
An Adjoint-Based Shape-Optimization

Method for Aerodynamic Design

An Adjoint-Based Shape-Optimization

Method for Aerodynamic Design

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op woensdag 9 september 2009 om 12.30 uur

door

Giampietro CARPENTIERI

Ingegnere meccanico, Università degli Studi Roma Tre, Italië,

geboren te Rome, Italië

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. ir. M.J.L. van Tooren

Prof. dr. ir. B. Koren

Samenstelling promotiecommissie:

Rector Magnificus, Voorzitter

Prof. dr. ir. M.J.L. van Tooren, Technische Universiteit Delft, promotor

Prof. dr. ir. B. Koren, CWI / Universiteit Leiden, promotor

Prof. dr. ir. C.W. Oosterlee, CWI / Technische Universiteit Delft

Prof. dr. O. Pironneau, Université Paris VI, France

Prof. dr. M. Berggren, Umeå Universitet, Sweden

Dr. O. Amoignon, Swedish Defence Research Agency, Sweden

Dr. A. Guardone, Politecnico di Milano, Italy

This research was supported by the Dutch Technology Foundation STW, applied science

division NWO and the technology program of the Ministry of Economic Affairs. The

project was granted under number DLR.6054.

ISBN 978-90-6464-352-1

Keywords: Euler equations, Computational Fluid Dynamics, Adjoint equations, Finite-

Volume method, Shape Optimization, Shape Parameterization

Copyright c© 2009 by Giampietro Carpentieri

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system or transmitted in any form or by any means, electronic, mechanical, photo-

copying, recording or otherwise, without the prior written permission of the author G.

Carpentieri, Delft University of Technology, Faculty of Aerospace Engineering, P.O. Box

5058, 2600 GB Delft, the Netherlands.

Printed in the Netherlands

Summary

This thesis presents a shape optimization framework for problems that are encountered

routinely in Aerodynamic Design. The nature of the framework is numerical. Its focus

is wide as different aspects of the shape optimization practice are treated, e.g., the

solution of the flow equations, the sensitivity analysis and the parameterization of the

shape. The framework components are not taken as black-boxes but are conceived

and implemented within the present work. A considerable part of the thesis describes

the characteristics and the implementation of those components. Additional work on

unsteady flows, which may find applications in aeroelastic analysis, is presented in the

appendix.

The thesis has been compiled using material that has been produced during the course

of the PhD research. A large part of this material has been published and presented at

conferences [19, 20, 22, 21, 79, 16, 17, 18] whereas some of it is presented here for the

very first time. The structure of the manuscript is as follows:

Chapter 1 introduces the facts and the literature that are relevant to the thesis; gives

a general description of the shape optimization framework; and provides an overview of

the thesis, emphasizing distinctive and innovative aspects of the work. The chapter is

meant for those readers who are more interested in the framework as a whole, and in

the final application, rather than in the numerical details of the single implementations.

For those readers it should be possible to read Chapter 1 together with the chapter on

shape optimization, Chapter 5, in order to have a good understanding of the work.

Chapter 2 describes the unstructured finite-volume formulation used to discretize

the Euler equations. All aspects of the solution process are discussed: the discretization

vi

of the equations; the evaluation of the numerical fluxes; and the solution scheme for

the steady equations. In the final part of the chapter results are presented for airfoil

sections in subsonic, transonic and supersonic flows, and for a wing and a wing-body

configuration in transonic flow. Comparisons with the literature and with another solver

are also provided.

Chapter 3 describes the discrete adjoint formulation for the sensitivity analysis. Since

the adjoint method is a central topic in the thesis, this chapter is the most dense of

information. In the first part the adjoint method is introduced. In the second part the

derivation and the implementation of the discrete adjoint equations is discussed in detail.

All the important aspects of the procedure are covered, from the exact/approximate

differentiation of the flow solver to the on-the-fly assembly of the matrix-vector products

that appear in the equations. The fifth part addresses the solution process and discusses

the advantages of treating the adjoint equations as non-linear. Also, a convenient

method to solve multiple adjoint problems simultaneously is presented, which can be

very useful for constrained design problems. Finally, the last part discusses the testing

of the adjoint codes and shows numerical solution of the sensitivity variables.

Chapter 4 describes the parameterization of the shape using Chebyshev polynomials.

The requirements for the shape parameterization are introduced first. Then, the least-

squares method used for the extraction of the shape parameters is described. Results

are included that show how the parameterization can approximate very different airfoil

shapes. An extension of the parameterization to wing-like shape is also presented. It

uses coefficients for the Chebyshev representation that vary along the span and only

parameterize the displacements of the wing, rather than the wing itself. Results show

that wings with complex curvatures can be generated.

Chapter 5 is the part of the thesis in which applications of the design method are

presented. First, the shape optimization problems are defined and suitable algorithms

for their solution are briefly described. Then, the design applications are presented,

first in 2D and next in 3D. The 2D applications focus mainly on shock-free airfoil

design, although inverse design is also presented. Some of the applications are repeated

using different adjoint approximations with the purpose of identifying the effective ones.

The first 3D application focuses on the drag minimization of a wing. The second 3D

application is divided in two phases. In the first one the shape is optimized in order to

generate twice as much lift as the original wing. In the second phase, the wing obtained

in the first phase is optimized in order to reduce the drag. Finally, the last part of the

chapter presents an interesting method to compute the sensitivity of the shock position

with respect to the shape parameters.

Appendix A deals with unsteady flows on deforming meshes. It is divided in two parts.

In the first part the extension of the steady solver to unsteady problems on deforming

meshes is discussed. In the second part computations are presented that show how the

solver can be applied to certain aeroelastic problems. The behavior of airfoils/wings in

transonic unsteady flow is discussed from the point of view of system response.

Samenvatting

Deze dissertatie beschrijft een raamwerk voor het oplossen van vormoptimal-

isatievraagstukken die veelvuldig voorkomen bij aerodynamische vormgeving. Dit raamw-

erk heeft een numeriek karakter. Het toepassingsgebied is breed: diverse aspecten van

vormoptimalisatie worden behandeld, bijvoorbeeld de oplossing van stromingsvergelijkin-

gen, gevoeligheidsanalyse en de parametrisatie van vleugelprofielen. De onderdelen van

het raamwerk worden niet als black box gezien, maar worden uitvoerig beschreven. Een

groot deel van deze dissertatie beschrijft de eigenschappen en de toepassing van deze

onderdeler. Verder onderzoek aan instationaire stromingen, welke toepassingen binnen

aero-elastisch onderzoek kunnen hebben, wordt in de appendix besproken.

Het proefschrift is samengesteld uit publicaties geschreven tijdens het promotie-

onderzoek. Een groot deel van dit werk is gepubliceerd en gepresenteerd op conferen-

ties [19, 20, 22, 21, 79, 16, 17, 18], maar een ander deel wordt hier voor het eerst

besproken. De indeling van deze dissertatie is als volgt:

Hoofdstuk 1 introduceert de feiten en literatuur die belangrijk zijn voor dit proef-

schrift; het geeft een algemene beschrijving van het vormoptimalisatie-raamwerks; en

biedt een overzicht over het proefschrift, met de nadruk op de onderscheidende en in-

novatieve aspecten. Het hoofdstuk is een handige leidraad voor lezers die meer in het

systeem als geheel zijn geïnteresseerd en in de uiteindelijke toepassing, dan in de nu-

merieke details van de afzonderlijke implementaties. Voor die lezers zou het mogelijk

moeten zijn om hoofdstuk 1 tezamen met het hoofdstuk over vormoptimalisatie, hoofd-

stuk 5, te lezen en zo een duidelijk beeld van het werk te krijgen.

Hoofdstuk 2 beschrijft de ongestructureerde eindige-volume formulering, die gebruikt

viii

wordt om de Euler-vergelijkingen te discretiseren. Alle aspecten van het oplossingsproces

worden besproken: de discretisatie van de vergelijkingen; de evaluatie van de numerieke

fluxen, en de oplossingsmethode voor de stationaire vergelijkingen. In het laatste deel

van het hoofdstuk worden resultaten gegeven voor vleugelprofielen in subson, transson

en superson stromingen, en voor een vleugel en een vleugel-romp configuratie in transson

stroming. Vergelijkingen met literatuur en met een andere oplossingsmethode worden

hier ook gemaakt.

Hoofdstuk 3 beschrijft de discrete geadjungeerde vergelijking-formulering voor de

gevoeligheidsanalyse. Daar de geadjungeerde vergelijking-methode het centrale onder-

werp in deze dissertatie is, bevat dit hoofdstuk de meeste informatie. In het eerste

deel wordt de geadjungeerde vergelijking-methode geïntroduceerd. In het tweede deel

worden de afleiding en de implementatie van de discrete geadjungeerde vergelijkin-

gen in detail behandeld. Alle belangrijke aspecten van de procedure staan beschreven,

van de exacte/benaderde differentiatie tot het dynamisch samenstellen van de matrix-

vectorproducten die in de vergelijkingen voorkomen. In het vijfde deel worden de vo-

ordelen besproken van het niet-lineair beschouwen van de geadjungeerde vergelijkingen.

Daarnaast wordt een methode voor het simultaan oplossen van meerdere geadjungeerde

grootheden gegeven. De methode erg handig kan zijn bij ontwerpvraagstukken met li-

jbehorende ontwerpeisen. Het laatste deel, tenslotte, bespreekt het testen van de gead-

jungeerde vergelijking-programmatuur en geeft de numerieke oplossing voor de gevoe-

ligheidsvariabelen.

Hoofdstuk 4 beschrijft de parametrisatie van de vorm met behulp van Chebyshev poly-

nomen. De eisen ten aanzien van de vormparametrisatie worden eerst geïntroduceerd.

Daarna wordt de kleinste kwadratenmethode gebruikt om de beschreven vormparam-

eters te extraheren. Resultaten worden getoond die laten zien hoe de parametrisatie

zeer verschillende vleugelprofielen kan benaderen, alsmede een vleugelachtige vorm. Hi-

erbij worden coëfficiënten voor de Chebyshev representatie gebruikt die alleen in de

vleugelspanwijaterichting variëren en alleen verplaatsingen van de vleugel parametris-

eren in plaats van de vleugel zelf. De resultaten laten zien dat vleugels met complexe

krommingen gegenereerd kunnen worden.

Hoofdstuk 5 is het deel van de dissertatie waarin toepassingen van de ontwerp-

methode worden gepresenteerd. Allereerst worden vormoptimalisatievraagstukken

gedefinieerd en worden geschikte algoritmen voor het oplossen kort beschreven. Vervol-

gens worden de vormgevingstoepassingen gepresenteerd, eerst in 2D en dan in 3D. De

2D toepassingen zijn vooral gericht op schokvrij vleugelprofielontwerp, hoewel invers on-

twerp ook beschreven wordt. Enkele toepassingen worden opnieuw gebruikt met andere

geadjungeerde vergelijking benaderingen, om zo de effectieve benaderingen te identifi-

ceren. De eerste 3D toepassing is gericht op weerstandsminimalisatie van de vleugel.

De tweede 3D toepassing is onderverdeeld in twee fasen. In de eerste fase wordt het

profiel geoptimaliseerd zodat de draagkracht verdubbelt ten opzichte van de originele

vleugel. In de tweede fase wordt de vleugel uit de vorige fase geoptimaliseerd voor weer-

standsreductie. Tenslotte wordt in het laatste deel van dit hoofdstuk een interessante

methode getoond om de gevoeligheid van de schokpositie voor de vormparameters te

berekenen.

ix

Appendix A behandelt instationaire stromingen op vervormende roosters. Het is

verdeeld in twee stukken. In het eerste deel wordt de uitbreiding van de stationaire

oplossingsmethode naar instationaire vraagstukken op vervormende roosters besproken.

In het tweede deel worden berekeningen getoond die laten zien hoe de oplossingsmeth-

ode toepast kan worden op bepaalde aero-elastische vraagstukken. Het gedrag van

vleugelprofielen/vleugels in transson instationaire stromingen wordt besproken vanuit

het systeemtheoretisch oogpunt.

x

Contents

Summary v

Samenvatting vii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 3

1.2.1 Numerical methods in aerodynamics 3

1.2.2 Aerodynamic Shape Optimization 7

1.2.3 The adjoint method seen from a duality viewpoint 11

1.3 Overview of the thesis . 13

1.3.1 Description of the shape optimization framework 13

1.3.2 Distinctive features and innovative aspects of the work 15

1.3.3 Implementation . 19

2 Solution of the flow equations 21

2.1 Flow equations . 21

2.1.1 Modeling the flow: different level of approximation 21

2.1.2 Euler equations in integral form 22

2.2 Discretization of the Euler equations 24

2.2.1 Finite-volume discretization 24

xii Contents

2.2.2 Median-dual mesh . 25

2.3 Space discretization of the flow equations 29

2.3.1 Numerical fluxes . 30

2.3.2 MUSCL-like reconstruction scheme 31

2.4 Implicit steady-state solution . 34

2.4.1 Defect correction in pseudo-time 35

2.4.2 Iterative solution of the linear system of equations 37

2.5 Results . 43

2.5.1 2D cases . 43

2.5.2 3D cases . 47

2.5.3 Alternative solution methods 53

2.6 Concluding remarks . 55

3 Sensitivity Analysis 57

3.1 Introduction to the problem . 57

3.1.1 Primal and Dual problem . 57

3.1.2 Discrete approach to sensitivity analysis 59

3.1.3 Implementation of the discrete sensitivity 60

3.2 Exact sensitivity: one-pass construction 62

3.2.1 Derivation of the edge-based assembly 64

3.2.2 Differentiation of the reconstruction operator 66

3.2.3 Differentiation of the numerical fluxes 67

3.2.4 General case of low-order Jacobians 70

3.3 Approximate sensitivity: two-pass construction 71

3.3.1 Two-pass assembly for the linearized problem 73

3.3.2 Two-pass assembly for the adjoint problem 73

3.4 Solution of the sensitivity equations 75

3.4.1 Implicit pseudo-time stepping solution 76

3.4.2 Simultaneous solution of the adjoint equations 77

3.4.3 Numerical results of the solution scheme 78

3.5 Accuracy of the discrete sensitivity . 81

3.5.1 Verification of the exact linearized code 81

3.5.2 Approximations in the discrete sensitivity 83

3.5.3 Effect of the approximations on the gradient 83

3.5.4 Verification of the adjoint code 84

3.6 Visualization of the sensitivity variables 85

3.6.1 Linearized variables . 85

3.6.2 Adjoint variables . 87

3.7 Concluding remarks . 88

4 Shape Parameterization 91

4.1 Introduction . 91

4.1.1 Definition and requirements 91

4.1.2 Existing methods to parameterize the shape 92

Contents xiii

4.1.3 Orthogonal representations . 92

4.2 Parameterization with Chebyshev polynomials 93

4.2.1 Parameterization of an airfoil 93

4.2.2 Evaluation of the shape coefficients 94

4.2.3 Nose radius of curvature and trailing edge angle 95

4.2.4 Parameterization of 3D displacements 96

4.2.5 Scaling of the coefficients for shape optimization 98

4.3 Examples . 98

4.3.1 Approximation of airfoils . 98

4.3.2 Generation of a wing-like shape 100

4.4 Concluding remarks . 102

5 Shape Optimization 103

5.1 Optimization problems and algorithms 103

5.1.1 Inverse design . 103

5.1.2 Constrained design . 104

5.1.3 Sequential Linear Programming: the method of centers 105

5.2 Mesh deformation and geometric sensitivities 107

5.2.1 Spring analogy . 108

5.2.2 Geometric sensitivities . 109

5.3 2D Applications . 111

5.3.1 Inverse design in transonic flow 112

5.3.2 RAE2822 airfoil . 113

5.3.3 NACA64A410 airfoil . 116

5.3.4 NACA0012 airfoil . 117

5.3.5 NACA0012 airfoil at supersonic flow conditions 118

5.4 Effect of approximations . 120

5.4.1 SQP algorithm . 120

5.4.2 SLP algorithm . 124

5.4.3 BFGS algorithm . 126

5.5 3D Applications . 126

5.5.1 Drag minimization . 127

5.5.2 Doubling the lift and minimizing the drag 131

5.6 A future application: shock position control 139

5.6.1 Sensitivity of the shock position 139

5.6.2 Numerical examples . 140

5.7 Concluding remarks . 142

6 Final remarks 145

A Unsteady Flows 149

A.1 Unsteady flow solver for deforming meshes 149

A.1.1 Discretization of the unsteady Euler equations on moving meshes 149

A.1.2 Second-order accurate GCL compliant scheme 150

A.1.3 Implicit solution scheme . 151

xiv Contents

A.1.4 Oscillating airfoils and wings 152

A.2 Application to aeroelasticity . 155

A.2.1 Impulse response and linear behavior 156

A.2.2 Impulse response of wings . 158

A.3 Concluding remarks . 164

Bibliography 165

Acknowledgements 172

About the author 175

Chapter 1

Introduction

1.1 Motivation

Designing an aerodynamically efficient aircraft is of paramount importance in the aviation

market. Any gain in terms of aerodynamic efficiency translates directly into a reduction

in fuel costs, which makes the aircraft appealing to airlines. A reduced amount of

fuel burned also implies a reduced impact on the environment, of which the public

is increasingly concerned. In general it is very easy to see the benefits of improved

aerodynamic efficiency but it is not that easy to achieve.

Aircraft design is multidisciplinary and as such is a very complex task. Aerodynamics

plays an important role in the design but it is not the only discipline that requires

attention. Stability, structural analysis and aeroelasticity are some of the other disciplines

that must be taken into account. As a result, the aerodynamic designer is faced with a

constrained design problem, in which the optimum design point must be found subject

to several constraints. For instance, consider the wing: its volume may be constrained

by the requirement of storing the fuel; its thickness may be constrained by structural

considerations; and its planform may be constrained by stability requirements. When

trying to improve the aerodynamics of the wing, the designer must ensure that these

constraints are satisfied.

Still, the multidisciplinary nature of the problem is not really an obstacle to the de-

2 Introduction

signer. In fact, provided that suitable and inexpensive computational tools are available,

the designer can learn how to successfully solve the design problem by trial-and-error.

An inexpensive tool is one that is not time-consuming, i.e., one that features very limited

execution times on the computers that are available today. Usually, an inexpensive tool

is based on algebraic relations or numerical models of low complexity. Unfortunately,

inexpensive computational tools are not always available, especially for flow problems. In

fact, the solution of flow problems usually involves time-consuming numerical methods

that are characterized by iterative processes of large systems of equations.

Consider the transonic flow regime at which most commercial aircraft fly at cruise

conditions. The flow is subsonic almost everywhere, except in some regions around the

aircraft surface in which pockets of supersonic flow appear. Shock waves may eventually

mark the passage from supersonic to subsonic flow, causing a loss in dynamic pressure.

In these cases the designer wants to reduce the strength of the shock as much as

possible. In practice, modeling transonic flow is already a challenging task on its own,

which requires sophisticated and time-consuming computer codes. Finding the optimal

shape requires sensitivity information, e.g., the gradient of the drag coefficient with

respect to the design parameters that describe the shape. That information must be

used to determine directions of improvement along which the design should be driven.

However, the computation of the sensitivity of an expensive model is usually as expensive

as the model itself. Keeping into account that such sensitivity must be computed for all

the design parameters, and that the number of such parameters can be very high, one

understands that the problem may easily become prohibitively expensive.

A common practice in engineering optimization is to perform the design using low-

fidelity modeling. Instead of modeling the relevant physics, the designer makes certain

approximations that simplify the solution of the problem. Low-fidelity models are usually

very fast and make it possible to compute sensitivity information in a very efficient way.

However, the problem occurs that the low-fidelity sensitivity information may not bring

the design towards the optimum of the original design problem. The result is that the

designer must use the original model to check that the optimum suggested by the low-

fidelity model is valid and often additional iterations are required. Usually, low-fidelity

models are not very effective for complex problems and in certain situations can be

inadequate. In fact, the complexity of the design problem may not be captured at all

and consequently the optimum provided by the low-fidelity model may be meaningless.

Because of the aforementioned reasons, the present thesis does not support the use

of low-fidelity models for the design and suggests that the original model should be used

for the evaluation as well as for the design. The thesis advocates the use of the adjoint

method for the sensitivity analysis. Distinguishing feature of the method is that the

cost of the sensitivity analysis is independent of the number of design variables and is

almost of the same order as that of the flow solution. The method clearly removes

the obstacle represented by the excessive costs of more traditional sensitivity analysis

and therefore makes the design process feasible when the original model is used. The

solver that implements the adjoint method is part of a shape-optimization framework

that is very effective and efficient for aerodynamic design. The framework contains all

the components that are necessary to perform aerodynamic shape optimization.

1.2. Background 3

1.2 Background

The present section provides an account of the relevant literature on the subject of

computational aerodynamics and shape design.The reader should be aware that such

account is far from being a complete review. It only mentions the literature that has

had a major impact on the present work.

1.2.1 Numerical methods in aerodynamics

Potential flows, Theodorsen and the panel method

In the early days of aviation, engineers needed to evaluate the characteristics of the low-

speed airfoil sections they designed. Since the field was just born they were practically

in a knowledge vacuum. At that time computers were not there to help. And good

numerical methods for partial differential equations were not available either. Therefore,

apart from performing wind-tunnel tests, devising analytical methods was the only option

available in order to gain some insight in the flow. Theodorsen et al. [120] introduced

a theory that used complex potential flow to compute velocities around arbitrary airfoil

sections. Core of the theory was a mapping in the complex space, which allowed circles to

be mapped into arbitrary airfoil shapes. The method was relatively simple to implement

and produced velocity distributions in agreement with those obtained by the experiments.

The complex method could not be extended to three dimensions because a complex

space is not available there. Eventually the first computers became available and nu-

merical solution of the three-dimensional potential flow equations by means of integral

methods could be attempted. Given the low computational resources integral methods

appeared very convenient because only the body surface had to be discretized, and not

the field. The panel methods of Morino [89] and Hess [45] covered the body with panels

and then computed the so-called influence coefficients, which were integrals evaluated

on the panels. In terms of implementation, once the influence coefficients were avail-

able, the numerical solution simply required the inversion of a matrix. An interesting

description of the panel method suitable for practitioners is given in [62].

The panel method could also work in the transonic regime, which is the regime in

which commercial aircrafts began to fly. The method needed to include field points in

certain regions, specifically those mostly affected by compressibility. However, including

those points considerably increased the level of complexity of the method, which was, and

still is, widely used because of its simplicity. Eventually as computer power increased

much of the research focused on numerical methods based on the direct solution of

partial differential equations.

Full potential flows and the advent of Computational Fluid Dynamics

With aircraft flying at transonic speed, the capability of the flow model to capture shock

waves appeared to be paramount. The Euler equations are a complete model of inviscid

flow and can capture shock waves. However, the limited computer power, as well as the

4 Introduction

complex nature of the Euler equations, made the full potential flow equation a better

candidate to model the flow at more affordable costs.

Solving the full potential equation in the transonic regime appeared to be a difficult

task, mainly because of the mixed elliptic-hyperbolic nature of the equation. Finite-

difference solutions with central schemes were usually hampered by instabilities. Murman

and Cole [91] discovered that central differences are unsuitable and devised the upwinding

concept, which evaluated the differences according to the flow direction. They solved a

simpler version of the full potential model, which is known as transonic small disturbance

equation. Later, Jameson [51] devised the rotated difference scheme, with which he

solved the full potential equation.

The finite-difference method did not appear to be the best choice for discontinuous

flow problems [49]. The finite-volume method looked better suited for such problems.

In fact, the flow equation contains the divergence operator. Thus the equation can

be cast in the form of a conservation law if integrated in a volume. According to the

Gauss’s theorem, the integral of the divergence may be transformed into a flux integral

over the surface around the volume. Since the integral is used, the method can formally

handle discontinuities. Application of the method demonstrated its high potential and

computations of the flow around wings appeared. A description of the method suitable

for practitioners, completed with several applications, can be found in [49]. A more

rigorous exposition is found in [71].

Considering the knowledge vacuum that researchers had to face, one can think of

the aforementioned findings as major breakthroughs. In the period that followed those

findings several researchers started to investigate better numerical schemes, faster so-

lution methods for the equations and flexible ways of generating computational meshes.

A new field of research was born. The proceedings of the first AIAA Computational

Fluid Dynamics (CFD) conference, which was held in Palm Springs, California, in 1973,

give a good description of the enthusiasm generated around the new field. As pointed

out by Jameson in [55], that conference signified the emergence of CFD as an accepted

tool for airplane design.

Euler equations, artificial dissipation and reconstruction schemes

A combination of improved numerical knowledge and increased computational power

gave researchers the opportunity to solve the Euler equations. Jameson, Schmidt and

Turkel devised a numerical scheme [58], which is known as JST scheme, that uses a

central discretization plus artificial dissipation, and a Runge-Kutta pseudo-time marching

procedure to reach steady state. The scheme is very effective and is still in use today.

Other researchers preferred to further the idea of Godunov [39], who introduced a

very innovative concept. His method considers the flux between two cells to be similar to

that obtained by solving the Riemann problem of gas-dynamics. I.e., a problem in which

two inviscid gases, each with different properties, are separated by an interface, which

is suddenly removed. The method naturally provided the required upwinding, without

the need to introduce artificial dissipation. However, the method needed improvements

because it is only first-order accurate, thus not very attractive in practice. Second-order

1.2. Background 5

accuracy was achieved by Van Leer, who introduced a reconstruction procedure that

was named MUSCL [124]. Van Leer’s scheme still uses a Riemann solver, but performs

a linear reconstruction of the primitive variables at the interface between the cells. The

reconstruction is an additional step, which can be performed prior to the flux evaluation.

Reconstruction-based schemes allowed the extension of Godunov’s method but also

introduced unwanted oscillations in the solution. Since it appeared that the recon-

structed variables violated monotonicity, limiting procedures had to be introduced, which

“limited" the value of the variables in order to enforce a monotonic behavior. Amongst

the several limiters that have been introduced by researchers, the Van Albada lim-

iter [123] is widely used.

Another issue that prevented the application of the original Godunov method was

the time required for the solution of the Riemann problem. In fact, an iterative Newton

solution was required, which was time-consuming. Researchers investigated approximate

Riemann solvers, which did not require any iterative solution. Amongst the several

solvers that have been introduced, Roe’s approximate Riemann solver [108] is widely

used.

Along the years, several improvements have been devised for both reconstruction-

based schemes as well as for dissipation-based schemes. Various applications in science

and engineering have arisen. A detailed account of the different methods, suitable for

practitioners, can be found in [70].

Unstructured solvers

Initially the finite-volume method became widespread because it is indeed the natu-

ral framework for the discretization of conservation laws. However, the finite-volume

method also has another interesting feature, which is the capability of discretizing the

equations on a mesh with different types of elements and without any particular ordering

of the nodes. That is, the finite-volume method may be used for the implementation of

unstructured flow solvers. Other methods exist that may be used for the same purpose,

e.g., the finite-element method and the spectral element method.

Usually, generating a structured mesh may be extremely time consuming and even-

tually impossible, especially around complex configurations such as complete aircraft.

The limitations of structured solvers were already clear in the past and more flexibility

was desirable. Still, the possibility of implementing unstructured flow solvers was not

exploited, mainly because of the lack of computational power and memory. Compared to

structured solvers, unstructured solvers usually require a much larger amount of memory

and more computational power.

The memory is needed for the storage of several quantities, which cannot be com-

puted on-the-fly as in the case of structured solvers. E.g., the computation of the

pressure gradient requires knowledge of the pressure at the nearest neighbors of the

node, which are usually known in the case of a structured solver. For instance, for a 2D

structured solver the nearest neighbors of the node (i , j) are the nodes (i , j+1), (i+1, j),

(i , j−1) and (i −1, j). Instead, in the case of an unstructured solver, the nearest neigh-

bors are not implicitly known, and retrieving them may be costly. The computational

6 Introduction

power is needed in a larger amount because an unstructured solver performs in general

more operations than a structured one. E.g., the matrix of an unstructured discretiza-

tion has a sparse structure, which is due to the lack of ordering of the nodes. The

solution of sparse linear systems requires the use of preconditioning techniques, which

are not used for structured solvers. Preconditioning techniques require a substantial

amount of work for the preparation and for the application of the preconditioner.

In the mid 80s sufficiently powerful computers became available and researchers

thought that the time was right to start investigating unstructured solvers. Désidéri and

Dervieux [29] solved the Euler equations on an unstructured median-dual mesh, which

is a mesh obtained by the union of the nodes with the center of the elements. They

devised the so-called upwind triangle scheme, which was the first attempt to implement

reconstruction schemes on unstructured meshes. Barth presented a comprehensive work,

which is summarized in [9], and which was cardinal in the further progress of unstructured

solvers. He investigated the implementation of reconstruction schemes and solution

methods suitable for median-dual meshes. He has also shown the equivalence of the

finite-volume method on the median-dual mesh to one type of finite-element method.

The finite-element method was already used in structural analysis. It uses support

functions, linear in its simple form, and integrates the PDEs by parts. A brief introduction

to the method may be found in [49] and a very detailed account may be found in [136].

The method is very flexible but has the disadvantage of becoming slightly involved in

certain formulations. Usually, the finite-volume method is more intuitive and easy to

assimilate.

It is also in the 80s that the first ever computations of the flow around a complete

aircraft configuration appeared. Dassault, which pioneered the use of CFD very early,

computed the 3D transonic potential flow around the complete Dassault Falcon by

means of finite elements [14]. Also Jameson [56] used an unstructured solver based on

the finite-element method to compute the transonic Euler flow around the Boeing 747.

The numerical scheme was based on an adapted version of his dissipation scheme and

the finite-element method he used was equivalent to the finite-volume method on the

median-dual mesh.

During the 90s unstructured methods reached a considerable level of maturity, espe-

cially for the solution of the RANS equations. Several solution techniques, which were

previously used on structured solvers, have been successfully applied to unstructured

solvers [82]. Examples are the multigrid method [134, 66, 44, 118, 90, 58] and the

lower upper symmetric Gauss-Seidel method, LU-SGS [60]. The former method has

been adapted to unstructured solvers mainly by Marviplis, who has produced a large

amount of work on the subject [80]. The latter method has been refined for application

on unstructured solvers by several authors and two interesting works on the subject are

described in [25, 41]. Two interesting review articles on unstructured solvers (written in

the mid 90s) that contain a comprehensive list of literature are those by Venkatakrish-

nan [129] and Mavriplis [81].

Nowadays several unstructured implementations are available worldwide. They are

used routinely within the aeronautical industry and within research centers. The unstruc-

tured formulation based on the median-dual mesh has been particularly successful and

1.2. Background 7

it is widely used. To name but a few of those solvers: the Funcode of NASA Langley,

the Edge code of the FOI, the TAU code of the DLR and the NSU code of Mavriplis.

There are also plenty of other industries that use CFD for their products. E.g., hydraulic

constructions, combustion engines, ventilation systems and many biomedical apparatus

are products that take advantage of CFD to a certain extent. It is no coincidence that

commercial CFD software appeared and that this software is unstructured. Fluent and

NUMECA are examples of commercial software. They are both based on a cell cen-

tered discretization, as most commercial software is. Within the aeronautical industry,

in spite of the level of maturity reached by unstructured solvers, which would justify

a more widespread use of commercial software, in-house developments are still very

common [61]. The reason is that flow problems are still very complex and demanding.

Thus, tailored implementations can still make a difference [59]. Different is the story in

structural analysis, which is apparently a mature field, and which has seen commercial

software like NASTRAN and ABAQUS becoming standards.

1.2.2 Aerodynamic Shape Optimization

The work of Lighthill

In the early days of computational aerodynamics, engineers and scientists were mainly

focused on devising methods to solve the flow equations. They were not particularly con-

cerned with design methods. The first of such methods was proposed by Lighthill [75].

It is an inverse design method for incompressible potential flow and is named inverse

because it attempts to find the shape satisfying a pre-specified pressure distribution.

Such a shape does not always exist.

Lighthill also produced two other works, which were not conceived specifically for

design purposes, but which have had a major indirect impact on the design of airfoil

sections. His work on the boundary layer thickness [77] has been the foundation on

which engineers have developed coupling methods for the boundary layer equations and

inviscid external flows at times where Navier-Stokes solutions were very far from being

available. Coupling methods have been used constantly to design airfoil sections, and

are still in use today. The work on the hodograph transformation [76], which allows the

solution of transonic flows by means of coordinate transformations, yielded the tool with

which the first shock-free airfoils have been created.

Shock-free airfoils

While computational methods in aerodynamics were in their infancy, the focus of the

aviation industry shifted from the subsonic regime to the transonic regime (see [27] for

a discussion of the benefits of flying in the transonic regime). The compressible flow

methods mentioned in Section 1.2.1 were not yet developed and there was no design

method available yet. Nevertheless, the need to design suitable airfoils for transonic flow

was high and a solution had to be provided.

It was known that shock-free airfoils existed, which smoothly allow the flow to re-

compress from supersonic to subsonic without shock waves. A theoretical result from

8 Introduction

Morawetz [88] confirmed the possible existence of those airfoils for a single design point,

i.e., for only one angle of attack and Mach number.

Nieuwland [98] at the NLR capitalized on the work of Lighthill and devised an inverse

design theory based on the hodograph transformation. According to the method one

could specify a shock-free pressure in the hodograph plane and find the corresponding

shape, which needed to be transformed back in the physical plane. Some of the airfoils

generated with Nieuwland’s method, amongst them the well known NLR7301, were

tested successfully in the NLR wind tunnels and appeared to give shock-free pressure

distributions. Garabedian and Korn [12] implemented a similar method. They also

included boundary layer corrections according to Lighthill’s boundary layer thickness

theory. In a series of three books, several airfoil designs have been described and program

listings were included.

Numerical optimization

The hodograph-based techniques could only be used for the design of shock-free airfoils.

They could not be used away from the shock-free design point. Engineers needed

design techniques to reduce the shock strength, without necessarily eliminating them

completely. They needed techniques that would allow existing designs to be improved.

In order to do so it was not possible to start from the pressure distribution but it was

necessary to start from a given shape and deform it according to specific design criteria.

Numerical models for compressible flow were becoming available and were routinely used

to compute transonic flows. However, there were no specific methods available in order

to use them for design purposes.

Meanwhile in the field of structural engineering gradient-based optimization tech-

niques became available. These techniques use the gradient of the objective function

to drive the design into a direction of improvement. Some algorithms allowed the spec-

ification of constraints and bounds on the design variables. Vanderplaats, Hicks and

coworkers proposed the use of optimization algorithms for black-box aerodynamic de-

sign [125, 47, 48]. Black-box refers to the fact that the flow solver is considered as

such. It receives an input geometry and computes the corresponding functions, e.g., lift,

drag and pitching moment coefficients. The optimization algorithm drives the process

and calls the solver several times to compute the functions and to evaluate the gradient

by finite differences.

Black-box gradient-based optimization methods appeared to be effective. Neverthe-

less, they also appeared to be extremely expensive, impractical for computing-intensive

cases such as the flow around 3D wings. The computation of the gradient was and is

the cause of the large cost. It is usually computed by finite differences, and requires at

least one additional evaluation for each design variable. In the case of N design variables,

N flow computations are required to compute the gradient. A rule of thumb says that

an optimization problem converges in N steps, which means that the overall cost of the

optimization scales with N2. This explains why such an approach is impractical for 3D

wings, which may require hundreds of design variables, if not thousands.

1.2. Background 9

The parameterization of the shape

In applying the black-box method researchers were immediately faced with the need to

properly represent the airfoil shape. The design variables for an aerodynamic shape are

often not identified intuitively. The concept of parameterization was introduced, which

links the shape to a certain number of parameters, the design variables, via a mapping

function. Probably, the simplest parameterization is that obtained by using the reduced

basis concept. According to the latter, several shapes that the designer assumes to be

relevant for the design condition of interest are linearly combined. The coefficients of the

linear combination are then used as design variables. Other parameterization methods

have been proposed, which use basis functions, such as the bump functions of Hicks and

Henne [46]. Basis functions are still widely used nowadays to parameterize shapes. A

general review on the subject of shape parameterization can be found in [111].

The continuous adjoint method

Since the computation of the gradient represented a major obstacle in using gradient-

based optimization methods, researchers tried to find ways of computing the gradient

efficiently. Pironneau proposed a method to derive the sensitivity of the flow equations

with respect to shape parameters in the context of the finite-element method for incom-

pressible flows [100]. The method is based on control theory [78]. Also Jameson [52]

proposed a method, which is based on the same theory, but for applications of the

compressible potential flow equation and the Euler equations. The sensitivity analysis

of both methods employs dual variables, which are solved by additional equations. The

solution method is similar to the one used for the flow equations. The additional equa-

tions are called the adjoint equations and the method is referred to as the continuous

adjoint method.

Jameson and co-workers [53, 57, 54, 103, 106, 104, 105] developed the continuous

adjoint method initially for the potential flow equation, then for the Euler equations

and finally for the RANS equations. Airfoils as well as wings have been successfully

optimized. The aerospace community was impressed by the applications and several

research groups started working on the method.

Two drawbacks of the continuous adjoint method appeared. The differentiation of

the equations, followed by the discretization, leads to an inconsistency between the

computed gradient and that of the discrete implementation. Thus, the convergence of

a gradient-based optimization algorithm could be hampered by the inconsistent gradient.

Moreover, boundary conditions for the dual variables, which have to be provided in order

to solve the equations, are not very easy to define because the dual variables do not

have an immediate physical interpretation.

The discrete adjoint method

An alternative to the continuous adjoint method is the discrete adjoint method, which

is obtained by performing the sensitivity analysis directly on the discrete code. The

method is relatively straightforward to understand: only basic algebra is involved and

10 Introduction

the boundary conditions for the dual variables are not an issue because they unfold

naturally. Moreover, the direct differentiation of the discretized flow equations, if per-

formed exactly, implies a consistent gradient. In terms of implementation, having a

consistent gradient means that the verification of the sensitivity code may be performed

unambiguously.

Disadvantages of the method are the storage requirements and the difficulty of

differentiating large implementations. The storage requirements have to be carefully

considered because several matrices appear in the derivation. In practice not all of

these need to be stored and some may be evaluated on-the-fly. Differentiating large

implementations may be a huge undertaking, mainly because of the presence of complex

numerics. In order to simplify the derivation of the adjoint code, a methodology known

as Automatic Differentiation (AD) may be applied. AD uses basic linearization rules

to manipulate source code and to create the sensitivity code. Adjoint codes may be

obtained by using the so-called reverse mode of automatic differentiation.

