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Research paper 

Modelling the effect of spatial determinants on freight (trip) attraction: A 
spatially autoregressive geographically weighted regression approach 
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A B S T R A C T   

This paper investigates the effect of spatial and locational characteristics of establishments on freight (trip) 
attraction (FA/FTA) models. The authors estimated econometric models of FA and FTA as a function of the 
establishment attributes as well as the spatial and locational determinant variables, using establishment-level 
data collected from Addis Ababa City, Ethiopia. The interconnected issues of spatial dependency and spatial 
heterogeneity, together with nonlinear specifications, were incorporated with the application of spatial tech-
niques, including spatial error models (SEM), spatial autoregressive model (SAR), geographically weighted 
regression (GWR), multiscale-GWR (MGWR), and the combination GWR-SAR/MGWR-SAR. Regarding the 
explanatory variables, the empirical results revealed that firms in the manufacturing, wholesale and retail sectors 
located on the wider streets tend to receive more FA and FTA. The closeness to the primary road network and the 
city entry gate influences the FTA of manufacturing and construction firms. Moreover, retail establishments near 
the major market tend to receive more tonnage. The models also confirm that FA and FTA are the results of two 
different processes. Overall, the use of spatial regression techniques improves the accuracy of both FA and FTA 
models. MGWR-SAR exhibits superior performance by jointly addressing spatial dependency and heterogeneity. 
The MGWR-SAR model also uncovers the local variability of the variables representing the spatial and locational 
effects on freight attraction. The methodological analysis and empirical findings of the study could provide useful 
insights to support urban freight modelling, planning, and decision-making.   

1. Introduction 

Accurately estimating and predicting freight demand is critical to 
freight transportation planning. Freight demand models comprise two 
key variants; the amount of cargo in tonnage, i.e., freight generation 
(FG), which is attracted (FA) or produced, and the number of truck trips, 
i.e., freight trip generation (FTG) that is attracted (FTA) or produced 
(FTP) (Holguín-Veras et al., 2011). These models are subdivided into 
three spatial levels (Gonzalez-Feliu & Sánchez-Díaz, 2019): macroscopic 
(regional or city-level), mesoscopic (neighborhood or street level), and 
microscopic level (establishment level). Among these, 
establishment-level models are consistent with logistics processes and 
thus possess a greater potential to explain the variability within the data 
(Ortúzar & Willumsen, 2011). However, a lack of establishment-level 
data on firm characteristics and actual flows has hindered the devel-
opment of such models, especially in developing countries (Sahu & Pani, 
2019). 

Freight demand modelling studies have utilised various parameters 
and methods to develop FG/FTG models. These include ordinary least 
squares (OLS) regression, generalised linear regression (GLM), ordered 
logit, negative binomial, multiple classification analysis (MCA), and 
artificial neural networks (ANN). Models typically build using explan-
atory variables such as employment, industry category, gross floor area, 
commodity type, and years in business (Balla et al., 2022). Several 
studies incorporate spatial variables representing the geographic loca-
tion and the spatial effects when modelling FG and FTG. Locational ef-
fects in the analysis of the spatial data and modelling of the spatial 
processes manifest themselves in three ways: spatial dependence (spatial 
autocorrelation), spatial heterogeneity (spatial non-stationarity), and 
the “modifiable area unit problem” (MAUP) (Miller, 1999). The spatial 
autocorrelation effect arises due to the systematic spatial variation in the 
variables with high values near other high values and vice versa (Páez & 
Scott, 2004). Spatial non-stationarity refers to the parameters or their 
relationship behaving differently over space due to locational 
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uniqueness within the spatial area (Anselin et al., 1993). According to 
recent developments in spatial econometrics, the effects of nonlinearity, 
spatial autocorrelation, and spatial heterogeneity are inseparable when 
calibrating spatial models. The misspecification of one can cause 
adverse effects such as inducing, magnifying or eliminating the others 
(Geniaux & Martinetti, 2018). The spatial regression technique that 
incorporates the effects of nonlinearity and spatial autocorrelation or 
spatial autoregressive model (SAR) has been used to model FG at the 
establishment level, city/regional level, or national level (Novak et al., 
2011) and to model the FTG of different industry sectors (Middela & 
Ramadurai, 2021; Sánchez-Díaz et al., 2016). However, no research has 
been done on modelling FG and FTG accounting for the effects of spatial 
heterogeneity along with nonlinearity and spatial autocorrelation. Our 
study aims to fill this void. 

Therefore, this research investigated the effects of spatial and loca-
tional characteristics of establishments on FA and FTA using various 
spatial econometric techniques. The application of spatial regression 
methods aims to handle different spatial issues and enhance the pre-
dictive power of FG and FTG models. Methodologically we propose 
spatial regression techniques, i.e. geographically weighted regression 
(GWR) or multi-scale GWR (MGWR), which capture spatial non- 
stationarity effects, and the recently developed GWR-SAR/MGWR- 
SAR, capable of addressing the joint effects of spatial non-stationarity 
and spatial autocorrelation. To the best of the authors’ knowledge, 
these models have not yet been empirically tested for freight transport. 
The research encompasses operationalising the various models, their 
implementation with appropriate data, and their interpretation. Several 
spatial regression techniques are utilised to model the relationship be-
tween the freight patterns of establishments and the built environment 
or the urban geography. Their accuracy is compared and discussed. 

The structure of the paper is built up as follows: Chapter 2 provides a 
review of the relevant literature and positions the research in more 
detail. Chapter 3 introduces the methods and data. Chapter 4 presents 
and discusses the results. Chapter 5 summarises the main findings and 
concludes the paper. 

2. Literature review 

Freight demand generation models are usually separated into FG and 
FTG models. FG indicates the output of the production process at the 
establishments, and FTG results from logistical decisions. The correla-
tion of establishment size variables (e.g., employment) with FG is rela-
tively stronger than FTG, where FG is the direct output of the economic 
process of commodity production and attraction. FTG, on the other 
hand, is influenced by shipment size and other logistic considerations 
(Holguín-Veras et al., 2011). The output from the two model types also 
serves different purposes in freight planning. FG models are applicable 
for planning consolidation centres (Sánchez-Díaz, 2017), assessing 
regional development, port improvements, and land use ordinances 
(Sahu & Pani, 2019). FTG models are applied in freight planning for the 
design of freight infrastructure and policy (Sánchez-Díaz, 2017), logis-
tics facilities of large manufacturers (Institute-Of--
Transportation-Engineers, 2008), parking places (Jaller et al., 2014; 
Alho & Silva, 2014), and also feed traffic simulation models (Alho, De 
Abreu, De Sousa, & Blanco, 2018). 

The factors of predominant importance in modelling FG/FTG are (i) 
the choice of the aggregation level, (ii) the type of aggregation pro-
cedures or techniques, and (iii) the selected classification system for the 
economic sector (Gonzalez-Feliu & Sánchez-Díaz, 2019; Holguín-Veras 
et al., 2014; Pani et al., 2018). The business size of establishments is a 
significant predictor for FTG, but most empirical models exhibit low 
explanatory power (Holguín-Veras et al., 2013). A small set of variables 
used in the freight models can be one of the reasons for their relatively 
low prediction power (Sánchez-Díaz et al., 2016). On the other hand, 
adding more explanatory variables in those models can complicate the 
analysis due to the correlation between variables. In the freight 

literature, numerous attempts have been made to expand the modelling 
methodology of FG/FTG models beyond the traditional OLS regression 
model (Balla et al., 2022), but spatial effects are rarely incorporated. 
Therefore, addressing the spatial issues inherent in freight patterns is 
essential to advance these models (Novak et al., 2011; Pani et al., 2018). 

