TU Delft

Applying Fine-Tuning methods to FTTransformer
in Anti Money Laundering applications

Vasco de Graaff!
Supervisor(s): Kubilay Atasu', Atahan Akyildiz'

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Vasco de Graaff
Final project course: CSE3000 Research Project
Thesis committee: Kubilay Atasu, Atahan Akyildiz, Burcu Kulahcioglu Ozkan

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

This research investigates the effectiveness
of combining Feature Tokenizer Transformer
(FTTransformer)[6] with graph neural networks
for anti-money laundering (AML) applications. We
explore various fine-tuning techniques, including
LoRA[9] and vanilla fine-tuning, our baseline FTT
architecture. Using the IBM AML dataset [1], we
compare the performance of different models and
fine-tuning approaches. Our results indicate that
FTT alone do not outperform GNN’s and careful
configuration is required when working with
datasets of Multi-Modality. This work contributes
to the development of more efficient and accurate
methods for detecting financial fraud patterns.

1 Introduction

The detection and prevention of money laundering have be-
come increasingly critical in maintaining the integrity of
global financial systems. As criminal organizations develop
more sophisticated methods to conceal illicit financial activ-
ities, the need for advanced analytical tools has never been
more pressing. Machine learning, particularly in the do-
mains of Graph Neural Networks (GNNs) and Tabular Trans-
formers, has shown significant promise in addressing these
challenges. This research project explores the frontier of
anti-money laundering (AML)[1] technology by combining
the strengths of GNNs and Feature Tokenizer Transformers
(FTT)[6]. We investigate the potential of this fused architec-
ture to enhance the accuracy and efficiency of detecting com-
plex money laundering patterns. Furthermore, we examine
the impact of various fine-tuning strategies on model perfor-
mance, with a particular focus on state-of-the-art techniques
such as Low-Rank Adaptation (LoRA)[9].

1.1 Graph Neural Networks (GNNs)

Graph Neural Networks represent a cutting-edge approach to
modeling and analyzing structured data. By representing data
as nodes and edges within a graph, GNNs can capture intri-
cate relationships and interdependencies that are often crucial
in identifying suspicious financial activities. Recent advance-
ments in GNN architectures have incorporated sophisticated
techniques such as attention mechanisms and enhanced prop-
agation algorithms. These improvements have led to deeper
insights into data connectivity and topology, resulting in en-
hanced performance across various applications, from social
network analysis to bioinformatics. In the context of AML,
GNNs offer a powerful tool for understanding the complex
web of transactions and relationships that may indicate illicit
activities. The work done by the PyTorch Geometric team
has significantly advanced the field, leading to several state-
of-the-art results in multi-modality tabular learning [10]

1.2 Feature Tokenizer Transformers (FTT)

Feature Tokenizer Transformers represent another significant
advancement in machine learning [6], particularly suited to
handling large, complex datasets. FTTs combine feature tok-
enization, which processes input data into a format amenable

to machine learning models, with transformer architectures.
These transformers are designed to weigh the influence of
different parts of data relative to each other, providing a ro-
bust framework for learning from diverse data modalities. In
the realm of AML, FTTs offer the potential to efficiently pro-
cess and analyze vast amounts of transactional data, identi-
fying patterns and anomalies that may indicate money laun-
dering activities. Additionally, Tabular Transformers have
also shown great performance in Self Supervised applica-
tions, simplifying the feature engineering process as previ-
ously required when training deep neural networks. [16]

1.3 Fused Architecture

Our research initially explores a novel fused architecture that
combines the strengths of both GNNs and FTTs. This ap-
proach aims to leverage the relational learning capabilities
of GNNs with the powerful feature processing and attention
mechanisms of FTTs. By integrating these technologies, we
hypothesize that we can create a more robust and effective
system for detecting complex money laundering patterns.

The fused architecture was explored to fill in the research
gap following the previous results from GNN’s in assess
AML(Anti Money Laundering) applications from previous
work [4]. Figure 1 is the baseline fused architecture given
to us by the supervisor.

r Al

Table TabConv TabConv TabConv TabConv MCM
Layer Layer Layer > Layer Head
Fusing
Relational Layer
Multi-Modal —
Data P
Graph | GNNLayer | | GNN Layer }—»[Hm

Figure 1: Fused architecture

1.4 Supervised Architecture

In this section we explore the architecture of the Supervised
Training model as you can see in Figure 2. This was the
model which was given by the supervisor to build on top of.

