
Delft Center for Systems and Control

Learning Interaction-Aware Tra-
jectory Predictions for Multi-
Robot Motion Planning

F. Martínez Claramunt

M
as

te
ro

fS
cie

nc
e

Th
es

is

Learning Interaction-Aware Trajectory
Predictions for Multi-Robot Motion

Planning

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

F. Martínez Claramunt

September 25, 2020

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Cognitive Robotics (CoR)
All rights reserved.

Abstract

Multi-robot motion planning without a central coordinator usually relies on the sharing of
planned trajectories among the robots via wireless communication in order to achieve pre-
dictive collision avoidance. Path planners found in the literature that feature this scheme
usually boast levels of performance comparable with their centralized counterparts. How-
ever, in practice, communication tends to be unreliable and lead to significant performance
degradation, which may eventually result in collisions among robots.

This thesis proposes a data-driven decentralized approach for multi-robot motion planning in
dynamic environments. Instead of requiring robots to share their intentions with each other,
a model based on recurrent neural networks (RNNs) is used to predict them. This model
is trained on data obtained with a centralized sequential model predictive control (MPC)-
based motion planner in which intended trajectories of neighboring robots are available while
planning. The learned model can be efficiently run online and provide accurate predictions
for each robot in the environment based on a horizon of past observations of all robots’ states.
This model is then incorporated into the MPC planning framework so that it may be run in a
decentralized manner. It is finally shown in simulations that the proposed approach achieves
a similar level of performance to its centralized counterpart.

Master of Science Thesis F. Martínez Claramunt

ii

F. Martínez Claramunt Master of Science Thesis

Contents

1 Introduction 1
1-1 Motivation . 1
1-2 Contributions . 2
1-3 Thesis Outline . 2

2 Related Work 3
2-1 Multi-Robot Collision Avoidance . 3
2-2 Motion Prediction . 4

3 Preliminaries 5
3-1 Multi-Robot Motion Planning . 5

3-1-1 Single robot problem . 5
3-1-2 Multi-robot problem . 7

3-2 Model Predictive Control . 8
3-2-1 Introduction . 8
3-2-2 Multi-robot motion planning using MPC 8

3-3 Recurrent Neural Networks . 10
3-3-1 Introduction . 10
3-3-2 Recurrent neural networks . 10
3-3-3 Sequence-to-sequence learning . 12

4 Approach 13
4-1 Introduction . 13
4-2 Problem Formulation . 14

4-2-1 Multi-robot motion planning . 14
4-2-2 Interaction-aware trajectory prediction 15

4-3 Dataset Generation . 17
4-3-1 Simulator . 17

Master of Science Thesis F. Martínez Claramunt

iv Contents

4-3-2 Data generation details . 18
4-4 Deep Neural Network Design . 19

4-4-1 Network architecture . 19
4-4-2 Evaluation metrics . 22
4-4-3 Implementation details . 22

4-5 Decentralized Multi-Robot Motion Planning . 23

5 Results and Discussion 25
5-1 Interaction-Aware Trajectory Prediction . 25
5-2 Decentralized Multi-Robot Motion Planning . 27

6 Conclusions and Future Work 37
6-1 Conclusions . 37
6-2 Future Work . 38

A Paper 41

Bibliography 51

Glossary 55
List of Acronyms . 55
List of Symbols . 55

F. Martínez Claramunt Master of Science Thesis

List of Figures

3-1 Diagram of a simple feedforward network with two inputs, one output, and 2 hidden
layers with 3 neurons each. 11

3-2 Diagram of an artificial neuron. 11
3-3 Basic diagram of a traditional recurrent neuron, where W is the weight matrix,

and xt and ht are the values of the input and activation of the neuron at step t,
respectively. 12

3-4 Diagram of the encoder-decoder network architecture for future sequence prediction. 12

4-1 Screenshot of the main GUI of the simulator used to generate the data. 18
4-2 Diagram of the proposed neural network architecture. All layers in the network

except the output one use hyperbolic tangent activation functions and L2 regularization
for the weights and biases. They also all have 64 neurons, except the recurrent
decoder, which has 128, and the output layer, which has 3 (one for each coordinate
in the workspace). 20

5-1 Plot showing the displacement error of our model (RNN) and two other baselines
(CVM and MPC), averaged over each of the prediction time steps, and computed
based on the L2 distance between the prediction and the ground truth. Per-
formance is evaluated in four different settings, in all of which the robots’ goal
positions are changed randomly once they are reached. In the figure it is also
drawn ±30% of the standard deviation around the average values, as a measure
of the uncertainty in the predictions. The sampling period is 50 ms, so the whole
prediction horizon is equivalent to 1 second. 28

5-2 Sample screenshot of predictions in an obstacle-free environment. 31
5-3 Sample screenshot of predictions in an obstacle-free environment (zoomed-in). . 31
5-4 Sample screenshot of predictions in an obstacle-dense environment. 32
5-5 Sample screenshot of predictions in an obstacle-dense environment (zoomed-in). 32
5-6 Resulting paths for one of the symmetric swap scenarios with the centralized

sequential MPC-based planner. 33
5-7 Resulting paths for one of the symmetric swap scenarios with the distributed MPC-

based planner. 33

Master of Science Thesis F. Martínez Claramunt

vi List of Figures

5-8 Resulting paths for one of the symmetric swap scenarios with the decentralized
MPC-based planner with a constant velocity model (CVM). 33

5-9 Resulting paths for one of the symmetric swap scenarios with the decentralized
MPC-based planner with our RNN-based model. 33

5-10 Resulting paths for one of the asymmetric swap scenarios with the centralized
sequential MPC-based planner. 34

5-11 Resulting paths for one of the asymmetric swap scenarios with the distributed
MPC-based planner. 34

5-12 Resulting paths for one of the asymmetric swap scenarios with the decentralized
MPC-based planner with a CVM. 34

5-13 Resulting paths for one of the asymmetric swap scenarios with the decentralized
MPC-based planner with our RNN-based model. 34

5-14 Resulting paths for one of the pair-wise swap scenarios with the centralized sequential
MPC-based planner. 35

5-15 Resulting paths for one of the pair-wise swap scenarios with the distributed MPC-
based planner. 35

5-16 Resulting paths for one of the pair-wise swap scenarios with the decentralized
MPC-based planner with a CVM. 35

5-17 Resulting paths for one of the pair-wise swap scenarios with the decentralized
MPC-based planner with our RNN-based model. 35

5-18 Resulting paths for one of the random scenarios with the centralized sequential
MPC-based planner. 36

5-19 Resulting paths for one of the random scenarios with the distributed MPC-based
planner. 36

5-20 Resulting paths for one of the random scenarios with the decentralized MPC-based
planner with a CVM. 36

5-21 Resulting paths for one of the random scenarios with the decentralized MPC-based
planner with our RNN-based model. 36

F. Martínez Claramunt Master of Science Thesis

List of Tables

5-1 Comparison of the prediction performance of the different baseline models and the
proposed prediction model in an environment with 4 robots and no obstacles. . . 27

5-2 Comparison of the prediction performance of the different baseline models and the
proposed prediction model in an environment with 4 quadrotors and 4 dynamic
obstacles. 27

5-3 Comparison of the prediction performance of the different baseline models and the
proposed prediction model in an environment with 10 robots and no obstacles. . 27

5-4 Comparison of the prediction performance of the different baseline models and the
proposed prediction model in an environment with 10 quadrotors and 10 dynamic
obstacles. 27

5-5 Comparison of the performance of the four considered MPC-based motion planner
variations (centralized, distributed, decentralized with CVM and decentralized with
our RNN-based model) across the four different types of scenarios that have been
tested (symmetric swap, asymmetric swap, pair-wise swap and random goals). For
collision detection, the quadrotors’ shapes are considered to be spheres with 0.3 m
of radius, as explained in Section 4-3-1. 30

Master of Science Thesis F. Martínez Claramunt

viii List of Tables

F. Martínez Claramunt Master of Science Thesis

Chapter 1

Introduction

1-1 Motivation

Historically, the use of robots has been mainly restricted to industrial areas under controlled
conditions due to their high cost and associated safety hazard. Navigating in unknown,
dynamic environments entails different challenges to those found in industrial settings, prob-
lems which were accentuated in the past by limited onboard computing power and battery
technology. However, advancements in electronics and other engineering disciplines such as
control theory, motion planning and artificial intelligence have opened new possibilities for
commercial applications of mobile robots that were previously not possible. Well-known
examples of these are autonomous cars, delivery drones and surveillance robots.
These applications often require the robot to move among other decision-making agents, such
as humans or additional robots. This circumstance makes the collision avoidance problem
much more complicated than navigating in static environments, since in addition to avoiding
obstacles, agents must also avoid colliding with each other. In the simplest case where all
agents are controlled robots and they are in a known environment, it may be possible to
implement a centralized approach and let a central coordinator find the best paths for all of
them. However, such approaches are usually not implemented in practice because it is more
computationally efficient for large teams of robots to distribute the solution of the path plan-
ning problem among their onboard computers and share relevant variables via communication.
This approach is also more fault tolerant, as it removes the unique point of failure in the form
of the central coordinator. Nevertheless, situations may arise where communication with an
agent is lost, compromising the system and causing a significant degradation in performance
or even a complete failure. There are also applications for which communication is simply not
possible because one or several agents are not under our control, as is the case when navigating
among humans. All of these circumstances motivate the development of fully decentralized
approaches, which rely on local sensor data to plan collision-free trajectories instead of using
communication.
The goal for this thesis is to develop a data-driven decentralized approach for multi-robot
motion planning in dynamic three-dimensional environments. Instead of requiring robots to

Master of Science Thesis F. Martínez Claramunt

2 Introduction

share their intentions with each other to achieve efficient collision avoidance, a model based
on recurrent neural networks (RNNs) will be used to predict them. This model will be trained
on data obtained with a centralized sequential model predictive control (MPC)-based motion
planner in which intended trajectories of neighboring robots are available while planning. This
model will then be incorporated into the MPC planning framework so that a decentralized
solution may be implemented.

1-2 Contributions

The main contributions of my work are:

• A RNN-based trajectory prediction model that works in multi-robot three-dimensional
environments with an arbitrary number of robots and dynamic obstacles. It relies on
three sources of information which can be obtained from sensory data: a past horizon
of velocities of the robot we are trying to predict a trajectory for, the set of observed
past relative states of the other robots in the scene with respect to the one of interest
over a horizon, and the set of current relative states of the dynamic obstacles in the
scene.

• A communication-free decentralized MPC-based multi-robot motion planner that works
in dynamic 3D environments and considers robots other than the controlled one as
dynamic obstacles with positions forecast by the previously trained prediction model,
and assumes regular dynamic obstacles to follow a constant velocity model (CVM).
This method achieves a collision-avoidance performance comparable to the centralized
sequential version of the path planner in which robots know the intentions of each other
while planning for themselves.

1-3 Thesis Outline

The main part of this thesis will start with Chapter 2, where I will contextualize my work
within the literature by presenting some relevant multi-robot motion planning and trajectory
prediction approaches. In Chapter 3, the theoretical foundations on which the proposed
method builds on are explained. In Chapter 4, my method will be exposed in detail, from the
trajectory prediction part to the path planning itself. In Chapter 5, I will put the proposed
approach into practice on some simulated scenarios and will separately discuss the achieved
results of the prediction model and of the complete path planner, comparing them to some
baselines. Finally, in Chapter 6, I will outline some conclusions that may be reached from my
work, and will present some directions for further research. This thesis has also lead to the
writing of a research paper which we intend to submit to the IEEE Robotics and Automation
Letters (RA-L) with the option of a presentation at 2021 IEEE International Conference on
Robotics and Automation (ICRA). An initial draft of the article is included in Appendix A.

F. Martínez Claramunt Master of Science Thesis

Chapter 2

Related Work

2-1 Multi-Robot Collision Avoidance

Multi-robot collision avoidance is a mature research topic that is still very actively researched.
Traditional single robot rule-based collision avoidance methods such as the dynamic window
approach [1] and artificial potential fields [2, 3] have been adapted in the past to work in
the multi-robot case. These can be implemented in a decentralized manner, but they are
extremely short-sighted due to their reactive nature and may lead to deadlocks. Velocity
obstacles (VOs) were also extended to work for decentralized multi-robot systems in [4] under
the name of reciprocal velocity obstacles (RVOs). Further improvements to this framework
led to the well known optimal reciprocal collision avoidance (ORCA) algorithm from [5], and
its extension to non-holonomic robots in [6]. However, these methods ignore the robots’
dynamics and only plan for one step ahead into the future.

There have also been a number of receding horizon optimization approaches that have been
tried in the literature, which can be classified in centralized [7–10], distributed [10–12] and
decentralized (communication-free) [10, 13]. Centralized methods do not scale well to bigger
teams of robots and the requirement of a central planner makes them unsuitable for most
remote outdoor environments. As it has been already introduced, distributed methods often
do not work as well in practice as they do in theory because of the tendency of wireless commu-
nication to be unreliable. Regarding the cited communication-free decentralized model pre-
dictive control (MPC)-based methods, they use a constant velocity model (CVM) to predict
the trajectories of robots other than the controlled one, which leads to a significant per-
formance degradation with respect to their centralized MPC counterparts due to the poor
prediction accuracy of the model. In this work I close this performance gap between the
centralized and decentralized approaches by developing a much more accurate recurrent neural
network (RNN)-based prediction model which is trained on simulations using a centralized
sequential MPC.

There are also many learning-based techniques that have been used to achieve decentralized
multi-robot collision avoidance, such as interacting Gaussian processes [14–16] and reinforcement

Master of Science Thesis F. Martínez Claramunt

4 Related Work

learning [17–20]. However, they have only considered environments of up to two dimensions
and they do not provide any collision avoidance guarantees. [21] presents a reinforcement
learning-based method that works in three dimensions, but they only consider single robot
static environments, and the trained policy does not guarantee collision avoidance. My
method, on the other hand, offers a collision avoidance guarantee over a finite future horizon
through the use of an MPC algorithm for planning.

2-2 Motion Prediction

The topic of motion prediction has raised significant interest in recent years due to the need to
account for human future intentions to achieve safe robot navigation in urban environments.
One of the first motion prediction approaches that was introduced in the literature is the
Social Force model [22]. This rule-based method models pedestrian behavior through the use
of attractive and repulsive potentials. Even though it is commonly used as a baseline due to
its simplicity, it requires manual parameter-tuning and its accuracy is far from that of the
current state-of-the-art.

There have also been several notable attempts to use game theory to predict behavior of
decision-making agents [23–25]. A more sophisticated approach is presented in [26], where
game theory is combined with a tool from social psychology called social value orientation
(SVO) in order to quantify agents’ degree of selfishness or altruism before predicting their
behavior. However, these methods restrict themselves to very specific scenarios and to the
best of my knowledge have only been applied to two dimensional spaces.

The class of approaches that have produced the best results so far are based on machine
learning. Some of these include: dynamic Bayesian networks [27], random forests [28], inverse
reinforcement learning [29–31], RNNs [32, 33], variational autoencoders [34] and generative
adversarial networks (GANs) [35, 36]. To the best of my knowledge, no prior paper has
explored the topic of trajectory prediction with robots. As a consequence, none of these
methods has been developed for 3D environments, which is necessary when dealing with
aerial robots. Out of the cited methods, those which account for obstacles do so only
for static ones through the use of 2D grid maps of the environment, which is processed
by a convolutional neural network (CNN), an approach which cannot be straightforwardly
extended to 3D. Another main difference between the pedestrian and robot prediction prob-
lems is that pedestrians tend to follow quasi-constant speed trajectories, except when they
interact with other elements of the road, in which case they usually start and stop suddenly.
Robots, on the other hand, tend to show smoother changes in velocity when they reach their
goals or start to move towards new ones. Their behavior variability is also much smaller than
with humans, since (usually) they all follow exactly the same policy and have theoretically
equal dynamics. For these reasons, I develop a new RNN-based architecture that can better
leverage the robots’ dynamics and which can deal with an arbitrary number of other robots
and static or dynamic 3D obstacles.

F. Martínez Claramunt Master of Science Thesis

Chapter 3

Preliminaries

In this chapter the theoretical background necessary to understand the proposed motion
planning approach is presented. I will start by presenting the general multi-robot motion
planning problem in Section 3-1. Then I will formulate it as a receding horizon optimization
problem in Section 3-2. Finally, I will overview the usage of recurrent neural networks (RNNs)
for the sequence-to-sequence learning problem in Section 3-3.