Several implementations of the discrete adjoint method have appeared in the lit-

erature. Elliott [35] hand-coded a discrete adjoint code and presented a 3D shape

optimization application. At NASA Langley, researchers gradually hand-coded the ad-

joint of a 3D RANS solver [7, 95, 97] and presented applications of industrial interest.

Their code was also used for another application that involves the adjoint method: error

estimation [127]. Mohammadi [86] pioneered the use of Automatic Differentiation and

derived an adjoint code that was used for shape optimization directed towards sonic

boom reduction. Giles [37] and Müller [85] performed a thorough investigation of Au-

tomatic Differentiation and proposed an efficient use of it, which discarded the practice

of differentiating the code as a black-box. Nemec [93], Amoignon [5], Dwight [32]

and Mavriplis [83, 84] hand-coded the discrete adjoint of large unstructured solvers and

presented interesting applications.

Although Automatic Differentiation may reduce dramatically the amount of work

required to differentiate the code, it has to be used carefully, especially in reverse mode.

A black-box use of AD may yield extremely inefficient code, which in some cases may

require an amount of memory several times that of the original code. A black-box use

of AD is for instance the case where the routines are submitted for differentiation to

the AD tool without any modification. Performance and efficiency (CPU and memory

usage) of the black-box differentiated code may be very poor, depending on how the

original code is implemented. Better performance and higher efficiency are achieved

when the AD tool is applied at the cell-interface level, as suggested by Giles [37] and

Müller [85]. E.g., consider the residual assembly routine, which usually contains a loop

on the interfaces for the collection of the fluxes. Differentiation of the routine means

dealing with matrices of dimensions equal to the number of interfaces. Instead, one can

apply the AD tool to the routine that compute the fluxes within the loop. This way

the matrices of the differentiated code are of size equal to the number of equations (for

instance 4 for 2D Euler). However, applying AD at the cell-interface level usually requires

the original code to be rearranged. Moreover, it requires the assembly of the sensitivity

to be implemented. In fact, for the aforementioned residual assembly, the sensitivity of

the fluxes must be assembled in order to have the sensitivity of the residual. In general,

1.2. Background 11

rearranging the original code and assembling the sensitivity means a considerable amount

of human work, which makes the process far from being automatic.

CFD as design tool

Prior to the introduction of sensitivity analysis in the form of the adjoint method, CFD

was seen more as an analysis tool rather than as a design one. Obviously it was com-

putationally too expensive to have an active role in the design process. Hence CFD was

mainly used to analyze objects created by means of low-fidelity design methods in order

to verify if they were behaving as predicted. CFD was involved in the design process,

but in a rather passive role

The adjoint method has changed the image of CFD seen by engineers. There is

now awareness that CFD can have a very active role in the design process and that

its involvement may start much earlier. The past and future role of CFD in aircraft

design is summarized by Jameson in [55]. A possible range of applications, in the field

of aeronautics as well as in several other fields, are summarized by Mohammadi and

Pironneau in [87].

1.2.3 The adjoint method seen from a duality viewpoint

Readers that are unfamiliar with the literature on the adjoint method have sometimes

trouble understanding how it works, and why it works. As pointed out in [38] the

adjoint method may be seen from a Lagrangian viewpoint or from a dual one. The

Lagrangian viewpoint is usually not very easy to grasp for those who are not confident

with optimization theory. Instead, the duality viewpoint, which may be explained using

only some matrix algebra, is very intuitive and easy to understand. Below the duality

viewpoint is discussed for introductory purposes. In the chapter that describes the adjoint

formulation an explanation based on the Lagrangian viewpoint is provided.

Single dual vector

Consider the vector g of length N and the matrix A of size N × N. Also, consider the

rectangular matrices B = [b1,b2, ...,bM] and C = [c1, c2, ..., cM], which are formed by

M vectors of length N. Suppose that one has to evaluate

q = gTB with B satisfying AB = C . (1.1)

In order to evaluate the vector of matrix-vector products q = [q1, q2, ..., qM], one has

to compute B, which requires the solution of M linear systems. I.e., one has to solve

qi = g
Tbi with bi satisfying Abi = ci , (i = 1,M) . (1.2)

Assuming that the computation of the matrix-vector products is inexpensive in com-

parison to the solution of the linear systems, the cost of solving the above problem

scales linearly with M. The problem defined in (1.2) is referred to as the primal prob-

lem. Definitions (1.1) and (1.2) are the same and the former definition is only more

compact.

12 Introduction

Another problem exists, which is equivalent to the primal problem, but which only

requires a single solution of the linear system instead of the M solutions of the primal

problem. Such a problem is referred to as the dual problem, and requires the evaluation

of

q = sTC with s satisfying AT s = g . (1.3)

s is the vector of dual variables. As shown by the above definition, the cost of solving

the dual problem is equal to one linear system solution for s only, regardless of the

dimension M. As for the primal problem, it is assumed that the matrix-vector products

are inexpensive to compute in comparison to the solution of the linear system.

Some algebraic manipulation shows that the matrix-vector products obtained by the

solution of the two problems are equivalent:

q = sTC = sTAB = (AT s)TB = gTB . (1.4)

Multiple dual vectors

Consider the case of more than one vector g. If there are L vectors gj , there must

also be L dual vectors sj , which implies the solution of L linear systems. Hence one

can see that there is a trade-off between the primal and the dual problem in terms of

convenience. The dual problem is more convenient when L ≪ M whereas the primal

problem is more convenient when M ≪ L.

The adjoint equations

The sensitivity problem of the present work may be cast in the primal/dual form described

above. For this purpose consider the functional J = J(U, αi), which depends on the

flow variables U and on the shape parameters αi , i = 1,M. In practice J may be the lift,

the drag coefficient or some other similar functional. The flow variables are the solution

of the steady flow equation R(U, α) = 0, where R is the residuals vector, which is also

dependent on the same quantities.

Differentiating the residuals and the functional with respect to αi yields the following

problem:

dJ

dαi
=
∂J

∂αi
+
∂J

∂U

∂U

∂αi
,

∂R

∂U

∂U

∂αi
= − ∂R
∂αi
. (1.5)

As can be seen the problem is identical to Eq. (1.2). Therefore, by analogy with

Eq. (1.3), one can readily write the dual problem as

dJ

dα
=
∂J

∂αi
− ΛT ∂R

∂αi
,

∂R

∂U

T

Λ =
∂J

∂U

T

, (1.6)

where Λ is the vector of dual/adjoint variables. In the above equation the linear system

is referred to as the adjoint equation. Equation (1.4) may be used to verify that the

above dual problem is equivalent to the primal problem.

1.3. Overview of the thesis 13

In the case of more functionals with respect to which the sensitivity must be com-

puted, more than one adjoint equation must be solved. E.g., in order to compute the

lift and drag sensitivity together, two adjoints must be computed, one for the lift and

one for the drag. For aerodynamic problems usually there are more variables than func-

tionals and therefore the dual problem is convenient. For other problems, for instance

for structural analysis problems, the reverse may be true [126].

1.3 Overview of the thesis

1.3.1 Description of the shape optimization framework

Figure 1.1 shows the diagram of the shape optimization framework implemented in the

present work. The diagram illustrates the optimization process, which is repeated a

certain number of design iterations in order to improve an existing design. Starting from

the optimizer, the process works as follows.

Optimizer - The process is driven by an optimization algorithm. At each design

iteration it receives the functionals and their gradients, and computes a new set of

design variables ᾱ. The latter variables should give an improvement in the design,

which means they should minimize the objective function at convergence while

satisfying the design constraints of the optimization problem.

Shape Parameterization - The M design variables ᾱ = [α1, ..., αM] define the

displacements ∆XB of the boundary surface. After the design variables are com-

puted by the optimizer, the shape parameterization module receives them as input

and generates the displacements. The module also generates the geometric func-

tionals Ī. For a 2D case the latter functionals may be, e.g., the relative thickness,

the nose radius and the trailing edge angle. For a 3D case the same quantities

may be evaluated at different sections along the span. Also the wing volume may

be evaluated for the purpose of imposing a constraint on it.

Mesh Deformation - The mesh deformation module imposes the displacements

∆XB on the wing surface and computes the deformed mesh coordinates X. In

the present work the deformation is realized by the spring analogy method, which

propagates the surface deformations into the volume mesh by means of Jacobi

iterations.

Flow Solver - The updated mesh is used by the flow solver to compute the

flow field U and to evaluate the L flow functionals J̄ = [J1, .., JL] needed by the

optimizer. Usually the functionals are the lift, the drag and the pitching moment

coefficients. Other functionals that are defined as flow variables (e.g., pressure)

integrals over the surface, may also be considered.

Adjoint Solver - If the optimization algorithm requires the gradients, the adjoint

solver computes the adjoint variables Λj . The subscript j is necessary because

14 Introduction

OPTIMIZER

 MESH

DEFORMATION

 SHAPE

PARAMETERIZATION

 FLOW

SOLVER

 ADJOINT

 SOLVER

GRADIENT

ASSEMBLY

IF GRADIENT

Shape
Parameters

Boundary
displacement

Updated
mesh

Flow
gradients

Adjoint
variables

Flow
variables

 GEOMETRIC

SENSITIVITIES

Flow functionalsGeometric functionals

Geometric
gradients

Figure 1.1: Flow chart of the adjoint-based shape optimization framework

each functional needs its own adjoint. E.g., if lift, drag and pitching moment

sensitivity is needed, L = 3 adjoints have to be computed.

Geometric Sensitivities - As shown by the first term of Eq. (1.6), the geometric

sensitivities J̄α = ∂Jj/∂αi and Rα = ∂R/∂αi , for j = 1, L and i = 1,M, must

be computed in order to assemble the gradient. The gradient of the geometric

functionals, ∇Ī, is also a geometric sensitivity. The term geometric sensitivities is

used because these are partial derivatives with respect to geometric quantities. In

the present work they are computed using Automatic Differentiation (in 2D) and

finite differences (in 3D). The computation for 2D cases is inexpensive compared

to the flow solution process. For 3D cases the computational cost increases

considerably because of the iterative mesh deformation algorithm.

Gradient Assembly - Each component of the final gradient∇J̄ is assembled using

the adjoint variables and the geometric sensitivities according to the first formula

in Eq. (1.6). As can be seen from the equation, the assembly amounts to the

computation of matrix-vector products.

1.3. Overview of the thesis 15

1.3.2 Distinctive features and innovative aspects of the work

Solution of the flow equations - Chapter 2

Finite-volume discretization on the median-dual mesh. The flow solver is based

upon an unstructured finite-volume formulation that discretizes the Euler equations on

the median-dual mesh [9]. The median-dual mesh can be easily drawn on top of the

original mesh, connecting each cell center to its edge mid-points. The result of the

construction is a mesh where the control volumes can be located on the nodes of the

original mesh.

Interesting feature of the median-dual discretization is the mesh transparency [43]. In

fact the edge-based data structure used within the solver makes no distinction between

2D and 3D or between different types of elements. There is always a single edge, only

with a normal vector linked to it.

Second-order reconstruction-based scheme. The flow solver employs a MUSCL-like

reconstruction scheme [124], which linearly reconstructs the primitive variables across

the control volume interfaces, i.e., at the mid-point of each edge of the mesh. The

gradient is computed using a least-squares or a Green-Gauss formulation [9]. In order

to avoid numerical oscillations a multidimensional limiter [128] is used, which enforces

monotonicity in the solution.

The reconstructed variables/states have different values across the control volume

interfaces and therefore a discontinuity exists. Roe’s approximate Riemann solver [108]

is used to evaluate the flux given the discontinuous states. For the boundary conditions

flux-vector splitting [119] is used for the boundaries at infinity whereas for the wall and

symmetry interfaces zero normal-velocity flux is enforced.

Implicit solution The steady solution of the flow equations is found by means of an

implicit pseudo-time stepping scheme. The scheme is obtained as an application of

the defect correction method to the semi-discrete form of the equations [66]. A local

pseudo-time step is added to each control volume and is gradually increased to infinity

according to the level of convergence of the solution. In practice, the scheme coincides

with a backward Euler method that uses an approximate Jacobian [82].

Symmetric Gauss-Seidel preconditioning At each pseudo-time step the flow solution

is updated by solving a sparse linear system of equations. The solution is obtained

iteratively by means of a Symmetric Gauss-Seidel procedure. The procedure may be

seen as an iterative one in which the residuals of the linear system are preconditioned

by the Symmetric Gauss-Seidel matrix. The matrix has a lower-upper structure and

therefore may be inverted by a forward sweep on the nodes for the lower part, followed

by a backward sweep for the upper part. The linear iterations are stopped when the

norm of the linear residuals vector is around one order of magnitude smaller than the

norm of the residuals vector.

16 Introduction

An interesting feature of the solution method is the possibility of running matrix-free,

i.e., without storing the off-diagonal terms of the Jacobian matrix. The matrix-free

option requires an amount of memory similar to that of an explicit scheme. However,

if quantities are not stored, they must be re-computed at each iteration. Thus, the

matrix-free option has higher requirements in terms of CPU-time.

The method has some resemblance with the LU-SGS method [60, 41]. It may be

seen as an improved version of LU-SGS.

Sensitivity analysis - Chapter 3

Exact discrete adjoint A hand-coded and exact derivation of the discrete adjoint is

presented. The derivation starts with the differentiation of the residuals vector assem-

bly. The result is the assembly of the matrix-vector product of the transposed residuals

Jacobian, which is obtained in closed form. The presence of the transposition makes

the implementation of the matrix-vector product rather complicated. It is necessary to

assemble the matrix-vector product directly, mainly because of storage reasons. First

storing the matrix, and then performing the transposition, would require too much mem-

ory.

The derivation is exact; each routine is differentiated without introducing any ap-

proximation. Exactness is demonstrated by showing that Newton iterations converge

quadratically when the differentiated residuals Jacobian is used.

Approximate discrete adjoint The assembly of the exact discrete adjoint is compli-

cated because of the non-linearity of the Euler equations and its coupling, and because

of the presence of both the gradient and the limiter in the discretization. To derive a

code which is more efficient and relatively easier to implement, approximate derivations

are presented.

Approximations consist of neglecting the limiters and details in the numerical fluxes.

Using such approximations makes it possible to construct the adjoint by means of a two-

pass matrix-free assembly procedure. This will be shown in detail. Memory requirements

and execution times of the adjoint code appear to be very similar to those of the original

flow solver.

Implicit solution with Symmetric Gauss-Seidel preconditioning The adjoint equa-

tions are a linear system of equations. Because of the second-order contribution of the

reconstruction operator the Jacobian is not diagonally dominant. Hence an iterative

linear solver is not suitable for the solution.

A widely used approach to the solution of the adjoint equations is to use the same

solution method as the non-linear flow equations [37, 83, 5]. The approach is also

adopted within the present work, i.e., the defect correction method of the flow solver is

used. The defect correction shifts the exact Jacobian to the right-hand side and uses

the approximate Jacobian, which is diagonally dominant, to drive the iterations. The

advantage of using the same flow solution method is twofold. First, the solution process

is robust and, second, the implementation is already available from the flow solver.

1.3. Overview of the thesis 17

Simultaneous solution of several adjoint equations As pointed out by Giles [38] the

presence of functional constraints in the optimization problem, e.g., a lift or a pitching

moment constraint or both, may reduce the attractiveness of the adjoint method. In

fact, as already mentioned in Section 1.2.3, each functional constraint requires the

solution of an adjoint. The computational time required to evaluate the gradient scales

linearly with the number of functional constraints.

An original aspect of the present work is that the solution of multiple adjoints is per-

formed simultaneously. As can be seen from Eq. (1.6) different adjoint equations have

the same Jacobian matrix in common. Since the evaluation of the Jacobian terms is rela-

tively expensive, it makes sense that once those terms are available several matrix-vector

products are performed simultaneously. Results show that, compared to sequential so-

lutions, the simultaneous solution method is faster at the expense of a relatively small

memory overhead.

Shape parameterization - Chapter 4

Chebyshev polynomials for the parameterization of airfoils The parameterization

of the shape is based upon Chebyshev polynomials. The shape of an airfoil is repre-

sented as a truncated linear expansion of orthonormal basis functions, the coefficients

of which are used as design variables (or shape parameters).

The Chebyshev parameterization method has seen very few applications to shape

optimization problems, especially those that involve transonic flows, which are the target

application of the present thesis. The first work based on Chebyshev polynomials [132]

included only a single transonic shape optimization case. A later work [114] did not

include any transonic case at all and so far other applications did not appear in the

literature. An original aspect of the present work is that it presents several design cases,

transonic and supersonic, which all show the great potential of Chebyshev polynomials

for shape optimization.

Parameterization of wings A novelty is the extension of the Chebyshev parameteri-

zation to wing-like shapes. The extension is relatively simple to implement. It is assumed

that the shape parameters change along the span of the wing according to another poly-

nomial law. Moreover, the displacements of the shape, rather than the shape itself, are

parameterized. Applications of the method to wing design cases are presented, which

shows that the method is promising.

Optimization algorithms and applications - Chapter 5

Two- and three-dimensional design applications Drag minimization of several air-

foils with constraints on the lift and on geometric quantities such as the relative thickness

and the radii of curvature are presented. The cases are mainly transonic and one is su-

personic. A three-dimensional design case is presented, which is split into two phases.

In the first phase the lift of an existing wing is doubled. In the second phase the drag

of the wing obtained in the first phase is reduced, while its lift is kept fixed.

18 Introduction

Constrained optimization In the literature on shape optimization a widespread prac-

tice for the solution of constrained problems is to use an unconstrained optimization

algorithm and to include the constraints as penalty terms in the objective. The ap-

proach is convenient mainly because the adjoints of the constraints do not need to be

computed. However it may lead to ill-conditioning of the optimization problem and

difficulties in satisfying the constraints [126].

In the present work, as already mentioned, multiple adjoints may be computed conve-

niently. Therefore the most logical choice is to use constrained optimization algorithms,

which are designed specifically for constrained problems. Two algorithms are used. The

first one is the widely used Sequential Quadratic Programming algorithm, which is taken

from the Matlab library. The second one is the Sequential Linear Programming algo-

rithm known as method of centers. It is based upon a linearization of the optimization

problem. The result of the linearization is a linear programming problem that may be

solved by a simplex algorithm. The algorithm is implemented using the Simplex method

available within Matlab. Although the algorithm is extremely simple it is very effective

as shown by the applications.

Sequential Linear Programming does not reflect today’s state-of-the-art in engineer-

ing optimization. The intention here is to show that design constraints may be taken

into account very easily, without the need to use such methods as the penalty function

method.

Comparison of exact and approximate adjoint The approximations introduced in

the discrete adjoint have a deteriorating effect on the accuracy of the gradient. How-

ever, the gradient may not be the best indicator of whether an approximation is suitable

or not for design purposes.

An original aspect of the present work is that it considers the effect of the ap-

proximations directly on the optimization results. A comparison is made between the

results obtained using the exact adjoint and those obtained using approximate adjoint

codes. Results show that those approximations that take into account the second order

accuracy of the scheme are as effective as the exact adjoint is.

The issue of approximations in the adjoint was raised by the author in an AIAA

conference paper [20]. In that paper results were only presented for an inverse design

case. For constrained cases results have been presented later [22]. Within the same

AIAA conference another author raised the same issues and presented results for RANS

computations with similar findings [32].

Sensitivity of shock displacements It may be interesting for a designer to specify

the position of the shock along a transonic airfoil section. In order to do so Pironneau

suggested a method to compute the sensitivity of the shock position with respect to

a design parameter [101]. The sensitivity may be used to drive the shock towards the

desired position by means of a gradient-based optimization algorithm.

The method is yet to be investigated thoroughly and complete design applications

have yet to appear. The present work contributes to the development of the method

1.3. Overview of the thesis 19

by presenting some computations of the shock sensitivity for different cases. From the

few results presented it is possible to draw some interesting conclusions.

Additional work on unsteady flows - Appendix A

Unsteady flow computations on deforming meshes An unsteady version of the flow

solver is also presented, which is suitable for computations on deforming meshes. The

unsteady numerical scheme is second order accurate in time and satisfies the Geometric

Conservation Law (GCL). Computations are presented of oscillating airfoils and wings.

Linear behavior of the impulsive response The unsteady flow solver is used to com-

pute the impulsive response of airfoils and wings. The response may be used for the

purpose of investigating the aeroelastic stability. A hypothesis was formulated and con-

firmed [79] that the behavior of airfoils with respect to small perturbations is linear. In

the present work results are presented, which show that that hypothesis is also valid for

wings.

1.3.3 Implementation

FORmula TRANslation

The solvers within the present framework, except for the optimizer, have been imple-

mented from scratch using the Fortran programming language. The Fortran 90 standard

has been adopted. The code has been divided in modules, and dynamic memory alloca-

tion and basic data types have been used.

Several reasons motivated the choice for the language. E.g., it is widespread in

CFD, at least in research codes. Since its first appearance it has evolved into a very

complete language for numerical purposes. Moreover, there are a considerable amount

of numerical libraries that are freely available on the web. Those libraries are often

validated and tested and are thus reliable.

Another reason for choosing Fortran is that at the time of starting this work reliable

and publicly available Automatic Differentiation software was available only in Fortran. In

other languages it was available, but was still in a phase of early development. Although

Automatic Differentiation has never played a major role in the present work, it was

planned to use it at least for testing the hand-coded differentiation.

The different solvers within the shape optimization framework are assembled together

with a scripting language, which is available in Matlab. In practice, the Fortran code is

compiled and executables are generated, which are run by the Matlab scripts. Note that

the scripts only run the executables and do not call Fortran functions in any case.

Mesh data structure

Unstructured meshes require a more complicated data structure than structured meshes.

For the latter meshes the grid points can be read from a list, without topology informa-

tion. Such information is not required because the grid points are ordered. Instead, for

20 Introduction

an unstructured mesh the grid points are in general not ordered and therefore topology

information must be provided. In practice, a list of numbered grid points, in whatever

order, must be provided first. Then the topology must be provided in the form of a list

of elements/cells, where for each cell/element the corresponding grid points are given.

The format with which an unstructured mesh may be written/read may be com-

plicated if different types of elements are to be included. Efforts have been made to

develop general formats. A widely used one is the CGNS format, the library of which

may be compiled and included in the solver. In the present work a very basic format

has been implemented, which proved usable only for 2D problems. In order to cope

with more complex 3D meshes the FFA format [2] implemented by the FOI (Swedish

Defence Research Agency) has been included in the code. The FFA format is a very

general format, which has been implemented in Fortran, and comes with utilities to

convert the data to other major formats, such as CGNS.

Chapter 2

Solution of the flow equations

2.1 Flow equations

2.1.1 Modeling the flow: different level of approximation

The Navier-Stokes equations provide the most complete mathematical description of

flows of aerodynamic interest.The equations state the conservation of mass, momentum

and energy of the fluid. Unfortunately, the solution for cases of practical interest is still

unfeasible due to the multi-scale nature of the turbulence that characterizes the flow.

In fact, the required computational capabilities are still unavailable these days. Thus, in

order to gain some insight in the behavior of the flow, different levels of approximation

have been devised during the years.

A valuable approximation is obtained by averaging the Navier-Stokes equations in

time, which gives the so-called Reynolds-Averaged Navier-Stokes (RANS) equations.

The averaging gives rise to additional terms that depend on the averaged behavior of

the turbulence. Turbulence models have been introduced for those terms, providing

closure to the RANS equations. Usually, the turbulence models are cast in the form

of algebraic relations, or in the more complex form of transport equations, which must

be added to the original system of equations [135]. Nowadays the RANS equations

are routinely used by the aircraft industry and they are considered reliable to address

transonic high-reynolds number flows including regions affected by separation [61].

22 Solution of the flow equations

Neglecting the viscosity and thermal conductivity leads to the Euler equations, which

form the most complete representation of an inviscid fluid. Compared to the RANS

equations the complexity is reduced dramatically, not only in terms of the equations, but

also in terms of the required computational mesh. In fact, the RANS equations usually

require very fine meshes, especially in boundary layer regions, which are characterized by

a huge increase of the mesh density approaching the wall. As the viscosity is neglected,

the Euler equations can only predict the wave and the induced component of the drag.

As such, their use may be limited because crucial information such as the efficiency

and the range of an aircraft cannot be evaluated. Fortunately, the Euler equations

can be efficiently coupled to Boundary Layer codes, which solve the boundary layer for

attached flows [24]. Thus, for cruise conditions, the coupled approach can still provide

useful information.

Adding further approximations to the Euler equations leads to the full potential flow

equation first and then to the potential flow equation. Both have been mentioned in

the Introduction. A detailed description of those equations can be found in [49]. In the

present work the Euler equations are the model of choice. Only the inviscid solution is

considered, without boundary layer coupling. Below the Euler equations in the integral

form are described.

2.1.2 Euler equations in integral form

The Euler equations are a system of conservation laws [71, 70, 49, 134] for the conser-

vative variables u. The integral form of the equations, which must hold for any volume

V contained in the domain Ω, reads

d

dt

∫

V

u dΩ +

∮

∂V

F(u) · n dΓ = 0 , (2.1)

where F(u) is the inviscid flux and n is the outward unit normal on the boundary ∂V

of V . This equation states that the rate of change of the total amount of u contained

in V , plus the net flux of F through the boundary ∂V , must be equal to zero. The

conservative variables are defined as

u = [ρ , ρw , ρet]
T , (2.2)

where ρ is the density, w is the velocity vector and et is the total specific energy. The

flux vector is defined as

F(u) =
[
ρwT , ρwwT + pI , (p + ρet)w

T
]T
, (2.3)

where p is the static pressure. The latter must be linked to the conservative variables in

order to provide closure of the system. The link is provided by the perfect gas equation,

which reads

p = (γ − 1)ρ
(
et −

|w|2
2

)
, (2.4)

2.1. Flow equations 23

where γ is the ratio of specific heats, which for air is about 1.4.

The Euler equations may also be expressed in terms of primitive variables, which are

defined as

v = [ρ ,w , p]T . (2.5)

However, in this case the Euler equations are not in conservative form. The lack of

conservation has negative implications for the numerical solution [71, 70]. Therefore the

primitive form is rarely used in practice. Nevertheless, the primitive variables themselves

are often used in the numerical solution of the Euler equations as working or intermediate

variables. A link between u and v is provided by the transformation matrix ∂v/∂u, which

reads

∂u

∂v
=




1 0T 0

w ρI 0

|w|2/2 ρwT 1/(γ − 1)


 , (2.6)

and by its inverse, which reads

∂v

∂u
=




1 0T 0

−w/ρ I/ρ 0

(γ − 1)|w|2/2 −(γ − 1)wT (γ − 1)


 . (2.7)

The two matrices can be easily obtained by the variables definition and by taking into

account Eq. (2.4).

Dimensionless variables

Dimensionless variables are used for the solution of the equations. They are obtained

by means of dimensional analysis. The dimensionless primitive variables, i.e., density,

velocity and pressure, may be written respectively as

ρ′ =
ρ

ρ∞
, w′ =

w

U∞
, p′ =

p

ρ∞U2∞
, (2.8)

where ρ∞ is the free-stream density and U∞ is the magnitude of the free-stream velocity.

Other dimensionless quantities can be derived using the above variables. For instance,

the total specific energy can be made dimensionless after dividing by U2∞:

et = cvT +
|w|2
2

→ et
′ =
et
U2∞
=
cvT

U2∞
+
|w|2
2U2∞

.

cv is the specific heat at constant volume. The above equation shows that the dimen-

sionless temperature is T ′ = cvT/U
2
∞.

In the following, all the variables are assumed to be dimensionless. However, the

prime is not used since it can be safely dropped without causing confusion.

24 Solution of the flow equations

2.2 Discretization of the Euler equations

2.2.1 Finite-volume discretization

Equation (2.1) may be discretized using a finite-volume formulation [71, 70, 49, 134].

The domain Ω must be partitioned entirely in a set of non-overlapping control volumes

Vi and Eq. (2.1) must be satisfied in each of them. Consequently, a system of partial

differential equations is obtained, which reads

Vi
dui
dt
+

∮

∂Vi

F · n dΓ = 0, (i = 1 ,N) , (2.9)

where

Vi =

∫

Vi

dΩ and ui =
1

Vi

∫

Vi

u dΩ (2.10)

are the control volume area and the cell average value of u in Vi , respectively. The flux

integral in Eq. (2.9) can be split into a number of contributions Ni , which corresponds

to the number of the nearest-neighbors of the ith control volume. For this purpose, the

boundary of Vi has to be divided into an equal number Ni of portions ∂Vi j , i.e.,

∂Vi =
∑

j=1,Ni

∂Vi j ,

where ∂Vi j is the portion that separates the two adjacent control volumes Vi and Vj
and is called the control-volume or cell interface i j . Therefore, for the generic cell i ,

Eq. (2.9) becomes

Vi
dui
dt
+
∑

j=1,Ni

∫

∂Vi j

F · n dΓ +
∫

∂Vi∩ ∂Ω

F · n dΓ = 0 . (2.11)

The last term in Eq. (2.11) accounts for the boundary conditions and is different from

zero only if the boundary ∂Vi of cell i is a segment of the domain boundary ∂Ω. Both flux

integrals appearing in Eq. (2.11) can be evaluated by means of a mid-point quadrature.

Thus, Eq. (2.11) can be written as

Vi
dui
dt
+
∑

j=1,Ni

Fi j ·
∫

∂Vi j

n dΓ + Fi ·
∫

∂Vi∩ ∂Ω

n dΓ = 0 , (2.12)

where Fi j is the constant approximation of the flux along the control-volume interface

∂Vi j , and Fi is the constant approximation of the flux along the boundary ∂Vi ∩ ∂Ω. The

two integrals appearing in Eq. (2.12) are of geometric nature since they contain only

information about the geometry of the domain Ω. Two integrated normal vectors can

be defined,

ni j =

∫

∂Vi j

n dΓ and nBi =

∫

∂Vi∩ ∂Ω

n dΓ . (2.13)

2.2. Discretization of the Euler equations 25

One has that ni j = −nj i . Moreover, the following relations must be satisfied:

∑

j=1,Ni

ni j = 0 , i ∈ I and
∑

j=1,Ni

ni j = −nBi , i ∈ B , (2.14)

where I and B are the sets that contain the internal and the boundary nodes, respectively.

Substituting the integrated normals into Eq. (2.12) gives

Vi
dui
dt
+
∑

j=1,Ni

Fi j · ni j + Fi · nBi = 0 . (2.15)

In order to solve this equation, the evaluations of the internal flux Fi j and of the boundary

flux Fi are needed. These evaluations are not straightforward since particular care is

required to make sure that the hyperbolic nature of the equations is properly taken into

account. Also, care is needed to ensure that spatial accuracy is achieved.

In practice, numerical fluxes are introduced in both cases: the internal flux is replaced

by the numerical flux Φi j ≈ Fi j · ni j and the boundary flux by the numerical flux Φbci ≈
Fi · nBi . Substituting these numerical fluxes into Eq. (2.15) gives

Vi
dui
dt
+
∑

j=1,Ni

Φi j +Φ
bc
i = 0 . (2.16)

Several types of numerical fluxes are available to solve this equation. The ones preferred

for this work are presented in the next section. The numerical fluxes can be collected

into the residual, which is defined as

ri ≡
Ni∑

j=1

Φi j +Φ
bc
i . (2.17)

Once Eq. (2.16) has been driven to steady state, if one exists, the residual is expected

to vanish. For this reason the residual may be used as a measure of convergence of the

solution.

2.2.2 Median-dual mesh

Median-dual construction

Equation (2.16) can be discretized on an unstructured type of mesh, e.g., a Delaunay

triangulation or a hybrid mesh made of different type of elements. In the present work,

a node-centered approach is employed. The approach stores the unknowns at the nodes

of the mesh, around which the control volumes are located. It is realized by means

of a median-dual type of mesh [29], which has interesting features. For instance, it is

mesh transparent [43], that is, after the median-dual mesh is generated, an edge-based

data structure is all that is needed to solve the equations both in 2D and 3D and for

all types of elements. Thus, the elements information can be discarded. Moreover,

when the equations are discretized on the median-dual mesh, the resulting discretization

26 Solution of the flow equations

(a) (b)

Figure 2.1: Median-dual construction for (a) two-dimensional and (b) three-dimensional ele-

ments.

can be shown to be equivalent to a finite-element Galerkin discretization over the same

grid [113, 9].

The median-dual mesh is obtained with a construction process that starts from the

original mesh. The process is briefly described in the following.

2D case: Consider a two-dimensional element, i.e., a triangle or a quad. The element

is cut into a number of regions equal to the number of its nodes, e.g., three for a

triangle and four for a quad. The regions are obtained by connecting the barycenter of

the element to its edge mid-points. If the process is performed on all the elements in the

mesh, at the end each node in the mesh is surrounded by a number of these regions, the

union of which gives the control volume for the node. An example of this construction is

depicted in Fig. 2.1a, where the shaded region indicates the control volume of the generic

node i . An unstructured mesh around the RAE2822 airfoil, which has been generated

by the Delaunay triangulation (a commercial software package has been used), is shown

in Fig. 2.2a. Its corresponding dual mesh is shown in Fig. 2.2b. A mesh of triangles

around the NACA0012 airfoil, which has been generated by the splitting of a structured

mesh of quads, and its dual, are shown in Fig. 2.3a and Fig. 2.3b, respectively.

3D case: More types of elements are available in this case, e.g., tetrahedra, pyramids,

prisms and hexahedra. The faces of such elements are either triangles or quads. The

construction process described above may be repeated here for each face of the element.

In addition, lines can be drawn that connect the center of each face to the barycenter

of the element. The latter lines, together with the lines created on the faces, define

a number of surfaces internal to the element. The surfaces cut the element itself in a

number of regions equal to the number of its nodes. Again, after visiting all the elements

of the mesh, one can construct the control volumes by performing the union of all the

corresponding regions. An example of this construction is depicted in Fig. 2.1b. There,

2.2. Discretization of the Euler equations 27

(a) (b)

Figure 2.2: (a) Unstructured mesh and (b) median-dual mesh around the RAE2822 airfoil.

the region of the cell that belongs to the control volume of the generic node i is shown

with dashed lines.

Metrics computation

Metrics is the term used to indicate the geometric quantities that appear in the dis-

cretized Euler equations, i.e., the control volumes Vi and the integrated normals ni j and

nBi of Eq. (2.13). The control volumes are computed by taking into account that,

during the construction of the median-dual, each cell is always divided into a number of

regions of equal volumes.

The integrated normals in 2D are computed as

ni j = (xcl − xi j)× ẑ− (xcr − xi j)× ẑ , (2.18)

where ẑ = (0, 0, 1)T is the unit direction, xi j is the edge mid-point and xcl and xcr are

the barycenter of the left and of the right cells, respectively. The contribution of the

two terms in the above equation is depicted in Fig. 2.1a. In the case of a boundary edge,

the second term on the right-hand side is absent since there is no cell on the right of

the edge. In the case of boundary nodes, the integrated boundary normal of Eq. (2.13)

is computed as

nBi =
(xr − xi)
2

× ẑ− (xl − xi)
2

× ẑ , (2.19)

where xr and xl are the nodes that lie respectively at the right and at the left of the

boundary node i .

In 3D the integrated normals are computed as

ni j =
∑

k∈Ei j

signi j(xrk − xlk)× (xck − xi j) , (2.20)

where: Ei j is the set that, for a given edge i j , contains the elements that share the edge

itself; signi j defines the orientation of the edge; xck is the barycenter of the kth element

28 Solution of the flow equations

(a) (b)

Figure 2.3: (a) Mesh of triangles and (b) median-dual mesh around the NACA0012 airfoil. The

mesh is obtained by splitting the element of a structured mesh.

in Ei j ; xlk and xrk are the center of the left and of the right face of the element k in Ei j ,
respectively. Left and right is intended with respect to the orientation of the edge i j .

The integrated boundary normals in 3D are computed as

nBi =
∑

k∈EBi

Sk

nk
, (2.21)

where EBi is the set that contains all the boundary elements that share the node i , Sk
is the area of the kth element and nk is the number of nodes of the kth element.

Figure 2.1b shows the contribution of the kth element to the integrated normal ni j .

The other contributions are obtained by visiting all the elements that have the edge i j

in common.

Data structure and implementation of conservation laws

All the edges that are present in the mesh are stored in a list during the preprocessing

of the mesh. For each edge i j , the list stores the left node i and the right node j

of the edge. The left and the right directions are defined by the condition i < j ,

which gives a way to orientate the edge. The list constitutes the data structure that

is used throughout all the code. The use of the edge-based data structure makes the

implementation of conservation laws very efficient. For instance, consider the residual

in Eq. (2.17). Conservation implies that Φi j = −Φj i . Therefore, the residual on each

node can be assembled by a loop on the edges, where the control volume interfaces are

located. The flux computed on each edge is accumulated on the left and on the right

of the edge, with opposite signs. The pseudo-code for the residual assembly can be

written as

ri = ri +Φi j ,

rj = rj −Φi j , (i j = 1, E) , (2.22)

where E is the number of edges. Note that the pseudo-code notation will be used

throughout the present and the next chapter. In the next chapter, which introduces

2.3. Space discretization of the flow equations 29

the sensitivity analysis, the pseudo-code will be very useful for the derivation of several

assemblies.

The residual assembly in Eq. (2.22) must be completed by adding the boundary

contribution. A possibility is to perform an additional loop on the boundary nodes,

ri = ri +Φ
bc
i , (i = 1, NB) , (2.23)

where NB is the number of nodes that are lying on the boundary. In the following, in

order to simplify the exposition, the loop on the boundary nodes will be neglected when

dealing with similar type of assemblies.

Another list, required for the solution of the sparse linear system, is also generated

during the construction phase. This list stores the set Ni for each node. This set, which

will be referred to as the stencil, contains the node i and all its distance-one neighbors

j . For instance, in the case of Fig. 2.1a, the set would contain the eight nodes marked

by the black dots. The nodes in the set Ni are increasingly ordered,

Ni = [Li , i ,Ui] where ∀j ∈ Li : j < i and ∀j ∈ Ui : j > i . (2.24)

This list is only necessary to deal with the solution process implemented here and de-

scribed in Section 2.4. If another solution process would be used, e.g., external libraries

for sparse linear systems, this list could be unnecessary. In fact, external libraries usually

come with their own data structure.

2.3 Space discretization of the flow equations

As already mentioned in the previous section, particular care is required for the evaluation

of the numerical fluxes in the discretized equations. One has to take into account the

hyperbolic nature of the Euler equations and the need to achieve second-order spatial

accuracy.