Encoder

In the decoder, the database entries get transformed. There
are three outputs of this layer. The Embedding Encoder which
translate the categorical inputs into an embedding, a Lin-
ear Encoder which translate numerical features and lastly a
timestamp encoder.

Backbone

Next up is the backbone of the architecture, this is where most
of the weight update happens and where the learning in the
model happens.

Decoder

Lastly, we have the decoder - in this layer the multidimen-
sional output of the backbone gets reduced into the training
objective. In the self-supervised head, that is MCM(mask cell
modelling), and LP (link prediction). On the other hand, the
supervised head, we have a binary classification task, to pre-
dict whether or not the input transaction is Money Launder-
ing.



—
Relational
Multimodal Data
Embedding Linear Timestamp
Encoder Encoder Encoder
¥
Backbone

CLS C_1 C_n-1 C_n

Supervised head/ Decoder

classification

P_1 P2 .-+ [Pk

Figure 2: Base Supervised Model

1.5 Research Objective: Fine-tuning

We now look into fine-tuning, the specific technique which
has proven to show effective results when trained on Deep
Neural Networks [11].

1. What is the effectiveness of supervised training? GNN
vs FTT

2. Explore Zero-shot (pre-training) performance

3. Compare performance of pre-training + full fine-tuning
vs pre-training + freezing model backbone

4. How does LoRA fine-tuning perform?

2 Background

In this section, we explore previous work that has been done
and look into ideas we plan to incorporate into our research.
We specifically look into previous papers from the IBM AML
paper [1] and the LoRA paper [9].

2.1 IBM anti-money laundering

A significant advancement in the domain of financial fraud
detection, particularly in anti-money laundering (AML)[1],
where a synthetic financial transaction dataset generator was
created. This novel agent-based generator is designed to
simulate realistic transactional behaviors in various banking
scenarios, incorporating multiple currencies and transaction
types to enhance the depth and applicability of training data
for machine learning models. Crucially, the research intro-
duces publicly available datasets that serve as a benchmark
for comparing the efficacy of different AML detection mod-
els, including graph neural networks (GNNs) and gradient-
boosted trees (GBT)[7]. By providing a controlled, repro-
ducible environment for model training and evaluation, this
work not only enriches the methodological tools available
to researchers but also lays the groundwork for more robust
and effective AML systems in practical settings, promoting a
higher standard of transparency and reprehensibility in finan-
cial security research.

2.2 LoRA (Low Rank Adaptation)

Recently, LoRA has been proven to extremely efficient
method of fine-tuning LLM (Large Language Models) to new
downstream tasks [9]. LoRA works by using the assumption
that Deep Neural networks, during fine-tuning, have a low
“intrinsic rank” during the weighted updates. This means that
the changes of the weights in the original backbone can be
represented by a much smaller matrix. This works because
of matrix decomposition as you can see below in the formula
below.

h=Wyx+ AWz = Wyz + BAx

The main benefit of LoRA is the increased memory efficiency
and the significant reduction in total learnable parameters.
Additionally, LoRA adapters can also be hot swapped be-
tween each other. This allows you to have multiple LoRA
fine-tuned weights that each serve a different purpose and still
keep using the same pre-trained model. This has significant
downstream benefits when running inference. It allows the
models to be swapped easily and quickly without significant
memory overhead of loading a new model.

3 Methodology

In this section, we will look into the methodology in which
we answer our sub-questions. We look into how differ-
ent fine-tuning techniques perform when combined with pre-
trained models. In this paper [5] the authors explore the ben-
efits of self supervised training and how it has great down-
stream applications. This is very beneficial when it comes to
fine-tuning the model into a new specific objective.

3.1 Vanilla fine-tuning

Vanilla fine-tuning is the standard approach to fine-tuning a
pre-trained model, where all the parameters of the model are
updated during the fine-tuning process. This technique in-
volves initializing the model with pre-trained weights and
then continuing the training process on a specific task and
dataset, allowing all the parameters to be updated based on
the new data. Importantly, its crucial to benchmark the per-
formance of vanilla fine-tuning versus other more complex
techniques.

