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Summary

Geocenter motion and changes in the Earth’s dynamic oblateness (J2) are of great
importance in many applications. Among others, they are critical indicators of large-
scale mass redistributions, which is invaluable to understand ongoing global cli-
mate change. The revolutionary Gravity Recovery and Climate Experiment (GRACE)
satellite mission enables a constant monitoring of redistributing masses within the
Earth’s system. However, it still cannot provide reliable time variations in degree-1
coefficients and degree-2 zonal coefficients, which are directly related to geocenter
motion and J2 variations.

Swenson et al. (2008) proposed a methodology to estimate geocenter motion.
The resultant solutions have been prevalently used among GRACE users to com-
plement the time-variable gravity field models. Their method relies upon GRACE
data as well as supporting geophysical models, including an ocean bottom pressure
(OBP) model to provide the oceanic degree-1 coefficients, and a glacial isostatic
adjustment (GIA) model to facilitate the removal of solid Earth signals. Swenson’s
approach has several advantages over other methods, based for example on obser-
vations by Satellite Laser Ranging (SLR) or GPS. For instance, it employs evenly dis-
tributed satellite-to-satellite observations, which conveniently avoids the so-called
network effect, which arises due to sparsely distributed ground stations. However,
the obtained annual amplitude of the Z component of the geocenter motion is no-
ticeably smaller (by about 30%) than those from other techniques, suggesting that
an investigation is needed for possible improvements. Here, we conducted a series
of studies to reach the following objectives. 1) Extend Swenson’s method to co-
estimate J2 variations simultaneously; 2) identify the best implementation param-
eters to estimate both geocenter motion and J2 variations, by using an end-to-end
simulation; 3) exploit error information of input data to estimate geocenter motion
and J2 in a statistically optimal sense.

Swenson’s approach was developed to estimate geocenter motion only. In our
first study, we have extended it to co-estimated J2 variations on a monthly basis.
The algorithm uses the same input data, namely GRACE gravity solutions and an
OBP model. The resulting J2 variation time series agrees remarkably well with a
solution based on SLR data. Seasonal variations of the obtained time series show
little sensitivity to the choice of GRACE solutions among CSR RL05, GFZ RL05a,
and JPL RL05. For the first time, we find that reducing signal leakage in coastal
areas when dealing with GRACE data and accounting for self-attraction and load-
ing (SAL) effects when dealing with water redistribution in the ocean is crucial

xi



xii Summary

in achieving close agreement with the SLR-based solutions in terms of de-trended
time-series. The obtained trend estimates, on the other hand, are less accurate due
to their dependence on the GIA models, which still carry large uncertainties. Such
an approach for estimating geocenter motion and J2 variations simultaneously is
thereafter called the GRACE-OBP approach. It was published in Sun et al. (2016a).

The GRACE-OBP approach produces solutions that are largely dependent on the
implementation parameters. The focus of the next study was to optimize the ap-
proach. Firstly, an end-to-end numerical simulation study was conducted. Input
time-variable gravity field observations were generated by perturbing a synthetic
Earth model with realistically simulated errors. We showed that it is important
to mitigate high-frequency noise in GRACE solutions, while limiting signal leakage
from land to ocean, as well as to account for SAL effects. Secondly, the optimized
approach was applied to real GRACE data. We showed that the estimates of annual
amplitude in geocenter motion are in line with estimates from other techniques,
such as SLR and global GPS inversion. Remarkably, annual amplitudes of C10 and
C11 increased by about 50% and 20%, respectively, compared to estimates based on
Swenson et al. (2008). Estimates of J2 variations are less noisy and by about 15%
larger than SLR results in terms of annual amplitude. Linear trend estimates are
still dependent on the adopted GIA model, but still comparable to some SLR results.

Although we had improved the choice of implementation parameters for the
GRACE-OBP approach, the solutions were not yet statistically optimal since we
treated the input data as deterministic. In Sun et al. (2017), we developed a new
methodology to estimate monthly variations in geocenter motion and J2, which was
called the combination approach. Unlike the GRACE-OBP approach, the combina-
tion approach exploits noise covariance estimates of both input datasets and thus
produces stochastically optimal solutions supplied with realistic error information.
Numerical simulations showed that the quality of geocenter motion and J2 varia-
tions may be increased by about 30% in terms of RMS error. We also proved that
the combination approach reduces to the GRACE-OBP approach if the GRACE data
are noise-free and noise in oceanic data is white. Subsequently, we applied this
method to real data and evaluated the quality of the resulting geocenter motion and
J2 variations by estimating mass anomaly time-series within carefully selected vali-
dation areas, where mass transport is expected to be small. Our validation showed
that, compared to selected SLR and Swenson’s method the proposed combination
approach results in more accurate solutions.

This validation also showed that the annual amplitude of the SLR-based Z-
component of geocenter motion is probably overestimated by about 30% (1 mm).
The obtained annual amplitude of J2 variations, on the other hand, is similar to that
from the SLR technique. The geocenter motion (degree-1 coefficients) and J2 (C20)
variations from the combination approach are thus so far best suited to support
monthly GRACE solutions to produce accurate estimates of surface mass variations.



Samenvatting

Informatie over de beweging van het massamiddelpunt van de aarde en de veran-
deringen in de dynamische afplatting van de aarde (J2) zijn van belang voor veel
toepassingen, waaronder voor het vaststellen van grootschalige massaherverdeling
over het aardoppervlak, een onmisbare indicator voor ons begrip van de heden-
daagse klimaatverandering. De revolutionaire satellietmissie ‘Gravity Recovery and
Climate Experiment (GRACE)’ maakt het mogelijk om deze grootschalige massaher-
verdeling continu te meten. Een van de problemen van deze missie is, is dat zij
niet in staat is om betrouwbare tijdreeksen van de graad-1- en de zonale graad-2-
bewegingen te leveren. Beiden zijn gekoppeld aan bewegingen van het massamid-
delpunt van de aarde en veranderingen in de J2.

Swenson et al. (2008) hebben een methode voorgesteld om de bewegingen van
het massamiddelpunt van de aarde te schatten. Deze methode is de meestgebruikte
methode om deze bewegingen aan de GRACE-metingen toe te voegen . De me-
thode gebruikt zowel GRACE-metingen als ondersteunende geofysische modellen,
waaronder een oceaanbodemdrukmodel (OBP) om de graad-1-coefficienten veroor-
zaakt door oceaandynamica, te schatten en een postglaciaal-opheffingsmodel (GIA)
om de vaste-aarde-signalen te verwijderen. De methode van Swenson heeft meer-
dere voordelen ten opzichte van andere methodes, zoals methodes gebaseerd op
satelliet-laser-baanbepaling (SLR) of GPS. De methode gebruikt bijvoorbeeld gelijk-
matig verdeelde satelliet-naar-satelliet-observaties, waardoor het zogenaamde net-
werkeffect, veroorzaakt door het lage aantal grondstations, wordt voorkomen. De
amplitude van de seizoenscyclus in de Z-component is aanmerkelijk smaller (onge-
veer 30 procent) dan de amplitude verkregen met behulp van andere methodes, het-
geen suggereert dat een onderzoek naar mogelijke verbeteringen van de Swenson-
methode nodig is. We hebben een reeks van studies gedaan om de volgende doelen
te bereiken: 1. De methode van Swenson uitbreiden om ook J2-veranderingen te-
gelijk mee te schatten. 2. Het indentificeren van de beste impementatie-parameters
om J2- en massamiddelpunt-veranderingen te schatten met behulp van een einde-
tot-eindesimulatie. 3) Het gebruik van fouteninformatie van de invoerdata om J2-
en massamiddelpunt-veranderingen in een statistisch optimale manier te schatten.

De methode van Swenson is alleen ontwikkeld om massamiddelpuntbewegin-
gen te schatten. In onze eerste studie hebben we de methode uitgebreid om ook
maandgemiddelde J2-variaties mee te schatten. Het algoritme gebruikt dezelfde
invoerdata, te weten GRACE-zwaartekrachtsoplossingen en een oceaanbodemdruk-
model. De resulterende tijdreeks van J2-variaties komt goed overeen met de oplos-
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sing gebaseerd op SLR-data. De keuze voor een specifieke GRACE-oplossing tussen
CSR RL05, GFZ RL05a en JPL RL05 heeft nauwelijks invloed op seizoensvariaties
in de verkregen tijdreeks. Voor het eerst hebben we aangetoond dat het terugdrin-
ken van de signaallekkage in kustgebieden en het meenemen van de effecten van
zelfgravitatie en aardkostvervorming wanneer de water-herverdeling in de oceaan
cruciaal zijn om een goede overeenkomst te verkrijgen tussen de GRACE- en SLR-
gebaseerde oplossing van de tijdreeks nadat de lineaire trend verwijderd is. De ver-
kregen schattingen van de lineaire trends zijn echter minder nauwkeurig wegens de
afhankelijkheid van GIA-oplossingen, waarin nog grote onzekerheden zitten. Vanaf
nu zullen we naar deze benadering voor het gelijktijdig schatten van massamiddel-
puntbetwegingen en J2-variaties refereren als de GRACE-OBP-methode. Het werk
is gepubliceerd als Sun et al. (2016).

De GRACE-OBP-methode genereert oplossingen die voor een groot deel afhanke-
lijk zijn van de implementatieparameters. Het doel van de tweede studie is om deze
methode te optimaliseren. Als eerste is een numerieke eind-tot-eind-simulatie uit-
gevoerd. Als invoerdata werden tijdafhankelijke zwaartekrachtvelden gegenereerd
door bovenop de uitvoer van een synthetisch aardmodel realistische verstoringen
aan te brengen. We laten het belang zien van het verminderen van de hoogfrequente
ruis in GRACE-oplossingen, het beperken van de signaal-lekkage in kustgebieden,
en het meenemen van zelfgravitatie- en aardvervormingseffecten. Vervolgens is de
optimale impementatie-aanpak toegepast op echte GRACE-data. We tonen aan dat
schatingen van de amplitude van de seizoenscyclus in de massamiddelpuntbewe-
ging consistent zijn schattingen met behulp van andere technieken, waaroner SLR
en een globale inversie van GPS-observaties. Opmerkelijk was de toename van 50
procent in de amplitude van de seizoenscyclus in C10, en 20 procent voor de sei-
zoensamplitude in C20, vergeleken met de oplossing van Swenson et al. (2008).
Schattingen van de J2-parameter hebben een lager ruisniveau en hebben een ampli-
tude in de seizoenscyclus die 15 procent hoger ligt dan de SLR-oplossing. Schattin-
gen van de lineaire trend zijn nog steeds afhankelijk van het gebruikte GIA-model,
maar zijn vergelijkbaar met de SLR-resultaten.

Hoewel we de keuze van implementatieparameters hebben verbeterd voor de
GRACE-OBP-methode, zijn de oplossingen nog steeds niet statistisch optimaal, om-
dat we de invoerdata steeds als deterministisch hebben beschouwd. In Sun et al.
(2017) hebben we een nieuwe methode, die we de combinatie-benadering noemen,
ontwikkeld om maandelijkse variaties in J2 en het massamiddelpunt te schatten. In
tegenstelling tot de GRACE-OBP-methode gebruikt de combinatiemethode de ruis-
covariantieschattingen van beide invoerdatasets, waardoor de statistisch optimale
oplossingen met realistische foutschattingen worden geproduceerd. Numerieke si-
mulaties laten zien dat het kwadratisch gemiddelde van de J2-variatie-oplossing
afneemt met 30 procent. We laten ook zien dat de combinatiemethode convergeert
naar de GRACE-OBP-methode wanneer we GRACE-foutschattingen niet meenemen
en we aannemen dat de ruis in de oceaanmodeldata een wit frequentiespectrum
heeft. Vervolgens hebben we de methode op echte data toegepast en de kwaliteit
van de resulterende J2-variatieschatting door massa-anomalietijdreeksen in zorg-
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vuldig geselecteerde controlegebieden waar het verwachte massatransport klein is
te schatten. Deze validatie laat zien dat, vergeleken met de SLR- en Swensonme-
thode, de combinatiemethode de meest nauwkeurige oplossingen produceert.

De validatie laat ook zien dat dat de amplitude van de seizoenscyclus van het
SLR-gebaseerde z-component waarschijnlijk met circa 30 procent (1 mm) wordt
overschat. De verkregen amplitude van de seizoenscyclus van J2 is wel vergelijk-
baar met de SLR-waarde. De massamiddelpunts- en J2-variaties van de combinatie-
methode zijn daarom voorlopig de beste manier om de GRACE-data te corrigeren
met als doel nauwkeurige schattingen van oppervlaktemassatransport te schatten.
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2 1. Introduction

1.1. Background and Motivations

The Earth system can be divided into two parts: 1) the solid Earth, including the
fluid core, the convecting mantle, and the crustal outer layer and 2) its fluid en-
velope, which consists of atmosphere, oceans, and continental water/ice/snow. All
components in both parts are subject to continuous motion at different time scales
and interact with each other, causing mass redistributions within the Earth system.
As a consequence, the Earth’s gravitational field changes accordingly.

The Earth’s gravitational field is often represented in the spherical harmonic
domain by a set of dimensionless (Stokes) coefficients. The major focus of this thesis
are the degree-1 coefficients (C10, C11, S11) and the degree-2 zonal (C20) coefficient.
These coefficients are among those with a specific physical meanings. The degree-1
coefficients reflect the position of the geocenter, and C20 represents the so-called
Earth’s dynamic oblateness. We will introduce both terms in the following sections.

1.1.1. Geocenter Motion

The term geocenter is used to denote the center of the Earth’s system, which may
have different definitions. The three commonly used ones are the center of mass
of the solid Earth (CE), the center of mass of the whole Earth system (CM) and
the center of figure of the solid Earth surface (CF). In this thesis, we adopt the CM
as the geocenter following the recommendation of the International Earth Rotation
and Reference System Service (IERS) (e.g. Ray, 1999; Petit and Luzum, 2010). The
CM represents the orbiting center of all satellites. As a result, its position can be
realized by observations of the dynamics of satellites orbiting the Earth (Ray, 1999).
The CE is in constant motion with respect to the CM. Among others, the rapid fluxes
of the atmosphere, oceans and continental water modify the mass distributions at
the solid Earth surface, and the entire Earth, hence CE, moves with respect to CM to
compensate this mass redistribution. The absolute position of the CE is difficult to
be realized due to the lack of an accurate density model of the solid Earth. The CF,
on the other hand, can be realized on the basis of the position of geodetic stations
at the solid Earth surface. Relative motions are also detectable between the CF and
the CM. The motion of CM with respect to CF is defined as the geocenter motion
(Ray, 1999; Blewitt et al., 2001; Wu et al., 2012).

Same as the motion of CE with respect to CM, present-day geocenter motion is
also mainly driven by tides, seasonal and inter-annual surface mass redistribution
and long-term mass transport processes taking place above and below the solid
Earth surface. At semi-diurnal and diurnal time-scales, ocean tides are responsible
for few-millimeter variations in the geocenter (Watkins and Eanes, 1997). Ocean
tides with long periods contribute with less than 0.5 mm (Crétaux et al., 2002).
Atmosphere tides may lead to a geocenter motion at the level of about 1 mm (Ray
and Ponte, 2003). At seasonal and inter-annual time-scales, geocenter motion is



1.1. Background and Motivations

1

3

primarily due to solar-powered mass transport in the fluid surface layer. The annual
amplitude of such a motion can reach a few millimeters. When considering secular
time-scales, the signal is mainly driven by Glacial Isostatic Adjustment (GIA), which
is related to the melting of the large ice sheets at the end of the Pleistocene (last
glacial period) (e.g. Lambeck et al., 2014; Peltier et al., 2015; Milne et al., 2001;
Riva et al., 2009; Klemann and Martinec, 2011; Gunter et al., 2014).

Estimating geocenter motion is of great importance in both geokinematics and
Earth gravity perspectives.

Geokinematics studies motions of the Earth’s surface which is usually measured
in terrestrial reference frames (TRFs). An accurately estimated geocenter motion is
fundamental to realize a TRF. This is due to the fact that the origin of a TRF (includ-
ing the International TRF, ITRF (Altamimi et al., 2016)) is defined at the long-term
mean CM. However, its realization is a quasi-instantaneous CM, which follows CF
on seasonal and short timescales (Dong et al., 2003; Wu et al., 2012). Therefore,
geodetic systems referenced to he ITRF would need geocenter motion time-series as
a correction. Ignoring geocenter motion introduces an error, which is non-negligible
according to modern geodesy requirements. For example, the accuracy and stability
of the ITRF are now aiming to be at 1 mm and 0.1 mm yr−1 level (e.g. Altamimi
et al., 2011; Gross et al., 2009). The current state of the art needs a significant
improvement (factor of 5) to reach this goal (Wu et al., 2011).

Geocenter motion is also critical for Earth’s gravity field determination, such as
the nominal products of several satellite gravity missions, including the Gravity Re-
covery and Climate Experiment (GRACE) mission (Tapley et al., 2004). GRACE is
a joint project of the National Aeronautics and Space Administration (NASA) in the
United States and its counterpart in Germany, the Deutsche Forschungsanstalt für
Luft und Raumfahrt (DLR). GRACE employs twin satellites traveling along the same
polar orbit following each other with a separation of about 220 km. The GRACE
satellites collect inter-satellite range-rate measurements, which are so sensitive that
temporal variations in Earth’s gravity field can be detected. On this basis, data
analysis centers produce time-variable gravity field solutions with unprecedented
accuracy (e.g. Bettadpur, 2012; Dahle et al., 2013; Liu et al., 2010). However, the
degree-1 coefficients are absent there because the GRACE satellite-to-satellite mea-
surements are inherently insensitive to geocenter motion. Therefore, independent
estimates of geocenter motion have to be used to complement the GRACE-based
Earth’s gravity field models in order to correctly estimate surface mass changes.
An improper estimate of geocenter motion severely affects mass redistribution esti-
mates. For instance, 1-mm geocenter motion error in the X, Y and Z direction will
lead to a bias in global ocean mass change of -173, -95 and -190 gigatons (i.e., cubic
kilometers of water) respectively.

Despite numerous efforts in estimating degree-1 coefficients, they still carry large
uncertainties. This is the motivation to improve the existing approaches and develop
new methodologies to estimate geocenter motion more accurately.
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1.1.2. Earth’s Dynamic Oblateness

The Earth’s dynamic oblateness, also known as J2, is a function of the difference
between the equatorial and polar radii of the ellipsoid approximating the Earth’s
figure. Variations in J2 are dominated by several signatures, including a negative
secular trend, seasonal, inter-annual, decadal variations and Earth body tides (at up
to 18.6 year timescales). The secular decrease of the J2 indicates that the Earth is be-
coming less oblate, which is mainly due to a combination of GIA effect (Yoder et al.,
1983) and present-day rapid polar ice mass loss (Nerem and Wahr, 2011). The
seasonal variations reflect mass redistribution between tropical and extra-tropical
regions (Gutierrez and Wilson, 1987). Inter-annual variations are closely related to
El Niño-Southern Oscillation (ENSO) (Cheng and Tapley, 2004). Decadal variations
are now demonstrated to be mainly driven by Greenland and Antarctic ice mass
variations during the last four decades (Nerem and Wahr, 2011; Seo et al., 2015).
The inter-annual and decadal variations are so strong that they can temporally re-
verse the secular trend (Cox and Chao, 2002; Dickey et al., 2002; Cheng and Tapley,
2004). Apart from the linear trend, Cheng et al. (2013a) recently have found an
deceleration in the J2 variations, which can be attributed to the accelerated ice mass
loss of glaciers and ice-sheets.

Although the GRACE mission is able to determine variations in J2, those esti-
mates are corrupted with unexpectedly large aliases, which are likely caused by a
thermal-related systematic error in the accelerometer data (Cheng and Ries, 2017).
As a result, GRACE users still rely on traditional estimates of J2 variations based on
SLR data. However, due to the high-altitude of SLR satellites, they are not sensitive
to gravity changes at the middle to high-degree part of the spectrum. As a result, J2

is not well-separated from other zonal terms (e.g. Yoder et al., 1983; Cheng et al.,
1989). Thus, replacing estimates of J2 variations in GRACE-based solutions with
independent estimates is not proper unless the correlations between coefficients are
considered.

Similar to the case of estimating geocenter motion, such a situation stimulates
the needs for an accurate estimation of J2 variations that takes GRACE data into ac-
count. GRACE observes other coefficients up to relatively high degree and can thus
reduce the aliases into the degree-1 and J2 terms. Also, a GRACE-based approach
would allow to derive error correlations between degree-1, J2 and other coefficients.
Together with the stochastic description of errors in the produced degree-1 and J2

(C20) coefficients they can be used to improve the stochastic description of errors in
GRACE gravity field models.

1.2. Research Objectives

We focus on the changes in the degree-1 and C20 of the Earth’s gravitational field.
In order to do so, we choose a method proposed by Swenson et al. (2008) as our



1.3. Outline

1

5

starting point. This methodology estimates geocenter motion from a combination
of GRACE data and geophysical model output. Though the obtained solution is
prevalently used and built upon a solid theory, discrepancies exist when compared
with those from other techniques. In this thesis, we aim to improve and develop
further this promising methodology, which is originally dedicated to geocenter esti-
mation, and obtain more accurate solutions for both degree-1 and C20 coefficients.
The objectives of this thesis are as follows:

(i) Extend the methodology by Swenson et al. (2008) to co-estimate changes in
the Earth’s dynamic oblateness on a monthly basis. Use GRACE data and modeled
OBP estimates and GIA models as input data. Validate the results against Satellite
Laser Ranging (SLR) solutions.

(ii) Optimize the implementation parameters of the methodology developed in
(i) through an end-to-end simulation. Refine estimates of annual variations and
trends in both geocenter motion and changes in Earth’s dynamic oblateness time-
series.

(iii) Improve further the methodology used in (i) and (ii) by exploiting error
information of the input datasets. Develop a statistically optimal methodology to
estimate geocenter motion and changes in the Earth’s dynamic oblateness, which
also produces realistic uncertainties. Test the method with synthetic data and then
apply it to real data.

1.3. Outline

The rest of the dissertation is organized as follows:

Chapter 2 presents a brief overview of current methodologies for determining
degree-1 and C20 coefficients.

Chapter 3 presents an improved methodology for the determination of the degree-
1 and C20 coefficients simultaneously from a combination of GRACE data and mod-
eled ocean bottom pressures. The content of this chapter has been published in
(Sun et al., 2016a).

Chapter 4 is about improving the methodology described in Chapter 3, by opti-
mizing the choice of implementation parameters through a simulation. In the sec-
ond part of the chapter, degree-1 and C20 coefficients are estimated based on real
data using the selected parameter settings and compared with solutions from other
techniques. The content of this chapter has been published as (Sun et al., 2016b).

Chapter 5 develops a new method to estimate the degree-1 and C20 coefficients
as well as their uncertainties using a statistically optimal combination of GRACE
data and ocean bottom pressure model. The proposed methodology is also applied
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to real data processing. The resulting solutions based on real data are then vali-
dated. This work has been published as (Sun et al., 2017).

Chapter 6, comprises conclusions and recommendations for future research.
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This chapter describes the methods for estimating geocenter motion and changes in
the Earth’s dynamic oblateness.

2.1. Geocenter Motion

The Cartesian components (∆X , ∆Y , ∆Z ) of geocenter motion due to surface mass
redistribution correspond one-to-one to the time variations of the three degree-1
Stokes coefficients (∆C11, ∆S11 and ∆C10) of the Earth’s gravitational field through
(e.g. Farrell, 1972; Blewitt, 2003)


∆X
∆Y
∆Z

= a
p

3

1+k1


∆C11

∆S11

∆C10

 , (2.1)

where a is the average radius of the Earth; k1 is the elastic degree-1 load Love
number, which is different in different reference frames and for different parame-
terization of the Earth’s mechanical properties. Note that we are not using primed
symbols for Love numbers, but they all should be understood as load Love num-
bers. In view of Eq. (2.1), geocenter motion and time variations of the degree-1
coefficients are used interchangeably throughout the whole thesis.

Here, we give an introduction to the commonly used methodologies to deter-
mine geocenter motion. A reader needs to bear in mind that these methods may be
named differently in the literature.

There are two main classes of methods to obtain estimates of geocenter motion.
The first class directly observes the distance between satellites, which are naturally
orbiting around the CM, and the ground stations anchored to the solid Earth surface.
Thus, such a method is called the direct method. The second class determines the
geocenter motion by the estimation of gravitational degree-1 coefficients. Such a
method is often referred to as the inversion approach.

2.1.1. Direct Methods

Observing the dynamics of the satellites orbiting around the CM with a ground
tracking system fixed to the CF provides a natural way of monitoring geocenter
motion. Geodetic techniques, such as Satellite Laser Ranging (SLR), Global Navi-
gation Satellite System (GNSS) and the Doppler Orbiography and Radiopositioning
Integrated by Satellite (DORIS), are options to implement this method.

Before introducing individual techniques, we discuss general strengths and lim-
itations concerning all the direct methods. The theory of the direct method is quite
straightforward. An obvious advantage of this method is that it determines the
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absolute position of CM with respect to the solid Earth’s surface. However, when
determining the motion of CM relative to CF, a common problem affects all the
three aforementioned geodetic techniques. That is, the ground tracking networks
are not evenly distributed over the Earth, which makes it difficult to determine an
actual CF or an origin that is stationary relatively to the CF. Instead, these tracking
stations merely realize the center of a particular network (CN). Relative movements
between the CN and the CF are known as the network effect (Wu et al., 2002;
Collilieux et al., 2009). Such an effect prevents a direct comparison of a solution
from the direct method and that from the inversion approach. Furthermore, since
the network effect affects the direct methods differently depending on the exploited
network, a comparison between different direct methods is not straightforward ei-
ther (Wu et al., 2012).

SLR is the traditionally used direct techniques to determine geocenter motion.
SLR satellites are sphere-shaped passive targets with low area-to-mass ratio orbiting
at high altitudes. All these features help to minimize the atmospheric drag. There-
fore, the dynamic orbits of the SLR satellites can be accurately modeled, which
makes SLR the most reliable and accurate geodetic technique for the purpose of
realizing the position of the geocenter. This is confirmed by the fact that the origin
of the ITRF is realized solely by SLR data (Altamimi et al., 2011, 2016). In spite
of this, an accurate determination of the geocenter motion is severely degraded by
the network effect. The SLR tracking stations represent a very sparse network con-
centrated at mid-latitudes with a concentration on the northern hemisphere (Fig.
2.1). Such a network is especially vulnerable to the network effect because of
two reasons. First, not all stations are permanently available, which leads to a
changeable (time-varying) configuration of the network. Second, displacements of
individual stations due to solid Earth deformation induced by surface loading may
substantially alter the position of the CN for such a small network. According to
Collilieux et al. (2009), the network effect can account for about one-third of the
SLR-observed motion between CM and CN. Recently, Wu et al. (2015) connected
SLR stations with those used by other techniques through local tie measurements
and co-motion constraints in an effort to extend the SLR network to contain 82 sta-
tions. The resultant larger SLR network helps to reduce the impact of the network
effect significantly. Currently, the uncertainty of the estimated annual amplitude of
the geocenter motion time-series from SLR data is about 10 % of the signal itself
(personal communication with John Ries), that is 0.2 mm to 0.6 mm.