The analysis of freight demand is sensitive to the typical statistical 
characteristics of the spatial data (Sahu et al., 2020). In spatial analysis, 
the locational interdependencies are mainly expressed in three different 
ways: spatial dependence (spatial autocorrelation), spatial heterogene-
ity (spatial non-stationarity), and the MAUP effect (Miller, 1999). The 
spatial autocorrelation effect systematically clusters the variables with 
high values near other high values and vice versa. This correlation of 
variables may violate the linearity assumptions in the model (Novak 
et al., 2011) and result in biased parameter estimates (Sánchez-Díaz 
et al., 2016). Spatial non-stationarity refers to the parameters or their 
relationship behaving differently over space due to locational unique-
ness within the spatial system. This might result in the inability of the 
spatial model to describe the overall process (Anselin et al., 1993), 
manifesting in biased parameter estimates or predictions (Griffith et al., 
1999). The MAUP effect arises due to the mismatch between the data 
availability with the pre-defined areal units (such as administrative, 
census tracts, and districts) and the choice of zoning system for spatial 
analysis, which leads to inconsistent estimates and erroneous statistical 
inferences (Openshaw et al., 1979). Regarding freight demand model-
ling, only a handful of studies explicitly consider these spatial indicators 
to model the FG and FTG patterns. 

Garrido and Mahmassani (2000) studied the effects of economic 
activity and spatial location on the freight transport demand of estab-
lishments based on the operational decisions of a single carrier. Kawa-
mura and Miodonski (2012) estimated the FA of retail establishments 
using the explanatory variables that explain the socioeconomic and 
land-use characteristics of the geographic locations. Novak et al. (2011) 
used the US national data to model freight generation using spatial 
regression techniques. Sánchez-Díaz et al. (2016) assessed the impacts of 
spatial effects and locational characteristics on the FTG using the data 
set from New York City. Pani et al. (2018) analysed the impact of the 
interaction between the establishment characteristics and locational 
variables with freight generation. Pani et al. (2019) studied the effect of 
MAUP or zonal characteristics on the disaggregate freight (trip) gener-
ation patterns and demonstrated the sensitivity of the freight patterns to 
the choice of spatial scale. Sahu and Pani (2019) analysed the 
establishment-level FG models using OLS and MCA for businesses in 
Kerala, India, and revealed the geographic disparities in the models 
using ANCOVA to test the spatial transferability of these models (Pani 
et al., 2021). assessed the spatial transferability of FP and FTP models 
within regions and across states in India and indicated FP models are 
more transferable than FTP. Middela and Ramadurai (2021) modelled 
FTG with spatial autoregressive zero-inflated negative binomial tech-
niques and showed the presence of sptial autocorrelation effect in almost 
all the models. The two main implications that can be extracted from the 
previous studies are: (1) the spatial effects and locational determinants 
do influence both the FG and FTG models, and incorporating those 
factors improves the predictive accuracy of the models, and (2) although 
the analysis considered the impact of spatial variables in the entire area 
but their effects are mostly different locally. 

Spatial non-stationarity (heterogeneity) can be handled in two ways. 
The first is a compromise between the global and local models using 
switching regression, multi-level, or hierarchical models, and a local 
form of the spatial model using the GWR method (Páez & Scott, 2004). 
The inclusion of the spatial heterogeneity effect allows the relationship 
between the model parameters to vary over space and essentially cap-
tures the local impacts. The GWR technique has an advantage over the 
other methods by explicitly incorporating local relationships into the 
regression. As it assumes that scales of the spatial relationships are 
constant over space, it can be inadequate to analyse these relationships 
at different scales. Thus, different processes require varying spatial 
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scales, and those assumptions are not usually valid. Multi-scale GWR 
(MGWR) relaxes the assumptions of GWR, which allows the relationship 
between the dependent variable and explanatory variables to vary 
locally. The flexibility of analysing the relationships at different spatial 
scales can minimise over-fitting, reduce bias in the parameter estimates, 
and mitigate collinearity (Fotheringham et al., 2003; Oshan et al., 
2019). 

Models that explicitly consider spatial autocorrelation and spatial 
heterogeneity are gaining the attention of spatial econometric studies. In 
the calibration of models, spatial autocorrelation, spatial heterogeneity, 
and nonlinearity are inseparable, and the misspecification of one can 
bias the others (Basile et al., 2014; Geniaux & Martinetti, 2018). Spatial 
regression methods such as spatial lag or autoregressive models assume 
the stationarity of spatial autocorrelation parameters throughout the 
analysis area. However, this assumption of the constant influence of the 
autoregressive term over space is invalid and biases the parameter es-
timates. The GWR-SAR or MGWR-SAR framework considers both spatial 
effects (spatial autocorrelation and spatial heterogeneity). This 
approach allows the spatial autoregressive parameter (explaining the 
spatial dependencies) to vary locally or with other parameters over 
different spatial scales. The spatial regression techniques used for 
modelling the local relationships, such as GWR/MGWR and 
GWR/MGWR-SAR, have not been previously applied for spatial analysis 
of FG/FTG patterns. The research contributes to modelling business 
establishments’ freight (trip) attraction considering the above de-
pendencies with local differentiation, using various methods. We oper-
ationalise, implement and interpret the findings. Data were obtained to 
create a new model for Addis Ababa, Ethiopia. We introduce our 
approach in the following sections. 

3. Methodology 

3.1. Overall approach 

Below we describe the general approach taken in the study, organ-
ised into several steps (as shown in Fig. 1). The study starts with filtering 
and sorting the freight data from a 2019 survey of business establish-
ments in Addis Ababa City, Ethiopia. The next step checks whether 
spatial dependency or autocorrelation is present in the freight patterns. 
Followed by the identification of different explanatory variables, these 
variables can explain the economic, spatial, and locational characteris-
tics of business establishments responsible for freight activity. Next, 
modelling the relationship between the freight patterns and the relevant 

explanatory variables using the OLS regression to assess the correct 
model specification between linear and nonlinear forms and simulta-
neously checking the correlation and multicollinearity of these vari-
ables. The model specification, whether linear or nonlinear, was 
evaluated using the Ramsey regression equation specification error test 
(RESET). The correlation and multicollinearity of variables were ana-
lysed using Pearson correlation and the Variance Inflation Factor (VIF). 
After the model specifications and selection of essential explanatory 
variables, the next step is to model the OLS, SEM, SAR, GWR/MGWR, 
and GWR-SAR/MGWR-SAR. From the last two model types, Monte Carlo 
(MC) simulation test determines the choice of the model variant, which 
examines whether the explanatory variables are spatially variable or 
not. With the results of the MC test, if all the variables have significant 
spatial variability, then the variants of the local models will be the GWR 
and GWR-SAR. Otherwise, if any of the variables do not have spatial 
variability, then the local models of MGWR and MGWR-SAR will be 
used. Finally, the statistical indexes of adjusted R-square, AIC, and RMSE 
are used to evaluate and compare the model results. 

