state si lasts for d time-steps. D indicates the maximum state duration, which must
be defined before learning. Following that each row of D represents a probability distribution, the
elements on each row of D must add up to one.
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D =


0 p12 · · · p1D

p21 0 · · · p2D
...

...
. . .

...
pN 1 pN 2 · · · 0

 (2.7)

The transition probability from state si to state s j can now be described using (2.8), from which
it becomes clear how the duration of si influences the transition probability. Also, it can be seen that
the parameters of D are used to scale the transition probabilities to each state equally, which means
that the transition probabilities to each state stay the same relative to each-other with changing
state duration.

P (qt+1 = s j |qt = si ,τt = d) = ai j pi d (2.8)

Because TSCs usually have both a minimum and maximum green time, this means that Explicit
Duration HSMMs can potentially model TSC behaviour more accurately than HMMs.

By defining a matrix such as D, the duration probability distribution for each state becomes dis-
crete and therefore is a probability mass function. Alternatively, state duration distributions can be
modelled as parametric functions [28]. The duration distributions then become continuous and
can be described using fewer parameters than when one parameter is used for each possible state
duration. The downside of using parametric distributions is that the type of distribution has to be
determined beforehand. Selecting the most suitable type of parametric distribution is not a straight-
forward task. Therefore this research limits to using probability mass functions in the form of D to
describe state duration distributions. The set of parameters for a Explicit Duration HSMM are de-
noted as Λ, where Λ = {Π, A, B, D}. It can be easily deducted that the number of parameters of
a Explicit Duration HSMM can be calculated using (2.9). Recall that N represents the number of
model states, M the number of unique observations and D the maximum state duration.

npar,ED HSM M = N 2 +N D +N M +N (2.9)

q1

O1 Ot11

q2

Ot21
Ot22

qn

Otn1 OT

d1 = t11 d2 = t22 − t21 dn = T − tn1

Figure 2.8: Overview of a Markov chain of a HSMM. The states in the Markov chain, q1, q2, . . . , qn , have durations
d1,d2, . . . ,dn respectively. The decoding algorithm uses the parameters of D to determine which state sequence, with
which durations have the highest likelihood for the given observation sequence O.

2.5.2. Forward-Backward algorithm implementation for Explicit duration HSMM
The three basic problems from Section 2.4 also apply to Explicit Duration HSMMs. Yu describes
a Forward-Backward algorithm that is used to solve these problems. This algorithm iterates over
the observation sequence O twice. During the Forward pass, the evaluation problem is solved by
iterating over O from t = 1 to t = T . The Backward pass is then performed by iterating over O from
t = T to t = 1, to determine the most likely state sequence Q for the current model parameters Λ
and to subsequently re-estimateΛ.
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Compared with standard HMMs, the learning algorithm not only has to evaluate potential tran-
sitions between states, but also all possible durations of each state. This is done by evaluating the
likelihood of all possible partial observation sequences of lengths 1 :D for each state, as can be seen
in. For models with a long maximum state duration in combination with a large number of states,
this can lead to numerical underflow, because the product of a large number of fractions has to be
calculated. Numerical underflow occurs when values of variables become so small that the numer-
ical precision of the machine on which they are calculated is insufficient to store the true value and
therefore sets the value to zero. Yu therefore developed an implementation method that does not
suffer from numerical underflow [58].

The following variables are defined to perform the forward pass of the Forward-Backward algo-
rithm, using the definitions as previously described for general HMMs.

1. The forward variable αt (i ,d) represents the probability that qt is si and has been the state for
the d time steps up to t , given the observation sequence up to time-step t :

αt (i ,d) = P (qt = si ,τt = d |ot
1) = St−1(i )p(i ,d)+b∗

i (ot−1)αt−1(i ,d +1) (2.10)

Where τt represents the elapsed duration of qt .

2. rt is a scaling factor that is used to avoid numerical underflow and is calculated by summing
αt−1(i ,d) over time and space, multiplied by the probability of observing ot :

rt = P (ot |ot−1
1 ) =

D∑
d=1

N∑
i=1

αt−1(i ,d)bi (ot ) (2.11)

if logrt is summed over time, the log-likelihood ofΛ producing O is found:

LL(O) =
T∑

t=1
rt (2.12)

3. b∗
i is scaled by rt and represents the probability that ot was emitted from state si :

b∗
i (ot ) = bi (ot )

rt
(2.13)

4. Et (i ) is defined for convenience of notation and represents the probability that state si ends
at time-step t , given the observation sequence ot

1, i.e. the probability of a state transition from
state si at time-step t :

Et (i ) = P (qt = si ,τt = 1|ot
1) =αt−1(i ,1)b∗

i (ot ) (2.14)

5. St (i ) is also defined for convenience of notation and represents the probability of state si start-
ing at time-step t+1, given the observation sequence ot

1i.e. the probability of a state transition
to state si at time-step t :

St (i ) = P (qt+1 = si ,τt = 1|ot
1) =

N∑
j=1

Et ( j )a( j i ) (2.15)

Algorithm 1: Forward pass of the Forward-Backward algorithm

initialize α1(i ,d) and b∗
i (o1)

for t=2:T do
calculate;
αt using (2.10),
b∗

i (ot ) using (2.13),
Et using (2.14) St using (2.15)

end
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The scaled values of b∗
i are used in the Backward pass of the Forward-Backward algorithm along

with the following variables:

1. βt (i ,d) is the backward variable and describes the probability that state si is the state at time
step t and has been the state for the d time steps up to t , given the observation sequence from
T to t , oT

t . βt (i ,d) is calculated for i ∈ 1, . . . , N and d∈ 1, . . . ,D .

βt (i ,d) = P (oT
t |qt = si ,τt = d)

P (oT
t |ot−1

1 )
=

{
S∗

t+1(i )b∗
i (ot ) d=1

βt+1(i ,d −1)b∗
i (ot ) d>1

(2.16)

2. E∗
t (i ) is defined for convenience and represents the probability of observation sequence oT

t
given that qt is si and that si has started at time-step t , divided by the probability of oT

t given
ot−1

1 :

E∗
t (i ) = P (qt = si ,τt−1 = 1|oT

t )

P (oT
t |ot−1

1 )
=

D∑
d=1

p(i ,d)βt (i ,d) (2.17)

3. S∗
t (i ) is also defined for convenience of notation and represents the probability of oT

t given
that qt−1 is si and that si has started at time-step t , divided by the probability of oT

t given
ot−1

1 :

S∗
t (i ) = P (oT

t |qt−1 = si ,τt−1 = 1)

P (oT
t |ot−1

1 )
=

N∑
j=1

ai j Et (i ) (2.18)

Algorithm 2: Backward pass of the Forward-Backward algorithm

initialize βt (i ,d)
for t=T-1:1 do

calculate;
βt using (2.16),
E∗

t using (2.17),
S∗

t using (2.18)
end

2.5.3. Variable Transition HSMM
Variable Transition HSMMs are similar to general HMMs in the sense that they consist of a transi-
tion matrix A, an emission probability matrix B and an initial state distributionΠ [28]. However, the
A matrix is different, because it takes over the function of the state duration matrix D used in Explicit
Duration HSMMs. Each state in a Variable Transition HSMM consists of a tuple that describes both
that meaning of the state and the elapsed duration of that state. This is realised by adding a dimen-
sion to the transition matrix, which models how the transition probabilities change for increasing
state duration, as shown in (2.19).

ai j (d) = P (qt+1 = s j |qt−d+1:t = si ) (2.19)

By defining state transition probabilities as shown in (2.19), a Variable Transition HSMM can
represent situations where transitions from one state to another become more likely with increasing
state duration, while a transition to a different state becomes less likely.

Although Variable Transition HSMMs are more flexible, they do have more parameters than Ex-
plicit Duration HSMMs, as can be seen when comparing (2.9) to (2.20). Recall that N represents
the number of model states, M the number of unique observations and D the maximum state du-
ration. A Variable Transition HSMM only has less parameters for models with few states or short
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maximum state durations. This generally means that Variable Transition HSMMs require more data
to be learned without overfitting [28].

npar,V T HSM M = N 2D +N M +N (2.20)

2.6. Conclusion
From the findings presented in this chapter, it can be concluded that most TSCs adhere to a control
structure consisting of a a number of stages equal to the maximum conflict group size. TSCs that
use a similar structure with flexibility between subsequent stages are also common.

Also, it was found that GLOSA systems have a higher impact when more road users use it and
that many road-users are willing to share their location using their smartphone if they can benefit
from that.

Lastly, no previous research has developed a system to generate HSMMs of TSC behaviour, even
though these models have features that make them suited for such a system, because they can
model both phasing and timing behaviour from unlabelled data. However, several challenges re-
lated to modelling with HMMs were identified that also apply to HSMMs.

Chapter 3 describes the research problem for this thesis, based on the background information
from this Chapter. Subsequently, the methodology is presented to solve this problem.
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Methodology

This chapter presents the research problem and the proposed methodology to solve it. Section 3.2
performs the former by translating the findings from Chapter 2 to a concrete formulation of the
problem that this thesis research aims to solve and under which assumptions a solution is devel-
oped. Section 3.2 describes the design of this solution in the form of a new modelling system.

3.1. Problem formulation
Figure 1.1 already showed a high-level overview of the system that this research aims to develop.
Based on the literature presented in Chapter 2, this section formulates the goals and assumptions
for which this system is developed.

3.1.1. Design goals
As stated in Section 1.2, the overarching goal of this research is to develop a system to generate
models of TSC behaviour from ’FCD data, so that the resulting models can be used to generate
GLOSA. Additionally, it was indicated that it should be strived to develop a system that can provide
as many road users with GLOSA as possible. This was motivated by the fact that the proven potential
of GLOSA systems to make a substantial contribution to the reduction of CO2-emissions remains
unused due to the limited applicability of existing systems. The review of literature from Chapter 2
has shown that the effects of GLOSA become more pronounced when more road-users have access
to it and when it works for more intersections. However, it was found that most existing GLOSA
systems only work in combination with TSCs that can broadcast Signal Phase and Timing messages,
while most TSCs are not able to do so. Additionally, although systems exist that solely rely on shared
data, none of them works with VATSCs with flexibility, while this type of TSC is common or even
predominant in some countries, such as the Netherlands. The approaches that do use shared data
make reserved assumptions on penetration rates, rarely exceeding 1%, while it can reasonably be
expected that shared traffic data will become a more abundant resource in the foreseeable future
due to the growing connectivity of vehicles and people in general. The combination of these factors
explains why GLOSA systems have not had a serious impact on road traffic yet.