Numerical fluxes that are suitable for wave propagation phenomena are used, both

for the internal fluxes and for the boundary fluxes. For the boundary, flux vector splitting

is employed, which is capable of distinguishing between in- and out-going waves. For

the internal flux, an approximate Riemann solver is employed. The latter solver, given

the discontinuous left and right states, approximates the flux that would be obtained by

solving the well-known Riemann problem of gas dynamics.

Although the Riemann solver is suitable for wave phenomena, it yields only first-

order spatial accuracy. A reconstruction scheme is used to improve the accuracy. The

scheme performs a linear extrapolation of the states across the interfaces and achieves

second-order spatial accuracy. Spurious oscillations are taken care of by means of a

limiting procedure, which is suitable for unstructured meshes.

30 Solution of the flow equations

2.3.1 Numerical fluxes

Roe’s approximate Riemann solver

The numerical flux in Eq. (2.17) is evaluated using Roe’s approximate Riemann

solver [108]. The latter is capable of computing the flux across the interface between

the two nodes i and j , in spite of the discontinuity between the states. The problem is

solved in a one-dimensional fashion, i.e., the numerical flux approximates the Euler flux

projected along the integrated normal, Fi j · ni j . The flux is based upon the mean-value

theorem. It reads

Φi j = Φ(ui ,uj ,ni j) =
F(ui) + F(uj)

2
· ni j −

1

2
|A(ūi j ,ni j)|(uj − ui) , (2.25)

where A(u,n) = d(F · n)/d u is the Jacobian of the flux vector projected along the

normal. The Jacobian must be evaluated with the variables ūi j that satisfy

[F(ui)− F(uj)] · ni j = A(ūi j ,ni j)(uj − ui) .

Variables that satisfy the above equation are the Roe averages:

ρi j =
√
ρiρj , wi j =

√
ρi wi +

√
ρj wj√

ρi +
√
ρj

and hi j =

√
ρi hi +

√
ρj hj√

ρi +
√
ρj

,

where h = et+p/ρ is the specific total enthalpy. The absolute value of the flux Jacobian

|A(ūi j ,ni j)| is computed as

|A| = X|Λ|X−1 , (2.26)

where X and Λ are the eigenvectors and the eigenvalues of A, respectively. The eigen-

vectors, which have lengthy expressions, can be found in [50]. The eigenvalues read

λ1,2,3 = w · n , λ4 = w · n+ a|n| and λ5 = w · n− a|n| ,

where a =
√
γp/ρ is the speed of sound.

Note that the Roe flux, see Eq. (2.25), is constructed as a central term plus a matrix

dissipation term. And if the eigenvalues happen to be zero, the dissipation vanishes and

non-physical solutions may appear. It is a recommended practice to use a so-called

entropy fix [42], which modifies the eigenvalues to ensure that they are never zero.

For the computations performed in the present work, the entropy fix was found to be

unnecessary, probably because unstructured grids tend to be not aligned with the flow

and therefore the eigenvalues are not very likely to be zero.

Flux-vector splitting

The far-field boundary fluxes are computed using flux vector splitting [119], which allows

to distinguish between in-going and out-going information. The numerical flux for a far-

field boundary point is evaluated as

Φbci = Φ
∞
i = A

+(ui ,nBi) ui + A
−(ui ,nBi) u∞ , (2.27)

2.3. Space discretization of the flow equations 31

where u∞ is the vector of free-stream conservative variables and where A+ and A− are

the plus and the minus splittings of the flux Jacobian. The latter are defined as

A+ = X
Λ+ |Λ|
2
X−1 , A− = X

Λ− |Λ|
2
X−1 . (2.28)

The splitting of Eq. (2.27) takes advantage of the remarkable property of the flux

vector of being a homogeneous function of order one of u, i.e.,

F(u) · n = A(u,n)u .

Inviscid wall and symmetry

In the case of a symmetry boundary or an inviscid wall boundary, the velocity component

normal to the boundary is zero, wi · nBi = 0. A boundary condition may be imposed by

setting the normal velocity to zero in the normal projection of the Euler flux of Eq. (2.3),

i.e.,

Φbci = Φ
w
i = [0 , p nBi , 0]

T . (2.29)

This way of imposing the boundary condition on the wall is referred to as weak because

the condition is imposed on the flux rather than on the variables themselves. In contrast,

a strong enforcement of the boundary condition assigns the boundary velocity without

considering it as unknown in the solution process.

2.3.2 MUSCL-like reconstruction scheme

Second-order spatial accuracy in region of smooth flow, i.e., flow with no discontinuities,

is achieved by means of a MUSCL-like scheme [9]. The scheme is an unstructured-grid

version of the original MUSCL scheme [124]. In essence, the method evaluates the

numerical flux in Eq. (2.25) with reconstructed variables, i.e.,

Φi j = Φ(ûi , ûj ,ni j) , (2.30)

where the hat on the conservative variables stands for reconstruction. However, the

primitive variables v are reconstructed rather than the conservative variables u. For a

generic primitive variable v , the reconstruction across the mid-point of the edge i j reads

v̂i = vi +
σi
2
∇vTi ∆xi j and v̂j = vj −

σj
2
∇vTj ∆xi j , (2.31)

where σ is the slope limiter, ∇v is the gradient of the primitive variable at the node and

∆xi j is the distance between i and j . Note that for median-dual meshes the interface

between the two control volumes of i and j is located at the edge mid-point. For the

latter reason the distance ∆xi j is halved in the above equation.

The reconstruction is performed just before the evaluation of the numerical flux.

Therefore, the slope limiter and the gradient must be precomputed and stored in order

32 Solution of the flow equations

to be used. In fact, on-the-fly gradient computation cannot be performed using the edge-

based data structure. Instead, it could be performed using a data structure that contains

the stencil of each node, like the one in Eq. (2.24). However, because of the larger

number of operations required using the latter data structure, the computation would

be inefficient (for the same reason the fluxes of an unstructured solver are computed

looping on the interfaces of the cells rather than on the cells). Different is the situation

for a structured solver for which nearest-neighbors are directly available and therefore it

is easy and convenient to compute the gradient on-the-fly.

In the present work two types of gradients are available: the Green-Gauss and the

Least-squares gradient. Below a description is given.

Green-Gauss gradient

The Green-Gauss gradient is based upon the Green formula

∫

Ω

∇v dΩ =
∮

∂Ω

vn dΓ ,

which can be discretized [9] as

∇v i =
1

2Vi

Ni∑

j=1

(vi + vj) ni j + vi
nBi

Vi
. (2.32)

The second term on the right-hand side is only present when the node i lies on the

boundary.

The above discretization of the Green-Gauss gradient can reconstruct linear poly-

nomials exactly only on triangles (in 2D) and tetrahedra (in 3D) that are located away

from the boundary. An error is present on the boundary, which could be corrected by

introducing in the above equation the contribution of the nearest-neighbors of the node

i along the boundary [11]. The correction would make the Green-Gauss gradient equiv-

alent to the P1 (linear triangles in 2D and linear tetrahedra in 3D) gradient used in

the finite-element method. Still, an error would always be present for all other types of

elements.

Numerical evidence shows that the error discussed above does not affect the accuracy

of the reconstruction in an appreciable way. The Green-Gauss gradient can be computed

by a loop on the edges of the mesh.

Least-squares gradient

The Least-squares gradient [9] reconstructs linear polynomials exactly on every type of

element [10, 9]. By assuming a linear variation of the function v , one can write a number

of equations for the node i equal to the number of its nearest neighbors Ni , i.e.,

∇v i · (xj − xi) = vi − vj , (j = 1, Ni) .

2.3. Space discretization of the flow equations 33

The above equation represents a problem of the type [L1 L2 L3]∇v = F , which has

solution

∇v =




V1
V2
V3



F , (2.33)

with the vectors V1, V2 and V3 that satisfy the relation




V1
V2
V3



 [L1 L2 L3] =




1 0 0

0 1 0

0 0 1



 .

The vectors are obtained via a Gramm-Schmidt orthonormalization process [9], which

computes Vk = Uk/(Lk ·Uk), where




U1
U2
U3



 =




(l33l22 − l23l23) (l23l13 − l33l12) (l23l12 − l22l13)
(l33l11 − l13l13) (l13l23 − l33l12) (l13l12 − l11l23)
(l11l22 − l12l12) (l12l23 − l22l13) (l12l13 − l11l23)








L1
L2
L3





and lkm = Lk · Lm. The process simplifies considerably for the 2D case, for which V3
and L3 are equal to zero in the above equations and

V1 =
l22L1 − l12L2
l11l22 − l122

, V2 =
l11L2 − l12L1
l11l22 − l122

.

The least-squares gradient is more expensive to compute than the Green-Gauss

gradient. It is computed by looping on the edges. Nothing is stored and all the quantities

defined above are computed on-the-fly at each gradient computation.

Slope limiter

The slope limiter is that of Venkatakrishnan [131], which is a modification of the multi-

dimensional limiter introduced by Barth [10]. The latter limiter, although capable of

enforcing monotonicity in a multi-dimensional fashion, is not differentiable. It is well

known that the lack of differentiability causes a noisy convergence behavior that prevents

the solution to converge completely. Specifically, after the solution is almost converged,

the residual stalls to a certain value and keeps oscillating around that value. The same

behavior is observed for the lift, the drag and for the pitching moment coefficients.

In the following, ∆vi j = ∇vTi ∆xi j/2 is the unlimited differential of vi on the edge i j

and vi
max and vi

min are the extrema of v on the stencil Ni . The purpose of the limiting

procedure is to ensure monotonicity, i.e.,

vi
min ≤ vi ≤ vimax , (2.34)

which means that the reconstructed solution on the node i never exceeds the extrema

in its stencil. If ∆vi
max = vi

max− vi and ∆vi
min = vi

min− vi , both limiters may be defined

34 Solution of the flow equations

as

σi = min
j=1,Ni





Lim(∆vi
max,∆vi j) , ∆vi j > 0 ,

Lim(∆vi
min,∆vi j) , ∆vi j < 0 .

(2.35)

The difference between the two limiters lies in the function Lim. The discontinuous

limiting function used by Barth is

Lim(a, b) = min
(
1,
a

b

)
, (2.36)

whereas the smooth function introduced by Venkatakrishnan is

Lim(a, b) =
a2 + 2ab + ε2

a2 + ab + 2b2 + ε2
, (2.37)

where ε is a threshold. The latter may be tuned in order to compromise between

convergence and limiting. Usually, the price to pay for obtaining convergence is the

presence of small over/under shoots in the solution, i.e., the monotonicity condition in

Eq. (2.34) is not enforced strictly. An inappropriate too large value of the threshold

may eliminate the oscillations, but also act in smooth regions, where the limiter is

not required. It is recommended [131] to chose ε = k∆x̄ , where k is a constant,

k ≈ 0.1− 0.3, and ∆x̄ is a characteristic length chosen globally. A local value for each

vertex, ∆x , may also be used.

The multi-dimensional limiter in Eq. (2.35) cannot be computed during the assembly

of the residual, at least not if one uses only the edge-based data structure. In fact, loops

over the edges are necessary to compute first vi
max and vi

min, and then to compute

the limiter in Eq. (2.35). Therefore, the limiter is precomputed, stored and used to

assembly the residual in a later phase. Compared to one-dimensional limiters, which can

be computed during the assembly of the residual, this limiter is clearly more expensive. A

method to adapt one-dimensional limiters to the unstructured median-dual discretization

is described in [40].

2.4 Implicit steady-state solution

A steady-state solution of the flow equations is obtained by an implicit pseudo-time

stepping scheme. Due to the second-order spatial accuracy and to the mixed elliptic-

hyperbolic type of the equations, the discretization generates a linear system that is

poorly diagonally dominant. According to the defect-correction method, diagonal domi-

nance is improved by replacing the exact Jacobian of the discretization with a low-order

one. For large time steps the scheme becomes an inexact Newton method, which shows

a linear convergence rate.

At each time step the system of linear equations that arises from the discretization

is solved iteratively to the required level of accuracy. The iterative solution uses a

symmetric Gauss-Seidel (SGS) preconditioner, which does not require any preparatory

work. Moreover, the solution method features the possibility to choose between the

storage of the preconditioning matrix and the completely matrix-free preconditioning.

2.4. Implicit steady-state solution 35

2.4.1 Defect correction in pseudo-time

Equation (2.16) may be written in compact form for all the nodes in the mesh as

D
d U

d t
+ R = 0 , (2.38)

where U = [u1,u2, ..,uN]
T is the conservative variables vector and R = [r1, r2, .., rN]

T

is the residual vector. The diagonal matrix D contains the control volumes Vi .

Theoretically, a steady state solution should not require the time derivative in the

above equation. It should be possible to solve R = 0 directly, e.g., using a Newton

scheme. However, since the problem is non-linear, a suitable starting solution should

be available in order to converge to the proper solution. Methods exist to find such a

solution [64]. In the present work, as it is standard practice, a simpler way to proceed

has been adopted: the pseudo-time derivative is included in the equation and the flow-

field is initialized to the free-stream. In fact, numerical evidence shows that marching

in time from this initial solution yields convergence to the steady state solution.

An implicit pseudo-time stepping scheme for the above equation reads

Dt(U
n+1 −Un) + R(Un+1) = 0 , (2.39)

where the time derivative is discretized using a forward approximation and Dt is a diag-

onal matrix that contains the cell volumes divided by the local time steps, Vi/∆ti . The

residual term in Eq. (2.39) can be expanded linearly,

R(Un+1) ≈ R(Un) + ∂R
∂U

n

(Un+1 −Un) .

Substituting the expansion in Eq. (2.39), one obtains the backward Euler scheme, which

can be written as
(
Dt +

∂R

∂U

)n
(Un+1 −Un) = −Rn . (2.40)

For infinitely large time steps, the time derivative vanishes and Eq. (2.40) becomes

Newton’s method. As already mentioned, the Jacobian ∂R/∂U is poorly diagonally

dominant because of the mixed elliptic-hyperbolic type of the equations and the second

order spatial discretization (see the next chapter for more details). As a consequence,

the iterative solution of the linear system of equations arising at each time step is hard

to obtain.

In order to deal with a more diagonally dominant Jacobian, the defect-correction

method [66] can be employed. The method works by replacing the residual R(U) in

Eq. (2.39) with a low order residual R̃(U) plus a defect ∆R(U), where the latter is

defined as

∆R(U) = R(U)− R̃(U) .

The defect-correction method treats the low-order residual implicitly and the defect

explicitly. Thus, applying the defect-correction to Eq. (2.39), one has that

Dt(U
n+1 −Un) + R̃(Un+1) = −∆R(Un) = R̃(Un)− R(Un) . (2.41)

36 Solution of the flow equations

Once the above problem is converged, the solution of the original problem is obtained.

In fact, if Un+1 ≈ Un, the low order residual terms vanish and R(Un) = 0. In practice,

the method uses the low order residual to drive the defect to zero.

In the present work, R̃ is the residual of a first-order accurate and approximate

discretization. Taking a first order expansion of the residual, after substitution in the

above equation, one obtains
(
Dt +

∂R̃

∂U

)n
(Un+1 −Un) = −Rn . (2.42)

At first glance the above equation looks identical to Eq. (2.40). However, the Jacobian

∂R̃/∂U that appears in the above equation is first-order accurate and thus diagonally

dominant. Therefore, the solution of the linear system is relatively easy and robust.

The price to pay for using the first order Jacobian in Eq. (2.42) is the loss of

quadratic convergence rate, which could be potentially achieved with the exact method

of Eq. (2.40). The scheme given in Eq. (2.42) coincides with a backward Euler scheme

(Newton for infinitely large time steps) that uses an approximate Jacobian [9, 131, 82].

Local time stepping

During the solution of the system in Eq. (2.42) to steady state, the local time steps ∆t i
are increased at each time step according to an update of the Courant-Friedrichs-Lewy

(CFL) number [26]. The local time steps are defined as

∆t i =
CFL Li√
|wi |2 + a2i

, (2.43)

where a is the speed of sound and Li is a characteristic length associated with the node

i . This length is defined as the length of the smallest edge connected to i . The CFL is

updated as

CFLn = max

[
β
L2(R

n−2)

L2(Rn−1)
, 1

]
CFLn−1 , (2.44)

where L2(R) is a discrete norm of the residual vector and β is a suitable parameter. The

above formula may allow the CFL number to grow indefinitely. Since for certain types

of flow a very large CFL number may cause the solution to break down, it may be best

to limit the CFL number to a maximum value.

Initialization

An initial flow solution must be provided in order to initialize the iterative process. The

whole field is initialized to the uniform free-stream flow. The latter is fully defined by

the density ρ∞, pressure p∞, and velocity w∞, the magnitude of which is U∞. Recall

that dimensionless variables are used. Therefore, indicating with v∞ the dimensionless

free-stream vector, one has that

v∞ =
[
1 , ŵ∞ , (γM

2
∞)
−1
]T
. (2.45)

2.4. Implicit steady-state solution 37

where the second element is the velocity direction ŵ∞ = w∞/U∞. For instance, in 2D

the vector may be written as ŵ∞ = [cos(α), sin(α)]
T , where α is the angle of attack.

The third element is obtained as follows:

p∞
ρ∞U2∞

=
p∞
ρ∞U2∞

γρ∞
γρ∞

=
a2∞
γU2∞

=
1

γM2∞
,

where M∞ is the free-stream Mach number.

As can be seen from Eq. (2.45), the dimensionless nature of the equations, and the

use of the simple ideal gas model, requires one to specify the flow conditions by two

inputs only: the angle of attack α and the free-stream Mach number M∞.

2.4.2 Iterative solution of the linear system of equations

At each time step, Eq. (2.42) implies the solution of a linear system Mz = b where

M =

(
Dt +

∂R̃

∂U

)n
, z = Un+1 −Un and b = −Rn . (2.46)

A simple iterative procedure is employed that computes corrections of the type:

zk+1 = zk + ∆z , where ∆z = P−1M R
k
L and RkL = b−Mzk . (2.47)

RL is the residual of the linear system and PM is the preconditioner computed from M.

Let the matrix M be written as

M = LM +DM +UM ,

where LM, UM and DM are the strictly lower, the strictly upper and the diagonal parts

of the matrix, respectively. PM is a symmetric Gauss-Seidel preconditioner. Therefore,

using the above matrices, it can be written as

PM = (DM + LM)D
−1
M (DM +UM) . (2.48)

The procedure in Eq. (2.47) is iterated until the discrete norm of the linear residual

is less than a fraction of that of the non-linear residual, i.e,

L2(R
k
L) ≤ cL2(Rn) . (2.49)

Numerical experiments show that c = 0.1 is a suitable value for obtaining convergence,

although for some conditions a lower value may be needed. In general, for c = 0.1, the

average number of iterations that are needed at each pseudo-time step is k ≈ 7-8. Very

low values of tolerance are not useful since no improvement in the convergence rate can

be expected due to the approximations in the Jacobian.

The efficiency of the iterative procedure heavily relies on the effectiveness of the

preconditioner. If the latter is not effective, the convergence can be poor and in some

cases it can stall. The preconditioner should be a good approximation of the original

38 Solution of the flow equations

matrix (PM ≈ M) and moreover it should be relatively easy to invert. Application of

the preconditioner takes extra computational cost of course. Usually the more effective

the preconditioner, the more expensive its application is. The preconditioner used here

is a very good compromise between effectiveness and cost (a comparison with another

method is presented in Section 2.5.3).

An initial solution z0 must be provided before the iterations of Eq. (2.47) start. In

the present work two different types of initializations are performed, depending on the

convergence level of the non-linear problem. The first type is performed from the start

of the iterations, until the non-linear problem has converged one order of magnitude,

i.e., until L2(R
n) ≥ 0.1L2(R0). During that time the initial solution at iteration n is that

obtained from the previous iteration: z0 = Un − Un−1. The second type is performed

for the remaining iterations, for which L2(R
n) < 0.1L2(R

0). Since the solution should

be relatively converged for those iterations, i.e., Un+1 ≈ Un, the initialization is z0 = 0.

In summary, in order to solve the linear system with Eq. (2.47) one has to do

essentially two things: (i) compute the matrix-vector products Mzk , and (i i) apply the

preconditioner to RL
k . Both tasks may be efficiently carried out by taking into account

the topology of the approximate Jacobian.

The approximate Jacobian

The Jacobian ∂R̃/∂U is first-order and approximate. It is first-order because the MUSCL

reconstruction is neglected and approximate in terms of the numerical fluxes, which are

not exactly differentiated. Compared to the exact Jacobian, the implementation and

the assembly at run-time of this Jacobian are much simpler.

Neglecting the MUSCL reconstruction implies that the flux vector on the edge i j

only depends on the average variables ui and uj . Thus, each edge i j gives a contri-

bution limited to the nodes i and j only. The latter means that a loop on the edges,

similar to that used for the residual, is sufficient for gathering all the elements of the

residual Jacobian. Such a loop can be derived by differentiating the residual assembly

of Eq. (2.22) with respect to i and j , considering the residual to be first-order. Thus,

neglecting the time-step contribution and the boundary terms, each edge i j gives four

non-zero elements to the matrix M, which read

[i i] DM i = DM i +
∂Φ̃i j
∂ui
, [i j] LM i j =

∂Φ̃i j
∂uj
,

[j i] UMj i = −
∂Φ̃i j
∂ui
, [j j] DMj = DMj −

∂Φ̃i j
∂uj
. (2.50)

As can be seen, the off-diagonal terms LM i j and UM i j do not need to be accumulated,

i.e., a single visit on the edge i j is sufficient to evaluate them. Instead, the diagonal terms

need to be accumulated. For instance, in order to evaluate DM i , all the edges that share

the node i must be visited. The assembly of the diagonal terms should be completed with

the boundary flux Jacobians, which have been neglected in the above equation. In the

Section 3.2, the more complicated topology of the second-order Jacobian is addressed.

2.4. Implicit steady-state solution 39

The approximation of the numerical flux Jacobians, which are indicated with the tilde

in Eq. (2.50), consists of the following. The numerical flux Jacobians for the Roe flux

in Eq. (2.25) are obtained by approximating the Roe matrix |A| as a constant during

the differentiation, which gives

∂Φ̃i j

∂ui
≈ 1
2
(Ai + |Ai j |) ,

∂Φ̃i j

∂uj
≈ 1
2
(Aj − |Ai j |) . (2.51)

The numerical boundary flux in Eq. (2.27) is differentiated considering the splittings A+

and A− fixed and reads

∂Φ̃
∞

i j

∂ui
≈ Ai . (2.52)

Neglecting the differentiation of |A|, A+ and A− is an important simplification in terms

of the implementation. In Section 3.2.3 the exact differentiation of these terms is

addressed. The wall flux in Eq. (2.29) can be differentiated exactly since it involves only

the derivatives of the pressure, ∂p/∂u, which can be easily obtained analytically.

As final remark, it is important to pay attention to the role of the numerical dissi-

pation and of the pseudo-time step in the solution of the linear system. Consider the

diagonal terms of M for internal nodes, the expression of which has been partially given

in Eq. (2.50). The complete expression is obtained by adding the time step contribution.

It reads

DM i =
Vi
∆ti
I+

Ni∑

j=1

∂Φ̃i j
∂ui
. (2.53)

Taking into account that the Roe matrix is considered constant, the differentiation of

the Roe flux reads

∂Φ̃i j
∂ui

=
∂

∂ui

(
Fi + Fj
2

)
· ni j −

1

2
|Ai j |

∂

∂ui
(uj − ui) =

1

2

∂Fi
∂ui
· ni j +

1

2
|Ai j | .

Summation over the Ni neighbors of the node i yields

Ni∑

j=1

Φ̃i j

∂ui
=
1

2

∂Fi
∂ui
·
Ni∑

j=1

ni j +
1

2

Ni∑

j=1

|Ai j | .

Since the control volume of the internal node i is closed,
∑Ni
j=1ni j = 0, and only the

summation on the right-hand side of the above equation is left. Therefore, the diagonal

term in Eq. (2.53) can be re-written as

DM i =
Vi
∆ti
I+
1

2

Ni∑

j=1

|Ai j | . (2.54)

This equation clearly shows how both the time step and the numerical dissipation con-

tribute to the diagonal dominance of the matrix. As can be seen, a relatively large time

40 Solution of the flow equations

step or a low value of the dissipation may cause the diagonal dominance of the matrix to

reduce at the point where the solution stalls. The former may be caused by a too large

increase of the CFL number whereas the latter may be caused by a small mesh size.

The trade-off between pseudo-time and mesh dissipation is observed when computations

are performed on increasingly fine meshes. In fact, the more the mesh size is reduced,

the more the CFL must be updated slowly.

Matrix-vector products

Matrix-vector products Mz are required for the solution of the linear system, as shown

in Eq. (2.47). According to matrix algebra, the component [Mz]i is given by:

[Mz]i =
Vi

∆ti
zi +

∑

k∈Ni

∂Φ̃i

∂uk
zk ,

where the summation only involves the non-zero elements, k ∈ Ni , rather than the

complete row, k = 1, N. The square brackets have been removed to simplify the

notation.

An edge–based assembly can be derived to compute the matrix-vector product on-

the-fly. Some algebra reveals that this summation can be easily assembled in the same

way as the residual, see Eq. (2.22). Only the final result is given here, which is achieved

by taking into account the topology of the approximate Jacobian. Neglecting the time-

step contribution, it reads

[Mz]i = [Mz]i +
∂Φ̃i j
∂ui
zi +

∂Φ̃i j
∂uj
zj ,

[Mz]j = [Mz]j −
∂Φ̃i j
∂ui
zi −

∂Φ̃i j
∂uj
zj , (i j = 1, E) . (2.55)

Another loop on the boundary nodes, similar to that of Eq. (2.23), should be performed

in order to include the boundary contribution.

As will be mentioned below, the elements ∂Φ̃i j/∂ui and ∂Φ̃i j/∂uj may be stored in

order to apply the preconditioner. In this case, it makes sense to use these elements in

Eq. (2.55) in order to save the time required for their computation.

Preconditioning: storage & matrix–free approach

The preconditioner given in Eq. (2.48) can be inverted by means of a forward solve,

followed by a backward solve. The distance-one topology defined in Eq. (2.24) is used

to perform the sweeps on the nodes.

The forward solve, (DM + LM) ∆z
∗ = RkL, is performed with the first sweep on the

nodes

∆zi
∗ = DM

−1
i


RkL i −

∑

j∈Li

LM i j∆zj
∗


 , (i = 1, N) , (2.56)

2.4. Implicit steady-state solution 41

whereas the backward solve, (I+D−1M UM) ∆z = ∆z
∗, is performed with the second sweep

on the nodes

∆zi = ∆zi
∗ −DM−1i

∑

j∈Ui

UM i j∆zj , (i = N, 1) . (2.57)

Li and Ui are the subsets of the stencil Ni , see Eq. (2.24), that contain the nodes of

the lower and the upper part of the row.

Storage of the matrix M and of its preconditioner PM is beneficial in terms of CPU

time. However, depending on the size of the mesh, the amount of memory involved may

be excessive. The preconditioning strategy implemented in this work has the feature

of not requiring any preparatory work for the preconditioner. In fact, as shown in

Eqs. (2.56) and (2.57), only the inversion of the diagonal sub-matrices is required.

Consequently, there is no need to store both the matrix and the preconditioner. It is

enough to store only DM, LM and UM, thus halving the storage. With these elements

available one can: (i) perform the matrix vector product to compute the linear residual,

see Eq. (2.55); and (i i) apply the preconditioner to the latter, see Eqs. (2.56) and (2.57).

In practice, DM, LM and UM are precomputed and stored at each non-linear iteration.

The approach just described can be referred to as the storage approach. In con-

trast, there is a matrix-free approach, which can be applied in this case because the

preconditioner does not require preparatory work. Looking at the definition of the lower

and the upper matrices, see Eq. (2.50), one understands that the sweeps of Eqs. (2.56)

and (2.57) only require DM to be stored and allows for LM and UM to be computed on-

the-fly. The matrix-free approach is very beneficial in terms of memory since it requires

an amount of storage similar to that of an explicit scheme. However, recomputing LM
and UM on-the-fly gives a penalty in terms of CPU time.

Similarities with the LU-SGS method

Apparently the solution method presented in this section is very similar to the LU-SGS

method [41]. Nevertheless the method is different in several respects. For instance, the

LU-SGS method uses increments to compute matrix-vector products of the flux Jacobian

with vectors, e.g., Ui j∆zj = (F(uj + ∆zj) · ni j − F(uj) · ni j + ρAij∆zj)/2. Moreover,

rather than the Roe matrix |A(ūi j ,ni j)|, its spectral radius ρAij = |wi j · ni j | is used [60].

Finally, the LU-SGS method does not perform linear iterations. I.e., at each non-linear

iteration the LU-SGS method applies the preconditioner only once. Modifications aimed

at improving the LU-SGS method have been suggested [25]. The modified method and

the method presented here are similar.

Note that for the adjoint equations, which will be discussed in Chapter 3, the LU-

SGS method is not suitable. In fact, increments cannot be employed because of the

transposition that characterizes the Jacobians of the adjoint equations.

42 Solution of the flow equations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

M
A

C
H

 N
U

M
B

E
R

X/C

coarse
medium

fine

(a)

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 0.2 0.4 0.6 0.8 1

E
N

T
R

O
P

Y

X/C

coarse
medium

fine

(b)

-12

-10

-8

-6

-4

-2

 0

 50 100 150 200 250 300 350 400

S
C

A
L
E

D
 R

E
S

ID
U

A
L

NUMBER OF ITERATIONS

coarse
medium

fine

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60 70 80 90 100

L
IF

T
 C

O
E

F
F

IC
IE

N
T

NUMBER OF ITERATIONS

coarse
medium

fine

(d)

Figure 2.4: RAE2822 at M∞ = 0.75 and α = 3.0◦. (a) The Mach number, (b) the entropy,

(c) the residual and (d) the lift convergence are compared for three meshes of different sizes.

-12

-10

-8

-6

-4

-2

 0

 0 50 100 150 200 250 300 350

S
C

A
L
E

D
 R

E
S

ID
U

A
L

CPU TIME (secs)

1 iteration
2 iterations
7 iterations

15 iterations
30 iterations

(a)

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

T
O

T
A

L
 C

P
U

 T
IM

E
 (

s
e
c
s
)

LINEAR ITERATIONS

(b)

Figure 2.5: RAE2822 at M∞ = 0.75 and α = 3.0◦. (a) Convergence history for different

numbers of linear iterations. (b) Total time as function of the number of linear iterations.

2.5. Results 43

2.5 Results

Flow computations for 2D and 3D cases are presented. The flow conditions range from

subsonic to supersonic. In order to provide a comparison with existing implementations,

2D [133] and 3D [109] test cases from the AGARD-AR-211 report (in the following

AGARD report) for inviscid flow have been reproduced here. Moreover, for the 3D

cases, a comparison with a solver developed by the FOI (Swedish Defense Research

Agency) is presented.

2.5.1 2D cases

RAE2822 at M∞ = 0.75 and α = 3.0◦ - Three meshes have been used for this case.

The first one has 3477 nodes, the second one has 7240 nodes and the third one has

13261 nodes. In the following these meshes are referred to as coarse, medium and fine,

respectively. The medium size mesh is that shown in Fig. 2.2a. As can be seen from

the Mach number distribution shown in Fig. 2.4a, the prescribed flow conditions result

in a transonic flow around the airfoil. The flow becomes supersonic on the top of the

airfoil and shows a shock at 75% of the chord, which brings it back to subsonic flow

conditions. Small differences between the results are visible at the shock and along the

supersonic region, especially between the coarse and the medium mesh. The differences

are more pronounced in terms of entropy distribution, which is depicted on Fig. 2.4b.

The Mach number and the entropy distributions of the fine mesh agree very well with

the distributions presented on the AGARD report. The convergence history of the

scaled residual is shown in Fig. 2.4c. The convergence of the lift coefficient is shown on

Fig. 2.4d. As can be seen 50 iterations are necessary for the lift to converge. The first

line of Table 2.1 shows the agreement between the lift and the drag coefficient obtained

here, with that taken from the AGARD report. The table shows the mean of the

values obtained by different authors, c∗l and c∗d , and the scatter between the minimum

and the maximum of the values, ∆c∗l and ∆c∗d . Figure 2.5a shows the convergence

history of the medium size mesh, with the linear system solved for different numbers

of iterations. The history is given in terms of CPU time. The plot shows that there

is an optimum number of linear iterations that minimizes the time required to obtain

the solution. Consider the total CPU-time required for the convergence of the residual

up to the minimum point (i.e., the point where the curves in Fig. 2.5a become flat)

against the number of linear iterations, as shown in Fig. 2.5b. As can be seen, there is

an optimum number of linear iterations around 7. It is not efficient to solve the linear

system very accurately or exactly. However, it is also not very convenient to specify

a fixed number of linear iterations. In the next section, when discussing the 3D case,

the strategy adopted here for the linear iterations will be addressed again. Note that

for only 1 linear iteration the method presented in the previous section is equivalent to

the LU-SGS method [60, 41]. Thus, as shown by Fig. 2.5b, the LU-SGS method can

be dramatically improved by performing more iterations [25].

44 Solution of the flow equations

(a) RAE2822 at M∞ = 0.75 and α = 3.0◦ (b) NACA0012 at M∞ = 0.8 and α = 1.25◦

(c) NACA0012 at M∞ = 0.85 and α = 1.0◦ (d) NACA0012 at M∞ = 0.95 and α = 0.0◦

(e) NACA0012 at M∞ = 1.2 and α = 0.0◦ (f) NACA0012 at M∞ = 1.2 and α = 7.0◦

Figure 2.6: Pressure contours for the AGARD test cases.

2.5. Results 45

NACA0012, transonic and supersonic flow - On the AGARD report [133], the flow

around the NACA0012 airfoil has been considered for 5 different Mach numbers and

angle of attacks, which are given in Table 2.1. Three of these conditions generate

transonic flows whereas the other two generate supersonic flows. The transonic flows

are computed on an unstructured mesh of triangles, with 12579 nodes, which is very

similar to the one depicted in Fig. 2.3a. The pressure contours for these flows are shown

in Figs. 2.6b, 2.6c and 2.6d. As can be seen from the pictures, away from the body the

contour lines appear to be non-smooth and the discontinuities appear to be smeared.

For instance, the latter behavior can be observed on the fish-tail shock of Fig. 2.6d. The

behavior is caused by the increased size of the mesh elements away from the body. The

two supersonic flows, which are depicted in Figs. 2.6e and 2.6f, have been computed on

the mesh of Fig. 2.3a, which has 19520 nodes. The mesh allows a better capturing of

the fish-tail shocks. In Fig. 2.6f, for whichM∞ = 1.2 and α = 7.0◦, a slip-line emanating

from the trailing edge is visible. However, the distribution of the mesh elements ahead

of the airfoil nose is not optimal for these supersonic flows. In fact, the mesh density

is large in the vertical direction but small in the horizontal one. The result is that the

two bow shocks of Figs. 2.6e and 2.6f appear to be smeared. The values of the lift and

of the drag coefficients computed for the different NACA0012 cases are compared with

the AGARD result in Table 2.1. As can be seen from the table, the values obtained here

agree with those obtained by the other authors.

M∞ α cl cl
∗ ∆cl

∗ cd cd
∗ ∆cd

∗

RAE 0.75 3.00◦ 1.0874 1.1058 .0322 0.0442 0.0467 .0056

NACA 0.80 1.25◦ 0.3487 0.3587 .0272 0.0223 0.0228 .0022

NACA 0.85 1.00◦ 0.3753 0.3532 .0588 0.0578 0.0545 .0126

NACA 0.95 0.00◦ 0.1088 0.1082 .0008

NACA 1.20 0.00◦ 0.0954 0.0953 .0014

NACA 1.20 7.00◦ 0.5235 0.5211 .0142 0.1540 0.1538 .0012

ONERA 0.84 3.06◦ 0.2808 0.2840 .011 0.0199 0.0168 .0014

ONERA 0.92 0.00◦ 0.0247 0.0218 .0068

Table 2.1: cl and cd are the results of the present work. cl
∗ ± ∆cl

∗ and cd
∗ ± ∆cd

∗ are the

results shown in the AGARD report.

NACA0012, subsonic flow - The flow conditions in the AGARD test cases imply

the presence of shock waves in the flow. Thus, the drag coefficients are different from

zero. In the case of 2D inviscid flow with no shock waves it is known that the drag

coefficient must be zero. Thus, inviscid flow with no shock waves are interesting to

observe the dissipative behavior of the numerical method. Figure 2.7a shows the Mach-

number distribution around the NACA0012 airfoil at M∞ = 0.63 and α = 2.0◦ in the

case of limited and non-limited reconstruction. The differences are very small and can

be appreciated most on the upper side of the airfoil. Figure 2.7b shows the entropy

distribution. The latter should be theoretically zero. Thus, the entropy that appears

along the airfoil is to be attributed to the numerical scheme. It appears that especially at

46 Solution of the flow equations

the top side of the airfoil, the limited reconstruction contributes more to the generation

of entropy. The drag, which is expected to be zero, is cd = 3.3 10
−4 for the non-limited

reconstruction and cd = 4.3 10
−4 for the limited reconstruction. Similar values of drag

have been found by other authors [67].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

M
A

C
H

 N
U

M
B

E
R

X/C

no limiters
limiters

(a)

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0 0.2 0.4 0.6 0.8 1

E
N

T
R

O
P

Y

X/C

no limiters
limiters

(b)

Figure 2.7: NACA0012 atM∞ = 0.63 and α = 2.0◦. (a) The Mach number and (b) the entropy

distribution.

(a) (b)

Figure 2.8: (a) ONERA-M6 wing; (b) Unstructured mesh around the wing.

2.5. Results 47

Figure 2.9: ONERA-M6 wing at M∞ = 0.84 and α = 3.06◦. Contours of pressure coefficient

obtained by the present solver (right) and by the Edge solver (left).

2.5.2 3D cases

ONERA M6 wing - The geometry of this wing [112] is shown in Fig. 2.8a. The un-

structured mesh of triangles generated around the wing is depicted in Fig. 2.8b. Results

for this wing are available in the AGARD report [109] for two conditions: M∞ = 0.84,

α = 3.06◦ and M∞ = 0.92, α = 0. For both conditions, the computed lift and drag

coefficients are compared with the AGARD values given in Table 2.1. In order to com-

pare the present formulation with one that uses a similar discretization, these two 3D

cases have also been computed using the Edge solver [34] on the same mesh. The

Edge solver, which has been developed by the FOI, is also based on the median-dual

discretization. However, instead of the reconstruction-based scheme presented here, it

uses a central scheme plus artificial dissipation. The two formulations behave differently

in the presence of shocks, especially if these are weak. As can be seen from Fig. 2.9,

the span-wise shock is resolved slightly differently by the two formulations. The pressure

distributions are compared at different span-wise sections in Fig. 2.12. The differences

that can observed on the span-wise distributions are of the same order as those observed

by comparing the results of different authors [109]. When the shocks are very strong,

as in the M∞ = 0.92 and α = 0 case depicted in Fig. 2.10, the agreement between

the two formulations seems to be closer. The pressure distributions along the span are

shown in Fig. 2.13. As can be seen, for both formulations, the top and the bottom

pressures do not correspond exactly although the flow should be symmetric. The lack of

symmetry in the flow is due to the lack of symmetry in the mesh. Figure 2.11a shows the

convergence history of the solution in terms of CPU-time for the first case considered.