3.2 Freezing backbone

In this approach, the backbone or the majority of the pre-
trained model’s layers are frozen, meaning their weights are
not updated during fine-tuning. Only a small portion of the
model, typically the final few layers, are fine-tuned on the
target task and dataset. This technique is often used when the
available data for fine-tuning is limited, as it reduces the risk
of over fitting and allows the model to leverage the knowledge
acquired during pre-training more effectively. This has also
been explored in this paper here [15] in the context of object
detection. It shows that it improves model performance while
maintaining original learning within the backbone while fine-
tuning the encoder and decoder.



3.3 Applying PEFT - LoRA

We implement LoRA as a Parameter Efficient Fine-Tuning
(PEFT) technique in our baseline architecture. LoRA is in-
tegrated by adding low-rank adaptation matrices to the atten-
tion layers of our transformer backbone, allowing for efficient
fine-tuning with reduced trainable parameters. We use a rank
of 4 for LoRA, applied to backbone. This approach was cho-
sen for its memory efficiency, quick adaptation potential, and
possible improved generalization. Unlike vanilla fine-tuning,
LoRA updates the model with minimal parameter changes,
and compared to freezing the backbone, it offers more flexi-
bility in adapting pre-trained knowledge. We expect this will
reduce the total training time, thus reducing the training costs
of the model.

W.x + AW.x (Output)

] aw.x

AW
(Weight
Update)

1 )

X
(Input)

Figure 3: LoRA fine-tuned backbone

w
(Pre-trained
Weights)

4 Experimental Setup

In this section, we look into the experimental setup in order
to answer our sub-questions. We first present our evaluation
metrics and then look into our fine-tuning objectives. Then
we will explore the specific task we are fine-tuning and the
evaluation framework for it.

4.1 Setup and Environment

We ran our experiments on the Delft Blue Supercomputer
cluster, this consisted of A100 GPU’s 80GB which allowed
us to schedule tasks via SLURM. However towards the end
of the project, queue times got too long and we had to start
running experiments locally. A MBP M1 Pro 32GB gave de-
cent computation times when not using the whole dataset. In
terms of Software and Libraries, the full list can be found
in our conda environment file in the project’s repository, the
most notable ones were Pytorch, pytorch_frame and wandb.
We aim to publish our repository in the near future.

4.2 Dataset

As we have explored in the background, we will be
using the IBM AML(anti-money laundering) dataset for
these upcoming experiments. The dataset used is the
HI_Small_Transaction. This dataset contains approximately
5 million rows, of which around 5000 are positive exam-
ples (i.e., transactions identified as money laundering). The

dataset is highly imbalanced, with a ratio of 1000:1 for nega-
tive to positive examples.

The HI_Small Transaction dataset includes various fea-
tures relevant to financial transactions, such as transaction
amount, timestamp, sender and receiver IDs, and transaction
types. The data is synthesized to mimic real-world financial
transactions, providing a controlled environment for testing
machine learning models without compromising sensitive in-
formation.

4.3 Fine-tuning Task

Fine-tuning can be used to improve the current model further,
or adjusting the model to another downstream task. Specif-
ically, we look into using binary classification as the down-
stream task. This is done by first using the pre-training step,
which has a training objective of doing finding the RMSE
of the predicted masked columns. Then we fine-tune this
model and adjust the task to do binary classification on the
fraud dataset. This inherently is quite a difficult task due to
the nature of the dataset. Since the IBM AMI dataset was
constructed for fraud prediction on GNN’s. It makes it quite
tough to use the initial FTT code to run binary classification
tasks on it.

4.4 Hyper parameter selection

Due to the limited time in this project, we weren’t able to do
a full hyper parameter search. As a result, we ended up using
the baseline hyper parameters provided by our supervisor. In
our fine-tune experiments, we keep the number of epochs to
10.