This research takes a new approach to the problem of modelling TSC behaviour by developing
a solution that is aimed at being widely applicable. This wide applicability must be embedded in
the design of the solution in two ways. Firstly, it should be able to model the most common types
of TSCs under the circumstances where most road-users can benefit from GLOSA. More concretely,
this means that the behaviour of FTTSCs, VATSCs and VATSCs with flexibility are modelled for the
busier periods of the day. Secondly, the system has to be able to produce useful models from FCD,
i.e., data that does not express the complete, true TSC-state at all times. However, no explicit bounds
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should be imposed on the level of sparsity. Instead, it must be investigated how much data is needed
to generate useful models. By doing so, it can be estimated which future developments are neces-
sary before large scale deployment is possible. A model qualifies as useful when it can be used to
generate a strategy that improves the performance of a road-user for his specific goals compared
to when he would have no knowledge about the TSC behaviour. Because the generation of such
strategies is not part of this research, these can not be used to evaluate the performance of models.
Instead, the following goals are defined for the design of the system:

Goal 1 The developed system can generate models of:

a: fixed-time TSCs;
b: vehicle-actuated TSCs with fixed phasing;
c: vehicle-actuated TSCs with flexibility.

Goal 2 The developed system generates models whose states:

a: cover all possible controller outputs;
b: each represent one TSC state.

Goal 3 The developed system generates models that represent phase transition
behaviour as predictably as possible, i.e., models should have transition
matrices with low entropy.

Goal 4 The developed system generates models that explicitly model the
duration probability distributions of all elements of the control structure
of the modelled TSC.

Goal 5 When provided with enough data, the developed system generates
models whose state duration probability distributions converge to the
true duration probability distributions of the TSC state that they
represent.

Goal 6 The developed system can generate models from data that is
representative of FCD, i.e., data that:

a: is sampled irregularly;
b: only represents a part of the true TSC control output.

3.1.2. Assumptions
The following assumptions are made regarding the modelled situation, i.e. the intersection and its
TSC:

1. The signal groups of the modelled intersection and the movements that they control are known
in the form of a conflict-matrix. This assumption can be made because this information can
be extracted from generally available sources [59].

2. The type of TSC at the modelled intersection is not known, because it can not be relied on
road authorities to share this information and it is not generally available.

3. The number of stages in a TSC control scheme is equal to the size of the maximum conflict
group of the intersection, as is the case for most TSCs [18].

4. Clearance times are never smaller than zero, meaning that two conflicting movements can
never have a green signal simultaneously, as is the case in most countries [30].
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5. Transitions between phases happen simultaneously for all signals belonging to the consecu-
tive phases. In true situations, signals can transition a couple of seconds sooner or later than
others, due to a difference in clearance times. For simplicity, these differences are ignored in
this research.

6. Traffic conditions and controller parameters are stationary, meaning that it is investigated
how a model of TSC behaviour at a certain time of a certain type of day can be generated.
Field testing is necessary to determine how many models are needed per intersection, but
this lies outside the scope of the research presented here.

7. the behaviour of TSCs is ergodic, meaning that all possible behaviour is exerted if the TSC
is observed long enough. Because of this assumption, a sufficiently large sample of the TSC
behaviour is representative of its true behaviour.

The following assumptions are made regarding the data that is used to learn the parameters and
evaluate the learned models:

1. Data is available in the form of time-stamped data-points. A data-point indicates the colour of
one signal at a specific moment in time. The process of translating shared data to this type of
observations is not considered. Because of this assumption, the development of an additional
system is needed before the developed modelling system can be used with real data. Several
methods to perform this translation are described in literature [15, 24, 50].

2. Road-users strictly obey red signals. Research has shown that red-light-running occurs in only
0.1 to 0.5% of intersection crossings [60, 61]. The effects of red-light-running are therefore
assumed to be negligible. Future research will have to investigate the true effects of drivers
disobeying red signals.

3. Road-users can cross during a yellow signal, therefore, yellow signals are regarded as green
signals.

4. Data-points are produced without error. It can be expected that true shared data contains
errors, so the effects of this will have to be investigated in future research.

3.2. Design overview
HMMs can be used to model a wide array of processes, but there is no off-the-shelf solution for
each modelling problem. Instead, it has to be assessed how HMMs can best represent the specific
process that needs modelling and how these models can be constructed from the available data.
This section describes how the goals from Section 3.1.1 are translated into a concrete design of the
modelling system shown in Figure 1.1. For the structuring of this document, the system is divided
into three elements as shown Figure 3.1. The elements are discussed in the order indicated by the
white circles.

①: Section 3.3 explains that state duration distributions can only be explicitly modelled from
FCD with HSMMs if observation sequences are constructed that contain empty observations
or observations with multiple data-points. It is argued that observations with multiple data
points can best be interpreted independently to lower the number of model parameters and
thus increase the learnability of models. The consequences of this choice for the learning
algorithm are discussed in Section 3.6.

②: Section 3.4 and Section 3.5 describe how the timing and phasing behaviour of TSCs is rep-
resented respectively by learned models to meet the design goals. It is explained why Ex-
plicit Duration HSMMs are chosen over Variable Transition HSMMs and that model states do



26 3. Methodology

not represent which signals are actually green, but which could be green. Also, it is chosen
that TSC states that yield the realisation of the same signals, but represent a different state in
the control scheme, are modelled with separate model states. Although this approach yields
models with more states than strictly necessary to represent all possible outputs of the TSC, it
lowers the entropy of the transition matrix of these models and is therefore preferred. It was
shown in Chapter 2 that this choice results in models that are harder to find from random ini-
tializations, so Section 3.6 explains how this problem is circumvented using knowledge of the
intersection layout.

③: Section 3.6 describes how the intended models (②) can be generated from observation se-
quences (①) and data of the intersection layout. It is first presented how the Forward-Backward
learning algorithm by [58] is adapted to accept observation sequences that contain empty ob-
servations or multiple observations per time step. Then it is explained how the four steps of
the model generation process shown in Figure 3.1 work, which can be summarized as follows:
First, it is calculated which combinations of stages can create a valid control structure from
the intersection data. Next, a model is initialized and learned for each possible set of stages.
The model that yields the highest likelihood is then analysed to determine the control type.
During learning, the most likely order of the stages is automatically found. Thirdly, a model
with all states and their transition behaviour, as defined in Section 3.5, is initialized from the
ordered set of stages and identified control type. Lastly the duration distributions of all states
are learned from the observation sequence using the adapted learning algorithm.

Historical
Data

Intersection
Data

TSC Behaviour
Modelling
System

Observation
sequence

TSC Behaviour
Model

2

Model generator

3

Calculate
possible
stage sets

Learn
duration

distributions
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stages +
TSC type

Observation
sequence
generator

1

Figure 3.1: Elements of the TSC behaviour modelling system developed in this research. The input of the "Model gener-
ator" is described first in Section 3.3 (①) so that it is clear from which information the models must be extracted. Then,
Section 3.4 and Section 3.5 (②) describe how the resulting models represent TSC timing and phasing behaviour. In this
way, the boundaries and goals of the model generation process are clear before it is described in Section 3.6 (③). The
blocks within
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3.3. FCD to observation sequences
This section describes how observation sequences are created from time-stamped data points, so
that Goal 4 and Goal 6 can be met:

Goal 4 The developed system generates models that explicitly model the
duration probability distributions of all elements of the control structure
of the modelled TSC.

Goal 6 The developed system can generate models from data that is
representative of FCD, i.e., data that:

a: is sampled irregularly;
b: only represents a part of the true TSC control output.

Additionally, it is explained that data-points can either indicate that a signal is green, or that a signal
can not be green.

3.3.1. Model time-steps
When modelling with HMMs, it is important to realize that the time between states in the Markov
chain is not necessarily equal. A property of any type of HMM is namely that each observation is
assumed to be emitted by a state, so a state is inferred and added to the Markov chain for each obser-
vation in the observation sequence O. This means that if observations are not equally spaced over
time, i.e. are made at irregular intervals, the states in the Markov chain are also irregularly spaced
over time. Usually a time step can be chosen by sampling data at a fixed interval. However, given
Goal 6, it can not be assumed that data points are produced at fixed intervals. Instead, whether or
not a data point is produced at any given time depends on whether a road user makes an observa-
tion at that time and is able to share it. It can be expected that there are periods during which no
observations are made, so the modelling system should be able to cope with this. The remainder of
this section explains what consequences this has for the construction of observation sequences by
means of an example.

Figure 3.2 shows a collection of four data points, placed on a time axis to indicate at what time
they were produced. The data points are given a colour to visualize how they are represented by the
observation sequences from Figure 3.3.

0 1 2 3 4
Time[s] →

Figure 3.2: An example of four data points that are produced at irregular time intervals. Each data point is given a colour
to visualize how it is mapped to the observation sequences in Figure 3.3.

Figure 3.3 shows three different observation sequences that all result from the four data points
shown in Figure 3.2. The observation sequences differ because they result from different choices
regarding the structuring of the data points. The observation sequence in Figure 3.3a is the result
of choosing that each data point yields one observation in O and that the observations are ordered
based on their time of production. This is a common approach and was used by the researchers in
[21]. However, the result of this choice is that a HMM whose parameters are learned from such an
O has no direct relation to time. Instead, a state is inferred and added to the Markov chain for each
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observation, i.e. data point. The duration of a given state is thus based on the number of observa-
tions that is produced by that state, so if these observations are produced at irregular time-intervals,
such as those from Figure 3.2, there is no explicit connection between a model step and time, which
violates Goal 4. Because TSCs use a clock to determine their control action, for example to mea-
sure whether the minimum green time of the current stage has passed, it makes sense to construct
models where state duration represents a duration in time and not a number of data points. Luck-
ily, models with this property automatically result from observation sequences with an explicitly
defined duration between observations. This duration is the time-step size of the model and can
be chosen by the designer of the HMM. Figure 3.3b shows an observation sequence with a time-
step size of 1 second, meaning that all data points that fall in the same 1 second time-interval are
mapped to the same observation. It can be seen that both the red and the blue data point lie in the
interval 0 ≤ t < 1 and are therefore both mapped to o1. Because there are no data points in the sec-
ond interval, o2 is an empty observation, indicated by the dotted white circle. Section 3.6 explains
how observations with multiple or zero data points can be processed by the learning algorithm. If it
is chosen that the learned model should have a higher temporal resolution, the time-step size must
reduced. Figure 3.3c for example shows an observation sequence resulting from a time-step size of
0.5 seconds.

o1 o2 o3 o4O =

(a) Resulting observation sequence for a model without an explicit time-step.

o3o2 o4o1O =

(b) Resulting observation sequence for a model with an explicit time-step size of 1 second. o1 contains all data points that fall in the time
interval 0 ≤ t < 1, o2 contains those from 1 ≤ t < 2, etc.

o1 o2 o3 o4 o5 o6 o7 o8O =

(c) Resulting observation sequence for a model with an explicit time-step size of 0.5 seconds. The data points are assigned to the

Figure 3.3: The data points from Figure 3.2 can be mapped to different observation sequences O, depending on the type
of model. For models where O is of the type shown in Figure 3.3a, each data point adds one element to the observation
sequence and thus to the Markov chain. For models with an explicit time-step size, the observation sequence consists of
one observation per time-step. each data point is mapped to its closest observation. It can occur that more than one data
point is mapped to one observation, an example of which is represented by o1 in Figure 3.3b. Here, o1 is both red and
blue, because both the red and the blue data point lie closest to t = 0. It can also occur that no data points are mapped to
a particular observation, because no data points were collected during the corresponding time-interval. These elements
are indicated by the dotted white circles. Section 3.6 describes how these cases can be handled by the parameter learning
and decoding algorithms.