Specifically it shows the logarithm of the scaled residual vector, i.e., Log(Rn/R0), which

becomes flat after a drop of ten orders of magnitude. As can be seen, the matrix-free

48 Solution of the flow equations

option is three times slower than the storage option. However, it requires almost three

times less memory. Figure 2.11b shows linear iterations performed at each non-linear

iteration. As already mentioned, the linear iterations are not fixed but they are estab-

lished by the convergence criteria in Eq. (2.49), where usually c = 0.1. As can be seen

from Figure 2.11, the strategy avoids unnecessary linear iterations. Also, it seems that

the value of c used gives an average number of linear iterations almost equal to the

optimal value found in Fig. 2.5b.

Figure 2.10: ONERA-M6 wing at M∞ = 0.92 and α = 0. Contours of pressure coefficient

obtained by the present solver (right) and by the Edge solver (left).

-12

-10

-8

-6

-4

-2

 0

 2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
C

A
L
E

D
 R

E
S

ID
U

A
L

CPU time (secs)

storage
matrix-free

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 20 40 60 80 100 120 140 160 180 200

L
IN

E
A

R
 I
T

E
R

A
T

IO
N

S

NON-LINEAR ITERATIONS

(b)

Figure 2.11: Convergence history of the ONERA-M6 wing at M∞ = 0.84 and α = 3.06◦.

Logarithm of the scaled residual (left) and number of linear iterations (right).

2.5. Results 49

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(a) 20% Span

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(b) 44% Span

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(c) 65% Span

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(d) 80% Span

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(e) 90% Span

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(f) 95% Span

Figure 2.12: Pressure coefficient distributions at different span-wise sections for the ONERA-

M6 wing at M∞ = 0.84 and α = 3.06◦.

50 Solution of the flow equations

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(a) 20% Span

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(b) 44% Span

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(c) 65% Span

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(d) 80% Span

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(e) 90% Span

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

C
P

X/C

Present work
Edge

(f) 95% Span

Figure 2.13: Pressure coefficient distributions at different span-wise sections for the ONERA-

M6 wing at M∞ = 0.92 and α = 0.00◦.

2.5. Results 51

DLR F6 wing-body - The geometry of this wing-body configuration [15] is depicted in

Fig. 2.14a. The unstructured mesh of triangular elements is shown in Fig. 2.14b. As for

the previous case, results obtained by the present formulation are compared with those

obtained by the Edge solver. Figure 2.15 shows the pressure contours for M∞ = 0.75

and α = 0.5◦. A magnification of the wing region is depicted in Fig. 2.16. The two

pictures show that also in this case the shocks are captured slightly differently by the

two formulations.

(a) (b)

Figure 2.14: Wing-body configuration: (a) DLR-F6 wing-body; (b) Unstructured mesh around

the wing-body.

Note that computing time differences between Edge and the solver implemented

here have not been discussed. A comparison in terms of computing time would not

be very appropriate. In fact, Edge uses a multigrid acceleration technique, which is

not used in the present work. Moreover, Edge solutions have been obtained using the

recommended solution parameters, which are suitable for obtaining a solution safely, but

do not guarantee the best performances of the solver.

52 Solution of the flow equations

Figure 2.15: DLR-F6 at M∞ = 0.75 and θ = 0.5◦. Contours of pressure coefficient obtained:

by the present solver (right); by the Edge solver (left).

2.5. Results 53

Figure 2.16: DLR-F6 at M∞ = 0.75 and θ = 0.5◦. Contours of pressure coefficient obtained:

by the present solver (right); by the Edge solver (left).

2.5.3 Alternative solution methods

The solution method adopted in the present work for the solution of the linear system

of equations has been compared with other methods. An alternative preconditioner

as well as an alternative iterative procedure have been considered. The alternative

preconditioner is the Incomplete Lower Upper factorization with zero fill-in, better known

as ILU(0). Incomplete with zero fill-in means that a LU factorization is performed, but

only the elements that are located in the same positions as the non-zero elements

of the original matrix are retained. The preparatory work that is required to perform

the incomplete factorization is computationally expensive. The implementation of the

ILU(0) preconditioner used for the comparison is taken from the SLATEC libraries [4].

The alternative iterative linear solver is the Generalized Minimum Residual Algorithm,

better known as GMRES. It is a sophisticated iterative procedure, which is similar to the

conjugate gradient method. Theoretically the procedure requires a number of vectors

to be stored equal to that of the unknowns. In practice the cost of such storage may be

unsustainable. Therefore restarted versions of the GMRES algorithm are used, which

restart every predefined number of iterations with new vectors. The GMRES libraries

described in [36] have been used, with 10 restart vectors. Such number of vectors is

appropriate for the two dimensional case considered in this section, as the comparison

between the methods should be made for similar levels of memory usage. Note that

the node of an unstructured mesh of triangles is usually connected to 6-9 nodes, which

means that 10 restart vectors take an amount of memory that is roughly equal to the

size of the Jacobian matrix M of Eq. (2.46).

The following combinations are considered for the comparison: (i) SGS, the iterative

method of Section 2.4.2, which uses the Symmetric Gauss-Seidel preconditioning (the

54 Solution of the flow equations

-12

-10

-8

-6

-4

-2

 0

 0 50 100 150 200 250 300 350 400 450

S
C

A
L
E

D
 R

E
S

ID
U

A
L

CPU time (secs)

SGS

GMRES-SGS

ILU

GMRES-ILU

(a)

-12

-10

-8

-6

-4

-2

 0

 0 50 100 150 200 250 300 350 400 450

S
C

A
L
E

D
 R

E
S

ID
U

A
L

CPU time (secs)

SGS

GMRES-SGS

ILU

GMRES-ILU

(b)

-12

-10

-8

-6

-4

-2

 0

 0 50 100 150 200 250 300 350 400 450

S
C

A
L
E

D
 R

E
S

ID
U

A
L

CPU time (secs)

SGS

GMRES-SGS

ILU

GMRES-ILU

(c)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35 40

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 I
T

E
R

A
T

IO
N

S

NODES/1000

GMRES-ILU
GMRES-SGS

ILU
SGS

(d)

Figure 2.17: RAE2822 atM∞ = 0.73 and α = 2.0◦. Convergence histories for different solution

methods. The residual of the linear system is converged to a value that is (a) 1, (b) 2, and

(c) 3 orders of magnitude smaller than the non-linear residual. (d) Average number of linear

iterations for increasing mesh sizes.

storage option is chosen); (ii) ILU, the iterative method of Section 2.4.2, with ILU pre-

conditioning; (iii) GMRES-SGS, GMRES with Symmetric Gauss-Seidel preconditioning;

(iv) GMRES-ILU, GMRES with ILU preconditioning.

In terms of memory usage SGS stores the diagonal, the lower and the upper part of

the Jacobian matrix M (see Section 2.4.2). ILU stores the matrix M and the ILU(0)

preconditioner created from M. GMRES-SGS and GMRES-ILU requires the same stor-

age of SGS and ILU, respectively, plus the 10 restart vectors. Therefore, SGS stores

the equivalent of 1 Jacobian matrix, ILU and GMRES-SGS stores the equivalent of 2

Jacobian matrices and GMRES-ILU stores the equivalent of 3 Jacobian matrices.

The test case used for the comparison is the RAE2822 airfoil at M∞ = 0.73 and

α = 2.0◦ on a 12000 nodes mesh. The results are shown in Figs. 2.17a-c. Specifically,

Fig. 2.17a shows the convergence history of the four methods for a relative tolerance

of the linear system set to 1 order of magnitude, which means that the residual of the

linear system is converged to a value that is 1 order of magnitude smaller than the

non-linear residual (i.e., the constant c of Eq. (2.49) is set to 0.1). As can be seen SGS

2.6. Concluding remarks 55

and GMRES-SGS converge at twice the speed of ILU and GMRES-ILU. Also, it appears

that there is no difference between the simple iterative procedure of Section 2.4.2 and

GMRES. In fact, the histories of SGS and GMRES-SGS almost overlap. The same is for

GMRES-ILU and ILU. As for the results shown in Fig. 2.17b the relative tolerance is set

to two orders of magnitude. As can be seen, the difference in convergence speed between

SGS and ILU reduced appreciably. Still, SGS is faster. Also, it seems that GMRES is

slightly faster than the simple iterative procedure. As for the results shown in Fig. 2.17c

the relative tolerance is set to 3 orders of magnitude. As can be seen, ILU converges

faster than SGS in this case. The reason is the preparatory work required by the ILU

preconditioner at each non-linear iteration. The cost of such work is compensated by

the effectiveness of ILU for the relative tolerance considered in this case. Instead, for

the cases of Figs. 2.17a and 2.17b the relative tolerances are such that the cost is

not compensated. As can be seen, the convergence speed of GMRES is again slightly

higher than that of the simple iterative procedure. Finally, Fig. 2.17d shows the average

number of linear iterations that are required for a relative tolerance of two orders of

magnitude. Such average number is shown for increasing mesh sizes. As can be seen,

GMRES-ILU is the most effective, followed in order by GMRES-SGS, ILU and SGS.

In summary, the results show that the ILU preconditioner is more effective than

SGS. However, depending on the relative tolerance, the preparatory work required for

the factorization affects negatively the overall performance of the method. For the cases

considered in this thesis a relative tolerance between one and two orders of magnitude

is satisfactory, there is no apparent benefit in achieving smaller tolerances. For those

values of tolerances the results show that the SGS preconditioner is a better choice

than ILU and that there is no appreciable benefit in using GMRES. Also from the point

of view of memory requirements, SGS is a better choice compared to the other three

methods.

2.6 Concluding remarks

The median-dual formulation appears to be very flexible. The additional cost of pre-

processing the original mesh is fully repaid by the simplification introduced in the im-

plementation of the flow solver. The degree of flexibility of the formulation has been

demonstrated when the 2D flow solver has been extended to 3D problems. Only minor

modifications were required for such extension.

As shown by the results, the reconstruction based scheme behaves properly in the

subsonic, transonic and supersonic regime. The implicit solution scheme is very efficient

and robust. Accurately converged solutions are always obtained. Fine tuning for the

different types of flows can be obtained by acting on the parameters of the scheme.

The matrix-free option makes it possible to run with very low memory requirements at

the price of a lower solution speed.

56 Solution of the flow equations

Chapter 3

Sensitivity Analysis

3.1 Introduction to the problem

3.1.1 Primal and Dual problem

Sensitivity analysis may be defined [94] as an additional step of solution, which is per-

formed after the flow solution, that aims at finding the sensitivity of some flow function-

als with respect to certain parameters. It is performed by solving additional sensitivity

equations, which are derived by manipulating the original equations.

In the present work two sensitivity analysis methods are considered. The first one

solves the primal problem, which is also referred to as the linearized problem. The

second one solves the dual problem, which is also referred to as the adjoint problem. As

will be shown below, although the present work focuses mainly on the adjoint problem,

the primal problem is a necessary intermediate step, which is required for the purpose

of developing and testing the adjoint formulation.

The two methods are derived as follows. Consider a vector of Nα shape parameters

ᾱ = [α1, α2, ..., αNα]. The parameters can also be referred to as controls or design vari-

ables and may be interpreted as the input of the system of steady Euler equations. The

airfoil thickness, the twist angle or other geometric quantities that act on the boundary

of the computational domain are examples of design parameters. Also, consider a vec-

tor of NJ functionals J̄ = [J1, J2, ..., JNJ], which represents the output of the system.

58 Sensitivity Analysis

Elements of this vector may be the lift, the drag, the pitching moment and the like. The

input parameters are linked to the output functionals by the relation J̄ = J̄(U(ᾱ), ᾱ),

where U is the vector of conservative flow variables. The latter may be interpreted

as a state variables vector. An implicit relation between the state variables U and the

parameters ᾱ is provided by the governing steady-state equation R(U(ᾱ), ᾱ) = 0, which

can be referred to as the state equation.

Suppose that one has to compute the gradients dJ̄/dᾱ, i.e., the gradient of all the

functionals with respect to the shape parameters. The primal problem computes the

gradient components by linearizing the functionals as

dJi
dαj
=
∂Ji
∂αj
+
∂Ji
∂U

∂U

∂αj
, (i = 1, NJ ; j = 1, Nα) . (3.1)

∂U/∂αj is the flow sensitivity, which can be computed by linearizing the state equation,

i.e., by solving the equation

∂R

∂U

∂U

∂αj
= − ∂R
∂αj

(j = 1, Nα) . (3.2)

Thus, the primal problem computes the sensitivity of NJ functionals with respect to Nα
parameters by solving Nα equations.

Alternatively, the gradient may be computed by solving the dual problem. For this

purpose a new functional, which is referred to as the Lagrangian or augmented func-

tional [126], has to be introduced. The functional is said to be augmented because the

state equation, which is considered as a constraint, is added to the original functional.

Specifically several augmented functionals have to be introduced, one for each functional

Ji . The ith augmented functional reads

Li = L(U, ᾱ,Λi) = Ji(U, ᾱ)− ΛTi R(U, ᾱ) .

The augmented functional has the following interesting property:
[
∂Li
∂U
,
∂Li
∂Λi

]
= 0 =⇒ dJi

dᾱ
≡ ∂Li
∂ᾱ
,

which means that if the stationary condition with respect to the state variables U and

the multipliers Λi is found, then the sensitivity of the augmented functional coincides

with that of the original functional. Equating ∂Li/∂U to zero gives an equation, which

is referred to as the adjoint equation. It reads

∂R

∂U

T

Λi =
∂Ji
∂U

T

, (i = 1, NJ) , (3.3)

and must be solved for all the NJ functionals. Equating ∂Li/∂Λi to zero gives the state

equation R = 0, which is satisfied by the solution of the flow equations, for all the NJ
functionals. Thus, assuming that the stationary condition is satisfied, the sensitivity of

the functional Ji may be expressed as

dJi
dαj
=
∂Li
∂αj
=
∂Ji
∂αj
− ΛTi

∂R

∂αj
, (i = 1, NJ ; j = 1, Nα) , (3.4)

3.1. Introduction to the problem 59

which is referred to as the dual sensitivity.

In summary, the primal problem is represented by Eqs. (3.1) and (3.2) whereas the

dual problem is represented by Eqs. (3.3) and (3.4). Some algebra may be used to show

that the dual sensitivity of Eq. (3.4) is equivalent to the primal sensitivity of Eq. (3.1).

The two methods differ in the number of equations that must be solved in order to

compute the sensitivity. The primal solves Nα equations whereas the dual solves NJ
equations. Which of the two is the most convenient depends on the application.

Clearly, in the case of problems for which Nα ≫ NJ, the dual problem is appealing.

Shape optimization problems often lie in this category. In fact, usually, there are a few

functionals and a very large number of parameters. For instance, in the case of one

functional and several shape parameters, the dual problem would require the solution of

one equation only. The primal problem would require the solution of several equations.

As opposed to that, problems for which Nα ≪ NJ are more efficiently solved by the

primal problem. For instance, a problem with one parameter and several functionals

would only require one solution of the primal problem but several of the dual problem.

Structural analysis is one field in which problems exist with many more functionals than

parameters [126].

3.1.2 Discrete approach to sensitivity analysis

The aforementioned primal and dual problems may be implemented by following the

continuous or the discrete approach. The former derives the sensitivity equations by

differentiating the flow equations and then by discretizing them. The latter derives

the sensitivity equations by differentiating directly the discretized flow equations. In

the present work, the discrete approach is preferred. The two approaches are different

in terms of derivation as well as implementation. In the following, a brief account of

these differences is given. More detailed accounts of these differences can be found

elsewhere [92, 38].

Difficulties in the derivation of the continuous approach are mainly theoretical. For

instance, boundary conditions must be provided for the adjoint variables, which are not

directly observable quantities such as the primitive variables. Thus, a certain level of

abstraction is required. However, once the problem has been defined, the implementation

should be straightforward, resembling closely that of the flow solver. Still, the verification

of the implementation may be ambiguous. In fact, due to the discretization of the

adjoint equations, the gradient computed by the continuous approach is not equal to

the discrete gradient. The latter mismatch between the gradient and the function can

hamper the convergence in optimization applications. The continuous approach has

been implemented and successfully applied to aerodynamic design problems by several

authors [52, 116, 13].

As opposed to that, the discrete approach is relatively easy to derive. In fact, only

basic linear algebra is required. The boundary conditions unfold naturally. However, it

is relatively difficult to implement. Difficulties arise in the differentiation, which may

become a huge undertaking in the case of non-linear problems. Moreover, due to the

presence of large matrices that arise from the differentiation of the flow arrays, dealing

60 Sensitivity Analysis

with memory and CPU-time issues may not be a simple task. If those issues are not

carefully considered, the resulting implementation can be extremely inefficient compared

to that of the flow solver. An advantage of the discrete approach is that there is

a systematic way to check the correctness of the implementation. If the adjoint is

implemented exactly, which means no approximations are made in the differentiation,

the computed gradient will match exactly with that of the original code. Moreover, also

in the case of approximations being made, each part of the adjoint code can be verified

against the linearized code. Implementations of the discrete approach may be found

in [86, 35, 95, 93, 37, 6, 85, 84].

3.1.3 Implementation of the discrete sensitivity

Probably the most complicated task that must be accomplished in order to develop

the adjoint method is the implementation of the matrix-vector product at the left-hand

side of the adjoint equation, Eq. (3.3). The task is non-trivial because it involves the

differentiation of complex non-linear formulations. Moreover, the resulting Jacobians

must be multiplied by the vectors in a matrix-free fashion. The transposition complicates

the task further because, as will be shown below, it inverts the operations in a counter-

intuitive way. Clearly, storage of the Jacobians involved would make the implementation

much easier, particularly from the point of view of the transposition. However, storage

may require too much memory, especially for 3D cases. Thus, at the price of a more

complex implementation, the matrix-free option is preferable.

The task of differentiating the code and assembling the matrix-vector products on-

the-fly is addressed in Sections 3.2 and 3.3. In the following, in order to familiarize the

reader with the challenges faced in the development of an adjoint formulation, a brief

description of the issues faced when performing the transposition is given.

Implications of the transposition

Transposition implies that the operations in the code must be reversed compared to the

linearized code. For instance, consider a code that produces a vector F as output, given

the vector Y as input. The output vector is the result of the computations performed

by a sequential code made of n routines and may be written in abstract form as

F(Y) = Fn(Fn−1(...(F2(F1(Y))))).

The output of the first is the input to the second one and so on. In terms of imple-

mentation, one would not store n arrays but only 2. E.g., once F1 has been computed

in the first subroutine, Y can be overwritten by F2, and so on. By means of the chain

rule, the linearized matrix-vector product is obtained as

∂F

∂Y
δY =

∂Fn
∂Fn−1

....
∂F2
∂F1

∂F1
∂Y
δY .

Each of the above Jacobians may be considered as a differentiated subroutine. Since

the problem is non-linear, the differentiated residual routine ∂F1/∂Y does not only need

3.1. Introduction to the problem 61

δY, but also Y. The same holds for ∂F2/∂F1, which needs δF1 = [∂F1/∂Y]δY and F1,

and so on. The differentiated routine, in case of the left product, may be run in parallel

with the flow solver routines in order to use the flow solution vectors as soon as they

are available.

The situation is different for the transposed matrix-vector product. According to

matrix algebra the product is

∂F

∂Z

T

δY =
∂F1
∂Z

T ∂F2
∂F1

T

....
∂Fn
∂Fn−1

T

δY .

As shown by the above equation, the transposition implies that the differentiated routines

must be applied in reverse order. The reversal of the operations is not only confusing

but generates higher memory requirements too. The first routine to be executed is the

one that computes ∂Fn/∂Fn−1, which needs δY but also Fn−1. However, Fn−1 is not

available unless the routine n− 1 has been run. Clearly, for the latter routine to run one

needs also the vector Fn−2, which on its turn needs the routine n − 2 to be run and so

on. Thus, the transposed product needs the original solver to be executed and all the

vectors to be stored prior to its execution. Compared to the linearized product, which

needs 2 + 2 arrays for storage, the transposed product would need n + 2 arrays. One

understands that if n is very large the storage may become prohibitive and therefore

actions must be taken in order to overcome this problem.

Hand-coding versus Automatic Differentiation

In the present work the sensitivity analysis with respect to the flow variables is hand-

coded. An advantage of the hand-coding is that the developer may use his knowledge

about the implementation to boost performance and efficiency by introducing simplifi-

cations or approximations in the development. A disadvantage of hand-coding is that

the issues described above about the reverse ordering of the differentiation must be

taken care of. Thus, a complex strategy must be devised. Also the differentiation may

become a very tedious and error prone operation. Moreover, as soon as new features

in the modeling of the flow equations are added, they have to be differentiated as well,

which may turn out to be very time consuming especially if the modeling must be first

assimilated by the developer. For dedicated applications the latter may not be a real

problem. On the contrary, in the case of commercial applications, the developer of the

original code and the one of the sensitivity code may very well be two different persons,

which are not aware of the details of each other’s implementation.

Automatic Differentiation (AD) is the automatic generation of ready-to-run sensi-

tivity codes. AD tools manipulate the original source code and produce sensitivity code

by applying basic linearization rules. For the transposed implementation, they use com-

plicated methods to manage the memory issues caused by the reverse ordering of the

differentiation. For instance, to limit memory usage, they may write arrays to disk when

running the code from top to bottom and retrieve these arrays one by one when they

run the code in reverse order. Obviously, an advantage of AD is that the developer is

relieved from the burden of differentiating the code. The original code can be looked

62 Sensitivity Analysis

at as a black-box and the sensitivity code can be generated in a systematic way. A

disadvantage of AD is that, when using the reverse mode, efficiency in terms of memory

and CPU-time may be hard to obtain. For instance, writing to disk solves the mem-

ory problem caused by the reverse ordering but reduces the performance in terms of

CPU-time.

AD in the present work has been used only in the so called forward-mode for the

generation of the geometric sensitivities that are required to compute the gradients once

the adjoint variables are available. Moreover, it has been used for validation purposes.

The forward-mode of the Tapenade AD tool [3] has been found very easy to use and

very efficient. Literature on AD and a comprehensive list of available AD tools can be

found at the Community Portal for Automatic Differentiation [1].

3.2 Exact sensitivity: one-pass construction

A one-pass construction of the two matrix-vector products that appear in the linearized

equation, Eq. (3.2), and in the adjoint equation, Eq. (3.3), may be derived. One-pass

means that the complete assembly may be realized with one loop over the edges, where

the control-volume interfaces are located. As will be shown later, this approach is not

very efficient. In fact, the presence of the MUSCL reconstruction requires additional

nested loops. Specifically, two loops must be performed for each edge: one over the

stencil of the left node, and another one over the stencil of the right node. Nevertheless,

the one-pass construction is easy to implement. Moreover, it is useful to derive a general

result that will be used later.

In order to derive the assembly, following a strategy introduced in previous work [11],

three new vectors of length E are introduced (as already mentioned in Chapter 2, E

is equal to the number of edges in the mesh). The first vector H = [Φ̂1, Φ̂2, ..., Φ̂E]
T

contains the second-order fluxes for each edge. The second and third vectors, UL =

[ûL1, ûL2, ..., ûLE]
T and UR = [ûR1, ûR2, ..., ûRE]

T , contain the reconstructed left and

right states for each edge, respectively. The dependency of the residual Jacobian on the

conservative variables can be expressed, using these vectors, as

R = R(H(UL,UR)) . (3.5)

The left and the right states depend on the conservative variables, i.e,

UL = UL(U) , UR = UR(U) . (3.6)

The dependence of the above states on the gradients as well as on the limiters is

considered implicitly. By means of the chain rule, the two matrix-vector products, which

will be indicated in the following with Z and Z̄, are obtained as

Z =
∂R

∂U
P =

∂R

∂H

(
∂H

∂UL

∂UL
∂U
+
∂H

∂UR

∂UR
∂U

)
P , (3.7)

Z̄ =
∂R

∂U

T

P =

(
∂UL
∂U

T ∂H

∂UL

T

+
∂UR
∂U

T ∂H

∂UR

T
)
∂R

∂H

T

P , (3.8)

3.2. Exact sensitivity: one-pass construction 63

(a) (b)

Figure 3.1: Stencils of the node i and j (a) and contributions to the Jacobian (b).

respectively. In the above products P = [p1,p2, ...,pN]
T is a generic vector. The

matrices that appear in the above equation are square and rectangular sparse matrices.

Each element of these matrices is a square sub-matrix, i.e., a block, of size equal to the

number of variables, for instance 4× 4 for the 2D Euler equations. Specifically:

∂R/∂H is a rectangular dummy matrix of size E ×N. Each column numbered as

an edge has only two non-zero entries on the rows corresponding to the left and

the right nodes of the edge. Values for these two non-zero entries are −1 and +1,

respectively (see Eq. (3.11)). Therefore, the matrix-vector product [∂R/∂H]TP

gives a vector of length E, which has the components that correspond to the edge

i j equal to pi − pj .

∂H/∂UL and ∂H/∂UR are block diagonal matrices of size E×E. They represent

the differentiation of the numerical flux formulation. For the line corresponding to

the edge i j , the numerical flux Jacobians ∂Φ̂i j/∂ûi are the elements of ∂H/∂UL
whereas ∂Φ̂i j/∂ûj are the elements of ∂H/∂UR. When the node i is lying on the

boundary, the numerical boundary fluxes ∂Φbc i/∂ui are also present. The same

holds for node j . The hat on the numerical flux Jacobians indicates that they are

evaluated using the reconstructed variables ûi and ûj .

∂UL/∂U and ∂UR/∂U are block rectangular matrices of dimensions N×E. They

contain the differentiation of the reconstructed states with respect to the cell aver-

ages in their stencil, i.e., ∂ûi/∂uk for k ∈ Ni and ∂ûj/∂uk for k ∈ Nj , respectively.

On each row the non-zero entries of ∂UL/∂U (∂UR/∂U) will be positioned in the

columns corresponding to the left (right) states and their distance-one neighbors.

E.g., in the case of the edge i j of Fig. 3.1a, the top line depicted in Fig. 3.1b will

contribute to ∂UL/∂U and the bottom line to ∂UR/∂U.

In the following a way to assemble the matrix-vector products by looping over the edges

of the mesh is described. Also, the sub-matrices are considered in more detail.

64 Sensitivity Analysis

3.2.1 Derivation of the edge-based assembly

The edge-based assemblies of the matrix-vector products Z and Z̄ may be derived by

taking as starting point the assembly of the residual vector R, which was briefly discussed

in Section 2.2.2. Note that in the following the assemblies are always written using

pseudo-code.

Before starting the derivation, some definitions must be given. Recall that the

residual at node i is defined as the sum of the numerical fluxes across the control

volume interfaces ∂Vik , i.e.,

ri =

Ni∑

k=1

Φ(ûi , ûk ,nik) =

Ni∑

k=1

Φ̂ik . (3.9)

The hat on the conservative variables is used to indicate that these variables are the

results of a reconstruction scheme. Also, the hat is used on the numerical flux to indicate

that it is evaluated using reconstructed variables.

Moreover, recall that a distance-one stencil is used for the linear reconstruction

scheme. As can be seen from Eq. (2.24), the stencil Ni of a node i includes the

distance-one neighbors of the node as well as the node itself. For instance, the stencil Ni
of Fig. 3.1a contains the nodes k1, k2, k3, k4, k5, j and i . Therefore, the reconstructed

variables at nodes i and j have a dependence on the cell averages in their stencils of the

type

ûi = ûi(uk ; k ∈ Ni) , ûj = ûj(uk ; k ∈ Nj) . (3.10)

As already mentioned, the derivation is started from the edge-based assembly of

the residual, which was already given in Eq. (2.22) in the form of pseudo-code and is

repeated here for clarity. Using the new notation for the reconstruction, that assembly

reads

ri = ri + Φ̂i j ,

rj = rj − Φ̂i j , (i j = 1, E) . (3.11)

Matrix algebra shows that the ith component of Z is defined as

zi =

N∑

k=1

∂ri

∂uk
pk . (3.12)

Differentiating Eq. (3.11) with respect to uk , multiplying by pk and adding an additional

internal loop on the nodes gives:

∂ri
∂uk
pk =

∂ri
∂uk
pk +

∂Φ̂i j
∂uk
pk ,

∂rj
∂uk
pk =

∂rj
∂uk
pk −

∂Φ̂i j
∂uk
pk , (i j = 1, E; k = 1, N) . (3.13)

3.2. Exact sensitivity: one-pass construction 65

According to Eq. (3.12) the quantities accumulated on the nodes i and j are the com-

ponents zi and zj of Z. This means that the nested loop given in Eq. (3.13) can be

rewritten as:

zi = zi +
∂Φ̂i j
∂uk
pk ,

zj = zj −
∂Φ̂i j
∂uk
pk , (i j = 1, E; k = 1, N) . (3.14)

As indicated in Eq. (3.9) the numerical flux is dependent on the left and right states

i and j . Because of the reconstruction, such a dependency must be extended to the

stencils of the two nodes according to Eq. (3.10). The latter means that the numerical

flux Jacobian is non-zero only for the elements contained in the stencil of node i and

node j , i.e.,

∂Φ̂i j
∂uk
6= 0; k ∈ Ni ∪ Nj . (3.15)

As a consequence, in Eq. (3.14) the inner loop on the nodes can be limited to a sum-

mation on both stencil Ni and Nj to give:

zi = zi +
∑

k∈Ni

∂Φ̂i j
∂uk
pk +

∑

k∈Nj

∂Φ̂i j
∂uk
pk ,

zj = zj −
∑

k∈Ni

∂Φ̂i j
∂uk
pk −

∑

k∈Nj

∂Φ̂i j
∂uk
pk , (i j = 1, E) . (3.16)

The numerical flux derivative is with respect to the cell average uk . However, the

numerical flux is actually evaluated with the reconstructed variables. Thus, the chain

rule can be applied to isolate the flux derivative from the reconstruction derivatives. In

doing this the numerical flux derivative can be taken out of the stencil summation:

zi = zi +
∂Φ̂i j

∂ûi

∑

k∈Ni

∂ûi

∂uk

∣∣∣∣
i j

pk +
∂Φ̂i j

∂ûj

∑

k∈Nj

∂ûj

∂uk

∣∣∣∣
i j

pk ,

zj = zj −
∂Φ̂i j
∂ûi

∑

k∈Ni

∂ûi
∂uk

∣∣∣∣
i j

pk −
∂Φ̂i j
∂ûj

∑

k∈Nj

∂ûj
∂uk

∣∣∣∣
i j

pk , (i j = 1, E) . (3.17)

The subscript i j is necessary to remind that ∂ûi/∂uk and ∂ûj/∂uk are evaluated on the

edge i j . The above equation is the edge-based assembly of Z, i.e., the assembly of the

matrix form given in Eq. (3.7).

The edge-based assembly of the transposed Jacobian-vector product Z̄ can be derived

from Eq. (3.17) by applying transposition. The numerical flux Jacobians ∂Φ̂i j/∂ûi and

∂Φ̂i j/∂ûj are easy to transpose since they lie on the diagonal of the matrix, at position i i

and j j , and on the off-diagonals, at position i j and j i . Those positions are indicated with

the squares in Fig. 3.1b. The summations are more complicated to transpose because

66 Sensitivity Analysis

they involve off-diagonal terms that are located as indicated by the dots in Fig. 3.1b.

As can be seen, the summation is over the row elements. Since by transposition they

have to turn into column elements, the summations become scatterings on the stencil

nodes:

z̄p = z̄p +
∂ûi
∂up

∣∣∣∣
T

ij

∂Φ̂i j
∂ûi

T

(pi − pj) , p ∈ Ni ,

z̄q = z̄q +
∂ûj
∂uq

∣∣∣∣
T

ij

∂Φ̂i j
∂ûj

T

(pi − pj) , q ∈ Nj , (i j = 1, E) . (3.18)

Finally, the above loop is the assembly of Z̄, i.e., of the matrix form given in Eq. (3.8).

The edge-based assembly of both loops in Eqs. (3.17) and (3.18) involves the

distance-one neighbors of the two nodes that share the edge. Thus, in order to perform

the assembly in one pass, a pointer linking each node with its distance-one neighbors

must be made available. Such a pointer is the same as that used for the solution of the

linear system and was defined in Eq. (2.24).

3.2.2 Differentiation of the reconstruction operator

The reconstruction contribution ∂ûi/∂uk that appears in Eqs. (3.17) and (3.18) may

be broken into three parts, i.e.,

∂ûi
∂uk

=
∂ûi
∂v̂i

∂v̂i
∂vk

∂vk
∂uk

. (3.19)

The first and the third matrices are transformation matrices between conservative and

primitive variables, the expression of which is given in Eqs. (2.6) and (2.7), respectively.

The middle matrix contains the differentiation of the reconstructed primitive variables

and reads

∂v̂i

∂vk
=




∂ρ̂i/∂ρk 0 0 0

0 ∂ûi/∂uk 0 0

0 0 ∂v̂i/∂vk 0

0 0 0 ∂p̂i/∂pk


 . (3.20)

The expression of the elements of the above matrix can be obtained by differentiating

the reconstruction. For instance, considering the MUSCL-like reconstruction for the y -

velocity, which reads

v̂i = vi +
σi
2
∇vTi (xj − xi) , (3.21)

differentiation with respect to vk gives

∂v̂i
∂vk
= δik +

1

2

∂σi
∂vk
∇vTi (xj − xi) +

σi
2

∂∇v i
∂vk

T

(xj − xi) , (3.22)

where δik is the Kronecker delta.

3.2. Exact sensitivity: one-pass construction 67

The differentiation of the gradient is straightforward since only metrics quantities

are involved. In the case of the Green-Gauss gradient and similar for the weighted

least-squares gradient, one has that

∇v i =
1

2Vi

Ni∑

k=1

(vi + vk) nik ,
∂∇v i
∂vk

=

{
1/(2Vi)nik , i 6= k ,

1/(2Vi)
∑Ni
k=1 nik , i = k ,

(3.23)

where Vi is the control volume i .

The differentiation of the limiter is more involved than that of the gradient. Also, the

limiter has a dependency on all the nodes in the stencil and the differentiation does not

involve metric quantities only. Differentiating the limiter expression given in Eq. (2.35)

gives

∂σi
∂vk
=
∂Lim

∂∆vi
∗

∂∆vi
∗

∂vk
+
∂Lim

∂∆vim

∂∆vim
∂vk

, ∆vi
∗ =





∆vi
max , ∆vi j > 0 ,

∆vi
min , ∆vi j < 0 .

(3.24)

where m ∈ Ni is the index for which the right-hand side of Eq. (2.35) is minimal. The

above expression requires the differentiated gradient. In fact, according to the definition

given in Section 2.3.2 for ∆vi j , one has that

∂∆vim
∂vk

=
1

2

∂∇v i
∂vk

T

(xm − xi) . (3.25)

3.2.3 Differentiation of the numerical fluxes

The exact differentiation of Roe’s approximate Riemann solver given in Eq. (2.25) may

be written as

∂Φi j
∂ui

=
1

2
A(ui ,ni j) +

1

2

∂ti j
∂ui
,

∂Φi j
∂uj

=
1

2
A(uj ,ni j)−

1

2

∂ti j
∂uj
, (3.26)

where ti j is the dissipative part of the flux, which is defined as

ti j = X|Λ|X−1∆ui j . (3.27)

In the above equation, the vector ∆ui j is the difference between the left and the right

states and X and Λ are the eigenvectors and the eigenvalues, which must be evaluated

using the Roe averages ūi j defined in Section 2.3.1. In order to differentiate ti j it is

best to follow a strategy outlined in a previous work [8]. For simplicity, the 2D case

is considered. Moreover, in order to make the derivation as general as possible, the

subscripts i and j are temporarily dropped.

The first step to take in the derivation is to introduce the new vector of variables

Ψ, which reads

Ψ = [ρ, wx , wy , a
2]T . (3.28)

68 Sensitivity Analysis

It is similar to the primitive variables vector, except for the last component. In order

to simplify the differentiation, the latter component is conveniently taken to be equal

to the square value of the speed of sound a2. Also, the two vectors ΛD and fλ are

introduced. The first vector contains the diagonal of the matrix Λ, i.e., the eigenvalues,

whereas the second vector contains the absolute values of the eigenvalues. They read

ΛD = [λ1, .., λ4]
T , fλ = [|λ1|, .., |λ4|]T , (3.29)

respectively. The second vector depends on ΛD, which in turn depends on Ψ according

to the eigenvalues definition given in Section 2.3.1. Therefore, fλ = fλ(ΛD(Ψ)). The

eigenvector X in Eq. (3.27) also depends on the vector Ψ, i.e., X = X(Ψ).

By using the above definitions, the dependence of t may be written as

t = t(Ψ, fλ,∆u) . (3.30)

Thus, by means of the chain rule, the differentiation of t reads

∂t

∂u
=
∂t

∂∆u

∂∆u

∂u
+

(
∂t

∂Ψ
+
∂t

∂fλ

∂fλ
∂ΛD

∂ΛD
∂Ψ

)
∂Ψ

∂v

∂v

∂u
. (3.31)

According to Eq. (3.27), one has that ∂t/∂∆u = X|Λ|X−1. The term ∂t/∂Ψ has a

complicated expression, which can be derived conveniently using symbolic differentiation.

In practice, the product at the right-hand side of Eq. (3.27) is implemented explicitly

and differentiated. The final result of the differentiation is very lengthy and is not given

here. The interested reader may find it also in the appendix of the original reference [8].

The components of the matrices ∂t/∂fλ and ∂fλ/∂ΛD read

[
∂t

∂fλ

]

lm

=

4∑

k=1

[X]lm[X
−1]mk [∆u]k ,

[
∂fλ
∂ΛD

]

lm

= sign(λl)δlm , (3.32)

respectively. According to the eigenvalues definition, the matrix ∂ΛD/∂Ψmay be written

as

∂ΛD
∂Ψ

=




0 nx ny 0

0 nx ny 0

0 nx ny |n|/2a
0 nx ny -|n|/2a


 . (3.33)

In order to give the expressions for the remaining terms, ∂∆u/∂u and ∂Ψ/∂v, the index

i and j must be used again in the equations. Since ∆ui j = uj − ui , one has that

∂∆ui j/∂ui = −1 and ∂∆ui j/∂uj = 1. Moreover, as already mentioned, the dissipative

part in Eq. (3.27) is evaluated using the Roe averages ūi j defined in Section 2.3.1.