Hyperparameters Supervised Self Supervised
Batch Size 1024 1024
Channels 256 256
Hidden layers 4 4
Epochs 10 10
Learning Rate le-3 le-3
Learnable Parameters M 12M

Table 1: Hyper parameter for each model

4.5 Evaluation Metrics

Since binary classification is our main focus, the F1 score is
used as the standard metric. To define the components of the
F1 score, consider the following formulas:

TP

Precision = — (D)
TP + FP
TP
Recall = ———— 2
T TP EN @
Precision - Recall
Fl—2. recision - Reca 3)

Precision + Recall

Accuracy in this case would be a bad metric due to the
large class imbalance of the dataset [8]. For example if we
predict all rows as *Not money laundering’, we would have
an accuracy of over 99%. However, this can be done trivially
and doesn’t show that the model has learned anything.



In our pre-training tasks, we evaluate our progress using
RMSE (root mean squared error) or accuracy. The formula
for RMSE is below in equation 4, where n is the number
of predictions, y; is the actual value and g; is the predicted
value. Accuracy works here as we are comparing the pre-
dicted value with the masked value we applied during our
pre-training step.

RMSE = 4)

4.6 Experiments

To answer our research question and the sub-questions, we
look into exploring these experiments which should give us
results into understanding how fine-tuning performs on these
tasks.

Experiment 1: Supervised Learning
The first experiment investigates the performance of super-
vised learning techniques utilizing FTT and GNN’s.

Experiment 2: Self Supervised Learning

Next, we assess the effectiveness of pre-training strategies,
specifically focusing on the impact of these strategies on a
secondary task, which involves predicting the RMSE for the
MCM task.

Experiment 3: Fine-tuning

Finally, we explore the results of fine-tuning our models on
these specific tasks, examining how freezing the backbone,
oversampling the minority class and using PEFT techniques
influences the overall model performance.

5 Results

Our experiments yielded results that, while not meeting initial
expectations, provided valuable insights into the challenges
of applying tabular transformers and fine-tuning techniques
to the IBM AML dataset.

5.1 Supervised

The baseline FTTransformer model initially struggled with
the highly imbalanced dataset, consistently predicting the ma-
jority class. As we can see in the results Table 2, the f1 score
of FTT significantly lags behind GNN techniques. The preci-
sion of the model also suggest that it is over classifying thus
having a precision score of 0.02459. Meaning that 2% of
positive predictions are actually Money Laundering Transac-
tions. One interesting result tho is that the recall score of the
FTT is actually quite good, meaning that in actual fraud cases,
its able to predict it over 90% of the time.

Comparing our results to the original GNN paper on the
IBM AML dataset[1], we found that:

e The PNA (Principal Neighbour Aggregation) GNN
model significantly outperformed (f1) our FTTrans-
former approach.

e The GINe (Graph Isomorphism Network extended)
model also showed better performance (f1) than our
baseline implementation.

5.2  Self Supervised

Our self-supervised pre-training approach showed promise in
learning general features from the data, as you can examine in
Table 3. The FTT self supervised model achieved an RMSE
of 0.09267 and an accuracy of 0.8549 on the mask cell mod-
eling task. While these metrics indicate good performance
on the pre-training objective, they did not translate directly
to improved performance on the money laundering detection
task. Compared with the fused model scoring at 0.0432 for
RMSE and 0.8017, we can see that the extra complexity of
the extra layers did yield slightly better results.

5.3 Fine-tuning

We applied three fine-tuning methods to our self-supervised
model: vanilla fine-tuning, frozen backbone, and LoRA. The
results showed minimal differences across methods, with
consistently low F1 scores (0.02840 to 0.03844), very low
precision (0.0145 to 0.01981), and moderately high recall
(0.6493 to 0.6828). These metrics suggest our models are
overly sensitive, flagging many transactions as suspicious
(high recall) but with poor accuracy (low precision). This
pattern indicates struggles with the extreme class imbalance
in the dataset and difficulties in effectively transferring pre-
trained knowledge to the specific task of money launder-
ing detection. The consistent performance across fine-tuning
methods implies that the challenges may be more fundamen-
tal, potentially stemming from the mismatch between our
model architecture and the graph-optimized nature of the
IBM AML dataset. While the high recall is valuable for
catching potential fraud, the low precision would lead to nu-
merous false alarms in practice, highlighting the need for
more sophisticated approaches to handle class imbalance and
improve overall detection accuracy.