3-1 Multi-Robot Motion Planning

Multi-robot motion planning deals with the problem of finding how a set of robots may reach
some target positions from their starting ones while avoiding collisions with each other and
with any potential external obstacles in the way. Throughout this thesis I assume that robots
have assigned goals, as the problem of task assignment is out of my scope.
Before analyzing the multi-robot problem in Section 3-1-2, I outline the simpler single robot
problem in Section 3-1-1. This is interesting not only because it lays the foundations to better
understand the complete problem, but also because it presents the challenges of decentralized
multi-robot motion planning, which are the ones we are concerned with.

3-1-1 Single robot problem

Formally, the purpose of a path planning algorithm is to find a continuous path τ : [0, 1] →
Cfree, such that τ(0) = qinit and τ(1) = qgoal, where Cfree is the free configuration space (often
abbreviated as C-space), qinit is the initial configuration and qgoal is the goal one (see [37] for
further details). Additionally, it is usually desirable to do so in an optimal way based on a
number of requirements that depend on each specific application. We may want the robot to
reach its goal as quickly as possible, or traveling the shortest distance, or spending the least
amount of energy, or any combination of these.
Given this problem formulation, a number of algorithms have been developed in the literature
in order to find a solution. Classical algorithms can be divided in two different types of

Master of Science Thesis F. Martínez Claramunt

6 Preliminaries

approaches: sampling-based and combinatorial. The first of them relies on sampling different
configurations from C-space and checking whether they are collision-free or not. The problem
is then reduced to connecting the initial and goal configurations through these sampled ones.
The main advantage of this approach is that it does not require the explicit modeling of
the obstacle regions in C-space, although it comes at the cost of these algorithms being
only probabilistically complete1. Combinatorial methods, on the other hand, use explicit
representations of the environment in order to construct roadmaps of free space. They then
query these to find a path from an initial to a target configuration using a graph search
algorithm. These methods have the advantages that they are complete, and are also much
more efficient than sampling-based ones when the problem has certain features, such as low
dimensionality of the space and obstacle convexity. However, when these properties are not
present they might not be suitable.

One limitation of the presented formulation is that it assumes that obstacles are static. This
means that collision avoidance is not guaranteed if the environment changes from the instant
when the planning was performed, as a changing environment implies a time-varying Cfree.
Thus, planning in C-space is insufficient in dynamic environments. In this setting we need
to plan in the state space X = C × T , where C is the configuration space and T ⊆ R≥0 is
the time interval. The time interval may be bounded (T = [0, tf]), if the goal position must
be reached before a certain time limit tf > 0, or unbounded if no such restriction exists
(T = [0,∞)). One of the main differences when planning in X is that paths need to follow
the additional constraint that they can only move forward in time. Formally, we want to
compute a path τ : [0, 1] → Xfree, such that τ(0) = xinit and τ(1) = Xgoal, where Xfree

is the set of collision-free states, xinit is the initial state, Xgoal is the set of goal states such
that Xgoal = {(qgoal, t) ∈ Xfree | t ∈ T}. The monotonic constraint of time can be expressed
as the condition that for any s1, s2 ∈ [0, 1] such that s1 < s2, with (q1, t1) = τ(s1) and
(q2, t2) = τ(s2), it must hold that t1 < t2 (the reader is once again referred to [37] for further
details).

Although planning under this new formulation is more challenging than in the case where
the environment is static, sampling-based algorithms can usually be adapted from C to X.
Adapting combinatorial methods is also possible and they may be used in some cases, but
it is more difficult due to their poor scaling capabilities. In both cases it will be necessary
to take into account the monotonicity of the time dimension, which will result in roadmap
graphs becoming directed. Instead of planning in X, another option is to decouple the time
component from the robot configuration one. This involves first planning a path in C and
then adjusting the pace at which it will be followed so that moving obstacles are avoided.
This simplifies the problem, but collision avoidance cannot be guaranteed in general.

Another challenge of planning in X is that it requires the knowledge of the moving obstacles’
positions at every future time instant in order to be able to plan around them. A common
approach to solve this problem is to assume that obstacles will maintain a constant speed,
which may work well in practice when accelerations are low and planning is performed on
real time at a sufficiently high rate. However, this approach is unsuitable when the dynamic
obstacles the robot is trying to avoid are other robots which are also trying to avoid colliding

1A path planning algorithm is said to be complete if, in the case that a path to the goal exists, the algorithm
will always find it. Such an algorithm will also be able to discover if a path does not exist. A probabilistically
complete planner has a probability of finding a solution which tends to one as time tends to infinity.

F. Martínez Claramunt Master of Science Thesis

3-1 Multi-Robot Motion Planning 7

with the ego robot itself. Thus, in the next section I will present a more formal approach to
deal with this scenario.

3-1-2 Multi-robot problem

We have studied the single-robot problem in static environments, and we have seen how
adding the time dimension to the state space enables collision-free motion planning in dynamic
environments. Following a similar reasoning for the multi-robot problem, we may consider a
state space that consists of the individual configurations for all the robots. This state space
can be expressed as X = C1×C2× · · · × Cm, which has a dimension dim(X) =

∑m
i=1 dim(Ci),

where m is the number of robots. Under this setting, collisions of two types must be avoided:
with external obstacles and among robots. Formally, the obstacle region in X can be defined
as:

Xobs =
(

m⋃
i=1

Xi
obs

)⋃ m⋃
ij, i6=j

Xij
obs

 ,
where Xi

obs and Xij
obs are the robot-obstacle and robot-robot collision states, respectively [37].

As in the single robot case, the goal of a path planning algorithm will be to find a continuous
path τ : [0, 1]→ Xfree such that τ(0) = xinit and τ(1) = xgoal, with Xfree = X \Xobs.

Even though planning in this newly defined joint state space might seem to be a straightfor-
ward extension from planning in X for a single robot, in reality it is not so. The main issue is
that the space dimension of X scales linearly with the number of robots, making the problem
intractable for any decently sized team of robots. This is especially problematic for combi-
natorial methods, which are only efficient for low-dimensional spaces, as previously stated.
Even though sampling-based methods scale better, they are still unlikely to be suitable when
there are many robots present. This prompts us to look for alternative approaches which can
deal with these types of settings.

A common solution is to perform prioritized planning, which in its simplest form involves
sequentially solving m separate single robot motion planning problems, where each robot
considers the ones with higher priority as dynamic obstacles to be avoided and ignores the
lower ones. Another popular option is to find collision free paths for each robot independently,
completely ignoring the others in the scene, and then schedule the motions in order to avoid
collisions. Even though these options have been shown to work quite well in practice, the
results will rarely be the most efficient given that there is little to no cooperation among the
robots.

Another issue that appears when planning for multiple robots is the choice of who will perform
the planning. All of the presented solutions assume that full information about the system is
available, which is the case when a central computer is tasked with performing the planning for
all the robots. Although this is the most straightforward solution, using one unique computer
to perform the planning introduces a single point of failure and also scales poorly with the
number of robots in the team. An option which is much more fault tolerant and scales better
is the use of a distributed algorithm, where each robot plans for itself and communicates with
the others in order to achieve joint collision avoidance. If communication among the robots
were not possible, there exists the third option of relying only on sensory information in order
for each robot to perform path planning by itself. This solution also scales well with team

Master of Science Thesis F. Martínez Claramunt

8 Preliminaries

size, but the lack of communication limits maximum achievable performance and requires
the use of alternative algorithms to efficiently avoid collisions with other robots, which may
increase the total computational load.

3-2 Model Predictive Control

3-2-1 Introduction

Model predictive control (MPC) is an optimization-based control strategy which relies on an
explicit model of the plant in order to predict how it is going to behave over a finite future time
horizon. The cost function is defined so as to reflect the control goals and specifications, and
the resulting optimization problem is solved at each time step in a receding horizon fashion,
with only the optimal action for the next time step being applied (see [38–40] for further
details). This powerful control algorithm is capable of dealing with nonlinear dynamics,
multivariable systems, future references, and input, output and state constraints. With the
development of increasingly faster hardware over the past decade, the aforementioned features
have made MPC a popular choice for the control of complex dynamical systems.

Formally, the MPC formulation may be expressed as:

min
uN

V (x0,uN) :=
N−1∑
k=0
{Jk(xk, uk)︸ ︷︷ ︸

stage cost

}+ JN (xN)︸ ︷︷ ︸
terminal cost

(cost function)

s.t. xk+1 = f(xk, uk) ∀k ∈ {0, 1, ..., N − 1}, (system dynamics)
uk ∈ U, (input constraints)
xk ∈ X, (state constraints)
xN ∈ Xf , (terminal constraint)

where V is the cost function, Jk is the stage cost, JN is the terminal cost, N is the horizon
length, and xk and uk are the state and input vectors at instant k, respectively. x0 is the
state at the current time instant, uN := (u0, u1, ..., uN−1) is the input sequence, and f is a
possibly nonlinear function that describes the discrete dynamics of the plant. The system
constraints are expressed in a set theoretical-manner, with U and X representing the input
and state constraints, respectively. Additionally, the state at the final prediction step may be
further constrained by a terminal set Xf ⊆ X to which the system needs to be driven.

3-2-2 Multi-robot motion planning using MPC

An advantageous feature of MPC is that casting the control problem as a constrained opti-
mization provides it with great flexibility, in addition to making the tuning process relatively
intuitive. This, combined with its ability to deal with complex, nonlinear dynamics make it
an attractive option to solve the problem of robot motion planning. Although many different
specific implementations have appeared in the literature [7–13], they all involve representing
the robot’s objective in the cost function (e.g. to minimize traveled distance to the goal and

F. Martínez Claramunt Master of Science Thesis

3-2 Model Predictive Control 9

required control effort), and defining obstacles as constraints on the states or as additional
terms in the cost function.

An important difference of MPC with respect to the methods discussed in Section 3-1 is that
it is a local method that is meant to be run recursively at each time step. This makes it
one of the preferred options when dealing with dynamic environments, as it does not require
perfect prior knowledge of the obstacles’ trajectories, as adjustments can be made over time.
However, this also means that the resulting start to goal path may not be globally optimal,
as it only takes into account a finite future horizon at each time step. In practice, one
may alleviate this issue by using MPC in combination with a global planner. The latter will
consider a simplified model of the robot and the environment to generate a global path, which
the former will track while dealing with obstacles that were not initially taken into account.
It must be noted that in addition to being a local motion planner, MPC may be additionally
used to stabilize robots with unstable dynamics such as quadrotors, as it still is a standard
control technique.

Another interesting feature of this method is that the extension to multi-robot systems is
relatively straightforward. In its most basic form, it simply requires the redefinition of the
cost function based on the joint objectives of the robots and the addition of the necessary
constraints to avoid robot-robot collisions. The issue with taking such an approach is that
the time to find a solution will grow significantly for every robot that we add to the system,
severely restricting the maximum team size that can be considered. However, the decoupled
nature of multi-robot systems’ dynamics makes it possible to take smarter approaches which
scale much better with the number of robots. In the following two sections we will look into
some of these solutions.

Centralized sequential planning

As it has been stated, solving the full MPC problem for all robots at the same time in
a centralized manner becomes very computationally expensive for large teams of robots. A
different approach is to formulate an optimization problem for each one of the robots and solve
them sequentially, considering the other robots as dynamic obstacles to avoid. The future
trajectories that will be considered for the other robots are the predicted state trajectories
from each of the individual MPC problems. This strategy is similar to the prioritized approach
presented in Section 3-1-2 for classical motion planning methods, but in this case there is no
notion of priority. This is possible because the MPC algorithm is run at each sampling
step, whereas the previously presented global methods were intended to be run once and
then make the robots follow the full paths. Thanks to this difference, at each time step the
optimal future state trajectories computed at the previous step will be available. Thus, it
will be possible to use these as predictions for the robots that are later in the sequence when
planning for the earlier ones. This approximation works well when models are sufficiently
accurate and the sampling rate is high enough, as in this case the predicted trajectories
should not significantly change from one step to the next. Although there will be a slight
performance loss when compared to the solving the MPC problem for all robots at once, this
approach scales much better with the number of robots.

Master of Science Thesis F. Martínez Claramunt

10 Preliminaries

Distributed and decentralized planning

Another nice property of the previous approach is that it can be easily distributed by letting
each robot to solve its own MPC problem and then communicate its results with the others,
so that these may be used at the next time step as trajectory predictions. With fast enough
communication, the performance of this method should (theoretically) be almost the same as
the one from the centralized sequential approach. The main difference is that since all robots
will be planning at the same time, they will all need to use others’ predicted trajectories from
the previous sampling step.

The next natural extension would involve decentralizing the path planning algorithm. How-
ever, this requires an alternative way to predict the future trajectories of other robots, as
optimal planned trajectories cannot be shared via communication. Obtaining an analytical
prediction model is not a viable option, since the future trajectory of each robot depends
on the solution to its own MPC problem and therefore it cannot be generally expressed in
closed form. Thus, one could assume other robots to keep their velocity at the last step, an
approximation which is frequently made in the literature when no better model is available.
However, even though this may still make it possible for robots to reach their goal positions
while avoiding others, the overall performance will be greatly degraded. A different approach
to construct a model when it cannot be done so analytically is to use machine learning
techniques. In the next section I will present the necessary background to do this, as it will
be the approach that will be taken for this thesis.

3-3 Recurrent Neural Networks

3-3-1 Introduction

The field of machine learning studies algorithms that enable a computer to learn to perform
tasks without being explicitly programmed to do them, by instead extracting hidden patterns
in data. Deep learning covers the subset of these algorithms that use artificial neural networks
as the function approximators to capture these hidden patterns (see [41] for more in depth
explanations). With a structure inspired by the human brain, artificial neural networks
consist of multiple nodes (or neurons) which are connected by synapses, as can be seen in the
example of Figure 3-1. Neurons are grouped by layers, and the outputs of each layer (also
known as activations) are computed exclusively forwards. These activations are calculated as
a nonlinear function of the neuron’s inputs, which are a weighted sum of the outputs from
the previous layer plus a bias (see Figure 3-2). The weights and biases of the network are the
optimization variables of the learning algorithm, which will try to minimize some measure of
how well the network can correctly predict a set of outputs based on a set of inputs.

3-3-2 Recurrent neural networks

RNNs are a type of neural network which is capable of processing sequential data. They are
able to learn temporal dependencies in data, and are often used for time series forecasting or
natural language processing. Recurrent neurons keep an internal state which evolves based

F. Martínez Claramunt Master of Science Thesis

3-3 Recurrent Neural Networks 11

Neuron Synapse

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layerInput 1

Input 2

Output 1

Weights 2Weights 1 Weights 3

Figure 3-1: Diagram of a simple feedforward network with two inputs, one output, and 2 hidden
layers with 3 neurons each.

WeightsInputs

Sum Activation
function

Output

Bias

Figure 3-2: Diagram of an artificial neuron.

on its previous value and the value of the input, as can be seen in Figure 3-3. Thanks to this,
they can process sequences of different lengths.

However, traditional RNNs have issues learning long-term temporal dependencies, since the
gradient of the loss function decays exponentially with time (vanishing gradient problem [42]).
This means that it is hard for them to learn how inputs early in the sequence affect the output
that needs to be predicted. To mitigate this drawback, a type of RNN called long short-term
memory (LSTM) was developed [43,44], introducing a memory cell and a set of gates. The cell

Master of Science Thesis F. Martínez Claramunt

12 Preliminaries

is able to keep information over prolonged periods of time and learn long-term dependencies.
The gates control the flow of information in and out of the cell, and when information needs
to be forgotten.

Unroll

Figure 3-3: Basic diagram of a traditional recurrent neuron, where W is the weight matrix, and
xt and ht are the values of the input and activation of the neuron at step t, respectively.

3-3-3 Sequence-to-sequence learning

For this thesis I am not only interested in processing sequential inputs, but also in producing
sequential outputs, since a trajectory prediction is essentially a sequence of states. These types
of problems are known as sequence-to-sequence learning, and RNNs are a suitable architecture
to solve them. This is the case because they are not only able to process sequential data, but
also to output it by keeping a record of its internal state at each time step.

A popular architecture that is used for this sequence-to-sequence learning problem is the so-
called encoder-decoder. As it is shown in Figure 3-4, this architecture uses an RNN to encode
the input sequence into a flat vector z, from which the future data is predicted using another
RNN. The way in which a flat vector may be fed into an RNN is by repeating the vector along
the sequence dimension. Formally, this means that xt = z ∀t ∈ {1, 2, 3, ..., Npred}, where
Npred = Tpred−Tobs is the prediction horizon. Building on these concepts, in this thesis I will
design a network architecture that is capable of predicting robots’ future positions in dynamic
environments, as the key component to my decentralized motion planning approach.