Therefore,Ψ depends on the Roe averages, i.e.,Ψ = Ψ(ūi j). The Jacobian ∂Ψ(ūi j)/∂vi
has the following structure:

∂Ψ(ūi j)

∂vi
=




∂ρ̄i j/∂ρi 0 0 0

∂ūi j/∂ρi ∂ūi j/∂ui 0 0

∂v̄i j/∂ρi 0 ∂v̄i j/∂vi 0

∂ā2i j/∂ρi ∂ā
2
i j/∂ui ∂ā

2
i j/∂vi ∂ā

2
i j/∂pi


 . (3.34)

3.2. Exact sensitivity: one-pass construction 69

Similar is the structure of the Jacobian ∂Ψ(ūi j)/∂vj . As can be seen, the non-zero

terms in the above matrix must be obtained by differentiating the Roe averages with

respect to the primitive variables of the left and of the right nodes. The terms are too

lengthy and thus they are not given here. Their expressions may be found in the original

reference [8]. Finally, the transformation matrix ∂vi/∂ui and ∂vi/∂uj are calculated

using Eq. (2.7).

The above formulation can also be used to differentiate the flux-vector splitting

of Eq. (2.27), which is used for the far-field boundary conditions. In that case,

ti = XΛ
+X−1ui . The positive splitting of the eigenvalues requires the components

of ∂fλ/∂ΛD to be defined as

[
∂fλ

∂ΛD

]

i j

=
1 + sign(λi)

2
δi j . (3.35)

Moreover, there are no Roe averages and the Jacobian ∂Ψ/∂vi has a very simple ex-

pression.

When the parabolic entropy fix [42] in the Roe flux is used, the matrix ∂fλ/∂ΛD con-

tains a continuous function rather than the discontinuous sign function as in Eq. (3.32).

In fact, apart from ensuring that the numerical dissipation is never zero, the entropy fix

removes the lack of differentiability caused by the absolute value in the Roe flux. Except

for the matrix ∂fλ/∂ΛD, the above differentiation is the same in case of entropy fix.

Note that if the eigenvectors and the eigenvalues are considered to be constant,

the differentiated flux of Eq. (3.31) reduces to the approximate ones of Eq. (2.51), in

the case of the Roe flux, and to the approximate flux of Eq. (2.52) in the case of the

far-field flux.

Exact differentiation and differentiability

Exact differentiation should not be confused with differentiability. A code can be differ-

entiated exactly without necessarily being differentiable. Consider for instance a code

that implements the non-differentiable absolute value function |x |, which is defined as

x for x ≥ 0 and −x for x < 0. One possibility is that such code might contain two if

statements, e.g., if(x ≥ 0)f = x and if(x < 0)f = −x. The exactly differentiated

code can be obtained by differentiating the two statements, i.e., if(x ≥ 0)df = 1 and

if(x < 0)df = −1. This way the differentiated code computes a derivative that is

consistent with the implementation of the original code. In practice, a non-differentiable

function is implemented using different code branches, and each branch can be differ-

entiated.

In the following section methods to verify the correctness of the differentiated code

are used and exactness is shown. Functions that are not continuously differentiable exist

in the code. E.g., in the boundary flux, see Eq. (3.35), or in the Roe flux when no entropy

fix is used, see Eq. (3.32). The lack of continuous differentiability did not appear to be

an obstacle for obtaining exact derivatives, i.e., derivatives that are consistent with the

original code.

70 Sensitivity Analysis

3.2.4 General case of low-order Jacobians

The assemblies of Eqs. (3.17) and (3.18) deal with the case of an edge flux function

that is dependent on the nodes that share the edge as well as on their stencils. The

dependence is such because of the second-order reconstruction scheme.

For a low-order flux, which depends only on the two nodes that share the edge,

i.e., Φi j = Φ(ui ,uj), where ui and uj are cell averages, the two assemblies simplify

considerably. In fact, if the dependence is limited to the two nodes, the absence of the

reconstruction implies that

∂ûi
∂uk
= Iδik ,

where δik is the Kronecker delta. Therefore, by making the above substitution into the

linearized and the adjoint assemblies of Eqs. (3.17) and (3.18) and by using a different

notation for the vectors in the adjoint case, the two assemblies reduce to the ones given

in Table 3.1.

Table 3.1: Pseudo-code to assemble the linearized and adjoint matrix-vector products. The

Jacobian is first-order, i.e., Φi j = Φ(ui , ui), with ui and uj cell averages.

Linearized - Z =
∂R

∂U
P

Loop over the edges, i j = 1, E

zi = zi +
∂Φi j
∂ui
pi +

∂Φi j
∂uj
pj

zj = zj −
∂Φi j
∂ui
pi −

∂Φi j
∂uj
pj

Adjoint - P =
∂R

∂U

T

Z

Loop over the edges, i j = 1, E

pi = pi +
∂Φi j
∂ui

T

(zi − zj)

pj = pj +
∂Φi j
∂uj

T

(zi − zj)

The vectors Z and P are inverted in the adjoint case because the result given in the

table is valid also in the case that R is not the residuals vector but a general vector, which

is obtained by discretizing a conservation law and can be assembled on the edges. For

instance, it could be used for the differentiation of the Green-Gauss gradient ∂∇V/∂V,

which is a rectangular matrix and requires the vector P to have one component but the

vector Z to have a number of components equal to the number of space dimensions.

The Green-Gauss gradient has the flux function 1/2(vi + vj)ni j , which is linear with

respect to the left and right states, vi and vj , respectively. In Table 3.2 edge-based

assemblies that involve the Green-Gauss gradient, and which are obtained by using the

result of Table 3.1, are described.

When discussing the matrix-vector products required to solve the linear system,

the linearized assembly of Table 3.1 was already given in Eq. (2.55), however without

3.3. Approximate sensitivity: two-pass construction 71

addressing its derivation. Note that the above assemblies are much faster to complete

than the second-order ones of Eqs. (3.17) and (3.18). In fact, since the reconstruction

is absent, there is no need to loop over the stencils of the nodes. As a consequence, it

can be realized by using only the edge-based data structure, without using the stencil

information Ni and Nj for each edge i j .

In the next section, the linearized and transposed assemblies of Table 3.1 will be

used to assemble the second order matrix-vector products in a two-pass construction.

3.3 Approximate sensitivity: two-pass construction

The one-pass construction described in the previous section is not very efficient because,

as shown by Eqs. (3.17) and (3.18), the distance-one stencils of the nodes that share

the edge must be visited during the loops. The reason for visiting the stencil nodes is

that Eqs. (3.7) and (3.8) contain more than one matrix with a sparsity pattern equal

to the mesh graph, i.e., they contain ∂R/∂H and the reconstruction operators ∂UL/∂U

and ∂UR/∂U. The latter operators have sparsity patterns equal to the mesh graph

because of the presence of the gradients and of the limiters. In the case of first-order

accuracy, i.e., no gradient and no limiters, the matrices ∂UL/∂U and ∂UR/∂U would

be diagonal and it would be possible to use the edge-based assembly of Table 3.1.

An efficient assembly may be achieved by considering a multi-pass construction. The

latter breaks the assembly in a number of passes equal to the quantities that are involved

in the residual evaluation and that needs an edge-based assembly to be computed. Thus,

for the reconstruction scheme considered in this work, three steps would be required

because, in addition to the residuals, one has the gradients and the limiters. If the

assembly is broken this way, at each pass only one non-diagonal sparse matrix would

be present and an edge-based assembly similar to the ones given in Table 3.1 could be

used.

Therefore, in order to apply the multi-pass idea, it remains to break the assembly in

parts. For this purpose, one can consider the dependencies of the reconstructed states

in explicit form and then apply the chain rule. I.e,

UL = UL(VL(V,∇V,Σ)) , UR = UR(VR(V,∇V,Σ)) . (3.36)

The vector V = V(U) contains the primitive variables. The vectors VL and VR are the

reconstructed left and right states, in the form of primitive variables, as computed by the

MUSCL reconstruction. The vector ∇V = [∇v1,∇v2, ...,∇vN]T contains the primitive

variables gradients whereas the vector Σ = [σ1, σ2, ..., σN]
T contains the slope limiters.

The gradient∇V depends on the primitive variables whereas the limiters depend on both

the primitive variables and the gradients.

The matrix-vector products obtained by taking into account the explicit dependency

of Eq. (3.36) may be obtained by means of the chain rule. Since the limiters also

depend on the gradient, the result of the derivation is slightly involved. However, as will

be shown in the next chapter, there are good reasons for assuming that the limiters may

be neglected. By treating them as constants, an appreciable simplification is achieved.

72 Sensitivity Analysis

The linearized matrix-vector product obtained by applying the chain rule reads

∂R

∂U
P = Q1

∂V

∂U
P+Q2

∂∇V
∂V

∂V

∂U
P , (3.37)

where Q1 is a square matrix of size N × N and Q2 is a matrix of size N × N for each

space dimension. They are defined as

Q1 =
∂R

∂H

(
∂H

∂UL

∂UL
∂VL

∂VL
∂V
+
∂H

∂UR

∂UR
∂VR

∂VR
∂V

)
,

Q2 =
∂R

∂H

(
∂H

∂UL

∂UL
∂VL

∂VL
∂∇V +

∂H

∂UR

∂UR
∂VR

∂VR
∂∇V

)
, (3.38)

respectively. The transposition of the above matrices gives the transposed matrix-vector

product, which reads

∂R

∂U

T

P =
∂V

∂U

T

QT1 P+
∂V

∂U

T ∂∇V
∂V

T

QT2 P . (3.39)

The matrices ∂R/∂H, ∂H /∂UL and ∂H /∂UR are the same as defined in the previous

section. The other matrices are defined as follows,

∂VL/∂V and ∂VR/∂V are block diagonal matrices of size N × E, which are filled

by the sub-matrices ∂v̂i/∂vi and ∂v̂j/∂vj , respectively. As will be shown below,

the latter sub-matrices are identities. ∂VL/∂∇V and ∂VR/∂∇V are matrices of

size N×E for each space dimension. They are filled by the sub-matrices ∂v̂i/∂∇vi
and ∂v̂j/∂∇vj , respectively. The four matrices represent the differentiation of the

reconstruction formulation according to the explicit definition given in Eq. (3.36)

and to the assumption of constant limiters.

∂UL/∂VL and ∂UR/∂VR are block diagonal matrices of size E ×E that are filled

by the sub-matrices ∂ûi/∂v̂i and ∂ûj/∂v̂j , respectively. The latter sub-matrices

are transformation matrices between primitive and conservative variables and are

evaluated using Eq. (2.6). ∂V/∂U is a diagonal matrix of size N×N that operates

the transformation from conservative to primitive variables. Thus, it is filled by

the sub-matrices ∂vi/∂ui , which can be evaluated using Eq. (2.7).

∂∇V/∂V is the differentiation of the gradient formulation. It is a sparse block

matrix of size N ×N for each space dimension. In fact, recall that the gradient is

a multi-component vector, with a number of components equal to the number of

space dimensions. The ith sub-matrix of ∂∇V/∂V is of the type ∂∇vi/∂vk , and

it is non-zero only for k ∈ Ni . Each edge of the mesh contributes to the topology

of the operator as in Fig. 3.1.

The edge-based assemblies of the matrix-vector products in Eqs. (3.37) and (3.39) are

described next.

3.3. Approximate sensitivity: two-pass construction 73

3.3.1 Two-pass assembly for the linearized problem

Although the matrix-vector product in Eq. (3.37) seems to be very involved, it is actually

relatively easy to perform. The differentiated gradient operator contains only metric

terms, i.e., it only depends on the geometry of the mesh. The consequence is that the

product of the differentiated gradient operator with a vector is equivalent to the gradient

of the vector, i.e.,

∂∇V
∂V

∂V

∂U
P = ∇

(
∂V

∂U
P

)
.

Thus, the gradient routine may be used to compute the matrix-vector product. Another

important simplification comes from the reconstruction operator. In fact, in the assump-

tion of constant limiters, the matrix form of the reconstruction operator in Eq. (3.21)

may be written as

VL =
∂VL
∂V
V +

∂VL
∂∇V∇V .

Therefore, if one defines the scaled vector P∗ = [∂V/∂U]P and substitutes the two

results obtained above into the matrix-vector product in Eq. (3.37), the latter product

becomes

∂R

∂U
P =

∂R

∂H

(
∂H

∂UL

∂UL

∂VL
P∗L +

∂H

∂UR

∂UR

∂VR
P∗R

)
, (3.40)

where P∗L and P∗R are the reconstructed versions of the vector P∗. In practice, the above

matrix-vector product is carried out as follows:

Step 1 The gradient routine is run with the input vector P and computes the gradient

∇P∗. The edge-based loop is described in Table 3.2 for the Green-Gauss gradient. For

simplicity, the loop does not include boundary terms.

Step 2 The differentiated residual routine is run, which performs the MUSCL recon-

struction on the vector P∗. Once the reconstructed vector P∗L and P∗R are computed,

the matrix-vector product can be assembled by using the linearized assembly given in

Table 3.1. However, because the vectors [∂UL/∂VL]P
∗
L and [∂UR/∂VR]P

∗
R are present

in Eq. (3.40), the sub-vectors pi and pj that appear in the linearized loop of Table 3.1

must be replaced by the sub-vectors [∂ûi/∂v̂i]p̂i and [∂ûj/∂v̂j]p̂j , where p̂i and p̂j are

the components of P∗L and P∗R, respectively.

3.3.2 Two-pass assembly for the adjoint problem

As can be seen from Eq. (3.39), the differentiated residual routine must be run before the

differentiated gradient routine. Thus, as already mentioned, the transposition inverts the

order with which operations are performed within the code. A further complication is that

the transposed differentiated gradient routine takes as input a multi-component vector,

74 Sensitivity Analysis

with the number of components equal to the number of space dimensions, and gives as

output a vector. The different sizes of the input and the output makes sense because

∂∇V/∂V is a rectangular matrix. The implementation may not be straightforward as

in the case of a square matrix, e.g., the first-order residual Jacobian. In practice, the

matrix-vector product in Eq. (3.39) is carried out in two steps:

Step 1 The differentiated residual routine is run, which computes the two vectors

G = [∂V/∂U]TQT1 P and Ḡ = QT2 P, given the adjoint vector P as input. Note that in

the case of first order spatial accuracy only the vector G needs to be computed. The

multi-component vector Ḡ can be thought of as a kind of gradient that, due to the

transposition, is an output, rather than an input, of the differentiated residual routine.

The assembly of the two vectors may be performed by means of an edge-based loop

similar to that of Table 3.1. In order to simplify the notation, define the two sub-vectors

fi =
∂ûi
∂v̂i

T ∂Φi j
∂ui

T

(pi − pj) , fj =
∂ûj
∂v̂j

T ∂Φi j
∂uj

T

(pi − pj) .

Using the above vectors, the components of G and Ḡ are assembled on the edge as

gi = gi + [∂vi/∂ui]
T fi ,

gj = gj + [∂vj/∂uj]
T fj ,

ḡi = ḡi + [∂v̂i/∂∇vi]T fi ,
ḡj = ḡj + [∂v̂j/∂∇vj]T fj , (i j = 1, E) . (3.41)

The elements of the sub-matrices ∂v̂i/∂∇vi and ∂v̂j/∂∇vj are obtained by taking into

account the definition of the reconstruction. E.g., for the reconstruction of Eq. (3.21)

one has that ∂v̂ i/∂∇v i = ∆xi j/2. Note that according to the definition of the matrix-

vector product in Eq. (3.39) and to that of the matrices given in Eq. (3.38), the defi-

nition of the sub-vectors fi and fj should also include the sub-matrices [∂v̂i/∂vi]
T and

[∂v̂j/∂vj]
T , respectively. However, by definition of the MUSCL reconstruction, those

sub-matrices are identities. For instance, consider the reconstruction of Eq. (3.21):

∂v̂ i/∂v i = 1.

Step 2 The differentiated gradient routine, given the multi-component vector Ḡ as

input, generates the vector P̄ = [∂V/∂UT][∂∇V/∂VT]Ḡ as output. The edge-based

assembly of the vector is described in Table 3.2. The table compares the assemblies of

the linearized and transposed operators. As can be seen, given a vector of component

equal to the number of space dimensions, the loop computes a vector of one component.

The duality between the two types of assemblies in the table is evident. At the end of

the assembly, the components of the computed vector P̄ are added to that of the vector

G, thus completing the assembly of [∂R/∂U]TP.

3.4. Solution of the sensitivity equations 75

Table 3.2: Pseudo-code to assemble the linearized and adjoint matrix-vector products. The

matrix is the differentiated Green-Gauss gradient operator.

Linearized - ∇P∗ = ∂∇V
∂V

∂V

∂U
P

Set vi = [∂vi/∂ui]pi ∀ i

Loop over the Edges, i j = 1, E

∇vi = ∇vi +
(vi + vj)

2
ni j

∇vj = ∇vj −
(vi + vj)

2
ni j

Scale ∇vi = ∇vi/Vi ∀ i

Output ∇V ≡ ∇P∗

Adjoint - P̄ =
∂V

∂U

T ∂∇V
∂V

T

Ḡ

Scale ∇vi = ḡi/Vi ∀ i

Loop over the edges, i j = 1, E

vi = vi +
∇vi −∇vj
2

ni j

vj = vj +
∇vi −∇vj
2

ni j

Set p̄i = [∂vi/∂ui]
T vi ∀ i

Output P̄

3.4 Solution of the sensitivity equations

The linearized and adjoint problems of Eqs. (3.2) and (3.3) are both linear. Thus,

theoretically, they may be solved by means of a linear solver, for instance a direct or

an iterative solver. In practice, both types of solvers are unsuitable. The direct solver

would not be the best choice because of the large amount of memory involved, especially

for 3D cases. An iterative solver, similar to the one used for the solution of the linear

system in the flow solver, would be likely to stall because of the poor diagonal dominance

of the residual Jacobian. In fact, the residual Jacobian that appears in the equations is

that of a second-order scheme, which is not diagonally dominant like the Jacobian of a

first-order scheme.

The poor diagonal dominance of the Jacobian can be verified by means of numerical

experiments. In the present work numerical experiments have been performed in which

the linearized problem of Eq. (3.2) has been solved by means of Jacobi iterations. The

flow conditions were transonic and the sensitivity was computed with respect to the angle

of attack. It appeared that when the Jacobian in the matrix-vector product of Eq. (3.37)

only included the first-order contribution, i.e., the termQ1[∂V/∂U], the Jacobi iterations

converged. Instead, when the Jacobian also included the second-order contribution, i.e.,

the term Q2[∂∇V/∂V][∂V/∂U], the Jacobi iterations did not converge. The lack of

convergence in the latter case shows that the second-order contribution reduces the

76 Sensitivity Analysis

diagonal dominance. The cause for the reduced diagonal dominance may be found in

the gradient operator [∂∇V/∂V], which is filled by elements of the type ∂∇vi/∂vk . The

latter elements, for instance in the case of the Green-Gauss gradient, become zero when

they are located on the diagonal, i.e., for i = k. In fact, as shown by Eq. (3.23), the

diagonal terms are expressed as summation of integrated normals around closed control

volumes. As such, they have to be zero, as shown by Eq. (2.14).

3.4.1 Implicit pseudo-time stepping solution

An interesting strategy to solve the equations is that of using the same implicit scheme

in pseudo-time as the one that is used for the flow equations [7, 37, 84]. In practice,

the sensitivity equations may be treated as non-linear equations. The concept is best

explained by defining two residuals, Rp for the primal problem of Eq. (3.2) and Rd for

the dual problem of Eq. (3.3), reading

Rp(Uα) =
∂R

∂U
Uα +

∂R

∂α
, Rd(Λ) =

∂R

∂U

T

Λ− ∂J
∂U

T

. (3.42)

Uα stands for the flow sensitivity ∂U/∂α. Note that the subscript i used in Eq. (3.3) is

temporarily dropped for convenience. Below it will be used again. Instead, the subscript

j used in Eq. (3.2) may be dropped permanently because in the present work the primal

problem is only solved for a single parameter.

A pseudo-time contribution may be added to the above equations in order to cast

these in the same form as the flow problem of Eq. (2.38), i.e.,

D
d Uα
d t

+ Rp = 0 , D
d Λ

d t
+ Rd = 0 . (3.43)

The same solution strategy devised in Section 2.4 for the flow problem may be used here

for the above equations. After discretization of the time contribution and application of

the defect correction method, the primal equation becomes

(
Dt +

∂R̃

∂U

)n
(Un+1α −Unα) = −

(
∂R

∂U
Unα +

∂R

∂α

)
. (3.44)

In practice, the same solver of the flow equations may be used, the only thing being

different is the right-hand side term. For the adjoint equation the same procedure gives

(
Dt +

∂R̃

∂U

T
)n
(Λn+1i − Λni) = −

(
∂R

∂U

T

Λni −
∂Ji
∂U

T)
. (3.45)

The above equation, apart from having a different right-hand side, contains transposed

Jacobians. Thus, the linear solver must be modified appropriately. In practice, the

modifications amount only to minor changes of the original routines.

For both Eqs. (3.44) and (3.45) the Jacobians involved on the left- and on the right-

hand sides are constants with respect to the solution variables. In fact, the residual

3.4. Solution of the sensitivity equations 77

Jacobians depend only on the conservative flow variables. Therefore, when the storage

option is used, time saving is achieved by computing the Jacobian terms required for the

matrix-vector products and for preconditioning only at the beginning of the pseudo-time

iterations. If the matrix-free option is chosen, the Jacobians are recomputed at each

pseudo-time step.

3.4.2 Simultaneous solution of the adjoint equations

Aerodynamic design often requires the solution of constrained problems. E.g., lift con-

strained drag minimization. Those problems are best solved when the gradients of all the

functionals are available. However, solving more than one adjoint equation may become

computationally expensive and may be seen as a limitation of the adjoint method [38].

For this reason, constraints are often included as penalty terms in the objective function

and only one adjoint is solved. The penalty approach seems to be convenient but may

lead to ill-conditioning of the optimization problem [126].

In the present work constrained optimization algorithms are preferred. In order to

efficiently compute the gradients that are needed by those algorithms, a strategy that

solves several adjoint equations simultaneously is devised. The efficiency of the method

is due to the presence of the same Jacobian for several adjoint equations. The Jacobian

terms are relatively expensive to compute. Thus, once the terms are available, it makes

sense to perform all the multiplications required by the preconditioning and by the matrix-

vector products in one shot.

The matrix-vector products for the solution of the linear system in the adjoint case are

computed with a slightly modified version of the matrix-vector product given in Table 3.1.

In fact, for each edge there are several sub-vectors pi ,k and pj,k , for k = 1, NJ, which

must be multiplied by the flux-Jacobians ∂Φi j/∂ui and ∂Φi j/∂uj . Thus, it is necessary

to add a nested loop within the edge loop. Also the assembly of the right-hand side of

Eq. (3.45) must be realized in a similar way by adding nested loops in the procedure

described to assemble the matrix-vector product of Eq. (3.39)

Regarding the preconditioner, taking into account the transposition, it becomes

PM = (D
T
M +U

T
M)D

−T
M (D

T
M + L

T
M) . (3.46)

In order to apply the above preconditioner, the forward and the backward sweeps of

Eqs. (2.56) and (2.57) must be modified. Apart from the transposition, a nested loop

must be added because of the presence of multiple right-hand sides. Thus, the forward

sweep becomes

∆zi ,k
∗ = DM

−T
i



RkL i −
∑

j∈Li

UM
T
ij∆zj,k

∗



 , (i = 1, N; k = 1, NJ) , (3.47)

whereas the backward sweep becomes

∆zi ,k = ∆zi ,k
∗ −DM−Ti

∑

j∈Ui

LM
T
ij∆zj,k , (i = N, 1; k = 1, NJ) . (3.48)

78 Sensitivity Analysis

The time saving that may be realized by implementing the simultaneous solution de-

pends on whether the storage or matrix-free option is used. The saving is in fact more

appreciable when the matrix-free option is used, i.e., when the expensive matrix terms

are recomputed each time.

-12

-10

-8

-6

-4

-2

 0

 2

 0 20 40 60 80 100 120 140 160 180 200

S
c
a
le

d
 r

e
s
id

u
a
l

Non-linear iterations

Flow

Linearized

Adjoint

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140 160 180 200

L
in

e
a
r

it
e
ra

ti
o
n
s

Non-linear iterations

Flow

Linearized

Adjoint

(b)

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 20 40 60 80 100

L
if
t
s
e
n
s
it
iv

it
y

Non-linear iterations

Adjoint

Linearized

(c)

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 0.0075

 0 20 40 60 80 100

D
ra

g
 s

e
n
s
it
iv

it
y

Non-linear iterations

Adjoint

Linearized

(d)

Figure 3.2: ONERA-M6 wing. Convergence histories of flow, adjoint and linearized solver: (a)

residual; (b) linear versus non-linear iterations; (c) lift sensitivity; (d) drag sensitivity.

3.4.3 Numerical results of the solution scheme

Numerical results of the solution strategy presented in this section are shown for two

cases already discussed in Section 2.5.2: the ONERA-M6 wing at M∞ = 0.84 and

α = 3.06◦ and the DLR-F6 wing-body at M∞ = 0.75 and α = 0.5◦.

Figure 3.2 shows the convergence histories of the flow, linearized and adjoint solvers

for the ONERA-M6 wing case. These are presented in terms of non-linear iterations,

i.e., in terms of the pseudo-time steps. As can be seen from Fig. 3.2a, the scaled

residual of the flow solver, which is defined as L2(R
n)/L2(R

0), is reduced by ten orders

of magnitude. The linearized and adjoint solvers converge at the same rate as the flow

solver. In terms of linear iterations, see Fig. 3.2b, an average of 6 of these are required

for each non-linear iteration. A maximum of 11 linear iterations is required around

3.4. Solution of the sensitivity equations 79

the 30th non-linear iteration. In general, especially for 3D computations, the start-up

phase of the implicit solution procedure appears to be a critical one. When the solution

stabilizes itself, the average number of linear iterations required by the three solvers,

see Fig. 3.2b, appears to be the same. Compared to the flow solver, the adjoint solver

requires more iterations in the start-up phase whereas the linearized solver requires less.

-12

-10

-8

-6

-4

-2

 0

 2

 0 2000 4000 6000 8000 10000 12000 14000

S
c
a

le
d

 R
e

s
id

u
a

l

CPU time (secs)

Flow

1 Adjoint

2 Adjoints

3 Adjoints

(a)

-12

-10

-8

-6

-4

-2

 0

 2

 0 2000 4000 6000 8000 10000 12000 14000

S
c
a

le
d

 R
e

s
id

u
a

l

CPU time (secs)

Flow

1 Adjoint

2 Adjoints

3 Adjoints

(b)

Figure 3.3: ONERA-M6 wing. Flow and adjoint convergence histories: (a) storage of the

preconditioner; (b) matrix-free preconditioning.

-12

-10

-8

-6

-4

-2

 0

 2

 0 5000 10000 15000 20000

S
c
a

le
d

 R
e

s
id

u
a

l

CPU time (secs)

Flow

1 Adjoint

2 Adjoints

3 Adjoints

(a)

-12

-10

-8

-6

-4

-2

 0

 2

 0 5000 10000 15000 20000

S
c
a

le
d

 R
e

s
id

u
a

l

CPU time (secs)

Flow

1 Adjoint

2 Adjoints

3 Adjoints

(b)

Figure 3.4: DLR-F6 wing-body. Flow and adjoint convergence histories: (a) storage of the

preconditioner; (b) matrix-free preconditioning.

Convergence histories of the flow and the adjoint solvers for the two configurations

are shown in Figs. 3.3 and 3.4, respectively. In order to compare the efficiency of the

adjoint solver with that of the flow solver, these convergence histories are plotted in

terms of CPU time. For the convergence histories of Figs. 3.3a and 3.4a, the elements

LM, UM and DM of the matrix M have been stored. It appears that the adjoint solver

residual overlaps with the flow solver residual, i.e., one adjoint solution requires the same

amount of time as one flow solution. This positive result can be explained as follows.

The larger amount of CPU time required to assemble the right-hand side of Eq. (3.45),

80 Sensitivity Analysis

compared to Eq. (2.42), is cancelled out by the time saved on the left-hand side for the

computation of the matrix elements. In fact, as already mentioned, these elements are

computed only once for the adjoint. In the case of multiple adjoint solutions, looking at

these pictures it appears that the simultaneous solution of two adjoints saves 25% of

CPU time compared to two sequential solutions. In the case of three adjoint solutions,

the CPU time saving rises to 33%.

The convergence histories of Figs. 3.3b and 3.4b have been produced using the

matrix-free option, i.e., LM, UM are always computed on-the-fly for both matrix-vector

products and preconditioning. Clearly, there is a penalty in terms of time. As can be

seen, the CPU time required to converge the flow is around three times more than in the

storage case of Figs. 3.3a and 3.4a. A single adjoint solution requires in this case around

10% more CPU time than the flow solution. In fact, for the adjoint solution, on-the-fly

computation means that the advantage of having the same LM and UM for all iterations

is lost in this case. Nevertheless, on-the-fly computations allow maximal exploitation of

the advantages given by simultaneous adjoint solutions. As can be seen from Figs. 3.3b

and 3.4b, two simultaneous adjoint solutions give around 45% time saving compared to

sequential solutions. In the case of three adjoint solutions, the time saving rises to 60%.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Matrix−free

Storage

Flow 1 Adjoint 2 Adjoints 3 Adjoints

Figure 3.5: Memory usage.

In terms of memory requirements, the solution of the adjoint problem requires an

amount of memory that is of the same order as that required by the flow solver. Fig-

ure 3.5 shows these requirements for storage and matrix-free computations. Since the

picture is valid for both configurations, the memory is normalized by the memory re-

quired by the flow solver for matrix-free computations. As can be seen, the flow solver

requires 2.7 times more memory when the matrix elements are stored than in the case

of matrix-free computations. When the matrix elements are stored, the adjoint takes

only 11% more memory than the flow solver. This memory increase rises to 40% in the

case of three simultaneous adjoint solutions. In the case of matrix-free computations,

the difference in memory use between the flow solver and the adjoint solver is larger. For

instance, three adjoints simultaneously require slightly more than two times the memory

required by the flow solver. The reason is that when the matrix-free option is active

the memory is only used to store the arrays of flow, adjoint and working variables. And

3.5. Accuracy of the discrete sensitivity 81

the memory required by each array is about one order of magnitude smaller than that

required by the Jacobian. Hence, the ratio of the memory required by the adjoint solver

to that required by the flow solver is larger.

3.5 Accuracy of the discrete sensitivity

The accuracy of the discrete sensitivity formulation must be verified in order to see if

errors are present in the implementation. The sensitivity of the linearized code may be

verified directly whereas that of the adjoint code must be verified indirectly, by using

also the linearized code. Therefore, the verification of the adjoint code implies the

verification of the linearized code first.

In the case of the differentiation being carried out exactly, the discrete sensitivities

must coincide with that of the original flow solver. Thus, comparing the two sensitivities

may be the best way to verify the correctness. However, obtaining the sensitivity of the

original flow solver may not be easy.

In the case of an approximate sensitivity code, it is only possible to check the dif-

ferences between the approximate sensitivity and the sensitivity of the original solver.

Fortunately, there is still a way to check exactly if the two approximate codes, linearized

and adjoint, are consistent with each other.

3.5.1 Verification of the exact linearized code

In the present work the correctness of the linearized code has been verified by using three

different means: (i) the quadratic convergence rate property of Newton iterations; (i i)

the comparison with a sensitivity code generated by an Automatic Differentiation tool;

and (i i i) the well known Fréchet derivative.

Quadratically convergent Newton iterations

The quadratic convergence rate property of Newton iterations has never been used in

the context of sensitivity analysis. It checks the correctness of the Jacobian indirectly,

employing the latter in an implicit pseudo-time stepping procedure (see Section 2.4),

which becomes Newton’s method for infinitely large time steps. If the Jacobian is exact,

quadratic convergence is observed.

As can be seen from the residual history in Fig. 3.6a, the exact Jacobian attains

quadratic convergence and in only 5 iterations the residual is reduced by 10 orders

of magnitude. In the same plot also the convergence of the approximate Jacobian is

shown, it converges linearly. Newton iterations are a very reliable method for checking

the correctness of the code. Quadratic convergence is not obtained if, for instance,

limiters are ignored (e.g., if they are considered to be constant in the differentiation, see

Eq. (3.22)) or if a programming error is present.

82 Sensitivity Analysis

Automatic Differentiation

One more check to verify the exactness of the Jacobian has been carried out by using

Automatic Differentiation. The residual code has been differentiated in forward mode

using the Automatic Differentiation (AD) tool Tapenade [3]. Differentiated code that

is capable of computing exact matrix-vector products has been generated. Figure 3.6b

shows the differences of the matrix-vector product implemented here compared with the

AD code. As can be seen, the differences between the exact code and the AD code are

smaller than 10−14. For some nodes, the differences appeared to be exactly zero and a

threshold of 10−19 has been used in the picture.

-14

-12

-10

-8

-6

-4

-2

 0

 20 40 60 80 100 120 140

L
O

G
(S

C
A

L
E

D
 R

E
S

ID
U

A
L

S
)

NUMBER OF ITERATIONS

First-order, approx. Jacobian
Exact Jacobian

(a) Newton’s method

-20

-18

-16

-14

-12

-10

-8

-6

-4

 0 1000 2000 3000 4000 5000 6000 7000 8000

L
O

G
(D

IF
F

E
R

E
N

C
E

S
)

MESH POINTS

Exact-FD
Exact-AD

(b) Matrix-vector product differences

Figure 3.6: Exactness of the Jacobian. Results are obtained from the computation of the

RAE2822 airfoil at M∞ = 0.73 and α = 2 deg on an unstructured 2107 nodes mesh.

Fréchet derivative

In order to check the correctness of the linearized code, a very easy to implement method

is the Fréchet derivative (FD), which may be written as

∂R

∂U
P ≈ R(U+ ǫP)− R(U)

ǫ
, ǫ→ 0 . (3.49)

The ǫ must be made small in order to improve the accuracy of the approximation.

Unfortunately, the smaller it becomes the larger the influence of the truncation and

the cancellation errors becomes. In practice, despite the simplicity of the method,

it is impossible to obtain very accurate comparisons by using it. Figure 3.6b shows

the differences between the Fréchet derivative and the exact code. A suitable value

of ǫ = 10−7 has been used. As can be seen, the differences between the code are

comprised in the range 10−14 to 10−6, definitely above the level of precision revealed

by using AD. Although not very accurate, the Fréchet derivative can still be used for

preliminary checks of the differentiated code with little effort.

3.5. Accuracy of the discrete sensitivity 83

3.5.2 Approximations in the discrete sensitivity

Approximations may be introduced in the differentiation in order to simplify the devel-

opment of code. Clearly, simplifications have a detrimental effect on the accuracy of

the sensitivity. Moreover, one of the advantages of the discrete approach over the con-

tinuous one, i.e., that of having the discrete sensitivity to match the sensitivity of the

original solver, is lost. The consequence is that the approximate sensitivity may only be

compared with the exact one just for the purpose of quantifying the difference between

the two.

In the following, three levels of approximations are presented. In practice, approx-

imations imply that the linearized and adjoint problems of Eqs. (3.2) and (3.3) are

solved with an approximate Jacobian rather than the exact Jacobian. The following

list addresses approximations implemented and tested within the one-pass construction

algorithm given in Section 3.2. The approximations are as follows:

A1− The first one is obtained by neglecting the differentiation of the limiter in the

reconstruction operator, which means that ∂σi/∂vk is set to zero in Eq. (3.22).

Thus, approximations are introduced in the matrices ∂UL/∂U and ∂UR/∂U of

Eq. (3.8). As can be seen from Section 3.2.2, which shows how the limiter has

to be differentiated and included in the assembly, the simplification introduced by

neglecting them is appreciable.

A2− The second one is obtained by neglecting the differentiation of the Jacobian matrix

in the Roe flux, i.e., it uses Eq. (2.51) instead of Eq. (3.26). In this case approx-

imations are also introduced in the matrices ∂H/∂UL and ∂H/∂UR of Eq. (3.8).

This approximation saves a lot of human work because it avoids the differentiation

presented in Section 3.2.3.

A3− The third approximation is that obtained by ignoring the complete reconstruction

operator, which makes the implementation of the adjoint trivial. In fact, the

Jacobian is identical to the first-order approximate Jacobian already used for the

implicit time stepping scheme described in Sections 2.4.1 and 3.4. In practice, the

approximation implies that the Jacobian [∂R̃/∂U] is substituted in the primal and

dual problems of Eqs. (3.2) and (3.3).

The two-pass construction assembly presented in Section 3.3 has been implemented

according to approximation A2 and therefore has constant limiters and approximate

numerical fluxes. In Chapter 5 optimization results are presented, which show that

approximation A2 may be used safely for engineering purposes.

3.5.3 Effect of the approximations on the gradient

The price to be paid for introducing the approximations described above is a detrimental

effect on the accuracy of the computed gradient. The latter aspect has been treated

extensively in literature [7, 95, 63, 93]. Here, results are presented for two 2D cases

that have already been addressed in Section 2.5.1. The first case is the transonic flow

84 Sensitivity Analysis

Table 3.3: Comparison of exact and approximate discrete adjoint with finite differences for

transonic and supersonic NACA0012 cases.

Exact A1 |∆|% A2 |∆|%
cl α 0.272864 0.263342 3.49 0.253712 7.02

Transonic cdα 0.017790 0.017263 2.96 0.016785 5.65

cmα -0.086517 -0.082095 5.11 -0.07757 10.34

cl α 0.073866 0.073712 0.21 0.0740152 0.2

Supersonic cdα 0.016737 0.016685 0.31 0.016679 0.35

cmα -0.016285 -0.016157 0.78 -0.016152 0.82

around the NACA0012 atM∞ = 0.85 and α = 1◦, the second case is the supersonic flow

around the same airfoil at M∞ = 1.2 and α = 7◦. The results presented in Table 3.3

show the sensitivities obtained with the exact adjoint code compared with the ones

obtained by using the first and the second of the above mentioned approximations, A1

and A2, respectively. As can be seen, the error in the sensitivity is much larger for the

transonic case. Probably, compared to supersonic flow, the mixed elliptic-hyperbolic

nature of the equations in transonic flow results in higher non-linearities, which cause

the approximations to be less accurate. Although it is not shown in the table, the error

increases to a percentage of 10-30% when the third approximation A3 is used. The 3D

sensitivity code is only implemented according to the approximation A2 and an exact

version is not available. Thus, the gradient cannot be compared with the exact one.