Temporal resolution It has been established that, in order to fulfil Goal 4, observation sequences
should have a fixed time step, so that resulting models explicit model timing behaviour. The time-
step size is a modelling parameter that has to be defined before observation sequences can be pro-
duced. Figure 3.3b and Figure 3.3c show the effect of choosing a different time-step. It can be seen
that the observation sequence from Figure 3.3c has a higher resolution and therefore is able to cap-
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ture the true durations between the data points in Figure 3.3 more accurately. However, it can also
be seen that this observation sequence is twice as long as that from Figure 3.3b and contains more
empty observations.

The question must be asked what the most appropriate time-step size is for the problem at hand.
So far it has been established that models with a small time-step size are more flexible and therefore
theoretically able to model timing behaviour more precisely than models with a larger time-step
size. However, a smaller time-step size also leads to a model with more parameters, and therefore
requires more training data to learn parameters without over-fitting. On the other hand, a lower
temporal resolution, i.e., a larger time-step size, can lead to prediction errors that make it impossi-
ble to generate useful GLOSA. Additionally, this increases the amount of contradictory data points
being mapped to the same observation. The concept of contradictory data points is illustrated us-
ing an example; let’s assume that the red data point from Figure 3.2 indicates that a certain traffic
signal is red and the blue data point indicates that the same signal is green. It can be seen from
Figure 3.3b that, if the model time-step size is 1 second, this leads to an observation where the same
signal is both red and green simultaneously. This is an example of a contradictory observation and if
these are not filtered out, the learning algorithm will learn that certain signals can be red and green
simultaneously, which does not represent any true situation and is therefore unwanted. Further on,
it will be explained how contradictory observations are handled in the construction of observation
sequences, but first it is described which two situations can be indicated by data points

3.3.2. Types of data points
Data consists of data points that have both a meaning and a time stamp. For the scope of this
research, a data point can be produced by any of the sources listed in Section 2.3 and its meaning
is one of two conclusions about the state of a traffic signal. Firstly, it can be concluded that a traffic
signal is green, for example when it is measured that a vehicle passes the stop-line of that traffic
signal. Secondly, a data point can indicate that a road user is waiting to make a particular movement.
This can lead to the conclusions that the signal is red and, if the TSC at the intersection is vehicle-
actuated, that a request has been placed for it to turn green. The second type of data point must
not be confused with measuring that the signal for a particular direction is red, because a red signal
without waiting traffic does not indicate that the signal could not have been green at that moment
in time. As explained in Section 2.1, VATSCs generally do not turn signals to green if there is no
pending request, with the exception of signals that can be realised together with the signals that are
set to green without causing a potential delay for traffic on another movement in the case that this
movement would receive a request. For this reason, it can occur that a direction that belongs to
the active stage of the TSC has a red signal. Using observations of this type of red signal does not
contribute to the decoding of the state-sequence, because no conclusions about the TSC-stage can
be drawn from it, whereas an observation of a green signal can lead to the conclusion that current
TSC-stage is one to which this signal belongs. Similarly, observations of waiting traffic can lead to
the conclusions that the active stage is not one that contains the movements for which traffic is
waiting. These conclusions are drawn by the decoding algorithm based on the parameters of B.
However, before explaining what the parameters of B represent, it must be decided how to handle
observations that consist of multiple data points, such as o1 from Figure 3.3b.

3.3.3. Types of observations
Above, the subject of a single observation containing contradictory data points was introduced. If
this happens, the observation becomes conflicting, meaning that it either suggests that a signal is
both green and red at the same time, or that two movements that can not have a simultaneous
green signal according to the control structure are realised together. Either one of the conflicting
data points can be removed from the observation sequence, or the individual data points can be
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assigned to the most logical subsequent observations. If either of these steps would not be taken, the
learning algorithm would learn that certain states can produce conflicting observations, because it
has no way of detecting that this can not occur in the process it models. In line with Goal 2, model
states have to have an unambiguous interpretation and represent the true TSC control structure.
Therefore, it is necessary that conflicting observations are removed from the observation sequence
before learning. The process of translating true data points to conflict-free observation sequences
lies outside the scope of this research. A situation can also occur where multiple data-points with
the same meaning are sampled during the same time step. In this case, the meaning of these data-
point is included once in the observation. A result of having conflict and duplicate-free observations
is that each signal group can produce either one or no data point at each time-step. This means that
the maximum number of data points in a single observation is equal to the number of signal groups
on the intersection.

Given that multiple data points can be produced for a single time-step, it must be decided how
observations consisting of multiple data points are interpreted. In order to do this, it must be de-
fined what the elements in the observation space V represent. There are two main approaches that
can be taken. Firstly, each unique combination of data points can be regarded as a unique obser-
vation vk , for k ∈ 1. . . M . For a simple, unrealistic intersection with two conflicting movements, this
leads to the observations shown in Figure 3.4. It is clear that signal-groups 2 and 5 can not be green
simultaneously, so V has eight elements instead of nine. If the observation sequences from Fig-
ure 3.3 are considered, the empty observations, such as o2 from Figure 3.3b, would be labelled as
o2 = v1. It is not hard to imagine that for an intersection with more signal-groups, the number of
possible observations increases rapidly. In fact, if conflicting observations are also counted, the size
of V , M , for an intersection with nsi g signals can be calculated using (3.1):

M = 3nsi g (3.1)

from which it becomes clear that M grows exponentially with nsi g . The base is 3, because each sig-
nal can be observed to be green or have waiting traffic, or is not observed. It can be imagined that
this way of modelling observations becomes unfeasible for intersections with more signal-groups,
even if conflicting observations are discarded. For example, an intersection with signal-groups 2, 5,
8 and 11 would have an observation space consisting of 55 elements. Section B.2 provides a visual
representation of the resulting observation space. However, this is still an intersection that is rela-
tively simple. Intersections with signal-groups 1 to 12 are not uncommon in the real world, but if
such an intersection would be modelled using combined observations, an observation space of size
M = 94,463 needed. This number is calculated by constructing each possible combination of data-
points, which yields M = 312 = 531,441 combinations, and removing all those that are conflicting,
which can be checked using a conflict matrix of the signal groups at the intersection. Although ex-
periments would have to show to what extend such a large observation space influences parameter
learning, it can be expected that it yields an unfeasible number of parameters to learn with realistic
amounts of data. Therefore, a different way of interpreting parameters is desired.

The second approach is to not combine data points into unique combinations, but instead as-
sume that data points are independent of each-other. This means that each type unique data point
represents an element of V . Inspiration for this approach comes from the research performed in
[25]. In this research, V-log data is used to construct models of VATSC behaviour under the assump-
tion that measurements made by different detectors are statistically independent from each-other,
because one vehicle can only activate one detector. For the scope of this thesis research, data is
not generated by detectors installed at the intersection, but instead is shared by road users. How-
ever, which data source is used for the modelling system does not influence the true TSC behaviour
and the observations used in this research are a sparse sub set of those used in [25]. Therefore it is
assumed that data points are independent for this research as well.



3.3. FCD to observation sequences 31

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

Observation space V

Figure 3.4: All possible combined observations for an example intersection with signal-groups 2 and 5. A green arrow
indicates a green signal and a red signal is denoted by a red arrow. Note that the conflicting observations that both signal-
groups are green is not part of the observation space.
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Figure 3.5: All possible independent observations for an example intersection with signal-groups 2 and 5. A green arrow
indicates a green signal and a red signal is denoted by a red arrow. Note that there is no empty observation in this example.

Under this assumption, for the same example intersection as before, with only directions 2 and
5, V becomes as shown in figure Figure 3.5. It is clear that the size of the observation space is re-
duced, because it is now equal to the number of unique data points and can thus be calculated using
(3.2):

M = 2∗nsi g (3.2)

After all, each signal can produce two types of data points, as explained above.
When looking at Figure 3.5, note that there is no separate observation for the case that there

are no data points. Such an observation could be added to V , in which case it would indicate which
state is most likely at a time-step for which no data points are available. Each state would then have a
parameter in B to indicate the probability that no data points are available when being in that state,
which intuitively can help with inferring the correct state when there is little context in terms of data,
by relying on statistics about which state the system is in the most. However, it is expected that it
is better to let the state duration distributions determine the probability of being in a certain state
when there is no data available, because otherwise a positive feedback loop could be created during
parameter learning with sparse data. This can be explained as follows: Expectation Maximization
algorithms decode the observation sequence based on the current parameters and consequently
update the parameters based on the resulting state sequence. If a state is inferred more often, more
of the empty observations are assigned to it, so its probability of emitting an empty observation is
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increased when updating the parameters. During the next iteration, even more empty observations
are therefore assigned to this state, leading to a further increase of the probability that this state
emits empty observations. One could think that this reasoning applies to the other observations as
well, but the difference lies in the fact that any other observation implies something about the true
TSC-state and therefore there are limits to the number of consecutive observations of a single type,
whereas a sequence of empty observations can be infinitely long.

In conclusion, the choice is made to treat data points as independent observations and to not
have a separate observation to indicate a time-step without data points. This means that the obser-
vation sequence can contain time steps at which no or multiple observations are made. Section 3.6
explains how the learning algorithm is be adapted to cope with this.

3.4. Modelling timing behaviour
To comply with Goal 4 and Goal 5, it must be defined how timing behaviour is captured by learned
models.

Goal 4 The developed system generates models that explicitly model the
duration probability distributions of all elements of the control structure
of the modelled TSC.

Goal 5 When provided with enough data, the developed system generates
models whose state duration probability distributions converge to the
true duration probability distributions of the TSC state that they
represent.

An important aspect of modelling TSC behaviour for GLOSA is that the timing behaviour of the
TSC is represented accurately, otherwise it will be impossible to use resulting models to predict the
switching moments such that speed advice can be generated. The ability of a model to do so is
determined by the combination of its temporal resolution and the way that TSC-state duration is
represented by its parameters. It was previously described that regular HMMs, as used in [21], are
not suited to accurately represent TSC timing behaviour, but that HSMMs are developed specifically
to model state duration behaviour. This section therefore compares two HSMM approaches that
can be used to model the duration of states. It is analysed which of these approaches can best be
used to reach the goals described in Section 3.1.1.

3.4.1. Variable Transition HSMMS or Explicit Duration HSMMS
Section 2.2.1 describes how the modelling approach developed in [21] is limited in its ability to
model the timing behaviour of TSCs. The authors suggest using HSMMs to increase this ability,
but it was found that only the research in [22] uses an approach resembling a HSMM, which can
best be interpreted as a Variable Transition HSMM. However, this research did not investigate the
learning of such models, so all factors related to learning are not discussed. This section compares
the characteristics of Explicit Duration HSMMs and Variable Transition HSMMs and argues which
can best be used to model and learn the timing behaviour of TSCs from sparse data.