RNN
encoder

RNN
decoder

Input
sequence

Output
sequence

Encoded
state

Figure 3-4: Diagram of the encoder-decoder network architecture for future sequence prediction.

F. Martínez Claramunt Master of Science Thesis

Chapter 4

Approach

4-1 Introduction

In this chapter, the proposed interaction-aware multi-robot motion planning approach is
described in detail. It is designed to work for sizable teams of robots navigating in either
2D or 3D dynamic environments without communication among them. To provide each of
them with interaction-awareness about the others, a recurrent neural network (RNN)-based
prediction model is developed, such that it will be able to forecast how any robot in the scene
will move in the near future based on its observed past behavior and that of the neighboring
robots. It also takes into account moving obstacles in the scene, which are restricted to have a
fixed size, since in practice they mainly represent humans walking among the robots and this
greatly simplifies the prediction challenge. These obstacles are assumed to move at constant
speed over the considered future horizon.

To perform decentralized motion planning, I use a model predictive control (MPC) algorithm
that considers robots other than the one we are planning for as dynamic obstacles, the
positions of which are forecast using the trained RNN-based model. This framework allows us
to easily generate data to train the neural network by running simulations with a centralized
sequential version of the planner. As previously described in Section 3-2-2, in this formulation
the MPC problems for each of the robots will be solved sequentially by a central computer,
using the latest available planned trajectories for a robot as its predicted positions for the
planning horizon.

The outline of this chapter is the following. In Section 4-2, rigorous formulations of both
the path planning and the trajectory prediction problems are introduced. In Section 4-3,
a centralized sequential MPC-based solution to the path planning problem is implemented
in order to generate suitable data for training and validating a trajectory prediction model.
The proposed RNN-based model is then presented in Section 4-4, in addition to the used
evaluation metrics and details of the training procedure. Finally, in Section 4-5, the proposed
decentralized interaction-aware multi-robot motion planning solution is described, building
on the information introduced in the previous sections.

Master of Science Thesis F. Martínez Claramunt

14 Approach

4-2 Problem Formulation

4-2-1 Multi-robot motion planning

The multi-robot motion planning framework that is employed in this thesis is based on that
of [10]. A team of n robots moving in a shared workspace W ⊆ R3 is considered, where each
robot i ∈ I = {1, 2, ..., n} ⊂ N is modeled by their enclosing spheres of radius r. Robots are
represented by these primitive objects because checking collisions between arbitrarily shaped
3D objects is computationally expensive. Furthermore, I consider no (moving) obstacles in
the scene, each of these o ∈ Io = {1, 2, ..., no} ⊂ N being approximated by a non-rotating
enclosing ellipsoid with principal axes of length a, b and c, common to all of them. The
reason why I assume the orientation and size of all obstacles to be the same is because in
practice these will mainly represent humans walking among the robots. Thus, it is reasonable
to assume that they will always be upright and of a similar volume, and it will furthermore
simplify the task of designing the trajectory predictor later.

The dynamics of each robot i ∈ I are described by a discrete-time equation

xk+1
i = f(xk

i , u
k
i), (4-1)

where xk
i = [pk

i , v
k
i , φ

k
i , θ

k
i , ψ

k
i] ∈ X ⊂ Rnx denotes the state of the robot, which includes its

position, velocity, pitch, yaw and roll, and uk
i ∈ U ⊂ Rnu the control input, both at time step

k. X and U are the admissible state space and control space, respectively. All the robots are
assumed to have the same dynamics, described in discrete time by function f .

On the other hand, each of the obstacles o ∈ Io is assumed to follow a constant speed model,
such that

xk+1
o :=

[
pk+1

o

vk+1
o

]
=
[
I ∆t · I
0 I

] [
pk

o

vk
o

]
, (4-2)

where xk
o = [pk

o , v
k
o] ∈ Xo ⊂ Rno denotes the state of obstacle o at time k, which includes its

position and velocity. I is the identity matrix and ∆t is the sampling period.

Any pair of states for robots i and j from the team are considered to be mutually collision-
free at time k if ‖pk

i − pk
j ‖ ≥ 2r, ∀i 6= j ∈ I. Unfortunately, checking collisions for robots

and obstacles is not as simple, as determining whether a sphere and an ellipsoid intersect
each other cannot be performed with a closed form expression [45]. Thus, to check collisions
between each obstacle o and each robot i at time k, the former will be approximated with an
ellipsoid enlarged by the radius of the latter, and then it will be verified if the robot’s position
is within it. This condition can be formally expressed as ‖pk

i −pk
o‖Ω ≥ 1,∀i ∈ I,∀o ∈ Io, with

Ω = diag(1/(a+ r)2, 1/(b+ r)2, 1/(c+ r)2).

Each robot is assumed to have an assigned goal location gi, which in practice may come from
a high-level planner or have been specified by a user. The objective of the multi-robot motion
planner will therefore be to compute a control action uk

i for each robot in the team which
brings the robots closer to their respective goal locations gi while respecting the dynamic
constraints and ensuring that they are collision-free for a future short time horizon τ .

By writing these objectives as an optimization problem, the following MPC formulation is

F. Martínez Claramunt Master of Science Thesis

4-2 Problem Formulation 15

obtained:

min
x1:N

i ,u0:N−1
i

N−1∑
k=0

Jk
i (xk

i , u
k
i) + JN

i (xN
i , gi)

s.t. x0
i = xi(0),
xk

i = f(xk−1
i , uk−1

i),∥∥∥pk
i − pk

j

∥∥∥ ≥ 2r,∥∥∥pk
i − pk

o

∥∥∥
Ω
≥ 1,

uk−1
i ∈ U, xk

i ∈ X,
∀j 6= i ∈ I; ∀o ∈ Io; ∀k ∈ {1, . . . , N},

(4-3)

where Jk
i is the stage cost for robot i at time k, JN

i is the terminal cost for robot i, and N
denotes the number of steps of the MPC future horizon, such that τ = N∆t. The stage cost
will consist of the sum of two terms:

Jk
i (xk

i , u
k
i) :=

∥∥∥uk
i

∥∥∥
Qu

+
∑

j∈{I\i}
⋃
Io

Qc

1 + exp(λc(dk
ij − dsafe

ij))
, (4-4)

where the first one penalizes large control actions through a weighted norm of the inputs,
and the second one is a collision potential cost based on the logistic function, such that
robots are incentivized to stay away from each other and from obstacles. In this expression,
Qu is the weighting matrix of the control input cost, Qc is the weighting coefficient of the
collision potential cost, λc is a parameter controlling the smoothness of the potential, dk

ij is
the distance between i and j at time k and dsafe

ij is a safety distance. It must be noted that
the distance metric varies depending on whether it is between two robots or between a robot
and an obstacle, such that:

dk
ij :=

∥∥∥pk

i − pk
j

∥∥∥ , if j ∈ {I \ i}∥∥∥pk
i − pk

j

∥∥∥
Ω
, if j ∈ Io

(4-5)

The terminal cost consists of a goal navigation term, such that the robots are driven towards
their goals, and its expression is:

JN
i = (xN

i , gi) :=
∥∥∥pN

i − gi

∥∥∥
Qg

, (4-6)

where gi is the goal of robot i and Qg is the weighting matrix of the goal navigation cost.

Under this formulation, motion planning involves solving the constrained optimization prob-
lem in Equation (4-3) for each robot i ∈ I at each step and executing the first control action
from the resulting optimal sequence u0:N−1

i , in a receding-horizon fashion.

4-2-2 Interaction-aware trajectory prediction

The trajectory prediction problem that is solved in this thesis involves estimating the future
positions of robots other than the controlled one for the future Npred prediction steps. I refer

Master of Science Thesis F. Martínez Claramunt

16 Approach

to these other robots as “query” robots, as is common in the trajectory prediction literature.
Even though my scope is limited to performing predictions for robots following the control
strategy that was described in the previous section, the presented formulation is highly general
and could be used for other trajectory prediction problems. I denote the predicted trajectory
for a query robot q as

p
t+1:t+Npred
q,pred :=

(
pt+1

q,pred, p
t+2
q,pred, ..., p

t+Npred
q,pred

)
, (4-7)

with the ground truth being denoted as pt+1:t+Npred
q,target and defined analogously. It must be noted

that since I aim to use the predictions within the MPC, Npred needs to be equal or greater
than the MPC planning horizon N . For simplicity, I will consider them to be equal.

Even though the final goal is to obtain a prediction pt+1:t+Npred
q,pred that is as similar as possible

to pt+1:t+Npred
q,target , in practice I will aim to predict to velocities instead. The reason for this comes

from the fact that I will be using deep learning to develop a prediction model, and employing
absolute positions in this framework may inadvertently lead to training a neural network that
outputs different predictions for different predictions in the environment. This is clearly not
coherent with how the MPC-based planner from Section 4-2-1 works, and therefore using
this formulation can lead to overfitting and poor generalization of the model. Thus, I aim
to predict a horizon of velocities vt+1:t+Npred

q,pred so that they match v
t+1:t+Npred
q,target , as these are

completely independent from where the robots are located in the scene. I will later simply
need to numerically integrate the sequence of velocities starting at the robot’s current position
using the sampling period ∆t in order to obtain position predictions.

To achieve accurate predictions, I rely on three different sources of information. Firstly, I
consider the past horizon of Npast velocities of the query robot vt−Npast+1:t

q , defined in an
analogous manner to the future sequences seen earlier. Secondly, I take into account the past
horizon of Npast relative states1 of the robots other than the query one

X t−Npast+1:t
r,q :=

{
x

t−Npast+1:t
iq | i ∈ I \ q

}
, (4-8)

with
x

t−Npast+1:t
iq =

(
x

t−Npast+1
iq , x

t−Npast+2
iq , ..., xt

iq

)
(4-9)

and

xt
iq := xt

i − xt
q =

pt
i − pt

q

vt
i − vt

q

 . (4-10)

Finally, I account for the current relative states of the dynamic obstacles, which are defined
similarly:

X t
o,q :=

{
xt

iq | i ∈ Io

}
. (4-11)

Given these definitions, the training of my deep learning model will involve finding an optimal
mapping (

vt−Npast+1:t
q ,X t−Npast+1:t

r,q ,X t
o,q

)
7→ v

t+1:t+Npred
q,pred , (4-12)

1Even though the state space of the robots in Section 4-2-1 include position, speed and orientation, I
disregard the orientation when performing trajectory prediction because I found that including it did not lead
to significantly better results.

F. Martínez Claramunt Master of Science Thesis

4-3 Dataset Generation 17

such that the error between vt+1:t+Npred
q,pred and vt+1:t+Npred

q,target is minimized. The cost function that
I use for the training is the mean squared error (MSE) between the prediction and the target,
over all the prediction steps:

MSE
({
v

t+1:t+Npred
q,pred

∣∣∣ t ∈ T }) =

1
|T | ·Npred · dim(W)

∑
t∈T

Npred∑
k=1

∥∥∥(vt+k
q,target − vt+k

q,pred)
∥∥∥2
, (4-13)

whereW is the workspace the robot lives in and T is the set of time steps for which a trajectory
prediction has been obtained. During training T will be the batch, during evaluation and
testing it will usually be the whole used dataset, and when obtaining a prediction at a specific
time step it will be just that time step. I consider the MSE as the cost function because it is
one of the more common options for regression problems and it has proven to generally work
well in practice. Although it may seem that this choice of cost function weighs the directions
of movement in which velocity is larger more heavily, I will scale all the data at a later stage
to avoid issues of this nature. As a final note, even though minimizing the velocity prediction
error is in theory not equivalent to minimizing the error in position, the performance that
will be achieved will be better because of the reasons stated at the beginning of the section.

4-3 Dataset Generation

The data collection step is critical to obtain a deep learning-based regression model that is
accurate and generalizes well to new data. It is especially important in this case, as the data
that the model is trained on will come from a centralized motion planner, but it will be used
to predict trajectories from robots using a decentralized version of it. If the model does not
generalize well to this new scenario, the performance of the proposed decentralized approach
will be significantly affected, since the estimates of the other robots’ future motions will be
inaccurate.

4-3-1 Simulator

To generate the data with which to train a prediction model, a centralized sequential solution
to the path planning problem formulation in Section 4-2-1 will be implemented. This involves
solving Equation (4-3) sequentially for each of the robots i ∈ I, using the planned optimal
trajectories of robots j 6= i ∈ I as predictions of their future positions. The used Matlab-
based implementation of this planning method builds on the work of [10], which considers
drones with dynamics of the Parrot Bebop 2 quadrotor and uses uses Forces Pro [46] as the
solver to the MPC problem.

The enclosing spheres of the robots will be assumed to have a radius equal to 0.3 meters.
The dynamic obstacles, which will represent humans moving at constant speed, will be
approximated by non-rotating ellipsoidal shapes of dimensions 0.4, 0.4 and 0.9 meters for
their X, Y and Z semi-principal axes, respectively. A screenshot of the simulator may be seen
in Figure 4-1.

Master of Science Thesis F. Martínez Claramunt

18 Approach

Figure 4-1: Screenshot of the main GUI of the simulator used to generate the data.

4-3-2 Data generation details

In order to generate sufficient training data, I assign the robots random goals which will be
changed independently in real time once each of them reaches their own. The random goals
are restricted so that there is not any pair of them that is too close together, nor too close
to the environment limits or to an obstacle at the time the goal is generated. The condition
to consider whether a robot has reached its goal will be based not only on its distance to it
but also on its speed. It is important to set the corresponding thresholds low enough so that
data of the robots moving at low speeds is collected, but it should not be set so low that the
dataset is dominated by this type of behavior. This second problem is especially apparent in
very obstacle dense environments, as it is likely that a dynamic obstacle will approach a robot
as it is getting close to its goal. Setting very strict stopping criteria in this setting will bias
the trained model towards thinking that the robot will engage in obstacle avoiding maneuvers
once it is moving at low speeds, since this is what it learned from the data when the robot was
close to the goal and had to move away from it because of the incoming dynamic obstacles.
In my implementation, I set the thresholds randomly for each independent trajectory to be
within a range of 0.1 and 0.3 m for the distance, and between 0.1 and 0.35 m/s for the speed,
so that a variety of goal approaching behaviors are reproduced.

Dynamic obstacles have also been included in the environment. These have been assigned
a random velocity with a modulus between 0.8 and 1.2 m/s in the XY plane, and between
-0.04 and 0.04 m/s in the Z direction, as it is not expected that the humans that these
obstacles represent will move fast in the Z direction. Once the obstacles leave the environ-

F. Martínez Claramunt Master of Science Thesis

4-4 Deep Neural Network Design 19

ment bounds, their position is randomly reset close to them, with their movement direction
randomly assigned in a range that does not aim towards the closest bounds. For 20% of
the dataset, I have set the obstacles to be static, to ensure that the learned model works
adequately in this case as well.

I have set the environment size to be 10×10×3 m, with 10 robots and 10 dynamic obstacles,
as it was observed that these settings produced an adequate amount of interaction among the
robots and the environment. Lower numbers may lead to too sparsely occupied environments
and not enough interactions among the robots and of the robots with the obstacles. Higher
number may bias the trajectory predictor towards being overly reliant on the information
about other robots and obstacles rather than using the learned dynamics of the query robot.
It must be noted that in the next section I will design a network architecture that can
deal with an arbitrary number of robots and obstacles, so the parameters that are set for the
training and validation datasets do not restrict the settings in which it will be able to perform
predictions.

For the training dataset I have simulated 105 steps at a sampling rate of 50 ms, and for the
validation one I have run the simulator for 4 ·104 steps. The training and validation data that
can be used from these simulations is actually multiplied by the number of robots present,
as predictions are made independently for each robot in the scene. I have used datasets with
the same number of agents for training and validation because this makes the TensorFlow 2
training script much more computationally efficient (see Section 4-4-3). Otherwise, it would
be necessary to create a new instance of the network every time the number of agents in the
dataset changed, and then initialize its weights and biases with the trained values. Doing
this at each iteration adds a significant overhead and has thus been considered to not be
worthwhile. This limitation will not be present during testing, as inference only requires the
network to be queried once with all the data we want to obtain a prediction for. Thus, a
broader range of scenarios will be tested in Chapter 5.