The strategy of estimating the geocenter motion using GNSS data is slightly dif-
ferent. At a particular epoch, the coordinates of the ground tracking stations are esti-
mated in the CM reference frame. The resulting set of coordinates forms a so-called
"fiducial-free" network because the coordinates are only loosely constrained with
large apriori uncertainties (1 meter, for example). Then a Helmert seven-parameter
(three translation, three rotations and one scale parameter) transformation is per-
formed to align this "free" network to a known TRF centered at the long-term mean
CM, which is assumed to be stationary with respect to the CF (e.g. Blewitt et al.,
1992; Blewitt, 2003; Dong et al., 2003). The three translation parameters esti-
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Figure 2.1: The current network for SLR (green open circles), GNSS (red dots) and DORIS (black solid
circles) techniques. The location information of stations for the three techniques can be found on the fol-
lowing sites: https://ilrs.cddis.eosdis.nasa.gov/network/stations/index.html, http://www.
igs.org/network, https://ids-doris.org/doris-system/tracking-network/site-logs.html

mated represent the motion of CM with respect to CN. Such a method is called the
"network-shift" approach (Dong et al., 2003). However, the scale parameter is not
recommended when estimating Helmert transformations for this case. For example,
Tregoning and van Dam (2005) demonstrated with synthetic data that estimating
a scale parameter degrades the accuracy of site coordinates and geocenter motion
estimates when surface loads are present and unaccounted for. This is because the
scale parameter could absorb some of the loading deformation. The scale parame-
ter is included when estimating Helmert transformations to investigate systematic
differences in the definition of scale between different techniques (e.g. SLR, GNSS).
It is not needed when only one technique is considered (Lavallée et al., 2006).

The GNSS network is less affected by the network effect than the SLR network
due to a large number of continuously operating tracking stations (Fig. 2.1). How-
ever, in spite of continuous efforts in GNSS data analysis, geocenter motion time-
series as accurate as those based on SLR observations have not been produced yet.
Two studies have even reported that the GNSS network shift approach is insensitive
to geocenter motion. Based on the methods of perturbation theory and celestial
mechanics, Meindl et al. (2013) found large correlation between the solar radia-
tion pressure parameters and the Z-component of the geocenter motion, which is
responsible for the large periodic artifacts with an amplitude of about 20 cm in
their geocenter time-series. Rebischung et al. (2014), investigated the quasi-linear
dependencies (collinearity) between different parameters in a least squares regres-
sion. Based on simulated observations, the authors found a very high collinearity

https://ilrs.cddis.eosdis.nasa.gov/network/stations/index.html
http://www.igs.org/network
http://www.igs.org/network
https://ids-doris.org/doris-system/tracking-network/site-logs.html
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of two categories of parameters which are estimated simultaneously: epoch-wise
clock offsets and tropospheric parameters. These parameters are therefore not reli-
ably inferred from observations. Consequently, geocenter motion estimates are also
not accurate. The derived geocenter time-series are also contaminated by spurious
signals with an amplitude reaching several millimeters and with a period of the GPS
draconitic year (351.2 days), which is the interval required for the satellite constel-
lation to repeat its inertial orientation to the Sun (Ray et al., 2008; Griffiths and
Ray, 2013). Consequently, the GNSS data has not yet been able to provide accurate
geocenter estimates using the direct method (Rebischung et al., 2014).

DORIS can also provide geocenter motion estimates using the network shift ap-
proach (Bouillé et al., 2000). Since it has the most homogeneously distributed
tracking network (Fig. 2.1), the resulting geocenter motion should be the least af-
fected by the network effect. However, the DORIS-based geocenter motion solutions
are believed to be less accurate compared to those based on SLR data (e.g. Altamimi
et al., 2005; Altamimi and Collilieux, 2010; Altamimi et al., 2011; Gobinddass et al.,
2009a). For example, the reported annual amplitudes in Bouillé et al. (2000) are
2.4±1.4, 2.1±1.3 and 2.1±1.1 mm in X-, Y- and Z-component, respectively. Uncer-
tainties of all three geocenter motion components are about 50 % of the amplitude.
Later, larger annual amplitudes in X- and Y-components (4 to 7 mm) were found in
typical DORIS estimates (Altamimi et al., 2005). The Z-component, is even noisier.
Also, an offset of 65 cm in the geocenter position was detected and identified to be
related to a particular DORIS satellite (SPOT-4) in 1998 (Willis et al., 2005, 2006).
Besides this problem, the Z-component is still affected by large seasonal aliases with
an amplitude of 34 mm (Meisel et al., 2005), which is one order of magnitude larger
than the expected physical signal. One important part of the large systematic errors
has been attributed to miss-modeling of solar radiation pressure Gobinddass et al.
(2009b). By reprocessing the DORIS data and scaling the solar radiation models
with an empirically determined coefficient for each of the DORIS satellites, Gobind-
dass et al. (2009a) managed to improve the measurement noise of the Z-component
of geocenter motion from 47.5 to 30.4 mm for the RMS and from 35 to 6 mm for
the amplitude of the annual signal, which is still worse compared to SLR results.

2.1.2. Inversion Methods

The inversion method involves the determination of the degree-1 gravitational coef-
ficients or the degree-1 mass coefficients, where mass coefficients are the spherical
harmonic coefficients used to describing time variations in surface mass σ(θ,φ)

σ(θ,φ) =
∞∑

l=1

l∑
m=0

P̄l m(cosθ){∆Clm cosmφ+∆Slm sinmφ}, (2.2)

where P̄l m represent normalized associated Legendre functions; θ and φ are the
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colatitude and longitude in spherical coordinates, respectively; ∆Cl m and ∆Slm are
time-variations in mass coefficients of degree l and order m. We will drop ∆ for
clarity hereafter.

According to Wahr et al. (1998), mass coefficients and gravitational coefficients
can be easily transformed from one to the other assuming that the changes in the
gravitational field can be solely attributed to surface mass redistribution:

 Cl m

Slm

= aρear th(2l +1)

3(1+kl )

 C g
l m

Sg
lm

 , (2.3)

where C g
lm and Sg

lm denote the time variations of gravitational coefficients; kl de-
notes the elastic load Love numbers and ρear th represents the average Earth density.

Under the assumption that the Earth is an elastic body, global mass redistribu-
tion can be determined by analyzing the resultant solid Earth deformation using
load Love number theory (Farrell, 1972; Blewitt, 2003). Since surface mass redis-
tribution is the primary driving force of geocenter motion, a relationship between
geocenter motion and solid Earth deformation can be built. For the first time, Ble-
witt et al. (2001) estimated geocenter motion (degree-1 coefficients) based on the
accompanied solid Earth deformation detected by 66 globally distributed GPS track-
ing stations. The solid Earth deformation contains contributions of higher degree
coefficients, which in theory can be ignored based on the orthogonality of the sur-
face spherical harmonic functions. However, this is not true if those coefficients are
derived from a set of non-homogeneously distributed data points. As a consequence,
higher degree harmonics will alias into the degree-1 estimates (Wu et al., 2002). As
an improvement, Wu et al. (2003) exploited more GPS tracking stations (200 sites).
The derived solid Earth deformation was then inverted into spherical harmonic co-
efficients up to degree 6 in order to reduce the higher-degree aliasing. Such a
procedure has been further developed by employing GRACE data to co-estimate
higher-degree signals (Kusche and Schrama, 2005). After that, ocean bottom pres-
sure (OBP) measurements based on the Estimating the Circulation and Climate of
the Ocean (ECCO) model have been incorporated into a GPS/OBP/GRACE inver-
sion (e.g. Wu et al., 2003, 2006). In addition, spherical harmonic coefficients up to
degree 50 were co-estimated. The OBP measurements helped to close the data gap
in the open ocean and dramatically improved the results (Wu et al., 2006; Jansen
et al., 2009). Finally, (Rietbroek et al., 2009, 2012b) implemented a joint inversion
approach, which combined the GPS, GRACE and OBP data in a statistically optimal
framework by exploiting error information of each input dataset.

Inversion approaches produce smaller and more regular geocenter motion esti-
mates than direct approaches (Wu et al., 2012), but are not necessarily superior to
the direct solutions based on SLR data. Firstly, the modeled OBP estimates do not
contain the total ocean mass variations (e.g., the water exchange between ocean
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and land is not included). Usually, they also do not consider the time-variable self-
attraction and loading effects, which represent the passive response of ocean water
due to mass redistribution. Secondly, all the inversion approaches so far are based
on an elastic Earth model. Therefore, deformations due to mass redistribution in
the interior of the solid Earth need to be removed before the inversion procedure
(Wu et al., 2003). Since the solid Earth contribution is primarily due to the GIA,
which shows nearly constant surface deformation rates, it is sufficient to remove
the linear trends from the GPS time-series before inverting them into spherical har-
monic coefficients. Obviously, this procedure also removes the contribution of the
present-day mass transport (PDMT) to the linear trend. In an attempt to estimate
the trend in geocenter motion time-series, Wu et al. (2010) employed site velocities
measured by geodetic techniques (SLR, GNSS, etc), trends in gravity field varia-
tions measured by GRACE and PDMT derived from ECCO OBP model in a global
inversion for estimating GIA- and PDMT-induced trends simultaneously. In order
to solve the problem of rank deficiency, the GIA gravitational potential coefficients
(of degree higher than 8) were approximately related to the corresponding vertical
displacement coefficients (Wahr et al., 2000). However, the results were not satis-
factory. For instance, the resulting GIA estimates predicted a large negative trend
over Greenland, which contradicts all existing GIA models (Sutterley et al., 2014).

Unlike the GNSS network-shift approach, the GNSS inversion approach first
places the fiducial-free network in the CN reference frame by estimating and re-
moving a seven-parameter Helmert transformation. Then the degree-1 and higher-
degree coefficients are estimated from the residuals, which contain the deforma-
tion of the network due to the geocenter motion. Lavallée et al. (2006) proposed
to model the translational and deformational signatures due to geocenter motion
simultaneously through the so-called unified approach. Theoretically, it is a better
way of estimating geocenter motion, but the resulting solutions did not reach a good
agreement with each other (Rülke et al., 2008; Fritsche et al., 2010). This is proba-
bly due to different processing procedures applied on the GNSS data. Recently, Wu
et al. (2017) updated the unified approach by using an extended SLR network of 82
sites (Wu et al., 2015). Surface mass coefficients up to degree 43 were estimated.
GRACE data were included to better isolate the degree-1 contributions. However,
the resultant annual amplitude of the X-component (C11 coefficients) was only 1.3
mm, which is about 1 mm smaller than the estimates based on other techniques
(e.g. Wu et al., 2006, 2015). The results are thus considered not satisfactory.

Rietbroek et al. (2012a, 2016) developed a forward modeling approach in an at-
tempt to solve the sea level budget, that also produces geocenter motion time-series.
In this approach, the contributions of all sources (e.g., glaciers and ice-sheets) are
represented by pre-defined spatial patterns (also called fingerprints) multiplied by
time-varying coefficients to be estimated. The linear combination of these patterns
is equated with the global mass redistribution observed from GRACE and satellite
altimetry. Scaling factors are then estimated through least-squares regression. The
degree-1 coefficients can then be obtained by a summation of the properly scaled
degree-1 components of all the re-defined patterns. Such a method results in a
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realistic degree-1 estimates but is somewhat dependent on the selection of the fin-
gerprints. Also, the fingerprints of surface mass transport in Antarctica appears to
be contaminated by the local GIA. The GIA signals are co-estimated during the in-
version, but uncertainties are still introduced due to the use of a priori GIA model.
The obtained seasonal variations, on the other hand, seem reasonable, as they are
comparable to those based on the global GPS inversion.

Mass coefficients can also be obtained from GRACE satellite mission, which
monitors the surface mass redistribution by sensing changes in the Earth’s gravity
field. However, the obtained mass redistribution includes no contribution from the
degree-1 Stokes coefficients, as they are equal to zero in the CM reference frame by
definition. Swenson et al. (2008) proposed to solve this problem by using an OBP
model. This approach is at the basis of the work presented in this thesis and will be
introduced in a separate section.

The degree-1 mass coefficients may also be extracted from the sum of geophys-
ical signals in atmosphere, oceans, land hydrology, the cryosphere, etc. computed
with appropriate models (e.g. Dong et al., 1997; Chen et al., 1999; Dong et al.,
2014). Such estimates are useful to understand the geophysical mechanism/causes
of the geocenter motion phenomenon, but less accurate than the estimates based on
real data due to unknown, and often large, uncertainties in geophysical models (Wu
et al., 2012). However, it is likely a promising method because of the continuously
increasing quality of those models.

2.1.3. The approach by Swenson et al. (2008)

Swenson’s approach is built on the fact that oceanic mass variations can be inferred
from a full spectrum (including degree-1 contributions) of GRACE gravity field solu-
tions. Once oceanic variations are known, the three unknown degree-1 coefficients
can be estimated. The oceanic variations are obtained by combing an OBP model
and the total ocean mass variations derived from GRACE.

In this approach, surface mass variations are separated globally into two parts:
oceanic and continental ones. This can be done by using an ocean function ϑ(θ,φ),
which equals 1 over oceans and 0 over land. Equation (2.2) can be written as

σ(θ,φ) =σ(θ,φ)ϑ(θ,φ)+σ(θ,φ)(1−ϑ(θ,φ)) (2.4)

=σocean(θ,φ)+σl and (θ,φ)

=
∞∑

l=1

l∑
l=0

{(C ocean
lm +C l and

lm )cosmφ+ (Socean
lm +Sl and

lm )sinmφ},

where C l and
l m and Sl and

lm are the continental mass coefficients and C ocean
lm and Socean

l m
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are the oceanic mass coefficients. Therefore, once oceanic mass variations are
known, one can derive oceanic mass coefficients using

C ocean
l m = 1

4π

∫
P̄lm(cosθ)cosmφϑ(θ,φ)σ(θ,φ)dΩ, (2.5)

where dΩ= sinθdθdφ is an element of solid angle and the integral is defined over
the entire globe. In practice, the global integral is solved using discretized integral
over a 1◦ by 1◦ grid. Substituting equation (2.2) into equation (2.5), C ocean

10 can be
obtained by

C ocean
10 = 1

4π

∫
P̄10(cosθ)ϑ(θ,φ)P̄10(cosθ)C10dΩ+ (2.6)

1

4π

∫
P̄10(cosθ)ϑ(θ,φ)

∞∑
l=1

l∑
m=0

P̄l m(cosθ){Cl m cosmφ+Sl m sinmφ}dΩ,

where the summations exclude the degree 1 order 0 terms. Similarly, C ocean
11 and

Soean
11 can also be calculated. Following this idea, a matrix equation was then de-

rived:


I 10C

10C I 10C
11C I 10C

11S

I 11C
10C I 11C

11C I 11C
11S

I 11S
10C I 11S

11C I 11S
11S




C10

C11

S11

=


C ocean

10

C ocean
11

Socean
11

−


G10C

G11C

G11S

 , (2.7)

where the following notations have been used:

I 11S
10C = 1

4π

∫
P̄11(cosθ)sin(1×φ)ϑ(θ,φ)P̄10(cosθ)cos(0×φ))dΩ

(similar for the other elements of matrix I ), (2.8)

and

G10C = 1

4π

∫
P̄10(cosθ)cos(0×φ)ϑ(θ,φ)

∞∑
l=2

l∑
m=0

P̄lm(cosθ){Cl m cosmφ+Slm sinmφ}dΩ

(similar for the other elements of vector G). (2.9)
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The G vector is based on GRACE data and the three oceanic degree-1 coefficients
are taken from the adopted OBP model. Since an OBP model conserves the ocean
mass, the mass exchange between ocean and land, which causes the eustatic sea
level varies with about 10 mm annual amplitude, is not taken into account. In
Swenson’s approach, the total ocean mass variations are estimated by integrating
GRACE-based mass anomalies over oceans and added to the OBP-predicted oceanic
mass anomalies in the form of a uniform water layer.

Swenson’s approach is based on solid theory. However, the annual signals in
C10 coefficients were not comparable with most of the solutions based on other
techniques (Wu et al., 2012). For example, the annual amplitude of the C10 was
about 30 % (1 mm) smaller and the annual phase was offset by more than a month.

2.2. Changes in the Earth dynamic oblateness

The second-degree zonal coefficient, C20, is related to the Earth’s dynamic oblate-
ness, which is better known as J2 (J2 =−p5C20). Therefore, C20 and J2 will be used
interchangeably. J2 is a function of the Earth’s mean principal moments of inertia,
which in turn are related to the equatorial and polar radii of a best-fitting ellipsoid
of revolution via Clairaut’s theorem. According to (Chao, 2006)

J2 = (C − (A+B)/2)

M a2 , (2.10)

where A, B and C (C > B >= A) are the Earth’s mean principal moments of inertia
along he x, y and z axis, respectively; and M is the mass of the Earth.

Just like the geocenter motion, variations in J2 can be obtained with two classes
of methods, direct and indirect methods, which are briefly reviewed in the following
sections.

2.2.1. Direct Methods

Observations of J2 variations are traditionally obtained from an analysis of SLR data.
Since the launch of the LAGEOS-1 satellite in 1976, high-quality J2 variations have
been provided to the science community for over four decades. J2 variations were
firstly reported by Yoder et al. (1983), who demonstrated that LAGEOS-1 data are
sensitive to both seasonal and secular changes in the Earth’s gravity field. The linear
trend in J2 (

•
J2) was determined to be −3×10−11 yr−1, which can be reconciled with

predictions of GIA models. However, J2 observations based on only one SLR satellite
are correlated with higher degree zonal terms, such as J4 and J6, which were taken
from a particular GIA model. An analysis of another SLR satellite, Starlette, was
conducted by Cheng et al. (1989).

•
J2 was determined to be (−2.5±0.3)×10−11 yr−1,
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which is in good agreement with the previous value. Also, J3 and J4 were deter-
mined together with J2, which reduced mutual aliasing. Subsequently, data from
multiple SLR satellites including LAGEOS 1 and 2, Starlette, Ajisai, Etalon 1 and
2, Stella and BE-C, were combined to determine the temporal Earth gravity field
changes (Cheng et al., 1997; Cheng and Tapley, 1999). J2 as well as other zonal har-
monics were well separated and determined. These studies further confirmed the
presence of the linear trend and seasonal variability in the J2 time-series. As longer
J2 time-series became available, a possible reversal of the trend in J2 around 1998
(referred to as the 1998 anomaly) attracted significant attention (Cox and Chao,
2002). The anomaly was studied extensively (e.g. Dickey et al., 2002; Cazenave
and Nerem, 2002; Chao et al., 2003) and has been interpreted as the result of a
mass redistribution between polar glaciers and tropical oceans (Dickey et al., 2002).
Later, Cheng and Tapley (2004) pointed out that the 1998 anomaly was not a unique
event, but rather a superposition of the inter-annual variations and the decadal vari-
ations, which lead to the abnormal fluctuations of J2. The inter-annual variations
of 4 to 6 years were associated with the strong ENSO events. The causes of decadal
variations, on the other hand, were not clear at that time but are now shown to be
dominated by ice mass loss in Greenland and Antarctica (Nerem and Wahr, 2011;
Seo et al., 2015). Benjamin et al. (2006) found that a series of anomalies like the
1998 anomaly can be found in the J2 residuals if the Earth body tide were better
modeled. Recently, Cheng et al. (2013a) showed that the long-term J2 variations
are more quadratic than linear in nature, which suggests an acceleration of glaciers
and ice-sheets melting during the last decade.

The GRACE mission aims to monitor changes in the Earth’s gravity field. Tem-
poral variations in J2 are therefore naturally provided, which is another source of
directly observed J2 variations. Unfortunately, the quality is rather poor as the J2

variation time-series is corrupted by large periodic aliases of 161 days (e.g. Chen
et al., 2004, 2005). The causes of such aliases are partially attributed to thermal-
dependent systematic errors in the satellite accelerometer data (Cheng and Ries,
2017). Consequently, the GRACE-observed J2 variations are recommended to be
replaced with those based on SLR data (Cheng and Ries, 2012).

2.2.2. Indirect Methods

Variations in J2 can also be obtained indirectly. Earth rotation theory indicates that
excitation of length-of-day (LOD) changes due to surface mass load variations is
proportional to J2 changes (Lambeck, 2005). Therefore, provided that it is possible
to effectively estimate and remove the excitations not related to mass loading, J2

variations can be directly determined from LOD changes. The underlying assump-
tion here is that after the effects of tides, winds, and currents have been removed,
the residual signal is dominated by the effects of surface and interior mass loads.
Usually, the GIA effects are removed by eliminating the linear trend from the LOD
time-series. Thus, the LOD method cannot estimate the trend in J2. The earthquake-
related signals, on the other hand, are ignored. Using this method, Chen (2000)
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derived J2 changes from the daily LOD time-series prepared by Gross (1996), which
is obtained from a Kalman combination of various space geodetic observations in-
cluding GPS, SLR, very long baseline interferometry (VLBI), and lunar laser ranging
(LLR). However, the obtained J2 time-series is less accurate than those based on
SLR data. This is probably owing to the imperfect removal of wind and ocean cur-
rent effects (Chen, 2000). Gross et al. (2004) estimated two J2 time-series. One
based on global GPS inversion and the other based on a newer LOD time-series
from Gross (2003). However, the agreement of these two solutions is also quite
poor. This could be expected since the excitations in Earth’s rotation are primar-
ily caused by changes in atmospheric winds and the meteorological models used at
that time could not estimate large-scale wind variations with a sufficient accuracy.
After using more advanced meteorological models, the agreement between the J2

variations based on LOD time-series and SLR data or GPS global inversion have
been significantly improved (Chen and Wilson, 2003; Chen et al., 2005; Chen and
Wilson, 2008; Bourda, 2008; Meyrath et al., 2013; Chen et al., 2016).

The inversion approach for geocenter motion determination discussed in section
2.1.2 is able to estimate changes in higher degree coefficients as well. Using the
global GPS inversion approach, Wu et al. (2003) obtained a J2 time-series in line
with those determined from SLR data in terms of seasonal variations (e.g. Cheng
and Tapley, 1999; Cox and Chao, 2002). Following studies using the inversion
approach also confirmed that the GPS-derived J2 seasonal variations are remarkably
close to the SLR solutions (e.g. Wu et al., 2006; Lavallée et al., 2010; Rietbroek
et al., 2012b). As we will show in the following chapters (Chapter 3 and 4), the
GRACE-OBP approach (Swenson et al., 2008) is also able to co-estimate J2 (C20)
with geocenter motion (C10, C11, S11) estimates.

Finally, C20 variations can also be obtained from numerical climate models (Chao
and Eanes, 1995; Chen and Wilson, 2003, 2008; Meyrath et al., 2013, 2017). Just
like geocenter motion estimates obtained this way, such solutions are currently not
reliable due to poorly modeled hydrology, continental glaciers, and other contribu-
tors.

2.3. Summary

The existing methodologies used to estimate geocenter motion and variations in J2

can be divided into two categories, i.e., direct and indirect (inversion) methods.

Geocenter motion can be estimated directly from three geodetic techniques, SLR,
GNSS and DORIS. Due to the network effect, all direct methods deliver the motion
of CM with respect to CN rather than CF. Even the most accurate technique among
the three, SLR, is still not able to produce a satisfactory geocenter motion time-
series. On the other hand, solutions based on the inversion methods are less noisy,
and agree better between different variants. These methods are first developed to
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utilize GPS data only. GRACE data and OBP model predictions are then incorporated
to facilitate a simultaneous estimation of other higher-degree coefficients mainly in
order to reduce aliases into the interested low-degree component. A variant of
inversion approach recently developed by Swenson et al. (2008) relies primarily on
GRACE data and an OBP model to estimate geocenter motion. The discrepancy in
the Z-component of geocenter motion time-series of this method and other methods
indicates a room for improvement.

Changes in the Earth’s dynamic oblateness are currently best derived from SLR
data, a traditionally adopted direct method. Estimates based on the LOD data are
still unsatisfactory due to an insufficient accuracy of meteorological models which
are needed to remove signals related to winds and ocean currents from the LOD
time-series. Inversion methods using GNSS data supported by GRACE data and
OBP models, on the other hand, are now providing comparable J2 solutions from
SLR data.

Thus, inversion methods are promising for estimating both geocenter motion
and variations in J2. In the following chapters, we will further develop those meth-
ods. Among others, we will extend the method of Swenson et al. (2008) to estimate
variations in J2 and explore the implementation details for improvements.
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3.1. Introduction

Monthly Earth gravity field models based on data from the Gravity Recovery and
Climate Experiment (GRACE) satellite mission (Tapley et al., 2004), which was
launched in 2002, are being released by several data analysis centers (e.g., Center
for Space Research (CSR) model RL05 (Bettadpur, 2012), GeoForschungsZentrum
(GFZ) model RL05a (Dahle et al., 2013), Jet propulsion Laboratory model (JPL)
RL05 (Watkins, 2012), (Delft Mass Transport model) DMT (Liu et al., 2010)). In
spite of continuous improvements in data processing techniques, very low-degree
spherical harmonic coefficients still cannot be determined with high accuracy. This
is largely due to the mission design (low orbits, limited separation of the satellites,
etc.) (Chen et al., 2005). In particular, this concerns variations of the C g

20 coeffi-
cient (∆C g

20, denoted as C g
20 hereafter for simplicity), which describes changes of the

Earth’s dynamic oblateness J2 (J2 = −p5C g
20, where the factor

p
5 implicitly means

that the C g
20 is normalised). Estimations of this coefficient are corrupted by 161-day-

period ocean tide aliases due to unknown reasons (Cheng et al., 2013a). Therefore,
the C g

20 coefficient in GRACE gravity field models is recommended to be replaced
with estimates from other techniques such as Satellite Laser Ranging (SLR), which
is likely to provide the most accurate C g

20 information so far (Cheng and Tapley,
2004).

An alternative source of information about variations of low-degree coefficients
is surface mass loading inferred from the GPS-sensed solid Earth deformation, an
approach known as the inversion method (Blewitt et al., 2001; Gross et al., 2004;
Wu et al., 2012).

Swenson et al. (2008) developed a new method method to determine the degree-
1 coefficients by combining GRACE information with Ocean Bottom Pressure (OBP)
data, so that the usage of GPS data is not needed.