A comparison has been made with a Fréchet derivative, with a suitable increment of

10−6, for the ONERA-M6 wing case also shown in Fig. 3.2. It turns out that the lift

sensitivity differs 0.87%, the drag sensitivity differs 0.27% and the pitching moment

sensitivity differs 2%.

The magnitude of the gradient error does not give an indication of the effectiveness

of the code for optimization purposes. To establish whether an approximation in the

sensitivity is acceptable, the error in the gradient is probably not the best indication. It

seems more appropriate to consider the effect which the gradient has on the behavior of

the optimization process. This aspect has received some attention only recently [32, 22].

The optimization results presented in Chapter 5 are obtained using the exact and the

approximate adjoint codes. There it is possible to validate the effectiveness of these

codes by directly looking at the solutions of the optimization problem.

3.5.4 Verification of the adjoint code

The adjoint code, for instance that of the residual Jacobian, can be verified by using the

identity

P1
T ∂R

∂U
P2 = P2

T ∂R

∂U

T

P1 , (3.50)

3.6. Visualization of the sensitivity variables 85

where P1 and P2 are two generic vectors. The above identity must be satisfied exactly,

i.e., the difference between the left- and the right-hand side must be within machine

precision. Rather than only for the residual Jacobian, the above identity may be used to

check each part of the code, even a single subroutine. Therefore, the development of the

code may be systematically broken into the development of several small blocks, which

then are joined together and checked again. Note that in the case of the differentiated

gradient operator ∂∇V/∂V, the vector P2 must have a number of components equal

to the number of space dimensions.

An important aspect of the above identity is that it can be used also to verify the

approximate adjoint code. In fact, if approximations are introduced, as long as they are

introduced consistently in both the linearized and the adjoint codes, the above identity

must still be satisfied to machine accuracy. The same applies to the primal and to

the dual sensitivities, which are given in Eqs. (3.1) and (3.4), respectively. The latter

sensitivities must be exactly the same, for both the case of exact and approximate

differentiation. For instance, convergence histories of the lift and the drag sensitivities

of the ONERA-M6 wing case are shown in Figs. 3.2c and 3.2d, respectively. Only the

first 100 non-linear iterations are shown. As can be seen, the primal and the linearized

sensitivity converge to the same value.

3.6 Visualization of the sensitivity variables

The linearized variables Uα and the adjoint variables Λ obtained by solving Eqs. (3.44)

and (3.45) may be visualized in the computational domain in much the same way as the

flow variables. Nevertheless, their interpretation is not as straightforward as for the flow

variables is. This holds especially for the adjoint variables.

3.6.1 Linearized variables

By definition, the linearized flow variables Uα are the sensitivity of the conservative

variables with respect to a perturbation. Thus, for each node, Uα contains the sub-

vector uα = [ρα , (ρw)α , (ρet)α]
T . The contours of the density sensitivity ρα, where

α is the angle of attack, may be visualized for the RAE airfoil case, which has been

discussed in Section 2.5.1, and for which the chord-wise Mach number distribution and

the pressure contours are shown in Fig. 2.4a and in Fig. 2.6a, respectively. The contours

of the density ρ and of its sensitivity ρα are depicted in Figs. 3.7a and 3.7b, respectively.

As can be seen, the contours of ρα appear to change in a discontinuous fashion

around the shock. The chord-wise distribution of ρα depicted in Fig. 3.7c shows the

discontinuous behavior near the shock. The discontinuity appears to be that of a Dirac

type of function. It is of that type because, for the flow condition considered in the

above case, a shock is present in the field. In fact, the density has a discontinuity like

that of the Heaviside function, the derivative of which exists in the sense of distributions

and is the Dirac function. As suggested in [101], the density ρ = ρ(x) may be written

86 Sensitivity Analysis

as

ρ = ρ− + [ρ]H(η) , H(η) =






1 , η ≥ 0 ,

0 , η < 0 .

(3.51)

where [ρ] = ρ+ − ρ− is the density jump across the shock, η = (x− s) · n is the normal

distance from the shock line s and H is the Heaviside function, also known as step

function. Differentiating the above equation with respect to α yields

ρα = ρ
−
α + [ρα]H(η) + [ρ] δd(η) ηα , δd(η) =

d H
d η
=






∞ , η = 0 ,

0 , η 6= 0 .
(3.52)

where δd is the Dirac function and ηα is the sensitivity of the shock position with respect

to α. The latter sensitivity expresses how much the shock would displace along η for a

given perturbation α. In the next chapter an application is presented that shows how the

above relation may be used to obtain information about the shock displacement [101].

(a) Density contours. (b) Density sensitivity contours.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0 0.2 0.4 0.6 0.8 1

S
E

N
S

IT
IV

IT
Y

X/C

(c) Density sensitivity.

Figure 3.7: RAE airfoil at M∞ = 0.75 and α = 3 deg.

3.6. Visualization of the sensitivity variables 87

(a) Mach number contours. (b) Third adjoint variable for the lift coefficient.

Figure 3.8: NACA0012 airfoil at M∞ = 1.2 and α = 7 deg.

3.6.2 Adjoint variables

In engineering optimization [126] it is well known that the Lagrange multipliers represent

the sensitivity of the objective function with respect to the active constraints. Thus, the

adjoint variables Λ may be interpreted as the sensitivity of the functional with respect

to the state of the system, which coincides with the residual R. In fact, if the adjoint

problem given in Eqs. (3.3) and (3.4) is manipulated, it can be shown that

Λ =
∂J

∂R
. (3.53)

For instance, in the case of the lift coefficient of an airfoil, the vector Λ contains

sub-vectors [∂cl/∂R1 , ∂cl/∂R2 , ∂cl/∂R3 , ∂cl/∂R4]
T for each node. According to the

definition of residual given in Chapter 2, the variable λ3 = ∂cl/∂R3 is the sensitivity of

the lift coefficient with respect to changes in the y -momentum. A contour plot of λ3 is

shown in Fig. 3.8b for the supersonic flow condition considered already in Section 2.5.1.

The Mach contours for that condition are also given in Fig. 3.8a. As can be seen, λ3
exhibits a reverse trend compared to the flow. The latter trend is due to the fact that

the flow is supersonic and perturbations do not rise upstream. A line exists that divides

the flow in two regions: (i) the upstream region in which perturbation in y -momentum

affects the lift and in which λ3 thus exhibits values different from zero; and (i i) the

downstream region in which perturbation in y -momentum does not affect the lift and

in which λ3 thus vanishes. Instead of the latter physical explanation, one can look at

the problem from a strictly mathematical point of view and realize that the reverse

trend in the adjoint variables is due to the characteristics, which are reversed with the

transposition. An explanation of the meaning of the adjoint variables may be found

in [38].

Since the adjoint variables link the functional to the residual of the system, formu-

lations have been suggested that use the adjoint variables to estimate the error and to

produce indicators for eventually refining the computational mesh [127].

88 Sensitivity Analysis

3.7 Concluding remarks

The discrete adjoint approach to sensitivity analysis is straightforward to understand.

Its implementation is however very complex and demanding. Essentially, as shown in

this chapter, the implementation of the discrete adjoint boils down to three tasks:

(i) Differentiating non-linear numerical functions – The task may be very tedious as

well as complex if the differentiation has to be hand-coded. The exact differenti-

ation of the numerical fluxes presented in this chapter is a clear example of such

complexity. The hand-coding approach has the disadvantage that whenever new

functions are introduced in the implementation, a new differentiation has to be

performed. Tools such as Automatic Differentiation may provide a more system-

atic and less time-consuming approach to the differentiation. Easily, when new

functions are introduced, their differentiated counterpart can be derived and added

very quickly. Alternatively, the differentiation can be much faster if approximations

are introduced. In this chapter some approximations have been presented. In ad-

dition to being faster to implement, those approximations are also faster to run.

For instance, neglecting the limiter gives a faster code because several loops on

the mesh are not performed. However, due to the approximations the adjoint code

is not exact. In terms of computed sensitivity an error is introduced. In Chapter 5

the effect of such error on optimization test cases is discussed and acceptable

approximations are identified;

(i i) Assembling the products that involve the transposed residual Jacobian – Since Au-

tomatic Differentiation produces the projection of the Jacobian onto a vector, this

task could be performed by applying AD to the complete residual assembly routine.

However, the resulting assembly may not be as fast and as memory efficient as

the hand-coded assembly presented in this chapter. Results show that the latter

assembly has a very limited memory usage and takes similar computational time as

the residuals vector assembly. Moreover, it allows to construct efficiently multiple

matrix-vector products, which are needed for the simultaneous solution of multiple

adjoint equations. Clearly the hand-coded assembly requires more effort for the

derivation. However, it must only be derived once. In fact, the architecture of the

unstructured code is such that the edge-based assembly can be separated from

the computation of the fluxes. The numerical flux routines, or similar functions,

are in fact called on a edge-by-edge basis. It is therefore convenient to spend time

and effort for the hand-coding of an efficient assembly. In the present work the

use of Automatic Differentiation is only advocated for the differentiation of the

numerical fluxes, or for other tasks for which performances and efficiency are not

paramount;

(i i i) Solving the adjoint equations iteratively – As shown in this chapter the inclusion of

the reconstruction makes the residual Jacobian poorly diagonally dominant. Con-

sequently the linear system of adjoint equations may prove difficult to solve using

linear solvers. Instead, if the adjoint equations are treated as non-linear equations,

3.7. Concluding remarks 89

the flow solution scheme can be used to solve the equations in a rather straight-

forward way. Such solution method is convenient because the solver is already

available and it is also very robust. The adjoint solver presented in this chapter is

characterized by computing times and storage requirements that matches almost

exactly with that of the flow solver when the preconditioner is stored, and that are

only slightly larger when the preconditioning is matrix-free. The solver has also

the interesting feature of solving multiple adjoint equations simultaneously. The

results show that the simultaneous solution is convenient. In fact, the increase in

memory and computing time is acceptable.

90 Sensitivity Analysis

Chapter 4

Shape Parameterization

4.1 Introduction

4.1.1 Definition and requirements

The parameterization of the shape plays a crucial role in shape optimization because it

provides a representation of the design space. The shape parameters work as design

variables and their variations are transformed by the parameterization in displacements

of the shape. For the parameterization to be effective, the representation of the design

space must be complete and a smooth behavior must be observed during the optimization

process. The lack of completeness may preclude the possibility of finding optimal designs.

For instance, a shape, which is optimal for certain conditions, may not be represented

by the parameterization and thus it may not be found by the optimizer. The lack

of smoothness may result in the appearance of non-smooth features on the shape,

such as cusps or bumps. The latter features may cause the optimization process to

stall in certain circumstances, for instance, when the mesh collapses because the mesh

deformation algorithm cannot accommodate the displacements.

The completeness of the shape parameterization can be tested by the approximation

of different shapes. In fact, it must be possible to approximate a generic shape to a

predefined level of accuracy by including a certain number of parameters. The difference

92 Shape Parameterization

between the original coordinates and that of the approximation should vanish, ideally,

as the number of parameters are increased to infinity. Instead, the smoothness of

the parameterization cannot be tested quantitatively. Usually, any lack of smoothness

is revealed immediately during the optimization process. If there is the risk that the

process breaks down, additional smoothing procedures may be introduced between each

update of the shape.

4.1.2 Existing methods to parameterize the shape

Several methods are available in the literature to parameterize the shape. In the following

some of the existing methods are briefly mentioned. An exhaustive review can be found

in [111].

Probably, in the context of numerical shape optimization the easiest parameterization

method is that of directly using the nodes of the boundary mesh as parameters [86].

The method is very simple and can be applied to 2D and 3D problems. However, it

has the disadvantage of implying a large number of parameters and of offering a poor

representation of the shape. In fact, several nodes may be present on the boundary mesh

and their displacements can easily give non-smooth features. A partial solution to the

problem may be that of implementing a smoothing procedure for the boundary mesh.

Various methods have been investigated that try to represent a given 2D shape,

or its displacements, with a reduced number of parameters. The Hicks and Henne

functions [46], which are also called bumps, may be superimposed on a given shape at

certain locations. The local nature of the functions may cause the displacements to be

concentrated in very few locations, with the result that the final shape may appear to be

bumpy. In certain cases, post-smoothing has to be applied to the optimized airfoils. The

Bezier curves [117] and the Non Uniform Rational B-Splines [74], NURBS, are widely

used. They both use control points, the location of which control the shape deformation.

2D applications show that the NURBS method requires the fewest control points and

allows the shape to deform very smoothly [73]. NURBS have found applications to 3D

problems by means of the free-form deformation method [110], which is very flexible

and allows the parameterization of complex geometries. Application of the method with

Bezier curves are found in [28]. The “Shape Function - Class Function” method [68]

uses Bernstein Polynomials and class functions. The method has been used successfully

for the parameterization of 2D and 3D shapes. In 3D not only wing-like shapes have

been parameterized but also fuselage- and nacelle-like shapes.

4.1.3 Orthogonal representations

An interesting parameterization method is based upon the concept of orthogonal rep-

resentation of the shape. According to the concept, the shape may be represented by

a linear combination of orthogonal basis functions. The orthogonality property ensures

completeness in the representation. The shape may be usually represented by a reduced

number of basis functions. Moreover, due to the orthogonality, better convergence

properties of the optimization process are expected.

4.2. Parameterization with Chebyshev polynomials 93

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

T
k

X

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

D
k

X

k = 0

k = 1

k = 2

k = 3

(b)

Figure 4.1: (a) Chebyshev basis functions; (b) Design basis functions.

In spite of their interesting features orthogonal representations are not widely used.

Although some applications are available [132, 69, 23, 107], their number is still limited in

comparison with other methods such as those using NURBS or Bezier curves. Probably,

they are not widely used because their applications are limited to 2D cases.

The parameterization considered here is that based on Chebyshev polynomials [132].

In the following it is shown how the parameterization can approximate very accurately

airfoil shapes. Moreover, an idea is presented to extend the applicability of the param-

eterization to wing-like shapes. Compared to the orthogonal representations used in

other works [69, 107, 23], the representation used here has an important difference:

the orthogonal shape functions are readily available in closed form, as shown below. In-

stead, other works derive the orthogonal shape functions by means of a Gram-Schmidt

orthonormalization process, which requires numerical integration to compute the basis

functions of a given shape.

4.2 Parameterization with Chebyshev polynomials

4.2.1 Parameterization of an airfoil

Airfoil curves can be represented by means of an orthogonal series:

f (x) =

ND∑

k=0

αkDk(x) , Dk = Tk − Tk+2 . (4.1)

αk is the coefficient of the design basis function Dk . Suitable values of the coefficients

αk must be found in order to represent a given curve. Tk is the Chebyshev basis function,

which is defined as

Tk(x) = cos(kγ(x)) , γ(x) = cos−1(2
√
x − 1) , (4.2)

where k ≥ 0 and 0 ≤ x ≤ 1. The Chebyshev basis function Tk is not used directly

because it cannot give closure at the leading and trailing edges, i.e., Tk 6= 0, for x = 0

94 Shape Parameterization

and x = 1. Instead, the design basis function Dk defined in Eq. (4.1) yields closure at

the two points. Figure 4.1 shows the two basis functions. As can be seen from Fig. 4.1b,

the first design basis D0 closely resembles an airfoil shape. The basis Dk crosses the

abscissa k times.

In the present work the parameterization of Eq. (4.1) is used to independently ap-

proximate the upper and the lower curves of the airfoil. An alternative is to use the

camber line method, which parameterizes the camber line of the airfoil and the thick-

ness distribution independently. When using the camber line method, the lower/upper

curve of the airfoil can be obtained by subtracting/adding half of the thickness to the

camber line.

4.2.2 Evaluation of the shape coefficients

Suitable values of the αk coefficients for a given curve can be found by minimizing the

error between the expansion in Eq. (4.1) and the curve. The curve is given as a set of

NP points, [xn, yn]. The error may be represented by a quadratic error function, which

depends on the basis function’s coefficients ᾱ = [α1, ..., αN] and reads

E(ᾱ) =

NP∑

n=1

e2n =

NP∑

n=1

(f (xn)− yn)2 . (4.3)

en represents the local error, i.e., the difference in y-coordinate between the curve and

the approximation at point n. According to Eq. (4.1), the above equation may be written

as

E(ᾱ) =

NP∑

n=1

(
ND∑

k=0

αkDk(xn)− yn
)2
. (4.4)

Sensitivity information may be computed analytically and used to minimize efficiently

the above error. Some algebra shows that the component i of the gradient ∇E may be

written as

∂E

∂αi
= 2

NP∑

n=1

(
ND∑

k=0

αkDk(xn)− yn
)
Di(xn) , (4.5)

whereas the component i j of the Hessian H may be written as

∂2E

∂αi∂αj
= 2

NP∑

n=1

Di(xn)Dj(xn) . (4.6)

By means of the gradient and the Hessian, the error E may be expressed in the quadratic

form

E(ᾱ) = E(ᾱ0) +∇ET (ᾱ− ᾱ0) +
1

2
(ᾱ− ᾱ0)TH(ᾱ− ᾱ0) . (4.7)

4.2. Parameterization with Chebyshev polynomials 95

The latter form is also exact according to Eq. (4.4). The coefficients ᾱ that minimize

the error E are found by equating the first derivative of the above equation to zero. It

gives

ᾱmin = ᾱ0 +H
−1∇E . (4.8)

Given an airfoil curve, ᾱmin is the vector that contains the ND basis function coeffi-

cients that approximate the curve with the lowest error possible. ᾱ0 is an initial value

of the coefficients, which can be conveniently chosen to be zero. The number of basis

functions ND can be chosen appropriately according to the required level of accuracy

that must be achieved by the representation. In order to define the level of accuracy,

instead of using the global quadratic error E, it is best to use the maximum local error

emax = max(en). The latter quantity is easier to interpret since it may be visually in-

spected. The level of accuracy of the approximation should increase with the number

of basis functions ND. In general, for a given level of accuracy, the number of basis

functions ND depends on the complexity of the airfoil shape.

Authors [122] investigated the appropriate value of emax that should be obtained in

order to avoid discrepancies between the flow solutions computed using the original and

the approximate airfoil geometries. The investigation is relevant for flow solvers that

discretize the boundary conditions with linear elements, like in the present work. The

conclusion of the investigation is that for an airfoil of unit chord an error emax = 8×10−5
should be achieved.

4.2.3 Nose radius of curvature and trailing edge angle

Airfoil design often needs the nose radius and the trailing edge angle for the purpose

of enforcing constraints on their values. The nose radius and the trailing edge angle

of the parameterized airfoil may be evaluated using the derivatives of the curve. The

parameterization given in Eq. (4.1) is differentiable and the derivatives are easily obtained

analytically. The mth order derivative reads

f m(x) =

ND∑

k=0

αk(T
m
k (x)− Tmk+2(x)) , (4.9)

which needs the Chebyshev basis function Tk to be differentiated. Tedious algebraic

manipulations show that the first derivative T ′k(x) can be written as

∂Tk
∂x
= kη(x) sin(kγ(x)) , (4.10)

whereas the second derivative T ′′k (x) can be written as

∂2Tk
∂x2

= −k2η(x)2Tk(x)−
η(x)2

2
(1− ω(x)− 2ω(x)2)∂Tk

∂x
, (4.11)

with the functions ω and η defined as

ω(x) = 2
√
x − 1 , η(x) =

2√
(1− ω(x))(1 + ω(x))3

. (4.12)

96 Shape Parameterization

The first and the second derivative of the polynomial, f ′ and f ′′, can be used to

compute the trailing edge angle δ and the node radius ρ, which are defined respectively

as

δ = f ′ , ρ =

√
1 + f ′3

f ′′
. (4.13)

ρ should be evaluated for x = 0 and δ for x = 1. For these values of x , the function η

is not defined. This problem can be overcome by evaluating Eqs. (4.10) and (4.11) in

the limit for x → 0 and x → 1. In practice, a small value ǫ is used to evaluate ρ and

1− ǫ is used to evaluate δ. The value ǫ = 1−16 was found to be satisfactory.

(a) ONERA (b) NACA0012 (c) RAE2822

(d) NLR7301 (e) WHITCOMB (f) NASA-HSNLF

(g) BWB-F (h) BWB-W (i) EPPLER-420

ND NP ND NP ND NP
ONERA 13 70 NACA0012 5 65 RAE2822 11 65

NLR7301 21 40 WHITCOMB 27 40 NASA-HSNLF 44 60

BWB-F 10 65 BWB-W 14 65 EPPLER-420 19 40

Figure 4.2: Airfoils. The table shows the number of required basis functions ND for which the

maximum error emax < 8× 10
−5.

4.2.4 Parameterization of 3D displacements

The simplest way of extending a 2D parameterization to 3D problems is probably that of

parameterizing only some sections along the wing span and interpolating all the points

that lie in between. However, although the method is very easy to implement, the quality

4.2. Parameterization with Chebyshev polynomials 97

of the parameterization is poor. Non-smooth areas or bumps may appear as the result

of the local nature of the interpolation between the sections.

A smooth 3D parameterization of the wing may be achieved by using a Chebyshev

polynomial in which the coefficients change along the span according to another poly-

nomial. Instead of parameterizing the shape, as for the 2D case, it is probably more

convenient to parameterize its displacements. In fact, problems may arise if the geom-

etry is linked to a CAD model that must be updated when the geometry is changed.

The parameterization of the wing displacements achieves a greater flexibility because

the displacements can be conveniently sent to the CAD model only at the end of the

optimization process. The idea is explained in the following. For simplicity the exposition

is limited to a wing with a flat planform.

Consider a wing point x , y on the planform. The y coordinate is scaled by the span

s. The x coordinate is scaled by the chord c, which varies along the span. I.e.,

y ∗ =
y

s
, x∗ =

x − xle(y ∗)
c(y ∗)

, (4.14)

where xle is the coordinate, along the chord-wise direction, of the leading edge of the

section. In practice, the above scaling maps the planform into the unit square. The

displacement of the point, which must be added on the existing shape, may be defined

as

∆f (x, y) = c(y ∗)

ND∑

k=0

αk (y
∗)Dk (x

∗) , (4.15)

where αk(y
∗) is the coefficient that depends on the dimensionless y coordinate. In the

present work a polynomial is used, which reads

αk(y
∗) =

M∑

m=1

αkmy
∗m−1 . (4.16)

The coefficients αkm are used as design variables. IfM = 2 the above relation prescribes

a linear variation of the coefficient αk along the span. IfM = 3 the variation is quadratic.

If necessary, constraints on the displacements may be enforced explicitly by assigning

certain values to some of the above coefficients. For instance, zero displacement at the

root is obtained by setting

αk1 = 0 for k = 1, ND , (4.17)

which is equivalent to start the summation in the above equation from m = 2. Instead,

zero displacement at the tip section, where y ∗ = 1, is obtained by setting

αkM = −
M−1∑

m=1

αkm for k = 1, ND . (4.18)

Note that other kind of polynomials can be employed, e.g., an orthogonal expansion

similar to the Chebyshev representation.

98 Shape Parameterization

When the wing has a twist or a dihedral angle the planform is not flat. Nevertheless,

the parameterization described above applies almost identically because the planform

can be made flat by subtracting the twist and the dihedral components. In general, the

latter components should also be present for optimization purposes. For instance, the

twist has an important role in defining the lift distribution along the span. In the present

work twist and dihedral angle are not considered.

4.2.5 Scaling of the coefficients for shape optimization

The αk coefficients are not used directly as design variables. They are scaled first by

their initial values, i.e., by the values that define the initial shape. Consequently, an

identical variation of the design variables imply different variations in the parameters,

each of which varies proportionally to its initial value. For instance, if α′k is the scaled

parameter/design variable and α0k is the initial value of the parameter, the variation of

the parameter becomes ∆αk = α
0
k∆α

′
k .

In practice, scaling is not optional but essential. As will be shown later, high-

frequency basis (large values of k) tend to have coefficients of several orders of mag-

nitude smaller than the low-frequency ones. It could not be otherwise because, as can

be seen by Fig. 4.1b, the sum of basis functions with similar values of the coefficients

may not result in an airfoil-like shape. Without the aforementioned scaling it is highly

likely that an equal variation of the parameters could give a new set of parameters of

comparable order of magnitude and thus a shape different from that of an airfoil. In

general, also for convergence reasons, scaling of the design variables is a recommended

practice in optimization [126].

For 2D problems how to scale is clear because the scaling coefficients are that of

the initial shape. Instead, for 3D problems the scaling coefficients may not be clearly

identified. In fact, each section of the wing may be different and therefore may have

different coefficients. A possibility is to define a set of coefficients that are averaged

along the span.

4.3 Examples

4.3.1 Approximation of airfoils

The accuracy of the parameterization is demonstrated with the approximation of some

airfoils, which are depicted in Fig. 4.2. They represent different designs, which are

suitable for conditions that go from low subsonic to transonic. The geometries of the

airfoils are expressed by different numbers of points NP , which are shown in the table

at the bottom of the figure. The number of points NP is usually not a variable, unless

the airfoil may be expressed analytically. For instance, the NACA0012 airfoil is defined

by an analytic formula, which allows to specify the number of points and to define their

distribution along the x-axis. Instead, the RAE2822 airfoil is defined by a table of points,

which do not leave the same freedom. Both the formula and the table of points can be

found in [133].

4.3. Examples 99

-16

-14

-12

-10

-8

-6

-4

-2

 10 20 30 40 50 60 70 80 90 100

M
A

X
IM

U
M

 E
R

R
O

R

NUMBER OF BASIS FUNCTIONS

NACA0012
ONERA

RAE2822
NLR7301

WHITCOMB
NASA-HSNLF

WHITCOMB
BWB-W
BWB-F

(a)

-6

-5

-4

-3

-2

-1

 10 20 30 40 50 60

M
A

X
IM

U
M

 E
R

R
O

R
NUMBER OF BASIS FUNCTIONS

ERR= 8 x 10^(-5)

(b)

Figure 4.3: Maximum error

The coefficients are found by solving Eq. (4.8). The values of the maximum error

for the different airfoils are shown in Fig. 4.3, which has for abscissa the number of

basis functions ND. Since each airfoil has two curves, the plotted value of the error is

the maximum of the errors evaluated on the two curves. Figure 4.3a shows that the

maximum error is reduced up to machine precision when a number of basis ND ≈ 60−90
is used. However, in order to approximate the airfoils to the recommended level of

accuracy [122] emax = 8 × 10−5, a smaller number of basis functions can be used.

Figure 4.3b shows a magnification of Figure 4.3a. The range of the maximum error is

limited to a value of 10−6 whereas that of the number of basis functions is limited to

a value of 60. The horizontal line emax = 8× 10−5 is superimposed on the figure. The

exact number ND which is required for achieving the recommended level of accuracy, i.e.,

the number at which the curves in Figure 4.3b cross the horizontal line, is given in the

table of Fig. 4.2. The maximum number of basis, 44, is required by the NASA-HSNLF

airfoil, whereas the lowest, 5, is required by the NACA0012.

Figure 4.4 shows the values of the first 10 coefficients for the NACA0012, RAE2822

and NASA-HSNLF airfoils. The lower curves of the latter two airfoils are the ones that

start with negative values. As can be seen, although the airfoils require different number

of basis functions, the values of their coefficients have similar order of magnitude. For

each airfoil, as anticipated in the previous section, the magnitude of the coefficients

decrease rapidly and become relatively small after the fifth or sixth basis function. When

scaling is applied, also the gradient tends to have the same decreasing trend. From an

optimization point of view, the components for which the gradient is relatively small

are not very influential. In practice, the optimization may be carried out with a lower

number of basis functions than that required for approximating the shape.

As a final remark, it is important to realize that the number of basis functions ND
and the number of airfoil points NP may not be chosen arbitrarily. If ND is too large

compared to NP , it is possible that certain "high-frequency" variations are filtered out.

In practice, if the airfoil data is too coarse, high-frequency basis may not be captured at

the approximation stage. However, when the parameterization is later used to represent

100 Shape Parameterization

-3

-2

-1

 0

 1

 2

 3

 4

 0 2 4 6 8 10

C
O

E
F

F
IC

IE
N

T

BASIS FUNCTION

NACA0012
RAE2822

NASA-HSNLF

Figure 4.4: Basis functions coefficients

the airfoil on a fine distribution of points, the high-frequency basis may appear and

may cause unwanted oscillations. Hence, in order to parameterize airfoils that are given

with very few points, the method to extract the parameters should include additional

constraints on the smoothness.

4.3.2 Generation of a wing-like shape

In order to show the qualities of the 3D displacements given by Eq. (4.15), a wing-like

shape is generated. The starting point is a flat planform, which has non-straights leading

and trailing edge lines. Therefore, it has a chord that varies non-linearly along the span.

The planform configuration is not from an existing design, it has been defined only for

the purpose of creating a complex geometry. Three airfoils are used: The NASA-HSNLF

airfoil of Fig. 4.2f is placed at the root section, y ∗ = 0; the ONERA airfoil of Fig. 4.2a

at the tip section, y ∗ = 1; and the BWB-W airfoil of Fig. 4.2h is placed at mid-span,

y ∗ = 0.5. The coefficients in Eq. (4.16) are defined explicitly to be equal to that of the

three airfoils at their corresponding locations. In practice, M = 3 is used in Eq. (4.16).

The wing planform is mapped into the unit square and is meshed. The displacements

of the lower and upper surfaces are computed on a mesh with 100 points along both

chord- and span-wise directions. The wing is shown in Fig. 4.5. The figure has been

realized by a post-processing tool. As can be seen both sides of the wing appear to be

very smooth. The BWB-W airfoil located at the middle of the wing-span is not visible

because it has been perfectly blended within the wing surfaces. The lower side of the

wing, see Fig. 4.5b, has a complex geometry. On the lower side, in proximity of the

trailing edge line, the chord-wise first derivative changes signs according to the shapes

of the three airfoils.

4.3. Examples 101

(a) Top view

(b) Bottom view

Figure 4.5: Wing-like shape generated by the 3D parameterization

102 Shape Parameterization

4.4 Concluding remarks

The Chebyshev polynomials are capable of approximating airfoil shapes accurately, using

a limited number of parameters. A least-squares procedure may be used to find the

parameters for a given airfoil. In the three-dimensional space the extension of the

Chebyshev parameterization is not obvious. In this chapter a concept suitable for wing-

like shapes has been presented. It assumes that the parameters change along the span-

wise direction according to another polynomial. The concept is not intended for the

parameterization of the wing, but for the parameterization of its displacements. Hence,

the computation of the wing parameters is avoided and the flexibility of the method

is increased. Results show that the three-dimensional displacements appear to be very

smooth, also in the case of wings with non-linear planform, for which the surfaces do

not have a simple curvature.

Chapter 5

Shape Optimization

5.1 Optimization problems and algorithms

5.1.1 Inverse design

Given a certain flow field, inverse design aims at recovering the shape capable of gener-

ating that field. An engineering description of the method, which cast the inverse design

problem in the form of a least-squares minimization, is as follows.

Consider a shape S(ᾱ), which can deform according to the parameters ᾱ and is

characterized by the pressure p(ᾱ). Suppose that the target pressure p∗ has been

defined, but the parameters α∗ that define the shape S∗ = S(ᾱ∗) to which the target

pressure corresponds are unknown. The latter parameters may be found by solving an

unbounded minimization problem, which reads

min f (ᾱ) , f (ᾱ) =

∮

S(ᾱ)

(p(ᾱ)− p∗)2dS(ᾱ) . (5.1)

Note that the target pressure is fully achieved when the functional f vanishes. However,

there is no guarantee of the existence and uniqueness of a shape to which the target

pressure corresponds. If the shape does not exist, even if a feasible shape S∗ that

minimizes the above functional can be found, the functional does not vanish.

104 Shape Optimization

The inverse design problem defined above may be solved by an unconstrained op-

timization algorithm. A possible one is the steepest descent, which is the simplest

amongst the available algorithms. It moves in the direction opposite to that of the

functional gradient, i.e.,

ᾱn+1 = ᾱn − λ∇f n , (5.2)

where λ is a step-size parameter. A possibility for the determination of λ is a line-

search. For instance, the function may be approximated by a parabola along the gradient

direction and λ computed accordingly. Because of the lack of second order information

the algorithm may converge slowly towards the optimum solution. More sophisticated

Quasi-Newton algorithms are available [126], which approximate the Hessian of the

functional in order to make second order information available. When the starting

point is in the neighborhood of the optimum solution, those algorithms are expected to

converge faster.

Note that from an engineering point of view the practice of inverse design may be

acceptable when the designer knows how the best pressure should look like. For instance,

that was the case with transonic airfoils, with which designers gained considerable ex-

perience by means of both experiments and theoretical analysis. Instead, the practice

may be questionable when the designer is operating in a vacuum. The most obvious

example of such a situation is the case of an innovative configuration for which the best

pressure may be unknown. In the latter case, a method that allows the designer to find

the optimal shape for a given set of design requirements should be employed. Such a

method may be implemented using constrained design. In the following a description is

given.

5.1.2 Constrained design

Constrained design aims at finding the shape that minimizes an objective function and

satisfies some design constraints. The objective function is a figure of merit, which is

representative of the design performances, whereas the constraints are design require-

ments. For instance, a typical constrained design problem may be that of minimizing

the drag coefficient while enforcing constraints on the lift, on the pitching moment and

on some geometric quantities such as wing span or wing volume.

The general form in which constrained optimization problems are written is

min f (ᾱ)

gj (ᾱ) ≤ 0 , (j = 1, ng) , (5.3)

hk(ᾱ) = 0 , (k = 1, nh) ,

ᾱL ≤ ᾱ ≤ ᾱU .

where f is the objective function, gj are the inequality constraints, hk are the equality

constraints and ᾱL and ᾱU are the lower and upper bounds for the design variables,

respectively. In the case of the aforementioned constrained drag minimization, a possible

5.1. Optimization problems and algorithms 105

definition for the objective and for the constraints on the functionals is as follows,

f =
cd
cdR
, hl =

cl
cl R
− 1 , gm =

cm
cmR

− 1 . (5.4)

Instead, a possible definition of the geometric constraints on the thickness, gt , on the

leading-edge radius of curvature, gρ, on the trailing edge angle, gθ, and on the volume,

gV , is as follows,

gt = 1−
tcmax
tcmaxR

, gρ = 1 −
ρc
ρcR
, gθ = 1−

θ

θR
, gV = 1−

V

VR
. (5.5)

The volume constraint is only present for 3D optimization problems. In 2D it can be

replaced by a constraint on the area of the section.

The subscript R in the two equations above indicates reference values. The latter

value may be chosen to be equal to the initial value, so that at the beginning of the

optimization the objective has value 1 and the constraints have values 0. However,

in the case of the constraints, other reference values could be chosen to specify the

design requirements. For instance, if the pitch moment coefficient is allowed to halve,

its reference value should be chosen as cmR = 0.5cm0, so that during the optimization

cm ≤ 0.5cm0 always.

The constrained design problem in Eq. (5.3) may be cast in an unconstrained form

if the constraints are included as penalty terms in the objective [126]. The penalty

approach allows the use of an unconstrained optimization algorithm, which means that

only the gradient of the objective has to be computed, saving the time required for

computing the adjoint of the constraint functionals. However, problems may arise due to

ill-conditioning. Moreover, the approach is not very accurate in enforcing the constraints.

A better choice is to use constrained optimization algorithms, which are specifically

devised to solve problems of the type given in Eq. (5.3). For instance, Sequential

Quadratic Programming (SQP) algorithms have been used in the present work for some

problems. They use second order information and are known to be very efficient and

accurate. Their implementation is complex and a description is not given here because

they have been used as black-boxes.

In the following a very simple Sequential Linear Programming (SLP) algorithm is

briefly described. The description serves the purpose of introducing the reader to the

problem of constrained optimization at a basic level. The concept behind the algorithm

is very simple and can be grasped with basic calculus. In practice, the algorithm shows

to be effective for shape optimization problems. Nevertheless, it only uses first-order

information and thus it is not very efficient.

5.1.3 Sequential Linear Programming: the method of centers

The simplest possible Sequential Linear Programming algorithm linearizes directly the

constrained problem in Eq. (5.3). The result is a linear problem that can be easily solved

by a Linear Programming algorithm, e.g., the Simplex method. Unfortunately, as can

be shown by Fig. 5.1a, the optimum of the linearized problem may lie outside of the

106 Shape Optimization

feasible design space. Therefore, the optimum may be approached from the infeasible

region of the design space and accuracy issues may arise.

The method of centers tries to find the largest hypersphere that fits into the linearized

design space, which is delimited by the gradients of the objective function f and of the

constraints gj and hk . Once the latter has been found, a move in the center of the

hypersphere will bring the design in a position which is closer to the optimum. A new

linearization may be performed, a new hypersphere may be computed and again the

design may be moved towards its center. The process may be repeated until convergence

to the non-linear optimum.

(a) ᾱ0 = linearization point, ᾱc = center of the

circle,ᾱl = optimum of the linearized problem, ᾱnl
= optimum of the non–linear problem

(b) s̄ = move toward the center of the circle, δᾱ

= move toward the constraint boundary

Figure 5.1: Geometric interpretation of the method of centers

The interesting feature is that in the latter case the optimum is always approached

from the feasible region. Moreover, unfeasible designs can be brought into the feasible

region if the linearized objective function is ignored when the hypersphere is computed.

As can be seen from Fig. 5.1b, the largest hypersphere is computed by means of some

geometric arguments [126]. In fact, the hypersphere radius r should be the result of a

maximization problem under the constraints that df − r ≥ 0 and dj − r ≥ 0 for j = 1, ng
with

df = −
∇f T s̄
|∇f | , dj =

∇gj T (δᾱ − s̄)
|∇gj |

= −g(ᾱ0) +∇gj
T s̄

|∇gj |
, (5.6)

where dj is obtained considering that, being δᾱ the move to the constraint boundary,

one has gj (ᾱ0+δᾱ) = gj(ᾱ0)+∇gj T δᾱ = 0. If equality constraints have to be included,

the move ᾱ towards the center should not violate these, which means hk(ᾱ0 + ᾱ) =

hk(ᾱ0) +∇hkT δᾱ = 0 for k = 1, nh. After some algebra, the maximization problem for

the radius r of the hypersphere may be stated as

5.2. Mesh deformation and geometric sensitivities 107

max r ,

∇f T∆ᾱ+ |∇f |r ≤ 0 ,

∇gj T∆ᾱ+ |∇gj |r ≤ −gj(ᾱ0) (j = 1, ng) , (5.7)

∇hkT∆ᾱ = −hk(ᾱ0) (k = 1, nh) ,

min(s̄ , ᾱL − ᾱ0) ≤ ∆ᾱ ≤ min(s̄ , ᾱU − ᾱ0) ,
r ≥ 0 .