4-4 Deep Neural Network Design

4-4-1 Network architecture

The proposed network architecture (shown in Figure 4-2) consists of three different modules:
the query robot state encoder, the environment encoder and the decoder, all of which will be
described in the following sections. All layers in the network except the output one (which
is linear) use hyperbolic tangent activation functions and L2 regularization for the weights
and biases. They all have 64 neurons, except the recurrent decoder, which has 128, and the
output layer, which has 3 (one for each coordinate in the workspace).

Query robot state encoder

The first module of the architecture includes a long short-term memory (LSTM) layer that
will learn a flat encoding zt

q from the history of velocities of the query robot v(t−Npast+1:t)
q .

This encoding must be able to encapsulate the whole past of the query robot, which is critical
for the network to be able to predict how it will behave in the future, especially since no

Master of Science Thesis F. Martínez Claramunt

20 Approach

Query robot
state encoder

Recurrent
decoder

LSTM layer Concatenate along
features' dimension

Stack along
new dimension

Global max
pooling

Fully connected
layer

Other robot
state encoder

Global
max

pooling

Output
layer
Linear

Dense
decoder
tanh

Dynamic
obstacle
encoder
tanh

Decoder module

Environment encoder module

Figure 4-2: Diagram of the proposed neural network architecture. All layers in the network
except the output one use hyperbolic tangent activation functions and L2 regularization for the
weights and biases. They also all have 64 neurons, except the recurrent decoder, which has 128,
and the output layer, which has 3 (one for each coordinate in the workspace).

information about the robot’s target position is provided. While the other encoding module
may be considered to simply add contextual information, this one will need to learn the
dynamics of the robot.

Environment encoder module

This module will will learn how the other agents and obstacles that the query robot interacts
with will affect its future trajectory. In the considered scenario, these include other robots
following the same policy as the query robot, and dynamic obstacles moving at constant
speed. Nevertheless, it would be straightforward to extend this module to also consider other
types of decision-making agents following different policies by training additional types of
encoders.
One of the main challenges of predicting trajectories in dynamic environments is that there
may be a varying number of objects in the scene that need to be taken into account. A
common solution to deal with this problem is to consider a fixed number of them when
designing the neural network architecture, and then use some tricks in order to deal with an
arbitrary number. Usually, in the case where there are fewer than expected, the excess inputs
to the network are fed with synthetic values such that they will not affect the trajectory
prediction. For example, one may input obstacle positions that are far away from the robot.
In the opposite case, when there are more obstacles than initially planned for, the most
relevant subset of them will be taken into account (usually based on which ones are closer to
the query robot).
Although this may work in practice, it is merely an ad hoc solution to the problem. It requires
manually tuning the number of objects that the network should consider, and also defining a

F. Martínez Claramunt Master of Science Thesis

4-4 Deep Neural Network Design 21

metric to determine which of them will have the most influence on the future behavior of the
query robot. Using their relative distances as this metric may appear to be a sensible choice,
but there are other factors that may be more important, such as the relative velocities and
accelerations.

Thus, what I propose is to treat all objects of the same type equally and let the network learn
which of them has the most influence in the query robot. To do this, a set of layers with shared
weights for each of the object types is first included. In this case there will be two different
types: the other robots and the dynamic obstacles. As introduced in Section 4-2-2, the input
data for the former will be the set of sequences of relative states X (t−Npast+1:t)

r,q , given that the
robots have complex dynamics. I encode each of the robots with an LSTM layer, producing
the set of encodings Zt

r,q. Since the dynamic obstacles simply move at constant speeds, I only
consider their relative states at the current time step X t

o,q and use a fully connected layer to
process them and produce Zt

o,q. It must be noted that all dynamic obstacles are assumed
to be of a fixed sized, namely prolate spheroids with horizontal semi-axes of length 0.4 and
verical semi-axis of length 0.9. The choice of these values is justified by the fact that in real
scenarios dynamic obstacles will normally be humans, the bounding boxes of which resembles
the chosen shape.

I then stack the outputs from both of these sets of layers along a new axis, and will perform
a global max pooling operation over it, resulting in vector zt

e. This operation is the one that
will determine which specific learned features of the environment objects’ motions will have
the most effect on the query robot. It must be noted that this requires both sets of layers
to have the same number of units, as otherwise it would not be possible to stack them both.
This framework can natively deal with any number of obstacles, and is invariant to the order
in which they are fed to the network. Furthermore, extending it to deal with a different type
of object would simply require us to train an additional specific encoder and stack the output
to the others.

I believe this approach of using a global max pooling operation is more reliable than others
found in the literature in which a bidirectional LSTM layer is used instead, and in my
experiments it has also worked better. The reason for this is that even though LSTMs are
suitable for dealing with data of varying length, they are not invariant to the order in which
the data appears in the sequence. Thus, it would require the outputs from the previous layer
to be arranged in some manner if we wanted to obtain consistent results, and this conflicts
with the previous argument against using a manually defined metric to measure the influence
of the environment objects.

Decoder module

The final part of the network will take in the concatenated outputs from the query robot
state encoder and the environment encoder module, and will reconstruct a prediction for
the velocity of the query robot. It includes an LSTM layer which will be fed a sequence
of length Npred, with each element in the sequence being the concatenation of zt

q and zt
e. I

will additionally store the sequence of internal states from this layer, instead of just the last
one. This way, I will be able to produce velocity predictions for the Npred future steps in the
trajectory.

Master of Science Thesis F. Martínez Claramunt

22 Approach

After it, two dense layer will be included, the operations of which will be applied with the
same weights and biases to each of the sequence steps from the LSTM’s output. The first of
these layers will have a hyperbolic tangent activation function (as all the other layers), and
it is included to increase the overall model complexity. The second one will have a linear
activation and three units, and it is added so that the output of the network matches the size
of the target data, which is a three-dimensional velocity vector.

4-4-2 Evaluation metrics

As it has been introduced in Section 4-2-2, I use the MSE of the velocity prediction with
respect to the actual one as the cost function of the training algorithm. Even though
comparing different networks based on their loss on a test set might be useful as a rough
evaluation of which one is most accurate, it is difficult to understand the scale of these losses
and their actual meaning, given that the MSE is computed over the whole prediction horizon
Npast. It is clear that as this horizon increases, the error will grow larger, since the further into
the future we try to make predictions, the more uncertain they will become. This is the case
even when predicting velocities instead of positions. However, the MSE does not show that the
main contributing factor to a large loss comes from the later prediction steps. Furthermore,
since the MSE is computed based on velocities (see Equation (4-13)), the magnitude of the
error in positioning is even less clear.

Therefore, to evaluate the performance of the network, I have decided to compute the
average displacement error at each of the Npred steps of the prediction horizon. This involves
computing the Euclidean distance (or L2 norm) between the actual future position of the
robot and the predicted one coming from the model, and averaging them over each prediction
step. Thus, we will be able to see how the error evolves over time, unlike with the MSE.

4-4-3 Implementation details

I have implemented the described network architecture using TensorFlow 2 and trained it on
a laptop with an Intel i7 7850H processor, 16 GB of RAM and an NVIDIA GTX 1060 GPU
with 6 GB of VRAM, taking an hour of training on the GPU, but already producing accurate
predictions at around 30 minutes. On this same computer it takes around 30 ms to perform
inference with 12 robots and 12 obstacles, both on the CPU and the GPU, without changing
any settings to accelerate inference. Even though it is unlikely that numbers significantly
higher than these will be considered for normal applications, the network scales adequately
with bigger team sizes, providing predictions in slightly over 40 ms with a squad of 100 robots
and no obstacles.

The size of all the layers in Figure 4-2 is 64 units, except the recurrent decoder which has 128,
and the output layer, which has 3. All layers have a hyperbolic tangent activation function
except the output one, which is linear. The network has been trained with observed and
prediction horizons of length 20 (which is also the planning horizon of the data-generating
MPC), with sampling period being 50 ms. The datasets that have been used for training and
validation have been independently generated, using randomized goals, obstacle velocities
and stopping criteria (see Section 4-3-2 for details). All data has been scaled to be in the
[-1, 1] range, and L2 regularization has been used for all the layers’ weights and biases with a

F. Martínez Claramunt Master of Science Thesis

4-5 Decentralized Multi-Robot Motion Planning 23

factor of 0.01. Basic testing has been performed on a third dataset2 obtained independently
from the training and validation ones but with the same number of robots and obstacles. A
broader range of scenarios will be tested in Chapter 5.

4-5 Decentralized Multi-Robot Motion Planning

Having implemented a centralized sequential solution to the motion planning problem from
Equation (4-3) in Section 4-3-1, and a robot trajectory predictor suitable for this setting in
Section 4-4, extending the planning algorithm to work in a decentralized manner is straight-
forward. It requires each robot to perform inference with the trained neural network to predict
the trajectories of neighboring robots, instead of relying on their planned optimal trajectories,
which are not available without communication. To be able to perform inference, each robot
must be able to measure its own state and those of its neighbors, and keep a history of length
Npast, as this data is necessary to compute the inputs to the network. It is assumed that
this information, in addition to the states of the obstacles in the environment, is available to
the robots without error. In the next chapter, the performance of the proposed trajectory
prediction RNN and decentralized multi-robot motion planning method will be analyzed in
detail.

2We use the validation dataset to determine when to stop the training of the network so as to avoid
overfitting, and the test one to determine which of all the trained networks performs best.

Master of Science Thesis F. Martínez Claramunt

24 Approach

F. Martínez Claramunt Master of Science Thesis

Chapter 5

Results and Discussion

In this chapter I analyze the performance of both the trajectory predictor by itself (Section 5-
1) and of the proposed decentralized multi-robot motion planner (Section 5-2), which relies
on the trajectory predictor in order to have interaction awareness.

5-1 Interaction-Aware Trajectory Prediction

In order to make sure that the proposed interaction-aware trajectory prediction model gen-
eralizes well to all possible scenarios, I test its performance on datasets collected with the
centralized version of the model predictive control (MPC)-based planner which have not been
used for training nor validation. I simulate 4 · 104 steps of four different scenarios in which
the robots will move towards goals which will randomly change in real time for each of them
once they get closer than a distance threshold. This number of steps means a simulation of
over half an hour of real time for each scenario, given that the sampling period is 50 ms.
The scenarios that will be considered are an open environment with 4 and 10 quadrotors,
and the same environments but with a number of dynamic obstacles equal to the number
of robots (i.e. 4 and 10, respectively). This will help us test the proposed prediction model
with varying team sizes and obstacle densities, and analyze how these parameters affect its
performance. In order to objectively analyze the results, I compute the average displacement
error (based on the Euclidean distance or L2 norm) at each prediction step for each of the
datasets.

The baselines to which the proposed recurrent neural network (RNN)-based model is compared
are the planned paths of the centralized MPC used to generate the datasets, and a constant
velocity model (CVM) which assumes that robots will keep the speed at the current step for
the whole prediction horizon. Even though the purpose of the MPC is not to be a prediction
model but to perform the planning, using it as a baseline is useful because the prediction
model will be substituting the shared trajectories planned by the MPC. It also gives us a
reference of how good the trajectory predictions should be for the path planner to work well.
To avoid confusions, it must be noted that I do not use these planned trajectories as the

Master of Science Thesis F. Martínez Claramunt

26 Results and Discussion

target predictions for the network: I use the real future trajectories that the robot will follow.
This means that in theory, it should be possible to obtain predictions that are more accurate
than these planned trajectories.

The average errors for each of the 4 different scenarios at 5, 10, 15 and 20 time steps into
the future can be observed in Tables 5-1 to 5-4, corresponding to 250, 500, 750 and 1000 ms
into the future, given that the sampling period is 50 ms. Continuous plots of the evolution
of the mean error over the total 20 prediction steps are shown in Figure 5-1, where the
drawn prediction uncertainty is ±30% of the standard deviation. As it was explained in the
previous chapter, this choice of the prediction horizon matches the planning horizon of the
MPC. Example predictions in the environment with 10 quadrotors and no obstacles can be
seen in Figures 5-2 and 5-3, and for the environment with 10 quadrotors and 10 dynamic
obstacles, in Figures 5-4 and 5-5.

In Figure 5-1 we can see how the average performance stays consistent throughout the different
scenarios for all prediction models, with the optimal planned trajectory from the centralized
sequential MPC-based planner being the most accurate, my RNN-based model being a close
second, and the CVM performing significantly worse. The only meaningful different is for the
case with 4 quadrotors and no obstacles, where the average error of the trained prediction
model is slightly worse than in other cases when compared to the MPC baseline. This might
seem counterintuitive, but it owes to the fact that the model not only relies on the learned
dynamics of the query robot to produce predictions for it, but also on the other robots and
dynamic obstacles in the scene. This seemingly high reliance on environment information to
produce accurate predictions is likely also a consequence of my choice of an obstacle-dense
training dataset with 10 robots and 10 obstacles. Had I used a less populated simulation
scenario to generate the training data, we might observe a different variation in performance
throughout the considered scenarios.

An important observation to be made from the shown summary tables is that despite my
model being close in terms of average error to the MPC baseline, it shows a higher standard
deviation throughout all the prediction horizon. This reflects the higher uncertainty of the
model’s predictions with respect to the MPC’s planned trajectories, which are more consistent.
However, it must be noted that, unlike the MPC, the neural network is not fed any information
about the quadrotor’s goals. It infers where the robots are heading based on their state
trajectories leading up to the current time step. Even though one would expect this to
significantly limit its long-term prediction capabilities, prediction performance degrades over
time in a similar manner as the MPC’s. The consistency of the MPC baseline is to be expected,
as it is the planner that was used to generate the data. Another interesting phenomenon which
can be observed in Figure 5-1 is that the average accuracy of the predictions for the scenario
with 10 quadrotors does not seem to significantly change when obstacles are added. Instead,
the standard deviations of the errors across all the prediction horizon are larger, reflecting a
bigger uncertainty in the predictions.

F. Martínez Claramunt Master of Science Thesis

5-2 Decentralized Multi-Robot Motion Planning 27

Average Average Average Average
L2 error at L2 error at L2 error at L2 error at

Model 5 steps (m) 10 steps (m) 15 steps (m) 20 steps (m)
Constant velocity model 0.036± 0.017 0.141± 0.064 0.312± 0.138 0.540± 0.234
Centralized MPC planned trajectory 0.001± 0.002 0.012± 0.015 0.053± 0.048 0.142± 0.104
RNN-based prediction model 0.021± 0.018 0.054± 0.046 0.116± 0.099 0.216± 0.184

Table 5-1: Comparison of the prediction performance of the different baseline models and the
proposed prediction model in an environment with 4 robots and no obstacles.

Average Average Average Average
L2 error at L2 error at L2 error at L2 error at

Model 5 steps (m) 10 steps (m) 15 steps (m) 20 steps (m)
Constant velocity model 0.036± 0.016 0.142± 0.064 0.311± 0.137 0.535± 0.233
Centralized MPC planned trajectory 0.001± 0.002 0.012± 0.015 0.055± 0.048 0.145± 0.103
RNN-based prediction model 0.010± 0.006 0.029± 0.027 0.076± 0.075 0.160± 0.154

Table 5-2: Comparison of the prediction performance of the different baseline models and the
proposed prediction model in an environment with 4 quadrotors and 4 dynamic obstacles.

Average Average Average Average
L2 error at L2 error at L2 error at L2 error at

Model 5 steps (m) 10 steps (m) 15 steps (m) 20 steps (m)
Constant velocity model 0.036± 0.015 0.141± 0.061 0.309± 0.131 0.532± 0.222
Centralized MPC planned trajectory 0.001± 0.001 0.012± 0.014 0.054± 0.047 0.143± 0.101
RNN-based prediction model 0.011± 0.007 0.032± 0.027 0.079± 0.074 0.165± 0.151

Table 5-3: Comparison of the prediction performance of the different baseline models and the
proposed prediction model in an environment with 10 robots and no obstacles.

Average Average Average Average
L2 error at L2 error at L2 error at L2 error at

Model 5 steps (m) 10 steps (m) 15 steps (m) 20 steps (m)
Constant velocity model 0.037± 0.092 0.142± 0.141 0.307± 0.200 0.521± 0.279
Centralized MPC planned trajectory 0.002± 0.071 0.016± 0.115 0.062± 0.150 0.154± 0.189
RNN-based prediction model 0.011± 0.091 0.032± 0.130 0.081± 0.169 0.167± 0.224

Table 5-4: Comparison of the prediction performance of the different baseline models and the
proposed prediction model in an environment with 10 quadrotors and 10 dynamic obstacles.

