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Abstract

This paper compares the generalizing capability of
multi-head attention (MHA) models with that of
convolutional neural networks (CNNs). This is
done by comparing their performance on out-of-
distribution data. The dataset that is used to train
both models is created by coupling digits from the
MNIST dataset with a set amount of background
images from the CIFAR-10 dataset. An out of
distribution sample is generated by using a back-
ground not used during training. This paper com-
pares the accuracy of both models on such out-of-
distribution samples to indicate the generalizabil-
ity of both models. Furthermore, the invariance of
MHA models towards certain affine data transfor-
mations is compared to that of CNNs. The results
indicate that MHAs might be slightly better at gen-
eralizing to unseen data, but that CNNs are better
able to generalize to the data transformations per-
formed in this papers experiments.

1 Introduction
Image recognition is a subcategory in artificial intelligence
that handles the interpretation of images. The challenge is to
have the neural network ’understand’ images so it can per-
form tasks like classification, tagging, or detecting objects in
an image. It is currently a growing field with major applica-
tions, from robotics to self-driving vehicles.

One of the classic tasks in computer vision is the classifica-
tion of the MNIST dataset, which contains grayscale images
of handwritten digits and their correct labels (figure 1). Since
its introduction by LeCun et al, the dataset has been used as
a benchmark for new machine learning models. Early recog-
nition techniques used by LeCun et al had error rates of 7 to
12 percent, with CNNs performing the best. This error rate
has steadily decreased over the past 30 years, with the most
recent CNN models able to achieve an accuracy of 99.91 per-
cent [1].

Figure 1: Four MNIST digits

However, a challenge that remains is that these models
lack generalization capability. Even though they can clas-
sify handwritten digits from the MNIST dataset with high ac-
curacy, when they are presented with an image that is un-
like their training data it is not able to generalize what it
has learned and apply it to this new input. This makes the
real-life application of these models hard because it would
require them to experience all possible situations during train-
ing, which is not realistic. To improve the generalizability of
these models multiple methods have been proposed. This pa-

per discusses one of these methods, using self-attention via a
multi-head attention layer in a network.

Multi-head attention layers are part of transformers, a
model first created for Natural Language Processing (NLP)
tasks [10]. Current methods like recurrent neural networks
(RNNs) process words sequentially. They are limited by their
finite memory or words they have previously seen. Attention
attempts to solve this by processing all words simultaneously
and drawing a connection between parts in the sentences in-
dicating their importance. This is a drastic difference from
previous methods, and led to successful models like Googles
BERT model [2].

This mechanism is also applicable to classifying images by
splitting them into patches that can be fed to the network sim-
ilar to words in an NLP context [3]. The attention mechanism
then computes how much attention should be applied to spe-
cific patches. Because the attention mechanism has multiple
heads, the attention is split between multiple parts of the im-
age. This could allow the model to generalize better, as it can
shift its focus in an out-of-distribution input. It is currently
unclear how such an MHA layer compares to a conventional
convolutional neural network on out-of-distribution data.

Aside from accuracy on out-of-distribution data, it also
remains unresearched whether MHAs and CNNs share the
same data level of transformation invariance. Having a net-
work be invariant to data transformations like translation, ro-
tation or scaling is a desired feature in image recognition be-
cause it allows objects to be recognized regardless of their
position in the input data. This allows the network to learn
features wherever they appear, and generalize them to other
positions, rotations, or scales. Current CNNs can be designed
to be translation invariant, but they lack other types of trans-
formation invariance.

This paper’s contribution to current research into MHA
models is two-fold. The first goal is to test a CNN and
MHA model on in- and out-of-distribution data to test the
hypothesis that MHAs are better able to generalize on out-
of-distribution data. The second part is to compare how both
models compare on transformed data inputs.