5.4 Reflecting on Research Objectives

What is the effectiveness of supervised training? GNN vs
FTT

As explored in the Supervised section, the GNN model out-
performs FTT model. This is likely due to the missing graph
structure in the pre-training process of FTT. This is explored
further in the discussion section.

Explore Zero-shot (pre-training) performance
Pre-training/Self Supervised learning performed moderately
well at its task objective of MCM, we can see that we are
achieving high accuracy and RMSE in Table 3.

Compare performance of pre-training + full fine-tuning
vs pre-training + freezing model backbone

Between vanilla fine-tuning and the frozen backbone fine-
tuning, there were negligible differences. Both fine-tuning
methods struggled outperforming the base supervise model.
My hypothesis is that there’s not much transfer learning hap-
pening and most the learning happens at the decoder layer.

How does LoRA fine-tuning perform?

Similar to the other fine-tuning methods, LoRA did not show
a significant improvement in performance metrics. The F1
scores and precision remained low, indicating that the method
was not effective in addressing the challenges posed by the



dataset’s class imbalance. However, LoRA offered some ad-
vantages in terms of training efficiency. The reduction in the
number of trainable parameters resulted in slightly shorter
training times compared to vanilla fine-tuning. Freezing the
backbone did give faster performance since there are even less
learnable parameters as a result.

6 Discussion

In this discussion section we explore the challenges in con-
ducting these experiments and look into crucial learning that
help us understand the results better. We first explore the issue
with the baseline supervise model’s loss function, then ex-
plore challenges with the dataset, look into why LoRA didn’t
perform as well as expected and the complications we had
with the decoder head of the fused model.

6.1 Loss Function Exploration

Using the base model provided with cross entropy did not
perform as expected. The model always predicted the mi-
nority class falsely as it predicted everything as being 'Not
money Laundering’. After diving deeper into the code, it
turns out the cross entropy loss function was not weighting
in the weighted distribution. As a result, the update of the
loss function was not performing as well as it should. Before
this bug was found, I also explored other options such as Fo-
cal loss [13], which has shown promising results in the area of
object detection models which large class imbalances. How-
ever, it wasn’t necessary once the fix for the class imbalance
was implemented.

6.2 Dataset

One significant limitation of this project was the dataset and
the manner in which it was utilized by the base models. The
extreme class imbalance of 1000:1 (False to Positive exam-
ples) in the training set posed a substantial challenge for mak-
ing accurate predictions. In traditional finance applications, a
more balanced dataset would be preferable to improve model
performance.

During the pre-training step, we did not reconstruct the
graph, which made it exceedingly difficult to achieve opti-
mal results. The data was synthesized by generating one of
the eight types of graphs depicted in Figure 4. As stated in
the synthesis of the IBM AML dataset paper [1], this ap-
proach hampers the consistent prediction of money launder-
ing patterns because the graph reconstruction process is not
adequately addressed.

7, v v 7/ - \kl‘msi:‘:m %
& &GS IR EER

(a) Fan-out (b) Fan-in (c) Gather-scatter (d) Scatter-gather (e) Simple cycle (f) Random (g) Bipartite (h) Stack

Figure 4: Synthesized Graph from IBM AML [1]

In Figure 5, we can examine 3 rows of the dataset, there
is very little information which can be derived from the rows
individually. We only know when the transaction happened,
which node its from and going to, the amount, currency and

Amount
Received
0.2968 US Dollar
0.0004 US Dollar
0.3505 US Dollar

Receiving
Currency

Payment
Amount Paid | _Currency
0.2968 US Dollar Reinvestment 0
0.0004 US Dollar Cheque 0
0.3505 US Dollar ACH 1

Payment
Format

Is
Timestamp | From Bank | From ID | To Bank | To ID Laundering
1661984400.0( B_10 0 B_10 0
1661984400.0( B_3208 181 399658

16620490200 B_22806 250026 B 6179 250027

Figure 5: IBM AML processed data

payment format. Since there’s also only 1 1 categorical value,
payment format, the model is likely to over-fit. As a result,it
is extremely hard to classify whether or not a transaction is in-
volved in money laundering without reconstructing the graph
and detecting one of the graph structures as in Figure 4.