5-2 Decentralized Multi-Robot Motion Planning

Having verified that our proposed RNN-based prediction model performs as expected, I now
integrate it into the MPC framework, so that we may perform decentralized multi-robot
motion planning without need of communication, by predicting other robot’s trajectories
with our model. I compare the performance of this approach to the centralized MPC-based
planner as well as a distributed version in which planned trajectories are shared among robots
via communication, as described in Section 3-2-2. Furthermore, I also use a decentralized

Master of Science Thesis F. Martínez Claramunt

28 Results and Discussion

0 2 4 6 8 10 12 14 16 18 20
Future timestep

0.0

0.2

0.4

0.6

Di
sp

la
ce

m
en

t e
rro

r [
m

]

4 quadrotors, no obstacles
CVM
MPC
RNN

0 2 4 6 8 10 12 14 16 18 20
Future timestep

0.0

0.2

0.4

0.6

Di
sp

la
ce

m
en

t e
rro

r [
m

]

4 quadrotors, 4 obstacles
CVM
MPC
RNN

0 2 4 6 8 10 12 14 16 18 20
Future timestep

0.0

0.2

0.4

0.6

Di
sp

la
ce

m
en

t e
rro

r [
m

]

10 quadrotors, no obstacles
CVM
MPC
RNN

0 2 4 6 8 10 12 14 16 18 20
Future timestep

0.0

0.2

0.4

0.6
Di

sp
la

ce
m

en
t e

rro
r [

m
]

10 quadrotors, 10 obstacles
CVM
MPC
RNN

Figure 5-1: Plot showing the displacement error of our model (RNN) and two other baselines
(CVM and MPC), averaged over each of the prediction time steps, and computed based on
the L2 distance between the prediction and the ground truth. Performance is evaluated in four
different settings, in all of which the robots’ goal positions are changed randomly once they are
reached. In the figure it is also drawn ±30% of the standard deviation around the average values,
as a measure of the uncertainty in the predictions. The sampling period is 50 ms, so the whole
prediction horizon is equivalent to 1 second.

version of the path planner which uses a simple CVM, to analyze whether the more accurate
predictions of our RNN-based model lead to significantly better planning performance or not.

For these tests, I focus exclusively on obstacle-free scenarios, since the way in which obstacles
are accounted for is equivalent within all considered versions of the MPC: they are all
assumed to keep a constant speed, which is indeed how they are programmed to behave in the
simulation. Furthermore, we have already seen in the previous section that adding obstacles
does not have a meaningful effect on the overall prediction performance, only leading to
increased uncertainty in the predictions.

I will analyze 4 different types of test scenarios with 6 quadrotors, each of them with 50 unique
sets of start and goal positions. The first of these consists of a symmetric swap, in which the
6 quadrotors start from the vertices of a virtual regular hexagon that is parallel to the ground
plane and they need to exchange positions with the robot in the opposing vertex. Each of the

F. Martínez Claramunt Master of Science Thesis

5-2 Decentralized Multi-Robot Motion Planning 29

different cases within this group will feature different hexagon sizes and rotation along the Z
axis. The second class of tests consists of asymmetric swaps, which differ from the previous
ones in that each hexagon is no longer regular, thus leading to more challenging collision-
avoidance problems. All the start and goal positions are still placed at the same height, and
the shape and size of the hexagon changes for the different cases within the class. Next, I will
require the robots to perform pair-wise swaps, in which the six robots are grouped in three
pairs and placed at random positions in the environment. Each robot will then exchange
positions with its respective pair. This scenario is less challenging because the straight lines
that unite start to goal positions are very unlikely to intersect with each other, so robots
no longer attempt to go through the center of the environment in order to minimize their
trajectory lengths. Finally, I make the robots move from random start positions to random
goals.

To numerically evaluate the performance of the different motion planners in these experiments
I compute the minimum distance between any two quadrotors during the whole simulation,
and I also count how many of the 50 sets of trajectories includes at least one collision between
a pair of robots. Furthermore, I analyze the trajectory lengths and durations, and I calculate
the average linear velocities throughout each scenario. A summary of the obtained results
can be seen in Table 5-5. For a qualitative performance analysis, I show sample trajectory
trails for a specific set of start to goal trajectories from each of the scenarios for each of the
methods in Figures 5-6 to 5-21.

From the metrics shown in Table 5-5, we can see how using our RNN-based prediction model
significantly increases performance of the decentralized MPC-based planner when compared to
using a CVM, leading to consistently lower trajectory lengths and durations on average. More
importantly, our proposed method greatly diminishes the likelihood of collisions in the more
challenging scenarios such as the asymmetric swap, where the number of colliding trajectories
was reduced from 15 to only 3, out of the total 50. Furthermore, in the symmetric and pair-
wise swap scenarios collisions were avoided altogether when using our proposed model instead
of the CVM, which produced 4 and 3 collisions in these experiments, respectively. Even
more remarkably, the decentralized MPC-based planner using our model achieved similar
performance in terms of average trajectory length, duration and velocity as the centralized
and distributed counterparts. Nevertheless, despite being comparable in terms of average
performance, the standard deviation for the trajectory lengths and times is slightly larger in
our proposed method, meaning more variability in the resulting trajectories. That was to be
expected, especially after looking at the results from Section 5-1, as the uncertainty of the
predictions coming from our model is higher than for those planned with the MPC. This
phenomenon is also observed in the trajectory trails that have been plotted. Especially those
of the asymmetric swap setting in Figure 5-13, where the resulting path from our method is
more erratic than those of either the centralized (Figure 5-10) or the distributed (Figure 5-11)
MPC-based planners.

Master of Science Thesis F. Martínez Claramunt

30 Results and Discussion

Min. Num. Avg.
Motion dist. of Trajectory length (m) Trajectory time (s) vel.

Scenario planner (m) coll. Min. Max. Avg. Min. Max. Avg. (m/s)

Symmetric
swap

Centralized 0.80 0 5.46 8.96 7.22± 0.85 5.15 6.05 5.62± 0.24 1.27
Distributed 0.80 0 5.52 8.73 7.26± 0.84 4.75 6.40 5.51± 0.35 1.31
Decen. (CVM) 0.32 4 5.43 9.55 7.45± 0.88 4.95 7.30 6.02± 0.55 1.23
Decen. (RNN) 0.75 0 5.41 10.60 7.35± 0.91 4.75 9.7 5.59± 0.40 1.30

Asymmetric
swap

Centralized 0.80 0 5.08 9.02 6.77± 0.80 4.65 5.85 5.17± 0.30 1.30
Distributed 0.80 0 4.99 8.84 6.82± 0.84 4.65 6.25 5.12± 0.33 1.32
Decen. (CVM) 0.16 15 5.32 18.06 7.76± 1.89 5.05 7.30 5.96± 0.51 1.28
Decen. (RNN) 0.37 3 5.16 12.60 7.14± 1.10 4.80 6.85 5.48± 0.42 1.29

Pair-wise
swap

Centralized 0.80 0 1.64 9.92 5.10± 1.87 3.50 5.85 4.76± 0.44 1.06
Distributed 0.80 0 1.82 9.75 5.10± 1.86 3.60 5.85 4.72± 0.43 1.07
Decen. (CVM) 0.34 3 1.74 17.42 5.54± 2.53 3.60 5.75 5.00± 0.65 1.06
Decen. (RNN) 0.79 0 1.70 9.94 4.94± 2.02 3.40 5.95 4.83± 0.45 1.01

Random

Centralized 0.80 0 0.39 8.63 4.66± 1.94 3.50 5.50 7.72± 0.40 0.98
Distributed 0.8 0 0.39 8.73 4.67± 1.93 3.50 5.40 4.70± 0.40 0.98
Decen. (CVM) 0.76 0 0.39 9.53 4.82± 2.06 3.60 6.35 4.89± 0.57 0.98
Decen. (RNN) 0.78 0 0.39 9.19 4.36± 2.11 3.85 5.95 4.76± 0.43 0.91

Table 5-5: Comparison of the performance of the four considered MPC-based motion planner
variations (centralized, distributed, decentralized with CVM and decentralized with our RNN-
based model) across the four different types of scenarios that have been tested (symmetric swap,
asymmetric swap, pair-wise swap and random goals). For collision detection, the quadrotors’
shapes are considered to be spheres with 0.3 m of radius, as explained in Section 4-3-1.

F. Martínez Claramunt Master of Science Thesis

5-2 Decentralized Multi-Robot Motion Planning 31

Figure 5-2: Sample screenshot of predictions in an obstacle-free environment.

Figure 5-3: Sample screenshot of predictions in an obstacle-free environment (zoomed-in).

Master of Science Thesis F. Martínez Claramunt

32 Results and Discussion

Figure 5-4: Sample screenshot of predictions in an obstacle-dense environment.

Figure 5-5: Sample screenshot of predictions in an obstacle-dense environment (zoomed-in).

F. Martínez Claramunt Master of Science Thesis

5-2 Decentralized Multi-Robot Motion Planning 33

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [
m

]

Figure 5-6: Resulting paths for one of
the symmetric swap scenarios with the
centralized sequential MPC-based planner.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-7: Resulting paths for one of
the symmetric swap scenarios with the dis-
tributed MPC-based planner.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-8: Resulting paths for one of the
symmetric swap scenarios with the decen-
tralized MPC-based planner with a CVM.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-9: Resulting paths for one of the
symmetric swap scenarios with the decen-
tralized MPC-based planner with our RNN-
based model.

Master of Science Thesis F. Martínez Claramunt

34 Results and Discussion

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-10: Resulting paths for one of
the asymmetric swap scenarios with the
centralized sequential MPC-based planner.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-11: Resulting paths for one of
the asymmetric swap scenarios with the dis-
tributed MPC-based planner.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-12: Resulting paths for one of the
asymmetric swap scenarios with the decen-
tralized MPC-based planner with a CVM.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-13: Resulting paths for one of the
asymmetric swap scenarios with the decen-
tralized MPC-based planner with our RNN-
based model.

F. Martínez Claramunt Master of Science Thesis

5-2 Decentralized Multi-Robot Motion Planning 35

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-14: Resulting paths for one of the
pair-wise swap scenarios with the centralized
sequential MPC-based planner.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]
-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-15: Resulting paths for one of the
pair-wise swap scenarios with the distributed
MPC-based planner.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-16: Resulting paths for one of the
pair-wise swap scenarios with the decentral-
ized MPC-based planner with a CVM.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-17: Resulting paths for one of
the pair-wise swap scenarios with the decen-
tralized MPC-based planner with our RNN-
based model.

Master of Science Thesis F. Martínez Claramunt

36 Results and Discussion

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-18: Resulting paths for one of
the random scenarios with the centralized
sequential MPC-based planner.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]
-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-19: Resulting paths for one of the
random scenarios with the distributed MPC-
based planner.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-20: Resulting paths for one of
the random scenarios with the decentralized
MPC-based planner with a CVM.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
 [
m

]

-5 0 5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

Figure 5-21: Resulting paths for one of
the random scenarios with the decentralized
MPC-based planner with our RNN-based
model.

F. Martínez Claramunt Master of Science Thesis

Chapter 6

Conclusions and Future Work

6-1 Conclusions

In this thesis I have proposed interaction-aware communication-free decentralized motion
planner for multi-robot systems in dynamic three-dimensional environments. To achieve this,
I have first designed a recurrent neural network (RNN) architecture that is able to learn
how a robot in a team will behave in the future based on its observed past behavior and
the observed past behaviors of other robots and of the dynamic obstacles in the scene. In
our tests, our trained network produced accurate predictions in a variety of scenarios, being
able to deal with an arbitrary number of robots and obstacles through the use of a global
max pooling layer. However, I did observe a slight degree of overfitting towards the obstacle
density used when generating the training dataset, becoming slightly less accurate in very
sparsely populated environments.

To generate the data for training, I have used a centralized model predictive control (MPC)-
based planner that considers dynamic obstacles and robots other than the one we are planning
for as constraints on its future positions. The positions that dynamic obstacles will occupy
in the future are predicted through a constant velocity model (CVM), while the ones of
other robots are determined by the solutions to their respective MPC problems. Under this
framework, it was straightforward to decentralize the path planner and use the predictions
made by the neural network instead of the MPC-planned optimal trajectories to forecast
robots’ future positions over the prediction horizon. In my experiments, the observed perfor-
mance degradation from my method with respect to the centralized and distributed versions
of the MPC-based planner was minimal. Furthermore, I demonstrated that a more accurate
prediction model for other robots leads to a better planning performance when I compared
the decentralized MPC-based planner using my RNN-based model to the same planner using
a CVM instead.

When compared to other learning-based decentralized motion planning strategies such as
reinforcement learning (RL), my approach has the main advantage that it provides a collision
avoidance guarantee through the use of an MPC-based policy for planning. Furthermore, the

Master of Science Thesis F. Martínez Claramunt

38 Conclusions and Future Work

proposed approach is able to deal with problems that are notoriously hard for traditional RL
algorithms, such as stabilizing an unstable plant with complex dynamics, and handling three-
dimensional workspaces. Decoupling the motion planning problem into behavior prediction
and the path planning itself also makes it easier to debug my method when compared to end-
to-end machine learning-based approaches. Additionally, even though these other methods
may be able to theoretically find the globally optimal control policy, ours allows for a greater
error tolerance from the machine learning model, as it is only used for prediction, instead
of directly outputting the control actions for the robot. Thus, even if predictions are not
perfectly accurate, the ego robot should still be able to avoid collisions thanks to the MPC.
Another shortcoming from RL methods when compared to my mixed approach is that they
are usually short-sighted, as they tend to only plan for the next time step based on the current
state of the system. Due to the nature of MPC, the proposed method avoids collisions over
a finite number of steps into the future.

6-2 Future Work

During my tests I have trained and tested the neural network on a variety of datasets. This
process has lead us to notice how challenging it is to generate a set of data that includes all
possible scenarios that robots navigating in three-dimensional space may encounter. Even
though my network can deal with an arbitrary amount of agents and obstacles through the
use of global pooling layers, TensorFlow does not natively allow changing the number of
layers during training once the network has been initialized, even if the have shared weights,
thus forcing the training dataset to only include data with a certain number of robots and
obstacles. As already mentioned, I have noticed a slight overfitting on datasets with obstacle
densities similar to those of the one used for training. I believe it would be interesting to
explore options to make it possible to deal with a varying number of robots and obstacles
during training other than initializing the network with a high enough number of inputs and
padding the unused ones. I believe that if I were able to solve this problem, the generalizability
of my network could be improved further.

Another issue which I have noticed during simulations of the proposed motion planner is that
the uncertainty in my model’s predictions becomes quite large when robots are close together,
making the MPC-planned trajectories sometimes rapidly shift around the general direction
that the robot will end up following. A possible solution to this issue could be to train a
variational model and estimate the uncertainty of the predictions, so that the distribution of
possible predictions may change more smoothly from one time step to the next. I think that
solving this issue is a worthwhile effort, as it could lead to a more reliable motion planner.

A completely different extension which would also be interesting is making the network
able to deal with a higher variety of obstacle shapes and sizes. A first step would be to
consider ellipsoidal obstacles of arbitrary semi-axes dimensions, instead of the fixed ones
which I considered for my method. I have done some preliminary tests in this direction
by parameterizing the obstacles’ inputs in such a way that they contain the dimensions of
the ellipsoids, but I did not see a significant improvement in prediction performance over
the current network implementation so I did not explore this option any further. Another
direct extension to my architecture would be to include the planned trajectory of the ego
robot or its goal position as an input to the network. This type of information is available

F. Martínez Claramunt Master of Science Thesis

6-2 Future Work 39

during inference time without need of communication, and it could potentially lead to better
network predictions for the other robots, as I could explicitly account for how the ego robot’s
intentions will affect the paths of other robots. Finally, another option to improve predic-
tion performance would be to consider a different network architecture altogether. Given the
nature of the problem, I could model the relations among the robots and of the robots with
the environments with a spatio-temporal graph, and use a graph neural network to learn the
underlying dynamics.

On the motion planning side, a significant limitation of the chosen MPC path planning prob-
lem formulation comes from the fact that I consider other robots as dynamic obstacles which
need to be avoided in the future. This simplification of other robots’ behavior works well in
practice when the sampling rate is fast enough, but it leads to trajectories that are far from
globally optimal, as robots do not cooperate with each other. If the robots tried to optimize
for a joint team objective that accounted for others’ trajectories as well as one’s own, paths
that are more efficient overall may be planned. However, solving this problem is not trivial,
especially in a communication-less decentralized manner, so more work in this direction is
needed.