2 Background
This section provides a brief background on Convolutional
Neural Networks and Multi-Head Attention layers

2.1 Convolutional Neural Networks
Functionality
At the basis of the Convolutional Neural Network [7] is the
mathematical operation ”convolution”. The arguments of this
operation are a function usually referred to as the input, the
second as kernel and the output a feature map. As defined
in the book “Deep Learning” [5] the equation below is the
convolution operation.

s(t) =

∫
x(a)w(t− a)da (1)

This operation represents a weighted average of the values
of the function x, giving us a more smoothed estimate of the
results of x. Though the function w can be replaced with



any function, this is the most common operation for machine
learning contexts. Additionally, we will usually be working
in the discrete case, where our kernel and input are tensors, so
multidimensional arrays. The equation for the discrete case
is:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a)da (2)

The asterisk is the symbol used to denote the convolu-
tion between two functions. The convolution will often be
utilized with multiple axes at the same time, for example,
a 2-dimensional image in our case and therefore also a 2-
dimensional kernel. Equation 3 below allows for this and is
called “cross-correlation”. Even though in machine learning
contexts this term is often interchanged with the term convo-
lution. Figure 2 displays how this operation is applied to an
input matrix to generate the output.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

(3)

Figure 2: Visual representation of convolution operation [8]

A CNN architecture typically consists of a convolution
layer, described by equation 3, followed by a pooling layer.
This pattern is repeated multiple times after which the result
is flattened and processed by a couple of linear layers. A typ-
ical setup is shown in figure 3

Figure 3: Example CNN [9]

Sparse interactions
When working on images our input will often be composed
of many thousands of pixels. Feeding it to a traditional neural
network would require a model with just as many parameters.
Additionally, meaningful information is likely found in just a
small subset of the image, so having thousands of weights set
to 0 is very inefficient. A CNN solves this problem by only
learning a kernel, and shifting this kernel over the input. This
will result in a significant decrease in required parameters.

Translation invariance
One important property of CNNs is that they can be invari-
ant to translation. This means that translating the image does
not affect its ability to recognize patterns. There are many
hypotheses about the source of this invariance, including the
pooling layer and increasing receptive fields in convolution
layers [6].The degree of invariance differs based on model
architecture and training data. This property is important be-
cause this paper will investigate this ability further and com-
pare it with that of MHAs.

2.2 Multi-Head Attention
The visual transformer [3][11] is an extension of the paper
[10]. We first start by explaining the ideas from the original
paper and see how those can be applied to the field of com-
puter vision.

Transformers were created for NLP tasks. the problem
with the previously used methods such as recurrent neural
network RNN is their limited memory. RNN process each
word sequentially and cannot use the information of all the
previously seen or future words efficiently.

Attention solves this problem by, instead of relying on a
sequence of processing, drawing a connection between dif-
ferent words in sentences. To do this, for each word i there
are 3 components: encoding, the query (qi), the key (ki), and
the value (vi). These components are calculated by passing
the vector representation of the input word through a linear
layer, of which the weights are computed during training:

qi = ΘQxi, ki = ΘKxi, vi = ΘV xi, (4)

The importance between word i and another word is cal-
culated by taking the dot product between its query and the
other words’ key. This output vector is then scaled and nor-
malized, resulting in an attention score for each input word:

w = softmax(
qTi · kj√

dk
) (5)

where dk is the size of the linear projections qi and ki.
Softmax is equal to:

softmax(x⃗) =
ex⃗∑n

i=1 e
xi

(6)

To illustrate, consider the following example. For the input
sentence ’I live in Delft’. For each word the query, key and
value is calculated using equation 4. Inserting the key rep-
resentation of word ’Delft’ and key representation of word
’live’ in equation 5, would result in a high value, indicating



Figure 4: Attention Matrix [4]

that there is a strong connection between the word live and it-
self and Delft. Inserting ’I’ as the key would result in a lower
value because it is less important to interpret the word Delft
and to understand structure of the sentence.

This can be done for all queries and keys by matrix multi-
plication using the following formula:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7)

where Q, K, and V are the matrices containing all queries,
keys, and values for all n input patches:

Q = [q1, .., qn],K = [k1, .., kn], V = [v1, .., vn] (8)

The result of this operation is an attention matrix, of which
an example is shown in figure 4. High values in this matrix
correspond to a high degree of attention between the words.
This matrix is then multiplied by the value component. This
means that, unlike the CNN, the MHA layer can use informa-
tion from other patches.