Upon discussing these results with my supervisor, it was
suggested to explore the Amazon Fashion dataset used by
other team members. However, the nature of this dataset
made it unsuitable for this fine-tuning research. The Amazon
Fashion dataset contained a single text column with user re-
views and another column for the final rating. The remaining
columns were metadata that did not contribute significantly
to a robust experimental setup.

Given that the only learnable column was a large text field,
a large language model would have been a better fit for classi-
fying the review ratings. This approach, however, overlapped
substantially with another teammate’s research question. Due
to the short timeline, an alternative dataset that better suited
the requirements of this research was not identified in time.

6.3 LoRA

In this section we explore LoRA and try to understand the
results we got. Looking at the results, we see that LoRA
slightly outperforms full fine-tuning. Initially we’d expect
that this would make a larger impact, however, after careful
examination, we found out that most of the learnable param-
eters after fine-tuning the base self-supervised model, was in
the encoder and decoder. As a result, this didn’t make a big
impact of the training time as expected. You can see this in
Figure 5, there are slightly under 6M learnable parameters in
the encoder and decoder, while the self supervised backbone
only had 300,000.

FTTransformer
F-stypeWiseFeatureEncoder: 1-1
Lmodutlebict: 2-1 --
| LEmbeddingEncoder: 3-1 5,928,832
| LLinearEncoder: 3-2 256
| LTimestampEncoder: 3-3 7,296
F-FTTransformerconvs: 1-2 128
LTransformerEncoder: 2-2 --
| LmoduleList: 3-4 298,752
| LLayerNorn: 3-5 256
[—SelfSupervisedHead: 1-3 --
Lsequential: 2-3 --
| LlayerNorn: 3-6 256
| LReLu: 3-7 --
| Llinear: 3-8 129
LmoduteList: 2-4 --
| Lsequential: 3-9 3,930,886
| Lsequential: 3-10 2,191
| Lsequential: 3-11 1,159
| Lsequential: 3-12 2,191
| 2,039,875

Lsequential: 3-13

Total params: 12,212,207

Figure 6: Learnable parameters from Self Supervised model

6.4 Decoder Head

Lastly in the discussion, we need to touch on the Decoder
head of the Fused Architecture. The training object of the



fused model is to do MCM(Mask Cell Modelling) and LP
(Link Prediction). These two objectives are the two outputs of
the Self Supervised decoder. As you can imagine, These two
training objectives are largely uncorrelated to money launder-
ing patterns. LP at first thought may be related, however, in
the way the base architecture implements link prediction, we
mask the link and then try to predict whether or not the link
exists in the first place. This does not give benefit to the train-
ing task of predicting money laundering patterns. As a result,
we could not combine the decoder head of the fused architec-
ture with the supervised decoder head to gain valuable results.

7 Conclusions and Future Work

This research paper explores the integration of FTT for
anti-money launder(AML) applications using the IBM AML
dataset, specifically, looking into various fine-tuning tech-
niques. Our findings highlighted several key insights and
challenges in applying these advanced machine learning
models to detect money laundering activities. Most impor-
tantly, we learned that it is extremely important to first under-
stand the nature of the dataset and understand its character-
istics, additionally if it was synthesized, how this is done is
also extremely important. This can have downstream effects
when training the model if overlooked.

Future work should focus on addressing the limitations of
FTT and exploring the necessity of graph reconstruction for
training AML applications effectively. Additionally, there has
also been a literature survey [2] done to understand better
what machine learning methods are used in AML applica-
tions. Finally, we suggest potential questions for further re-
search to further push the field forward.

* Investigate whether oversampling the minority class us-
ing SMOTE [3] would produce better results with the
original dataset.

* Explore the benefits of fine-tuning GNNs specifically
for AML applications, building on previous research on
Adapter GNNs for fine-tuning [12].

* Examine how other fused architectures with different
training objectives perform when fine-tuned, potentially
extending the work of our teammates on various FTT
and GNN fusion architectures.

e Compare the performance of tree-based learning meth-
ods such as XGBoost with transformer-based architec-
tures in AML applications, considering recent findings
that suggest simple tree models may still outperform
more complex transformer architectures [7].