Finally, in my tests I have assumed the positions of other robots and obstacles to be known
without error. In practice, these will have to be estimated from sensor data , which will add
some inaccuracies. It should be explored how these inaccuracies affect overall performance,
to verify whether the robustness of my method needs to be improved in order for it to be
applied to a team of robots in the real world.

Master of Science Thesis F. Martínez Claramunt

40 Conclusions and Future Work

F. Martínez Claramunt Master of Science Thesis

Appendix A

Paper

In this appendix I include a draft version of the research paper that has resulted from this
thesis’ work, which we intend to submit to the IEEE Robotics and Automation Letters (RA-L)
with the option of a presentation at the 2021 IEEE International Conference on Robotics and
Automation (ICRA).

Master of Science Thesis F. Martínez Claramunt

Learning Interaction-aware Trajectory Predictions for Multi-Robot
Motion Planning in Dynamic Environments

Francisco Martı́nez Claramunt, Hai Zhu, Bruno Brito and Javier Alonso-Mora

Abstract— This paper presents a data-driven decentralized
approach for multi-robot motion planning in dynamic environ-
ments. When navigating in a shared space, each robot needs
accurate motion predictions of neighboring robots to achieve
predictive collision avoidance. These motion predictions can
be obtained among robots by sharing their future planned
trajectories with each other via communication. However, such
communication may not be available nor reliable in practice.
In this paper, we introduce a new model based on recurrent
neural networks (RNNs) that is able to learn multi-robot motion
behaviors from demonstrated trajectories generated using a
centralized planner. The learned model can run efficiently
online for each robot and provide interaction-aware trajectory
predictions of its neighbors based on observations of their
historical states. We then incorporate the trajectory prediction
model into a decentralized model predictive control (MPC)
framework for multi-robot collision-avoidance and compare it
with a centralized planner. Simulation results show that our
decentralized approach can achieve a level of performance com-
parable to the centralized planner while being communication-
free and scalable to a large number of robots.

I. INTRODUCTION

Historically, the use of robots has been mainly restricted to
industrial areas under controlled conditions due to their high
cost and associated safety hazard. Navigating in unknown
and dynamic environments entails different challenges to
those found in industrial settings, problems which were
accentuated in the past by limited onboard computing power
and battery technology. However, advancements in electron-
ics and other engineering disciplines such as control theory,
motion planning and artificial intelligence have opened new
possibilities for commercial applications of mobile robots
that were previously not possible. Well-known examples of
these are autonomous cars, delivery drones and surveillance
robots.

These novel applications will require the robot to move
among other decision-making agents, such as humans or
other robots. This circumstance makes the collision avoid-
ance problem much more complicated than navigating in
static environments, since in addition to avoiding obstacles,
agents must also avoid colliding with each other. In the
simplest case where all agents are robots under our control
and in a known environment, it may be possible to implement
a centralized approach and let a central coordinator find the
best paths for all of them. However, such approaches are

This work is supported by NWO Veni grant 15916.
The authors are with the Department of Cognitive Robotics,

Delft University of Technology, 2628 CD, Delft, The Netherlands
f.martinezclaramunt@student.tudelft.nl,
{h.zhu;bruno.debrito;j.alonsomora}@tudelft.nl

usually not implemented in practice because it is more com-
putationally efficient for large teams of robots to distribute
the path planning problem among the onboard computers.
This approach is also more fault tolerant, as it removes the
single point of failure in the form of the central coordina-
tor. Even though the theoretical achievable performance of
distributed approaches is similar to that of centralized ones,
in practice communication often becomes unreliable. This
leads to significant performance degradation with respect
to the ideal scenario, and may even result in collisions
among the robots. Furthermore, there are also applications
for which communication is simply not possible because
one or several agents are not under our control, as is the
case when navigating among humans. These circumstances
motivate the development of fully decentralized approaches,
which rely solely on local sensor data in order to plan
collision-free trajectories instead of using communication.

In this paper we propose a communication-free decen-
tralized multi-robot local path planning approach with a
collision-avoidance guarantee over a finite future horizon and
a performance that is similar to its centralized counterpart.
This method relies on a learned interaction model in order to
predict how robots other than the controlled one will behave
in the future and plan accordingly so as to avoid them.
Our method is suitable for three-dimensional environments
with an arbitrary number of robots with the same (possibly
unstable and nonlinear) dynamics and an arbitrary number
of obstacles, which may be static or dynamic.

The main contributions of our work are:

• A RNN-based interaction-aware trajectory prediction
model that is capable of coping with an arbitrary
number of dynamically complex agents and an arbi-
trary number of static or dynamic obstacles in three-
dimensional spaces.

• A decentralized nonlinear MPC-based multi-robot mo-
tion planner that is able to account for interactions
among the robots through the use of the previous
trajectory prediction model.

We train the prediction neural network on data obtained
with a centralized sequential version of the MPC-based
motion planner, in which the planned trajectories for each
robot are used as predictions. We evaluate our method on
a team of quadrotors in a number of simulated scenarios.
We compare the performance of our approach to three
different versions of the used motion planner: centralized
sequential, distributed, and decentralized using a constant
velocity model model (CVM) for predictions. We show how

our decentralized approach achieves a collision avoidance
performance that is similar to its centralized counterpart.

II. RELATED WORK

A. Multi-Robot Collision Avoidance

Multi-robot collision avoidance is a mature research topic
that is still very actively researched. Traditional single robot
rule-based collision avoidance methods such as the dynamic
window approach [1] and artificial potential fields [2], [3]
have been adapted in the past to work in the multi-robot case.
These can be implemented in a decentralized manner, but
they are extremely short-sighted due to their reactive nature
and may lead to deadlocks. VO were also extended to work
for decentralized multi-robot systems in [4] under the name
of RVO. Further improvements to this framework led to the
well known ORCA algorithm from [5], and its extension to
non-holonomic robots in [6]. However, these methods ignore
the robots’ dynamics and only plan for one step ahead into
the future.

There have also been a number of receding horizon
optimization approaches that have been tried in the literature,
which can be classified in centralized [7], [8], [9], [10], dis-
tributed [11], [12], [10] and decentralized (communication-
free) [13], [10]. Centralized methods do not scale well to
bigger teams of robots and the requirement of a central
planner makes them unsuitable for most remote outdoor
environments. As it has been already introduced, distributed
methods often do not work as well in practice as they do in
theory because of the tendency of wireless communication
to be unreliable. Regarding the cited communication-free
decentralized MPC-based methods, they use a CVM to pre-
dict the trajectories of robots other than the controlled one,
which leads to a significant performance degradation with
respect to their centralized MPC counterparts due to the poor
prediction accuracy of the model. In our work we close this
performance gap between the centralized and decentralized
approaches by developing a much more accurate RNN-based
prediction model which is trained on simulations using a
centralized sequential MPC.

There are also many learning-based techniques that have
been used to achieve decentralized multi-robot collision
avoidance, such as interacting Gaussian processes [14],
[15], [16] and reinforcement learning [17], [18], [19], [20].
However, they have only considered environments of up
to two dimensions and they do not provide any collision
avoidance guarantees. [21] presents a reinforcement learning-
based method that works in three dimensions, but they only
consider single robot static environments, and the trained
policy does not guarantee collision avoidance. Our method,
on the other hand, offers a collision avoidance guarantee over
a finite future horizon through the use of an MPC algorithm
for planning.

B. Motion Prediction

The topic of motion prediction has raised significant
interest in recent years due to the need to account for human
future intentions to achieve safe robot navigation in urban

environments. One of the first motion prediction approaches
that was introduced in the literature is the Social Force model
[22]. This rule-based method models pedestrian behavior
through the use of attractive and repulsive potentials. Even
though it is commonly used as a baseline due to its simplicity,
it requires manual parameter-tuning and its accuracy is far
from that of the current state-of-the-art.

There have also been several notable attempts to use game
theory to predict behavior of decision-making agents [23],
[24], [25]. A more sophisticated approach is presented in
[26], where game theory is combined with a tool from social
psychology called SVO in order to quantify agents’ degree
of selfishness or altruism before predicting their behavior.
However, these methods restrict themselves to very specific
scenarios and to the best of our knowledge have only been
applied to two dimensional spaces.

The class of approaches that have produced the best results
so far are based on machine learning. Some of these include:
dynamic Bayesian networks [27], random forests [28], in-
verse reinforcement learning [29], [30], [31], RNN [32], [33],
variational autoencoders [34] and GAN [35], [36]. To the
best of our knowledge, no prior paper has explored the topic
of trajectory prediction with robots. As a consequence, none
of these methods has been developed for 3D environments,
which is necessary when dealing with aerial robots. Out of
the cited methods, those which account for obstacles do so
only for static ones through the use of 2D grid maps of
the environment, which is processed by a CNN! (CNN!), an
approach which cannot be straightforwardly extended to 3D.
Another main difference between the pedestrian and robot
prediction problems is that pedestrians tend to follow quasi-
constant speed trajectories, except when they interact with
other elements of the road, in which case they usually start
and stop suddenly. Robots, on the other hand, tend to show
smoother changes in velocity when they reach their goals or
start to move towards new ones. Their behavior variability is
also much smaller than with humans, since (usually) they all
follow exactly the same policy and have theoretically equal
dynamics. For these reasons, we develop a new RNN-based
architecture that can better leverage the robots’ dynamics and
which can deal with an arbitrary number of other robots and
static or dynamic 3D obstacles.

III. PRELIMINARIES

A. Multi-Robot Collision Avoidance

We consider a team of n robots moving in a shared
workspace W ⊆ R3, where each robot i ∈ I =
{1, 2, . . . , n} ⊂ N is modeled as an enclosing sphere with
radius r. The dynamics of all robots are the same, and they
are described by a discrete-time equation as follows,

xk+1
i = f(xk

i ,u
k
i), x0

i = xi(0), (1)

where xk
i ∈ X ⊂ Rnx denotes the state of the robot, typically

including its position pk
i and velocity vk

i , and uk
i ∈ U ⊂ Rnu

the control inputs at time k. X and U are the admissible
state space and control space, respectively. xi(0) is the initial
state of robot i. Any pair of robots i and j from the group

are mutually collision-free if
∥∥pk

i − pk
j

∥∥ ≥ 2r, ∀i 6= j ∈
I,∀k = 0, 1, Each robot has a given goal location gi,
which generally comes from some high-level path planner
or is specified by the user.

The objective of multi-robot collision avoidance is to
compute a local motion uk

i for each robot in the group, that
respects its dynamic constraints, makes progress towards its
goal location gi and is collision-free with other robots in the
team for a short time horizon.

B. Obstacle Model

For each obstacle o ∈ Io = {1, 2, . . . , no} ⊂ N at position
po ∈ R3, we model it as an upright non-rotating enclosing
ellipsoid centered at po with semi-principal axes (a, b, c).
These are assumed to either be static or follow a constant
velocity model (CVM), as in [10]. In practice, they may be
used to model stationary objects or other agents for which an
accurate prediction model is not available. For the remainder
of this work, we will assume all of the obstacles to be of the
same size, as they will represent humans moving among the
robots.

C. Collision Condition

The collision condition of robot i with respect to robot j
at time k is defined as

Ck
ij := {xk

i

∣∣∥∥pk
i − pk

j

∥∥ ≤ 2r} . (2)

Collision checking between a robot i and an obstacle o
requires calculating the minimum distance between a sphere
and an ellipsoid, which cannot be performed in closed form
[37]. To this end, we approximate the obstacle with an
enlarged ellipsoid and check if the robot’s position is inside
it. The collision condition thus becomes

Ck
io := {xk

i

∣∣∥∥pk
i − pk

o

∥∥
Ω
≤ 1} , (3)

where Ω = diag(1/(a+r+δ)2, 1/(b+r+δ)2, 1/(c+r+δ)2),
and δ is the minimum enlarging coefficient as defined in [38].

D. Centralized Sequential Model Predictive Control

The multi-robot collision avoidance problem is formulated
as a receding horizon constrained optimization problem. For
each robot i ∈ I, a discrete-time constrained optimization
formulation with N time steps and planning horizon τ =
N∆t, where ∆t is the sampling time, is derived as follows,

min
x1:N
i ,u0:N−1

i

N−1∑

k=0

Jk
i (xk

i ,u
k
i) + JN

i (xN
i ,gi)

s.t. x0
i = xi(0),

xk
i = f(xk−1

i ,uk−1
i),∥∥pk

i − pk
j

∥∥ ≥ 2r,∥∥pk
i − pk

o

∥∥
Ω
≥ 1,

uk−1
i ∈ U, xk

i ∈ X,
∀j 6= i ∈ I; ∀o ∈ Io; ∀k ∈ {1, . . . , N}.

(4)

At every time step, the problem for each robot i ∈ I will be
solved sequentially by a central planner in a receding-horizon

fashion. Each other robot j 6= i ∈ I will be considered as
a dynamic obstacle the N future positions of which will be
determined by the latest available solution to its respective
MPC problem. If the latest available optimal trajectory for
a robot does not include a position for the last time step in
the planning horizon N , a CVM will be used to estimate it.
Once all n sub-problems have been solved, the first step of
each robot’s optimal control action sequence is executed.

The cost function of the MPC problem has three different
terms, which are:
• a goal navigation cost:

JN
i (xN

i ,gi) =
∥∥pN

i − gi

∥∥
Qg
, (5)

where gi is the goal position of robot i and Qg is the
goal navigation weighting matrix.

• a control input cost:

Jk
i (uk

i) =
∥∥uk

i

∥∥
Qu

, (6)

where Qu is the control input weighting matrix.
• a collision potential cost based on the logistic function:

Jk
i (xk

i) =
Qc

1 + exp(λc(dkij − dsafe
ij))

, (7)

where dkij is the distance between robot i and robot
or obstacle j at time k, Qc is the collision potential
weighting coefficient, λc is a parameter defining the
smoothness of the cost function and dsafe

ij is a safety
distance. It must be noted that the distance dkij is com-
puted differently depending on whether it is between
two robots or between a robot and an obstacle:

dkij =

{∥∥pk
i − pk

j

∥∥ , if j ∈ {I \ i}∥∥pk
i − pk

j

∥∥
Ω
, if j ∈ Io

. (8)

E. Distributed Model Predictive Control

The previous centralized sequential formulation can be
easily distributed among the robots’ onboard computers by
letting them share the solutions to their own MPC problems
with the rest of the team. These solutions will then be used
as predictions of the other robots’ future positions.

F. Decentralized Model Predictive Control

Extending the approach to work in a communication-free
decentralized setting requires the usage of an alternative
method for each robot i ∈ I to predict the future positions
of each robot j 6= i ∈ I for the planning horizon N . A
simple CVM model may be used as in [13], [10], but we will
propose a machine learning-based model for better accuracy.

IV. INTERACTION-AWARE TRAJECTORY PREDICTION

Our trajectory prediction problem involves estimating the
future positions of each robot q ∈ {I \ c} over a future
horizon of Npred steps, where robot q is known as the query
robot and robot c is the controlled one (also known as the
ego robot). We will use the following notation to denote the
future sequence of positions for robot q starting at time t+1:

p
t+1:t+Npred
q,pred :=

(
pt+1
q,pred, p

t+2
q,pred, ..., p

t+Npred
q,pred

)
, (9)

with the ground truth being identified as pt+1:t+Npred
q,target . How-

ever, in order to avoid overfitting based on the robots’
absolute positions when training our neural network, we
will instead work with sequences of velocity predictions
v
t+1:t+Npred
q,pred , and will numerically integrate them afterwards

starting from the current position ptq,pred.

A. Formulation

We formulate the trajectory prediction problem as finding
a mapping

(
v
t−Npast+1:t
q ,X t−Npast+1:t

r,q ,X t
o,q

)
7→ v

t+1:t+Npred
q,pred , (10)

where:
• v

t−Npast+1:t
q is the past sequence of Npast observed

velocities of robot q,

• X t−Npast+1:t
r,q is the set of sequences of past relative states

of the other robots with respect to robot q:

X t−Npast+1:t
r,q :=

{
x
t−Npast+1:t
iq | i ∈ {I \ q}

}
, (11)

with

x
t−Npast+1:t
iq =

(
x
t−Npast+1
iq , x

t−Npast+2
iq , ..., xtiq

)
(12)

and

xtiq := xti − xtq =

[
pti − ptq
vti − vtq

]
, (13)

• and X t
o,q is the set of relative current states of the

obstacles with respect to robot q:

X t
o,q :=

{
xtiq | i ∈ Io

}
. (14)

This mapping will be found such that we minimize the
MSE1 between the predicted future horizon of velocities
v
t+1:t+Npred
q,pred and the actual one vt+1:t+Npred

q,target :

MSE
({
v
t+1:t+Npred
q,pred

∣∣∣ t ∈ T
})

=

1

|T | ·Npred · dim(W)

∑

t∈T

Npred∑

k=1

∥∥∥(vt+k
q,target − vt+k

q,pred)
∥∥∥

2

,
(15)

where W is the workspace the robot lives in and T is the
set of time steps for which a trajectory prediction has been
obtained.