Multi-Head Attention
Multi-head attention is used to be able to pay attention to mul-
tiple parts of the sentence at once. To do this, all attention
vectors are concatenated together:

MultiHead(Q,K, V ) = Concat(Head1, ...headh)W
O

(9)
where

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (10)

With dimensions: WQ
i ∈ Rdmodel×dk ,WK

i ∈
Rdmodel×dk ,WV

i ∈ Rdmodel×dv

Multi-head attention also has the extra advantage that it can
enable better parallelization. ”multi-head attention allows the
model to jointly attend to information from different repre-
sentation subspaces at different positions. With a single at-
tention head, averaging inhibits this.” [10]. The full MHA
layer is visualized in figure 5.

Finally, in the context of this paper, the objective is to ap-
ply transformers to images. This can be done by unfolding
the image into a sequence of flattened patches, which are fed
to the attention mechanism [3]. This is visualized in the lower

Figure 5: Multi-head attention model [3]

part of figure 6. Those patches are similar to the words used
in NLP. This allows the network to compute the attention that
we should apply to each in addition to the link between the
different patches. Multi-head attention means that we can fo-
cus on multiple parts of the image at once. In sharp contrast to
CNNs, MHAs can use information from completely different
parts of an image due to their attention mechanism.

Figure 6: Visual transformer model []

3 Methodology

In this section, the methodology of the techniques used in this
paper is explained. The first section goes into detail about the
datasets used for the general comparison between CNNs and
MHAs. The second section will describe the general model
using convolutional layers. The third section describes how
the MHA model is implemented. The final subsection intro-
duces the affine data transformations applied to the input data.



3.1 Dataset
To compare whether MHA models can generalize better than
CNN’s, we construct a dataset where we can generate an out-
of-distribution sample to feed both models. This dataset is
constructed by overlaying CIFAR-10 images with an MNIST
digit, as seen in figure 7. Consider the following range of
options in which the MNIST dataset could be combined with
backgrounds before training the model on it:

1. The same digits always have the same background.

2. Digits have a set of x amount of backgrounds associated
with them.

3. All digits have a random background image.

In the first case, digits always have the same background
image. For example, every digit ’2’ that occurs in the dataset
would always have a airplane background and the digit ’5’
would always have the same image of a horse. In the last
case there are no backgrounds assigned to digits. Every digit
in the dataset has a random background. This papers model is
trained multiple times using the second case. In this scenario,
a digit has a variable amount of backgrounds. For example, if
x is set to two backgrounds per digit, a ’4’ could be configured
to appear in the dataset sometimes with an image of a boat
and sometimes with an image of a lion. Both would appear in
the dataset and the digit ’4’ would never have another image
then these two.

The performance of the model is than compared by test-
ing it on a out-of-distribution input. This means this input
is a previously unseen digit with a unseen background. The
performance of the model should be dependent on x (the
amount of backgrounds per digit), because different values
of x should lead the model to pay attention to different parts
of the image. When x is high, the background is not a good
predictor for the digit in the foreground. This would lead
the model to primarily train itself using the information on
the foreground. Therefore, when an out-of-distribution input
with an unseen background is presented to a model trained
by a dataset with a high x value, it should be able to correctly
classify the digit. The other extreme is when x equals 1, so
all background images correspond to a digit. In this case, the
model might have trained itself to look at the background to
classify the digits in the foreground because background im-
ages always correspond. This would lead the model would
not performing well on out-of-distribution data. While x is
increased, the model should be trained in a way that increas-
ingly shifts the focus from the background to the foreground,
and therefore has to generalize less when presented with an
out of distribution image.

The main research question of this paper, whether MHAs
perform are better able to generalize then CNNs can be tested
using these various methods of combining the dataset. By
training the model for different values of x, we have models
that have their attention on different part of the image, ei-
ther the irrelevant background or the digit on the foreground.
By then presenting images with unseen backgrounds, we are
able to measure their ability to shift attention to the digit. This
ability corresponds to their generalizability, as they are able to
focus on important parts of an image and ignore unseen ones.