Here we extend the methodology by Swenson et al. (2008) further to estimate
the monthly C g

20 coefficients from other GRACE gravity field model coefficients sup-
ported by the C g

20 coefficients from an Ocean Bottom Pressure (OBP) model and a
Glacial Isostatic Adjustment (GIA) model. We validate our solutions against SLR-
derived estimates. This study is motivated by the following considerations: (i) The
estimated C g

20 coefficients are predominantly based on GRACE data, this may reduce
the latency time, which can be rather long if other geodetic techniques are involved
(e.g. SLR). (ii) Dense and evenly distributed measurements are used as the input.
(iii) The proposed procedure has better prospects regarding an increasing accuracy
of future satellite gravity mission and related geophysical models. In addition, one
will be able to use the proposed procedure for a mutual validation of the estimates
based on GRACE data and on other techniques.
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3.2. Methodology

Following Eq. (11) in Swenson et al. (2008), one can derive a similar equation for
the determination of the C20 coefficient:

C20 =
4πC ocean

20∫
P̄20(cosθ)ϑ(θ,φ)P̄20(cosθ)dΩ

−

∫
P̄20(cosθ)ϑ(θ,φ)

∞∑
l=1

l∑
m=0

P̄lm(cosθ){Clm cosmφ+Slm sinmφ}dΩ∫
P̄20(cosθ)ϑ(θ,φ)P̄20(cosθ)dΩ

(3.1)

where C ocean
20 represents the oceanic component of C20. Integrals are defined over the

entire globe, dΩ= sinθdθdφ is an element of solid angle. The summations exclude
the estimated term C20. Indices l and m stand for spherical harmonic degree and
order, respectively. P̄lm are normalised associated Legendre functions. θ is colat-
itude in spherical coordinates, φ is longitude, ϑ(θ,φ) denotes the ocean function,
which equals 1 over ocean and 0 over land. C20, Clm and Sl m denote the “mass co-
efficients” describing the surface mass change and are related to the dimensionless
Stokes coefficients C g

20, C g
lm and Sg

lm by

 Clm

Sl m

= aρearth(2l +1)

3(1+kl )

 C g
lm

Sg
lm

 , (3.2)

in which a is the semi-major axis of the reference ellipsoid, ρear th is the Earth’s
average density and kl denotes the degree-l load Love number (Wahr et al., 1998).

Following Swenson et al. (2008), one can easily extend Eq. (3.1) to the case
when four coefficients — C10, C11, S11, and C20 — have to be simultaneously esti-
mated, for which purpose a system of linear equations has to be solved:



I 10C
10C I 10C

11C I 10C
11S I 10C

20C

I 11C
10C I 11C

11C I 11C
11S I 11C

20C

I 11S
10C I 11S

11C I 11S
11S I 11S

20C

I 20C
10C I 20C

11C I 20C
11S I 20C

20C





C10

C11

S11

C20

=



C ocean
10

C ocean
11

Socean
11

C ocean
20

−



G10C

G11C

G11S

G20C

 , (3.3)

where the following notations have been used:
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I 11S
20C = 1

4π

∫
dΩ

P̄11(cosθ)sin(1×φ)ϑ(θ,φ)P̄20(cosθ)cos(0×φ))

(similar for the other elements of matrix I ), (3.4)

and

G20C = 1

4π

∫
dΩP̄20(cosθ)cos(0×φ)ϑ(θ,φ)

∞∑
l=2

l∑
m=0

P̄lm(cosθ){Clm cosmφ+Slm sinmφ}

(similar for the other elements of vector G), (3.5)

in which the summations exclude the terms that are estimated.

To solve the system of linear equations and obtain degree-1 and C g
20 dimension-

less Stokes coefficients, one needs (i) the oceanic component of degree-1 and C g
20,

(ii) higher-order Stokes coefficients and (iii) GIA model coefficients. The input and
output shown in the equation are mass coefficients, but they are directly related to
the Stokes coefficients mentioned here through Eq. (3.2). The Stokes coefficients
used in this study come directly from the GRACE level-2 products (also known as
GSM coefficients), for which the oceanic and atmospheric mass variations are not
included. These variations are provided by the Atmosphere and Ocean De-aliasing
level-1B (AOD1B) products (Flechtner and Dobslaw, 2013) and distributed along
with the GSM coefficients in two forms: GAC, which include the global oceanic and
atmospheric effects, and GAD, which have the atmospheric contribution over the
continents set to zero. Both GAC and GAD files contain dimensionless Stokes co-
efficients up to degree 100. The GAC coefficients contain the contribution that has
been removed from the full GRACE Stokes coefficients to receive GSM coefficients,
while GAD coefficients represent the ocean bottom pressure variations. To make
sure the input coefficients are compatible, the same oceanic and atmospheric effects
need to be removed from GRACE coefficients and the coefficients associated with
the ocean component, e.g. C ocean

20 . Since the ocean component lacks the contribution
from atmosphere over the land, it is therefore the GAD (rather than GAC) coeffi-
cients that should be subtracted from the ocean component. With this procedure,
the output will also be GSM-like coefficients. If the full degree-1 and C g

20 coefficients
are needed, the contribution of GAC product should be restored afterwards.

An alternative procedure requires that the AOD1B product is first added back to
GSM coefficients and then full degree-1 and C g

20 coefficients are estimated directly.
Although the latter procedure is stated to be equivalent to the first one in Swenson
et al. (2008), it is not favoured in this study for the reason outlined in section 3.3.2.
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3.3. Input Data

3.3.1. Oceanic C20

As has been mentioned above, the GAD contribution, denoted as C GAD
20 , needs to be

removed from C ocean
20 coefficients. The GAD coefficients represent the OBP model that

describes the pressure on the sea floor from both air and water column above. The
water columns are output from the ocean model from circulation and tides (OMCT)
(Thomas, 2002). This ocean model applies the Boussinesq approximation and thus
essentially conserves the ocean volume. A thin uniform layer of water is then added
or removed to conserve the total ocean mass, As a result, C GAD

20 should include the
contribution of internal oceanic mass redistribution as well as the atmospheric mass
variations over the ocean regions. After removing C GAD

20 , the remaining of C ocean
20 re-

flects only he water exchange between ocean and continents ( C exchange

20 ). Therefore,
the input C ocean

20 coefficients are equal to C exchange

20 in our study in view of the fact that
OMCT is exploited as the OBP model.

The aforementioned ocean model does not include the water exchange with the
continents, which, however, can be provided by GRACE (except for the contribution
of the degree-1 components) (Chambers and Schröter, 2011). Therefore, C exchange

20
is computed by using GRACE data integrated over the continental areas to infer
total mass variations (which are opposite to mass variations in the oceans, assum-
ing mass conservation in the Earth system). Once the monthly mass variation is
known, the value of C exchange

20 is obtained by assuming a certain spatial distribution
of the exchanged water over the oceans. We implement two different approaches:
(i) water redistributes as a uniform layer (eustatic approach, as in Swenson et al.
(2008)); (ii) water redistributes accounting for Self-Attraction and Loading effects
(SAL approach). SAL effects (or fingerprints, Mitrovica et al. (2001)) are computed
by solving the sea-level Eq. (Farrell and Clark, 1976), including the feedback from
Earth rotation (Milne and Mitrovica, 1998). It is worth noting that using GRACE
to constrain total mass change over the continents requires the availability of a
complete GRACE solution, which includes the coefficients being estimated through
Eq. (3.3). Therefore, C exchange

20 needs to be determined through an iterative approach
(starting from a GRACE solution where the four estimated coefficients are set equal
to zero, later updated with preliminary estimates of the same coefficients). Conver-
gence is very quick, with the difference between subsequent solutions being smaller
than 0.1% in 3 or 4 iterations.

The degree-1 coefficients are estimated similarly, simultaneously with C20

3.3.2. GRACE Gravity Field Models

In this paper, we present results based on CSR RL05, GFZ RL05a and JPL RL05
model series in the period from January 2003 to May 2013, all complete to or
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truncated at degree 60.

All the GRACE-based monthly gravity fields contain spatially-correlated noise
that reveals itself in the form of meridionally-oriented stripes in the spatial domain.
In order to solve the sea level equation and account for self-attraction and loading
effects, we need to know the spatial distribution of the land load. For this purpose,
we use publicly available solutions that have been post-processed by means of the
DDK4 filter (Kusche et al., 2009) (http://icgem.gfz-potsdam.de/ICGEM/). The
DDK4 filter is decorrelation filter making use of error covariance matrices, and an
a priori signal covariance matrix in the spherical harmonic domain. In this way,
the filtering ensures that a higher noise or/and lower signal level means harder
damping and vice versa. Ultimately, the effect of this filter is somewhat similar to
that of a combination of empirical destriping algorithm (Swenson and Wahr, 2006)
and Gaussian filter (Wahr et al., 1998).

When using Eq. (3.3) we need to deal with the limited spatial resolution of the
GRACE gravity field models, which causes signals to spread over (or leak into) wider
areas. The signal leakage is further increased by applying a filter, such as DDK4.
As a result, the available observations cannot distinguish whether mass variations
occurring in coastal areas are originating from the land or from the ocean. An
attempt to define an ocean function without taking this fact into account may lead
to a miscalculation of the total mass exchange between land and oceans as well as
of the G vector. We correct for signal leakage by introducing a buffer zone around
all land areas, similarly to what is done by Swenson et al. (2008) when computing
the total ocean mass change. Differently from that study, we also consider the buffer
zone to be part of the land areas when we define the ocean function ϑ(θ,φ), which
means that we include the buffer zone in the definition of the G vector. We will show
that such a buffer is crucial to obtain solutions close to SLR estimates. The use of a
buffer introduces the risk that mass redistribution due to ocean dynamical processes
in coastal areas is erroneously attributed to land processes. However, the problem
is largely reduced by using GSM coefficients in Eq. (3.3), under the assumption that
the AOD products capture most of the ocean signal.

3.3.3. GIA Models

The method discussed above and Eq. (3.2) imply that gravity field variations are
solely due to a redistribution of mass at the Earth’s surface. Solid Earth contributions
such as those of tectonics and GIA should therefore be removed. Here, only GIA is
accounted for as proposed by Swenson et al. (2008). The removed GIA signal is
restored at the final data processing stage. Since GIA is characterised by a linear
trend, the choice of a specific GIA model has no impact on seasonal and other short-
term signals.

Considering that available GIA models are highly uncertain, we only show the
resulting C g

20 trends for a few GIA realisations, based on different Earth rheologies

http://icgem.gfz-potsdam.de/ICGEM/
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and on two Antarctic ice histories. A full-scale sensitivity study is beyond the scope
of this paper.

Four GIA models have been used. All models are based on the ICE-5G ice history
(Peltier, 2004). Model-A, -B and -C are based on a simplified version of viscosity
model VM2 (Peltier, 2004), while Model-D assumes a lower mantle with a higher
viscosity (1022 Pa s) than VM2 (Mitrovica and Forte, 1997). Model-A is taken from
A et al. (2012), who computed it for a compressible earth model, while Model-B is
our own realization and makes the commonly used assumption of incompressibility
within the Solid Earth (Spada et al., 2011). In Model-C the Antarctic component is
computed separately, based on ice history IJ05 (Ivins and James, 2005) and on a
different viscosity profile than VM2 (consisting of a 60-km-thick elastic lithosphere
and of a lower mantle with a viscosity of 1022 Pa s). This Antarctic setup provides
uplift rates very close to independent results based on satellite data (Riva et al.,
2009)).

3.4. Results

The following factors can affect the estimation of C g
20 coefficients: (i) the choice of

the input models (GRACE solutions, OBP and GIA models) and (ii) implementation
details (buffer zone width, the filter applied to GRACE solutions and whether or not
accounting for self-attraction and loading effects). By trying different combinations
of data processing parameters, we produced many variants of C g

20 time-series. Each
of them was compared with the state-of-the-art C g

20 time-series based on SLR data
from five geodetic satellites (LAGEOS-1 and 2, Starlette, Stella and Ajisai) (Cheng
et al., 2013a). Since all the results discussed are presented in the form of GSM-
like coefficients, the AOD1B product (GAC coefficients) have also been removed
from the reference SLR time-series. We estimate bias, linear trend, acceleration,
as well as annual and semi-annual periodic terms for each time-series and make a
comparison with corresponding parameters derived from the SLR-based time-series.

We first compare de-trended (linear-trend removed) time-series both visually
and in terms of variance, where the percentage of the SLR-variance explained is
defined as R2 = 1−< SLR −MODEL > / < SLR >, where MODEL represents our esti-
mation in this study and <> denotes the variance operator. We also compare annual
amplitudes and phases against those of the SLR solution. Comparison of de-trended
time-series will lead to results invariant to the GIA model used. Later, we use one
selected solution to compare the linear trend estimates resulting from different GIA
models.
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3.4.1. Seasonal Variations

In Figure 3.1, we show a few time-series meant to illustrate the sensitivity of our
GRACE-based solutions to implementation details and input models. The reference
SLR solution is represented by a black solid line and by a grey band, indicating
mean value and one standard deviation, respectively. In Table 4.4 we show statistics
for the same models, as well as for a few additional experiments (different buffer
widths, use of the DDK4 filter).

In Figure 3.1a, we show the role of implementation details, namely of the use
of a buffer zone and of the computation of SAL effects, based on GRACE CSR RL05
solutions. Not using any buffer and ignoring SAL effects (green line) largely under-
estimates the amplitude of the seasonal cycle. Nonetheless, most features of the SLR
time-series are already recognisable, such as the relative size of maxima and min-
ima, as well as their phase. This solution explains about 59% of the SLR variance,
where the annual cycle is rather close in phase, but clearly smaller in amplitude
(65% of SLR). The addition of a 200 km buffer zone (blue line) largely improves
the overall fit as well as the size of the peak amplitudes. The amplitude of the annual
signal becomes statistically equivalent (within 2σ) to the SLR solution. However, the
improvement on the overall fit is moderate, where the new solution explains about
68% of the SLR variance. Further increasing the width of the buffer zone to 250 km
and 300 km will begin to lower the explained variance slightly. When using a 300
km buffer width, the estimated annual amplitude becomes smaller. More detailed
analysis of the buffer zone width will be discussed in Chapter 4. A more advanced
way of handling signal leakage may also be useful and will be a subject of future
studies.

Finally, accounting for SAL effects (red line) has a rather small effect on the vari-
ance, but significantly affects the amplitude of the estimated annual signal, which
becomes equivalent to the SLR estimate. Note that the solution closest to SLR when
including SAL effects makes use of a smaller buffer (150 km) than in the eustatic
case. The effects of feedback from the Earth rotation are accounted for during the
computation of SAL. These effects on the estimated C g

20 coefficients are negligible.

It is worth mentioning that the elimination of the buffer zone from the ocean
functions prevents the accounting for SAL effects in the coastal regions. We have
verified, however, that this has a little impact on the solution. We have consid-
ered the following two scenarios: (i) solving the sea level equation for the whole
ocean; (ii) solving the sea level equation for a slightly smaller ocean by reducing
the ocean function 150 km along all boundaries while keeping the continental load
unchanged (i.e. ignoring the mass variation inside the 150-km-wide buffer zone
seen by GRACE). The resulting amplitude of the annual signal in the second sce-
nario increases, compared to the first one, by only about 2%, which is less than the
uncertainty.

In Figure 3.1b, we fix the implementation parameters to their optimal values
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Figure 3.1: Selected GRACE-based C
g
20 solutions obtained using different implementation details and

input models, together with a SLR-derived solution and its standard deviation. A linear trend has been
removed. (a) Shows the role of implementation details. (b) Illustrates the effect of using different GRACE
solutions after fixing the implementation parameters. The reference SLR solution and its one standard
deviation is shown in both panels (black solid line and grey band). GRACE solution used, buffer zone
width (not shown if no buffer zone used) and whether the SAL effects are accounted for are shown in
the name of each solution.
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(using a buffer width of 150 km and taking into account SAL effects) and show the
effect of using different GRACE solutions. The GFZ solution provides the best overall
fit (71.6% of the SLR variance explained and same amplitude of the annual signal).
Nonetheless, all three time-series are very close to each other and the amplitude of
the annual signal is statistically equivalent (within 1σ).

The phase estimates are not significantly affected by any of the above mentioned
factors. The differences of phase estimates compared to those based on SLR data
are all within ten days.

3.4.2. Trend Estimates and GIA

Table 4.4 also lists linear trend estimates when using GIA Model-C. Note that those
trends are still based on the GSM-like solutions, but we have verified that long-term
trends in atmospheric pressure over land and in OBP are negligible. The table shows
that both buffer and SAL effects have a large impact on the trend due to present-
day mass transport (PDMT). The estimated trend is zero without buffer and SAL,
but becomes 40% larger than the SLR trend for the model that provides the best fit
of the seasonal signal. The largest effect originates from the buffer, but also SAL
effects are sizeable (causing a further increase of up to 14% when the buffer width
is 200 km).

In Table 3.2, we list the effect of using different GIA models for the results based
on DDK4 filtered CSR solutions in combination with a 150-km buffer and taking
SAL effects into account (i.e. CSRDDK4+BUF150+SAL). Similar conclusions hold
for other setups. In order to allow an easier comparison with previous studies, we
show the obtained trends in terms of J̇2.

Table 3.2: J2 trends estimated using different GIA models (unit 10−11 yr−1). Results are based on solution
CSRDDK4+BUF150+SAL.

GIA PDMT total
SLR / / 2.2±0.2
Model-A -3.3 7.4 4.1±0.2
Model-B -3.6 7.1 3.6±0.2
Model-C -3.6 6.6 3.0±0.2
Model-D -5.7 9.1 3.4±0.2

The use of GIA models allows us to separate the contribution of GIA from that
of PDMT. The GIA contribution is uniquely defined for each model, while the PDMT
value depends on the full GIA spectrum and is therefore affected by implementation
details.

The smallest (in absolute value) J̇2 of GIA comes from the model by A et al.
(2012) (Model-A) which at the same time produces a relatively large estimate for
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Table 3.4: Statistics for the three cartesian components of different geocenter motion solutions. SWEN-
SON_TELLUS has been downloaded from the Tellus website; SWENSON_SETUP uses the same setup as
SWENSON_TELLUS, but it results from the simultaneous estimation of C

g
20; CSRDDK4+BUF150+SAL is

the setup that provides the best agreement to SLR-derived C
g
20, for the same GRACE solutions and GIA

model (Model-A). The GIA contribution to the trend is not restored, as in the SWENSON_TELLUS case.

Trend Annual signal
Amplitude Phase

(mm/yr) (mm) (day)
X
SWENSON_TELLUS −0.07±0.01 1.26±0.05 97±3
SWENSON_SETUP −0.08±0.01 1.30±0.06 97±3
CSRDDK4+BUF150+SAL −0.05±0.02 1.50±0.06 96±3
Y
SWENSON_TELLUS −0.02±0.02 1.50±0.07 −76±3
SWENSON_SETUP −0.03±0.02 1.42±0.07 −79±3
CSRDDK4+BUF150+SAL +0.02±0.02 1.67±0.07 −72±2
Z
SWENSON_TELLUS −0.19±0.02 1.77±0.07 92±2
SWENSON_SETUP −0.20±0.01 1.73±0.06 92±2
CSRDDK4+BUF150+SAL −0.35±0.02 2.48±0.08 88±2

the contribution of PDMT, leading to a larger J̇2 value than Model-B based on an
incompressible earth. Substituting the Antarctic contribution of ICE-5G with results
based on IJ05 (Model-C) has no impact on J̇2 caused by GIA, likely due to trade-offs
between the different ice history and the different viscosity structure used for the
Antarctic model. However, the use of IJ05 does reduce the mass loss estimate from
Antarctica, leading to a smaller PDMT contribution and to the smallest total J̇2. A
higher viscosity in the lower mantle (Model-D) leads to larger contributions from
both GIA and PDMT, which compensate each other and result in the second smallest
total J̇2.

None of the GIA models tested here provides a very good fit to the J̇2 value
determined from SLR. However, our results show a positive sign of J̇2, confirming
the findings from earlier studies on the inversion of J̇2 observed since 1998 (Cox and
Chao, 2002), which has been attributed to an increased contribution from PDMT
(Dickey et al., 2002; Cheng and Tapley, 2004; Nerem and Wahr, 2011; Cheng et al.,
2013a).

3.4.3. Eustatic Sea-level Variability and Geocenter Motion

Finally, it is worth having a brief look at two byproducts of our study: the solutions
for eustatic sea-level variability (see Table 3.3) and for geocenter motion simultane-
ously obtained with C g

20 (see Table 3.4).



3

34 3. Earth’s Dynamic Oblateness

The eustatic sea-level variability estimated using the approach described in sec-
tion 3.3.1 has been compared with recent results based on alternative methods and
measurement technologies (Chambers et al., 2004; Rietbroek et al., 2009; Wouters
et al., 2011; Siegismund et al., 2011; Hughes et al., 2012; Bergmann-Wolf et al.,
2014). Our results are in line with those estimates in terms of annual amplitude
and phase (Table 3.3).

The co-estimated geocenter motion is significantly different from the one derived
from the degree-1 coefficients published on the Tellus website (ftp://podaac.jpl.
nasa.gov/allData/tellus/L2/degree_1), both in terms of a trend and annual
amplitudes, especially for the Z-component. However, the obtained results are sta-
tistically equivalent to those published in the Tellus website when we use the same
setup as Swenson et al. (2008), where a 300 km buffer zone is used to reduce the
signal leakage when estimating the total ocean mass variation, but no buffer zone
is considered when defining ocean function. This leaves the question of the optimal
estimation of geocenter motion somewhat open. A more thorough analysis of this
issue will be the subject of Chapter 4.

3.5. Discussion and Conclusions

Our results (available at http://www.citg.tudelft.nl/c20) show that GRACE data at
higher spherical harmonic degrees are capable of estimating seasonal changes in
C20 to a level comparable with SLR solutions. In fact, the uncertainty (computed as
formal error from an analysis of time-series) in the amplitude of the annual cycle is
smaller for the GRACE-based solutions. This is an indication that our solutions may
be less noisy than the SLR one, though it may also imply an underestimation of the
signal not described by the fitted curve.

The main factor controlling the amplitude of the seasonal signal is the way how
the problem of signal leakage in coastal areas is dealt with. Our simple approach of
extending the land mask to include the first few hundreds of kilometres of coastal
waters is already capable of producing a solution in close agreement with SLR,
though more advanced techniques (e.g., based on mascons) could provide a better
way to improve the spatial resolution of GRACE monthly fields and avoid the use of
a buffer zone.

Accounting for self-attraction and loading effects driven by the redistribution of
continental water masses has the effect of significantly increasing the amplitude of
both annual signal and trend.

So far, we have discussed only estimates without the contribution of atmospheric
and oceanic processes, assuming that the AOD1B products are correct. In the bottom
line of Table 4.4 we list the full values determined from the SLR time-series prior
to the subtraction of the AOD1B signal. Compared to the GSM-like solution in the
top line, the amplitude of the annual signal is twice as large and its phase is shifted

ftp://podaac.jpl.nasa.gov/allData/tellus/ L2/degree_1)
ftp://podaac.jpl.nasa.gov/allData/tellus/ L2/degree_1)
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by a month. This suggests that only about half of the seasonal total C20 signal is
determined by land hydrological processes, including the cryosphere. Therefore, if
the proposed methodology is used in estimating the total C20 signal, the accuracy
of the obtained estimates strongly depend on the accuracy of the atmosphere-ocean
model.

The determination of a long-term trend requires the use of a model of GIA are
still very uncertain. Further investigations are warranted in the future to mitigate
the uncertainties introduced by a GIA model.

One needs to bear in mind that the SLR solution is not free of systematic errors
and noise (Riddell et al., 2017). The processing parameters tuned to achieve a
time-series that best fits the SLR solution may therefore be biased. Further study for
validation using accurate geophysical models may enable us to claim an even better
solution than that from SLR.





4
Optimizing Estimates of

Annual Variations and Trends
in Geocenter Motion and J2

from a Combination of GRACE
data and Geophysical Models

37



4

38 4. Optimizing Geocenter Motion and J2

4.1. Introduction

The Gravity Recovery and Climate Experiment (GRACE) satellite mission (Tapley
et al., 2004) has been monitoring the Earth system for more than a decade since
launched in 2002. Monthly gravity field solutions produced on its basis in the form
of Stokes coefficients are being released by a number of data analysis centers (Bet-
tadpur, 2012; Dahle et al., 2013; Watkins, 2012; Liu et al., 2010). Such solutions
lack the three degree-1 Stokes coefficients, which are needed for a complete rep-
resentation of the mass re-distribution in the Earth system. The three degree-1
coefficients are proportional to geocenter motion, here defined as the motion of
Center-of-Mass (CM) of the Earth system with respect to Center-of-Figure (CF) of
the solid Earth surface (Ray, 1999).

In principle, the degree-1 coefficients can be observed directly by tracking satel-
lites, which are orbiting the CM, with ground stations, whose positions are fixed
to the solid Earth’s surface. Accurate satellite tracking can be achieved by making
use of geodetic techniques, such as Doppler Orbitography and Radiopositioning In-
tegrated by Satellite (DORIS), Global Positioning System (GPS), and Satellite Laser
Ranging (SLR). However, DORIS- and GPS-based results are still contaminated by
technique-specific errors and degraded by parameter collinearity (Altamimi et al.,
2011; Meindl et al., 2013; Rebischung et al., 2014). SLR solutions (e.g Cheng et al.,
2013b; Sośnica et al., 2013) are among the most accurate estimates available, but
still have large uncertainties, as the sparse SLR tracking network is sensitive to the
solid Earth deformation caused by surface mass loading, which makes it difficult to
realize an accurate CF reference frame (Wu et al., 2012; Collilieux et al., 2009).

As shown by Blewitt et al. (2001), the translation of an elastic Earth surface
caused by the degree-1 mass loading is accompanied by a specific deformation,
which is detectable from globally distributed GPS measurements and can then be
used to estimate degree-1 coefficients. This method has been further developed later
by combining GPS data with GRACE data and an Ocean Bottom Pressure (OBP)
model in a joint inversion scheme, which helps to reduce the aliases caused by
uneven distribution of GPS sites as well as higher-degree loading (e.g. Kusche and
Schrama, 2005; Wu et al., 2006; Rietbroek et al., 2009). Nevertheless, the GPS
measurements are still biased by draconitic errors (Griffiths and Ray, 2013) and
solid Earth deformation unrelated to loading, such as thermal expansion of the
bedrock (Dong et al., 2002) and tectonic movements.