B. Network Architecture

We propose the network architecture shown in Figure 1
to approximate the optimal mapping in Equation (10). It
consists of three different modules: the query robot state
encoder, the environment encoder and the decoder. All layers
in the network feature L2 regularization for the weights and
biases and hyperbolic tangent activation functions, except for
the output one which is linear. Besides the recurrent decoder,
which has 128 neurons, and the output layer, which has as
many as the dimension of the workspace, all layers include

1In practice the cost function will also include regularization terms for
the neural network’s weights and biases, but these are not written here for
conciseness.

64 neurons. The recurrent layers are of the LSTM type,
since these prevent the vanishing gradient problem present
in regular RNN units [39], [40], and are able to learn time
dependencies over longer periods of time. Thanks to the use
of recurrent layers, the network can consider an arbitrary
number of input and output sequence lengths, which do not
need to be equal. Next, we will discuss the details of each
of the three architecture modules.

1) Query robot state encoder: It consists of a recurrent
layer that produces a flat encoding ztq from the history of
velocities of the query robot v(t−Npast+1:t)

q . This layer learns
a dynamical model of the query robot, so that the network
can leverage it to obtain better predictions.

2) Environment encoder module: It includes n−1 parallel
recurrent layers with shared weights to encode the set of
sequences of past relative states of the other robots with
respect to the query robot X t−Npast+1:t

r,q into set Zt
r,q , and no

parallel dense layers with shared weights which encode the
set of relative current states of the obstacles with respect to
the query robot X t

o,q into set Zt
o,q . The encodings from both

of these sets, which are all made to have the same length,
are stacked together and then a global max pooling operation
is executed along the new data axis. Thus, this module can
capture the interaction of the query robot with an arbitrary
number of other robots and obstacles in the environment and
encode it into a single flat vector zte. This framework also
makes it possible to account for different types of agents and
obstacles by training their own set of encoders and stacking
them with the rest of intermediate encodings.

3) Decoder module: It takes in the concatenation of ztq
with zte and passes it through a recurrent decoder which will
generate a sequence of length equal to the desired prediction
horizon. Then, a fully connected layer is included to increase
the overall model complexity of the network. Finally, a fully
connected layer is included with as many neurons as the
dimension of the workspace (3 in this case), in order to
generate an output of the desired target size.

C. Dataset

To generate the data to train our network and later
validate our proposed path planner, we use the MATLAB-
based simulator from [41], which considers the dynamics
of a Parrot Bebop 2 quadrotor and uses Forces Pro [42]
as the MPC optimization solver. For the training data, we
simulate 105 steps with 10 quadrotors navigating among
10 dynamic obstacles, with a planning horizon of 20 and
a sampling rate of 50 ms. Robots’ enclosing spheres have
a radius of 0.3 m and the obstacles’ ellipsoids have semi-
axes lengths of (0.4, 0.4, 0.9) m, so that they approximate
the shape of a human. In the simulation, each robot will
move towards its own randomly generated goal, which will
change dynamically once it gets close enough according to
some randomly distributed distance and velocity thresholds,
to create a variety of approach behaviors. Obstacles will
move at constant speeds with a direction vector that is larger
in the X and Y directions than in the Z one and their positions
will be randomly reset within the considered 10× 10× 3 m

Query robot
state encoder

Recurrent
decoder

LSTM layer Concatenate along
features' dimension

Stack along
new dimension

Global max
pooling

Fully connected
layer

Other robot
state encoder

Global
max

pooling

Output
layer
Linear

Dense
decoder
tanh

Dynamic
obstacle
encoder
tanh

Decoder module

Environment encoder module

Fig. 1: Network architecture

environment once they get out of bounds. Two separate
smaller datasets have also been generated for validation and
testing.

D. Evaluation Metrics

Although we can use the cost function defined in Equa-
tion (15) to compare the performance of different prediction
models, this metric is not informative enough about the
trajectory prediction accuracy. This is because, in addition
to being based on velocities instead of positions, it adds up
the error over the whole prediction horizon. Therefore, we
will instead integrate the sequence of predicted velocities in
order to obtain position predictions and will then compute the
average displacement error (based on the euclidean distance
or L2 norm) at each of the future steps in the horizon.

E. Implementation Details

We have implemented the described network architecture
using TensorFlow 2 and trained it on a laptop with an
Intel Core i7 7850H processor, 16 GB of RAM and an
NVIDIA GTX 1060 GPU with 6 GB of VRAM, taking an
hour of training on the GPU, but already producing accurate
predictions at around 30 minutes. On this same computer
it takes around 30 ms to perform inference with 12 robots
and 12 obstacles. The network has been trained with past
and prediction horizons of length 20, with the data from
the simulator having a sampling rate of 50 ms. To improve
learning, both input and output data have been scaled to be
in the [-1,1] range.

V. RESULTS

A. Trajectory prediction

We test our prediction method on datasets collected with
the centralized version of the MPC-based planner which
have not been used for training nor validation. The scenarios
that will be considered are an open environment with 4
and 10 quadrotors, and the same environments but with
a number of dynamic obstacles equal to the number of
robots. The baselines to which we compare our RNN-based

model are a CVM which assumes that robots keep the
speed measured at the last available step, and the planned
trajectories computed with the centralized sequential MPC
that was used to generate the data.

A summary of the performance results is shown in Fig-
ure 2, and two screenshots of sample predictions using our
model in the setting with 10 robots and 10 obstacles are
displayed in Figure 3. We can see how the performance of the
three methods stays consistent across the four scenarios, with
the only meaningful differences being our RNN-based model
performing slightly worse in the least dense environment,
and all methods showing larger than usual variance in the
10 quadrotors plus 10 obstacles. The second phenomenon
is expected due to the higher environment clutter, but the
first one can be explained by our network overrelying on the
environment encoder module explained in Section IV-B. We
can also observe how our method is on average almost as
accurate as the optimal trajectories planned by the centralized
sequential MPC, even though we do not feed the neural
network the robots’ current goal positions, unlike the MPC.
When compared with our model, it is clear that the CVM is
not an accurate predictor of the robots’ future trajectories.

B. Motion planning

We compare the performance of our decentralized path
planning method to the centralized sequential MPC-based
planner that was used to generate the training data. as
well as the distributed version explained in Section III-E.
Furthermore, we will also use a decentralized version of the
path planner which uses a CVM as the prediction model,
to analyze whether the more accurate trajectory forecasts of
our RNN-based model lead to significantly better planning
performance or not. For our tests, we will focus exclusively
on obstacle-free scenarios, since the way in which obstacles
are accounted for is equivalent within all considered versions
of the MPC: they are assumed to keep a constant speed,
which is indeed how they behave.

We will analyze 4 different types of test scenarios, each of
them with 50 unique sets of pairs of start and goal positions

0 4 8 12 16 20
Future timestep

0.0

0.2

0.4

0.6
Di

sp
la

ce
m

en
t e

rro
r [

m
] 4 quadrotors, no obstacles

CVM
MPC
RNN

0 4 8 12 16 20
Future timestep

0.0

0.2

0.4

0.6

Di
sp

la
ce

m
en

t e
rro

r [
m

] 4 quadrotors, 4 obstacles
CVM
MPC
RNN

0 4 8 12 16 20
Future timestep

0.0

0.2

0.4

0.6

Di
sp

la
ce

m
en

t e
rro

r [
m

] 10 quadrotors, no obstacles
CVM
MPC
RNN

0 4 8 12 16 20
Future timestep

0.0

0.2

0.4

0.6

Di
sp

la
ce

m
en

t e
rro

r [
m

] 10 quadrotors, 10 obstacles
CVM
MPC
RNN

Fig. 2: Plot showing the mean L2 prediction error as a
function of the prediction step in four different settings with
a constant velocity model (CVM), the MPC planner that was
used to generate the dataset, and our proposed RNN-based
model. The solid lines represent the average errors and the
filled patches around them are 30% of the standard deviation.
The sampling period is 50 ms, so the whole prediction
horizon of 20 steps is equivalent to 1 second.

for six quadrotors. The first of these consists of a symmetric
swap, in which the robots start from the vertices of a virtual
regular hexagon that is parallel to the ground plane and they
need to exchange positions with the robot in the opposing
vertex. Each of the different cases within this group will
feature different hexagon sizes and rotation along the Z
axis. The second class of tests consists of asymmetric swaps,
which differ from the previous ones in that hexagons are no
longer regular, thus leading to more challenging collision-
avoidance problems. All the start and goal positions are still
placed at the same height, and the shape and size of the
hexagon changes for the different sets. Next, we will require
the robots to perform pair-wise swaps, in which the robots
are placed in random start positions and assigned a pair with
which they will need to exchange positions. This scenario is
less challenging because the straight lines that unite start to
goal positions are very unlikely to intersect with each other,
so robots no longer attempt to go through the center of the
environment in order to minimize their trajectory lengths.
The last type of test will simply involve the robots moving
from random starting positions to random goals.

To numerically evaluate the performance of the different
motion planners in these experiments we consider a wide
range of metrics. We compute the minimum distance between
any two quadrotors during the whole simulation, and we
also count how many of the 50 sets of trajectories includes
at least one collision between a pair of robots. We also
calculate the trajectory lengths and durations, and the average
linear velocities throughout each scenario. A summary of
the obtained results can be seen in Table I. For a qualitative

performance analysis, we show sample trajectory trails for a
specific set of start to goal trajectories from the asymmetric
swap scenario in Figure 4.

From the metrics shown in Table I, we can see how us-
ing our RNN-based prediction model significantly enhances
performance of the decentralized MPC-based planner when
compared to using a CVM, leading to consistently lower
trajectory lengths and durations on average, and greatly
diminishing the likelihood of collisions. Furthermore, we
achieve average trajectory lengths, trajectory durations and
speeds comparable to the centralized planner.

VI. CONCLUSION

In this paper, we have presented a decentralized multi-
robot MPC-based path planner which accounts for robots’
interactions with obstacles and with other robots in the
team through the use of a RNN-based trajectory prediction
model that was trained on data collected with a central-
ized version of the path planner. We have shown how our
prediction model is suitable for three-dimensional spaces
and generalizes well to simulated scenarios with different
numbers of robots and obstacles. We have also demonstrated
that the proposed decentralized planning framework using
our prediction model achieves a similar performance to the
centralized counterpart that was used to train the RNN,
massively reducing the number of collisions with respect to
using the same framework but considering a CVM for the
predictions.

REFERENCES

[1] J. Bruce and M. Veloso, “Real-Time Multi-Robot Motion Planning
with Safe Dynamics,” in Multi-Robot Systems. From Swarms to
Intelligent Automata, vol. 3, 2005, pp. 159–170.

[2] G. Roussos and K. J. Kyriakopoulos, “Completely Decentralised
Navigation of Multiple Unicycle Agents with Prioritisation and Fault
Tolerance,” in Proceedings of the IEEE Conference on Decision and
Control (CDC). IEEE, 2010, pp. 1372–1377.

[3] ——, “Decentralized and Prioritized Navigation and Collision Avoid-
ance for Multiple Mobile Robots,” in Distributed Autonomous Robotic
Systems. Springer, 2012, pp. 189–202.

[4] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal Velocity
Obstacles for Real-Time Multi-Agent Navigation,” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2008, pp. 1928–1935.

[5] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-Body Collision Avoidance,” in Proceedings of the International
Symposium on Robotics Research (ISRR), 2011, pp. 3–19.

[6] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Y.
Siegwart, “Optimal Reciprocal Collision Avoidance for Multiple Non-
Holonomic Robots,” in Distributed Autonomous Robotic Systems.
Springer, 2013, pp. 203–216.

[7] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed Integer
Programming for Multi-Vehicle Path Planning,” in Proceedings of the
European Control Conference (ECC), no. 3. IEEE, 2001, pp. 2603–
2608.

[8] C. Leung, S. Huang, N. Kwok, and G. Dissanayake, “Planning
Under Uncertainty Using Model Predictive Control for Information
Gathering,” Robotics and Autonomous Systems, vol. 54, no. 11, pp.
898–910, 2006.

[9] G. P. Roussos, G. Chaloulos, K. J. Kyriakopoulos, and J. Lygeros,
“Control of Multiple Non-Holonomic Air Vehicles Under Wind Uncer-
tainty Using Model Predictive Control and Decentralized Navigation
Functions,” in Proceedings of the IEEE Conference on Decision and
Control (CDC). IEEE, 2008, pp. 1225–1230.

(a) Complete view of the environment (b) Zoomed view of the environment around the ego robot

Fig. 3: Screenshots of sample predictions of our RNN based model compared to predictions from a CVM and the planned
trajectories from the centralized sequential MPC in an environment with ten robots and ten dynamic obstacles.

Minimum Num. of Trajectory length (m) Trajectory time (s) Average
Scenario Motion planner distance (m) collisions Min. Max. Average Min. Max. Average speed (m/s)

Symmetric
swap

Centralized 0.80 0 5.46 8.96 7.22± 0.85 5.15 6.05 5.62± 0.24 1.27
Distributed 0.80 0 5.52 8.73 7.26± 0.84 4.75 6.40 5.51± 0.35 1.31
Decen. (CVM) 0.32 4 (!) 5.43 9.55 7.45± 0.88 4.95 7.30 6.02± 0.55 1.23
Decen. (RNN) 0.75 0 5.41 10.60 7.35± 0.91 4.75 9.7 5.59± 0.40 1.30

Asymmetric
swap

Centralized 0.80 0 5.08 9.02 6.77± 0.80 4.65 5.85 5.17± 0.30 1.30
Distributed 0.80 0 4.99 8.84 6.82± 0.84 4.65 6.25 5.12± 0.33 1.32
Decen. (CVM) 0.16 15 (!) 5.32 18.06 7.76± 1.89 5.05 7.30 5.96± 0.51 1.28
Decen. (RNN) 0.37 3 (!) 5.16 12.60 7.14± 1.10 4.80 6.85 5.48± 0.42 1.29

Pair-wise
swap

Centralized 0.80 0 1.64 9.92 5.10± 1.87 3.50 5.85 4.76± 0.44 1.06
Distributed 0.80 0 1.82 9.75 5.10± 1.86 3.60 5.85 4.72± 0.43 1.07
Decen. (CVM) 0.34 3 (!) 1.74 17.42 5.54± 2.53 3.60 5.75 5.00± 0.65 1.06
Decen. (RNN) 0.79 0 1.70 9.94 4.94± 2.02 3.40 5.95 4.83± 0.45 1.01

Random

Centralized 0.80 0 0.39 8.63 4.66± 1.94 3.50 5.50 7.72± 0.40 0.98
Distributed 0.8 0 0.39 8.73 4.67± 1.93 3.50 5.40 4.70± 0.40 0.98
Decen. (CVM) 0.76 0 0.39 9.53 4.82± 2.06 3.60 6.35 4.89± 0.57 0.98
Decen. (RNN) 0.78 0 0.39 9.19 4.36± 2.11 3.85 5.95 4.76± 0.43 0.91

TABLE I: Comparison of the performance of the four considered MPC-based motion planner variations (centralized,
distributed, decentralized with CVM and decentralized with our RNN-based model) across the four different types of scenarios
that have been tested (symmetric swap, asymmetric swap, pair-wise swap and random goals).

[10] H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance
for mavs in dynamic environments,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 776–783, 2019.

[11] D. Shim, H. Kim, and S. Sastry, “Decentralized Reflective Model Pre-
dictive Control of Multiple Flying Robots in Dynamic Environment,”
in Proceedings of the IEEE Conference on Decision and Control
(CDC), 2003, pp. 3621–3626.

[12] A. Richards and J. How, “Decentralized Model Predictive Control
of Cooperating UAVs,” in Proceedings of the IEEE Conference on
Decision and Control (CDC). IEEE, 2004, pp. 4286–4291.