This papers hypothesis about the accuracy of both models un-
der these circuimstances are as follows:

Hypothesis 1: MHAs have higher classification ac-
curacies than CNNs for lower amounts of back-
grounds per digit

Hypothesis 2: CNNs have higher classification ac-
curacies than MHAs for higher amounts of images
per digit

The first hypothesis comes from the hypothesis that MHAs
are better able to generalize to unseen data because it can
pay attention to multiple parts of the input. This generalizing
ability would be most visible for lower x values, because in
this scenario the CNN would focus on the background while
the MHA would be able to shift its attention on an out-of-
distribution image. In a scenario where the model has been
trained with a lot of different backgrounds per digit, both the
CNN and the MHA only pay attention to the foreground be-
cause no information about the foreground can be deduced
from the background during training. Therefore, no ’shift’ of
attention to the foreground is needed by the CNN. In this set-
ting, the CNN might outperform the MHA because the lower
amount of parameters of CNNs makes them less susceptible
to overfitting. This is why the second hypothesis predicts bet-
ter performance for the CNN for higher values of x.

t

Figure 7: MNIST digit with CIFAR-10 background

3.2 CNN architecture
The CNN model is relatively simple consisting of the follow-
ing layers: a common CNN combination of a convolutional
layer followed by a rectified linear unit (ReLu) and a pool
layer is repeated two times. The output is then flattened and
used as input to three fully connected layers coupled with Re-
Lus. The convolutional layers use a kernel size of 5. The
pooling layer is a 2x2 kernel selecting the maximum of the
values in the kernel.

The first convolutional layer has three input channels and
outputs 6 channels. It takes a batch of 32x32 tensor with
three channels, and outputs a 6 channel 28x28 tensor. This
is halved by the pooling layer and then used as input to the
second convolution layer. This convolution layer outputs a
10x10 tensor with 16 channels. This is pooled to a 5x5x16
tensor. To insert this in the fully connected layers, this is flat-
tened to 400 values. This is reduced in width by the fully
connected layers first to 120 and then to a final output of 10,
corresponding to the 10 possible classifications of the MNIST
dataset.

3.3 MHA architecture
The multihead attention model keeps the exact same structure
as the CNN model but replaces the convolution layers with



MHA layers. This similarity between models is maintained to
make sure that the performance between the convolution layer
and MHA layer is compared, and not influenced by other
model parameters. For the MHA layers, the standard MHA
layers from the PyTorch library are used. To ensure that the
output dimensions match those of the CNN, the dimensions
of the keys, queries and values is configured as 6. Unlike [11],
the patches are not generated so that they do not overlap. In-
stead, the original is unfolded in the same way CNNs are,
with a stride of 1. This unfolding procedure generates 784
flattened patches of size 75, equal to the amount the content
of a kernel times the amount of input channels. These patches
are then multiplied by the key, query and value weights, as
described in section 2.2. The output of the MHA layer has 6
channels and is reshaped to two-dimensional patches. Similar
to the CNN a ReLu and max pool is then applied, halving the
height and width from 28x28 to 14x14. This process is then
repeated, unfolding the result into patches to feed into the
next MHA layer. This layer has a dimension of 16, equal to
the CNN. The result of this second MHA layer is then again
pooled and flattened, after which it is used as input to three
fully connected layers.

3.4 Data transformations
The performance of CNNs and MHAs of three types of trans-
formations are tested. These transformations are:

1. Translation

2. Rotation

3. Scaling

These are the translations that often occur in real-world im-
age recognition tasks. CNNs are, dependent on the architec-
ture, invariant due to translation when combined with pooling
layers. They are not naturally invariant to scaling or rotating,
although this can be somewhat learned using data augmenta-
tion techniques. The MHA layer should be invariant to trans-
lation too, meaning that an architecture that is invariant to
translation with a convolution layer should be invariant with
a MHA layer too.

Which architecture might perform better under data trans-
formations is debatable. A possibility is that MHAs are better
able to do this, because the they are not, like CNNs, scarcely
connected. This allows them to construct feature maps in
which a feature is not restricted by the exact location of a
input. If this is sufficiently thought to the model during train-
ing by natural variations, it may allow the MHA to generalize
better. That is why the following hypothesis are constructed.

Hypothesis 3: MHAs are more invariant to trans-
lations then CNNs

Hypothesis 4: MHAs are more invariant to rota-
tions then CNNs

Hypothesis 5: MHAs are more invariant to scaling
then CNNs

These hypothesis will be verified in the experiments. The
next section details how these experiments are conducted

4 Experimental setup
The goal of the experiments is to verify the hypotheses set out
in section 3.1 and 3.3. These hypotheses fall into two cate-
gories. Hypothesis 1 and 2 predict the relative performance
of MHAs and CNNs for a varying number of backgrounds
in the training set and therefore indicate the generalizability
of both models under varying circumstances. The second set
of hypotheses is about the generalizability of data transfor-
mations. This section discusses how the experiments are set
up to answer these two sets of research questions. The first
subsection details the hyperparameters both models use. The
second subsection is about how the comparison is made be-
tween the generalizing capability of both models by compar-
ing their performance on out-of-distribution data. The third
subsection explains how this experiment is extended to data
transformations.