Equation (5.7) is a Linear Programming problem for the vector [s̄ , r]T . After the solution

of the problem, the new design located in the center of the hypersphere can be obtained

as ᾱnew = ᾱ0 + s̄. However, as can be seen from Fig. 5.1a, one can also take an

additional move in the direction of the steepest descent in order to get closer to the

optimum. In this case ᾱnew = ᾱ0 + s̄ − βr∇f /|∇f | where 0 ≤ β ≤ 1. Due to such

additional move, also the line corresponding to the equality constraints in Eq. (4) should

be slightly modified in order to have hk(ᾱ0 + s̄ − βr∇f /|∇f |) = 0 for k = 1, nh. Apart

from the positive effect of accelerating the convergence to the optimum, the additional

move can increase the risk of violating the constraints.

A negative aspect of this algorithm is the requirement of move limits [126] for those

problems that are under-constrained. In fact, in such a case the linearization can lead to

problems that are unbounded. Unfortunately, this is the case for the problems considered

here. Therefore, move limits have to be defined together with a reduction factor. The

latter has to reduce the move limits when the optimum is approached. One can think

the move limits as a box in which the search is limited, an artificial bound for a problem

that would be otherwise unbounded.

In practice, when move limits b̄ are introduced, the fifth line of Eq. (5.7) is replaced

by −min(b̄, s̄ , ᾱL− ᾱ0) ≤ ∆ᾱ ≤ min(b̄, s̄ , ᾱU − ᾱ0). In the present work the move limits

are equal for each variable, therefore they can be written as b̄ = bū, where ū is the

unit vector. The value of b is determined by numerical experiments. Choosing relatively

large values for the purpose of speeding up convergence may cause oscillations. Instead,

smaller values yield a smooth convergence at the price of increased computing time.

It is possible for certain applications that the initial design is unfeasible. However,

before starting the optimization it is desirable to achieve a feasible design. As already

mentioned, with minor modifications the method of centers may be used for that pur-

pose. In the geometric construction presented above the linearized objective function

does not have to be included. It means that the second line in Eq. (5.7) may be simply

neglected and one has to calculate the largest hypersphere that only fits the space de-

limited by the linearized constraint. In Section 5.5.2 an application is presented where

the design is initially unfeasible.

5.2 Mesh deformation and geometric sensitivities

The description of the shape optimization framework is not complete without a descrip-

tion of the mesh deformation strategy. Recall that the latter component kicks in when

108 Shape Optimization

new boundary mesh displacements, ∆XB = ∆XB(ᾱ), become available from the shape

parameterization. The displacements must be imposed on the computational domain

and therefore the mesh coordinates X must be updated accordingly.

Several mesh deformation strategies are available. Probably the simplest and the

most widely used one is the spring analogy, which is also used in the present work. The

strategy works fine for the Euler type of meshes considered here. It does not work

fine on Navier-Stokes meshes, which are characterized by the presence of slender cells

in the boundary layer. As discussed below, those cells have the tendency to collapse

when the spring analogy is used. Apart from the effectiveness of the mesh deformation

strategy, the solution method adopted plays an important role in the efficiency of the

whole procedure. In fact, the linear system arising from the mesh deformation equations

may be time-consuming to solve, especially for very large meshes, such as for 3D cases.

The sensitivity of the mesh deformation with respect to the displacements must be

included in the computation of the final sensitivity. Since a large linear system may be

involved, the computation of the sensitivity may be a limiting factor in achieving global

efficiency of the framework. In fact, similarly to the flow solver, solving the equations for

a number of times equal to the number of the shape parameters may be time consuming.

5.2.1 Spring analogy

The deformation method used here works as follows. The displacement of each node is

initialized to zero, except the displacement of some of the boundary points, contained in

the set B, which are initialized to ∆XB. Those boundary points are only the points that

must be displaced (as described below, other boundary points must remain fixed). The

displacement of each internal point ∆Xi is then iteratively solved with Jacobi iterations:

∆Xi
m+1 =

∑Ni
j=1 ki j∆Xj

m

∑Ni
j=1 ki j

, (i = 1, N ; i /∈ B) , (5.8)

where Ni is the number of nearest neighbors of the node i and ki j is the stiffness

associated with the edge i j . The latter has a numerical value equal to the inverse of

the edge length. By means of Eq. (5.8), the boundary displacement ∆XB is iteratively

propagated in the whole domain. When the iterations are stopped, the mesh coordinates

are updated as Xnew = X+ ∆X.

Note that although the method is referred to as spring analogy, it resembles such

an analogy only for the one-dimensional case. In fact, Eq. (5.8) is decoupled and

gives a number of independent equations equal to that of the space dimensions. The

practical consequence is that a displacement in a certain coordinate direction is only

propagated in that direction, e.g., a z boundary displacement only generates z mesh

displacements. Intuitively, one can see that, for a deformation method to work properly

for large deformations, the displacements should also be propagated in other directions.

If not, it is difficult to preserve the shape of the mesh cells, with the result that the

mesh may collapse. In general, the algorithm works fine for Euler-flow types of meshes.

The set B contains a sub-set of the complete set of boundary points. In fact, certain

boundary points, such as the farfield or symmetry plane points are not displaced. Still

5.2. Mesh deformation and geometric sensitivities 109

the complete set of points may be used, provided that the displacement of fixed points

is set to zero. For certain regions particular care is required. For instance, the tip region

of the wing must follow the deformation of the tip airfoil. In the present work, the

boundary points at the tip are allowed to displace only along directions that are parallel

to the tip section. It means that those points, along the displacement directions, are

treated as unknown and solved together with the internal points according to Eq. (5.8).

The method is easy to implement since it only implies the use of an additional flag, with

no major modifications of the algorithm. However, the computational time appears to

increase appreciably as the problem converges at a lower speed. An alternative could

be that of smoothing the tip points prior to the application of the mesh deformation

algorithm.

As shown by Eq. (5.8), Jacobi iterations make the solution of the spring analogy

very easy to implement. Nevertheless, convergence speed is low. Whereas for 2D cases

the time required for the solution appears to be negligible, for 3D cases it increases

appreciably. Other solution methods, such as the symmetric Gauss-Seidel scheme used

for the flow solver, may improve the performance dramatically.

5.2.2 Geometric sensitivities

The term geometric sensitivities is used to indicate the derivatives ∂R/∂αj and ∂Ji/∂αj
that appear in Eqs. (3.2) and (3.3), which are taken with respect to geometric quantities.

It is possible to identify and to distinguish between the contributions of the different

operations to the final value of the geometric sensitivities. For instance, consider the

residual derivative. The situation is similar for the functional derivatives. In abstract

form, the residual vector has a dependency R = R(X,N(X),∇V(X),Σ(X)) on the

mesh points X. The latter points are related to the parameters αj by the relation

X = X(∆XB(αj)), where ∆XB are the boundary displacements imposed on the mesh.

When a displacement is imposed, the mesh points X are displaced using the spring

analogy described in the previous section. The vector N contains the metrics of the

dual mesh, i.e., the integrated normals and the control volumes. Applying the chain rule

gives

∂R

∂αj
=

(
∂R

∂X
+
∂R

∂N

∂N

∂X
+
∂R

∂∇V
∂∇V
∂X

+
∂R

∂Σ

∂Σ

∂X

)
∂X

∂∆XB

∂∆XB
∂αk

. (5.9)

The term ∂∆XB/∂αj represents the differentiation of the shape parameterization

whereas the term ∂X/∂∆XB represents the differentiation of the mesh deformation

algorithm. The terms ∂R/∂X, ∂R/∂N, ∂R/∂∇V and ∂R/∂Σ represent the differen-

tiated residual routine with respect to the different inputs. The terms ∂∇V/∂X and

∂Σ/∂X represent the differentiation of the gradient and limiter formulation. The term

∂N/∂X represents the differentiation of the median-dual mesh metrics with respect to

the mesh points.

In the present work, at least in 2D, the source code to assemble the above terms has

been generated by the forward vectorial mode of Tapenade [3]. In 3D the code has not

been differentiated yet and the geometric sensitivities have been evaluated by means of

110 Shape Optimization

a finite difference step, i.e.,

∂R

∂αj
=
R(αj + ǫ)− R(αj)

ǫ
, ǫ→ 0 . (5.10)

The finite difference approach is not the best in terms of accuracy. However, it is

very easy and straightforward to implement since it just requires an additional residual

evaluation for each variable.

Note that the two approaches are not computationally efficient because of the pres-

ence of the mesh sensitivity ∂X/∂∆XB. In fact, the mesh deformation algorithm is

iterative and the above method of computing the geometric sensitivities requires the

differentiated mesh deformation algorithm to be run as many times as the number of

design variables. Therefore, for very large meshes the computation of the mesh sensi-

tivity may become a bottleneck.

Forward and reverse mesh sensitivity

Equation (5.8) shows that the mesh deformation is linear because the left-hand side

terms are obtained by multiplying the right-hand side terms by a constant. Therefore,

the mesh sensitivity ∂Xnew/∂αj ≡ ∂∆X/∂αj can be computed with the same algorithm,

providing suitable inputs for the boundary displacements. If the boundary displacements

in Eq. (5.8) are initialized with ∂∆XB/∂αj , which is the sensitivity of the boundary

displacements with respect to the shape parameter j , Eq. (5.8) will produce the mesh

sensitivity ∂∆Xi/∂αj , which is the sensitivity of each node displacement with respect to

the jth parameter. Note that the sensitivity is consistent only if the number of iterations

m used for its computation is the same as that used for the deformation.

Since the sensitivity must be computed for the total number of parameters, the

algorithm must be run several times. If there are several parameters and the time

required to solve the deformation is large, for instance for 3D cases with deformations

solved by Jacobi iterations, the mesh sensitivity becomes very expensive to compute. In

the present work, the computational time required to compute 2D mesh sensitivities was

a fraction of that required by the flow solver. Instead, for 3D cases the computational

times become comparable. For a larger number of shape parameters, say more than

100, more time will be spent on computing the mesh sensitivity than on solving the flow

equations.

In order to reduce the computational time, similarly to the flow equations, adjoint

equations may be derived also for the mesh deformation equations [96, 84, 5]. Since the

deformation operator is symmetric, there are no matrix transposition issues. The same

algorithm as that used for the mesh deformation and for the forward sensitivity may be

used, providing suitable initial values for the displacements. Note that since the problem

is reversed, the displacements are initialized on the internal nodes, and propagated on

the boundary. The mesh adjoints have not been implemented in the present work and

therefore the equations are not provided here.

5.3. 2D Applications 111

Hand-coding of the geometric sensitivities

An explicit implementation of the geometric sensitivities is presented in [5]. In that

work the geometric sensitivities are hand-coded and the gradient of the functional is

first assembled with respect to the median-dual mesh, and then is propagated to the

boundary mesh. The adjoint of the mesh deformation equations is used.

In the present work an explicit implementation of the geometric sensitivities could

be performed following the approach presented in Chapter 3. However, instead of using

Eq. (5.10), one could express the residual vector only in terms of median-dual quantities.

An additional array XE of size equal to the number of edges could be introduced. The

components of the latter array would be the edge vectors. I.e., the component of XE
corresponding to the edge i j would be xj − xi . It can be shown that the equations for

the metrics in Section 2.2.2 can be rearranged in a way that the integrated normals ni j
and nBi are expressed using terms of the type xj − xi , which means that N = N(XE).

The least-squares gradient depends explicitly on XE , whereas the Green-Gauss gradient

depends on XE through N. By neglecting the limiters, as in the two-pass assembly of

Section 3.3, the residual can be written as

R = R(H(UL,UR,N)) ,

whereas the left and right states can be written as:

UL = UL(VL(XE,∇V)) , UR = UR(VR(XE,∇V)) .

In fact, the numerical fluxes inH depend on the reconstructed left and right states as well

as on the integrated normals N, see Eq. (2.25). The dependency of the reconstructed

primitive variablesVL and VR on XE is due to the MUSCL reconstruction, see Eq. (2.31).

The chain rule can be applied to the above equations in order to obtain ∂R/∂XE. The

Jacobian with respect to the mesh points can be obtained by multiplying the latter term

with the matrix ∂XE/∂X, which has a very simple structure.

Unfortunately, because of the MUSCL reconstruction, the implementation of the

aforementioned approach is as complex as that presented in Chapter 3 for the adjoint

solver. The expression for ∂R/∂XE, which is not given here, is very lengthy. Several

matrix-vector products must be evaluated and a conspicuous amount of differentiation

is involved. However, the contribution of the implementation to the overall efficiency of

the sensitivity analysis is much smaller than that of the adjoint solver. In fact, the term

∂R/∂XE is not involved in an iterative process. It must be evaluated as many times

as the number of parameters. When the adjoint of the mesh deformation equations is

available, only a single evaluation is required.

5.3 2D Applications

The 2D optimization test cases presented below are performed on the mesh of Fig. 5.2a.

According to the shape of the initial airfoil, which is given by the shape parameterization,

the latter mesh is deformed using the spring analogy described in the previous section.

112 Shape Optimization

The mesh has 8238 nodes, that is, 1000 more nodes than the medium mesh used to

compute the transonic flow results of Fig. 2.4. Those results involved a coarse mesh of

3477 nodes, a medium mesh of 7240 nodes and a fine mesh of 13261 nodes. As shown

by Fig. 2.4 there is no appreciable difference between the solution computed on the

medium mesh and the one computed on the fine mesh. Hence, the mesh of Fig. 5.2a,

which is finer than the medium mesh, is deemed to be adequate for producing accurate

results.

(a) 8238 Nodes, 16096 Cells (b) 12161 Nodes, 23782 Cells

Figure 5.2: Unstructured meshes

The mesh in Fig. 5.2b is used to investigate the effect of the adjoint approximations

on the optimization. The number of elements and their density are more than what

would be required to compute the flow accurately. In fact, the mesh has been made

very fine in proximity of the wall in order to reduce the discretization error as much as

possible. Recall that one of the adjoint approximations presented in Chapter 3 neglects

the MUSCL reconstruction, which means that the sensitivity of a second-order accurate

formulation is computed inconsistently by assuming first-order spatial accuracy. As

shown in Section 5.4, the inconsistency of the approximation is such that the gradient

is not effective for transonic design cases. By using a very fine mesh one can exclude

the possibility that the effectiveness of the approximation can be improved by further

reducing the size of the mesh and hence the discretization error.

5.3.1 Inverse design in transonic flow

An inverse design is performed that starts from the RAE2822 airfoil and recovers the

NACA0012 airfoil. The free-stream conditions are M∞ = 0.75 and α = 2◦ angle of

attack. The pressure distributions of the two airfoils are shown in Fig. 5.3a, where the

dotted line is used for the NACA0012 and the solid line is used for the RAE2822. As

can be seen, both airfoils exhibit a strong shock on the upper surface.

The quasi-Newton optimization algorithm converged in slightly more than 180 itera-

tions and the objective function is depicted in Fig. 5.3b. The target NACA0012 pressure

distribution is recovered accurately as the pressure of the final airfoil, which is depicted

5.3. 2D Applications 113

by the black circles in Fig. 5.3a, exactly lies on top of the target pressure. The maximum

difference in y -coordinate between the final and the target airfoils is only 2 × 10−4, a

very small value considering that the airfoil is of unit chord. It is remarkable to see that

the final airfoil matches the target very accurately also in proximity of the shock.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial, RAE2822
Target, NACA0012

Final

(a)

-6

-5

-4

-3

-2

-1

 0

 20 40 60 80 100 120 140 160 180

L
O

G
1
0
(O

B
J
)

NUMBER OF ITERATIONS

(b)

Figure 5.3: Inverse design. (a) Pressure distributions; and (b) objective function

5.3.2 RAE2822 airfoil

AtM∞ = 0.73 and α = 2◦ the RAE2822 airfoil has a lift coefficient cl = 0.83 and a drag

coefficient cd = 8.43 10
−2. Figure 5.4a, which shows the pressure contours around the

airfoil, reveals that a shock is present on the upper side of the airfoil at around 65% of

chord. The optimization aims at minimizing the drag while maintaining constant lift and

satisfying some geometric constraints. The latter constraints are such that the relative

maximum thickness is not allowed to decrease whereas the nose radii and the trailing

edge angle cannot decrease more than 30% and 10% of their initial values, respectively.

The SLP and SQP algorithms are used to perform the optimization. The contours of

the airfoil obtained by the SLP algorithm, see Fig. 5.4b, are similar to that obtained by

the SQP algorithm, see Fig. 5.4c. The two results are both shock-free. The shapes

are very similar, however small differences exist. Figure 5.5b shows a comparison of

the Mach number distributions. It appears that differences are mainly concentrated in

the lower side, along the first half of the chord. However different, both designs satisfy

the constraints. The lift equality is very accurate. For the SLP algorithm, percentage

differences between the final and the initial lift coefficient are of the order of 0.005%.

The objective function is depicted in Fig. 5.5b. For the SLP algorithm two values of

the move limits are used: the value 0.05, for which the objective converges smoothly;

and the value 0.1, for which the objective initially converges faster, and then starts to

oscillate. The two behaviors were already anticipated in the previous section. It appears

that the SQP algorithm converges much faster than the SLP algorithm. The greater

convergence speed is due to the second order information used by the SQP algorithm.

At the fourth iteration the SQP algorithm experiences a jump in the objective, which

is of similar magnitude to the oscillations experienced by the SLP algorithm (with the

114 Shape Optimization

(a) RAE2822 (b) Optimized, SLP

(c) Optimized, SQP

Figure 5.4: RAE2822 optimization. Pressure contours of initial and optimized airfoils.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

RAE2822
Optimized, SLP
Optimized, SQP

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

SLP, b=0.05
SLP, b=0.1

SQP

(b)

Figure 5.5: RAE2822 optimization: (a) Mach number distributions; (b) Objective function.

5.3. 2D Applications 115

larger move limit). In general jumps or oscillations are observed when the step sizes

chosen by the optimization algorithm are relatively too large. As already mentioned it is

desirable to have smooth convergence. The reason is that jumps or oscillations may be

the reflection of excessive changes in shape, which may cause the optimization process

to break down in certain circumstances. In fact, it is possible that the mesh collapses

during the deformation. Moreover, since at each design iteration the flow is restarted

from the previous solution in order to save time, it is possible that the solution process

diverges because the initial solution is too far from the converged solution.

In case of the SLP algorithm smooth convergence is ensured by choosing small

values of the move limits. Instead, in the case of the SQP algorithm the parameters

that control the step-size may not be modified because the algorithm is from the Matlab

library. For some of the cases solved with the SQP algorithm break-down problems have

been experienced.

-100

-50

 0

 50

 100

 0 2 4 6 8 10 12

%
 C

H
A

N
G

E
 P

A
R

A
M

E
T

E
R

SHAPE PARAMETER

SLP

SQP

(a) Upper

-100

-50

 0

 50

 100

 0 2 4 6 8 10 12

%
 C

H
A

N
G

E
 P

A
R

A
M

E
T

E
R

SHAPE PARAMETER

SLP

SQP

(b) Lower

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12

C
L
 G

R
A

D
IE

N
T

SHAPE PARAMETER

Upper
Lower

(c)

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10 12

C
D

 G
R

A
D

IE
N

T

SHAPE PARAMETER

Upper
Lower

(d)

Figure 5.6: RAE2822 optimization: (a-b) Differences in the optimized parameters between the

SLP and the SQP algorithm; (c-d) Initial value of the gradients for each parameter.

It is interesting to look at the differences of the final shape parameters for the

two algorithms. Figure 5.6a shows the percentage changes for the upper side of the

airfoil. Except for the first three parameters, it appears that differences between the

two algorithms are large. Differences become even larger for the lower side parameters,

116 Shape Optimization

which are shown in Fig. 5.6b. In spite of the large differences, the shapes appear to be

similar because high-frequency basis functions have relatively smaller influence on the

final shape. In the case of the SLP algorithm, the larger changes in the parameters of the

high-frequency basis are the result of using a unique move limit for all the parameters.

Figure 5.6c shows the value of the cl gradient whereas Fig. 5.6d shows that of the cd
gradient. As can be seen, the magnitude of the gradient components decreases rapidly

and starting from the sixth basis becomes very small. The latter behavior of the gradient

makes it useless to use a large number of shape parameters. The 11 basis functions

used here for each side appear to be satisfactory.

(a) NACA64A410 (b) Optimized, SLP

(c) Optimized, SQP

Figure 5.7: NACA64A410 optimization. Pressure contours of initial and optimized airfoils.

5.3.3 NACA64A410 airfoil

The NACA64A410 airfoil at M∞ = 0.75 and α = 0◦ has cd = 1.48 10
−1 and cl = 0.64.

Figure 5.7a shows a strong shock on the upper side of the airfoil. The optimization

settings are the same as that of the previous case, except for the constraints on the

nose radii and on the trailing edge angle. In this case the latter quantities cannot

decrease more than 10% of their initial values.

The pressure contours of the optimized airfoils are shown in Fig. 5.7b, for the airfoil

5.3. 2D Applications 117

optimized by the SLP algorithm, and in Fig. 5.7c, for the airfoil optimized by the SQP

algorithm. Both designs are shock-free and satisfy the constraints accurately, which

means that they are equivalent in terms of design specifications. However, they appear

to be very different. Specifically, the front and the rear region of the airfoil in Fig. 5.7b

are more cambered than that of Fig. 5.7c. A comparison between the initial and the

optimized Mach number distributions is shown in Fig. 5.8a. The Mach number distribu-

tion on the lower side of the SLP airfoil shows the effect of its large camber. The SQP

airfoil, which is less cambered, shows a more flat distribution.

The objective function is depicted in Fig. 5.8b. It shows a reduction of 85% for

both optimization algorithms. Again, the SQP algorithm converges faster. Although

the designs are clearly different, the final values of the objective functions are the same.

Note that in this case, as well as in the previous and next cases, the final objective value,

cd/cdR , should be zero because the Euler equations are used and the optimized airfoils

are shock-free. In practice, the drag does not vanish completely because of the artificial

dissipation created by the numerical scheme.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

NACA64A410
Optimized, SLP
Optimized, SQP

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

O
B

J

NUMBER OF ITERATIONS

SLP
SQP

(b)

Figure 5.8: NACA64A410 optimization: (a) Mach number distributions; (b) Objective function.

The differences between the solutions of the two algorithms are probably due to

the fact that, unlike the drag and the lift, the pitching moment is not included in the

optimization problem. Imposing a constraint on the pitching moment could have the

effect of reducing the feasible design space, hence making the differences between the

solutions disappear. In the following section a case is presented, see Fig. 5.13, in which

the pitching moment constraint has that effect.

5.3.4 NACA0012 airfoil

The drag of the NACA0012 airfoil is minimized at M∞ = 0.75 and α = 2◦, for which

the airfoil has cd = 1.25 10
−2 and cl = 0.42. Figure 5.9a shows a strong shock on the

upper side of the airfoil, almost at half chord. The optimization settings are the same as

those of the previous case and only the SLP algorithm has been used. Also in this case

the optimized airfoil is shock-free, as shown by the pressure contours of Fig. 5.9b. All

the constraints are satisfied. A comparison of the Mach number distribution is shown

118 Shape Optimization

(a) NACA0012 (b) Optimized, SLP

Figure 5.9: NACA0012 optimization. Pressure contours of initial and optimized airfoils..

in Fig. 5.10a. The optimized airfoil has a less pronounced camber compared to the

previous cases because the lift coefficient is also smaller. It has half the lift of the

RAE2822 airfoil. In general, for increasing lift coefficients, shock-free transonic airfoils

need an increased camber in the rear of the airfoil in order to increase the high-pressure

at the bottom side. Figure 5.10a shows the objective function, which smoothly reduced

by 90%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

NACA0012
Optimized

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

O
B

J

NUMBER OF ITERATIONS

(b)

Figure 5.10: NACA0012 optimization. (a) Mach number distributions; (b) Objective function.

5.3.5 NACA0012 airfoil at supersonic flow conditions

The NACA0012 airfoil has also been optimized at M∞ = 1.5 and α = 2◦, a supersonic

flow condition for which a strong detached bow shock is visible, as shown in Fig. 5.11a.

A supersonic optimization is a good test case for the shape parameterization and for

the geometric constraints. Both play a crucial role in supersonic optimization because,

in order to reduce the drag, the airfoil nose is expected to become sharper, causing

the bow shock to be almost attached to it and oblique almost everywhere. Shock-

5.3. 2D Applications 119

wave drag increases with increasing velocity normal to the shock wave. Consequently,

oblique shocks feature smaller drag than normal shock waves for the same upstream

Mach number. However, the situation of a sharpening nose must be handled carefully.

The danger exists that the upper and the lower curves cross each other. Moreover,

real supersonic airfoils do not have perfectly sharp noses but noses with small radii of

curvature. Thus, geometric constraints must be enforced properly that allow small radii

to exist without generating unfeasible designs.

To facilitate the movement of the shock in the direction of the nose, the radii of

curvature are allowed to reduce up to 90% of their initial values. In terms of relative

thickness, the 12% of the NACA0012 airfoil is clearly unsuitable for supersonic flow

conditions. A more suitable value could be less than or equal to 6%. Therefore, the

relative maximum thickness is allowed to halve. Also in this case, cl must be kept

constant. Only the SLP algorithm has been used.

(a) (b)

Figure 5.11: NACA0012 optimization. Pressure contours: (a) NACA0012 airfoil; (b) Optimized

airfoil.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

O
B

J

NUMBER OF ITERATIONS

(a)

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

1
0
0
Y

/C

100X/C

(b)

Figure 5.12: NACA0012 optimization: (a) Objective function; (b) Magnification of the nose

of the optimized airfoil.

120 Shape Optimization

The pressure contours of the optimized airfoil are shown in Fig. 5.11b. As can be

seen, the shock is almost attached to the nose. The repositioning of the shock caused

the drag to reduce by 70%, as shown by the objective function in Fig. 5.12a, which

converged smoothly in 20 design iterations. A magnification of the nose region is shown

in Fig. 5.12b, which reveals that the shock is located at a distance from the nose that

is less than 1% of the chord. The normal region of the shock has a very small extent

compared to the initial airfoil and the nose appears to be still rounded and smooth.

Although not shown, both the upper and lower nose curvature constraints are critical.

It means that they approached zero and therefore the curvature equals the reference

curvature value. As already mentioned, the reference curvature is set to 10% of the

initial value. The thickness constraint is also critical.

It is remarkable that also in this case, in spite of the challenging flow conditions and

the large deformations involved, the whole framework proved to be effective and robust.

Also, it is interesting to see that the final shape resembles that of lenticular airfoils,

typically used in the supersonic regime.

5.4 Effect of approximations

The approximations on the adjoint code have been discussed in Chapter 3 and are

summarized here for convenience:

− Approximation 1 is obtained by neglecting the differentiation of the limiter in the

MUSCL reconstruction operator;

− Approximation 2 is obtained by neglecting the differentiation of the Jacobian ma-

trix in the Roe flux;

− Approximation 3 is obtained by neglecting the complete MUSCL reconstruction

operator.

The above approximations simplify the adjoint code considerably. However, as al-

ready mentioned, simplifications come at the price of producing inexact gradients, which

may affect the optimization negatively. Thus, when introducing approximations, it is

important to verify whether the approximate code is effective or not. The error in the

approximate gradient, which has been discussed in Section 3.5.3, may not be a good

indication of effectiveness. It is best to test the effect of the approximations directly on

the optimization test cases. In the following some of the optimizations presented in the

previous section are repeated with the exact and the approximate sensitivities.

5.4.1 SQP algorithm

The NACA64A410 optimization test case of the previous section is performed with the

SQP algorithm. The shapes obtained by using the exact formulation and the first two

approximations are shown in Fig. 5.13a. Differences are visible, especially at the lower

side. The corresponding shock-free Mach number distributions are shown in Fig. 5.13b

5.4. Effect of approximations 121

whereas the pressure contours are shown in Fig. 5.15 a-c, respectively. When the third

approximation is used, the optimization stalls. The result is a shape that has a rather

strange pressure distribution, as shown by Fig. 5.15d, with three shocks on the upper

side of the airfoil.

-4

-2

 0

 2

 4

 6

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Exact
Approx 1
Approx 2

(a) Unconstrained cm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

M
a
c
h

X/C

Exact
Approx 1
Approx 2

(b) Unconstrained cm

-4

-2

 0

 2

 4

 6

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Exact
Approx 1
Approx 2

(c) Constrained cm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

M
a
c
h

X/C

Exact
Approx 1
Approx 2

(d) Constrained cm

Figure 5.13: NACA64A410 optimization. Shapes and Mach distributions for (a-b) uncon-

strained; and (c-d) constrained cm cases. Different adjoint approximations used.

Figure 5.14a shows the objective functions whereas the table at the bottom of the

figure shows the number of function calls and gradients evaluations for each approxima-

tion. As can be seen, the objective function corresponding to the third approximation

achieves a final value that is very close to that of the other approximations. The good

agreement of the values seems strange because the third approximation gives airfoils that

are not shock-free, for instance, see Fig. 5.15d and Fig. 5.15h. However, the shocks

are very weak, with upstream Mach numbers ≈ 1.1. Therefore, the pressure drag rise,

which is a quadratic function of the upstream Mach number, remains very small.

The function calls for the third approximation, see the table of Fig. 5.14, exceeded

the maximum allowed number of calls, which was set to 2000. 97% of the latter calls

have been performed at the 17th iteration, when the algorithm stalled and could not

find any direction of improvement.

Differences in shapes between the different approximations are less pronounced if the

122 Shape Optimization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14

O
B

J

NUMBER OF ITERATIONS

Exact
Approx 1
Approx 2
Approx 3

(a) Unconstrained cm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14

O
B

J
NUMBER OF ITERATIONS

Exact
Approx 1
Approx 2
Approx 3

(b) Constrained cm

Function calls Gradients Function calls Gradients

49 19 Exact 51 24

44 17 Approx 1 63 22

86 34 Approx 2 71 19

∞ 17 Approx 3 ∞ 11

Figure 5.14: NACA64A410 optimization, with and without cm constraint.

(a) Exact (b) Approx 1 (c) Approx 2 (d) Approx 3

(e) Exact (f) Approx 1 (g) Approx 2 (h) Approx 3

Figure 5.15: NACA64A410 optimization. Pressure contours of optimized airfoils with uncon-

strained cm, top row, and constrained cm, bottom row.

5.4. Effect of approximations 123

optimization test case is repeated with an inequality constraint on the pitching moment.

Shapes obtained when the latter constraint is imposed are shown in Fig. 5.13c. The

corresponding shock-free Mach number distributions and pressure contours are shown in

Fig. 5.13d and Fig. 5.15 e-g, respectively. The final shapes are probably similar because

of the restriction imposed on the feasible design space by the additional constraint. The

shape parameters for the constrained and unconstrained cases are shown in Fig. 5.16.

The spread between the different approximations is evident in the unconstrained case,

see Fig. 5.16 a-c, especially for the low-frequency parameters, which highly influence

the final shape. Instead, for the constrained case, see Fig. 5.16 b-d, a small spread only

appears for the high-frequency parameters, which have a small influence on the final

shape.

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12

F
IN

A
L
 V

A
L
U

E

NUMBER OF DESIGN VARIABLES

Exact
Approx 1
Approx 2

(a) Upper, unconstrained cm

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12

F
IN

A
L
 V

A
L
U

E

NUMBER OF DESIGN VARIABLES

Exact
Approx 1
Approx 2

(b) Upper, constrained cm

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12

F
IN

A
L
 V

A
L
U

E

NUMBER OF DESIGN VARIABLES

Exact
Approx 1
Approx 2

(c) Lower, unconstrained cm

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12

F
IN

A
L
 V

A
L
U

E

NUMBER OF DESIGN VARIABLES

Exact
Approx 1
Approx 2

(d) Lower, constrained cm

Figure 5.16: NACA64A410 optimization with different adjoint approximations. Final value of

the shape parameters for constrained and unconstrained pitching moment.

Also in the constrained case, when the third approximation is used, the optimization

stalls. The result is an airfoil that still has a shock on the upper surface, as shown by

Fig. 5.15h. The table of Fig. 5.14 shows that for the constrained case the approximations

require less gradient evaluations but more function calls. The ratio of function calls to

gradient evaluations appears to be increasing from 2.12, for the exact code, to 3.74, for

the second approximation. Instead, the unconstrained case features ratios around the

124 Shape Optimization

value 2.6. The above values of the ratio are what is usually expected from an SQP type

of algorithm [126].

-8

-6

-4

2

 0

 2

 4

 6

 0 0.2 0.4 0.6 0.8 1

Exact
Approx 1
Approx 2

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

Exact
Approx 1
Approx 2

(b)

Figure 5.17: RAE2822 optimization. (a) Airfoil shapes; and (b) Mach number distributions,

obtained by using different adjoint approximations.

-8

-6

-4

-2

 0

 2

 4

 6

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Exact
Approx 1
Approx 2

(a) Subsonic case

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Exact
Approx 1
Approx 2

(b) Supersonic case

Figure 5.18: NACA0012 optimization. Shapes obtained with different adjoint approximations.

Another case for which the different approximations have been employed is the opti-

mization of the RAE airfoil. Similarly to the previous case (the one with unconstrained

cm), Fig. 5.17a shows that the optimized airfoils are slightly different. Differences

are concentrated in the front part of the lower side. The airfoils are shock-free, see

Fig. 5.17b, except for the one obtained by the third approximation, where the shock is

not completely removed.

5.4.2 SLP algorithm

The NACA0012 transonic and supersonic cases have been repeated with the SLP al-

gorithm. Figure 5.18 shows the final shapes, which are almost identical. Figure 5.19

shows the objective functions. In the transonic case the objectives overlap, except for

5.4. Effect of approximations 125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

O
B

J

NUMBER OF ITERATIONS

Exact
Approx 1
Approx 2
Approx 3

(a) Subsonic case

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

O
B

J
NUMBER OF ITERATIONS

Exact
Approx 1
Approx 2
Approx 3

(b) Supersonic case

Figure 5.19: NACA0012 optimization. Objective function for different adjoint approximations.

the third approximation, for which the optimization stalls. The pressure contours are

shown in the top row of Fig. 5.20. As can be seen from Fig. 5.20d, the airfoil obtained

with the third approximation is not shock-free.

(a) Exact (b) Approx 1 (c) Approx 2 (d) Approx 3

(e) Exact (f) Approx 1 (g) Approx 2 (h) Approx 3

Figure 5.20: NACA0012 optimization. Pressure contours of optimized airfoils for the subsonic,

top row, and the supersonic cases, bottom row.

The bottom row of Fig. 5.20 shows the pressure contours for the supersonic case.

The airfoil obtained with the third approximation, see Fig. 5.20h, is different, especially

in the nose region. Differently from the transonic cases, the airfoil obtained by the third

approximation is slightly better. In fact, the objective labeled ’Approx 3’ in Fig. 5.19b

is 3.5% smaller than the other objectives. Probably, in terms of gradient accuracy, the

supersonic design considered here is less demanding than the shock-free and the inverse

design cases. I.e., there are several shapes available that can improve the drag. Instead,

one can intuitively see that the shock-free condition is a rather isolated condition in the

design space. In fact, it is known that there is only one design point for which the design

is shock-free [88]. Moreover, this design point may be ill-conditioned: a small change

126 Shape Optimization

in a flow condition or design parameter may cause a strong deterioration of the design.

The same is for the inverse design (see below), for which there is only a single shape that

can match a certain pressure. Probably, the reconstruction plays a major role in those

cases and the third approximation is not effective because it neglects its contribution.

5.4.3 BFGS algorithm

The inverse design case presented in the previous section has been performed with a

quasi-newton optimization algorithm known as BFGS. The effect of the different ap-

proximations on the convergence of the objective function is shown in Fig. 5.21a. It

appears that the first and second approximations behave very similarly and they almost

overlap. As can be seen, the two approximations reduce the objective of fourth order

of magnitudes, which is not as much as that obtained by the exact formulation. Never-

theless, there is no appreciable difference in coordinates between the airfoils obtained by

the exact and the approximate formulations. Figure 5.21b shows a magnification of the

lower region of the airfoil, from the nose to the first quarter of the chord. As can be seen,

the points corresponding to the exact and to the first two approximate formulations are

indistinguishable. Instead, the third approximation is not effective and the points appear

to be far from the target. In fact, as shown by Fig. 5.21a, the optimization stalled and

the objective reduced by slightly more than two orders of magnitude.

-6

-5

-4

-3

-2

-1

 0

 20 40 60 80 100 120 140 160 180

L
O

G
1
0
(O

B
J
)

NUMBER OF ITERATIONS

Exact
Approx 1
Approx 2
Approx 3

(a)

-6

-5

-4

-3

-2

-1

 0

 0 0.05 0.1 0.15 0.2 0.25

1
0
0
 Y

/C

X/C

Target, NACA0012
Exact

Approx 1
Approx 2
Approx 3

(b)

Figure 5.21: Inverse design with different adjoint approximations: (a) Objectives; and (b)

magnified airfoil shapes.

5.5 3D Applications

In the following the shape of the ONERA-M6 wing is optimized by means of the SLP

algorithm for three different cases, all atM∞ = 0.84 and α = 3.06◦. The same unstruc-

tured mesh is used for all the cases. The mesh is very similar to that of Fig. 2.8, but with

a different number of elements (125389 nodes, 591713 cells). Only the shape functions

described in the previous chapter are used to parameterize the shape. The sweep angle

5.5. 3D Applications 127

of the wing, the twist angles and the chord lengths of the wing sections are frozen.

Therefore, the planform of the wing is always flat and its projection on the horizontal

plane does not change during the optimization. Clearly, a more realistic optimization

case would have to include the possibility to deform the planform. For the shape param-

eterization a quadratic representation is chosen, as described in Section 4.2.4, which

uses 30 parameters for each side of the wing (i.e., a total of 60 parameters for the

complete wing).

Geometric constraints could be imposed on the relative maximum thickness, on the

nose radii and on the trailing edge angle of each section. In order to reduce their number,

the constraints are imposed on the maximum values of the latter quantities along the

span. E.g., once the relative maximum thicknesses are evaluated along the span for

each section, only the maximum of those values is taken for imposing the thickness

constraint. An inequality constraint on the wing volume may also be imposed, which

avoids the volume to decrease below a certain value. The constraint may be useful in the

case that a minimum volume is required inside the wing, for instance to accommodate

a fuel-tank.