3.2. Study area and description of the data 

The primary data used in this research is based on establishment- 
level FG/FTG data collected from 451 businesses in Addis Ababa city, 
Ethiopia. The establishment–based freight survey (EBFS) was conducted 
in 2019. The survey targeted establishments in the freight-intensive 
industry sectors, including manufacturing and raw material produc-
tion, construction, wholesale and retail trades. The data comprises in-
formation about the type of commodities, employment, land use, and 
industry sector. Specifically, the attributes related to the business size of 
establishments, i.e. the number of employees (E) and the freight mea-
sures, including the tonnage delivered to and shipped from the estab-
lishment with the number of deliveries and shipments. Many 
establishments in the retail trade and wholesale trade sectors fail to keep 
track of their outbound freight in tons/week and trips/week, and thus, 
the authors decided to focus the analysis on the FA/FTA part. The 
municipal wards of the city, locations of sampled establishments and 
other important attributes are presented in Fig. 2. 

3.2.1. Explanatory variables 
The independent variables for modelling FA and FTA are presented 

in Table 1. Based on previous studies and data availability, the variables 
are grouped into economic, land use, and network characteristics. 

The explanatory value of these variables is used to model both FA 

Fig. 1. Methodological framework of the study.  
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and FTA. The data can be obtained directly from different public data 
sources or estimated based on the geo-locations of establishments.  

• Economic attributes include the industry sector and employment of 
the establishment. These variables measure the size of the estab-
lishment and distinguish the type of business activity taking place in 
the establishment. Based on the economic activity at the establish-
ments, the standard industrial classification (SIC) was used to create 
relevant categories of business establishments with similar freight 
patterns.  

• Land use characteristics are represented with the variable land value 
at the establishment’s location and extracted based on the land lease 
information obtained from the city’s land development and 

management office. The land value is a proxy for explaining the es-
tablishment’s revenues and associated inventory costs that poten-
tially affect freight patterns. 

• Network characteristics connect the freight patterns of establish-
ments with the locational attributes, mainly related to the transport 
infrastructure. The network characteristics include distance to the 
primary network, distance to a major market, distance to the nearest 
city gate, and width of a street in front of the establishments. The 
distance to the primary network measures the establishment’s loca-
tion relative to the main streets. Distance to a major market measures 
the closeness of the establishment with a big market located at the 
centre of the city, which is the city’s main commercial hub. Distance 
to the nearest city gate represents the establishment’s location 
relative to the closest one among the five city gates located in four 
different directions around the city. The street width in front of the 
establishment accounts for the locational vitality and is a proxy 
variable to enhance the locational representation on top of other 
network characteristics attributes. 

3.2.2. Descriptive statistics 
The descriptive statistics of the dataset are summarised in Table 2. 

The breakdown by industry sector using the standard industrial classi-
fication (SIC) shows that most of the sampled establishments are in the 
retail trade (53%) and manufacturing (34%). The FA value varies be-
tween 0.3 and 1150 tons per week. The FTA value ranges between 1 and 
56 weekly deliveries. The retail establishments attract the smallest 
average number of trips (2 weekly deliveries) and shipment weight 
(4.45 tons weekly), while construction establishments attract the biggest 
shipment weight (228 tons weekly) and wholesale establishments 
receive the largest number of deliveries (12 weekly deliveries). The 
number of employees ranges from 1 to 1260, where retail establishments 
have the lowest average employment (3 employees), and construction 
establishments have the highest average employment (166 employees). 
The land values indicate retail establishments tend to be mostly located 
in the most expensive area ($10 thousand per square meter) with narrow 
street widths (9.3 m), and the construction establishments tend to be 
located in the cheapest area (2.7 thousand $ per square meter) with 
wider street widths (15.8 m). In relation to the locational variables, the 
wholesale establishments are mostly located nearest to the primary road 
network, the main market, and the city gates (19.3 m, 1.7 km, and 9.5 

Fig. 2. Study area.  

Table 1 
Description of the variable.  

Category Variable Description Abbrev. 

EconomicCharacteristics SIC A binary variable 
representing the industry 
sectors: Manufacturing, 
Wholesale, Retail, 
Construction  

Employment Number of employees 
working in the 
establishment 

E 

Land-use variables Land-market 
value 

The unit price of land (in 
thousands of US$ per sq. 
meters) 

LV 

Network Characteristics Steet width Width of the street (in 
meters) in front of the 
establishments 

SW 

Distance to the 
primary 
network 

Euclidian distance (in 
meters) to the closest 
street that is part of the 
primary road network 

DPN 

Minimum 
distance to the 
city gate 

Network distance (in 
Kilometers) to the closest 
city gate (among the five 
gates to the city) 

DCG 

Distance to the 
main market 

Network distance (in 
Kilometers) to the main 
market located at the 
centre of the city 

DMM  
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km, respectively), while manufacturing establishments are located 
further away from the primary road network, the main market and the 
city gates (with an average of 76 m, 8.7 km and 9.6 km respectively). 
These locational results are plausible that retail establishments are 
placed at prime locations to attract consumers and manufacturing es-
tablishments located away from the main activity centres due to larger 
space requirements to carry out their activities. 

3.3. Econometric models 

3.3.1. FA/FTA models only with employment 
The FTG modelling is described here using the case of FTA and will, 

in abstract terms, apply equally to FTP. The main predictor variable is 
the total employment offered by establishments in the respective in-
dustry sectors. For estimation, the common and extensively used OLS 
regression can be utilised. The general form of the models is given as:  

yi = β0 + β1 (Ei) + ϵi                                                                       (1) 

Where: 
yi is the FA in tons/week or FTA in number of delivery/week, 
Ei is the total employment as business size variable of the ith estab-

lishment in the industry sector 
β1 is the regression coefficient of Ei; β0 is a constant or intercept term; 

ϵi is a random error. 
The FA/FTA model formulation above can result in three cases: (i) 

model only with the coefficient term, (ii) model only with the constant 
term, and (iii) model with both the constant and coefficient terms 
(Gonzalez-Feliu & Sánchez-Díaz, 2019; Holguín-Veras et al., 2011; Pani 
et al., 2018). 

3.3.2. Spatial indicators 
The spatial location of establishments has vital implications on their 

FA/FTA and possesses the potential to capture the interaction between 
establishments and the urban environment. The freight needs are in 
correlation to the underlying spatial processes. Spatial indicators 
quantify the dependency of establishments on the surrounding envi-
ronment because of the effects related to their spatial locations. The 
most widely used technique to express the underlying spatial relation is 
spatial autocorrelation (Anselin & Bera, 1998), and Moran’s I measure 
its magnitude. The specification of Moran’s I: 

I=

⎛

⎜
⎝

n
∑

i

∑

j
wij

⎞

⎟
⎠

⎛

⎜
⎝

∑

i

∑

j
wij(xi − x)

(
xj − x

)

∑

i
(xi − x)2

⎞

⎟
⎠ (2)  

where n is the number of observations, xi is the value at location i, x is 
the mean value of x, wij is the spatial weight defined with the inverse of 
the distance between establishments located with i and j. 