8 Responsible Research

In developing machine learning techniques for money laun-
dering detection, we must consider the broader implications
of our work. This section addresses the environmental impact
of our experiments, potential biases in our approach, steps
taken to ensure reproducibility, and ethical considerations.
We recognize the significant societal impact of such technolo-
gies and aim to conduct our research responsibly, with a focus
on transparency, fairness, and sustainability.

8.1 Environmental impact

Our research inevitably requires substantial computational re-
sources and associated energy consumption due to the nature
of training complex machine learning models. We acknowl-
edge this environmental impact and have taken several steps
to mitigate it:

Local development

We initially develop and test our models locally to ensure
their functionality before deploying them on the cluster. We
do this by running the model on an small version of the
dataset (1/100 size). This approach significantly reduces un-
necessary energy consumption from running faulty or ineffi-
cient code on high-performance computing resources.

Efficient cluster utilization

Efficient cluster utilization: Given the high load and poten-
tially long queue times on the cluster, we optimize our code
and experimental design to maximize the efficiency of our
cluster usage.

Technological advancements

We recognize that compute efficiency has significantly im-
proved over the past two decades, largely due to Moore’s
Law. This trend suggests that training equivalent models in
the future will likely consume less energy and have a smaller
environmental footprint. However, we also acknowledge that
model complexity tends to increase over time, potentially off-
setting these gains.

8.2 Bias

Addressing bias in AML detection models is crucial to ensure
fair and equitable applications of the technology. In [14], data
bias led to unfair treatment of specific racial/income groups.
Knowing this, we’ve need to address potential sources of bias,
though future work. We need to look into the distribution of
the AML dataset and conduct research on the representation
of the dataset to real world data. One big issue in open source
AML data is that it is very scarce and limited. This is due
to the nature of the application, issuing banks and payment
service providers are hesitant to open source this data as it
may give fraudsters an edge in developing new techniques to
commit fraud without getting noticed.

8.3 Reproducibility

Ensuring the reproducibility of our research is essential for
scientific integrity and to allow for further advancements in
the field. The code for this project is available in our reposi-
tory which comes with a README file to help you setup and
reproduce our results. We aim to publish this repository in the
near future. We used an open sourced dataset to conduct the
research!. The hyper parameters used are also documented in
the methodology section. Furthermore, all the logging of the
results was done in wandb which can be explored further.

'See Appendix A for the dataset link.



Acknowledgments

I would like to thank my two supervisors, Atahan and Profes-
sor Atasu. This project would not have been possible without
their support and direction. I am also very grateful to my fel-
low teammates, Ilias, Dragomir, Catalin, and Efe, and what
we were able to achieve in such a short amount of time.

Lastly, I would like to express my deepest gratitude to my
parents, who have continually supported me throughout my
university journey and given me love and advice from the
other side of the world in Thailand. They continue to moti-
vate and inspire me to push myself every day in my personal,
academic, and professional journey.

Appendix A: Dataset Source

The IBM AML dataset used in this research is available on
Kaggle at: https://www.kaggle.com/datasets/ealtman2019/
ibm-transactions-for-anti-money-laundering-aml

References

[1] Erik Altman, Jovan Blanu$a, Luc von Niederhdusern,
Béni Egressy, Andreea Anghel, and Kubilay Atasu. Re-
alistic synthetic financial transactions for anti-money
laundering models, 2024.

[2] Nazanin Bakhshinejad, Reza Soltani, Uyen Nguyen,
and Paul Messina. A survey of machine learning based
anti-money laundering solutions, 10 2022.

[3] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. Smote: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research,
16:321-357, June 2002.

[4] Béni Egressy, Luc von Niederhiusern, Jovan Blanusa,
Erik Altman, Roger Wattenhofer, and Kubilay Atasu.
Provably powerful graph neural networks for directed
multigraphs, 2024.

[5] Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. Why does unsupervised pre-training help deep
learning? Journal of Machine Learning Research, pages
625-660, 2010.

[6] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and
Artem Babenko. Revisiting Deep Learning Models for
Tabular Data, June 2021.

[7] Léo Grinsztajn, Edouard Oyallon, and Gaél Varoquaux.
Why do tree-based models still outperform deep learn-
ing on tabular data?, 2022.