Swenson et al. (2008) proposed a new methodology to estimate the degree-
1 coefficients, which is based on GRACE data and an OBP model (from here on
called the GRACE-OBP method). With this method, regional mass variations pre-
dicted from an OBP model are used as an additional constraint to transform the
GRACE-based global mass anomalies from the CM to the CF frame. The estimates
by Swenson et al. (2008), however, yielded a much smaller annual amplitude of C10

This chapter has been published in Journal of Geophysical Research 11, 121 (2016) (Sun et al., 2016b)
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variations than other approaches. Since the C10 coefficient variations correspond
to the Z-component of geocenter motion, inaccuracies in their determination can
lead to large errors in estimated mass variations at high latitudes. For example, a 1-
mm change in the Z-component of geocenter position is equivalent to a 70-Gt mass
change over Antarctica and 11-Gt mass change over Greenland (Wu et al., 2012).
In previous studies, simple validations of the GRACE-OBP method were performed
by using simulated time-variable gravity fields based on geophysical models (Swen-
son et al., 2008; Bergmann-Wolf et al., 2014). However, the purpose of those tests
was limited to verifying the correctness of the theory. No effort has been made to
evaluate the method performance in the context of real GRACE data.

Next to geocenter motion, the GRACE-OBP method is able to determine varia-
tions in the Earth’s dynamic oblateness (J2) (Sun et al., 2016a). Those variations
are directly related to variations of the C20 Stokes coefficient (J2 = −p5C20). The
GRACE-based C20 coefficient, is subject to large uncertainties (Chen et al., 2016),
presumably due to tide-like aliases, and it is a common practice to replace it with
estimates from other techniques, such as SLR. The GRACE-OBP method solves the
problem by replacing the GRACE-based C20 estimate with an alternative one that
does not require an explicit observation of that coefficient. Unlike the estimates
based on GRACE data alone, the annual variations of J2 obtained with the GRACE-
OBP method are comparable to independent results based on SLR observations.

In this study, for the first time, we evaluate the performance of the GRACE-OBP
method with respect to the determination of both geocenter and J2 variations by
means of end-to-end simulations. Apart from simulating the time-variable gravity
fields using synthetic models, we also take into account the errors that are present
in the real GRACE data and OBP data. As a result, we determine optimal imple-
mentation parameters of the GRACE-OBP method. The primary aim of the study
is two-fold: (i) to optimize the methodology of Swenson et al. (2008) in order to
improve estimates of annual variations and long-term trend in degree-1 and C20

coefficients, and (ii) to demonstrate the impact of this optimization on estimates
based on real GRACE data.

In the following, we first introduce the GRACE-OBP method and its input data
(Sect. 4.2). Realistic input data are then simulated with a synthetic Earth model
plus realistically defined errors (Sect. 4.3). Subsequently, we discuss the key imple-
mentation details that may significantly affect the results (Sect. 5.3). Afterwards,
degree-1 and C20 solutions based on both synthetic data (Sect. 4.5) and real GRACE
data (Sect. 4.6) are computed and presented. Finally, we discuss our results in Sect.
4.7.
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4.2. Methodology and Input Data

4.2.1. Methodology

In this section, we intended not to reproduce the derivation of all the equations used
in the GRACE-OBP method (for that, a reader is referred to Swenson et al. (2008)),
but rather to bring attention to several important aspects.

Time variations of Stokes coefficients of spherical harmonic degree l , order m
from GRACE data, ∆C g

lm and ∆Sg
l m , are related to the time variations of mass co-

efficients, ∆Clm and ∆Sl m , depicting the surface mass re-distribution at the Earth’s
surface. Let us drop, for simplicity, the symbol ∆, even though all coefficients used
in this study should be understood as time variations. Then, this relation is (Wahr
et al., 1998):  Clm

Slm

= aρearth(2l +1)

3(1+kl )

 C g
l m

Sg
lm

 , (4.1)

where a is the average Earth radius; ρearth is the average density of the Earth; and
kl is the gravitational elastic load Love number of degree l (Farrell, 1972). As a
result, Stokes coefficients can be obtained from known mass coefficients. Geocenter
motion (CM w.r.t. CF) in Cartesian coordinates (X ,Y , Z ) is then related to the three
Stokes coefficients through (Blewitt, 2003):


X

Y

Z

=
p

3a

1+k1


C g

11

Sg
11

C g
10

 , (4.2)

where k1 = 0.021 when the degree-1 Stokes coefficients are defined in the CF frame.
Degree-1 coefficients in other reference frames except for the CM frame can also be
obtained, but k1 needs to be changed accordingly (Blewitt, 2003).

To estimate the three degree-1 mass coefficients, C10, C11 and S11, Swenson et al.
(2008) proposed a matrix equation that was shown in their Eq. (12). Here, as in
Sun et al. (2016a), we use its extended version which represents a system of linear
equations that allows one to simultaneously co-estimate C20:
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where C ocean
10 , C ocean

11 , Socean
11 and C ocean

20 represent the degree-1 and C20 coefficients of
oceanic mass changes, respectively. The I matrix and G vector are defined as:

I 11S
20C = 1

4π

∫
dΩP̄11(cosθ)sin(1×φ)ϑ(θ,φ)P̄20(cosθ)cos(0×φ), (4.4)

G11C = 1

4π

∫
dΩP̄11(cosθ)cos(1×φ)ϑ(θ,φ)

∞∑
l=2

l∑
m=m0

P̄lm(cosθ){Clm cosmφ +Sl m sinmφ}

(other elements of the I matrix and G vector are similarly defined), (4.5)

where integrals are defined globally with dΩ= sinθdθdφ; P̄lm are normalized asso-
ciated Legendre functions; θ is colatitude in spherical coordinates; φ is longitude;
ϑ(θ,φ) is the ocean function, which equals 1 over ocean and 0 over land; m0 equals
1 if l = 2 and 0 if l > 2. The elements in the G vector are essentially estimates of
the oceanic degree-1 and C20 coefficients based on remaining GRACE-based mass
coefficients (note that the “oceanic coefficients” are defined as mass coefficients
describing only the mass re-distribution in the ocean area). Surface spherical har-
monics are not orthogonal to each other when the study area is limited to a part of
the sphere, and this allows some coefficients to be estimated on the basis of the mass
re-distribution in the study area synthesized from the remaining coefficients. C ocean

10 ,
C ocean

11 , Socean
11 and C ocean

20 are calculated from an independent (ocean) model. Hence, the
difference between the two should only be attributed to the lack of degree-1 and
C20 coefficients in the GRACE data, which results in an imperfect synthesis of the
mass re-distribution over the ocean area.

The procedure is somewhat similar to the restoration of the integration constant
when the value of the primitive function at a certain point is known. Since the
number of unknown coefficients is four, knowing the ocean mass variations at just
four properly chosen data points is sufficient to find the unknown coefficients. In
practice, more data points are required to make the estimation accurate and stable.
Nevertheless, the ocean function ϑ(θ,φ) does not have to include the whole ocean:
particularly noisy regions can be excluded.

4.2.2. Input Data

Here, we discuss the input for the GRACE-OBP method in general terms. Specific
input data sets will be described later.

According to Eqs. (4.3-4.5), two data sets are needed to estimate the four un-
known coefficients: (i) a set of mass coefficients representing the global mass re-
distribution at the Earth’s surface and (ii) the oceanic component of the four un-



4

42 4. Optimizing Geocenter Motion and J2

known coefficients predicted in the CF frame. The mass coefficients are obtained
from the GRACE level-2 data (labeled as GSM). The GSM coefficients are reduced
for signals due to mass redistribution in the atmosphere and ocean for which pur-
pose the Atmosphere and Ocean De-aliasing level-1B (AOD1B) product (Flechtner
and Dobslaw, 2013) is used to clean raw GRACE data from the corresponding sig-
nals. In order to use these coefficients in the GRACE-OBP method, one should
also clean the GSM coefficients from signals due to the solid Earth (e.g., Glacial
Isostatic Adjustment (GIA), mega-thrust earthquakes) by applying Eq. (4.1). The
signals from the atmosphere and ocean (described by GAD product) should also
be removed from the oceanic degree-1 coefficients used in Eq. (4.3) to keep them
compatible with vector G (Swenson et al., 2008; Sun et al., 2016a).

Ideally, the residual oceanic degree-1 coefficients (C ocean
1m −G1mC , Socean

11 −G11S)
should only reflect the signals not modeled by the OBP models, e.g., the mass ex-
change between ocean and land. The accurate estimation of ocean-land mass ex-
change is a delicate issue due to the fact that most ocean models, including the
Ocean Model for Circulation and Tides (OMCT) (Thomas, 2002), which is used to
produce the AOD1B, conserve the total volume of the ocean (Boussinesq approxi-
mation). This assumption results in artificial changes in the total mass of the ocean.
The mean ocean mass is then removed (by adding or removing a uniform layer of
water to the ocean) to conserve the total ocean mass. As a result, the ocean model
can only predict internal mass re-distribution.

Variations in the total ocean mass can be taken into account by integrating the
GSM-based (i.e., GRACE-observed) mass anomalies over the oceans. Then, the cor-
responding oceanic coefficients are estimated by assuming a certain spatial distri-
bution (eustatic or fingerprints) of this mass. Note that variations derived from the
GSM product are in the CM frame and, in our case, lack the C20 coefficient. To
restore the missing four coefficients, it is possible to make use of an iterative ap-
proach. The four coefficients computed by means of the GRACE-OBP method are
used to complement the GSM product at the next iteration. Starting from an ini-
tial guess where those coefficients are null, the estimation of the total ocean mass
variation usually converges within a few iterations.

4.3. Simulation of GRACE Solutions

4.3.1. Error-free GSM Coefficients

The error-free GSM coefficients are constructed using the updated ESA Earth System
Model (ESM) (Dobslaw et al., 2015). The updated ESM employs state-of-the-art
geophysical models to simulate gravity field variations related to five components
of the Earth system: atmosphere (A), ocean (O), terrestrial water (H), continental
ice sheets (I) and the solid Earth (S). In our simulation, we only deal with the first
four components, which are related to atmosphere and water mass redistribution
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at the Earth surface. In other words, we assume that the solid Earth signal can be
completely removed from GRACE data by means of independent models, though it
is not exactly the case when dealing with real data.

The atmosphere component is based on the latest re-analysis from ECMWF, ERA-
Interim (Dee et al., 2011). Terrestrial water storage variations are based on Land
Surface Discharge Model (LSDM) (Dill, 2008). The cryospheric component is con-
structed using the surface mass balance predictions from RACMO (Ettema et al.,
2009) and a simple linear ice discharge model developed by Gruber et al. (2011)
when modeling the original ESM. The oceanic part is generated by summing up
contributions from OMCT, meso-scale variability from MPIOM ocean model (Storch
et al., 2012) and a uniform layer of water used to conserve the mass in the Earth
system.

The ESM model covers a 12-year period from 1995 to 2006 with a temporal
resolution of 6 hours and a spatial resolution of about 100 km in terms of half-
wavelengths (complete to spherical harmonic degree 180). In addition, the unper-
turbed de-aliasing model named DEAL is provided (Dobslaw et al., 2016). DEAL is
different from the sum of A and O, as it ignores the sea-level variability due to land-
ocean water exchange and the small-scale ocean variability, which are also omitted
in current AOD1B product. Along with the DEAL product, AOerr files are also de-
livered. These files contain a realization of errors in A and O components. These
errors need to be added to DEAL to arrive at a perturbed model equivalent to the
AOD1B (Dobslaw et al., 2016).

The above mentioned synthetic Earth is our study object. The “error-free” GSM
coefficients are then simulated by subtracting the DEAL product from the synthetic
Earth model. (Notice that these coefficients are strictly speaking not error-free be-
cause the DEAL product lacks some signals that are present in the A and O compo-
nents.) To match the temporal resolution of the real GRACE data, monthly averages
of the simulated GSM coefficients are calculated.

It is worth noting that mass conservation is enforced in ESM by adding or remov-
ing a uniform layer of water over the oceans to balance variations in the total mass
of all the components. In reality, the water that represents mass exchange between
ocean and land does not spread uniformly over oceans because the distribution of
the ocean water is subjected to self-attraction and loading (SAL) effects (Gordeev
et al., 1977). In order to make our synthetic model closer to the real Earth, we
modify the updated ESM model such that the water distributes over the oceans ac-
cording to the sea level equation (Farrell and Clark, 1976; Tamisiea et al., 2010).
We expect SAL effects to have a large impact on water re-distribution (Clarke et al.,
2005).
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4.3.2. Simulation of GSM Errors

To generate realistic GSM coefficients, one needs to simulate the errors that are
present in real GRACE data. In this study, we consider two error sources: (i) errors
in the GAC product, and (ii) errors in the level-2 GRACE data (random errors). The
GAC errors are the errors in monthly averages of the AOD1B product. They are
mimicked by the errors provided in the AOerr file after we compute their monthly
averages. The GRACE random errors, however, have multiple sources, such as un-
certainties of onboard sensors, deficiencies in orbit determination, as well as errors
in background geophysical models (including the AOD1B product) at short time
scales. An extended discussion of sources of noise in GRACE data can be found in,
e.g., (Ditmar et al., 2011). Random errors in GRACE level-2 data are different from
month to month, which can be explained among others by variations in the orbit
groundtrack pattern (Wagner et al., 2006). We simulate those errors r on the basis
of the error variance-covariance matrices C of GRACE Stokes coefficients as follows.

r = Lx, (4.6)

where the vector x contains normally distributed uncorrelated random numbers
with zero mean and unit variance. L is the lower triangle matrix obtained by the
Cholesky decomposition of the error variance-covariance matrix C (C = LLT). In our
study, we use the matrices C of the CSR RL05 GRACE solutions, which have been
released since recently (ftp://ftp.csr.utexas.edu/outgoing/grace/). The simulated
random errors for a particular month form a set of Stokes coefficients complete
to the maximum degree of the error variance-covariance matrix, which is 96. For
the sake of consistency, we simulate error-free GSM coefficients also to degree 96.
We simulate GRACE errors for a period of approximately 12 years using the error
covariance matrices from 2003 to 2014. Note that missing months in the time-
series of real GRACE data are not included. Then the time-tags of error realizations
are shifted by 8 years backward to match the updated ESM time interval (1995 -
2006). In Fig. 4.1 we show the simulated random errors in level-2 GRACE data for
June 2006 in terms of equivalent water heights. The dominant error patterns are
north-south-oriented stripes in the spatial domain, which are similar to those in real
level-2 GRACE data. They can be largely suppressed by appropriate filtering (e.g.
Klees et al., 2008; Kusche et al., 2009). However, in our simulation, we use these
errors as they are because they largely cancel out as we integrate mass anomalies
over a sufficiently large area. Using a filtered solution as input carries the risk of
introducing non-negligible biases into low-frequency gravity signals.

Finally, we add the simulated GAC and random errors to the error-free GSM
coefficients from the ESM to obtain the realistically perturbed coefficients, which are
used as input in the further simulations. We generated 100 realisations of random
errors and thus have 100 sets of simulated noisy GSM coefficients.

According to Eq. (4.3), the degree-1 and C20 estimates are affected by errors in
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Figure 4.1: Synthesized GRACE random errors of June 2006 in terms of equivalent water heights.

both GSM coefficients and oceanic degree-1 and C20 coefficients. Here, we assume
that the four oceanic coefficients are error-free and try to quantify only the impact
of errors in GSM coefficients. We will address the impact of errors in the four input
oceanic coefficients in Sect. 4.6.3.

4.4. Implementation Details

Apart from the input GSM coefficients and geophysical models, the solution of Eq.
(4.3) is largely dependent on three implementation details: (i) the truncation de-
gree of the GSM coefficients, (ii) the ocean function that partitions the Earth’s sur-
face into ocean and land and (iii) whether or not considering SAL effects when
distributing ocean water.

We will have to find the truncation degree that is low enough to exclude the
strong noise present at higher degrees, but still high enough to depict the large-
scale mass re-distribution, which contributes significantly to the solutions.

The ocean function is responsible for selecting ocean grid points that are used
to constrain the solution. Due to the limited resolution of GRACE monthly gravity
field models, strong continental signals leak into ocean areas, so that an ocean
function using the exact ocean-land boundaries will erroneously capture them as
ocean signals. In order to reduce leakage from land into the oceans, we establish
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a buffer zone by excluding points within a few hundred kilometers (up to 400 km)
from the coast. A reasonable buffer width choice will allow us to use an ocean area
not polluted by leakage from land and still large enough to ensure a stable solution.

In order to use the GRACE-OBP method, we need to define the four input oceanic
coefficients (C ocean

10 ,. . . ,C ocean
20 , see Eq. 4.3). As explained in section 4.2.2, these co-

efficients should only reflect the mass variations over ocean areas resulting from
the water exchange between the continents and the oceans. After fixing the trunca-
tion degree of the GSM coefficients and the width of the buffer zone, the estimated
total water exchange is also fixed. However, the solution is still affected by how
water distributes over the oceans. Here, we consider two scenarios: (i) ignoring
the SAL effects, so that water redistributes uniformly over oceans as in Swenson
et al. (2008); the resulting ocean height change is known as barystatic (also called
eustatic) sea level variation; (ii) taking into account SAL effects by computing the
resulting fingerprints (Mitrovica et al., 2001) using the sea level equation.

In the following section, we analyze the effect of different choices of the imple-
mentation details. We discuss degree-1 and C20 coefficients separately.

4.5. Results of Numerical Experiments

In the numerical experiments, we estimate degree-1 and C20 time-series based on
different combinations of the implementation parameters. The truncation degrees
tested for the input "GRACE" solutions vary from 10 to 96 with a one-degree step.
We show results for degrees 10 to 70 because solutions based on higher truncation
degrees are in all cases too noisy due to large errors in high-degree coefficients.
For each truncation degree, we test buffer widths from 0 to 400 km with a 100-km
increment. For a particular combination of truncation degree and buffer zone width,
we consider water distributions with and without taking SAL effects into account.
Different degree-1 and C20 time-series (TC10 , TC11 , TS11 and TC20) corresponding to
specific parameter combinations are obtained. Amplitude (T amp), phase (T pha) and
linear trend (T trnd) of the annual signal are estimated. Note that T amp and T pha are
defined by approximating the annual cycle with the expression T amp cos(ω(t − t0)−
T pha), where ω is equal to 2π rad/yr and t0 refers to January 1 of a particular year.

The resulting degree-1 and C20 time-series vary significantly for different syn-
thetic GSM solutions reflecting different error realisations, which means that results
based on just one set of GSM coefficients are not representative. Therefore, we show
results based on all 100 sets of simulated GSM solutions. That is, for each combina-
tion of implementation parameters, we obtain 100 estimates of annual amplitude,
phase and linear trend. Then, we show the mean value of the 100 estimates and
use the corresponding standard deviation as a measure of uncertainties.
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4.5.1. Annual Variations of Geocenter Motion

In Fig. 4.2, we show mean annual amplitude estimates of degree-1 time-series and
their standard deviations. The annual amplitude estimates are sensitive to all three
implementation parameters. With a truncation at around degree 45, we notice
that applying a 200-km buffer zone increases the amplitude estimates of C10 and
C11 by about 40 % and 10 %, respectively, compared to the solutions using no
buffer zone (panels a and b). A further 25 % increase is found for both coefficients
after using the realistic exchanging water distribution (panels d and e). In contrast,
accounting for SAL effects and using a buffer zone have contradicting effects on the
estimated amplitude of S11 time-series. Increasing the buffer tends to reduce further
the already underestimated annual amplitude (panel c). Considering SAL effects,
on the other hand, increases the estimates, so that the resulting amplitude is close
to the synthetic truth (panel f).

Generally speaking, the figure shows that without taking into account the SAL
effects in the data processing procedure, one cannot retrieve the true amplitude,
no matter how the truncation degree and buffer width are chosen (panels a, b, c).
However, by considering only the SAL effects without properly choosing the buffer
zone width (e.g., using zero buffer width), one still cannot match the true amplitude
(panels d, e, f). Note that the results based on the error-free GSM solutions are not
shown because they are very close to the mean amplitudes. This is because the
monthly averages of the AOD1B errors are negligible compared to GRACE random
errors, as will be shown below. Therefore, taking the mean of 100 noisy realizations
reduces the noise level by approximately a factor of 10 (

p
100). Best amplitude

estimates are obtained after accounting for SAL effects and applying a buffer zone
wider than 100 km (200 - 400 km). With these two implementation parameters
chosen, the truncation degree becomes a less decisive factor, and a broad range of
values (from 30 to 60) allows for estimating the amplitude accurately. Truncation
degree higher than 60 clearly results in an increased uncertainty because of large
errors in the high-degree coefficients.

Similar conclusions can be drawn for the C20 coefficient, as well as for the phases
of annual variations and for the linear trends. In the following figures, we limit
ourselves to presenting solutions using 0-km buffer width and ignoring SAL effects
to show how the results look like if the original methodology of Swenson et al.
(2008) is reproduced. In addition, we show solutions based on a 200-km buffer
zone with and without considering SAL effects to illustrate the impact of a properly
chosen buffer zone and considering SAL effects.

In Fig. 4.3, we show the annual phase estimates for degree-1 coefficients. For
all three coefficients, a good estimation of the phase can be obtained by accounting
for the SAL effects and using the buffer width of 200 km. The buffer zone width
does not play a critical role here as the use of a 200-km buffer zone barely alters the
phase estimates. Considering SAL effects has a much larger effect (up to 10 days),
especially on C11 and S11.
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Figure 4.2: Results of simulated data processing: The mean annual amplitudes of the estimated GSM
degree-1 time-series (in mm of geocenter motion) using different implementation parameters based on
100 sets of simulated GSM solutions. Their standard deviations are indicated by light colored bands.
The true amplitudes are marked in all panels as black horizontal lines. In the upper panels (a, b, c),
the amplitude estimates are based on the uniform exchanging water distribution (NoSAL). In the lower
panels (d, e, f), we show results after distributing the exchanged water according to its gravitational
fingerprints (SAL).
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Figure 4.3: Results of simulated data processing: The mean annual phases of the estimated GSM degree-
1 time-series inluding their standard deviation (indicated by light colored bands) using different imple-
mentation parameters based on 100 sets of simulated GSM solutions. The true phases are marked in all
panels as black horizontal lines.

4.5.2. Linear Trend in Geocenter Motion

In Fig. 4.4, we show the effect of implementation details on estimates of a long-
term linear trend. An accurate estimation of the trend in the C10 coefficient also
requires the use of a buffer zone and the inclusion of SAL effects. In contrast, the
impact of implementation details onto the estimation of C11 is minor. Finally, we see
a better estimation of the S11 trend by using a buffer zone and taking into account
SAL effects, but the uncertainties are relatively large, which implies the trend can
still be over- or under-estimated by up to 25%.

From this test, it is tempting to conclude that the GRACE-OBP method is able to
retrieve the correct linear trend, especially in the C10 and C11 coefficients, provided
that buffer zone has been selected properly and SAL is taken into account. However,
the synthetic model is not affected by the solid Earth contributions. Uncertainties
in modelling those contributions might dominate in trend estimates when working
with real data. We will discuss this issue further in Sect. 4.6.

4.5.3. C20 Variations

The GRACE-OBP method has been already used to determine J2 variations (or equiv-
alently C20 variations) in Chapter 3, where the results are validated against esti-
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Figure 4.4: Same as Fig. 4.3, but for linear trend estimates.

mates from SLR over approximately the same interval as in our study. The optimal
strategy found in that study consisted of using GRACE monthly solutions complete
to spherical harmonic degree 60 and filtered by means of the DDK4 filter (Kusche
et al., 2009), in combination with a buffer width of 150 km, and accounting for SAL
effects. However, a specific SLR solution (Cheng et al., 2013a) may not represent
the truth, and that strategy may offer a biased parameter choice. Here we make use
of the synthetic model for an independent validation of the GRACE-OBP method as
well as for choosing its optimal implementation. Results are shown in Fig. 4.5.

As far as the amplitude of the annual signal is concerned, the use of a buffer
zone of 200 km has a relatively small effect of increasing the estimated value, which
remains 50% smaller than the truth (Fig. 4.5a). Accounting for SAL effects (Fig.
4.5b) doubles the amplitude and allows us to recover the truth almost exactly (in
combination with a 200 km buffer and a truncation degree between 30 and 50). It
is worth noting that SAL effects are consistently computed for each choice of the
buffer zone, which means those effects are limited to the ocean areas excluding the
applied buffer zone. The phase of the annual signal, on the other hand, is fairly
independent from the buffer size and SAL effects and varies within not more than
one week for truncation degree between 30 and 50 (Fig. 4.5b).

The linear trend estimate turns out to be highly dependent on all three imple-
mentation details. Including a 200 km buffer zone and accounting for SAL effects
have again a large positive impact especially onto the estimated C10 and C20 coef-
ficients. At the same time, it is also important to choose a truncation at around
degree 45 to obtain the accurate estimates. When using a truncation lower than
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Figure 4.5: Similar to Fig. 4.3, but for annual amplitude, annual phase and linear trend of the C20
coefficient.

degree 40, the trend estimates can differ with the truth by over 20%.

4.5.4. Optimal Implementation Parameter Setup

In this section, we apply a formal criterion to identify the optimal parameter setup
for estimating degree-1 and C20 coefficients simultaneously with the GRACE-OBP
method. We define the quality indicator for annual variations (Qann) and linear
trend (Q trnd) separately as follows:

Qann =
C20∑

cf=C10

1

n

n∑
i=1

{(T amp

cf,i si n(T pha

c f ,i )−T (t )amp

c f si n(T (t )pha
cf )2+

(T amp

cf,i cos(T pha

cf,i )−T (t )amp

cf,i cos(T (t )pha

cf,i )2}, (4.7)

and

Q trnd =
C20∑

cf=C10

1

n

n∑
i=1

{(T trnd
cf,i −T (t )trnd

cf )2}, (4.8)

where Tcf represents the time-series of the coefficient indicated by index c f , and
the index of c f runs over the four estimated coefficients, namely C10, C11, S11 and
C20. Note that these coefficients are scaled to describe mass changes in terms of
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Figure 4.6: Results of simulated data processing: The quality indicator for different combinations of
implementation parameters. We show the quality of estimated annual variations (a) and linear trends
(b).

equivalent water height (Eq. (4.1) and (4.2)). Subscript i indicates that the result is
based on the i th realization of noisy GSM coefficients; n is the number of simulated
GSM solutions, which equals 100. Superscripts amp, pha and tr nd represent the
annual amplitude, phase and trend of the corresponding time-series, respectively;
superscript (t ) refers to the synthetic truth. We are looking for the parameter settings
that yield the smallest Qann and Q trnd value.

In Fig. 4.6, we show the quality of selected parameter setups. The quality of the
estimated annual variations and linear trends of the four coefficients is much worse
if SAL effects are not taken into account. Therefore, that option is not addressed in
the figure. Clearly, the best results are obtained from the buffer width from 150 to
250 km in combination with a proper truncation. Ultimately, we select the option
“T45 BUF200 SAL”, which uses a truncation at degree 45, buffer width of 200 km
and accounting for SAL effects, as the recommended parameter setup for estimating
both annual variations and linear trend.