The expected value of Moran’s I when no spatial autocorrelation is: 

E(I)=
− 1

n − 1
(3) 

The global tendency of spatial autocorrelation is given by the dif-
ference between the value of Moran’s I and the expected value. When 
Moran’s I value is greater than E(I) indicates a global tendency toward 
clustering, and when the value is less than E(I) indicates a tendency 
towards dispersion or uniformity (Moran, 1950). Moran’s I is sensitive 
only to large spatial autocorrelation, but autocorrelation may exist only 
in some zones of a given spatial analysis area. In these cases, the analysis 
area is divided using Thiessen polygons, and the interaction between the 
neighbouring polygons can be calculated with the Local Indicators of the 
Spatial Association (LISA). The specific location of the significant in-
teractions with LISA can be mapped using statistical tests (Anselin, 
1988). 

The presence of spatial autocorrelation indicates the need to incor-
porate spatial interactions when modelling the freight (trip) generation. 
The systematic handling of the spatial autocorrelation between the es-
tablishments in freight (trips) generation and their relation with the 
geographic location enhances the resulting FA (Novak et al., 2011) and 
FTA models (Sánchez-Díaz et al., 2016). 

This study examines the relation of FA/FTA with the economic 
characteristics and environmental effects of establishments using five 
different models at two levels. The global models include the traditional 
ordinary least squares (OLS) regression, spatial lag model (SLM), and 
spatial error model (SEM). The local models are geographically 
weighted regression (GWR), and GWR/Multiscale GWR–Spatial autor-
egressive model (SAR). 

3.3.3. Global models 
The starting point to model FA/FTA in this study is the traditional 

OLS regression. The general form of the models is given (Ward & Gle-
ditsch, 2018):  

yi = β0+βi xi+εi                                                                              (4) 

Table 2 
Descriptive statistics.  

Variable Unit SIC 20-39: Manufacturing SIC 15-17: Construction 

Obs.a Mean Std. Dev.a Min Max Obs. Mean Std. Dev. Min Max 

FA tons/week 151 43.9 97 0.8 500 18 228 356.3 5 1150 
FTA deliveries/week 151 5 5 1 27 18 10 9 1 43 
Employment employees 151 150 204 5 1260 18 166 118 31 402 
Land value thousand US$/Sq.m 151 2.9 3.6 0.6 17.2 18 2.7 1.9 1.1 8.7 
Street width meters 151 12.4 5.8 4.5 25 18 15.8 6.3 5.2 30 
DPN meters 151 76 71 3 336 18 49 80.1 5.4 274 
DCG kilometers 151 9.6 3.54 0.3 15.5 18 10 2.6 5.6 13.8 
DMM kilometers 151 8.7 6.0 0.0 25 18 8.2 6.5 0.3 21.7 

Variable Unit SIC 50–51: Wholesale Trade SIC 52–59: Retail Trade 

FA tons/week 34 60.5 71 2 280 243 4.45 5.8 0.3 35 
FTA deliveries/week 34 12 15 1 56 243 2 1 1 12 
Employment employees 34 12 22 2 126 243 3 2 1 15 
Land value thousand US$/Sq.m 34 9.7 5.6 2.3 17.2 243 10.0 6.6 1.3 17.2 
Street width meters 34 15.3 5 4.5 20 243 9.3 5.5 3.8 27.5 
DPN meters 34 19.3 30.2 0.0 143.8 243 25.1 35 0.0 210.3 
DCG kilometers 34 9.5 1.2 7.9 12.8 243 9.4 2.4 0.8 16.5 
DMM kilometers 34 1.7 2.3 0.14 8.4 243 5.74 4.9 0.0 19  

a Obs. – Observations; Std. Dev. - Standard Deviation. 
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Where yi is the amount of freight both in FA in tons/week or FTA in 
deliveries/week, β0 is the intercept, xi is the vector of explanatory var-
iables representing the characteristics of the ith business establishment 
in the respective industry sector, βi is the vector of regression co-
efficients, and εi is a random error term. 

The regression coefficients in the OLS regression are optimised by 
minimising the sum of squared prediction errors. The main assumptions 
in OLS regression are independence between observations and uncor-
related error terms (Anselin & Arribas-Bel, 2013). These models relate 
the freight amount with the establishments’ economic characteristics 
and environment. The OLS assumes that the observations (establish-
ments for this case) are independent and do not consider the spatial 
interaction between establishments. However, spatial interactions be-
tween establishments play an essential role in modelling FA/FTA, as 
demonstrated by the results from previous freight studies (Novak et al., 
2011; Sánchez-Díaz et al., 2016). The variants of OLS that take into 
account the spatial dependence between observations are the spatial lag 
model (SLM) and the spatial error model (SEM) (Anselin, 2003; Ward & 
Gleditsch, 2018). The SLM and SEM models exploit the spatial correla-
tion between the establishments to model FA/FTA, which considers 
spatial weights and lags in regression models. 

The spatial dependence can be introduced into the model specifica-
tion in two ways: spatial lag dependence or spatial error dependence 
(Anselin, 1988). The SLM or spatial autoregressive (SAR) model assumes 
spatial dependency between the dependent and explanatory variables 
and includes an additional spatially-lagged dependent variable to ac-
count for spatial dependence (Anselin, 2003). With the mixed regressive 
form, the spatial autoregressive (SAR) model is denoted by:  

yi = β0 + βxi + ρWi yi+εi                                                                 (5) 

Where ρ is the spatial lag (spatial autoregressive) parameter, and Wi is 
the spatial weights matrix. The spatial lag for variable y at i is expressed 
as Wi yi. The spatial weight matrix W is built with the distances between 
every pair of observations and then row-standardising W to interpret W. 
y as the average FA/FTA of the neighbours. 

The spatial dependence in the SEM assumes the error term of the OLS 
model decomposes into two terms (λWi ξi and εi). The SEM model is 
denoted as (Ward & Gleditsch, 2018):  

yi = β0+βxi+λWiξi+εi                                                                      (6) 

Where ξi is the spatial component of the error at i, λ indicates the level of 
correlation between these components, and εi is a spatially uncorrelated 
term. 

The correlation and multicollinearity between the candidate 
explanatory variables are evaluated using the variance inflation factor 
(VIF) and Pearson correlation coefficients. A VIF value of 5 (moderate 
multicollinearity) and a Pearson’s correlation coefficient value of 0.75 
were considered the threshold for strong correlation. The variable(s) 
with higher multicollinearity or correlation than the threshold values 
were eliminated from the subsequent analysis. The analysis of the global 
models (OLS, SAR, and SEM) used the same variables to compare the 
model estimates consistently. These models are analysed and imple-
mented in GeoDa 1.8 (Anselin et al., 2010). 

3.3.4. Local models 
Global models such as OLS, SAR, and SEM assume spatial stationarity 

when modelling the relationship between the dependent and explana-
tory variables, where these relationships do not vary over space. The 
GWR model extends the general regression model and relaxes the spatial 
stationarity assumption to allow the variables to vary over space 
(Brunsdon et al., 2002). The mathematical notation of the GWR model is 
extended from Eqn. (1) and adopted as (Fotheringham et al., 2003): 

yi =
∑m

j=0
βj(ui, vi) xij + εi (7)  

Where yi denotes the amount of freight (FA/FTA) at point i, and βj (ui, vi) 
is a varying jth coefficient in the estimation of continuous explanatory 
variables, xij, at any point i within the given spatial analysis area, εi is a 
random error term. 