As explained in Chapter 2, the main difference between Explicit Duration HSMMs and Variable
Transition HSMMs is how the elapsed state duration influences the state transition probability. In a
Explicit Duration HSMM, the probability that state si transits to state s j after a duration of d time-
steps is calculated using (3.3), where τt indicates the past duration of state qt :

P (qt+1 = s j |qt = si ,τt = d) = ai j pi d (3.3)

The transition matrix A of an Explicit Duration HSMM is stationary, meaning that the values of its
parameters are independent over time. As a result of this, an Explicit Duration HSMM can not model
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a system where the transition to a certain state becomes less likely with increasing duration of the
current state, while transition to another state becomes more likely. This is because all transition
probabilities are scaled with the same parameter from D, meaning that only the probability that
a transition happens changes over time, but not which transition that is. In a Variable Transition
HSMM on the other hand, there is an individual parameter for the probability of each state tran-
sition for each elapsed state duration. This is achieved by adding a dimension, whose size is the
maximum state duration D , to A. The consequence of this added flexibility is that the number of
parameters of a Variable Transition HSMM is higher under most circumstances. (3.4) shows how the
number of parameters of an Explicit Duration HSMM can be calculated and (3.5) shows the same
for a Variable Transition HSMM. Remember that N indicates the number of model states, D the
maximum state duration and M the size of the observation space.

npar,ED HSM M = N 2 +N D +N M +N (3.4)

npar,V T HSM M = N 2D +N M +N (3.5)

These calculations are the result of summing the number of elements in the matrices that define
each of the models. A Explicit Duration HSMM is defined by the matrices A, D, B andΠ, whereas a
Variable Transition HSMM does not have a D matrix. However, because A has an extra dimension
in a Variable Transition HSMM, the dominant term from (3.5) is scaled with D , compared to (3.4).
Figure 3.6 visualises what consequences this has for the total number of parameters of a Explicit
Duration HSMM compared to a Variable Transition HSMM. The example in the figure neglects the
contribution of the size of the state space, M , because it is the same for both methods.

Figure 3.6: Number of model parameters for a Explicit Duration HSMM compared to a Variable Transition HSMM for
varying model order, N, and maximum state duration, D. The number of possible observations, M , is neglected in this
example.

Figure 3.6 clearly shows that the number of parameters of a Variable Transition HSMM exceeds
that of a Explicit Duration HSMM by several factors, even for models of a relatively modest order. To
be able to learn the parameters of models, it is therefore decided to use Explicit Duration HSMMs
to model the behaviour of TSCs in this research. This means that it is assumed that the phasing
behaviour of TSCs is independent of their timing behaviour. Whether this assumption holds can
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be investigated by analysing whether some transitions occur more often than others after a certain
elapsed state duration, while the opposite is true before this elapsed duration. If this is found to be
the case for a state, it can be split into two new states that represent the situation before and after
the elapsed duration respectively. With this targeted state-splitting approach, other situations that
are observed to correlate with a change in TSC behaviour can also be captured by the model, with
the aim to improve the prediction quality of the model. However, the aim of this research is to lay
the basis of a new approach for the modelling of TSC behaviour and therefore state-splitting does
not lie within the scope of this research.

Section 3.6 explains how the Forward-Backward algorithm presented by [58] is used to learn the
parameters of the intended Explicit Duration HSMMs.

3.4.2. Maximum state duration
When modelling with Explicit Duration HSMMs, an important modelling parameter is the maxi-
mum state duration, D . This parameter determines the maximum number of consecutive steps
that the same state can be inferred. Setting this parameter too low results in a situation where the
actual process is in a certain state longer than the model can represent, which leads to erratic be-
haviour of the model. On the other hand, setting D too high can lead to different problems. To begin
with, the number of parameters increases with D , although this is not the dominant term, so this
only a problem if there are strict storage limitations. More importantly, a D that is set too high can
lead to wrong inference behaviour and thus to the incorrect learning of model parameters when lit-
tle data is available. In a situation where there is a system with two alternating states, if one of them
happens to stay unobserved for one cycle, that state could be left out of the inferred state sequence,
because the decoding algorithm can find a solution where only the observed state is inferred for a
long duration, overarching the unobserved state. If the maximum state duration would have been
limited, the decoding algorithm would be forced to infer the unobserved state as well. Based on
this example, it can be stated that D can best be kept smaller than the cycle time. 120 seconds is
commonly used as the maximum cycle time [30], so this should be regarded as the upper limit of D .
It must be investigated which value of D yields the best performance and whether this number can
be set for all TSCs, or that this needs to be determined for each TSC individually.



3.5. Modelling phasing behaviour 35

3.5. Modelling phasing behaviour

This section explains how TSC states are represented by model states to comply with the goals that
were set for the system developed in this research. It is described how a known TSC control struc-
ture should be represented by a learned model. Timing behaviour is not regarded in this section,
instead it is assumed that each state lasts one time step and that self-transition probabilities are
zero. The latter assumption is in accordance with the definition of Explicit Duration HSMMs, so the
transition matrices described in this section are compatible with Explicit Duration HSMMs. Goal 1,
Goal 2 and Goal 3 relate to the modelling of phasing behaviour:

Goal 1 The developed system can generate models of:

a: fixed-time TSCs;
b: vehicle-actuated TSCs with fixed phasing;
c: vehicle-actuated TSCs with flexibility.

Goal 2 The developed system generates models whose states

a: cover all possible controller outputs
b: each represent one TSC state

Goal 3 The developed system generates models that represent phase transition
behaviour as predictably as possible.

To comply with Goal 3, the state parameters of the state transition matrix should have a low entropy.
In Chapter 2, an example was given based on the research in [56], which showed that a model with
states that have similar values in B, i.e., states that are inferred based on the same observations, can
have a lower entropy if these states have different transition behaviour, i.e., can transit to and from
different states. Therefore, TSC states that have a different place in the control structure, but that
result in the realisation of the same signal groups, should be modelled using different model states.
An example of such TSC states can be seen in Figure 3.7, which represents the control structure of
a TSC with controller flexibility. It can be seen that the flexibility states, numbered 1.1, 2.1 and 3.1
yield the realisation of the same signals, but have a different meaning.

1 2 3

4 5 6

Figure 3.7: Example of a flow diagram for a TSC with three stages and flexibility. The blocks that represent the stages are
numbered with 1 to 3 and blocks that represent flexibility phases are numbered 4 to 6. Only movements with a green
signal are shown, all other signals are red.

If it is assumed that states that can be succeeded by multiple states have an equal probability
of transitioning to any of the subsequent states, the transition matrix of the control structure in
Figure 3.7 looks as shown in (3.6):



36 3. Methodology

Asepar ate =



0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0

0.5 0 0 0 0 0.5
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0

 , Hsepar ate = 2.0794 (3.6)

where Hsepar ate indicates the entropy of the transition matrix. Figure 3.8 shows a transition model
where all TSC states that yield the realisation of the same signals are modelled using one state. As
explained in Section 2.4, Expectation Maximization algorithms usually get trapped by the local op-
timum that such a model represents, because it assigns all similar observations to the same state.

1 2 3

4

Figure 3.8: Example of a transition diagram of the control structure shown in Figure 4.2, when all three flexibility phases
are modelled by the same state. States 1, 2 and 3 represent the stages and state 4 represents the flexibility phases. Only
movements with a green signal are shown, all other signals are red.

The transition matrix belonging to the model in Figure 3.8 looks as shown in (3.7):

Acombi ned =


0 0.5 0 0.5
0 0 0.5 0.5

0.5 0 0 0.5
0.33 0.33 0.33 0

 , Hcombi ned = 3.1770 (3.7)

where it can be seen that the entropy of this transition matrix, indicated by Hc ombi ned is higher
than that of the transition matrix of the true TSC control structure and therefore has lower predictive
powers. For this reason, it is chosen that learned Explicit Duration HSMMs of TSC behaviour should
resemble the control structure of the modelled TSC, even though it is known that these models can
probably not be found in one step from a randomly initialized model. This choice is in accordance
with Goal 2b. To also meet Goal 2a, it has to be defined how transitions between the elements of
the control structure of a TSC are modelled.

3.5.1. Modelling signal transitions
When a TSC has decided that it must change from one stage to the next, or that there is an opportu-
nity to realise a flexibility phase, it initiates a transition process. This process consists of three steps.
First, all signals that are currently green, but have to become red are turned to yellow. After a pre-
determined yellow duration has passed, the yellow signals turn red. As explained in Section 2.1, the
signals that have to become green do not turn green instantly. Instead, the TSC waits for a predeter-
mined clearance time to pass, to allow road-users that passed under the yellow signal to clear the
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conflict area. Once the clearance time has passed, the signals of the new phase are turned to green.
Due to differences in clearance time between sets of conflicting movements, one signal can turn
green before another, with a difference of at most a few seconds. This difference is neglected here
for simplicity, but it should be researched what effects this has on the usefulness of learned models
under real-life conditions. This section analyses how this transition process can best be modelled
by the model states. Two approaches are described and it is explained why the last one is chosen.

Firstly, it can be chosen that no states should be added to the model to represent TSC-transitions.
In this case, a solution must be described to handle observations that can only indicate that a tran-
sition process is taking place. The most obvious example would be to observe that all signal groups
are red simultaneously. This situation can occur when the phase before and after the transition do
not contain the same movements and the transition requires a positive clearance time. The sim-
plest way of handling such observations is to discard them by removing them from the observation
sequence. However, this leads to the destruction of valuable information, because the timing of
transitions is of particular interest when generating GLOSA, since transitions mark the moments
when signals turn green and thus indicate when a road-user should arrive at the intersection. An-
other option is to change the parameters of B, so that observations of transitions can be assigned to
existing states. However, this requires that the parameters of B of a single state become contradic-
tory, because they suggest that a signal can be either red or green when being in that model state.
In combination with independent observations, as described in Section 3.3, this means that states
can be expected to be incorrectly inferred. It is clear that this is not desired, so a different way of
modelling transitions is required.

The second approach adds states to explicitly model transitions. As described in Section 2.4,
there are benefits to adding a state for each unique situation, even if this means that there are mul-
tiple states with seemingly similar interpretation in terms of which observations are associated with
them. In the context of transitions, this means that each transition between a stages or flexibility
phases is represented by one model state. If this is applied to the TSC shown in Figure 3.7, the state
space of the resulting model is shown in Figure 3.9. Each state transition with a non-zero probabil-
ity is indicated by grey arrows, to show that there is a limited amount of transition possibilities from
each state. It can also be seen that there are now 15 states, but the entropy of the resulting transi-
tion matrix is the same as for the model shown in Figure 3.7, because all transitions have only one
possible preceding and succeeding state and therefore only add transition parameters with value 1
or 0 to the transition matrix. It was explained in Section 2.4 that the entropy is zero of a parameter
that has value 1 or 0. Therefore, transition states can be included in learned models without losing
any predictive power.