4.5.5. The Impact of GSM Errors

It is clear that both random errors in GRACE data and errors in the monthly aver-
ages of atmosphere and OBP (GAC) contribute to the uncertainties in the obtained
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Table 4.1: Results of simulated data processing: RMS errors (RMS values of the difference between
obtained time-series and the synthetic truth) of the degree-1 and C20 solutions due to atmosphere and
OBP errors and GRACE random errors. We also show the impact of RMS errors on the estimation of
annual variations. RMS errors as well as errors in annual amplitude of degree-1 solutions are reported
in terms of geocenter motion.

C10 C11 S11 C20

(mm) (mm) (mm) (10−11)

RMS error
GAC 0.04 0.02 0.02 0.01
GRACE 0.49 0.50 0.56 0.13

Ann Var error
Amp 0.1 0.1 0.1 0.2
Pha (day) 2 2 3 2

GSM coefficients. It is interesting to quantify the relative contributions of these two
error sources to the error budget of the obtained estimates of degree-1 and C20 coef-
ficients. Here, after setting the implementation parameters to the identified optimal
setup, we consider: (i) GSM coefficients only subject to GAC errors, and (ii) those
only subject to GRACE random errors. Both are compared with results based on the
error-free GSM coefficients.

As shown in Tab. 4.1, the GAC errors induced uncertainty is less than 10% of
that due to GRACE random errors for all four coefficients. Compared to the impact
of GRACE random errors, the impact of GAC errors is negligible. Therefore, it is
enough to just quantify the impact of GRACE random errors (with 100 realizations)
on the estimates of annual variations (the impact of GAC errors cannot be shown
realistically since we have only one realization for that type of error). These findings
are likely applicable to real data as well, since the provided AOerr represent errors
in AOD1B product used in the GRACE data processing (Dobslaw et al., 2016).

4.6. Results Based on Real GRACE Data

In this section, we present degree-1 and C20 solutions based on the GSM coefficients
provided by CSR RL05 (complete to degree 96) covering a 12-year period (from
August 2002 to June 2014). The pole tide (mainly affecting the C21 and S21 coeffi-
cients) has been corrected for according to Wahr et al. (2015). Unlike the synthetic
input, real GSM coefficients are not free of time-variable signals from the interior of
the Earth. Here, we only attempt to remove the prominent signals caused by GIA.
Since the use of a GIA model does not affect annual variations, we postpone the GIA
discussion until we show the linear trend estimates.
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4.6.1. Geocenter Motion

Even though we have already identified the optimal parameter set-up, we find it
more informative to produce degree-1 solutions for different combinations of im-
plementation details as it was done in the numerical experiments. Since the results
are now based on just one set of real GSM solutions, the uncertainty ranges are
computed based on the least-squares residuals.

When looking at the estimated annual amplitudes (Fig. 4.7), we see that the
effects of changing the buffer size and including SAL effects are extremely similar
to the synthetic case (Fig. 4.2). Consequently, we believe that the recommended
parameter setup based on the numerical experiments can also be applied to real
data, even though the synthetic Earth employed in the numerical studies may not
model the Earth system perfectly.

The impact of the implementation parameters on the annual phase (Fig. 4.8) is
similar to the synthetic case (Fig. 4.3) only for C11, while C10 and S11 show a larger
dependence on the buffer size and a smaller dependence on taking SAL effects into
account. Nonetheless, the qualitative agreement between the results obtained with
synthetic and real data still supports the use of a buffer and accounting for SAL
effects.

So far, we have discussed only degree-1 time-series without the contribution of
atmospheric and oceanic processes (GSM-like coefficients). In Tab. 4.2, we show
the results in terms of full geocenter motion, i.e. after restoring the degree-1 co-
efficients of the GAC products. In order to quantify the GAC-modeled atmosphere
and ocean contribution, we additionally list the results for GSM-like coefficients
as a reference. The amplitude and phase of C10 are changed after restoring the
GAC product insignificantly: by less than 1% and by about half a month, respec-
tively. In contrast, C11 and S11 are largely affected. The GAC products change
their phase estimates by about a month and account for about 30% and 40% of
the total amplitude of C11 and S11, respectively. Tab. 4.2 also shows the solutions
from the GRACE TELLUS website that are based on the methodology by Swen-
son et al. (2008) (ftp://podaac.jpl.nasa.gov/allData/tellus/L2/degree_1/,
downloaded in December 2015, GAC product is restored), as well as other solu-
tions from recent literature. Compared to the results based on (Swenson et al.,
2008), our estimates have a considerably larger annual amplitude for the C10 and
C11 coefficients, respectively by about 50% and 20%. Since the same GAC product
is restored to both solutions, the increase can only be caused by a different setup
of the implementation parameters. According to Fig. 7, 54% of the increase in C10

amplitude is due to the use of a 200-km ocean buffer, and the rest is due to the con-
sideration of SAL effects. The increase in C11 amplitude, on the other hand, should
only be attributed to SAL effects. The new estimates compare much better with the
annual signals detected by other techniques (Tab. 4.2). Full degree-1 time-series
based on alternative GRACE monthly solutions, such as JPL RL05 (Watkins, 2012)
and GFZ RL05a (Dahle et al., 2013), provide estimates very close to ones based on

ftp://podaac.jpl.nasa.gov/allData/tellus/L2/degree_1/
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Figure 4.7: Results of real data processing: The annual amplitudes of the estimated GSM degree-1 time-
series (in mm of geocenter motion) using different implementation parameters based on GRACE data
(CSR RL05). The uncertainty ranges are estimated from least squares fitting error. The values obtained
with the recommended data processing set-up are marked with blue dots in panel d, e and f.
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Figure 4.8: Results of real data processing: The annual phases of the estimated GSM degree-1 time-series
using different implementation parameters. The uncertainty ranges are calculated based on least-squares
fitting errors.

CSR RL05.

In Fig. 4.9, we plot the proposed degree-1 solution together with the solution
by Swenson et al. (2008), as well as a selected SLR solution (Cheng et al., 2013b),
linear trends being removed. The annual cycle is the most prominent feature in all
solutions. Though our estimates of the amplitudes of the C10 and C11 coefficients
are larger than the ones provided by (Swenson et al., 2008), the differences to SLR
estimates (Cheng et al., 2013b) are still significant.

Since the GRACE-OBP methodology implies that mass transport takes place only
at the Earth’s surface, we subtracted GIA signals from the input GSM coefficients. In
Tab. 4.3, we list linear trend estimates obtained with two GIA models and compare
them with trend estimates from literature. GIA model ICE-5G_VM2 (A et al., 2012)
is based on the ICE-5G ice history and a simplified version of mantle viscosity model
VM2 (Peltier, 2004), and computed for a compressible Earth model. GIA model
ICE-6G_VM5a is based on the ICE-6G ice history and the VM5a viscosity profile
(Peltier et al., 2015). Differences between the surface mass trend estimates based
on two GIA models suggests that uncertainties in GIA models play a important role
in geocenter trend estimates. However, the optimal estimation of geocenter motion
trend caused by surface mass transport, as well as of the full trend (which can be
obtained by adding back the GIA-induced trend), are still under investigation and
not discussed in this study.
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Figure 4.10: Same as Fig. 4.8 but for linear trend estimates.

In Fig. 4.10, we demonstrate that the linear trend estimates based on various
combinations of implementation parameters also show a similar behavior, as com-
pared to that observed in our numerical experiments. For example, the linear trend
estimates in C10 are smaller for higher truncation degrees and more narrow buffer
zones. Estimates in S11 increase for wider buffer zones while are relatively insensi-
tive to truncation degrees larger than 30.

4.6.2. C20 Variations

Results for C20 variations based on real data are shown in Fig. 4.11.

As for the case of degree-1 coefficients, both the annual signal and the linear
trend show a similar behaviour to the synthetic test, in terms of dependence on the
truncation degree, as well as the impact of buffer width and SAL effects. Hence,
we expect the best estimation of the annual amplitude to be obtained when using a
200-km wide buffer and accounting for SAL effects, where the latter is particularly
important.

In Fig. 4.12 we show the detrended GSM-like C20 time series, supplemented by
the SLR solution (GSM-like) by Cheng et al. (2013a) and the GRACE-OBP solution
shown in Fig 3.1, which was optimised to match the SLR results. Note that the opti-
mal GRACE-OBP solution from this study generally falls within the SLR uncertainty
range, but is less volatile. However, the amplitude estimate over the whole time
interval is considerably larger than the estimate from the SLR solution (Tab. 4.4).
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Figure 4.11: Same as Fig. 4.5, but derived from real GRACE data.

Comparisons show that the differences to the annual amplitude estimates of other
SLR solutions (Lemoine et al., 2013; Sośnica et al., 2014) are even larger. Further
investigation is needed to understand these discrepancies.

As far as the linear trend is concerned, the results shown in the right plot of Fig.
4.11 again support the use of the same implementation parameters as the synthetic
test suggests. Statistics for selected solutions are shown in Tab. 4.5, where we
have adopted the same GIA models as used for the degree-1 solutions. Note that
to facilitate a comparison with other studies, we list J̇2 values. Also, since J2 varies
non-linearly, it is only meaningful to compare linear trends for approximately the
same time span. Therefore, our results are only compared with several SLR solutions
with approximately the same time interval. The full linear trend estimates from the
GRACE-OBP approach supported with either GIA model are close to the estimate
from the SLR solution by Sośnica et al. (2014), but about twice as large as those
from the SLR solution by Cheng et al. (2013a). The full linear trend of the SLR
solution by Lemoine et al. (2013) is relatively close to the GRACE-OBP solution
based on the ICE-6G_VM5a model.

4.6.3. The Impact of Errors in the Oceanic Degree-1 and C20 Coef-
ficients

Until now, we have analyzed the GRACE-OBP approach under the assumption that
the oceanic degree-1 and C20 coefficients are error-free. In reality, the four oceanic
coefficients will likely contain errors that could propagate into the final degree-
1 and C20 solutions through the GRACE-OBP approach. Through analytical error
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Figure 4.12: Results of real data processing: The C20 time-series based on the proposed implementation
parameter setup together with the solution from Sun et al. (2016a) and an SLR solution (uncertainties
are indicated by light gray band) (Cheng et al., 2013a). The contribution of atmosphere and ocean is
not restored in the GRACE-OBP solutions, as the same contribution is removed from the SLR solution. A
linear trend has been removed.

propagation based on Eq. (4.3), a 1-mm (equivalent water height) error in C ocean
10 ,

C ocean
11 , Socean

11 and C ocean
20 propagates to about 1.8-, 1.4-, 1.6- and 1.9-mm error in

the resulting C10, C11, S11 and C20 coefficients, respectively. It is difficult to synthe-
size realistic error realizations for low-degree oceanic coefficients as they may be
contaminated by time-correlated errors. Therefore, we limit ourselves to compar-
ing annual variations in degree-1 and C20 coefficients based on two alternative OBP
models in order to show the potential impact of such errors.

That is, we repeat the computations presented above, having replaced the OMCT
model with the ECCO model (Fukumori, 2002; Kim et al., 2007). The ECCO OBP
field is from ECCO’s Near-Real-Time Kalman filter estimate version kf080, which as-
similates altimetry data as well as in-situ temperature profiles. The ECCO OBP fields
are available in monthly averages, on 1◦×1◦ grids covering oceans between 80◦S and
80◦N (http://grace.jpl.nasa.gov/data/get-data/ocean-bottom-pressure/).
We fill the polar gaps in the ECCO OBP estimates in two ways: (i) with zeros
(ECCO_Polar_zero) and (ii) with data points from OMCT OBP (ECCO_Polar_OMCT).

In Tab. 4.2 and Tab. 4.4, we show the amplitude and phase estimates of the
annual variations for degree-1 and C20 coefficients based on different ECCO OBP
models. The annual variations of all four coefficients are not significantly changed.
For GSM-like degree-1 and C20 coefficients, the largest differences are seen when the

(http://grace.jpl.nasa.gov/data/get-data/ocean-bottom-pressure/)
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ECCO_Polar_zero model is used instead of OMCT. However, the annual amplitudes
are only different within 10% and annual phases are differ by less than 10 days.

When considering full coefficients, the impact of using a different OBP model be-
comes larger. Again, the largest difference is seen between OMCT and ECCO_Polar_zero
models. Note that using the ECCO_Polar_zero model is a sub-optimal choice, and
the results based on such a model should not be compared directly with those based
on OMCT model, which is global. Nevertheless, even in that case, the annual ampli-
tudes of degree-1 coefficients are different within 15%. For annual phase estimate,
the largest difference is 11 days. Annual amplitude of full C20 coefficient is about
20% smaller when the ECCO_Polar_zero is used. The annual phases of full C20

coefficients, on the other hand, agree within one sigma (3 days).

It is also important to realize that the optimal choice for the implementation
parameter based on the numerical study ignores the errors in the oceanic degree-1
and C20 coefficients. Nevertheless, they are still valid in case of estimating annual
variations, judging from the relatively small differences in those estimates when
using different OBP models.
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4.7. Discussion and Conclusions

Our simulation results suggest that the approach proposed by Swenson et al. (2008)
is capable of accurately estimating geocenter and J2 variations. However, the choice
of implementation details is important. In particular, it is critical to take into account
the spatial distribution of the exchanged water between land and oceans (SAL ef-
fects) and to make the proper partitioning into land and ocean. Extending the
continent boundaries by means of a 200-km buffer zone produces the best results.
Also, a truncation of the sets of input spherical harmonic coefficients influences the
quality of the estimates. The optimal truncation degree is between 30 and 50. A
lower truncation degree may lead to missing some mass redistribution at small spa-
tial scales that still significantly contributes to geocenter motion and J2 variations.
A higher truncation degree increases the effect of errors at small spatial scales.

The optimal choice of the implementation details might be somewhat different
for each of the four coefficients analysed, and for different quantities of interest:
the amplitude/phase of annual variations or the linear trend. Nevertheless, we find
it essential to identify a single optimal setup in order to ensure a consistency of the
obtained estimates. The recommended setup consists of truncation at degree 45, a
buffer width of 200 km, and accounting for SAL effects.

We have also shown that in real GRACE data processing, the dependence of the
solution on the implementation details is similar to the synthetic case. Therefore,
the optimal implementation setup discussed above is likely also suitable to deal
with real data. The resulting time-series of geocenter motion and J2 variations
are expected to be significantly improved with respect to previous results based
on the original methodology of Swenson et al. (2008). Notable differences are in
the amplitude of the annual signal of GSM-like C10, which is 50% larger than in
(Swenson et al., 2008), and in the annual amplitude of full J2, which is 15% larger
than in (Cheng et al., 2013a).

When we restore the atmosphere-ocean contribution to arrive at the full coeffi-
cients, the annual amplitude of C10 is barely changed and the phase is shifted by
only two weeks, which suggests that continental hydrological processes, changes in
the cryosphere and total ocean mass variations are responsible for most of the sea-
sonal variations in the Z-component of geocenter motion. In contrast, the annual
amplitudes of C11 and S11 are increased by about 30% and 70%, respectively, which
implies that atmosphere-ocean variations are largely driving seasonal variations in
geocenter motion at the X- and Y-components. Also, J2 variations are largely affected
by the atmosphere-ocean contribution, which almost doubles the annual amplitude,
while introducing a phase shift of three weeks.

Errors in both GRACE coefficients and the oceanic degree-1 and C20 coefficients
contribute to the uncertainties in the obtained degree-1 and C20 time-series. How-
ever, GRACE errors only account for annual amplitude errors in geocenter motion
at the 0.1-mm level, which is below 10% of the total signal. For C20 coefficients,
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GRACE errors also contribute marginally (with less than 10%). The effect of this
error on to the annual phase estimates is also minor (less than 3 days). In contrast,
errors in oceanic degree-1 and C20 coefficients seem to play a somewhat larger role.
By comparing estimates based on different OBP models, we conclude that the errors
in oceanic degree-1 coefficients accounts for up to 15% of the annual amplitude es-
timates. While errors in oceanic C20 coefficients could cause a difference of about
20%. Again, annual phase estimates are not significantly affected (for all cases, the
differences are well within two weeks).

Regarding trends in geocenter motion, we only calculate those driven by surface
mass. GIA-induced trends are not reliably predicted by GIA models and are not
restored.

As for the case of full J̇2, trend estimates are highly dependent on the adopted
GIA model (Sun et al., 2016a). GIA has a direct effect in terms of solid earth con-
tribution, but it also has an important secondary effect coming from the use of
GRACE data to constrain surface mass redistribution at higher degrees (the GRACE-
OBP method establishes a link between low- and high-degree gravity variations).
The GIA effect on J̇2 estimates clearly appears from Tab. 4.5, where the difference
between the J̇2 contribution of the two GIA models (direct effect) is about 10%
(0.3 · 10−11 yr−1), whereas the difference in the derived surface contribution (indi-
rect effect) is even larger (0.4 ·10−11 yr−1). Finally, the estimates of total J̇2 differ by
as much as 0.7 ·10−11 yr−1, when using two different GIA models.

For both geocenter and J2 trends estimated with the GRACE-OBP method, a
wider range of GIA models needs to be analysed in order to draw more definitive
conclusions regarding the optimal data processing scheme and its accuracy.

In this study, the discussion has concentrated on annual variations and the linear
trends, which are two prominent features of the geocenter motion and J2 time-
series. However, a consideration of them alone does not guarantee that the GRACE-
OBP method provides the optimal estimates at other time-scales (or frequencies).
To quantify the overall quality of the resulting time-series in a numerical study, it
would be necessary to calculate the RMS difference between the synthetic truth and
the obtained time-series. However, unlike the errors related to annual cycle and
linear trend, the RMS error do not reduce in case of a relatively long time-series. As
a result, one needs to pay more attention to mitigating the high-frequency noise in
the resulting geocenter and J2 variations. This will be subject of further studies.
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5.1. Introduction

Since its launch in 2002, the Gravity Recovery and Climate Experiment (GRACE)
(Tapley et al., 2004) satellite mission allows data processing centers to produce
monthly gravity field solutions (e.g. Bettadpur, 2012; Dahle et al., 2013; Watkins,
2012; Klinger and Mayer-Gürr, 2016; Farahani et al., 2017). After subtracting a
mean gravity field, the obtained time variations in the Earth’s gravity field reflect
changes in its mass distribution. Apart from the gravity changes originated from
the interior of the solid Earth, such as those due to the Glacial Isostatic Adjust-
ment (GIA) and mega-thrust earthquakes, the observed signals are caused by mass
variations within a very thin layer enveloping the solid Earth (oceans, continental
water/ice/snow storage, etc.). Using GRACE data as input, one can uniquely esti-
mate the surface mass variations with many applications in among others hydrolgy,
glaciology, and oceanography.

Typically, a monthly GRACE gravity field solution is expressed by a set of Stokes
coefficients (SHCs) complete to some maximum degree. One problem of these so-
lutions is that they lack degree-1 coefficients (∆C10, ∆C11 and ∆S11; the symbol ∆ is
dropped hereafter for simplicity), which are proportional to the geocenter motion
defined as the displacement of center of mass of the whole Earth system (CM) with
respect to the center of figure of the solid Earth (CF) (Ray, 1999). Omission of the
degree-1 contribution leads to significant errors in surface mass estimates (Wu et al.,
2012). Another problem of GRACE monthly solutions is that the C20 coefficient is
subject to large uncertainties (Chen et al., 2016), presumably due to thermal-related
systematic errors in the accelerometer data (Cheng and Ries, 2017). Therefore, for
the purpose of inferring surface mass anomalies, a GRACE user is advised to com-
plement GRACE solutions with independently estimated degree-1 coefficients and
replace the native GRACE C20 coefficients with more accurate ones from SLR.

Most of studies published until now have been using the degree-1 coefficients
as supplied by Swenson et al. (2008) (GRACE-OBP-Swenson), while the C20 coef-
ficients are from SLR analysis (Cheng et al., 2013a). This approach, however, has
some weak points. Firstly, the estimates of the degree-1 coefficients are not statis-
tically optimal in the sense that errors in both GRACE data and the OBP model are
not accounted for, as explained below. Secondly, the C20 coefficients produced from
a different observation technique and with a different data processing procedure
may not be consistent with GRACE solutions. As far as the degree-1 coefficients are
concerned, their estimates provided with Swenson’s approach are not statistically-
optimal.

The GRACE-OBP-Swenson approach estimates degree-1 coefficients by combin-
ing GRACE data and oceanic degree-1 coefficients extracted from an Ocean Bottom
Pressure (OBP) model. In its original implementation, this approach yields a much
smaller annual amplitude of the C10 (∼ 2 mm) than alternative techniques, such as
SLR (∼ 3 - ∼ 6 mm) (e.g. Cheng et al., 2013b; Sośnica et al., 2013; Ries, 2013) and
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GPS-based inversion (∼ 3 mm - ∼ 4 mm) (e.g. Wu et al., 2006; Jansen et al., 2009;
Rietbroek et al., 2012b). In Chapter 3 and 4, we developed an improved variant of
the GRACE-OBP-Swenson approach (GRACE-OBP-Improved approach) by making
a proper truncation of the input GRACE solutions, reducing GRACE signal leakage
and taking into account self-attraction and loading (SAL) effects (Gordeev et al.,
1977; Conrad and Hager, 1997). The resulting C10 annual amplitude was about
3 mm, i.e., in line with the GPS inversion method, as well as at least some of the
SLR-based estimates published in the literature (e.g. Crétaux et al., 2002; Sośnica
et al., 2013). In addition, C20 time-series estimated this way compared well with
several SLR-based solutions (e.g. Cheng et al., 2013a; Lemoine et al., 2013).

However, one problem of both the GRACE-OBP-Improved method and the GRACE-
OBP-Swenson method is that the degree-1 and C20 from an OBP models as well as
GRACE data are treated deterministically, which implies that these data are free of
error. As a consequence, any errors in OBP modeling and GRACE data propagate
into degree-1 and C20 estimates in an uncontrolled way, i.e., the estimation proce-
dure is statistically not optimal.

In this chapter, we propose to modify the GRACE-OBP approach in such a way
that degree-1 and C20 coefficients are estimated by means of a statistically-optimal
combination of GRACE data and an OBP model, which here is referred to as the
"combination approach". Furthermore, a realistic estimation of uncertainties in the
input data is part of the combination approach, which allows us to supply the esti-
mated low-degree coefficients with a stochastic description of their errors.

The combination approach can also be considered as a variant of the joint in-
version procedure (Rietbroek et al., 2009, 2012b), developed as an effort to im-
prove global GPS inversions. In these studies, surface loading variations (up to a
maximum degree of 30) were estimated from a combination of GPS, GRACE, and
OBP data. As a result, the degree-1 information comes from GPS-derived degree-1
mass loading and the OBP data. However, the GPS tracking network is not ho-
mogeneously distributed, which may lead to a prominent network effect. Also, it
is still challenging to isolate a load-induced contribution from the total GPS site
movements (Dong et al., 2002). In addition, the deficiency in modeling/removing
the draconitic error in GPS data processing (Griffiths and Ray, 2013) adds further
uncertainty to GPS-sensed degree-1 information. Another problem of the above pro-
cedure is that the three datasets are not coupled. For example, total ocean mass is
conserved, and water exchange with continents is ignored. In this study, the GPS
data are not used. Furthermore, total ocean masses are coupled with surface mass
changes over land.

It goes without saying that correcting GRACE solutions with accurate estimates
of degree-1 and C20 coefficients improves the mass anomaly estimates. Still, it is im-
portant to quantify such improvements and to compare the obtained mass anomaly
estimates with those based on the traditionally used degree-1 and C20 coefficients.
Therefore, in this study we also propose a method to evaluate the quality of the
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obtained degree-1 and C20 coefficients in terms of inferred surface mass anomalies.

The chapter is organized as follows. We describe the combination approach in
details in Sect. 5.2. Then, we conduct numerical experiments to verify the correct-
ness of the approach as well as to identify its optimal implementation parameters
(Sect. 5.4). Afterwards, we apply the selected parameter setting to derive degree-1
and C20 time-series using real data (Sect. 5.5). We then demonstrate that using
these coefficients improves the estimates of regional mass variations (Sect. 5.6).
Finally, Sect. 5.7 concludes the chapter.

5.2. Methodology

5.2.1. Combination Approach

Various datasets can be combined in the statistically-optimal sense if their noise
variance-covariance matrices are available (a general form of the optimal data com-
bination is presented in Appendix A.1). The optimal data combination in the context
of the GRACE-OBP-Improved approach is presented below.

Let the mass anomaly (in terms of equivalent water height) at a point k be
denoted as hk . The oceanic mass anomaly function can then be expressed as a
linear combination of surface spherical harmonics:

hk =ϑk

∞∑
l=1

l∑
m=−l

C (h)
lm Yl m,k , (5.1)

where ϑk represents the ocean function, which equals 1 if k is a point over ocean
and equals 0 otherwise; Ylm,k is the 4π normalized surface spherical harmonic of
degree l and order m at point k; C (h)

lm are the spherical harmonic coefficients de-
scribing surface mass re-distribution. These coefficients are called thereafter mass
coefficients. Notice that the summation in Eq. (5.1) starts from degree 1, which
implies a conservation of total mass. Also note that the summation is truncated at a
certain degree in practice. Eq. (5.1) can be re-written in terms of matrix-to-vector
multiplication as

h = OYd, (5.2)

where h is the K ×1 vector of mass anomalies hk , with K the number of grid points;
Y is the K ×L matrix with entries equal to Ylm,k ; d is the L × 1 vector containing
coefficients C (h)

l m starting from degree 1, with L the number of mass coefficients, and
O is a K ×K diagonal matrix with elements representing the ocean function, that is,



5.2. Methodology

5

73

{O}(k,k) =
{

1 if k is a point in ocean
0 if k is a point on land.

(5.3)

Assuming that mass redistribution takes place in a thin spherical layer, we can
relate the mass coefficients to the dimensionless SHCs, according to Wahr et al.
(1998)

d = Sx, (5.4)

where x is the L ×1 vector containing the set of dimensionless SHCs. S is the L ×L
diagonal matrix with entries

{S}(l m,lm) =
(2l +1)

3(1+kl )

ρearth

ρwater

a, (5.5)

where a is the Earth’s average radius; ρear th is the average density of the Earth,
ρw ater is the density of water and kl is the load Love number of degree l . Note that
k1 = 0.021, which implies that it is defined in the CF reference frame (Blewitt, 2003).

Therefore, our functional model is:

{
Tx = xg

OYSx = h,
(5.6)

where xg is a Lg ×1 vector containing the SHCs provided by GRACE, Lg equals (L−4)
since we assume that degree-1 and C20 coefficients are absent; T is a truncated unit
matrix of size Lg ×L matrix applied to truncate the x vector,

T =



0 0 0 0 1 0 · · · · · · 0

0 0 0 0 0
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
. . .

. . .
. . . 0

0 0 0 0 0 · · · · · · 0 1


. (5.7)

Then, the result of the combination approach is given as

xc = (TT C−1T+SYT OC−1
o OYS)−1(TT C−1xg +SYT OC−1

o h), (5.8)
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where xc (L ×1) denotes the set of re-estimated SHCs obtained after combining the
two datasets, with the first four elements being the degree-1 and C20 coefficients; C
(Lg ×Lg ) is the full noise variance-covariance matrix of the SHCs from GRACE and
Co (K ×K ) is the noise variance-covariance matrix of the oceanic mass anomalies.