4.1 Hyperparameters
To be able to compare the models they are replicated multiple
times with the same parameters and data from equal distri-
butions. The experiments are performed 10 times on both
models to ensure that the results are statistically significant.
Ideally, the experiments would be run more often, but due to
restricted computing power, this was not possible. A batch
size of 16 with a learning rate of 0.001 is used.

4.2 Comparison models
Per replication, the model is trained with a different dataset.
Each dataset has a different amount of CIFAR-10 images per
digit. To visualize their relative performance, the average ac-
curacy over all replications is graphed per x, where x is the
number of backgrounds per digit. The x data points are pow-
ers from 2 up to 64, which should be a sufficient amount to
have both models pay their full attention to the foreground.

The accuracy of both the training set and the in-distribution
and out-distribution test sets is visualized in a graph. The
training set is the same set used for training the model. For
the in-distribution set, the digits are never seen during training
but the same mapping to background images is used. For the
out-of-distribution set, both the digit and the background are
not seen during training.

Visualizing the experiments in this manner allows us to an-
swer hypothesis 1 and 2. The relative performance for high x
values corresponds to the ’baseline’ performance, where not
much ’shifting’ of attention is required because both mod-
els have been trained to look at the foreground. The relative
performance for lower x values represents the performance
where this is required because it has been trained to look at
the background too. The hypothesis can be answered by com-
paring the difference in accuracy for low and high values of
x.

4.3 Data transformations
This subsection is about the experimental setup for hypothesis
3, 4 and 5.

To measure how both models perform on different data
transformations, new data sets are classified on the trained
model. These test sets have a previously unseen background,



to prevent the model from classifying on the background
alone. This means that these experiments will measure the
generalizability of both networks, as well as their invariance
to data transformations.

The three transformations described in section 3.4 are ap-
plied to digits. Note that the transformations are only applied
to the digit, and not the background. The translation is ap-
plied by moving the digit a certain amount of pixels. Every
digit is translated in a random direction. The rotation is a ro-
tation either clockwise or counterclockwise. In the results,
only positive rotation values are used, which is the average of
the clockwise and counterclockwise results. Finally, the scal-
ing corresponds to a scaling factor. The digits are only scaled
down.

Output
The output is visualized in two ways. In the first graph, a
comparison of all data transformations is given for varying
levels of backgrounds per digit. This graph illustrates the ca-
pacity of all models trained on different datasets, to general-
ize after a certain transformation. Comparing the difference
between the accuracies for both models should give an indi-
cation of the impact these translations have on this capability
and whether this differs for different types of transformations

Another set of graphs will illustrate how well both these
models can generalize to transformed digits under different
amounts of transformations. For example, the accuracy for
both models for different rotations is visualized, from 0 to
50 degrees. For translation, the effect of translating further
away up to 5 pixels is compared. Scaling compares how both
models perform from a scale factor of 1 to a final scale of
0.5. These experiments are done with a set amount of back-
grounds per digit. To still be able to compare two models
in both a scenario where to model is trained to pay attention
to the foreground with a model that also looks to the back-
ground and has to shift its attention more, the results include
a line for both models trained for both for x = 8 and x = 64
backgrounds per digit.

Figure 8: Accuracy on different test-sets for CNNs and MHAs

5 Results
This section is split in two, for the two research questions to
be answered. The first section compares the the CNN with the
MHA model for a varying amount of backgrounds per digit.
The second section compares the effect data transformations
have on the performance of both models.

5.1 Comparison tranformations
This section compares the performance of the CNN and
MHA model on training, in-distribution, and out-distribution
data. The result is visible in figure 8. The amount of back-
grounds per digit is represented on the x-axis. The lines corre-
spond with the average of the accuracies over all the replica-
tions. For both models, the accuracy of the model classifying
the digit on an in-distribution and an out-distribution set is
graphed.