Additionally, by defining models in this way, every possible controller output is represented by
one of the model states, as required for Goal 2a.

s1

s7
s2

s8

s13

s5

s12s11

s4

s10

s3

s14

s6

s9

s15

Figure 3.9: State space with transition states. If there is no grey line between states, then a transition is not possible.
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3.5.2. Interpretation of parameters
So far, Section 3.4 has explained why the Explicit Duration HSMM framework is chosen, Section 3.3
has described why independent observations will be used and Section 3.5 defined the high level
relationship between model-states and TSC-states. This section describes how these choices in-
fluence the model on a low level, by explaining how each parameter of a learned model should be
interpreted if it is constructed according to the design choices made before. Only the parameters
of B are discussed, because the meaning of the other model parameters is clearly defined in Sec-
tion 2.4 and Section 2.4 and does not depend on the modelling of TSCs, whereas the parameters of
B directly show which combination of green signal-groups is represented by each state of the HMM.

Given that each signal group can produce two observations, the observation space is of size
M= 2nsi g . For a model with N states, this means that B has size N×2nsi g . The signal groups of
the intersection are sorted according to their numbering. The odd indices of the observation space
represent observations of a green signal and the even indices indicate observations of red signals,
such that observations of the signal group with the lowest number are represented by observations
"1" and "2". Figure 3.10 shows an example of an observation emission probability matrix, B, for a
TSC controlling signal groups 2, 5, 8 and 11. The matrix has been constructed under the assumption
that each observation has an equal probability of being emitted.

Figure 3.10: Interpretation of the parameters of B of a learned Explicit Duration HSMM of a TSC with two stages.

As explained in Section 2.1, VATSCs only turn those signals of the current stage to green for
which there are requests. This means that the realised phase can be a subset of the TSC state. It is
chosen that full stages are used as model states, which means that model states do not represent
which signals are actually green, but which could be green. Because it was defined in Section 3.3
that there are no observations of signals that are red without waiting traffic, this choice will not lead
to the inference of incorrect states. If a signal is namely observed to have waiting traffic, it is certain
that the TSC is not in a state where it can turn that signal to green, whereas an observation of a red
signal without waiting traffic could not lead to the conclusion that the signal could not have been
green if there would have a request from a road user.
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3.6. Generating models
The previous sections in this chapter describe how observation sequences are constructed and what
learned models should look like to comply with the design goals described in Section 3.1.1. This
section describes an approach that is developed to translate these observation sequences into the
intended models. First, it is explained how the HSMM learning algorithm from [58] is adapted to
accept the observations described in Section 3.3.3. Then, an analysis of the problems related to
finding the intended models is performed and an approach is presented that solves these problems
for the modelling of TSC behaviour.

3.6.1. Handling multiple or empty observations
In Section 3.3, the choice was made to treat each data point as an independent observation. This
was done to drastically reduce the number of model parameters, of which the expected conse-
quence is that models can be learned from less data, because models with less parameters are
usually less prone to overfitting. However, it was shown that a consequence of the independence
assumption is that observation sequences can contain multiple observations at a single time step,
with an upper limit defined by the number of signal groups installed at the intersection. The stan-
dard Explicit Duration HSMM learning algorithm described in Section 2.5, has to be adapted to this,
because it expects exactly one observation per time step [58]. This is incorporated in the learning
algorithm by calculating the average emission probability of all observations at a given time step,
for each state, by changing (2.11) from:

rt =
D∑

d=1

N∑
i=1

αt−1(i ,d)bi (ot ) (2.11)

to:

rt =
D∑

d=1

N∑
i=1

αt−1(i ,d)
nobst∏
x=1

bi (ot ,x )M (3.8)

and (2.13) from:

b∗
i (ot ) = bi (ot )

rt
, for 1 ≤ i ≤ N (2.13)

to:

b∗
i (ot ) =

∏nobst
x=1 bi (ot ,x )M

rt
, for 1 ≤ i ≤ N (3.9)

where nobst denotes the number of observations at time-step t . Note that the size of the observation
space, M , is used to normalize the values of rt and b∗

i (ot ), to assure that the likelihood of the obser-
vation sequence is independent of the number of observations. In the normal learning algorithm,
the average value of bi (ot ) is 1/M , because this is the average value of the parameters in B, given
that each row in B has M elements that sum to 1. The values of rt and b∗

i (ot ) can thus be normalized
by multiplying each observation emission probability by the inverse of this average value: 1

1
M

= M

An additional change must be made to the learning algorithm, because it can be expected that
there are time steps at which there are no observations due to the sparse nature of FCD, as explained
in Section 3.3. In these cases, i.e., when nobst = 0, all states are assumed to have an equal probability
of having produced the observation at this time-step, by defining that:

nobst∏
x=1

bi (ot ,x ) = 1

M
, for 1 ≤ i ≤ N (3.10)
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This means that for time steps without observations, only the values of αt−1 determine which state
is most likely. Again, it can be seen that M is used to scale the outcome of (3.10) to be equal to the
average value of the parameters in B.

With the presented adaptations to the Explicit Duration HSMM Forward-Backward algorithms,
these can be used to learn parameters from observation sequences with no, one or multiple obser-
vations at a time-step.

3.6.2. Finding the global optimum

Expectation Maximization algorithms, like the Forward-Backward algorithm for Explicit Duration
HSMMs [62], converge to an optimum, but it depends on the initialization of parameters which
optimum that is [19]. The intention is always to find the global optimum, which is defined as the
model that has the highest likelihood of having produced the observation sequence that is used for
learning. However, many local optima can exist, depending on the modelled system and the used
model dimensions. Generally, model parameters are initialized randomly, unless it is desired that
prior knowledge of the modelled system is already present in the model before learning [19]. For
example, it could be assumed that all transition-states have a maximum duration of 10 seconds,
in which case all parameters in D that represent the probability of a longer duration of a transition
state are initialized as zero. It is important to note that a parameter that has a value of zero can never
be changed to any other value by the learning algorithm. Initializing parameters with a value of zero
hence limits the flexibility of the model and this should therefore only be done when it is absolutely
certain that a parameter should be zero. A common approach to finding the model that represents
the global optimum is to randomly initialize several models and to update their parameters with
the same observation sequence. The model with the highest likelihood is then chosen as the final
model. However, it is not possible to determine beforehand how many different models must be
initialized before the correct one is found, neither is there a way to know for sure that the found best
model represents the global optimum. One situation where learning algorithms typically struggle
to find the global optimum is when this optimum contains multiple states that have similar values
in B [56]. For example, if the intended model looks like the one shown in Figure 3.9, where states
S4, S5 and S6 obviously have similar observation parameters, this must be forced by the parameter
initialization. However, for the scope of this research, it was assumed that no prior knowledge of the
TSC type or control structure is known. Luckily, the types of TSCs considered in this research have
several features that can be exploited to provide a starting point for learning. A model generation
system that is tailored to finding the intended models of TSC behaviour from limited quantities of
data will now be described. An overview of this system, consisting of a four-step process, can be
seen in Figure 3.11.
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Figure 3.11: Overview of the steps involved in the model generation process
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3.6.3. Step 1: calculating all possible stage sets
All TSC types considered in this research have a control structure that consists of a set of stages,
which is potentially expanded with flexibility phases. The stages are maximal non-conflicting groups
and are activated in a fixed order. The number of stages in the control structure is equal to the maxi-
mum conflict-group size and each signal group at the intersection is part of at least one stage. Based
on this knowledge, all possible valid sets of stages can be calculated from the available intersection
layout data. Figure 3.12 shows all possible sets for an intersection with signal groups 1-12.

Candidate stages 1

Candidate stages 2

Candidate stages 3

Candidate stages 4

Figure 3.12: All possible sets of stages for an intersection with directions 1 to 12. The stages in each set can be ordered in
any way to form a control structure. Note that the third set of stages shown here is equal to the true stages of Figure 4.1.

3.6.4. Step 2: Identifying the correct stages and type of TSC
This step aims to find three basic features of the TSC:

1. Which stages are used

2. The ordering of the stages

3. Whether the TSC uses controller flexibility

The features are found by initializing and learning an Explicit Duration HSMM for each set of
stages found in Step 1. Within each model, each stage is represented by one state. The parameters of
A and D are initialized uniformly and those of B are initialized to represent the correct combination
of red and green signals for each stage, as shown by the example in Figure 3.10. Then, the parameters
of all initialized models are learned from the available observation sequence, using the Forward-
Backward algorithm from [58], with the adaptations described earlier in this section.

When the parameters of all models have been learned, the model that yields the highest likeli-
hood is selected, under the expectation that this model represents the true set of stages. From the
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learned A of this model, the ordering of the stages can easily be deducted. Additionally, it is eval-
uated at what percentage of the time steps the observations can not be fully attributed to any one
of the stages, or any transition between stages. If this percentage is higher than a certain threshold,
it is concluded that the TSC has flexibility, because it is then likely that some controller outputs are
not represented by the full stages, but instead are a combination of stages.

3.6.5. Step 3: Initialize the model structure
From the information found by Step 2, a model can be initialized that has the correct structure. If
it was found that the modelled TSC has no flexibility, the model is constructed by adding transition
states to the model selected in Step 2, for the transitions that can be expected from a control struc-
ture with the order and stages that were identified. The parameters of D are initialized uniformly
and those of B are again initialized to represent the correct combinations of observations. For a
TSC with four stages, a model is thus created with 8 states: 4 states to represent the stages, and 4 to
represent the transitions between stages.

However, if it was found in Step 2 that the TSC uses controller flexibility, it is calculated for each
stage which phases can be expected to be realised by the TSC as their successor. Remember that
a TSC with flexibility can realise any phase that is a non-conflicting combination of signal groups
of successive stages. For each of these phases, a state is added to the model and the parameters of
A are initialized so that states that represent stages can only transit to their flexibility states or the
next stage. Flexibility states transit to the state that represents the stage that follows the stage from
which they were reached. If a state can transition to multiple other states, the transition probability
parameters are uniformly initialized. Finally, for each non-zero parameter in A, a transition state is
added to the model, so that a model representative of, for example, the one shown in Figure 3.9 is
constructed.

3.6.6. Step 4: Learning the final distributions
As a final step, the model initialized in Step 3 is learned on the available observation sequence to
find the parameter distributions that yield the highest likelihood. If enough data is available and the
correct model structure was found, the correct transition and duration distributions are learned.

3.7. Conclusion
This chapter described the goals for the TSC behaviour modelling system developed in this research
and presented the details of the design of this system. Next, Chapter 4 will describe, perform and
discuss the results of experiments to evaluate to what extend the goals were met and how much data
is needed to find the intended models.
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Experiments

This chapter describes experiments to analyse to what extent the design goals stated in Section 3.1.1
are met by the system described in Section 3.2 and to evaluate whether the chosen design out-
performs other, more conventional approaches. Given that no methods have previously been de-
veloped to model the behaviour of VATSCs with controller flexibility, it is not possible to directly
compare the performance of the system described in this research with a benchmark. Neither is it
possible to evaluate the usefulness of the proposed method for every imaginable situation. Instead,
the experiments are performed for two simulated intersections with simple, but realistic behaviour.
Section 4.1 explains how these intersections are simulated in MATLAB®and how data is generated.
The subsequent sections describe three experiments and presents and discusses their results.