Multi-scale GWR (MGWR) is an extension of GWR and allows the 
conditional relationships between the dependent variable and different 
predictor variables to vary locally and/or not at all. Mainly the extension 
allows each variable to have a distinct bandwidth, where the data- 
borrowing range (bandwidth) can vary across parameter surfaces. The 
MGWR model takes the form (Fotheringham et al., 2017): 

yi =
∑m

j=0
βbwj(ui, vi) xij + εi (8)  

where (ui, vi) denotes the x-y coordinates of the ith point, yi is the amount 
of freight (FA/FTA), bwj in βbwj indicates the bandwidth used for cali-
bration of the jth conditional relationship. 

The spatial variability of all parameters, both the selected explana-
tory variables and the spatial autocorrelation term, should be tested 
with the Monte Carlo (MC) test for spatial variability. The MC test in-
dicates whether all the parameters are local and if there are any global 
variables. Based on the results of the MC tests, both the spatial hetero-
geneity or the joint model of spatial heterogeneity and spatial autocor-
relation takes two forms. When all the parameters are local or have 
spatial variability, then the type of model will be GWR and GWR-SAR. 
Otherwise, the model type becomes MGWR and MGWR-SAR. The 
MGWR-SAR model specified by (Geniaux & Martinetti, 2018) takes the 
possibility of having both global and local variables, and the general 
form of this model is: 

y = ρ(ui, vi)Wy + βcXc + βv(ui, vi) Xv + ε (9) 

where (ui, vi) denotes the x-y coordinates of the ith point, yi is the 
amount of freight (FA/FTA), Xc are Kc independent variables with con-
stant coefficients (βc), and Xv are Kv independent variables with spatially 
varying coefficients (βv), Wy is the spatial lag variable with the spatially 
varying coefficient ρ(ui, vi). 

This study calibrates the local models based on GWR or MGWR with 
a gaussian kernel function and fixed bandwidth. Local models executed 
in MGWR 2.2 (Oshan et al., 2019). The optimal bandwidth for the 
kernels is selected based on minimising the corrected Akaike Informa-
tion Criterion (AICc). The GWR-SAR/MGWR-SAR models include a 
spatially-lagged dependent variable that can introduce endogeneity by 
correlating with the error term ε. The spatial two-stage least square 
(S2SLS) technique is used to get rid of the endogenous part (Anselin, 
2003). Moreover, another problem when estimating the GWR is the 
artificial increase in the t-value results because the local GWR estimates 
often overlap. The significant level of the estimates is adjusted to solve 
this problem and can take the form (Da Silva & Fotheringham, 2016): 

α=
ξm

pe/p
(10)  

where ξm is the usual α, pe is the effective number of parameters, and p is 
the number of parameters 

3.3.5. Evaluation of models 
The measures used to compare the performance of the global and 

local models are the adjusted R-square, AIC, and root mean square error 
(RMSE). These are defined as: 

AIC= 2k –2 ln(L̂)

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(y − ŷ)2

n

√
√
√
√
√

(11) 
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Where, ŷ and y are the estimated and observed values of the dependent 
variable, respectively, n is the number of observations, the number of 
estimated parameters k, and L̂ is the maximum value of the likelihood 
function for the model. 

4. Results and discussion 

4.1. Aggregate/disaggregate FA/FTA models 

The linear FA/FTA models use the OLS technique, with the number 
of employees representing the business size of the establishments in the 
industry sector. The freight models resulting from these simple formu-
lations possess many potential applications. The model results can take 
three separate cases/forms: (i) constant only, (ii) coefficient only, and 
(iii) both constant and coefficient. The final FA/FTA model results for all 
three cases are shown in Table 3. The manufacturing and whole sector 
models for both variants and the FTA part of the retail sector have the 
case (iii) types model forms, with a constant term and FA/FTA rate per 
employment. Both freight variants of the construction sector and the FA 
part of the retail sector have the case (ii) types model forms, with only a 
constant FA/FTA rate per employment. The number of employees 
measures the size of business establishments, where the unit increase 
tends to marginally increase the FA and FTA of the establishments, 
except for FA of wholesale, construction, and retail shows a parallel 
increase. 

The employment-based FA/FTA models with the OLS techniques for 
our industry sectors have R-square values ranging from 11% to 84%. 
These R-square values are comparable with the results in other similar 
freight studies. For instance, the R-square value of up to 73% (Iding 
et al., 2002), ranges from 1.1% - 65.4% (Jaller et al., 2014), 15%–82% 
(Gonzalez-Feliu & Sánchez-Díaz, 2019), 58%–72% (Pani et al., 2018), 
and 15%–75% (Sahu & Pani, 2019). 

4.2. Spatial effect indicators 

The spatial autocorrelation effect is explained with the global Mor-
an’s I and LISA indicators for each industry sector. The summary of the 
analysis results on the spatial effect indicators is presented in Table 4 
Table 3 and 4. The Moran’s I value is close to zero for most of the cases 
and different from the expected value indicating some degree of spatial 
autocorrelation. The global tendency of spatial autocorrelation was 

conclusive (at the 5% confidence level) for construction and retail sec-
tors in both FA and FTA. In addition, the local analysis reveals the 
presence of several positive associations or clusters between a polygon 
and its neighbours in the case of construction. The local analysis for the 
retail sector also reveals several positive and negative associations be-
tween neighbouring polygons. In this case, a polygon with a high 
amount of tonnage received or delivered is surrounded by polygons with 
a high tonnage received or delivered, and vice versa. 

On the other hand, the manufacturing and wholesale sectors exhibit 
a global tendency toward dispersion, but the local analysis reveals 
several clusters and outliers. These two sectors show positive and 
negative associations between neighbouring polygons, where polygons 
with a high level of tonnage received or delivered are surrounded by 
polygons with a similar level of freight received or delivered. Overall, 
the LISA indicators imply the presence of spatial autocorrelation in 
almost all sectors. The findings from previous studies revealed that the 
systematic handling of spatial effects enhances FA models (Novak et al., 
2011) and FTA models (Sánchez-Díaz et al., 2016). The next step is to 
evaluate these spatial effects on FA and FTA using variables explaining 
the built environment or the effects related to the shared neighborhood 
and locational effects. 

4.3. OLS, SEM, and SAR model estimates 

The estimated OLS and spatial models, SEM and SAR, are summar-
ised in Table 5 for the FA part and Table 6 for the FTA part. The 
modelling starts with estimating OLS regression with multiple linear and 
nonlinear specifications for all industry sectors. The model mis-
specification was checked with the Ramsey regression equation speci-
fication error test (RESET) to confirm whether the nonlinear model 
specifications were significant. The RESET test was conclusive for the FA 
and FTA models of almost all the industry sectors, whereby rejecting the 
null hypothesis H0 (all the nonlinear coefficients are zero) at a 5% level 
of confidence. The nonlinear models are log-transformed or in log-scale 
and estimated with an ordinary least squares regression technique that 
minimises the residuals sum of squares. In addition, the Pearson corre-
lation and VIF values were checked in regression analysis, and the 
explanatory variables above the threshold values were eliminated from 
the analysis. The land-value (LV) variable has a high VIF value above the 
threshold in the FA and FTA of wholesale, retail, and construction sec-
tors and is consequently eliminated from the subsequent analysis. 