Hypothesis 1 is that MHA models would be able to gen-
eralize could be shown by the model performing better on
out-of-distribution data when the data is configured with a
low amount of background images per digit. Figure 8 shows
that this performance is higher for a lower value value of x.
For 8 backgrounds per digit does the MHA classify the dig-
its significantly better than the CNN. This verifies hypothesis
1. For higher x values, the CNN performs better than the
MHA. This is explained by the attention mechanism provid-
ing no real benefit because due to the high amount of different
backgrounds both the CNN and the MHA model have trained
to pay attention to the foreground only. However, the chart
shows that these results are very uncertain for higher values
of x. The result is not statistically significant for this amount
of replications. For this reason the second hypothesis is likely,
but cannot be verified with the results from this experiment.

5.2 Effect data transformations
This section describes the impact of data transformations on
the performance of both models. The first subsection com-
pares different transformations to provide an indication of the
performance of MHAs and CCNs for a certain amount of
background. The second subsection investigates the invari-
ance for both models for multiple degrees of transformations.

Comparison data transformations
In figure 9 the accuracy of both models for varying amounts
of backgrounds per digit is given, for the three given trans-
formations. The top two lines provide the baseline out-of-
distribution test set. The three other lines represent a rotation
of the digit by 20 degrees, a scaling of the digit with a scale
factor of .75, and a translation in a random direction of 4 pix-
els.

The results in figure 9 show very similar accuracies for
both models after the data transformation. The CNN out-
performs the MHA significantly in generalizing to unseen
data transformations. The relative performance for both mod-
els follows the same pattern for all data transformations: the
MHA model performs relatively well for lower x values and
the CNN performs better for higher x values. This is in line
with this paper’s hypothesis of MHA’s being able to general-
ize better, as described in section 5.1. The different data trans-
formations result in a more slightly diverging performance



Figure 9: Accuracy CNNs MHAs after transformed data input

between the MHA and CNN for higher values of x. This is
most visible for the scaling transformation. This is investi-
gated further in the next section.

Effect severity transformation
This section compares the effect of specific types of trans-
formations for a model trained on a dataset where the digits
have 8 or 64 backgrounds. Figure 10 shows the relative per-
formance for translations for x amount of translation in any
random direction. The graph shows two sets of lines, one
comparing a CNN and MHA for 8 backgrounds per digit and
one comparing these for 64 backgrounds per digit. This graph
should not be interpreted by looking at the absolute accuracy
of both models. Instead, the performance between the MHA
and CNN should be compared for both sets of lines. Even
though for x = 64 the CNN performs better and for x = 8 the
opposite holds, the graph shows that both MHA lines decline
significantly more rapidly for larger translations. Comparing
the blue line to the orange line and the green line to the red
line shows that the MHA is more affected by the translation
than the CNN.

Remarkable is the bad performance of the CNN under
translation. CNNs can be constructed to be translation in-
variant. However, probably because this architecture flattens
the output maps and is processed by linear layers, the CNN
architecture loses this ability. While the MHA should also
be invariant to translations, it seems unable to generalize well
under this architecture. Because the CNN outperforms the
MHA, hypothesis 3 proves to be incorrect.

Figure 11 contains the relative performances for different
rotations of the digit. This is the average of clockwise and
counterclockwise rotations. This result is very similar to the
results for translation. Again, the CNN is more invariant to
rotations than the MHA. This is in not line with hypothesis 5.

Figure 12 shows the accuracy for the scaled digits. Both
models do not have any natural invariance to scaling. While
the resulting accuracies of both models have a high variance,
the CNN seems significantly more invariant to scaling than
the MHA for both lower and higher amounts of backgrounds.

Figure 10: results accuracy for translation transformation

As mentioned in 5.2 The difference in performance between
the models is the biggest for this transformation. Like the
other transformation hypothesis, Hypothesis 5 is incorrect
according to these results because the CNNs seem more re-
silient to rotation.