Firstly, the proposed model generation system shown in Figure 3.11 is compared to learning the
parameters of randomly initialized models directly. This is done to investigate the benefits of the
proposed system over a more conventional approach for varying levels of data sparsity.

Secondly, it is investigated how well models with correctly initialized states can learn duration
distributions for varying penetration rates and observation durations.

Then, it is investigated how well learned models can be used to estimate TSC-states once learned,
to indicate their usefulness under real-time conditions.

Lastly, the entropy of models resulting from different design choices is compared to verify the
choices made in Section 3.2.

4.1. Experimenting environment
Before the experiments themselves are described, this section explains in which environment the
experiments take place and how data is generated.

Because no previous attempts have been made to use HSMMs for the modelling of TSC be-
haviour, the main goals of this research are to find the requirements to construct meaningful mod-
els and identify limitations of the presented modelling approach, as described in Section 1.2. Using
simulated data makes it easier to find these requirements and limitations, because changes to the
data source can be made at will. However, to assure that the results of the experiments with simu-
lated data give insight into the possibilities of using the proposed system in real-world applications,
it is imperative that the observations resemble observations that can be produced by available data
sources.

4.1.1. Simulating TSC behaviour
For the scope of this research, data that is used for the experiments is generated from simulations
rather than collected from a real-world environment. This is done to have full control over the
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both the quality and the quantity of data that is used to generate models from, so that the effect
of changes to either data quality or quantity can be investigated with as few external disturbances
as possible.

TSC behaviour is simulated in MATLAB®. The behaviour is not influenced by actual measure-
ments of vehicles, instead a Explicit Duration HSMM whose states represent the stages of a prede-
fined TSC is used to generate a state-sequence, from which an observation sequence can be sam-
pled.

The experiments described in this chapter will be performed for two types of TSC:

1. Vehicle-actuated TSCs without controller flexibility

2. Vehicle-actuated TSCs with controller flexibility

There is no separate model of a FTTSC, because the phasing behaviour of such TSCs is the same
as that of the model without flexibility. Therefore it is expected that the results of the experiments
performed with this model are also representative for FTTSCs.

A schematic overview of the simulated TSC without flexibility can be seen in Figure 4.1. The
simulated TSC with flexibility is shown in Figure 4.2.

Min:5s
Max:20s

Min:3s
Max:10s

Min:5s
Max:20s

Min:3s
Max:10s

2s 2s 2s 2s

Figure 4.1: Source model for the data generated for all experiments without flexibility. The text below each block indicates
its duration distribution. Each stage has a uniform distribution between the two noted extremes, whereas the transition
phases have a set duration of 2 seconds.
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Figure 4.2: Source model for the data generated for all experiments with flexibility. The text in red next to each block
indicates its duration distribution. Each stage has a uniform distribution between the two noted extremes, whereas the
transition phases have a set duration of 2 seconds. If there are multiple transition possibilities from one state, the proba-
bility of each transition is noted in green.

The simulation models are used to generate state-sequences that represent the sequences of
phases that are realised by true TSC. When the state-sequence has been sampled, the timing be-
haviour of the TSC is simulated by drawing state durations from distributions that are predefined
for each state. It is chosen that the time-step-size is equal to 1 second. For the experiments in this
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section, all duration distributions are uniformly distributed between a minimum and a maximum
value, which are stated in Figure 4.1 and Figure 4.2. States that represent a transition are assigned a
fixed duration of two steps, equalling two seconds. It can be expected that transitions always have
a fixed duration, because their sole purpose is to allow traffic from one movement to clear a con-
flict area before traffic from another movement can reach it. The time that this process takes only
depends on the intersection layout, which is fixed, and is therefore calculated and set to a constant
value by the programmer of the TSC.

True VATSCs with flexibility have the freedom to add or remove any signal group from the cur-
rent or next stage while the current stage is active, as long as clearance and minimum-green times
are respected. Therefore, it can be argued that the true behaviour of this type of TSC is more dy-
namic than that of the simulated TSC described above, because in the simulation, it is assumed that
the phase remains the same during the whole stage, or until a flexibility phase becomes active. How-
ever, because it is defined that the intended HSMM that models the TSC behaviour has states that
represent the full stages, it should not make a difference whether or not the combination of green
signal-groups changes during the stage, as long as they remain a subset of the stage. Therefore, it is
chosen to simulate the behaviour as described above.

To guarantee that the results of the experiments are reproducible even though random num-
bers are used to simulate TSC behaviour and initialize parameters, a random number generator is
initialized in MATLAB®.

4.1.2. Simulating shared data
Given that the behaviour of TSCs is simulated without microscopically simulating road-users, the
generation of shared data also has to be simulated. The main characteristics of shared data are the
sampling rate and the penetration rate. For the experiments described in this chapter, the combi-
nation of both is simulated as follows: it is assumed that there is a traffic flow q = 1000 veh

h×dir for each
traffic direction, i.e., each leg of the intersection. The penetration rate pr , i.e., the probability that a
given vehicle is connected is varied per experiment. Additionally, it is assumed that each vehicle on
average spends t = 10 s

veh at the intersection, of combined waiting and traversing time. Also, con-

nected vehicles are estimated to have a sampling frequency of 1Hz, i.e, f = 1 obs
s , which means that

each connected vehicle produces an observation for every second that it spends interacting with
the intersection. Lastly, a time-step size of ∆t = 1s is chosen for all experiments conducted for this
research. The expected number of observations per time step can then be calculated using (4.1):

nobs = pr ×q ×n ×∆t × t × f (4.1)

where ndir indicates the number of legs of the intersection. Using (4.1), the number of observa-
tions per timestep for the simulated TSC without flexibility shown in Figure 4.1, which controls an
intersection with four legs, becomes:

nobs4.1 = pr × 1000

3600

[
veh

s×dir

]
×4[dir]×1

[
s

∆t

]
×10

[
obs

veh

]
×1

[
obs

s

]
= 11.11×pr

[
obs

∆t

]
(4.2)

Similarly, for the simulated TSC with flexibility shown in Figure 4.2, which controls an intersection
with three legs, the number of observations per time step is calculated using (4.3)

nobs4.2 = 8.33×pr

[
obs

∆t

]
(4.3)

Remember that a data-point can either indicate that a signal is green or that there is traffic wait-
ing for that signal. This means that the full observation-sequence contains one data-point for each
second for each signal-group that is green or has waiting traffic at that second. The observation se-
quences used for the experiments are generated by randomly selecting a number of observations at
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Penetration rate 1% 2% 5% 10% 25% 50% 75% 100%
Average number of models initialized before finding correct model 1000+ 400 94 7.4 7.3 2.4 2.3 2.8
Standard deviation over 10 tries - 360 150 6.4 3.7 1.9 1.3 2.7

Table 4.1: Number of models that had to be randomly initialized before a model equal to the ground truth model was
found. The ground truth model was generated by training a model with the correct stages for the TSC without flexibility
shown in Figure 4.1. The randomly initialized models were learned from the same sparse observation sequences. For
each observation sequence, random initializations were produced until the correct model was found 10 times. For the
sparsest observation sequence, with only 1% of the observations remaining, none of the 10x1000 initializations led to the
correct model.

each time step from the full observation sequence, in accordance with (4.2) and (4.3) respectively.
Note that this means that it is assumed that every movement is equally likely to produce an obser-
vation, while this is not true for most intersections, because some movements process a smaller
percentage of the traffic flow than others. Additionally, observations are selected without replace-
ment, meaning that each signal group can produce a maximum of one observation per time step to
simulate that connected vehicles are distributed equally over the intersection.

4.2. Learning phasing behaviour
As stated in Section 3.1, one of the goals of this research is that the developed system can generate
models without prior knowledge of the behaviour of the TSC. This means that it is unknown which
stages the TSC uses in which ordering and whether it has flexibility. A 4 step approach was described
in Section 3.6 of which the first step is to extract these features by initializing a model for each possi-
ble set of stages and learning all resulting models on the available observation sequence. The model
that yields the highest likelihood is then selected and its transition matrix is analysed to identify the
correct stage sequence. For both simulated TSCs, it is evaluated from which penetration rates the
correct set of stages and its correct ordering are found.

This approach is compared with a more conventional approach of randomly initializing models
with a number of states equal to the number of stages, which can be calculated by calculating the
maximum conflict-group size. It is evaluated how many different random models must be initial-
ized and learned before the correct stages are found. Only the parameters of A and B are randomly
initialized. Those of D are uniformly initialized.

4.2.1. Results and discussion
The following results were acquired when trying to find the correct stages for the TSC without flex-
ibility using random initializations. It can be seen in Table 4.1 that it takes an increasing amount
of models to find the correct stages when observation sequences become sparser. For an observa-
tion sequence with only 1% data remaining, the correct model was not found after learning 10,000
randomly initialized models. Figure 4.3 shows the same results represented by a box-plot. Here it
can be seen that it becomes harder to estimate how many models have to be initialized to be sure
that the correct stages are found when sparser data is used. Given the mean and standard deviation
from Table 4.1, it can be calculated that 1238 models would have to be initialized to achieve a 99%
certainty that the correct stages are found if it is known that 2% of the data is available. However, as
explained in Chapter 4, it is not possible to directly translate this to a penetration rate, nor does this
particular example represent every possible real-life situation.

For the method described in Section 3.6, it can be seen in Figure 4.4 that the correct stages,
which are in the third set of candidate stages, is identified correctly for higher data quantities. It also
becomes clear that this approach can not distinguish the correct stages for lower data quantities
without doubt. However, from 2% onwards, multiple sets of stages produce a model with clear
transition behaviour, indicated by the low entropy. This means that each state has a significantly
higher transition probability for just one of the other state. Using this information, new models
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Figure 4.3: Boxplot of the values of Table 4.1

including transition states can be constructed and learned using the rest of the model generation
system described in Section 3.6.
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Figure 4.4: Mean entropies of learned A for all candidate sets of stages for the TSC without flexibility shown in Figure 4.1.
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4.3. Learning timing behaviour
This section describes experiments to investigate under which circumstances the timing behaviour
of a TSC can be learned by the proposed system. For these experiments, it is assumed that the
phasing behaviour has been correctly identified, meaning that the parameters of B are as shown in
Figure 3.10 and the state transitions correspond to the values shown in Figure 4.1 and Figure 4.2,
where a grey arrow without value indicates a transition probability of 1. The parameters of D are
uniformly initialized for all states over the full possible duration interval, which has size D = 30.
This value is chosen for the maximum state duration because it is assumed that this forms a safe
upper bound for the maximum duration of phases under the busy conditions that are modelled
here.