The nonlinear models were selected after extensive testing of various 
functional forms using employment as the main variable for all the in-
dustry sectors. In the case of FA models, the locational variables, 
including the width of the front street, the distance to the city gate, and 
the distance to the major market, play a significant role. However, land 
value and distance to the primary road network are not significant 
predictors of the freight attracted in all industry sectors. On the other 
hand, the locational variables significantly predicted the FTA models, 
including the width of the front street, the distance to the primary road 
network, and the major market. All the locational variables have posi-
tive and negative signs, as expected in both FA and FTA models of the 
industry sectors. Important locations in the city usually have wider 
streets, and establishments in these streets are likely to attract more 
tonnage and number of deliveries which may relate to their customer 
orientations and smaller space for inventory. Regarding network char-
acteristics, the establishments near the primary road network, the city 
gate, and the major market location tend to attract more tonnage and 
frequent deliveries. Therefore, these variables have a negative sign in 
both FA and FTA models for all the industry sectors. 

The FA models presented in Table 5, have a nonlinear relationship 
with employment, and the ln-coefficients range from 0.47 (wholesale) to 
1.77 (construction). The coefficients reveal that larger establishments 
have higher FA than smaller establishments, but the magnitude varies 
largely over the industry sectors. For wholesale and retail establish-
ments, the value of FA increases at a diminishing marginal rate where 

Table 3 
Employment-based freight attraction models (weekly - FA/FTA).  

Industry Sectors 
(with SIC 
classificationa) 

Freight 
Model 

Obs. Employment-based model RMSE 

Constant/ 
Employment 

Adjusted 
R-Square 

Const. Est. 

Manufacturing FA 151 1.98 
(1.25)a 

0.28 
(8.95) 

0.56 72.17 

FTA 151 2.63 
(6.3) 

0.016 
(8.38) 

0.38 5.47 

Construction FA 19 – 1.78 
(6.47) 

0.69 363.3 

FTA 19 – 0.071 
(10.06) 

0.84 14.35 

Wholesale FA 33 41.4 
(3.35) 

1.61 
(3.25) 

0.25 70.08 

FTA 33 6.84 
(2.82) 

0.42 
(4.54) 

0.39 15.01 

Retail FA 239 – 1.13 
(10.23) 

0.31 3.6 

FTA 239 1.26 
(7.46) 

0.21 
(5.23) 

0.11 2.1 

Note. 
a SIC refers to an international standard for industrial classification; t-values 

are given with the bracket. 
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the ln-coefficients of employment are less than 1. According to Eqn. 
(12), the back-transformed equation of FA for the retail sector (similar to 
the wholesale sector), a smaller marginal increase in the FA resulted as 
the employment increases. However, the ln-coefficients of employment 
for the manufacturing and construction sectors are greater than 1, where 

the value of FA increases parallel with employment. In the case of FTA, 
the ln-coefficients of employment are less than 1 for all the industry 
sectors, and the FTA values marginally increase with the increase in the 
number of employees. Sánchez-Díaz et al. (2016) also found similar 
results regarding the relationship between the FTA and employment in 

Table 4 
Spatial effects indicators.  

Description (SIC) Variable Moran’s I LISA Remarks 

I E(I) Clusters Outliers 

Manufacturing (SIC 20-39) FA 0.02 − 0.006 YES/HIGH & LOW YES LISA reveals several clusters and outliers 
FTA 0.021 − 0.006 YES/HIGH & LOW YES LISA reveals several clusters and some outliers 

Construction (SIC 15-17) FA 0.94 − 0.059 YES/HIGH No Moran I shows a global tendency toward clustering 
FTA 0.769 − 0.059 YES/HIGH No Moran I shows a global tendency toward clustering 

Wholesale (SIC 50-51) FA 0.147 − 0.031 YES/HIGH & LOW YES LISA reveals some clusters and one outlier 
FTA 0.13 − 0.031 YES/HIGH & LOW YES LISA reveals some clusters and outliers 

Retail (SIC 52-59) FA 0.142 − 0.004 YES/HIGH & LOW YES Moran I shows a global tendency toward clustering 
FTA 0.046 − 0.004 YES/HIGH & LOW YES Moran I shows a global tendency toward clustering  

Table 5 
Results for econometric models, global models of freight attraction FA.  

Dependent variable: ln(tons delivered/week) Manufacturing Construction Wholesale Retail 

OLS OLS SEM OLS OLS SEM SAR 

Spatial lag coefficient, ρ       0.37 (3.10) 
Spatial error coefficient, λ   − 0.55 (− 2.13)   0.34 (2.48)  
Constant − 5.53 (− 5.9)       
Economic characteristics        
Ln(Employment) 1.19 (11.57) 1.77 (9.39) 1.78 (14.08) 0.43 (2.28) 0.47 (2.3) 0.49 (2.47) 0.49 (2.49) 
Land-use variable        
Ln(land market value)        
Network characteristics        
Ln(SW) 0.78 (2.93)   0.98 (2.19) 0.89 (3.85) 0.82 (3.57) 0.78 (3.46) 
Ln(DPN)        
Ln(DCG)  − 1.39 (− 2.65) − 1.61 (− 5.16)     
Ln(DMM)     − 0.56 (− 6.95) − 0.47 (− 4.34) − 0.3 (− 2.89)  

n 151 18 18 34 243 243 243 
Adj. R2 0.56 0.86 0.91 0.26 0.29 0.33 0.34 
F-Stat 39.09 28.12 n.a. 4.85 21.42 n.a. n.a. 
AIC 532 36.95 34.89 102.8 957.23 952.3 949.92 
Log-likelihood at convergence − 260.04 − 13.47 − 12.44 − 47.4 − 472.61 − 470.15 − 467.96 

Note: t-statistics are shown in round brackets. All the variables given are significant at 5% and 10% levels, (*) indicates significance at 10% level. 

Table 6 
Global models of freight trips attraction FTA.  

Dependent variable:ln(number of deliveries/week) Manufacturing Construction Wholesale  Retail 

OLS OLS SEM OLS SEM OLS 

Spatial lag coefficient, ρ       
Spatial error coefficient, λ   − 0.48 (− 1.72)*  − 2.95 (− 2.86)  
Constant − 2.03 (− 3.89)      
Economic characteristics       
Ln(Employment) 0.58 (10.1) 0.91 (7.06) 0.87 (9.48) 0.53 (2.50) 0.53 (3.31) 0.28 (4.46) 
Land-use variable       
Ln(land market value)       
Network characteristics       
Ln(SW) 0.37 (2.52)   1.13 (2.21) 1.4 (3.66) 0.12 (1.7)* 
Ln(DPN) − 0.12 (− 2.33)  0.12 (2.14)    
Ln(DCG)  − 0.7 (− 1.93)* − 0.77 (− 3.35)    
Ln(DMM)        

n 151 18 18 34 34 243 
Adj. R2 0.51 0.80 0.86 0.26 0.45 0.13 
F-Stat 31.78 18.29 n.a. 4.96 n.a. 7.99 
AIC 349.36 23.25 22.42 111.75 107.96 379.93 
Log-likelihood at convergence − 168.68 − 6.62 − 6.21 − 51.87 − 49.98 − 183.96 

Note: t-statistics are shown in round brackets. All the variables given are significant at 5% and 10% levels, (*) indicates significance at 10% level. 
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the trade sector establishments.  