[8] Hajo Holzmann and Bernhard Klar. Robust perfor-
mance metrics for imbalanced classification problems,
2024.

[9] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large lan-
guage models, 2021.

[10] Weihua Hu, Yiwen Yuan, Zecheng Zhang, Akihiro
Nitta, Kaidi Cao, Vid Kocijan, Jure Leskovec, and

[11]

[12]

[13]

[14]

[15]

[16]

Matthias Fey. Pytorch frame: A modular framework
for multi-modal tabular learning, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The
power of scale for parameter-efficient prompt tuning,
2021.

Shengrui Li, Xueting Han, and Jing Bai. Adaptergnn:
Parameter-efficient fine-tuning improves generalization
in gnns, 2023.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. Focal loss for dense object detection,
2018.

José Pombal, André F. Cruz, Jodo Bravo, Pedro Saleiro,
Mario A. T. Figueiredo, and Pedro Bizarro. Understand-
ing unfairness in fraud detection through model and data
bias interactions, 2022.

Cristina Vasconcelos, Vighnesh Birodkar, and Vincent
Dumoulin. Proper reuse of image classification features
improves object detection, 2022.

Wei-Yao Wang, Wei-Wei Du, Derek Xu, Wei Wang, and
Wen-Chih Peng. A survey on self-supervised learning
for non-sequential tabular data, 2024.


https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml
https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml

True label

Model Dataset F1 Score{ Precision{ Recallt Training Time |

FTTransformer IBM 5M 0.02459 0.01246 0.9243 8h 32*
GNN(PNA) IBM 5M 0.5603 0.5708 0.4854 13h 8m*
GNN(GINe) IBM 5M 0.2386 0.2382 0.2390 %h 23m*

Table 2: Comparison of supervised models on different datasets sizes
*Trained locally on MacBook pro M1

Model Dataset RMSE| ACC? Training Time |
FTTransformer IBM5M  0.09267 0.8549 4h 37m
Fused IBM5M  0.0432 0.8017 8h 22m

Table 3: Comparison of Self Supervised models

Finetune method Model Dataset F1 Score{ Precision? Recall?T Training Time |

Vanilla finetuning  FTT IBM 5M 0.02840 0.0145 0.6611 2h 42m
Frozen backbone  FTT IBM 5M 0.03844 0.01981 0.6493 2h 30m
PEFT (LoRa) FTT IBM 5M 0.03784 0.01946 0.6828 2h 34m

Table 4: Comparison of Fine-tuning methods

800000 800000

700000

700000 700000

790019 7227 600000 810521 600000 806866 600000

500000

500000 500000

400000 400000

True label
True label

400000

300000 300000 300000

200000 200000 200000

100000 100000 100000

1 1
Predicted label Predicted label Predicted label

Table 5: Vanilla Fine-tune Table 6: Freeze Fine-tune Table 7: LoRA Fine-tune



	Introduction
	Graph Neural Networks (GNNs)
	Feature Tokenizer Transformers (FTT)
	Fused Architecture
	Supervised Architecture
	Encoder
	Backbone
	Decoder

	Research Objective: Fine-tuning

	Background
	IBM anti-money laundering
	LoRA (Low Rank Adaptation)

	Methodology
	Vanilla fine-tuning
	Freezing backbone
	Applying PEFT - LoRA

	Experimental Setup
	Setup and Environment
	Dataset
	Fine-tuning Task
	Hyper parameter selection
	Evaluation Metrics
	Experiments
	Experiment 1: Supervised Learning
	Experiment 2: Self Supervised Learning
	Experiment 3: Fine-tuning


	Results
	Supervised
	Self Supervised
	Fine-tuning
	Reflecting on Research Objectives
	What is the effectiveness of supervised training? GNN vs FTT
	Explore Zero-shot (pre-training) performance
	Compare performance of pre-training + full fine-tuning vs pre-training + freezing model backbone
	How does LoRA fine-tuning perform?


	Discussion
	Loss Function Exploration
	Dataset
	LoRA
	Decoder Head

	Conclusions and Future Work
	Responsible Research
	Environmental impact
	Local development
	Efficient cluster utilization
	Technological advancements

	Bias
	Reproducibility