Under the assumption that transition processes from one stage to another can be realistically
expected to last only a couple of seconds, the choice could be made to initialize the duration distri-
butions of states that represent a transition with a lower maximum duration. This would drastically
reduce the number of non-zero parameters before learning and therefore improve learning perfor-
mance. However, it is chosen to only investigate what happens if all states are initialized equally,
because the risk of wrongly initializing parameters as zero should be avoided where possible. This
experiment therefore aims to identify whether this can be avoided for the initialization of state du-
ration distributions. More importantly, the effects of observation sequence length and data sparsity
are investigated to get an indication of how much data is needed to learn the timing behaviour of
each type of TSC. This information can be used to estimate whether it can realistically be expected
that models of the behaviour of a given TSC during a certain part of the day can be learned.

The experiments for this section consist of four elements: both TSCs from Figure 4.1 and Fig-
ure 4.2 are evaluated twice. First, they are trained on increasingly long observation sequences. The
shortest sequence is 900 seconds long, representing fifteen minutes of collected data. The sequence
length is increased in steps of 900 seconds to a maximum length of 10,800 seconds, or three hours.
It is expected that this is the maximum time during which data can realistically be collected for one
model, given that it is expected that a separate model is needed for every quarter of an hour of each
type of day. This means that three hours represents 12 weeks of data collection if a time frame is
modelled that only occurs once per week. If data is collected for longer periods, seasonal influences
start to play a role, meaning that models might no longer be representative. For this experiment, a
fixed penetration rate of 10 % is used.

Secondly, the influence of the penetration rate on the learning of duration distributions is in-
vestigated. This is done by reducing the observation sequences in several steps to simulate the
penetration and sampling rates, as described in Section 4.1.2. Again, both intersections are

Each sequence is used to learn the duration parameters of a model that has the correct phasing
parameters defined, meaning that A and B are correctly initialized for the corresponding model. To
ensure that the results have statistical meaning, each situation is simulated 25 times. For each sim-
ulation, a new behaviour is sampled and the resulting observation sequence is randomly reduced.
The resulting duration distributions are compared per state with the true distributions by means
of a Kullback-Leibler divergence, which provides a way to measure the difference between two dis-
tributions. It does so by comparing the entropy of both distributions. Not the actual value of this
measure is of interest, but the relationship between penetration rate and change of the divergence.
Note that the duration distributions of the sampled behaviour might differ from the true duration
distribution of the underlying process, because the sample is of limited size.

4.3.1. Results and discussion
The results for the experiments investigating the relationship between learning the duration distri-
butions of models and the time during which the modelled system is observed are discussed first.
Figure 4.7 shows the results for the intersection without flexibility from Figure 4.1, while Figure 4.8
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shows the results for the intersection with flexibility from Figure 4.2. Both experiments were per-
formed with a penetration rate of 10%.

Intersection 1
Kullback-Leibler Divergence of true vs. learned duration distribution for increasing observation length
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Figure 4.5: Kullback-Leibler divergence between the true and learned duration distributions for each state of example
intersection 1 (Figure 4.1), for varying observation duration.

Intersection 2
Kullback-Leibler Divergence of true vs. learned duration distribution for increasing observation length
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Figure 4.6: Kullback-Leibler divergence between the true and learned duration distributions for each state of example
intersection 2 (Figure 4.2), for varying observation time.

It can be seen that models of both intersections converge to the true situation when the inter-
section is observed long enough. The turning point seems to lie at roughly one hour of observations,
which seems like a duration that is short enough to allow for different models to be learned for one
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intersection to represent different traffic loads.

Varying penetration rates The results for the experiments investigating the relationship between
learning the duration distributions of models and the density of the learning data are shown here.
Figure 4.7 shows the results for the intersection without flexibility from Figure 4.1, while Figure 4.8
shows the results for the intersection with flexibility from Figure 4.2.

Intersection 1
Kullback-Leibler Divergence of true vs. learned duration distribution for increasing penetration rate
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Figure 4.7: Kullback-Leibler divergence between the true and learned duration distributions for each state of example
intersection 1 (Figure 4.2), for varying data densities. The densities indicate how much of the full observation sequence
is used to learn the model parameters.

Figure 4.8 shows that for TSCs with flexibility, the duration distributions for less frequently vis-
ited states need more data to be learned. The clearest example of this can be given by comparing
the transition states s7 and s10, who both origin from the same state s1, but because the transition
to s7 is three times as likely, its duration distribution is learned more accurately for the same data
density.
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Intersection 2
Kullback-Leibler Divergence of true vs. learned duration distribution for increasing penetration rate
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Figure 4.8: Kullback-Leibler divergence between the true and learned duration distributions for each state of example
intersection 2 (Figure 4.2), for varying data densities. The densities indicate how much of the full observation sequence
is used to learn the model parameters.

4.4. Usefulness of learned models
Given that the modelling method developed in this research intends to be used for GLOSA, it is
important to get an indication of whether the models designed in Section 3.2 can be used to this
end. This is determined by two properties of the models. Firstly, it is important that the resulting
models can be used to estimate the current state of the TSC, because this determines under which
assumptions a prediction about the future behaviour of the TSC is made and hence on what basis
a speed advice is generated. Secondly, the capability of learned models to predict future behaviour
is of interest. This is evaluated by comparing the entropy of correctly learned models with that of
alternative models that were discarded during the design process described in Section 3.2.

4.5. State estimation
An advantage of the proposed modelling methodology is that the resulting models can estimate the
current TSC-state when the true state of the TSC is only observed partially at infrequent intervals, as
is the case when using shared data. Because HSMMs are generative, it is even possible estimate the
state of the TSC if no data is available at all, but it highly depends on the predictability of the TSC to
what extend the correct state sequence can be estimated. A correctly learned model of a FTTSC can
predict the correct state infinitely far into the future without real-time data, assuming that there is
no drift between the clock of the TSC and the clock of the model. As described in Section 2.1, the
behaviour of a VATSC can approach that of a FTTSC during busy periods, because its detectors are
constantly activated, meaning that its control actions will approach a constant cycle. At the other
side of the spectrum, one can find that the behaviour of a VATSC during a period with little traffic
can be almost impossible to predict, because of the irregular arrival of road-users, to which the TSC
can immediately respond, leading to highly dynamic behaviour. This section investigates how well
the state of a VATSC with flexibility can be estimated using a learned model of that TSC. The learning
of the model is not considered for this experiment.

Two experiments are carried out to evaluate the ability of learned models to infer the correct
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states. The first experiment evaluates how well a full state sequence can be decoded for varying
data densities. This can indicate whether the models can be used to label data. Labelled observa-
tion sequences, or correctly decoded state sequences could potentially be used to find correlations
between, for example, the durations of subsequent phases. This information can be used construct
more deterministic models of the behaviour of the TSC.

Secondly, it is investigated how well learned models can be used to estimate the state during
run-time. This is an important aspect of generating GLOSA, because calculating probability of every
possible next transition and transition moment depends on knowledge of the current state. This
performance is evaluated by inferring the states for an observation sequence of growing length. The
last state is compared with the true state at after each observation is added. The correctness of the
state is defined by whether the correct phase is inferred and how far the past duration of that state
is estimated.
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Figure 4.9: Decoding performance for a correctly learned model of the TSC without flexibility shown in Figure 4.1.
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Figure 4.10: Decoding performance for a correctly learned model of the TSC wit flexibility shown in Figure 4.2.

Assume stable situation: 1 cycle past, start with first 50 elements of O, see how last state is es-
timated for growing O to represent real-time estimation. count errors for varying amounts of data.
Also: how certain was estimation: likelihood.
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4.6. Conclusion
This chapter described experiments to evaluate to what extend the designed system meets the de-
sign goals stated in Section 3.1.1. The experiments were performed in a simulate environment in
MATLAB®and it was shown that for the specific setup, the phasing behaviour of TSCs could be iden-
tified under low penetration rates, even with random initializations. Additionally, it was shown that
the learning of timing behaviour converged when data was collected for a long enough period of
roughly one hour. However, it was shown that for VATSCs with flexibility, a penetration rate of 25%
is needed for convergence, even when a long observation period is used.





5
Conclusions and recommendations

This research described the design of a system to model the behaviour of TSCs from FCD using
Explicit Duration HSMMs. The following goals were set for this design:

Goal 1 The developed system can generate models of:

a: fixed-time TSCs;
b: vehicle-actuated TSCs with fixed phasing;
c: vehicle-actuated TSCs with flexibility.

Goal 2 The developed system generates models whose states:

a: cover all possible controller outputs;
b: each represent one TSC state.

Goal 3 The developed system generates models that represent phase transition
behaviour as predictably as possible.

Goal 4 The developed system generates models that explicitly model the
duration probability distributions of all elements of the control structure
of the modelled TSC.

Goal 5 When provided with enough data, the developed system generates
models whose state duration probability distributions converge to the
true duration probability distributions of the TSC state that they
represent.

Goal 6 The developed system can generate models from data that is
representative of FCD, i.e., data that:

a: is sampled irregularly;
b: only represents a part of the true TSC control output.

To achieve these goals, it was chosen to design a system that generates Explicit Duration HSMMs. An
existing Forward-Backward parameter learning algorithm was adapted to be able to treat observa-
tions independently and allow time-steps without observations, which can realistically be expected
when modelling from FCD. It was described how all possible outputs of the most common types of
TSC can be represented by model states, but that this yields model states that are hard to find us-
ing conventional random initializations. Therefore, a model generation system was described that
first identifies the control structure of the TSC and then adds states to represent its possible transi-
tions and flexibility phases. This system was tested using simulated data to estimate under which
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conditions models converge to the true situation.

5.1. Conclusions
Experiments have shown that the proposed model generation method can learn the phasing and
timing behaviour of simulated TSCs with and without flexibility. However, the results indicated
that although the phasing behaviour can be found with certainty for relatively low penetration rates
(10<%), the timing behaviour requires higher penetration rates (>25%) to be learned correctly. Still,
it can be expected that the proposed methodology can be used to generate models that can be used
to give GLOSA to road users under realistic conditions, since it was shown that the Kullback-Leibler
divergence converges to a minimum after presenting data gathered over roughly one hour, which
is an observation time that is not unrealistically large, for a penetration rate of ten percent, which
is not unrealistically high. This means that the designed system shows that it has the potential to
generate useful TSC behaviour models under realistic boundary conditions. However, it must be
investigated how the assumptions under which this research was conducted limit the applicability
of the system. To provide a starting point for this investigation, the next section will indicate which
steps should be taken.

The main motivation for this research was to pave the way for large scale implementation of
GLOSA systems. Although this goal was reckoned with throughout the design process, the combi-
nation with a speed advice algorithm has not yet been made. The GLOSA system in [22] is devel-
oped to explicitly cope with the inherent uncertainty of HMMs, therefore it can be expected that the
models generated by the system developed in this thesis research can be used in combination with
this GLOSA system. However, the models used in [22] are potentially more flexible, so it must be
investigated how this influences the usefulness of the generated speed advice.

5.2. Recommendations
As explained in the previous section, there are three main hurdles to take from a development view-
point before the model generation system can be used in practice. After which it can be ensured that
the system can be used to generate reliable GLOSA if enough road users are willing to participate by
sharing their data.