FA = E0.47 × SW0.98 × DMM− 0.56                                                   (12) 

The variables characterising the locational effects relating the FA/ 
FTA with the urban environment significantly improve the model fits. 
The front street width is a significant predictor similar to the FA and FTA 
of manufacturing, wholesale and retail establishments. 

The ln-coefficient of street width is smaller than 1 for both FA and 
FTA of all the industry sectors, except the FTA of wholesale has a value 
greater than 1. The nearness to the closest city gate is statistically sig-
nificant on both the FA and FTA of the construction establishments, 
which makes more sense due to construction materials production sites 
mainly located outside the city. The distance to the primary road 
network significantly affects the FTA of firms in the construction sector. 
In addition, nearness to the major market is a significant predictor, in 
which retailers near these locations are likely to receive more tonnage. 

The SEM and SAR models account for spatial dependence and 
enhance OLS models’ performance for FA and FTA across almost all the 
industry sectors, as depicted in Tables 5 and 6 The SEM model is a sig-
nificant predictor of FA for the construction and retail sectors and the 
FTA models for the construction and wholesale industry sectors. In 
addition, the variable DPN is not significant in the OLS model of FTA for 
the construction sector and became significant in the corresponding SEM 
model. The SAR model is only significant for the FA model of the retail 
sector. The spatial models (SEM and SAR) are jointly significant for FA of 
the retail sector, and especially the SAR model exhibits a better fit to 
address the spatial autocorrelation. Generally, the coefficient estimates 
have changed from the OLS models to the spatial models, i.e., the 
resulting coefficient estimates became less biased when addressing the 
effects of the spatial autocorrelation. The SEM and SAR models show 
slight improvements over the OLS models with higher adjusted R-square 
and lower AIC values. Still, these models can be improved by incorpo-
rating other spatial effects, such as spatial heterogeneity, using local 
regression models, as presented in the next sections. 

4.4. GWR/MGWR and GWR/MGWR-SAR models: a spatial 
interpretation 

The estimation of the local regression models was applied only to the 
FA model of the retail industry sector, where the SAR model exhibited a 
significant improvement over the OLS model. Using the SAR model 
makes possible the calibration of the GWR/GWR-SAR model to simul-
taneously deal with the spatial autocorrelation and spatial heterogeneity 
problems. The GWR calibrates the regression model separately at each 
location but with a similar scale (bandwidth) for each relationship in a 
given model. Applying GWR can result in biased estimates when the 
data has multiple spatial scales. The MGWR is an extension of GWR that 
can eliminate the scale problem by allowing each local relationship to 
occur at a different scale. 

The spatial variability of the estimated parameters was checked with 
the Monte Carlo (MC) test, which clearly indicates whether to use GWR 
or MGWR. The MC test indicated that not all the variables could be 
characterised as local. The explanatory variables E and SW are spatially 
stationary and only have a global effect on the model. Therefore, the 
final models are MGWR and MGWR-SAR, as presented in Table 7. The 
average values of the parameter of both MGWR and MGWR-SAR are not 
similar to the estimates of OLS and SAR models due to the calibration of 
the MGWR model with multiple distinct spatial scales. 

The problem of local multicollinearity occurs for some network 
characteristic variables in both MGWR and MGWR-SAR models, but its 
effect reduces from MGWR to MGWR-SAR. As expected, the model with 
the MGWR-SAR has a better model fit in terms of adjuster R-square, AIC, 
AICc, and log-likelihood estimation. The non-stationary spatial variables 
with the MC test have larger differences between the minimum and 
maximum values in both variants of the local models. The most 
important explanatory variable of FA is the number of employees at the 
establishment, as confirmed with 100% and 82.72% significance for 
MGWR and MGWR-SAR models, respectively. 

Another variable affecting the tonnage attracted to retail establish-
ments is the street width (SW), with more than 63% significance for 
MGWR-SAR but not significant in the MGWR model. Apart from having 
better overall significance, the MGWR-SAR model has improved the 
significance of individual variables, especially the poorly fitted ones. 

Table 7 
MGWR and MGWR-SAR estimates of freight attracted (FA) for Retail Trade.  

Dependent variable: ln 
(tons/week) 

Mean SD Min Median Max Adj. critical t- 
value (95%) 

Percentage of Significance 
at 95% level 

Percentage of Cases with 
Local VIF >10 

MC  

MGWR estimates 
Intercept 0.029 0.253 − 0.386 0.074 0.312 2.531 40.74% –  
Ln(E) 0.147 0.001 0.145 0.147 0.148 1.981 100.00% 0.00%  
Ln(SW) 0.020 0.109 − 0.307 0.024 0.127 2.004 0.00% 0.00%  
Ln(DPN) 0.199 0.003 0.190 0.199 0.204 2.392 100.00% 0.00%  
Ln(DCG) − 0.084 0.117 − 0.240 − 0.123 0.203 2.295 35.39% 33.33%  
Ln(DMM) − 0.180 0.000 − 0.180 − 0.180 − 0.180 1.971 0.00% 55.14%  

Kernel function Fixed 
Gaussian  

N 243  AICc 585.61 Log-likelihood − 278.63 

Optimal bandwidth 
Criteria 

AICc  Adj. R2 0.42  AIC 583.94  

MGWR-SAR estimates 
Intercept − 9.605 13.528 − 31.450 − 7.171 3.003 2.789 100.00% – SN 
Ln(E) 0.066 0.001 0.065 0.066 0.066 1.978 82.72% 0.00% SS 
Ln(SW) 0.133 0.016 0.092 0.140 0.156 2.089 63.37% 0.00% SS 
Ln(DPN) 0.007 0.138 − 0.382 0.043 0.217 2.577 57.79% 0.00% SN 
Ln(DCG) 0.052 0.920 − 2.477 − 0.102 2.078 2.688 26.75% 8.00% SN 
Ln(DMM) 3.090 4.415 − 0.063 0.903 12.584 2.607 25.10% 51.00% SN 
Wy*ln(FA) − 9.194 12.384 − 31.749 − 2.456 0.078 2.937 46.91% 9.00% SN 

Kernel function Fixed 
Gaussian  

N 243  AICc 443.87 Log-likelihood − 170.54 

Optimal bandwidth 
Criteria 

AICc  Adj. R2 0.71  AIC 425.58 

Notes: MGWR 2.2 software was used to calibrate MGWR and MGWR-SAR models. MC denotes the Monte Carlo test for spatial variability. SN denotes spatial non- 
stationarity, and SS denotes spatial stationarity at a 5% level of significance. 
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Specifically, the network characteristics variables SW and DMM are not 
statistically significant in MGWR and largely improved in MGWR-SAR. 
Generally, the local models (both MGWR and MGWR-SAR) have a 
general advantage over the OLS and SAR models, where a variable does 
not require to be significant throughout the spatial analysis area. 