5.2.2. Input Data in General Terms

GRACE Data and Their Noise Covariance Matrices

The input GRACE SHCs (xg ) are the so-called GSM coefficients. Such coefficients are
reduced for tidal contributions (with the use of a particular ocean tide model). Non-
tidal atmospheric and oceanic contributions are also reduced from GRACE observa-
tions in the level-1 data processing using the Atmosphere and Ocean De-aliasing
level-1B (AOD1B) products (Flechtner and Dobslaw, 2013). Monthly averages of
the removed non-tidal effects are provided in the form of SHCs in the so-called
GAC files. GAD files are the same as GAC, but restricted to ocean areas. However,
the oceanic contributions are from an OBP model, which conserves the ocean water
mass. Water exchange between ocean and land is thus ignored. Also, the OBP model
does not take into account SAL effects. Consequently, the total ocean mass change
signal as well as the fingerprints due to SAL effects remain in the GSM coefficients.

As for the noise covariance matrices of GRACE data, CSR RL05 solutions are
used throughout the study.

Oceanic Data and Their Noise Covariance Matrices

Oceanic mass anomalies are provided by an OBP model, which is also used to pro-
duce GRACE GSM coefficients. In order to be compatible with the input GRACE
data, tidal and non-tidal oceanic contributions have to be removed from the oceanic
data. As a result, when working with GRACE GSM coefficients, oceanic mass anoma-
lies predicted by the OBP model are set equal to zero. As mentioned, we need to
additionally estimate the signals caused by ocean-land mass exchange and finger-
prints. Here, we estimate the total ocean mass variations by integrating GRACE-
derived mass anomalies over the oceans. Then we account for SAL effects and de-
termine the fingerprints in ocean waters (Mitrovica et al., 2001) by solving the sea
level equation (Farrell and Clark, 1976; Tamisiea et al., 2010). It is worth noting
that using GRACE to estimate the total ocean mass variation requires a complete
GRACE solution including degree-1 and C20 coefficients. Therefore, total ocean
mass variation is determined through an iterative procedure. The four targeting
coefficients are set equal to zero as a starting point and later updated with esti-
mates of these coefficients. The total ocean mass variation as well as the estimated
coefficients converge quickly with only 3 or 4 iterations (thereafter, the difference
between the subsequent solutions is smaller than 0.1%, see also Fig. 5.1).
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(a) (b)

(c) (d)
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Figure 5.1: Oceanic mass anomalies updates at different iterations. In panel a, b, c and d we show the
updates for iteration 1 (RMS: 2 mm; Maximum value: 6 mm), iteration 2 (RMS: 0.4 mm; Maximum
value: 0.8 mm), iteration 3 (RMS:0.08 mm, Maximum value: 0.2 mm) and iteration 4 (RMS: 0.01 mm,
Maximum value: 0.03 mm), respectively.

Unlike for GRACE data, the error covariances of the OBP estimates are not pro-
vided directly. In the following, we will estimate the uncertainty σk at each oceanic
data point in order to construct, at least, a diagonal noise covariance matrix for the
OBP estimates.

Since the oceanic mass anomaly is a combination of the OBP model output (the
OBP model error has to be considered even though the residual signal is zero) and
the fingerprints, the RMS error σk at a given ocean point can be easily computed
under the assumption that the error from these two sources are not cross-correlated:

σ2
k =σ2

obp,k +σ2
fts,k , (5.9)

where σobp,k and σ f t s,k are the RMS errors of OBP and fingerprints, respectively.
The computation of them is described in Sect. 5.4.2.

The matrix Co is defined as a diagonal matrix. Ignoring the error correlations
may result in the overestimation of the OBP model accuracy and, therefore, in a too
high weight assigned to the OBP predictions. In order to overcome this problem, we
propose to scale the diagonal matrix Co uniformly by a factor α.

{Co}(k,k) =ασ2
k , (5.10)
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The optimal choice of alpha will be discussed later in Sect. 5.4.2. Therefore, we
can introduce a diagonal weight matrix

P = OC−1
o , (5.11)

with elements equal to

{P}(k,k) =
{ 1
ασ2

k
if k is a point in ocean

0 if k is a point on land.
(5.12)

Finally, Eq. (5.8) can be re-written as

xc = (TT C−1T+SYT PYS)−1(TT C−1xg +SYT Ph). (5.13)

5.2.3. Relation with the GRACE-OBP Method

The basic idea behind the combination approach and the GRACE-OBP approach are
very similar. Here, we show how the two methods are inter-related.

Let us define xe as a 4× 1 vector with entries equal to the degree-1 and C20

coefficients and xg as a (L−4)×1 vector containing coefficients provided by GRACE
(C20 coefficient is excluded). Assume that both xe and xg are free of errors. Then,
the whole set of error-free SHCs x can be represented as:

x = TT
e xe +TT xg , (5.14)

where Te is a 4×L matrix:

Te =


1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
0 0 1 0 0 · · · 0
0 0 0 1 0 · · · 0

 . (5.15)

The second line in Eq. (5.6) can be written as

h = OYS(TT
e xe +TT xg ) = OYSTT

e xe +hg , (5.16)

Thereby, hg (K ×1) represents oceanic mass anomalies without the contribution
from the degree-1 and C20 coefficients. We subtract hg from both sides of Eq. (5.16),
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which allows us to isolate the contribution of the degree-1 and C20 coefficients. That
is

h−hg = OYSTT
e xe . (5.17)

Note that TT
e Te yields an idempotent matrix, i.e., TT

e Te = TT
e Te TT

e Te ; S and TT
e Te

commute because they are diagonal matrices, i.e., STT
e T = TT

e TS. As a result, Eq.
(5.17) can be written as:

h−hg = OYSTT
e Te x (5.18)

= OYSTT
e Te TT

e Te x

= OYTT
e Te STT

e Te x

= OY
′
S
′
xe .

where Y
′

is a K ×4 matrix and S
′

is 4×4 matrix; they are the same as Y and S, but
only for the degree-1 and C20 coefficients. Eq. (5.18) can be considered as a linear
functional model connecting an unknown vector S

′
xe and data vector h−hg . Then,

xe can be solved for by plain linear regression. The obtained equation

S
′
Y

′T OY′S′xe = S
′
Y

′T Oh−S
′
Y

′T Ohg , (5.19)

or

Y
′T OY′S′xe = Y

′T Oh−Y
′T Ohg , (5.20)

is the same as Eq. (12) in Swenson et al. (2008) if written out explicitly (see Ap-
pendix A.2). The resulting solution is optimal provided that the noise in h−hg is
white. Therefore, if the GRACE data are noise-free (so that hg contains determinis-
tic values and one does not have to estimate xg ) and the noise in OBP data is white,
the combination approach reduces to the GRACE-OBP approach.

5.3. Implementation Parameters

In Chapter 4, we have already shown that estimates of degree-1 and C20 time-series
based on the GRACE-OBP approach are controlled by at least three implementa-
tion parameters: (i) maximum degree of the input GSM coefficients, (ii) width of
the buffer zone (a periphery surrounding the continents due to the application of a
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shrunk ocean function) and (iii) whether to consider SAL effects when distributing
water over oceans or not. We also addressed the optimal choice of implementa-
tion parameters by means of numerical simulations. They showed that the set of
input GSM coefficients should be truncated between degree 30 and 50, in order to
include mass re-distribution at large spatial scales while excluding high-degree co-
efficients contaminated by large errors. The buffer zone should be around 200 km
to mitigate the impact of continental signal leakage. Also, the ocean water has to
be distributed realistically by taking into account SAL effects. We expect that the
optimal truncation degree and the buffer zone width found in Chapter 4 will not
change significantly in the combination approach. Therefore, we limit ourselves to
the most promising combinations of implementation parameters. We test truncation
degrees between 10 and 60, and buffer zones widths of 100, 200 and 300 km; SAL
effects are always taken into account.

5.4. Numerical Experiments

Numerical experiments are carried out to verify the correctness and evaluate the
performance of our methodology.

5.4.1. Simulation of GRACE GSM Coefficients

The procedure to generate GRACE GSM coefficients is very similar to that described
in Chapter 4. It is based on the updated ESA Earth System Model (ESM), which
covers the period from 1995 to 2016 and is complete to spherical harmonic degree
180 (Dobslaw et al., 2015). It employs state-of-the-art geophysical models to simu-
late gravity changes due to mass re-distribution within the Earth system. It is worth
noting that we have added SAL effects to the original ESM model. We sum up the
contributions of the atmosphere, ocean, continental water, and ice-sheet compo-
nents to mimic GRACE-sensed gravity changes due to surface mass re-distribution.
The error-free GSM coefficients are then generated by removing the monthly aver-
age of the dealiasing product, called DEAL coefficients, which represent a simplified
model of mass transport in the atmosphere and ocean; they play the same role as
the AOD1B product. The DEAL coefficients are provided together with the ESM.
Two types of errors present in real GRACE GSM are added to the simulated error-
free GSM coefficients to obtain realistically perturbed ones. First, random errors are
simulated using the CSR RL05 monthly noise covariance matrices complete to de-
gree 60. To make the results more representative, we generate ten error realizations
per month. Second, we additionally introduce one realization of errors in the DEAL
product, which is provided together with the ESM as the so-called AOerr files. The
errors documented in the AOerr files are first defined as the differences between the
updated ESM (the one used in this study) and the original ESM model, and then
upscaled to match the uncertainty estimated by pairwise model comparisons based
on a small ensemble (four) of atmospheric and oceanic models.
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As a result, ten sets of noisy GSM coefficients per month are at our disposal.
The sets are contaminated by different random errors and the same AOerr errors.
For more details regarding the data simulation procedure, the reader is referred to
Chapter 4.

5.4.2. Determination of Oceanic Noise Variances

The combination approach requires stochastic information about errors in the oceanic
mass anomalies, which is not directly available. In this study, we estimate the RMS
error σk at each data point of a 1×1 degree ocean grid. According to Eq. (5.9), one
needs to know the RMS error σobp,k (for the OBP mass anomaly) and the RMS error
σ f t s,k (for the fingerprint mass anomaly). To obtain σobp,k , we use the OBP error
estimates provided by the ESM. Since only one error realization per monthly OBP
is given, we assume that the OBP noise is stationary in the time domain and calcu-
late the RMS error per grid node using all monthly error estimates (Fig. 5.2a). For
σ f t s,k , we calculate fingerprints from ten realizations of simulated noisy GSM coef-
ficients. Assuming that the fingerprint noise is also stationary in the time domain,
we compute the RMS error by averaging errors over months and noise realizations
(Fig. 5.2b). Finally, σk (Fig. 5.2c) is computed through Eq. (5.9).

As explained in Sect. 5.2.2, a scaling factor (α) has to be introduced to account
for the lack of information about OBP error covariances. To estimate the scaling
factor, we use two criteria. First, the scaled error covariance matrix Co should result
in minimal Actual RMS Errors (ARE) when comparing the resultant degree-1 and
C20 estimates with the synthetic truth. Second, the obtained Formal RMS Errors
(FRE) for degree-1 and C20 solutions should be of similar magnitude as the ARE.
To make the calculation of ARE and FRE easier to understand, we visualise them in
Fig. 5.3.

We calculate the ARE (e cf,n
ARE ) and the FRE (e cf,n

FRE ) for a particular coefficient (indi-
cated by superscript c f , which runs over the four estimated mass SHCs, namely C10,
C11, S11 and C20) based on the nth GSM realization. The best scaling factor, how-
ever, is different from coefficient to coefficient and from realization to realization.
To obtain a uniform choice, we further calculate the combined ARE (e cmb

ARE) and the
combined FRE (e cmb

FRE) (shown in Fig. 5.4 as a function of scaling factor):

e cmb
ARE =

√√√√ C20∑
cf=C10

(AV R < e cf,n
ARE , (n = 1,2, . . . , N ) >)2,

e cmb
FRE =

√√√√ C20∑
cf=C10

(AV R < e cf,n
FRE , (n = 1,2, . . . , N ) >)2, (5.21)



5

80 5. The Combination Approach

(a)

(b)

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

mm

Figure 5.2: Uncertainty of oceanic mass anomalies. (a) The RMS error of OBP predictions. (b) The RMS
error of fingerprints. (c) Total RMS error obtained with Eq. (5.9).
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Figure 5.3: Actual error, actual RMS error (ARE) and approximated actual RMS error (approx. ARE) for
one realization of synthetic C10 coefficients. The actual errors are obtained as the differences between
the resulting C10 time-series and the synthetic truth. ARE is then obtained as the RMS difference, which
is shown as a gray band (the upper and lower bound of the gray band is then ± ARE).

where N is the number of sets of simulated GSM coefficients (N = 10). Further
increasing N does not change the results significantly. AV R <> is the operator of
averaging RMS errors over all error realizations. Note that according to the Par-
seval’s identity, the sum of squared spherical harmonic coefficients describing the
mass transport function is equal (up to a constant scaling factor, i.e., 4πa ) to the
squared L2-norm of the mass transport function itself.

As α increases, the combined ARE decreases until convergence (within 1% for
α > 45), whereas the combined FRE increases linearly. The decrease of the com-
bined ARE means that the obtained solution gets closer to the statistically-optimal
one, which is an indication that the assumed errors in the OBP estimates become
more reasonable as α increases. A proper choice for the scaling factor is therefore
at the intersection of the two curves, which is around 55 (corresponds to the up-
scaling of the RMS error with a factor of about 7.5). It is worth noting that the
optimal scaling factor does not change significantly with different implementation
parameter setups.

In real data processing, information of ARE is not available. Therefore, we pro-
pose to estimate the actual error using the approach of Ditmar et al. (2017), which
allows us to approximate the actual error in a time-series without the knowledge of
the true signal. More information can be found in Appendix B.1.
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Figure 5.4: Combined ARE, combined FRE and combined approximated ARE as functions of the scal-
ing factor. The gray band along the combined approximated ARE curve shows its STD from ten GSM
realizations. Note that the parameter setup is: truncation degree: 50, buffer zone width: 200 km.

The conducted numerical study allows us to validate the procedure in the con-
text of low-degree coefficients. In Fig. 5.3, we also show an example of time-series
of the estimated RMS of the actual errors. We calculate the combined approximated
ARE for the four coefficients (e cmb

approx. ARE) following a similar equation as Eq. (5.21):

e cmb
approx. ARE =

√√√√ C20∑
cf=C10

(AV R < e cf,n
approx. ARE, (n = 1,2, . . . , N ) >)2. (5.22)

Clearly, e cmb
approx. ARE is the average over ten error realizations. This is not the case

when dealing with real data, where only one error realization (true error) is avail-
able. Fortunately, the e cf,n

approx. Err does not change significantly from realization to real-
ization (see the gray band in Fig. 5.4).

For all error realizations, the scaling factor determined from the approximated
actual error and the formal error is fairly close to the optimal scaling factor, which
is equal to 55 in the considered case. Therefore, it is recommended to use the
same procedure when processing real data. The obtained formal error will change
linearly if the scaling factor determined differs from the optimal one.
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5.4.3. Quality Indicator

The resulting degree-1 and C20 time-series based on each parameter combination
are compared with the synthetic truth (the scaling factor α is fixed to 55). Our
goal is to select the setup that leads to the minimal RMS error of the resulting time-
series. To that end, we compute the RMS of the differences between the resulting
time-series (T (C (h)

lm )) and the synthetic truth (T (C t (h)
l m )) in terms of equivalent water

heights. In Fig. 5.5, we show the RMS errors for all the tested parameter combi-
nations as functions of the truncation degree. Best estimates for degree-1 and C20

time-series are obtained with a 200-km buffer zone and a truncation degree be-
tween 30 and 50. For C20, it becomes worse around degree 40 for reasons that are
still under investigation. We also show the RMS errors for solutions based on the
GRACE-OBP-Improved method (200-km buffer width, SAL effects are taken into ac-
count) for comparison. Additionally, we show the results obtained with the original
implementation parameters of Swenson et al. (2008). The combination approach
clearly outperforms the two latter approaches by producing solutions with lower
RMS errors.

However, our goal is to determine the unified optimal parameter setup that
would lead to the best estimation of all the considered coefficients. To this end,
we use the sum of error variances of the four coefficient time-series as the overall
quality indicator (QI):

QI = 1

N

N∑
n=1

(V AR < T (C (h)
10 )n −T (C t (h)

10 ) >+V AR < T (C (h)
11 )n −T (C t (h)

11 ) >+ (5.23)

V AR < T (S(h)
11 )n −T (S t (h)

11 ) >+V AR < T (C (h)
20 )n −T (C t (h)

20 ) >),

where V AR <> is the operator for calculating the variance of a time-series; n in-
dicates the dataset number (n = 1,2, . . . , N), and N is the total number of datasets
(N = 10). Note that all the coefficients are defined in terms of equivalent water
height. Our intention is to choose the parameter setting that leads to the lowest QI
value. Fig. 5.6 shows that a truncation degree larger than 35 and a buffer width of
200 km are the preferred setup.

While the QI values give an indication of the overall quality of the resultant
degree-1 time-series, it is the annual cycle (the largest periodic signal) that is par-
ticularly interesting. In Fig. 5.7 and 5.8, we show the mean annual amplitude and
phase estimates of degree-1 and C20 time-series and their standard deviations. For
annual amplitudes (Fig. 5.7), the estimates are getting closer to the synthetic truth
as the truncation degree increases. However, when using the narrow buffer (100
km), one cannot recover the true annual amplitude with any truncation degree for
C10, S11 and C20. With a wider buffer (200 or 300 km), we can recover the annual
amplitude within 10% for all four coefficients when using truncation degrees higher
than 35. For annual phase estimates, we see less dependence on the implementa-
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Figure 5.5: The RMS errors (average over ten simulated GSM solutions) for resulting degree-1 and C20
coefficient time-series (in mm of equivalent water height). Results for C10, C11, S11 and C20 are presented
in panel (a), (b), (c) and (d), respectively. The thick gray lines show the results of the GRACE-OBP-
Swenson approach. The dashed gray lines indicate solutions based the GRACE-OBP-Improved approach
considering SAL effects and using a 200-km buffer zone.
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Figure 5.6: The same as Fig. 5.5, but the unified quality indicator is shown instead of RMS errors per
coefficient.

tion parameters. In most cases (except for the C10 estimates based on a 100-km
buffer zone) one can recover the true annual phase within 5 days. In addition to
the QI mentioned above, we compute the QI for annual variations based on Chapter
4 (Eq. 4.7). Consideration of this criterion confirms that, larger truncation degrees
are beneficial for estimating annual variations (Fig. 5.9).

Ultimately, we recommend to use a truncation degree of 50 and buffer width of
200 km. In Chapter 4, the same buffer width was selected but the truncation degree
was 45.

The selected parameter setup ensures good estimates of both overall quality and
annual variations in all four coefficients.

5.5. Results Based on Real Data

We produce degree-1 and C20 time-series using real GRACE data as input. The
CSR RL05 GRACE monthly solutions (complete to degree 60) for a 12-year period
from August 2002 to June 2014 and their corresponding noise variance-covariance
matrices are used. We correct the input GSM coefficients for the pole tide according
to Wahr et al. (2015). The GIA effects are corrected for by removing the GIA model
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Figure 5.7: The mean annual amplitudes of the GSM degree-1 and C20 time-series (mm EWH) estimated
using different implementation parameters, based on ten sets of simulated GSM solutions. The standard
deviations of amplitude estimates (based on ten sets of GSM solutions) are indicated by light colored
bands. The true amplitudes are marked in all panels as black horizontal lines. Results for C10, C11, S11
and C20 are shown in panel (a), (b), (c), and (d), respectively.
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Figure 5.8: The same as Fig. 5.7, but for the annual phases.
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Figure 5.9: The same as Fig. 5.6, but the quality indicator for annual variations is shown instead of
quality indicator for RMS error.

computed by A et al. (2012). Degree-1 coefficients in the CF reference frame are
kindly provided by the authors through personal communication. These modeled
degree-1 trends are not used during the calculation, but can be useful at the last
stage to restore the GIA contributions to the resulting degree-1 solutions. Other
time-variable solid Earth signals are ignored as in previous studies (Swenson et al.,
2008).

The noise covariance matrix of the oceanic data is the same as determined in
the numerical experiments (Section 5.4), but scaled with a different scaling factor.
In order to determine the proper scaling factor, a number of candidates (in the
range from 50 to 150) are tested. For each scaling factor, we estimated the time-
series of the four low-degree coefficients and the associated combined formal error.
According to Fig. 5.10, the optimal scaling factor is 120. The choice of the scaling
factor has minor effects on the estimated coefficients but strongly affects the formal
error estimation.

The final time-series are shown in Fig. 5.11a, where the degree-1 time-series are
compared against the solutions from the GRACE-OBP-Swenson approach (Swenson
et al., 2008), and the C20 time-series is compared to a SLR solution (Cheng et al.,
2013a). Our C10 and C11 time-series have larger annual amplitudes while the S11

time-series is almost indistinguishable from the Swenson’s solution. Our C20 time-
series is free of large anomalies with a period of 161 days and has other considerable
differences from the SLR one, especially after 2011. Notice that our C20 time-series
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Figure 5.10: Combined FRE and combined approximated ARE as functions of the scaling factor. Note
that the parameter setup is: truncation degree: 50, buffer zone width: 200 km.

shows a more pronounced annual cycle, which is reasonable in view of a seasonal
mass exchange between oceans and continents.

We compare also the low-degree coefficients estimated with different geodetic
techniques in terms of annual variations (Tab. 5.1), we see that annual variations
predicted with the combination approach and the GRACE-OBP-Improved approach
are in line with those based on independent methodologies. An exception is a dis-
crepancy in the annual phase estimates of C10. Solutions based on GRACE and
OBP data, including those based on the combination approach, the GRACE-OBP-
Improved approach, and the GRACE-OBP approach, are more than a month behind
those based on other techniques. We show in the next section (Sect. 5.6) that the
GRACE-OBP-based solutions are likely more accurate.

One of the advantages of the combination approach is that it provides the noise
variances and covariances of the estimated coefficients (Fig. 5.11b). We show that
the formal errors of degree-1 and C20 coefficients are different from month to month
and generally larger than those documented in the product based on GRACE-OBP-
Swenson (ftp://podaac.jpl.nasa.gov/allData/tellus/L2/degree_1/deg1_coef.
txt). The correlations between the errors in these coefficients are rather small ex-
cept those between C10 and C20 (Fig. 5.11c). This is expected because the polar
areas play the major role in the separation of these coefficients (the corresponding
surface spherical harmonics reach there local maxima in absolute value). However,
there is a lack of oceanic data in the southern polar region caused by the presence of

ftp://podaac.jpl.nasa.gov/allData/tellus/L2/degree_1/deg1_coef.txt
ftp://podaac.jpl.nasa.gov/allData/tellus/L2/degree_1/deg1_coef.txt
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Figure 5.11: Final solutions for degree-1 and C20 time-series (a), their formal error estimates (b), and
correlation coefficients (c) based on the combination approach. In panel a, linear trends are removed.
Results are offset for clarity. The colored bands show the 2-σ uncertainties. The black dashed line shown
in panel b (denoted as “Swenson et al”) is taken from the official product based on (Swenson et al.,
2008) (see text).
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Antarctica. On the other hand, the zonal degree-1 and -2 spherical harmonics in the
northern polar region are of the same sign. This means that a positive error in the
C10 coefficient can be largely compensated by a negative error in the C20 coefficient
and vice versa. Thus, these errors must show a strong anti-correlation.

5.6. Which Degree-1 and C20 Solution should be Used
for Estimating Mass Variations?

Independent estimates of degree-1 and C20 coefficients are typically used to cor-
rect GRACE solutions in order to obtain more accurate estimates of surface mass
anomalies. However, owing to the lack of an accurate reference regionally or glob-
ally, it is difficult to quantify the added value of this correction. GRACE users often
adopt a specific solution without justification for their choice. In this section, we
offer a simple way to evaluate the quality of degree-1 and C20 coefficients. GRACE
GSM solutions are used to estimate mass variations within particular regions where
the mass variations are known to be minor, namely East Antarctica and the Sahara
Desert (e.g. Helsen et al., 2008; Liu et al., 2010). These regions are used as valida-
tion areas. We estimate mass anomaly time-series there, using the GRACE solutions
corrected with different estimates of degree-1 and C20 time-series. The best degree-
1 and C20 time-series should result in the smallest mass variations over the selected
validation areas. Note that the mass anomalies over validation areas at different
geographic locations may not be sensitive to all the coefficients. It is thus important
to select several well-separated regions.

We have prepared 7 versions of GRACE solutions by using different combinations
of degree-1 and C20 coefficients:

(i) Ori GRC: Original GRACE CSR RL05 solutions as they are. That is, zero
degree-1 coefficients and the native GRACE C20 are adopted.

(ii) SLRDeg1 + SLRC20: GRACE solutions complemented with SLR-based degree-
1 (Cheng et al., 2013b) and C20 coefficients (Cheng et al., 2013a).

(iii) INVDeg1 + SLRC20: GRACE solutions corrected with degree-1 coeffi-
cients based on the joint inversion approach (Rietbroek et al., 2016) (https://
doi.pangaea.de/10.1594/PANGAEA.855539) and SLR C20 coefficients.

(iv) SWEDeg1 + SLRC20: GRACE solutions complemented with degree-1 co-
efficients based on the GRACE-OBP-Swenson approach (Swenson et al., 2008); C20

coefficients are based on SLR data . This is the traditionally used approach.

(v) CMBDeg1 + CMBC20: GRACE solutions corrected with the degree-1 and
C20 coefficients provided by the combination approach.

(vi) CMBDeg1 + SLRC20: GRACE solutions corrected with the degree-1 coeffi-

https://doi.pangaea.de/10.1594/PANGAEA.855539
https://doi.pangaea.de/10.1594/PANGAEA.855539
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cients provided by the combination approach and SLR C20 coefficients.

(vii) GODeg1 + GOC20: GRACE solutions corrected with the degree-1 coeffi-
cients and C20 provided by the GRACE-OBP-Improved approach (Sun et al., 2016b).