[13] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust
Collision Avoidance for Multiple Micro Aerial Vehicles Using Non-
linear Model Predictive Control,” IEEE International Conference on
Intelligent Robots and Systems, vol. 2017-Septe, pp. 236–243, 2017.

[14] P. Trautman and A. Krause, “Unfreezing the Robot: Navigation in
Dense, Interacting Crowds,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, 2010,
pp. 797–803.

[15] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot Navigation
in Dense Human Crowds: The Case for Cooperation,” in Proceedings
of the IEEE International Conference on Robotics and Automation.
IEEE, 2013, pp. 2153–2160.

[16] ——, “Robot Navigation in Dense Human Crowds: Statistical Models
and Experimental Studies of Human-Robot Cooperation,” Interna-

tional Journal of Robotics Research, vol. 34, no. 3, pp. 335–356, 2015.
[17] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized Non-

Communicating Multiagent Collision Avoidance with Deep Reinforce-
ment Learning,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 285–292.

[18] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially Aware Motion
Planning with Deep Reinforcement Learning,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 1343–1350.

[19] M. Everett, Y. F. Chen, and J. P. How, “Motion Planning among Dy-
namic, Decision-Making Agents with Deep Reinforcement Learning,”
in Proceedings of the IEEE International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 3052–3059.

[20] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
Optimally Decentralized Multi-Robot Collision Avoidance via Deep
Reinforcement Learning,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
6252–6259.

[21] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning Deep Control
Policies for Autonomous Aerial Vehicles with MPC-Guided Policy
Search,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2016, pp. 528–535.

[22] D. Helbing and P. Molnár, “Social Force Model for Pedestrian Dy-
namics,” Physical Review E, vol. 51, no. 5, pp. 4282–4286, 1995.

-4.5 -3 -1.5 0 1.5 3 4.5

x [m]

-4.5

-3

-1.5

0

1.5

3

4.5
y
 [

m
]

-4.5 -3 -1.5 0 1.5 3 4.5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

(a) Centralized sequential

-4.5 -3 -1.5 0 1.5 3 4.5

x [m]

-4.5

-3

-1.5

0

1.5

3

4.5

y
 [

m
]

-4.5 -3 -1.5 0 1.5 3 4.5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

(b) Distributed

-4.5 -3 -1.5 0 1.5 3 4.5

x [m]

-4.5

-3

-1.5

0

1.5

3

4.5

y
 [

m
]

-4.5 -3 -1.5 0 1.5 3 4.5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

(c) Decent. with CVM

-4.5 -3 -1.5 0 1.5 3 4.5

x [m]

-4.5

-3

-1.5

0

1.5

3

4.5

y
 [

m
]

-4.5 -3 -1.5 0 1.5 3 4.5

x [m]

0

0.5

1

1.5

2

2.5

3

z
 [

m
]

(d) Decent. with RNN model

Fig. 4: Simulation results of six quadrotors exchanging positions in the asymmetric swap scenario. Solid lines represent the
trajectories executed by the quadrotors. The upper and lower plots show the top view (X-Y) and side view(X-Z), respectively.

[23] A. Martin, “Interactive Motion Prediction using Game Theory,” Ph.D.
dissertation, University of Padua, 2013.

[24] A. Turnwald, D. Althoff, D. Wollherr, and M. Buss, “Understand-
ing Human Avoidance Behavior: Interaction-Aware Decision Making
Based on Game Theory,” International Journal of Social Robotics,
vol. 8, no. 2, pp. 331–351, 2016.

[25] D. W. Oyler, Y. Yildiz, A. R. Girard, N. I. Li, and I. V. Kolmanovsky,
“A Game Theoretical Model of Traffic with Multiple Interacting
Drivers for Use in Autonomous Vehicle Development,” in Proceedings
of the American Control Conference (ACC), 2016, pp. 1705–1710.

[26] W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus,
“Social Behavior for Autonomous Vehicles,” in Proceedings of the
National Academy of Sciences, vol. 116, no. 50, 2019, pp. 24 972–
24 978.

[27] T. Gindele, S. Brechtel, and R. Dillmann, “Learning Context Sensitive
Behavior Models from Observations for Predicting Traffic Situations,”
in Proceedings of the International IEEE Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2013, pp. 1764–1771.

[28] L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and
S. Savarese, “Learning an Image-Based Motion Context for Multiple
People Tracking,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2014, pp. 3542–3549.

[29] M. Kuderer, S. Gulati, and W. Burgard, “Learning Driving Styles
for Autonomous Vehicles from Demonstration,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 2641–2646.

[30] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning
for Autonomous Cars that Leverage Effects on Human Actions,” in
Robotics: Science and Systems, vol. 2, 2016.

[31] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information
Gathering Actions Over Human Internal State,” in Proceedings of
the IEEE International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 66–73.

[32] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. IEEE, 2016, pp. 961–971.
[33] A. Vemula, K. Muelling, and J. Oh, “Social Attention: Modeling At-

tention in Human Crowds,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
4601–4607.

[34] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chan-
draker, “DESIRE: Distant Future Prediction in Dynamic Scenes with
Interacting Agents,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, 2017, pp. 2165–
2174.

[35] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
GAN: Socially Acceptable Trajectories with Generative Adversarial
Networks,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018,
pp. 2255–2264.

[36] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, S. H. Rezatofighi,
and S. Savarese, “SoPhie: An Attentive GAN for Predicting Paths
Compliant to Social and Physical Constraints,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 1349–1358.

[37] A. Y. Uteshev and M. V. Goncharova, “Point-to-Ellipse and Point-to-
Ellipsoid Distance Equation Analysis,” Journal of Computational and
Applied Mathematics, vol. 328, pp. 232–251, 2018.

[38] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model predictive
contouring control for collision avoidance in unstructured dynamic
environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 4459–4466, 2019.

[39] S. Hochreiter and J. Urgen Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[40] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget:
Continual Prediction with LSTM,” Neural Computation, vol. 12,
no. 10, pp. 2451–2471, 2000.

[41] H. Zhu and J. Alonso-Mora, “Chance-Constrained Collision Avoid-
ance for MAVs in Dynamic Environments,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 776–783, 2019.

[42] A. Domahidi and J. Jerez, “Forces professional,” embotech GmbH
(http://embotech. com/FORCES-Pro), 2014.

50 Paper

F. Martínez Claramunt Master of Science Thesis

Bibliography

[1] J. Bruce and M. Veloso, “Real-Time Multi-Robot Motion Planning with Safe Dynamics,”
in Multi-Robot Systems. From Swarms to Intelligent Automata, vol. 3, pp. 159–170, 2005.

[2] G. Roussos and K. J. Kyriakopoulos, “Completely Decentralised Navigation of Multiple
Unicycle Agents with Prioritisation and Fault Tolerance,” in Proceedings of the IEEE
Conference on Decision and Control (CDC), pp. 1372–1377, IEEE, 2010.

[3] G. Roussos and K. J. Kyriakopoulos, “Decentralized and Prioritized Navigation and
Collision Avoidance for Multiple Mobile Robots,” in Distributed Autonomous Robotic
Systems, pp. 189–202, Springer, 2012.

[4] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal Velocity Obstacles for Real-
Time Multi-Agent Navigation,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 1928–1935, IEEE, 2008.

[5] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-Body Collision
Avoidance,” in Proceedings of the International Symposium on Robotics Research (ISRR),
pp. 3–19, 2011.

[6] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Y. Siegwart, “Optimal
Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots,” in Distributed Au-
tonomous Robotic Systems, pp. 203–216, Springer, 2013.

[7] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed Integer Programming
for Multi-Vehicle Path Planning,” in Proceedings of the European Control Conference
(ECC), no. 3, pp. 2603–2608, IEEE, 2001.

[8] C. Leung, S. Huang, N. Kwok, and G. Dissanayake, “Planning Under Uncertainty
Using Model Predictive Control for Information Gathering,” Robotics and Autonomous
Systems, vol. 54, no. 11, pp. 898–910, 2006.

[9] G. P. Roussos, G. Chaloulos, K. J. Kyriakopoulos, and J. Lygeros, “Control of Multiple
Non-Holonomic Air Vehicles Under Wind Uncertainty Using Model Predictive Control

Master of Science Thesis F. Martínez Claramunt

52 Bibliography

and Decentralized Navigation Functions,” in Proceedings of the IEEE Conference on
Decision and Control (CDC), pp. 1225–1230, IEEE, 2008.

[10] H. Zhu and J. Alonso-Mora, “Chance-Constrained Collision Avoidance for MAVs in
Dynamic Environments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 776–
783, 2019.

[11] D. Shim, H. Kim, and S. Sastry, “Decentralized Reflective Model Predictive Con-
trol of Multiple Flying Robots in Dynamic Environment,” in Proceedings of the IEEE
Conference on Decision and Control (CDC), pp. 3621–3626, 2003.

[12] A. Richards and J. How, “Decentralized Model Predictive Control of Cooperating UAVs,”
in Proceedings of the IEEE Conference on Decision and Control (CDC), pp. 4286–4291,
IEEE, 2004.

[13] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust Collision Avoidance
for Multiple Micro Aerial Vehicles Using Nonlinear Model Predictive Control,” IEEE
International Conference on Intelligent Robots and Systems, vol. 2017-Septe, pp. 236–
243, 2017.

[14] P. Trautman and A. Krause, “Unfreezing the Robot: Navigation in Dense, Interacting
Crowds,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 797–803, IEEE, 2010.

[15] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot Navigation in Dense Human
Crowds: The Case for Cooperation,” in Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 2153–2160, IEEE, 2013.

[16] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot Navigation in Dense Human
Crowds: Statistical Models and Experimental Studies of Human-Robot Cooperation,”
International Journal of Robotics Research, vol. 34, no. 3, pp. 335–356, 2015.

[17] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized Non-Communicating
Multiagent Collision Avoidance with Deep Reinforcement Learning,” in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), pp. 285–292,
2017.

[18] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially Aware Motion Planning
with Deep Reinforcement Learning,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1343–1350, IEEE, 2017.

[19] M. Everett, Y. F. Chen, and J. P. How, “Motion Planning among Dynamic, Decision-
Making Agents with Deep Reinforcement Learning,” in Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IROS), pp. 3052–3059,
IEEE, 2018.

[20] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards Optimally Decentral-
ized Multi-Robot Collision Avoidance via Deep Reinforcement Learning,” in Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pp. 6252–
6259, IEEE, 2018.

F. Martínez Claramunt Master of Science Thesis

53

[21] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning Deep Control Policies for
Autonomous Aerial Vehicles with MPC-Guided Policy Search,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pp. 528–535, 2016.

[22] D. Helbing and P. Molnár, “Social Force Model for Pedestrian Dynamics,” Physical
Review E, vol. 51, no. 5, pp. 4282–4286, 1995.

[23] A. Martin, Interactive Motion Prediction using Game Theory. PhD thesis, University of
Padua, 2013.

[24] A. Turnwald, D. Althoff, D. Wollherr, and M. Buss, “Understanding Human Avoidance
Behavior: Interaction-Aware Decision Making Based on Game Theory,” International
Journal of Social Robotics, vol. 8, no. 2, pp. 331–351, 2016.

[25] D. W. Oyler, Y. Yildiz, A. R. Girard, N. I. Li, and I. V. Kolmanovsky, “A Game
Theoretical Model of Traffic with Multiple Interacting Drivers for Use in Autonomous
Vehicle Development,” in Proceedings of the American Control Conference (ACC),
pp. 1705–1710, 2016.

[26] W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus, “Social Behavior
for Autonomous Vehicles,” in Proceedings of the National Academy of Sciences, vol. 116,
pp. 24972–24978, 2019.

[27] T. Gindele, S. Brechtel, and R. Dillmann, “Learning Context Sensitive Behavior Models
from Observations for Predicting Traffic Situations,” in Proceedings of the International
IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1764–1771, IEEE,
2013.

[28] L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese, “Learning an
Image-Based Motion Context for Multiple People Tracking,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3542–3549, IEEE, 2014.

[29] M. Kuderer, S. Gulati, and W. Burgard, “Learning Driving Styles for Autonomous
Vehicles from Demonstration,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 2641–2646, IEEE, 2015.

[30] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for Autonomous Cars
that Leverage Effects on Human Actions,” in Robotics: Science and Systems, vol. 2, 2016.

[31] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information Gathering Actions
Over Human Internal State,” in Proceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS), pp. 66–73, IEEE, 2016.

[32] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social
LSTM: Human trajectory prediction in crowded spaces,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pp. 961–
971, IEEE, 2016.

[33] A. Vemula, K. Muelling, and J. Oh, “Social Attention: Modeling Attention in
Human Crowds,” in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pp. 4601–4607, IEEE, 2018.

Master of Science Thesis F. Martínez Claramunt

54 Bibliography

[34] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker, “DESIRE:
Distant Future Prediction in Dynamic Scenes with Interacting Agents,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2165–
2174, IEEE, 2017.

[35] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social GAN: Socially
Acceptable Trajectories with Generative Adversarial Networks,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2255–2264, IEEE, 2018.

[36] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, S. H. Rezatofighi, and S. Savarese,
“SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical
Constraints,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1349–1358, 2019.

[37] S. M. LaValle, “Planning algorithms,” Planning Algorithms, vol. 9780521862, pp. 1–826,
2006.

[38] E. F. Camacho and C. Bordons, Model Predictive Control. Advanced Textbooks in
Control and Signal Processing, Springer, 1999.

[39] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design. Nob
Hill Publishing, 2009.

[40] L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Springer, 2017.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[42] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient Flow in Recurrent
Neural Nets : The Difficulty of Learning Long-Term Dependencies,” in A Field Guide to
Dynamical Recurrent Neural Network, Wiley-IEEE Press, 2001.

[43] S. Hochreiter and J. Urgen Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[44] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget: Continual Prediction
with LSTM,” Neural Computation, vol. 12, no. 10, pp. 2451–2471, 2000.

[45] A. Y. Uteshev and M. V. Goncharova, “Point-to-Ellipse and Point-to-Ellipsoid Distance
Equation Analysis,” Journal of Computational and Applied Mathematics, vol. 328,
pp. 232–251, 2018.

[46] A. Domahidi and J. Jerez, “Forces professional,” embotech GmbH (http://embotech.
com/FORCES-Pro), 2014.

F. Martínez Claramunt Master of Science Thesis

Glossary

List of Acronyms

SVO social value orientation
ORCA optimal reciprocal collision avoidance
VO velocity obstacle
RVO reciprocal velocity obstacle
RL reinforcement learning
MPC model predictive control
GAN generative adversarial network
RNN recurrent neural network
CNN convolutional neural network
LSTM long short-term memory
MSE mean squared error
CVM constant velocity model
RA-L IEEE Robotics and Automation Letters
ICRA IEEE International Conference on Robotics and Automation

Master of Science Thesis F. Martínez Claramunt

56 Glossary

List of Symbols

Abbreviations
∆t sampling period
I set of robots
Io set of obstacles
W workspace
X k

o,q set of the dynamic obstacles’ relative states at time k with respect to the query
robot q

X k1:k2
r,q set of the other robots’ relative past state horizon from time k1 to time k2 with

respect to the query robot q
n number of robots
Npast observation horizon length
Npred prediction horizon length
no number of obstacles
pk

i position of robot/obstacle i at time k
pk

ij relative position of robot/obstacle i at time k with respect to robot/obstacle j
vk

i velocity of robot/obstacle i at time k
vk

ij relative velocity of robot/obstacle i at time k with respect to robot/obstacle j
xk

i state of robot/obstacle i at time k
xk

ij relative state of robot/obstacle i at time k with respect to robot/obstacle j

F. Martínez Claramunt Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Related Work
	Multi-Robot Collision Avoidance
	Motion Prediction

	Preliminaries
	Multi-Robot Motion Planning
	Single robot problem
	Multi-robot problem

	Model Predictive Control
	Introduction
	Multi-robot motion planning using MPC

	Recurrent Neural Networks
	Introduction
	Recurrent neural networks
	Sequence-to-sequence learning

	Approach
	Introduction
	Problem Formulation
	Multi-robot motion planning
	Interaction-aware trajectory prediction

	Dataset Generation
	Simulator
	Data generation details

	Deep Neural Network Design
	Network architecture
	Evaluation metrics
	Implementation details

	Decentralized Multi-Robot Motion Planning

	Results and Discussion
	Interaction-Aware Trajectory Prediction
	Decentralized Multi-Robot Motion Planning

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Paper

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