The proximity to the primary road network (DPN) is the next 
important variable affecting the freight attracted (FA) to retail estab-
lishments. The spatial analysis results of the estimated parameters for 
the DPN variable are presented in Fig. 3. The variable DPN has a 
stronger and more significant impact on the FA of retail establishments 
near the city centre due to the higher density of the primary road 
network in those locations. Moreover, the distance to the closest city 
gate DCG (as shown in Figure A2) predominantly impacts the amount of 
fright attracted to the retail establishments located in the southern part 
of the city. The nearest city gate to this location (locally named Kality 
gate) is often regarded as the main freight entry/exit gate to the city 
serving more than half of the daily freight traffic (Kebede & Gebre-
senbet, 2017). Retail establishments closer to the city gate can interact 
more with freight generators outside of the city due to their locational 
proximity and easily attract more freight. 

Addis Ababa city has a major market located in the northwest central 
part and is referred to as one of the biggest open markets in the African 
continent. The distance to the major market location, DMM, is another 
important variable characterising the locational attributes in the FA of 
retail firms. The variable DMM is a proxy for the relative location of a 
retail establishment that can relate to the other locational variable DCG. 
The retail establishment near the major market tends to have more 
agglomeration with neighbouring establishments. The highest impact of 
this variable was exhibited for retail establishments located in the 
eastern and southern parts of the city, where becoming closer to this 
major market has the key importance of receiving more freight tonnage. 

The MGWR-SAR model estimates also include the spatial autore-
gressive parameter and allow the estimation of this parameter to change 
significantly over the spatial analysis area, as presented in Fig. 4. The 

spatial autoregressive parameter can be better explained in correlation 
with the above DCG and DMM results (Figure A2 and Figure A3). The 
spatial autoregressive parameter is significant at mid-way locations 
between the major marker and the city gates in the eastern and southern 
parts. Moreover, retail establishments at those locations have higher 
spatial dependence, implying their relative advantage to interact with 
other establishments at the major market within and outside the city 
administrative boundary. Conversely, for the establishments located in 
an area with low or insignificant spatial dependence, the freight analysis 
better employs attributes of the retail establishment itself and its close 
neighbours other than the locational characteristics. 

4.5. Compare the model fit 

The performance of the models developed with OLS, SEM, SAR, 
MGWR, and MGWR-SAR are compared using three indicators: adjusted 
R-square, AIC, and RMSE, as presented in Table 8. From those in-
dicators, the MGWR-SAR is the best method to model freight generation 
at a retail establishment and its interaction with the surrounding envi-
ronment. The MGWR-SAR model explains the variance of the freight 
attraction pattern more than twice when compared to the global models 
(OLS, SEM, SAR) and shows a vast improvement over the local model 
with the MGWR. The MGWR-SAR model explains more than two-thirds 
of the variances in the FA pattern of retail establishments, and the 
remaining variance might be due to the effect of other unobserved fac-
tors not included in our analysis. This model simultaneously addresses 
the problems of nonlinearity, spatial dependency, and spatial 
heterogeneity. 

5. Conclusions 

In this study, the objective was to enhance the prediction of freight 
patterns of business establishments accounting for their spatial and 
locational characteristics. The accuracy of estimating freight (trip) 

Fig. 3. DPN, local coefficients and statistical significance of estimates.  
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attraction (FA/FTA) has low explanatory power when using global 
modelling techniques, such as ordinary least squares (OLS) regression. 
The spatial econometric techniques considered here have the capacity to 
consider local spatial variability and to incorporate spatial and loca-
tional determinants, improving the predictive accuracy of freight 
models. To demonstrate this, the study used establishment-based freight 
survey data collected from Addis Ababa City, Ethiopia. The relationship 
between variables explaining the establishment with its location and 
freight (trip) attraction is modelled with several spatial techniques, 
including spatial error model (SEM), spatial autoregressive model 
(SAR), geographically weighted regression (GWR), multiscale-GWR 
(MGWR), and the combination GWR-SAR/MGWR-SAR. 

The variables used to predict FA/FTA are employment at the busi-
ness establishment level, together with other locational variables. The 
nonlinear functional specification is better suited to model the FA/FTA 
with predictor variables. A finding in line with previous studies is that 
the coefficient of employment ranges between zero and one for all FTA 
models across industry sectors, indicating that FTA is increasing with 
employment at a diminishing marginal rate. However, the FA also shows 
a parallel increase with employment. These results are conceptually 
sound and have the substantial implication of supporting the notion that 
FA and FTA are outputs of different decisions at the establishment level. 
On the other hand, the spatial and locational variables show different 
influences depending on the industry sector and the metrics for 
measuring freight activity. 

The spatial and locational variables indicating street width, primary 
road network and nearness to the city gate affect the FA/FTA of estab-
lishments. For the construction sector, establishments located near the 
city gate tend to have high FA and FTA. For the manufacturing industry, 
establishments closer to the primary road network tend to attract more 
freight. The manufacturing, wholesale and retail establishments tend to 
have higher FA and FTA when located along wider streets. In addition, 
retail establishments near the major market tend to have a higher FA. 
The FA models of retail establishments using the MGWR and MGWR- 
SAR account for the local variability and autocorrelation effects. 
Compared to OLS, SEM and SAR models, these models show superior 
performance on important metrics including R-square, AIC and RMSE. 

The research addresses inherent spatial and locational influences in 
business establishments’ freight patterns (FA and FTA). Regarding its 
applicability, the complexity of incorporating spatial processes can be 
reduced considerably by using geographic information systems (GIS) for 
data collection and spatial representation, together with use of open- 
source tools (such as MGWR 2.2) for spatial analysis. The local spatial 
GIS-based models allow a high accuracy in explaining the local area’s 
unique characteristics and create a better understanding of spatial pat-
terns in freight activity. Additionally, the models offer a visual repre-
sentation of the results that facilitate communication with decision- 
makers. With the presented improvements in predicting freight de-
mand, these models will be useful for making better informed decisions 
regarding infrastructure planning, operational strategies and designing 
new or refining existing urban freight policies. Further research could 
investigate the effect of spatial determinants on freight patterns of es-
tablishments in non-freight intensive industry sectors, such as service 
sectors. Additionally, work is needed on the transferability of the pro-
posed spatial models to a different location and their applicability to 
other samples, to compare with the improvements found here and 
strengthen the generalizability of these results. 

Fig. 4. Spatial autoregressive term Wy*ln(FA), local coefficients and statistical significance of estimates.  

Table 8 
Comparison of goodness-of-fit measures for FA model, retail trade sector.  

Models Adj. R2 AIC RMSE 

OLS 0.29 957.2 1.69 
SEM 0.33 952.3 1.67 
SAR 0.34 949.9 1.65 
MGWR 0.42 583.9 0.76 
MGWR-SAR 0.71 425.6 0.49  
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Fig. A1. Cordon survey locations in Addis Ababa (Addis-Ababa-City-Transport-Authority, 2018)   
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Fig. A2. DCG, local coefficients and statistical significance of estimates  

Fig. A3. DMM, local coefficients and statistical significance of estimates  
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