It should be noted that we have also used a filtered GRACE solution based on
DDK-4 (Kusche et al., 2009). Besides, multiple sub-regions are selected as valida-
tion areas in each of two places. However, the results are very similar and thus
we show the results based on one of the areas. The linear trends in the resultant
mass transport time-series are subject to large uncertainties and are not compa-
rable. The linear trends in SLR-based degree-1 coefficients reflect merely drifting
errors with respect to the origin of the International Terrestrial Reference Frame
(ITRF). Degree-1 solutions from other considered approaches involve the use of a
GIA model. However, the adopted GIA models are different and all contain large
uncertainties. Therefore, trends and seasonal variations in the resulting mass trans-
port time-series must be assessed independently. Here, we will focus on the seasonal
variations (Sect. 5.6.1 and 5.6.2). The quality of the trend estimates in our degree-
1 and C20 solutions are not assessed in the following experiments. Nevertheless,
we show the resulting trend estimates in the mass transport time-series over both
validation areas (Sect. 5.6.3). These trend estimates are obtained based on the
assumption that the GIA model provided by A et al. (2012) is error-free. It is worth
noting that under such an assumption, the combination approach, which is a gen-
eralised GRACE-OBP-Improved approach, should be able to recover the true linear
trends in the degree-1 and C20 time-series Chapter 4.

5.6.1. Mass Variations in East Antarctica

There are no physical processes that cause large mass variations in the interior of
East Antarctica (Helsen et al., 2008). Therefore, the GRACE solution augmented
with the optimal degree-1 and C20 estimates should result in the minimal mass
variations. However, one should bear in mind that mass anomalies in this region
are sensitive to only the zonal coefficients, i.e. C10 and C20.

In the background of Fig. 5.12a, we show the RMS mass anomaly based on
the solution from the combination approach in the considered time interval (2002 -
2014). One of the tested regions (or validation areas) in this area is indicated in the
panel with a red polygon. All variants of GRACE solutions are employed to estimate
the total mass variations within the validation area, and the resulting RMS estimates
of the de-trended mass variation time-series (as a function of the truncation degree)
are shown in Fig. 5.12b.

It can be seen that the RMS value of the mass variation time-series based on the
original GRACE solution (Ori GRC) is about 0.9 cm. It reduces by more than 50%
when we use INVDeg1 + SLRC20, and is further reduced if we apply the SWEDeg1
+ SLRC20 or CMBDeg1 + CMBC20. Results based on the later solution is improved
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Figure 5.12: Mass variations in the validation area at East Antarctica. In panel a, we show the
signal RMS in terms of equivalent water heights. The study area is indicated with a red polygon
(45◦E/120◦E/76◦S/84◦S). Panel b shows RMS values of mass anomaly time-series as a function of trun-
cation degree. Panel c and d show the mean mass anomaly per calendar month. The shadowed color
bands indicates the spread of the monthly mass anomalies. Note that the calendar month 0 represents
December of the previous year. In panel c, we show the results based on the GRACE solutions after re-
placing the C20 coefficients with those from independent approaches. In panel d, we show results when
the GRACE solutions are further complemented with degree-1 coefficients based on different approaches.
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Table 5.2: RMS of mass anomaly (integrated over validation areas) obtained by averaging the corre-
sponding time-series. In this table, we intend to show explicitly the numbers based on four solutions,
namely Ori GRC, CMBDeg + CMBC20, CMBDeg1 + SLRC20 and GODeg1 + GOC20 for a truncation
degree of 50. See Sect. 5.6 for the meaning of abbreviations in the first column.

GRACE solutions East Antarctic Sahara Desert
(cm) (cm)

Ori GRC 0.92 0.78
CMBDeg1 + CMBC20 0.33 0.35
CMBDeg1 + SLRC20 0.34 0.39
GODeg1 + GOC20 0.29 0.31

by about (10 20%) compared to that based on the traditional approach. In contrast,
using SLRDeg1 + SLRC20 worsen the results by about 20%. For clarity, results
based on CMBDeg1 + SLRC20 as well as GODeg1 + GOC20 are not shown in the
figure as they are very close to the CMBDeg1 + CMBC20, but the corresponding
resultant RMS values of the time-series is documented in Tab. 5.2. We will discuss
the results later in section 5.7.

Note that the truncation degree of the GRACE solution (between 30 and 60)
obviously plays a minor role in the RMS estimates, which implies that the valida-
tion area is large enough to ensure a cancellation of random errors in high-degree
coefficients.

Subsequently, we calculate the mean mass anomaly per calendar month and
show the effect of replacing C20 and adding degree-1 coefficients in panels c and d,
respectively. In the Ori GRC case, a clear seasonal pattern is revealed. Replacing
the original C20 coefficients with those from SLR data and the combination approach
show some differences but does not significantly change the seasonal pattern (Fig.
5.12c). Such a seasonal pattern can thus be attributed to either the absence of
the degree-1 coefficients or errors in higher-degree coefficients. However, the total
mass variations of the validation area are obtained by integrating all data points
within the area. Mass anomalies due to high-degree errors are random and would
unlikely show a seasonal pattern. Also, as previously showed (Fig. 5.12b), increas-
ing the truncation degree does not significantly change the RMS estimates of the
mass transport time-series. This is an indication that the errors in high-degree coef-
ficients indeed largely cancel each other. Further more, different validation areas in
East Antarctica are employed, but the revealed seasonal pattern is quite consistent.
This contradicts to the nature of high-degree errors as their impact changes quickly
from location to location. Therefore, we believe that the observed season pattern
is likely due to the lack of the degree-1 coefficients. Indeed, once the GRACE so-
lutions are complemented with proper estimates of degree-1 coefficients (based on
the joint inversion approach, GRACE-OBP-Swenson approach, or the combination
approach), the seasonal pattern significantly reduces or disappears (Fig. 5.12d).
Remarkably, after using degree-1 solutions from SLR, the resulting seasonal pattern
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is in anti-phase, as compared to the one produced without degree-1 coefficients.

5.6.2. Mass Variations in the Sahara Desert

We further conduct a similar analysis for validation areas in the Sahara Desert,
another place with minimal mass variations. Validation areas in this region should
allow us to check the quality of the tesseral coefficients, and in particular of C11

coefficient among the four estimated coefficients, as the surface spherical harmonic
of degree 1 and order 0 reaches maximum in that area, exceeding the other three
surface spherical harmonic under consideration.

In Fig. 5.13, we show the considered validation area (indicated with a red poly-
gon in panel a). The resulting RMS value of the mass variation time-series based on
various version of GRACE solutions are shown in panel b. This time, we notice that
SWEDeg1 + SLRC20 is able to reduce the RMS value by about 50%. INVDeg1 +
SLRC20 and CMBDeg1 + CMBC20 manage to further reduce the RMS estimates
by about 0.1 cm. On the other hand, SLRDeg1 + SLRC20 worsen the results sig-
nificantly.

A clear seasonal pattern reveals itself in the mass variation time-series based on
the Ori GRC (Fig 5.13c). Switching C20 coefficient between different variants barely
changes the resultant seasonal pattern. This is expected because the zonal degree 2
surface spherical harmonic at the latitude of 22.5◦ is only 30% of the values at the
poles. Adding the degree-1 coefficients based on the GRACE-OBP-Swenson, joint
inversion or the combination approach to the GRACE solutions reduces the annual
amplitude of the seasonal pattern (Fig. 5.13d). When using the SLR-based degree-
1 coefficients, we end up having an even more prominent seasonal pattern, which
again, is in anti-phase with the original one.

5.6.3. Trend Estimates in Mass Transport Time-series

In Tab. 5.3, we show the linear trend estimates extracted from different mass trans-
port time-series for both validation areas. Notice that the GIA contributions are
cleaned from all variants of the GRACE solutions, including both low- (degree-1 and
C20) and high-degree coefficients. Therefore, the obtained trend estimates should
reflect the present-day mass transport rates. The large discrepancy between these
trend estimates suggests the large uncertainty in GIA models (e.g. Klemann and
Martinec, 2011; A et al., 2012).

5.7. Conclusions and Discussion

We have developed a combination approach for a statistically-optimal estimation of
degree-1 and C20 coefficients. We have also shown that the combination approach
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Figure 5.13: Same as Fig. 5.12, but showing mass transport in the validation area at the Sahara Desert
(6◦W /30◦E/15◦N/30◦N).
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Table 5.3: Estimates of linear trends in the resulting mass transport time-series (Aug 2002 - Jun 2014).
See Sect. 5.6 for the explanation of the names in the first column. Note that the degree-1 solution
denoted by INVDeg1. These degree-1 coefficients are associated with surface load only and the modeled
GIA signals are not restored. In the last two rows, we also show the results after restore GIA signals to
the GRACE solutions.

GRACE solutions East Antarctic Sahara Desert
(cm/yr) (cm/yr)

Ori GRC −0.58±0.06 0.11±0.04

SWEDeg1 + SLRC20 0.00±0.03 −0.10±0.03

INVDeg1 + SLRC20 0.10±0.03 −0.08±0.03

GODeg1 + GOC20 −0.39±0.03 0.05±0.03

CMBDeg1 + CMBC20 −0.45±0.03 0.11±0.03

GODeg1 + GOC20 GIA restored 0.14±0.03 0.04±0.03

CMBDeg1 + CMBC20 GIA restored 0.08±0.03 0.10±0.03

is a generalization of the GRACE-OBP approach proposed by Swenson et al. (2008)
and improved by Sun et al. (2016b). If GRACE data are free of noise, whereas noise
in OBP data is white, then the combination approach reduces to the GRACE-OBP-
Improved approach.

Based on the numerical experiments, we find that the overall quality of the resul-
tant degree-1 and C20 time-series can be largely improved (RMS errors are reduced
by about 30%) by taking into account the stochastic information of noise in the in-
put datasets. Degree-1 and C20 coefficients based on real data are then computed.
The obtained annual variations are similar to those of other approaches. How-
ever, we do notice that the annual amplitude of the SLR C10 time-series is about 1
mm larger than our estimates as well as many others. The annual phase of our C10

coefficients is more than a month later than the SLR- and GPS-derived solutions (Ri-
etbroek et al., 2012b; Wu et al., 2015; Cheng et al., 2013b) but close to the solution
based on GRACE and altimetry data (Rietbroek et al., 2016). Error estimates and
the correlation coefficients are also important product of the proposed approach.
Remarkably, they are provided not as constant numbers, but as time-series.

To validate the resulting degree-1 and C20 coefficients, we selected two valida-
tion areas with minimal mass variations (central East Antarctica and Sahara Desert).
Those areas are used to compare estimates of surface mass anomalies obtained from
GRACE solutions corrected with 7 different combinations of degree-1 and C20 co-
efficients in estimating surface mass anomalies. It should be noted that the mass
anomalies in the selected validation areas are relatively insensitive to the S11 coef-
ficients. Fortunately, seasonal signals in the S11 time-series are the most consistent
(among the three degree-1 coefficients) between the results from different tech-
niques (Tab. 5.1). This is likely because the S11 coefficient (or the Y component of
the geocenter motion), is well controlled by spatial variations of mass and gravity



5.7. Conclusions and Discussion

5

99

field at non-polar areas centered at 90◦ and 270◦ longitudes, and those areas are
relatively well represented in the networks of both SLR and GPS stations.

Even though the annual amplitude of the C10 time-series based on Swenson
et al. (2008) is reported to be small, it results in reasonable surface mass anomaly
estimates. In contrast, the SLR-based degree-1 coefficients (Cheng et al., 2013b)
are not sufficiently accurate for estimating surface mass anomalies. Probably, the
annual amplitude is overestimated and the annual phase is wrongly estimated. This
finding is consistent with the fact that SLR-based estimates are relatively inaccurate
in the estimation of the C10 and C11 coefficients due to a poor quality of tropospheric
corrections, too few ground stations in polar areas, and the absence of stations over
oceans.

Contradictory to the numerical results, the degree-1 and C20 solutions from
the GRACE-OBP-Improved approach (GODeg1 + GOC20) performs slightly bet-
ter (about 10%) than that based on the proposed approach in terms of the resulting
RMS values of the mass transport time-series. The reasons are still under investiga-
tion.

By switching from the C20 solutions based on the combination approach to those
obtained with the SLR technique (while applying the same degree-1 solution based
on the combination approach), we find a marginal difference (about 10%) in the
resultant RMS value of the mass transport time-series. This is an indication that our
C20 time-series and the SLR-based one are of similar quality.

As far as the future developments are concerned, the combination approach will
benefit from improvements in the input datasets. Future OBP models will likely
be more accurate. More realistic covariance matrices for OBP noise will further
enhance the advantage of this approach. In order to also address the linear trends
in degree-1 and C20 coefficients, a better way of dealing with the solid Earth signals
is warranted. Until now, those signals are accounted for with a GIA model, which is
assumed to be free of errors. However, large uncertainties in GIA modelling and the
fact that tectonic signals are ignored (e.g., due to mega-thrust earthquakes) could
substantially affect the trend estimates in the low-degree coefficients.

Finally, our products are publicly available at http://www.citg.tudelft.nl/deg1c20).
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Here, we highlight the most important findings and products of this thesis and
draw conclusions for each research objective. Finally we outline a number of rec-
ommendations for future studies.

6.1. Conclusions

6.1.1. Observed Changes in the Earth’s Dynamic Oblateness from
GRACE Data and Geophysical Models

As a starting point of our research, we have implemented the methodology proposed
by Swenson et al. (2008), who produce geocenter motion estimates based primarily
on GRACE data and OBP models. The resulting estimates are prevalently used in
the GRACE community to complement the monthly GRACE gravity field solutions
with degree-1 spherical harmonic coefficients in order to ensure a more accurate
estimation of mass transport. We have extended the original Swenson’s methodol-
ogy to co-estimate the C20 coefficients simultaneously. We also demonstrated that
GRACE data at higher spherical harmonic degrees combined with OBP estimates
are capable of estimating seasonal changes in C20 to a level comparable with SLR
solutions. This is a significant improvement considering that the C20 coefficients
in original GRACE solutions are corrupted by large aliases due to the temperature
related systematic errors in satellite accelerometers.

We showed that two implementation parameters are the main factors controlling
the annual amplitude of seasonal signals and trend in the C20 time-series. The first
one is represented by the inclusion or exclusion of ocean data points in coastal
areas, which are contaminated by continental signal leakage. A simple approach
of reducing the size of the ocean function to exclude a few hundreds of kilometers
of coastal waters is capable of producing a solution that is in close agreement with
SLR results. The other consisted in how to deal with the exchanged water between
ocean and land. Distributing them over the oceans as a uniform layer like described
in Swenson et al. (2008) results in sub-optimal C20 estimates. Instead, the passive
response of the ocean water due to self-attraction and loading (SAL) effects has
to be taken into account as it also significantly affects the annual amplitude and
long-term trend of the C20 time-series.

The availability of independent SLR solutions has allowed us to benchmark the
proposed methodology. However, the SLR-derived C20 time-series are not free of
systematic errors and noise. The implementation parameters (a 150 km buffer width
and taking into account SAL effects) tuned to achieve a time series that best fit the
SLR solution may be not represent the best possible choice.
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6.1.2. Optimizing Estimates of Annual Variations and Trends in
Geocenter Motion and Earth’s Dynamic Oblateness

We have conducted an end-to-end simulation study to test the performance of the
GRACE-OBP approach. The updated ESA Earth System Model (ESM) (Dobslaw
et al., 2015) is employed to simulate "true" signals similar to those contained in the
GRACE-based GSM solutions. Realistic GRACE random errors were simulated based
on real GRACE full error covariance matrices are added to the "true" signals. Errors
in the OBP estimates provided by the ESM are exploited. Such errors are estimated
from a small ensemble of four different atmospheric and oceanic models. Our sim-
ulation results suggested that the GRACE-OBP approach is capable of accurately
estimating variations in geocenter and the Earth’s dynamic oblateness.

The choice of the implementation parameters including buffer width and SAL
effects are proved to be important for both degree-1 and C20 coefficients. As far
as signal leakage in coastal areas in concerned, the best results are obtained when
ocean data points within 200 km from the coastline are discarded. Moreover, SAL
effects need to be taken into account. Finally, high-frequency noise in the GRACE
solutions can best be dealt with by truncation of the sets of input spherical har-
monic coefficients. The optimal truncation degree is between 30 and 50 (differences
caused by using truncation degrees within this range is within 2σ), which is high
enough to infer redistributing masses that are significant for estimates of the conti-
nental degree-1 and C20 variations, and yet low enough to avoid the large errors in
high-degree spherical harmonic coefficients.

The optimal choice of the implementation details is somehow different for each
of the four coefficients (C10, C11, S11 and C20) analyzed and for different quantities of
interest such as the amplitude/phase of annual variations, the long-term trend and
the time-series itself. Nevertheless, we found it essential to identify a single setup
in order to ensure a consistency of the obtained estimates. The recommended setup
consists of truncation of monthly GRACE solutions at degree 45, a buffer width of
200 km, and inclusion of SAL effects.

The second part of this study dealt with real data processing, where we demon-
strated that the resulting degree-1 and C20 solutions have similar dependence on the
implementation parameters as in the synthetic data case. This knowledge allowed
us to use the optimal implementation parameter setting from the simulation study.
Notably, the annual amplitude of the GSM-like C10 time-series is about 50% larger
than that reported in Swenson et al. (2008). Such a dramatic amplification makes
the annual amplitude in the C10 time-series comparable with those derived based
on other geodetic techniques, such as SLR and global GPS inversion.

Errors in both GRACE coefficients and the oceanic degree-1 and C20 coefficients
from the OBP model contribute to the uncertainties in the obtained degree-1 and C20

time-series. GRACE errors account for annual amplitude errors in geocenter motion
of less than 10% of the total signal (at the 0.1 mm level). A similar statement
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applies also to C20 variations. GRACE error also has minor effects (less than 3
days) on the annual phase estimates of both degree-1 and C20 variations. On the
other hand, errors in oceanic degree-1 and C20 coefficients seem to play a somewhat
larger role. By comparing estimates based on different OBP models, we concluded
that the errors in oceanic degree-1 coefficients account for up to 15% errors in the
annual amplitude estimates of degree-1 variations. Moreover, errors in oceanic C20

coefficients could cause a difference of about 20% in the annual amplitude estimates
of C20 variations. Annual phase estimates, on the other hand, are not significantly
affected (less than 2 weeks).

The fundamental assumption of the GRACE-OBP approach is that both GRACE
and OBP data are error-free and treated as deterministic values. Therefore, the
errors in these two data sets are erroneously considered as signals in degree-1 and
C20 coefficients. In the next study, we take into account the errors in both datasets
and estimate the degree-1 and C20 coefficients in a statistically optimal sense.

6.1.3. Statistically Optimal Estimation of Geocenter Motion and
Changes in the Earth’s Dynamic Oblateness

In this part of our research, we estimated degree-1 and C20 coefficients supplied with
error estimates from a statistically optimal data combination of GRACE data and
modeled OBP estimates. We proved that such a combination approach is essentially
a general form of the GRACE-OBP approach. The combination approach reduces
to the GRACE-OBP approach if the GRACE data are free of noise and the OBP data
only contain white noise.

The combination approach is verified with a simulation study. In numerical
experiments, the overall quality of the resultant degree-1 and C20 time-series can be
largely improved (by about 30%) by taking into account the stochastic information
of noise in the input data sets. In the case of real data processing, the annual
variations of the degree-1 and C20 coefficients are similar to those from the GRACE-
OBP approach and those from other approaches (e.g. joint inversion approach by
Rietbroek et al. (2009, 2012b)). On the other hand, the annual amplitude of the C10

time-series is by about 1 mm (30%) smaller than SLR estimates. Also, the annual
phase of our C10 time-series is by more than a month delayed, as compared to the
SLR- and GPS-derived solutions. Error variances and covariances of the resulting
coefficients are also important product of this research. The formal errors of the
spherical harmonic coefficients are different per coefficient and vary with time. The
correlations between the coefficients are generally small except for a strong anti-
correlation (at the level of -0.3) between the C10 and C20 coefficients. This is due
to the lack of OBP estimates over the southern polar area where the corresponding
surface spherical harmonic functions are of the opposite sign.

To perform an independent validation of the obtained time-series. Areas with
minor mass transport were selected: central part of East Antarctica and Sahara
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Desert. We augmented monthly GRACE solutions with different estimates of degree-
1 and C20 coefficients. Accurate estimates of those coefficients should result in
minimal mass variations over the selected validation areas. It is worth noting that
the mass transport time-series in the selected two validation areas are relatively
insensitive to variations of the S11 coefficients. However, seasonal signals in the S11

time-series are the most consistent (among the three degree-1 coefficients) between
the results from different techniques, suggesting a relatively small uncertainty in
this coefficient.

Even though the annual amplitude of the C10 time-series based on Swenson
et al. (2008) is likely underestimated, it results in comparable surface mass anomaly
estimates compared to those from the combination approach. In contrast, the SLR-
based degree-1 coefficients (Cheng et al., 2013b) are not sufficiently accurate in
estimating surface mass anomalies. We conclude that the SLR solutions are less
accurate: the annual amplitude is overestimated there and the annual phase is offset
by more than a month.

By using the C20 solutions based on the combination approach instead of those
obtained with the SLR technique (while applying the same degree-1 solution based
on the combination approach), we find a marginal difference (about 10%) in the
resultant RMS value of the mass transport time-series. This is an indication that our
C20 and the SLR-based time-series are of a similar quality.

6.2. Recommendations

According to (Wu et al., 2017), the degree-1 coefficients to be combined with
monthly GRACE gravity field solutions when inferring surface mass variations re-
quires geocenter motion accuracy goals of 0.2 mm for annual amplitude and 0.02
mm yr−1 for velocity. For example, this would cause a uncertainty in mass transport
estimates over Antarctica of about 20 gigaton for annual amplitude and 2 gigaton
yr−1 for velocity (Wu et al., 2012). Comparing the latest inversion results, the dif-
ferences between their annual amplitude estimates are at approximately 0.5 mm,
0.3 mm and 1 mm level for X-, Y- and Z-components, respectively. The uncertainties
in trend estimates for all components are still not able to be reliably quantified due
to the dependence on a GIA model. Therefore, we recommend the following studies
to improve further the estimation of degree-1 and C20 coefficients.

6.2.1. Determination of Long-term Linear Trend

GRACE observes gravity changes that are associated with mass transport both at
the surface and in the interior of the solid Earth. However, the methodology we
have adopted in this thesis requires the removal of the time-varying solid Earth
signals. This has been done by subtracting the predictions by a specific GIA model.
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By doing this, we assume 1) other solid Earth signals, such as those due to mega-
thrust earthquakes, are negligible contributors to the very low degree coefficients,
and 2) the adopted GIA model is free of errors. However, the first assumption is not
necessarily true and the second one is certainly not true.

Solid Earth signals exerted due to mega-thrust earthquakes are detectable in
GRACE data. Although their effects are now shown to be secondary compared to
those of GIA, the presence of them in GRACE data may affect the linear trend es-
timates in low-degree coefficient time-series. Therefore, it is suggested to quantify
the effects of the solid Earth signals due to mega-thrust earthquakes with available
models (Han et al., 2006).

Due to the limited availability of observational constraints, GIA models are char-
acterized by large uncertainties. A wider range of GIA models need to be investi-
gated because it is unlikely that GIA models allow for producing robust degree-1
and C20 trend estimates. By doing that, we are able to test the sensitivity of the
final solutions with respect to the choice of GIA models. However, this does not
help estimating the trends more accurately as it is not possible to identify the best
GIA model. Therefore, a better way would be to co-estimate GIA signals in order to
avoid the use of a GIA model.

6.2.2. Definition of the Ocean Function

The methodologies we have developed and applied require an ocean function to
partition the Earth’s surface into the land and ocean areas. We found that in order
to obtain accurate oceanic mass anomalies from GRACE data, it is crucial to reject
coastal areas that are polluted by signal leakage from land due to the limited resolu-
tion of the GRACE data. Currently, we simply reduce the size of the ocean areas so
that ocean points within a few hundred kilometers from land are removed. We call
the zone between land and the newly defined ocean area a buffer zone. So far, the
buffer zone has a uniform buffer width. Although the ocean function defined this
way is effective to recover the true signal in the degree-1 and C20 coefficients, it may
be further improved by using a buffer width varying spatially with the signal leak-
age. That is, the buffer width is larger if strong signal leakage appears and smaller
if the signal leakage is minor. Compared to a uniform buffer width, the ocean func-
tion defined this way may allow one to include as many as possible uncontaminated
oceanic data points, and improve this way the final results.

Besides the ocean areas, there are land regions with minor (i.e., known) mass
anomalies. These regions, such as the Sahara desert and east Antarctica may also
be included to provide further constraint on the solutions.
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6.2.3. Statistically Correct Way of Combining Independently Esti-
mated C20 Coefficient with Existing GRACE Monthly Gravity
Field Solution

It is well-known that the C20 coefficients of the monthly GRACE gravity field so-
lutions are corrupted by temperature related systematic error of the GRACE ac-
celerometer (Cheng and Ries, 2017). Therefore, it is necessary to update the orig-
inal C20 values with more accurate ones in order to obtain more accurate surface
mass transport estimates. Currently, it is a common practice to replace the origi-
nal values with those from other geodetic techniques, such as SLR (Cheng et al.,
2013a). Such a procedure, though prevalently used, is statistically wrong. Due to
the correlations between C20 and other coefficients, changing C20 should also lead
to a change of other coefficients.

Since the full noise variance-covariance matrices of GRACE monthly solutions
are now available and the C20 as well as its noise variance can be obtained from
the method introduced in Chapter 5, we propose to combine them through the
partitioned model of least-squares (Teunissen, 2000). In this way, one could not
only update the original C20 coefficients with better estimates, but also update all
other coefficients simultaneously according to the correlation structure provided
by the GRACE full noise variance-covariance matrices. Finally, updated full noise
variance-covariance matrices would also be obtained.





A
Appendix

A.1. General Form of Data Combination

dc =
( N∑

n=1
AT

n C−1
n An

)−1 ·
N∑

n=1
AT

n C−1
n dn , (A.1)

where N is the number of available data sets, An are design matrices and Cn are the
noise variance-covariance matrices describing errors in the exploited data sets dn .

A.2. Explicit Form of Equation (20)

In Eq. (5.20), Y
′
is a K ×4 matrix that can be written explicitly as

Y
′ =


P10(cosθ1) P11(cosθ1)cosφ1 P11(cosθ1)sinφ1 P20(cosθ1)
P10(cosθ2) P11(cosθ2)cosφ2 P11(cosθ2)sinφ2 P20(cosθ2)

...
...

...
...

P10(cosθK ) P11(cosθK )cosφK P11(cosθK )sinφK P20(cosθ3)

 , (A.2)

where θ and φ are the colatitude and longitude at point k, respectively.

Therefore, Y
′T OY

′
becomes a 4×4 matrix
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Y
′T OY

′ =


I 10C

10C I 10C
11C I 10C

11S I 10C
20C

I 11C
10C I 11C

11C I 11C
11S I 11C

20C
I 11S

10C I 11S
11C I 11S

11S I 11S
20C

I 20C
10C I 20C

11C I 20C
11S I 20C

20C

 , (A.3)

where, the following notation is used

I 10C
11C =

∫
dΩP10(cosθ)ϑ(θ,φ)P11(cosθ)cosφ

I 11C
11S =

∫
dΩP11(cosθ)cosφϑ(θ,φ)P11(cosθ)sinφ

Other elements are similarly defined.