6 Discussion
The results comparing both models on an out-of-distribution
test set show that the MHA performs slightly better in situa-
tions where the model is required to shift its attention more.
This suggests that the attention mechanism is better able to
generalize. The fact that the CNN performs better for higher
amounts of backgrounds per digit suggests that they perform
better in situations where this generalization is not needed.
However, this assumption may be too big based on the results
of this experiment, as many other factors have to be taken
into account. For example, both architectures are not opti-
mized for this task, to ensure that they are similar enough

Figure 11: results accuracy for rotation transformation



Figure 12: Accuracy CNNs and MHAs for different scale factors

to compare easily. It could be that a full visual transformer
architecture is better able to make use of the attention mech-
anism and as a result have better generalizability or have a
better baseline performance like the CNNs.

Furthermore, The results of the MHAs after the data trans-
formations are surprisingly worse than those of CNNs. Con-
tradictory to our hypothesis, the fact that they are not sparsely
connected does not mean they perform better after slight data
transformations. A possible explanation is that the MHAs
did overfit to the data. No definitive explanation can be for-
mulated as to what causes this performance difference. What
is unfortunate is that this research was not properly able to
research the translation invariance because the architecture
was inherently not translation invariant due to the flattening
and linear layers. Further research could investigate this in-
variance by designing an architecture that would be invariant.
This could be done by implementing an aggregation function
over the feature maps of the MHA.

Lastly, the results show a high standard deviation between
the results of different replications of MHAs. This is in con-
trast to CNNs, which seem to have a consistent performance.
It is unclear where this inconsistency in MHAs performance
originates from. For further experiments on this matter, it
is suggested that the model is first optimized so consistent
results are achieved, before attempting any comparison to
CNNs.

Further experiments are recommended for a definitive an-
swer to this paper’s research question. It could show for ex-
ample, that an MHA is significantly better able to generalize
if it has seen more variation during training. By training the
data with slight data augmentations, this could be verified.

7 Responsible Research

This section reflects on the ethical aspects of this research.
The first subsection discusses the reproducibility of the ex-
periments and the usage of their data. The second subsection
details the integrity of the author.

7.1 Experimental setup and results
This research and the structure of this paper have been struc-
tured in a way to be reproducible. For this reason, a standard
implementation of an MHA is used, and big common open-
source datasets have been used to test its accuracy. The CNN
architecture is also easy to recreate. The code is also available
on GitHub. This also includes the resulting data.

The experiments were replicated 10 times, to ensure that
the results accurately mirror the average behavior of both
models. Because the standard deviation in the results is still
quite large for MHAs, further experiments could be con-
ducted with an even larger amount of experiments. For this
paper conclusions on relative accuracies of models are made
not on statistical tests, but based on whether the standard de-
viations of results overlap.

Furthermore, giving as broad of a picture of the possible
results of the experiments was a priority in this picture. There
have not been any results with a contradictory conclusion to
that that what has been presented in this paper. The data that
has been presented in the paper has been selected because it
shows a correct summary of all the data. This was a chal-
lenge, because the resulting data is for two models, for 7 dif-
ferent amounts of backgrounds per digit, for multiple types
of translations, and for different severities of translations. An
attempt was made to show the most relevant plots and explain
why these plots are most relevant given the characteristics of
both models and their apparent performance. For the sake of
transparency, all data is made public online.

7.2 Scientific integrity
While this paper is structured according to a scientific paper,
there is no intention of publication. The result of this is that,
while its subject is not widely discussed in the literature, there
is no pressure for the results to be significant. The author also
does not have a special interest in either CNN’s or MHA’s,
preventing any conflict of interest in comparing their perfor-
mance.

8 Conclusion
The goal of this research was two-fold; First, to compare the
generalizing capabilities of MHA and CCN models by clas-
sifying out-of-distribution data. Secondly, to investigate their
invariance to certain data transformations applied to the in-
put data. This has been researched by training both models
on MNIST dataset with CIFAR-10 backgrounds, and test-
ing them with an out-of distribution test set with unknown
backgrounds. The experiments performed for this paper sug-
gest that MHAs are better able to generalize in the context
of this papers experiments. Futhermore, MHAs seem to per-
form slightly worse in scenario’s where generalizing is not
required. This result is not conclusive though, as the results
from the MHA model are not consistent enough.

Finally, the results illustrated that MHAs do not perform
well after affine data transformations have been applied to
the model. This suggests they are not able to generalize to
slightly modified data. However, this relation could be further
investigated using models that are optimized for transforma-
tion invariance, which this model was not.
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