The first step would be to change the testing environment to a microscopic simulator to be able
to test with data that is generated on a road user level, instead of on a macroscopic level. This
step should also involve the investigation of the effects of the assumptions that were made in this
research regarding data accuracy, i.e., the effects of noisy data on learning convergence must be in-
vestigated. Additionally, the influence of traffic with mixed modes and public transport pre-emption
should be researched. This allows to investigate the effects of an uneven distribution of connected
road users, which is necessary because it is likely that in real situations, certain movements have a
higher penetration rate than others, because they are used by different kinds of traffic, both in terms
of modality as in travel goal. It is imperative that many different situations and TSCs are simulated
and modelled in this step, to ensure that situation-specific issues are found before the system is
implemented in a real world environment. A system that works reliably from the start will namely
attract more users and can therefore be expected to become even more reliable, since this means
that more data is available to generate models from.

Secondly, the system should be tested in combination with the GLOSA system described in [22].
This would involve evaluating the quality of the generated speed advice and to determine whether
it is sufficiently accurate.

Lastly, if it was shown that the system can reliably produce useful GLOSA under circumstances
that accurately represent true road situations, the system can be tested in a real-world environment.
This step requires the addition of a method to automatically switch to the static model that best
represents the current traffic situation. A method to do so using HSMMs already exists for semi-



5.2. Recommendations 57

static TSCs [39].
Alternatively, a three layer Hierarchical HMM could be used in the following way: The high-

est level describes the traffic situation (which is correlated to the time and type of day), the middle
layer describes the active controller stages and the lowest level describes the actual combination
of directions that can have a green signal. The reason for discriminating between the lower two
levels is to make sure that each stage has a minimum duration and that observations that could be-
long to different stages are seen as flexibility or alternative realisations and not as a different stage.
Additionally, this could help to keep track of the cycle-time, for which a separate duration distribu-
tion could be learned. The highest level allows there to be one model for the entire day, which can
switch to the most representative sub-model depending on the real-time traffic situation and iden-
tified control actions, even if the traffic situation is somehow different from other days at a similar
time, for example when there is a big yearly event.

If at any step it is found that the system is unable to meet the demands, there are some addi-
tions and changes that can be made to potentially increase the accuracy and thus usefulness of the
resulting models:

1. In this research, data was not simulated to accurately represent the data sharing process. For
example, a vehicle waiting for a red signal would realistically generate a sequence of observa-
tions of that signal being red, before a couple of observations that the signal is green (depend-
ing on the distance of the vehicle to the stopline and the temporal resolution of the model).
It could be that this allows the model to learn a dependency between the time that a vehi-
cle is or is not present and the moment of switching. Previous research [25, 26] claims that
for VATSCs, this dependency exists and influences the behaviour. It should be investigated
how this dependency can be captured using the described modelling method or whether a
useful GLOSA system can be developed without it. Maximum Entropy Markov Models [63]
could prove useful to this end, although these require ground truth data to be known. Poten-
tially, ground truth data can be approached by a state sequence generated using the method
proposed in this research.

2. Investigate whether parametric duration distributions can improve learning duration behaviour
for low data densities. It can be expected that this is the case, because the number of parame-
ters will be greatly reduced. Real data must be analysed in order to identify which parametric
distribution is best. For transition states use the mean duration, because it can be expected
that transition states have an almost fixed duration, meaning they would need only one pa-
rameter to describe their duration distribution.

3. Investigate how state definition refinement can be used to lower the entropy of resulting mod-
els. The goal is to maximize the information in state duration distributions, without creating
too many states. This is done in literature using state splitting [56]. If a state’s duration dis-
tribution has two peaks for example, split it up into two states with both one peak. Various
measures can be used to base a state split on, such as: elapsed state duration, previous state,
previous state duration, cycle duration, pending request for one of the other movements, be-
haviour of nearby intersections. Methods to find the best splits exist in literature [56].

4. investigate usefulness of defining a different Hierarchical HMM , where each movements has
its own sub-model. This makes it possible to define a guaranteed green time/maximum green
time per movement. However, using states that contain multiple directions is still the easiest
way to define some causality between certain signals being green and others being green if
observations are sparse.

5. Several researches mention that installed loop detectors commonly fail to register vehicles or
produce ghost observations [25, 26], this can lead to a discrepancy between the inferred state
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and the TSC-state, because the inferred state might be based on the observation of waiting
traffic for a certain signal-group, while the TSC has not measured the presence of this traffic
and therefore has not adapted its control action to it, whereas the model assumes the traffic
is waiting because other conflicting signal-groups have a green signal. This
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A.1. Intersection movement numbering

Figure A.1: Numbering of movements according to the Dutch standard [30]. The top of the figure is oriented towards the
North.
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Figure A.2: Numbering of combined movements.[30]



B
Hidden Markov Modelling

B.1. Solutions to the three basic problems of HMMs
This section shows the solutions to the three basic problems commonly described for HMMs. All
theory in this section is based on the paper by Rabiner [19].

B.1.1. The evaluation problem
Problem 1 is solved using the Forward algorithm. The forward variable αt (i ) represents the likeli-
hood of partial observation sequence o1o2...ot up to time t and state Si at time t for model param-
eters λ

αt (i ) = P [o1o2...ot , qt = si |λ] (B.1)

This variable is used in three steps to solve problem 1 by calculating P [O|λ]:

Step 1 Initialize α1(i ) as the probability of observing o1 from any of the N states:

α1(i ) =πi bi (o1), 1 ≤ i ≤ N (B.2)

Step 2 For all remaining time-steps, calculateαt+1( j ) for each possible next state s j as the joint prob-
ability of making observation ot from s j and the sum over the probabilities of transitioning to
state s j from each state si multiplied by αt ( j ):

αt+1( j ) =
[

N∑
i=1

αi (t )ai j

]
b j (ot+1),

1 ≤ t ≤ T −1

1 ≤ j ≤ N
(B.3)

Step 3 Calculate the final P [O|λ] by summing over all forward variables found for t = T :

P [O|λ] =
N∑

i=1
αT (i ) (B.4)

A close look at the Forward algorithm learns that it has a time complexity of O (T N 2) per calcu-
lation of P [O|λ]. The output can be used to compare different models, the model that shows the
highest likelihood of O best suits the observation sequence. It is important to note that the model
with the highest likelihood is not necessarily the best model if that model has an extensive amount
of parameters. Models with more parameters are more flexible and therefore better able to repre-
sent a dataset, but also more prone to overfitting. ?? describes model selection methods that make
a trade-off between likelihood and flexibility.
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B.1.2. The decoding problem
The Viterbi algorithm is used to solve problem 2. Other algorithms may be used depending on how
the "best" state sequence is defined. The Viterbi algorithm maximizes the probability of observing
the full state sequence for a given model λ and O, so that both the observation emission and the
state transition probabilities are accounted for. This equals maximizing P [Q|O,λ], or P [Q,O|λ].
The Viterbi algorithm is similar in structure to the forward algorithm and therefore also has a time
complexity of O (T N 2). The algorithm consists of the following steps:

1. Initialize the variables δ and φ:

δ1(i ) =πi bi (O1), 1 ≤ i ≤ N (B.5)

φ1(i ) = 0, 1 ≤ i ≤ N (B.6)

2. Recursively update δt for each t by finding the most probable 2-state sequence and store the
argument of this sequence in φ:

δt+1( j ) = max
1≤i≤N

[δt (i )ai j ]b j (Ot−1),
1 ≤ t ≤ T −1

1 ≤ j ≤ N
(B.7)

φt+1( j ) = argmax
1≤i≤N

[δt (i )ai j ],
1 ≤ t ≤ T −1

1 ≤ j ≤ N
(B.8)

3. Define the probability of the most likely sequence as P∗ and the most likely final state as q∗
T :

P∗ = max
1≤i≤N

[δT (i )] (B.9)

q∗
T = argmax

1≤ j≤N
[δT (i )] (B.10)

4. Find the complete state sequence by backtracking from q∗
T to q∗

1 :

q∗
t =φt+1(q∗

t+1), t = T −1,T −2, ...,1 (B.11)

B.1.3. The learning problem
Finally, the most common method to solve problem 3 is the Baum-Welch algorithm. No analyti-
cal methods exist to find the optimal parameters λ, so the Baum-Welch algorithm is an iterative
method. The Baum-Welch algorithm is essentially an expectation maximization (EM) algorithm
and it has been shown that after each iteration, the new parameters λ have at least the same proba-
bility of producing O, thus the algorithm converges to an optimum. Three new variables need to be
defined to implement the algorithm.

1. The backward variable β is defined as:

βt (i ) = P [Ot+1Ot+2...OT |qt = Si ,λ] (B.12)

and is calculated in a similar manner to the forward variable:

βT (i ) = 1, 1 ≤ i ≤ N (B.13)

βt (i ) =
N∑

j=1
ai j b j (Ot+1)βt+1( j ),

t = T −1,T −2, ...,1

1 ≤ i ≤ N
(B.14)
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2. γ gives the probability of each individual state at time t for given O and λ and is defined as:

γt (i ) = P [qt = Si |O,λ] (B.15)

and is calculated as a normalized variable, using the forward and backward variables as:

γt (i ) = αt (i )βt (i )∑N
i=1αt (i )βt (i )

(B.16)

3. ξ gives the probability of being in state Si at t and being in state S j at t +1:

ξt (i j ) = P [qt = Si , qt+1 = S j |O,λ] (B.17)

and is calculated using the forward and backward variables as:

ξt (i j ) = αt (i )ai j b j (Ot+1)βt+1( j )∑N
i=1

∑N
j=1αt (i )ai j b j (Ot+1)βt+1( j )

(B.18)

The updated parameters λ̄= {π̄, Ā, B̄}) can then be interpreted and calculated as follows:

π̄i = expected probability of starting in state Si = γ1(i ) (B.19)

āi j =
expected number of transitions from Si to S j

expected total number of transitions from state Si
=

∑T−1
t=1 ξt (i , j )∑T−1

t=1 γt (i )
(B.20)

b̄ j (k) = expected number of times in state S j and observing vk

expected number of times in state S j

=
∑T

t=1γt ( j ), s.t. Ot = vk∑T
t=1γt ( j )

(B.21)

B.2. Dependent observations
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Observation 1 Observation 2 Observation 3 Observation 4 Observation 5 Observation 6 Observation 7 Observation 8

Observation 9 Observation 10 Observation 11 Observation 12 Observation 13 Observation 14 Observation 15 Observation 16

Observation 17 Observation 18 Observation 19 Observation 20 Observation 21 Observation 22 Observation 23 Observation 24

Observation 25 Observation 26 Observation 27 Observation 28 Observation 29 Observation 30 Observation 31 Observation 32

Observation 33 Observation 34 Observation 35 Observation 36 Observation 37 Observation 38 Observation 39 Observation 40

Observation 41 Observation 42 Observation 43 Observation 44 Observation 45 Observation 46 Observation 47 Observation 48

Observation 49 Observation 50 Observation 51 Observation 52 Observation 53 Observation 54 Observation 55

Figure B.1: All observations for an intersection with movements 2, 5, 8 and 11.
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