(A.4)

Clearly, Y
′T Oh is composed of the oceanic degree-1 and C20 coefficients C ocean

10 ,
C ocean

11 , Socean
11 and C ocean

20 .

Finally, we have

Y
′T Ohg =


∫

dΩP10(cosθ)ϑ(θ,φ)hg∫
dΩP11(cosθ)cosφϑ(θ,φ)hg∫
dΩP11(cosθ)sinφϑ(θ,φ)hg∫
dΩP20(cosθ)ϑ(θ,φ)hg

=


−G10C

−G11C

−G11S

−G20C

 (A.5)
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B.1. Basic Ideas of the Approach by Ditmar et al. (2017)
for the Quantification of Random Noise in a Data
Time-series

That approach is based on the assumptions that (i) true signal in the data time-series
is close (but not necessarily equal) to a combination of an annual periodic signal
and a linear trend; (ii) noise in the time-series is uncorrelated and (optionally) non-
stationary; (iii) time-series of noise variances is known up to a constant multiplier
(scaling factor). Then, the data time-series is approximated by a regularized one on
the basis of a properly designed regularization functional (Ω[H ]):

Ω[H ] =
K−1∑
k=1

(hk+1(t )−hk (t ))2d t , (B.1)

where K is the total number of years considered and hk (t ) is by definition the
mass anomaly in the k-th year; hk+1(0) = hk (1) due to the continuity of H(t ).

The optimal regularization parameter is estimated with the Variance Component
Estimation (VCE) technique (Koch and Kusche, 2002), which includes the proper
scaling of the provided noise variances. Then, the time-series of scaled noise vari-
ances is the measure of actual random noise in the considered data.

111





References

A, G., Wahr, J., and Zhong, S. (2012). Computations of the viscoelastic response
of a 3-D compressible Earth to surface loading: an application to Glacial Iso-
static Adjustment in Antarctica and Canada. Geophysical Journal International,
192(2):557–572.

Altamimi, Z., Boucher, C., and Willis, P. (2005). Terrestrial reference frame require-
ments within GGOS perspective. Journal of Geodynamics, 40(4):363–374.

Altamimi, Z. and Collilieux, X. (2010). Quality Assessment of the IDS Contribution
to ITRF2008. Advances in Space Research, 45(12):1500–1509.

Altamimi, Z., Collilieux, X., and Métivier, L. (2011). ITRF2008: an improved
solution of the international terrestrial reference frame. Journal of Geodesy,
85(8):457–473.

Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X. (2016). ITRF2014:
A new release of the International Terrestrial Reference Frame modeling
nonlinear station motions. Journal of Geophysical Research: Solid Earth,
121(8):2016JB013098.

Benjamin, D., Wahr, J., Ray, R. D., Egbert, G. D., and Desai, S. D. (2006). Constraints
on mantle anelasticity from geodetic observations, and implications for the J2
anomaly. Geophysical Journal International, 165(1):3–16.

Bergmann-Wolf, I., Zhang, L., and Dobslaw, H. (2014). Global Eustatic Sea-Level
Variations for the Approximation of Geocenter Motion from Grace. Journal of
Geodetic Science, 4(1).

Bettadpur, S. (2012). UTCSR Level-2 Processing Standards Document. Technical
Version 4, Univ. Texas, Austin.

Blewitt, G. (2003). Self-consistency in reference frames, geocenter definition, and
surface loading of the solid Earth. Journal of Geophysical Research: Solid Earth,
108(B2):2103.

Blewitt, G., Heflin, M. B., Webb, F. H., Lindqwister, U. J., and Malla, R. P. (1992).
Global coordinates with centimeter accuracy in the International Terrestrial Ref-
erence Frame using GPS. Geophysical Research Letters, 19(9):853–856.

Blewitt, G., Lavallée, D., Clarke, P., and Nurutdinov, K. (2001). A new global
mode of Earth deformation: seasonal cycle detected. Science (New York, N.Y.),
294(5550):2342–2345. 00167 PMID: 11743198.

113



114 References

Bouillé, F., Cazenave, A., Lemoine, J. M., and Crétaux, J. F. (2000). Geocentre mo-
tion from the DORIS space system and laser data to the Lageos satellites: compar-
ison with surface loading data. Geophysical Journal International, 143(1):71–82.
00000.

Bourda, G. (2008). Length-of-day and space-geodetic determination of the Earth’s
variable gravity field. Journal of Geodesy, 82(4-5):295–305.

Cazenave, A. and Nerem, R. S. (2002). Redistributing Earth’s Mass. Science,
297(5582):783–784.

Chambers, D. P. and Schröter, J. (2011). Measuring ocean mass variability from
satellite gravimetry. Journal of Geodynamics, 52(5):333–343.

Chambers, D. P., Wahr, J., and Nerem, R. S. (2004). Preliminary observations
of global ocean mass variations with GRACE. Geophysical Research Letters,
31(13):L13310.

Chao, B. F. (2006). Earth’s oblateness and its temporal variations. Comptes Rendus
Geoscience, 338(14–15):1123–1129.

Chao, B. F., Au, A. Y., Boy, J.-P., and Cox, C. M. (2003). Time-variable gravity signal
of an anomalous redistribution of water mass in the extratropic Pacific during
1998–2002. Geochemistry, Geophysics, Geosystems, 4(11):1096.

Chao, B. F. and Eanes, R. (1995). Global gravitational changes due to atmospheric
mass redistribution as observed by the Lageos nodal residual. Geophysical Journal
International, 122(3):755–764.

Chen (2000). A new assessment of long-wavelength gravitational variations. Jour-
nal of Geophysical Research, 105:16271–16278.

Chen, J. L., Rodell, M., Wilson, C. R., and Famiglietti, J. S. (2005). Low de-
gree spherical harmonic influences on Gravity Recovery and Climate Experiment
(GRACE) water storage estimates. Geophysical Research Letters, 32(14):L14405.

Chen, J. L. and Wilson, C. R. (2003). Low degree gravitational changes from earth
rotation and geophysical models. Geophysical Research Letters, 30(24):2257.

Chen, J. L. and Wilson, C. R. (2008). Low degree gravity changes from GRACE,
Earth rotation, geophysical models, and satellite laser ranging. Journal of Geo-
physical Research: Solid Earth, 113(B6):B06402.

Chen, J. L., Wilson, C. R., Eanes, R. J., and Nerem, R. S. (1999). Geophysical
interpretation of observed geocenter variations. Journal of Geophysical Research:
Solid Earth, 104(B2):2683–2690. 00103.

Chen, J. L., Wilson, C. R., and Ries, J. C. (2016). Broadband assessment of degree-2
gravitational changes from GRACE and other estimates, 2002–2015. Journal of
Geophysical Research: Solid Earth, 121(3):2112–2128.



References 115

Chen, J. L., Wilson, C. R., Tapley, B. D., and Ries, J. C. (2004). Low degree gravita-
tional changes from GRACE: Validation and interpretation. Geophysical Research
Letters, 31(22):L22607.

Cheng, M. and Ries, J. (2012). Monthly estimates of C20 from 5 SLR satellites based
on GRACE RL05 models. In GRACE Technical Note 07. Center for Space Research,
University of Texas at Austin.

Cheng, M. and Ries, J. (2017). The unexpected signal in GRACE estimates of
C_{20}. Journal of Geodesy, pages 1–18.

Cheng, M. and Tapley, B. D. (1999). Seasonal variations in low degree zonal har-
monics of the Earth’s gravity field from satellite laser ranging observations. Jour-
nal of Geophysical Research: Solid Earth, 104(B2):2667–2681. 00059.

Cheng, M. and Tapley, B. D. (2004). Variations in the Earth’s oblateness during the
past 28 years. Journal of Geophysical Research: Solid Earth, 109(B9):B09402.

Cheng, M., Tapley, B. D., and Ries, J. C. (2013a). Deceleration in the Earth’s oblate-
ness. Journal of Geophysical Research: Solid Earth, 118(2):740–747. 00011.

Cheng, M. K., Eanes, R. J., Shum, C. K., Schutz, B. E., and Tapley, B. D. (1989).
Temporal variations in low degree zonal harmonics from Starlette orbit analysis.
Geophysical Research Letters, 16(5):393–396. 00122.

Cheng, M. K., Ries, J. C., and Tapley, B. D. (2013b). Geocenter Variations from Anal-
ysis of SLR Data. In Altamimi, Z. and Collilieux, X., editors, Reference Frames for
Applications in Geosciences, number 138 in International Association of Geodesy
Symposia, pages 19–25. Springer Berlin Heidelberg. 00016.

Cheng, M. K., Shum, C. K., and Tapley, B. D. (1997). Determination of long-term
changes in the Earth’s gravity field from satellite laser ranging observations. Jour-
nal of Geophysical Research: Solid Earth, 102(B10):22377–22390. 00087.

Clarke, P. J., Lavallée, D. A., Blewitt, G., van Dam, T. M., and Wahr, J. M. (2005). Ef-
fect of gravitational consistency and mass conservation on seasonal surface mass
loading models. Geophysical Research Letters, 32(8):L08306.

Collilieux, X., Altamimi, Z., Ray, J., van Dam, T., and Wu, X. (2009). Effect of
the satellite laser ranging network distribution on geocenter motion estimation.
Journal of Geophysical Research: Solid Earth, 114(B4):B04402.

Conrad, C. P. and Hager, B. H. (1997). Spatial variations in the rate of sea level rise
caused by the present-day melting of glaciers and ice sheets. Geophysical Research
Letters, 24(12):1503–1506.

Cox, C. M. and Chao, B. F. (2002). Detection of a Large-Scale Mass Redistribution
in the Terrestrial System Since 1998. Science, 297(5582):831–833.



116 References

Crétaux, J.-F., Soudarin, L., Davidson, F. J. M., Gennero, M.-C., Bergé-Nguyen, M.,
and Cazenave, A. (2002). Seasonal and interannual geocenter motion from SLR
and DORIS measurements: Comparison with surface loading data. Journal of
Geophysical Research: Solid Earth, 107(B12):ETG 16–1–ETG 16–9. 00062.

Dahle, C., Flechtner, F., Gruber, C., König, D., König, R., Michalak, G., Neumayer,
K.-H., and GFZ, D. G. (2013). GFZ GRACE level-2 processing standards document
for level-2 product release 0005. Deutsches GeoForschungsZentrum GFZ.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.
C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes,
M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen,
L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N.,
and Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance
of the data assimilation system. Quarterly Journal of the Royal Meteorological
Society, 137(656):553–597.

Dickey, J. O., Marcus, S. L., de Viron, O., and Fukumori, I. (2002). Recent Earth
oblateness variations: unraveling climate and postglacial rebound effects. Science
(New York, N.Y.), 298(5600):1975–1977.

Dill, R. (2008). Hydrological model LSDM for operational Earth rotation and gravity
eld variations.

Ditmar, P., Encarnação, J. T. d., and Farahani, H. H. (2011). Understanding data
noise in gravity field recovery on the basis of inter-satellite ranging measure-
ments acquired by the satellite gravimetry mission GRACE. Journal of Geodesy,
86(6):441–465.

Ditmar, P., Natthachet, T., Jiangjun, R., and Roland, K. (2017). Mass anomaly time-
series based on satellite gravimetry data: regularization and noise quantification.
submitted to Geophysical Journal International.

Dobslaw, H., Bergmann-Wolf, I., Dill, R., Forootan, E., Klemann, V., Kusche, J.,
and Sasgen, I. (2015). The updated ESA Earth System Model for future gravity
mission simulation studies. Journal of Geodesy, 89(5):505–513.

Dobslaw, H., Bergmann-Wolf, I., Forootan, E., Dahle, C., Mayer-Gürr, T., Kusche, J.,
and Flechtner, F. (2016). Modeling of present-day atmosphere and ocean non-
tidal de-aliasing errors for future gravity mission simulations. Journal of Geodesy,
90(5):423–436.

Dong, D., Dickey, J. O., Chao, Y., and Cheng, M. K. (1997). Geocenter variations
caused by atmosphere, ocean and surface ground water. Geophysical Research
Letters, 24(15):1867–1870.



References 117

Dong, D., Fang, P., Bock, Y., Cheng, M. K., and Miyazaki, S. (2002). Anatomy of
apparent seasonal variations from GPS-derived site position time series. Journal
of Geophysical Research: Solid Earth, 107(B4). 00300.

Dong, D., Qu, W., Fang, P., and Peng, D. (2014). Non-linearity of geocentre motion
and its impact on the origin of the terrestrial reference frame. Geophysical Journal
International, 198(2):1071–1080.

Dong, D., Yunck, T., and Heflin, M. (2003). Origin of the International Terrestrial
Reference Frame. Journal of Geophysical Research: Solid Earth, 108(B4). 00088.

Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Bamber,
J. L., Box, J. E., and Bales, R. C. (2009). Higher surface mass balance of the
Greenland ice sheet revealed by high-resolution climate modeling. Geophysical
Research Letters, 36(12):L12501.

Farahani, H. H., Ditmar, P., Inácio, P., Didova, O., Gunter, B., Klees, R., Guo, X.,
Guo, J., Sun, Y., Liu, X., Zhao, Q., and Riva, R. (2017). A high resolution model
of linear trend in mass variations from DMT-2: Added value of accounting for
coloured noise in GRACE data. Journal of Geodynamics, 103:12–25.

Farrell, W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geo-
physics, 10(3):761–797.

Farrell, W. E. and Clark, J. A. (1976). On Postglacial Sea Level. Geophysical Journal
of the Royal Astronomical Society, 46(3):647–667.

Flechtner, F. and Dobslaw, H. (2013). AOD1b Product Description Document for
Product Release. 05. GFZ German Research Centre for Geosciences.

Fritsche, M., Dietrich, R., Rülke, A., Rothacher, M., and Steigenberger, P. (2010).
Low-degree earth deformation from reprocessed GPS observations. GPS Solutions,
14(2):165–175.

Fukumori, I. (2002). A Partitioned Kalman Filter and Smoother. Monthly Weather
Review, 130(5):1370–1383.

Gobinddass, M. L., Willis, P., de Viron, O., Sibthorpe, A., Zelensky, N. P., Ries, J. C.,
Ferland, R., Bar-Sever, Y., Diament, M., and Lemoine, F. G. (2009a). Improv-
ing DORIS geocenter time series using an empirical rescaling of solar radiation
pressure models. Advances in Space Research, 44(11):1279–1287.

Gobinddass, M. L., Willis, P., Viron, O. d., Sibthorpe, A., Zelensky, N. P., Ries, J. C.,
Ferland, R., Bar-Sever, Y., and Diament, M. (2009b). Systematic biases in DORIS-
derived geocenter time series related to solar radiation pressure mis-modeling.
Journal of Geodesy, 83(9):849–858.

Gordeev, R. G., Kagan, B. A., and Polyakov, E. V. (1977). The Effects of Loading and
Self-Attraction on Global Ocean Tides: The Model and the Results of a Numerical
Experiment. Journal of Physical Oceanography, 7(2):161–170.



118 References

Griffiths, J. and Ray, J. R. (2013). Sub-daily alias and draconitic errors in the IGS
orbits. GPS Solutions, 17(3):413–422. 00005.

Gross, R. (2003). Combinations of Earth orientation measurements: SPACE2002,
COMB2002, and POLE2002. Technical report, Jet Propulsion Laboratory.

Gross, R., Beutler, G., and Plag, H.-P. (2009). Integrated scientific and societal
user requirements and functional specifications for the GGOS. In Plag, H.-P. and
Pearlman, M., editors, Global Geodetic Observing System, pages 209–224. Springer
Berlin Heidelberg. DOI: 10.1007/978-3-642-02687-4_7.

Gross, R. S. (1996). Combinations of Earth orientation measurements: SPACE94,
COMB94, and POLE94. Journal of Geophysical Research: Solid Earth,
101(B4):8729–8740.

Gross, R. S., Blewitt, G., Clarke, P. J., and Lavallée, D. (2004). Degree-2 harmonics
of the Earth’s mass load estimated from GPS and Earth rotation data. Geophysical
Research Letters, 31(7):L07601.

Gruber, T., Bamber, J. L., Bierkens, M. F. P., Dobslaw, H., Murböck, M., Thomas,
M., van Beek, L. P. H., van Dam, T., Vermeersen, L. L. A., and Visser, P. N. A. M.
(2011). Simulation of the time-variable gravity field by means of coupled geo-
physical models. Earth System Science Data, 3(1):19–35.

Gunter, B. C., Didova, O., Riva, R. E. M., Ligtenberg, S. R. M., Lenaerts, J. T. M.,
King, M. A., van den Broeke, M. R., and Urban, T. (2014). Empirical estimation
of present-day Antarctic glacial isostatic adjustment and ice mass change. The
Cryosphere, 8(2):743–760.

Gutierrez, R. and Wilson, C. R. (1987). Seasonal air and water mass redistribution
effects on LAGEOS and Starlette. Geophysical Research Letters, 14(9):929–932.

Han, S.-C., Shum, C. K., Bevis, M., Ji, C., and Kuo, C.-Y. (2006). Crustal Dilata-
tion Observed by GRACE After the 2004 Sumatra-Andaman Earthquake. Science,
313(5787):658–662.

Helsen, M. M., Broeke, M. R. v. d., Wal, R. S. W. v. d., Berg, W. J. v. d., Meijgaard,
E. v., Davis, C. H., Li, Y., and Goodwin, I. (2008). Elevation Changes in Antarctica
Mainly Determined by Accumulation Variability. Science, 320(5883):1626–1629.

Hughes, C. W., Tamisiea, M. E., Bingham, R. J., and Williams, J. (2012). Weighing
the ocean: Using a single mooring to measure changes in the mass of the ocean.
Geophysical Research Letters, 39(17):L17602.

Ivins, E. R. and James, T. S. (2005). Antarctic glacial isostatic adjustment: a new
assessment. Antarctic Science, 17(04):541–553.

Jansen, M. J. F., Gunter, B. C., and Kusche, J. (2009). The impact of GRACE, GPS
and OBP data on estimates of global mass redistribution. Geophysical Journal
International, 177(1):1–13. 00010.



References 119

Kim, S.-B., Lee, T., and Fukumori, I. (2007). Mechanisms Controlling the Inter-
annual Variation of Mixed Layer Temperature Averaged over the Niño-3 Region.
Journal of Climate, 20(15):3822–3843.

Klees, R., Revtova, E. A., Gunter, B. C., Ditmar, P., Oudman, E., Winsemius, H. C.,
and Savenije, H. H. G. (2008). The design of an optimal filter for monthly GRACE
gravity models. Geophysical Journal International, 175(2):417–432.

Klemann, V. and Martinec, Z. (2011). Contribution of glacial-isostatic adjustment
to the geocenter motion. Tectonophysics, 511(3–4):99–108.

Klinger, B. and Mayer-Gürr, T. (2016). The role of accelerometer data calibration
within GRACE gravity field recovery: Results from ITSG-Grace2016. Advances in
Space Research, 58(9):1597–1609.

Koch, K.-R. and Kusche, J. (2002). Regularization of geopotential determination
from satellite data by variance components. Journal of Geodesy, 76(5):259–268.

Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R. (2009). Decorrelated GRACE
time-variable gravity solutions by GFZ, and their validation using a hydrological
model. Journal of Geodesy, 83(10):903–913.

Kusche, J. and Schrama, E. J. O. (2005). Surface mass redistribution inversion from
global GPS deformation and Gravity Recovery and Climate Experiment (GRACE)
gravity data. Journal of Geophysical Research: Solid Earth, 110(B9). 00054.

Lambeck, K. (2005). The Earth’s variable rotation: geophysical causes and conse-
quences. Cambridge University Press.

Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M. (2014). Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene. Proceed-
ings of the National Academy of Sciences, 111(43):15296–15303.

Lavallée, D. A., Moore, P., Clarke, P. J., Petrie, E. J., van Dam, T., and King, M. A.
(2010). J2: An evaluation of new estimates from GPS, GRACE, and load models
compared to SLR. Geophysical Research Letters, 37(22). 00007.

Lavallée, D. A., van Dam, T., Blewitt, G., and Clarke, P. J. (2006). Geocenter motions
from GPS: A unified observation model. Journal of Geophysical Research: Solid
Earth, 111(B5). 00051.

Lemoine, J.-M., Bruinsma, S., Gégout, P., Biancale, R., and Bourgogne, S. (2013).
Release 3 of the GRACE gravity solutions from CNES/GRGS. volume 15, pages
EGU2013–11123.

Liu, X., Ditmar, P., Siemes, C., Slobbe, D. C., Revtova, E., Klees, R., Riva, R.,
and Zhao, Q. (2010). DEOS Mass Transport model (DMT-1) based on GRACE
satellite data: methodology and validation. Geophysical Journal International,
181(2):769–788.



120 References

Meindl, M., Beutler, G., Thaller, D., Dach, R., and Jäggi, A. (2013). Geocenter
coordinates estimated from GNSS data as viewed by perturbation theory. Advances
in Space Research, 51(7):1047–1064. 00007.

Meisel, B., Angermann, D., Krügel, M., Drewes, H., Gerstl, M., Kelm, R., Müller, H.,
Seemüller, W., and Tesmer, V. (2005). Refined approaches for terrestrial reference
frame computations. Advances in Space Research, 36(3):350–357.

Meyrath, T., Rebischung, P., and van Dam, T. (2017). GRACE era variability in the
Earth’s oblateness: a comparison of estimates from six different sources. Geophys-
ical Journal International, 208(2):1126–1138.

Meyrath, T., van Dam, T., Weigelt, M., and Cheng, M. (2013). An assessment of
degree-2 Stokes coefficients from Earth rotation data. Geophysical Journal Inter-
national, 195(1):249–259.

Milne, A., G. and Mitrovica, X., J. (1998). Postglacial sea-level change on a rotating
Earth. Geophysical Journal International, 133(1):1–19.

Milne, G. A., Davis, J. L., Mitrovica, J. X., Scherneck, H.-G., Johansson, J. M., Ver-
meer, M., and Koivula, H. (2001). Space-Geodetic Constraints on Glacial Isostatic
Adjustment in Fennoscandia. Science, 291(5512):2381–2385.

Mitrovica, J. X. and Forte, A. M. (1997). Radial profile of mantle viscosity: Re-
sults from the joint inversion of convection and postglacial rebound observables.
Journal of Geophysical Research: Solid Earth, 102(B2):2751–2769.

Mitrovica, J. X., Tamisiea, M. E., Davis, J. L., and Milne, G. A. (2001). Recent
mass balance of polar ice sheets inferred from patterns of global sea-level change.
Nature, 409(6823):1026–1029.

Nerem, R. S. and Wahr, J. (2011). Recent changes in the Earth’s oblateness
driven by Greenland and Antarctic ice mass loss. Geophysical Research Letters,
38(13):L13501.

Peltier, W. (2004). Global glacial isostasy and the surface of the ice-age Earth: the
ICE-5g (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences,
32(1):111–149.

Peltier, W. R., Argus, D. F., and Drummond, R. (2015). Space geodesy constrains
ice age terminal deglaciation: The global ICE-6g_c (VM5a) model. Journal of
Geophysical Research: Solid Earth, 120(1):2014JB011176.

Petit, G. and Luzum, B. (2010). IERS conventions (2010). Technical Note 36, Verlag
des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main.

Ray, J. (1999). IERS Analysis Campaign to Investigate Motions of the Geocenter.
Technical Note 25, Central Bureau of IERS Observatioire de Paris, Paris.



References 121

Ray, J., Altamimi, Z., Collilieux, X., and Dam, T. v. (2008). Anomalous harmonics
in the spectra of GPS position estimates. GPS Solutions, 12(1):55–64.

Ray, R. D. and Ponte, R. M. (2003). Barometric tides from ECMWF operational
analyses. Ann. Geophys., 21(8):1897–1910.

Rebischung, P., Altamimi, Z., and Springer, T. (2014). A collinearity diagnosis of
the GNSS geocenter determination. Journal of Geodesy, 88(1):65–85. 00001.

Riddell, A. R., King, M. A., Watson, C. S., Sun, Y., Riva, R. E. M., and Rietbroek, R.
(2017). Uncertainty in geocenter estimates in the context of ITRF2014. Journal
of Geophysical Research: Solid Earth, 122(5):2016JB013698.

Ries, J. C. (2013). Annual Geocenter Motion from Space Geodesy and Models. AGU
Fall Meeting Abstracts, -1:06.

Rietbroek, R., Brunnabend, S.-E., Dahle, C., Kusche, J., Flechtner, F., Schröter, J.,
and Timmermann, R. (2009). Changes in total ocean mass derived from GRACE,
GPS, and ocean modeling with weekly resolution. Journal of Geophysical Research:
Oceans, 114(C11). 00020.

Rietbroek, R., Brunnabend, S. E., Kusche, J., and Schröter, J. (2012a). Resolving
sea level contributions by identifying fingerprints in time-variable gravity and al-
timetry. Journal of Geodynamics, 59–60:72–81. 00013.

Rietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J., and Dahle, C. (2016).
Revisiting the contemporary sea-level budget on global and regional scales. Pro-
ceedings of the National Academy of Sciences, 113(6):1504–1509.

Rietbroek, R., Fritsche, M., Brunnabend, S. E., Daras, I., Kusche, J., Schröter, J.,
Flechtner, F., and Dietrich, R. (2012b). Global surface mass from a new combina-
tion of GRACE, modelled OBP and reprocessed GPS data. Journal of Geodynamics,
59-60:64–71. 00023.

Riva, R. E. M., Gunter, B. C., Urban, T. J., Vermeersen, B. L. A., Lindenbergh,
R. C., Helsen, M. M., Bamber, J. L., van de Wal, R. S. W., van den Broeke,
M. R., and Schutz, B. E. (2009). Glacial Isostatic Adjustment over Antarctica
from combined ICESat and GRACE satellite data. Earth and Planetary Science
Letters, 288(3–4):516–523.

Rülke, A., Dietrich, R., Fritsche, M., Rothacher, M., and Steigenberger, P. (2008).
Realization of the Terrestrial Reference System by a reprocessed global GPS net-
work. Journal of Geophysical Research: Solid Earth, 113(B8):B08403.

Seo, K.-W., Chen, J., Wilson, C. R., and Lee, C.-K. (2015). Decadal and quadratic
variations of Earth’s oblateness and polar ice mass balance from 1979 to 2010.
Geophysical Journal International, 203(1):475–481.



122 References

Siegismund, F., Romanova, V., Köhl, A., and Stammer, D. (2011). Ocean bot-
tom pressure variations estimated from gravity, nonsteric sea surface height
and hydrodynamic model simulations. Journal of Geophysical Research: Oceans,
116(C7):C07021.

Sośnica, K., Jäggi, A., Thaller, D., Beutler, G., and Dach, R. (2014). Contribution of
Starlette, Stella, and AJISAI to the SLR-derived global reference frame. Journal
of Geodesy, 88(8):789–804.
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