An additional constraint has been imposed on the maximum camber of the tip airfoil.

The constraint must be considered as a quick fix to the problems caused by the adoption

of a frozen wing planform. In fact, the lack of twist deformation forces the optimizer to

change the camber, which is the only available degree of freedom for redistributing the

lift along the span. Unfortunately, in certain circumstances, large variations in camber

and thickness may result in unfeasible shapes. As shown below, constraining the camber

is a quick fix in the sense that it is not a final and satisfactory solution to the problem.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25

O
B

J

NUMBER OF ITERATIONS

Figure 5.22: ONERA-M6 optimization. Objective function.

5.5.1 Drag minimization

The objective function of a drag minimization at constant lift is shown in Fig. 5.22.

It takes 28 iterations for the drag to reduce 23%. All the constraints are satisfied,

although they are not shown. As can be seen, the objective is not completely flat

and probably there is still room for some improvements. Unlike 2D cases, which are

128 Shape Optimization

converged accurately because they are inexpensive to run, 3D cases are time consuming

and they are not fully converged. Parallelization of the code will make 3D computations

much less time consuming.

Figure 5.23: ONERA-M6 optimization. Pressure contours: ONERA-M6 wing (left); Optimized

wing (right).

Figure 5.24 shows the comparisons of the initial and the optimized pressure distri-

butions at different sections along the span. Figure 5.23 shows a comparison of the

pressure contours on the upper surface of the wing. The strength of the shocks appears

to be reduced appreciably. It also appears that the velocity spikes along the leading

edge of the original wing, which result in a strong shock immediately after the leading

edge, are reduced considerably in the optimized wing. For instance, in Fig. 5.24a and

Fig. 5.24b the negative pressure coefficient exceeds the value 1 for the initial wing, but

stays around 0.5 on the optimized wing.

The comparison between the initial and the optimized airfoils at different sections

along the span is shown in Fig. 5.25. As can be seen, the optimized shapes of the 90%

and 95% sections, which are very close to the tip, do not appear to be very smooth in

proximity of the leading edge. The lack of smoothness in the region is also reflected in

the pressure distribution, see Fig. 5.24f, which shows a very sharp spike. The undesired

behavior is caused by the very bad initial condition. In fact, the left side of Fig. 5.23

shows that the wing region between 90% of the span and the tip is affected by a strong

shock, which appears to be the result of the union of the two inboard shocks.

The only pressure difference in the region, (i.e., the difference between the pressure

at the upper and the one at the lower side) as shown by Fig. 5.24e and Fig. 5.24f,

is present upstream of the shock itself (first 30% of the chord). The latter pressure

difference must be redistributed along the section for the purpose of reducing the shock

strength. However, in this redistribution there is a lift constraint and the planform is

fixed. As for the other sections, the pressure difference has been shifted down, reducing

5.5. 3D Applications 129

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(a) 20% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(b) 44% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(c) 65% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(d) 80% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(e) 90% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(f) 95% Span

Figure 5.24: ONERA-M6 optimization. Comparison of initial and optimized pressure distribu-

tions at different sections along the span.

130 Shape Optimization

-4

-2

 0

 2

 4

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(a) 20% Span

-4

-2

 0

 2

 4

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(b) 44% Span

-4

-2

 0

 2

 4

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(c) 65% Span

-4

-2

 0

 2

 4

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(d) 80% Span

-4

-2

 0

 2

 4

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(e) 90% Span

-4

-2

 0

 2

 4

 0 0.2 0.4 0.6 0.8 1

Y
/C

X/C

Initial
Optimized

(f) 95% Span

Figure 5.25: ONERA-M6 optimization. Comparison of the initial and optimized airfoil shapes

at two different wing sections.

5.5. 3D Applications 131

the low-pressure on the upper side and increasing the high-pressure on the lower side.

Unfortunately, the pressure difference is very large compared to that of the other sections

and requires very large deformations, which cannot be accommodated solely by the shape

of the airfoil.

Without a constraint on the camber of the tip airfoil, the shape of the airfoils in the tip

region tends to be even worse than that in Fig. 5.25f. However, as already mentioned the

constraint on the camber is only a quick fix and other solutions should be adopted. It is

likely that the situation could be improved in two ways. First, the implementation of twist

deformation would be very beneficial for redistributing the pressure, giving more degrees

of freedom to the optimizer. Second, the implementation of thickness constraints at

different points along the chord, instead of a single one on the maximum value only,

would be very beneficial for avoiding extreme thickness reduction at the nose. Those

improvements are left as future work.

5.5.2 Doubling the lift and minimizing the drag

In the last section the cause for obtaining non-smooth airfoil shapes was attributed

to the combination of the severe initial condition and the lack of additional degrees

of freedom such as the planform twist. In order to provide evidence that the shape

parameterization is not responsible, another optimization case is presented, which has a

different initial condition. The test case gives the possibility to show another feature of

the SLP algorithm, which is the already mentioned capability to bring unfeasible designs

into the feasible design space. The test case is divided in two parts. In the first part

a wing that has two times the lift of the original ONERA-M6 wing is obtained. In the

second part the drag of the new design is minimized, similarly to the previous case.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25

L
IF

T
 C

O
N

S
T

R
A

IN
T

NUMBER OF ITERATIONS

Figure 5.26: Design to double the lift of the ONERA-M6 wing. Lift constraint.

Part 1: Doubling the lift

The problem of doubling the lift may be addressed as an optimization problem and solved

by the SLP algorithm, with the modifications described in Section 5.1.3. It should not

132 Shape Optimization

Figure 5.27: Pressure contours of the wing obtained by doubling the lift of the ONERA-M6

wing (left); and by subsequently minimizing the drag (right).

be confused with a lift maximization, as the aim is just to bring the design in the feasible

space. The latter space is defined by the constraints. Since the lift must be doubled,

the lift constraint must be written as g = 1− cl/2cl0. The constraint is satisfied when

cl > 2cl0 and by definition has an initial value of 0.5 because the initial lift is cl 0. All the

other constraints enforced in the previous case are left in place, with no modifications.

Figure 5.26 shows the value of the lift constraint during the iterations. As can be

seen, after 28 iterations the constraint is satisfied, g < 0. The increased lift is clearly

visible when the initial and the final pressure distributions are compared, see Fig. 5.28.

The new pressure distribution shows a strong shock, which is distributed along the

whole span, and which causes a considerable increase in total drag. Figure 5.29 shows

a comparison between the airfoils. The final airfoils appear to be deformed appreciably

compared to the initial ones. Nevertheless, their shapes appear to be very smooth, also

close to the tip. Especially for the airfoils that are close to the root, there has been a

large increase in camber. For instance, the root section has a maximum value of the

camber of 3%.

Part 2: Drag minimization

The design to double the lift of the ONERA wing has produced a new wing with a drag

coefficient that is 3.1 times larger than that of the ONERA wing. In order to reduce

the drag of the new wing, a drag optimization similar to that of Section 5.5.1 has been

performed. The optimization has reduced the large drag value with almost 21%. As can

be seen from Fig. 5.27, which shows a comparison of pressure distributions on the upper

surface of the wing, part of the shock has disappeared around the tip region. However,

as the shock on the whole wing has not disappeared, but only reduced in strength, the

5.5. 3D Applications 133

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(a) 20% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(b) 44% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(c) 65% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(d) 80% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(e) 90% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(f) 95% Span

Figure 5.28: Design to double the lift of the ONERA-M6 wing. Comparison of initial (ONERA-

M6) and final pressure distributions at different sections along the span.

134 Shape Optimization

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(a) 20% Span

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(b) 44% Span

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(c) 65% Span

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(d) 80% Span

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(e) 90% Span

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(f) 95% Span

Figure 5.29: Design to double the lift of the ONERA-M6 wing. Comparison of the initial and

final airfoil shapes at different sections along the span.

5.5. 3D Applications 135

distributions in Fig. 5.27 do not provide the best view of the improvement in pressure.

Instead, Fig. 5.30 better shows the shock strength reduction. For instance, Fig. 5.30c

shows a considerable reduction for the section at 65% of the span.

The airfoils obtained by this second optimization also appear to be smooth. Fig-

ure 5.31 shows the airfoils compared to that of the wing obtained by the first optimiza-

tion (i.e., the wing with two times the lift of the ONERA wing). It seems that the nose

of the airfoils , especially those depicted in Figs. 5.31 c-f, has changed considerably. The

changes help in having higher pressure at the lower part of the airfoil nose. Moreover, it

seems that the thickness of these airfoils has been redistributed towards the rear part,

helping to weaken the shock strength.

Comparison of the wing shapes

Figure 5.32 shows a comparison of the three wing shapes: the ONERA-M6 wing and

the two wings obtained by the present test case. In the left column the views are from

the symmetry plane towards the wing tip. In the right column they are from the back

of the wing (e.g., standing behind the trailing edge line) towards the leading edge. The

two different types of view help to better visualize the deformations of the two wings

compared to the ONERA-M6 wing.

It is interesting to see how the camber distribution of the wing has changed during the

lift design, as shown by Fig. 5.32d. As can be seen, the wing surface is not linear and a

slight curvature may be seen, especially on the upper side. The latter curvature increases

in magnitude and changes sign when the drag is optimized, as shown by Fig. 5.32f. The

redistribution of the thickness towards the rear part of the wing, when the drag is

optimized, is visible by comparing Fig. 5.32e with Fig. 5.32c.

The present case shows that the 3D shape parameterization behaves smoothly also in

the presence of large deformations. It is interesting to see that such large deformations

have only been obtained with 30 parameters for each side. The number appears small if

one realizes that it is of the same order of magnitude as that used to parameterize an

airfoil.

136 Shape Optimization

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(a) 20% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1
-C

P

X/C

Initial
Optimized

(b) 44% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(c) 65% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(d) 80% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(e) 90% Span

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

-C
P

X/C

Initial
Optimized

(f) 95% Span

Figure 5.30: Drag optimization of the wing obtained by doubling the lift of the ONERA-M6

wing. Comparison of initial and optimized pressure distributions at different sections along the

span.

5.5. 3D Applications 137

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(a) 20% Span

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(b) 44% Span

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(c) 65% Span

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(d) 80% Span

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(e) 90% Span

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1

1
0
0
 Y

/C

X/C

Initial
Optimized

(f) 95% Span

Figure 5.31: Drag optimization of the wing obtained by doubling the lift of the ONERA-M6

wing. Comparison of the initial and optimized airfoil shapes at two different wing sections.

138 Shape Optimization

(a) xz view (b) yz view

(c) xz view (d) yz view

(e) xz view (f) yz view

Figure 5.32: Views of: (a-b) the ONERA-M6 wing; (c-d) the with obtained by doubling the

lift of the ONERA-M6 wing; (e-f) and by subsequently minimizing its drag.

5.6. A future application: shock position control 139

5.6 A future application: shock position control

Shock-free airfoils may be designed by means of shape optimization. Instead, in the case

of wings, shocks are rarely removed completely. Of course, shape optimization may be

used to reduce the strength of the shocks, sometimes eliminating them in some areas of

the wing surface, as shown by the previous applications. Operating a wing configuration

shock-free is unrealistic because operating conditions change during flight. According to

the theorem of Morawetz [88], shock-free flows may only be attained at a single design

point. Away from the latter point, shocks start to appear. In practice, the design is

carried out with the aim of ensuring satisfactory performances over the complete flight

envelope, making sure that the shocks, away from the design point, remain weak.

By means of traditional shape optimization the designer does not have a direct

control on shocks. In fact, by minimizing the drag the position of the shock is not

controlled. It is interesting for the designer to have a more direct control on the position

of the shock for design purposes. For instance, considerations about the interaction of

airflow and structure may make certain positions more suitable than others. Clearly, in

order to optimize the position of the shock, the designer needs to compute the sensitivity

of the shock displacement with respect to the shape parameters. Pironneau had an idea

of how to compute such sensitivity [101]. Recently, at a conference in Erice, he shared

his idea with the author, and suggested its implementation in the present framework.

Below, the concept is explained and some examples are provided. Unfortunately, due to

time constraints, the concept could not be further expanded into an application similar

to those presented in this chapter.

5.6.1 Sensitivity of the shock position

Consider Eq. (3.52), which gives the expression for the sensitivity of the density across

a shock, and which is repeated below for clarity:

ρα = ρ
−
α + [ρα]H(η) + [ρ] δd(η) ηα . (5.11)

As already mentioned in Section 3.6.1, H and δd are the step and the Dirac functions,

whereas η is the shock position. The above equation may be integrated in order to

compute the shock sensitivity ηα. Integration along a stream line l yields
∫

l

ραdl =

∫

l−+l+
ρ−α + [ρα]H(η)dl +

∫

Shock

[ρ] δd (η) ηαdl . (5.12)

where l is divided in three pieces: a point that contains the shock and l− and l+,

upstream and downstream of the shock, respectively . Bringing the first right-hand side

term to the left, and recalling the sampling property of the Dirac function1, allows the

above equation to be written as
∫

Shock

ραdl = [ρ] ηα , (5.13)

1
∫
f (x)δ(x − x0)dx = f (x0)

140 Shape Optimization

which shows how the shock sensitivity may be computed as the ratio of two quantities:

the integrated density sensitivity across the shock, and the density jump across the

shock.

In theory the density jump may be easily computed, although it is not always easy to

unambiguously identify the shock, as the latter may be spread over several grid points.

Moreover, over- and under-shoots may be present, which slightly alter the solution near

the jump. Caution is needed for the integral of the density sensitivity. The latter integral

is in fact the integral of a discontinuous quantity (the density sensitivity appears to be a

Dirac function at the shock), which should be evaluated in a single point (the domain of

integration is the shock). In fact, as already mentioned the shock is spread over more

than one grid point. Consequently, also the Dirac function is spread. Therefore, at the

discrete level, a domain of integration with more than one point exists. In the following

numerical examples are provided, which show that the integral makes sense.

Assuming that the sensitivity of the shock displacement can be calculated, verifica-

tion of its value is not straightforward. In fact, a comparison value must be available.

For instance, computing the sensitivity by finite differences may be possible only for rel-

atively large values of the finite-difference step. Relatively small values cannot be used

as the shock does not displace continuously, but may only jump from one grid point to

the other. However, large values reduce the accuracy of the sensitivity, as high order

terms should also be included. Fortunately, numerical evidence shows that the shock

displacement is not a highly non-linear function. In fact, as shown below, the ratio of

the shock displacement to the finite-difference step appears to remain constant for large

values of the step.

Nodes
∫
ραdl [ρ] ηα ∆η/∆α

2100 0.01608 0.36932 0.04323 0.03887

8000 0.01640 0.38306 0.04250 0.03870

23000 0.01561 0.39786 0.03896 0.03367

30000 0.01432 0.40299 0.03529 0.03209

Table 5.1: RAE2822 at M∞ = 0.73 and α = 2. Integral, jump and shock displacement

sensitivity for different mesh sizes.

5.6.2 Numerical examples

The integral has been evaluated for different mesh sizes in the case of the RAE2822

airfoil at M∞ = 0.73 and α = 2◦. Integration is only performed along the x-coordinate

by means of the trapezoidal rule. Variations along the y -direction have been neglected

because they are very small. The sensitivity of the shock position ηα has been computed

with respect to the angle of attack α. Results are shown in Table 5.1. As can be seen,

the integral yields close values for increasing mesh sizes. Figure 5.33 shows the Dirac

functions of the density sensitivities, which have been used to evaluate the integral.

It appears that when the mesh size increases, although the Dirac function seems to

5.6. A future application: shock position control 141

become more sharp, its area does not change much. The last two columns of Table 5.1

compare the sensitivity of the shock displacement ηα with that obtained by using finite

differences, ∆η/∆α, with a large step, ∆α = 0.5◦. As can be seen, although there is

not a very accurate match, the values are very similar.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74

D
e
n
s
it
y
 s

e
n
s
it
iv

it
y

X/C

2100
8000

23000
30000

(a)

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 2 2.2 2.4 2.6 2.8 3

S
h
o
c
k
 p

o
s
it
io

n

Angle of Attack

Computed
Observed

(b)

Figure 5.33: (a) RAE2822 at M∞ = 0.73 and α = 2. Density sensitivity for different meshes.

(b) NACA0012 at M∞ = 0.75 and α = 2. Shock displacement for different angles of attack.

ηα ∆η/∆α

RAE2822, α = 3◦ 0.1040 0.0861

NACA0012, α = 2◦ 0.0765 0.08164

NACA64A410, α = 2◦ 0.0343 0.0382

Table 5.2: Shock displacement sensitivity for airfoils at M∞ = 0.7.

Smaller steps, for instance steps of the order 10−3, cannot be used because the shock

may not change its position. However, for large steps the accuracy of the derivative

deteriorates. Nevertheless, it seems that the shock displaces almost linearly with the

angle of attack. Figure 5.33 shows the shock displacement as a function of the angle

of attack for the NACA0012 at M∞ = 0.75, starting from α = 2◦. As can be seen,

when α = 2.1, 2.4, 2.6 and 2.8, the shock does not move. As already mentioned, this is

caused by the fact that the shock does not move continuously but discretely on the mesh

points. In general, the continuous line, which represents the displacement of the shock

implied by the sensitivity ηα, agrees reasonably with the observed displacements. When

α = 3, which means for 1◦ variation in the angle of attack, the predicted displacement

is only 4% larger than the observed displacement. Three other results, which have been

performed at M∞ = 0.7, are shown in Table 5.2. The RAE2822 airfoil shows a 20%

difference between the sensitivities, much larger than the differences of Table 5.1, which

have been obtained for a different free-stream condition. Differences are smaller for the

other two cases, 6.3% and 10.2%, respectively.

The fact that the computed sensitivity may not be checked reliably poses some issues

142 Shape Optimization

on the validation of the method. Future work should try to use the computed sensitivity

in order to perform a design in which the shock must be placed at a specific location. As

already discussed for the approximate adjoint, it is possible that although the sensitivity

is not very accurate, it is still effective when used in shape optimization.

5.7 Concluding remarks

In this chapter the framework components presented in the thesis have been combined

and put into practice. The results show that the framework is a very effective tool for the

design of transonic airfoils. Shock-free designs are easily obtained starting from subsonic

designs. Inverse design between two airfoils – both characterized by the presence of

shocks – is performed accurately. Supersonic designs are obtained starting from subsonic

ones. The framework also performs well in case of wings. Strong shocks on the wing

surface are decreased considerably in strength. Designs that have twice the lift of the

initial ones can be obtained.

Such effectiveness is the result of the combined action of the different components

of the optimization framework. Nevertheless, a crucial component for the success of

the optimization is the Chebyshev parameterization. This representation synthesizes the

most important information of the design space topology into a handful of parameters.

Without such complete representation of the design space the framework would not

deliver results such as those presented in this chapter, no matter the effectiveness of

the other components. The supersonic design is an extreme case in which the qualities

of the Chebyshev parameterization are evident. In that case the shape is deformed

considerably, a very sharp nose is generated, which, however, is still rounded and smooth.

Another demanding case is the wing design in which the lift of the wing is doubled. In

that case the 3D extension of the parameterization dealt with very large deformations,

which completely changed the shape of the wing.

The approximations to the discrete adjoint described in Chapter 3 introduce an error

in the computed sensitivity. The results presented in this chapter show clearly that when

the limiters are neglected, and the numerical fluxes are approximated, the sensitivity is

still as effective as in the exact case. When the accuracy is important, e.g., in the

shock-free design or in the inverse design, the approximation works very well. However,

when the reconstruction formulation is not differentiated, the computed sensitivity is

not effective. In fact, when that sensitivity is used for shock-free design cases or for

inverse design cases, the optimization stalls.

In the final part of this chapter a method to compute the sensitivity of the shock

position, with respect to the shape parameters, has been presented. The method uses

the linearized sensitivity, which must be integrated across the shock. The evaluation of

the integral is not very obvious and, in practice, is open to interpretations. A possible

interpretation has been presented, and it seems reasonable. Also, there is not a well

defined way of establishing if the results are correct. In fact, the shock displaces slightly,

sometimes only one or two grid points away from its original position. Hence, the

finite difference derivative may be undefined. However, taking into account the above

5.7. Concluding remarks 143

limitations, the results presented show how the computed sensitivity is in agreement

with the observed displacement of the shock.

144 Shape Optimization

Chapter 6

Final remarks

The thesis presents an adjoint-based aerodynamic shape optimization framework for two-

and three-dimensional problems in which the flow is governed by the Euler equations.

The important aspects of the framework, i.e., the solution of the flow equations, the

solution of the adjoint equations, the parameterization of the shape and the optimization

strategy have been discussed in detail and results have been presented.

The flow solver, which is based on an unstructured median-dual formulation, appears

to be very flexible and robust. It has been demonstrated on several problems, e.g.,

subsonic, transonic and supersonic steady flows. As the work in the appendix shows,

it has also been extended to efficiently cope with the computation of unsteady flows

around moving and deforming bodies.

Further improving the flow solver is possible with respect to several aspects. For

instance, better representation of the physics can be achieved by also modeling diffusive

phenomena and turbulence. The extension is not trivial but is worthwhile as it would

provide the user with the total drag. From the point of view of the solution process,

parallelization of the solver could contribute dramatically to reduce the computing time,

giving the user the possibility to evaluate the flow around complex configurations in a

reasonable time. These extensions would certainly add considerable value to the solver

and would make it more appealing also to an industrial audience.

The adjoint solver is based on the discrete formulation of the adjoint method. This

formulation requires the solution of a linear system of equations in which the matrix is

146 Final remarks

the transposed residual Jacobian and the right-hand side is the sensitivity of the flow

functional. In the present work the matrix-vector product that appears on the left-hand

side has been derived in closed form, which involved differentiating non-linear functions

present in the flow solver and assembling complex loops on the mesh. Exact and ap-

proximate derivations have been presented and optimization results have been used to

establish the suitability of certain approximations. It appears that some approximations

are as effective as the exact code and are considerably easier to implement. The solution

strategy adopted for the adjoint equations is that of using the flow solver scheme, which

means that the adjoint equations are treated as non-linear. Such a solution strategy is

straightforward because the solver is already in place and appears to be very robust. In

addition, a modification of the scheme has been presented, which allows the simultane-

ous solution of multiple adjoints. The capability is particularly interesting for constrained

shape design, in which the objective function and also the constraints depend on flow

functionals. Overall, the adjoint solver is very efficient. It features performance compa-

rable to that of the flow solver in terms of memory and CPU usage.

The adjoint implementation can be extended in order to solve more complex design

problems, for instance, shape optimization in turbulent flows, provided the flow solver is

modified to deal with such flows. The extension requires the addition of the adjoint of the

viscous terms and the adjoint of the turbulence model. Another interesting application

would be the solution of the adjoint equations for the unsteady formulation presented in

the appendix. Such extension would be very interesting for the optimization of shapes

for which the design requirements are time-dependent, for instance in the case of shape

optimization subject to aeroelastic constraints. Note that the implementation of the

unsteady adjoint requires to store the flow field at each time step, which is needed in

order to solve the adjoint equations backward in time.

The method to compute the sensitivity of the shock with respect to the shape

parameters, for which preliminary results have been presented, still requires investigation.

In fact, several issues have been identified, whose solution is not clear yet. However,

the results look encouraging and it would be very interesting to see a design application

involving the positioning of the shock.

For the parameterization of airfoil shapes, Chebyshev polynomials are employed. A

least-squares procedure may be used to find the parameters for a given airfoil. As shown

by the results, accurate parameterization is obtained using a small number of parameters

only. An extension of the method to the parameterization of wing-like shapes has also

been presented. Such an extension assumes that the parameters change along the span-

wise direction according to another polynomial and that the displacements of the wing,

rather than the wing itself, are parameterized. The method is flexible and results show

that the three-dimensional displacements appear to be very smooth, also in the case of

wings with non-linear planform, for which the surface does not have a simple curvature.

More test cases are needed to further test the method in three dimensions. For the

parameterization along the span-wise direction, other types of functions may be tested to

get a better picture. It would also be interesting to compare the shape-parameterization

method with other more widely used methods, such as the NURBS parameterization.

From the point of view of the applicability of the method, an interface with a CAD

147

package should be implemented. In practice, CAD packages are used to create the

shape. The optimization process adds displacements to the mesh created around the

shape. The displacements need to be fed back into the CAD package. Thus, the

package must have the parameterization implemented, with which it can generate the

displacements internally according to a set of parameters. This way, the CAD model

can be updated in order to take the optimized shape.

Another aspect that needs to be improved for the applicability of the method is the

calculation of the sensitivity of the mesh-movement strategy with respect to the shape

parameters. At the moment only the forward sensitivity is implemented, which means

that the time required to compute the sensitivities is proportional to the number of

shape parameters. Three-dimensional sensitivities are therefore very time-consuming to

compute. A solution is to solve the adjoint equations for the mesh displacements. The

implementation should not pose any problem because the mesh-displacement operator

is symmetric and thus the transposition is not an issue.

As a whole, the design method appears to be very effective and efficient. Opti-

mization results have been shown for two-and three-dimensional problems: shock-free

airfoil designs, inverse airfoil design in transonic flow, airfoil drag reduction in supersonic

flow, and finally wing designs in transonic flow. The proper representation of the design

space provided by the Chebyshev parameterization is a key component for successful

applications. Also, the use of constrained optimization algorithms made it possible to

satisfy accurately the complex design requirements enforced in all the optimization cases.

The results show that even a very simple Sequential Linear Programming algorithm can

successfully drive the optimization process.

Fine-tuning of the design method is still required for three-dimensional cases, which

are very time consuming and to which only limited time could be dedicated in the present

work. In three-dimensions, the complexity of the design increases considerably and

also the definition of the design problem in terms of constraints becomes a challenging

task. Provided some of the aforementioned improvements being implemented, such

as the parallelization and the adjoint of the mesh, computational times would reduce

dramatically and therefore the fine-tuning could be performed quickly by trials and errors.

Like with everything in life, practice makes perfect.

148 Final remarks

Appendix A

Unsteady Flows

A.1 Unsteady flow solver for deforming meshes

The unsteady Euler equations are solved by a modified version of the numerical method

presented in Chapter 2. For computations on fixed meshes modifications are made to the

solution process, which must be time accurate. For computations on moving meshes,

also the evaluation of the fluxes must be modified to reflect the presence of moving and

deforming control volumes, through which the fluxes are calculated. In the following

the equations and the solution scheme are discussed for the deforming mesh case. The

standard case is obtained by dropping the speed of the mesh out of the equations.

A.1.1 Discretization of the unsteady Euler equations on moving

meshes

The unsteady Euler equations on a deforming control volume may be written as

∂

∂t

∫

V (t)

u dΩ +

∮

S(t)

F(u, ẋ) · n dΓ = 0 , (A.1)

where u is the vector of conservative variables, ẋ is the speed of the boundary domain

and F is the projection of the flux vector along the outward unit normal on the domain

150 Unsteady Flows

boundary. The conservative variables are defined in the same way as in Chapter 2. The

flux vector may be obtained by replacing wT in the steady flux vector of Eq. (2.3) by

(w − ẋ)T (only wT and not w). Rearrangement of the flux vector gives

F(u, ẋ) = F(u)− uẋT . (A.2)

Equation (A.1) is discretized using the unstructured finite-volume formulation on the

median-dual mesh. For the control volume i , the discretization may be written as

∂(Viui)

∂t
+
∑

j=1,Ni

Φi j(ûi , ûj , ẋi j ,ni j) +Φ
bc
i (ui , ẋi ,nBi) = 0 . (A.3)

The numerical flux Φi j is evaluated using the Roe flux, which in the case of mesh

deformation may be written as

Φi j =
F(ui , ẋi) + F(uj , ẋj)

2
· ni j −

1

2
|A(ũi j , ẋi j ,ni j)|(uj − ui) . (A.4)

The differences with the case with no deformations are minor as the eigenvectors P of

the Roe matrix A are the same for both cases. In fact, it is possible to write the matrix

as

A(u, ẋ,n) =
∂

∂u
(F(u, ẋ) · n) = A(u,n)− (ẋ · n)I . (A.5)

The above equation shows that the only difference with the original Roe matrix is on the

diagonal. Therefore only the eigenvalues change. In practice, in terms of implementa-

tion, the projection of the mesh speed along the normal must be subtracted from each

eigenvalue and the same eigenvectors as in the case with no deformations are used.

A.1.2 Second-order accurate GCL compliant scheme

Equation (A.3) may be written in compact form as

d(VcvU)

dt
+ R(U) = 0, (A.6)

where U is the vector of conservative variables, Vcv is the vector of control volumes

and R is the residuals vector. The time discretization of the above equation must be

at least second-order accurate for practical use. First order accuracy would require too

many time steps for the solution to converge in time. Moreover, the scheme must be

GCL compliant, which means that the Discrete Geometric Conservation law [121] must

be satisfied.

The GCL states that the above equation must be satisfied in a uniformly constant

flow, for instance the free-stream flow, when the mesh is moving and deforming. In

fact, the free-stream variables are solution of the equation. In practice, if a flow-field

is initialized to the free-stream solution and an arbitrary mesh motion is prescribed, the

change in residual must be exactly compensated by the change in the control volume

A.1. Unsteady flow solver for deforming meshes 151

derivative. A free parameter for the achievement of a GCL compliant scheme is the

speed of the mesh, which may be computed appropriately. It can be shown that in

2D the scheme is GCL compliant if the mesh speed is computed by the same formula

used to discretize the time derivative [99]. In 3D the situation is more complicated

and a lengthy derivation is necessary to show the results. In the following an existing

result has been used [65], for which the satisfaction of the GCL is achieved using an

averaging technique for the mesh coordinates and for their speeds. Using this result the

second-order GCL compliant scheme for Eq. (A.6) may be written as

β1V
t+∆t
cv U

t+∆t + β2V
t
cvU

t + β3V
t−∆t
cv U

t−∆t

∆t
= −R(Ut+∆t ,X, Ẋ) , (A.7)

where ∆t is the physical time step and the coefficients β1, β2 and β3 are taken equal to

1.5, −2 and 0.5, respectively. The mesh coordinates X and their speeds Ẋ that appear

in the above formula are not taken at time t + ∆t. They are obtained by averaging at

specific time instants between t − ∆t and t + ∆t, and are defined as

Ẋ =

kf∑

k=1

αkẊ
k and X =

kf∑

k=1

αkX
k , (A.8)

where αk is the weighting coefficient for the time instant k. In order to satisfy the

GCL, for the problem considered here, i.e., the three-point scheme in 3D, there must

be kf = 4 of such points. The coefficients αk are such that
∑kf
k=1 αk = 1. Their values

can be found in [65]. In the following, in order to simplify the notation, the residual of

Eq. (A.7) will be denoted by R and the averaged quantities will be omitted.

A.1.3 Implicit solution scheme

The conservative variables Ut+∆t in Eq. (A.7) have to be computed given the values Ut

and Ut−∆t at the previous time steps. For this purpose, after naming W = Ut+∆t and

after shifting the t and t − ∆t terms of Eq. (A.7) to the right-hand side, the following

“unsteady” residual can be defined:

R∗(W) = −R(W)− β1
∆t
Vt+∆tW + S(VtUt ,Vt−∆tUt−∆t) . (A.9)

S is a source term, which is defined as

S = − β2
∆t
VtUt − β3

∆t
Vt−∆tUt−∆t . (A.10)

The unsteady residual must be driven to zero within each time step. Newton iterations

can be used, which may be written as

R∗(Wn+1) = 0 . (A.11)

Note that also a pseudo-time contribution could be added, similarly to the steady problem

solved in Chapter 2. However, whereas the steady solver starts from a uniform field,

152 Unsteady Flows

which is very far from the steady solution, the unsteady solver starts from the solution

obtained at the previous time step, which is relatively closer. Thus, the pseudo-time

step is not really necessary for unsteady computations, at least according to numerical

experiments performed in the present work.

Similarly to the steady problem, the above problem may also be solved by a defect

correction approach as

R̃∗(Wn+1) + R∗(Wn)− R̃∗(Wn) = 0 , (A.12)

where R̃∗ is a low-order discretization. The low-order residual R̃∗(Wn+1) in the above

equation can be linearized by taking into account the definition of the unsteady residual

in Eq. (A.9). Further rearrangement of the terms yields

[
β1

∆t
Vt+∆t +

∂R̃

∂W

]n
∆W = −R∗(Wn) . (A.13)

In practice, the above problem can be solved by the same method used for the solution

of the steady-state problem. The only difference is that the physical time step is used

instead of the local pseudo-time step and that the unsteady residual is the input of the

Newton procedure and not the steady one. Also the procedure used to solve the linear

system in Eq. (A.13) is the same. From the point of view of implementation it means

that the software already implemented for the steady case may be used with very minor

modifications.

A.1.4 Oscillating airfoils and wings

Results from the computations of pitching airfoils are shown in Fig. A.1. The pitching

motion is sinusoidal, i.e., it is governed by the law

α(t) = α0 + αMsin(2πf t) , (A.14)

where α0 is the initial angle of attack, αM is the amplitude of the pitching oscillation

and f is its frequency. The cl history in Fig. A.1a is from a NACA0012 airfoil, for which

α0 = 0.016
◦, αM = 2.51

◦ and f = 6.6551Hz. The result compares well with that

obtained by other authors [130]. Note that the history shows one cycle for which the

transient phase may be considered to be terminated. In fact, the first cycles usually

have different shapes, which eventually converge to a unique shape. The cl history in

Fig. A.1b is from a NACA64A010 airfoil, for which α0 = −0.21◦, αM = 1.01◦ and

f = 17.412Hz. In the same figure, experimental results obtained in the wind tunnel are

shown [30]. As can be seen, the numerical results compare well with the experimental

results.

Figure A.2 shows some results for the computation of unsteady flow around the

ONERA-M6 wing. The wing is perturbed by an impulse in pitch (the type of impulse is

described in the following section). Figure A.2a shows the number of non-linear iterations

(continuous line) that are required to solve Eq. (A.13) at each time step. The number

of iterations increase, and reach a peak in correspondence with the pitch impulse. Also,

A.1. Unsteady flow solver for deforming meshes 153

-0.4

-0.2

 0

 0.2

 0.4

-4 -2 0 2 4

C
l

theta [deg]

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-1.5 -1 -0.5 0 0.5 1 1.5

C
l

pitch angle [deg]

experimental
numerical

Figure A.1: cl history for oscillating airfoils: (a) NACA0012; and (b) NACA64A410, with

experimental data.

 0

 5

 10

 15

 20

 25

 30

 0 0.01 0.02 0.03 0.04

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

time [s]

pseudo-steady
linear

-16

-15.5

-15

-14.5

-14

-13.5

-13

 0 0.01 0.02 0.03 0.04

R
E

S

time [s]

Figure A.2: The solution process of the impulse response of the ONERA-M6 wing: (a) the

number of pseudo-steady and linear iterations and (b) the residual development

it shows the total number of linear iterations, with the dashed line, which are required

at each time step. Figure A.2b shows the residual, which has a value around 10−16 at

the beginning of the unsteady solution process (it has the value that results from the

solution of the steady equations). As can be seen, the computation is very accurate

since the residual never becomes larger than 10−14 during the unsteady iterations.

Figure A.3 shows the ONERA-M6 wing undergoing sinusoidal pitch oscillations of

the type described by Eq. (A.14). The wing is rotating rigidly, with no deformations.

The pressure contours are shown for a complete period and are equally spaced in the

pitch angle. After the last one, the wing returns in the position with zero pitch, which

corresponds to the first contour plot. The unsteady nature of the flow is clearly visible

as the strong shock on the wing weakens, it has almost disappeared in the sixth and

seventh contour plot, and starts to strengthen again in the last one.

154 Unsteady Flows

(a) α(t1) = 0 (b) α(t2) =
π
4

(c) α(t3) =
π
2

(d) α(t4) =
3
4
π

(e) α(t5) = π (f) α(t6) =
5
4
π

(g) α(t7) =
3
2
π (h) α(t8) =

7
4
π

Figure A.3: Pressure contours on the ONERA-M6 wing in sinusoidal pitching motion at M∞ =

0.8 and α = 3.6◦.

A.2. Application to aeroelasticity 155

A.2 Application to aeroelasticity

Aeroelasticity investigates the interaction between the airflow and the structure. For

aircraft, which are lightweight structures, in certain circumstances the interaction may

prove to be devastating for the integrity of the structure. The structure may enter into

oscillations, the amplitude of which is more than it can sustain. The phenomena is

commonly known as flutter. An exhaustive description of the phenomena can be found

in [31]. In the design phase, aeroelastic analysis is usually employed to determine the

boundary within which the system is stable.

The equations of the coupled system are as follows. Assume that a finite-element

method is used to discretize the structure, with M degrees of freedom, which are con-

tained in the vector x. The mass matrixM and the stiffness matrix K are available from

the method. If f(t) is a vector of aerodynamic forces that act on the structure, the

equations may be written, without damping term, as

Mẍ+Kx = f(t) . (A.15)

Usually a structure may have a huge number of degrees of freedom, such that the

solution of the above equations, which are coupled with the flow equations through f(t),

becomes very expensive. With an unsteady flow solver like the one developed in this

work, a direct coupling could be realized by simultaneously time-marching the structural

equations and the flow equations, the so-called monolithic approach. A loose coupling

would solve the structure first, pass the deformation to the aerodynamic mesh and next

solve the flow equations, then pass the pressure/forces to the structure and restart, until

the time steps are completed, the so-called partitioned approach. The latter approach

may be easier to apply as the two solvers may already be available and have to exchange

only deformations and pressures at the boundary. Instead, the monolithic approach may

be extremely complicated as the two equations must be solved by a single method, which

may have to be developed from scratch.

If the structure is assumed to behave linearly, the equations simplify dramatically

because modal analysis can be used. The eigenvectors Z = [z1, ..., zN] can be found

such that

ZTMZ = I , and ZTKZ = Ω . (A.16)

The degrees of freedom may be expressed as a linear expansion

x(t) = Zξ̄(t) =

N∑

i=1

ziξi(t) , (A.17)

where ξ̄ = [ξ1, ..., ξN]
T is the vector that contains the modal amplitudes ξi , which are

often referred to as generalized coordinates. If the latter expression for the degrees of

freedom is substituted in Eq. (A.15), and the equation is then multiplied on the left by

ZT , the following decoupled equations are obtained:

ξ̈i + ωiξi = qi(t) , (i = 1, N) , (A.18)

156 Unsteady Flows

where qi is the ith component of the vector q = ZT f and is referred to as generalized

force.

The advantage of solving the latter problem instead of the one given in Eq. (A.15)

is evident as the number of modes is usually orders of magnitudes smaller than the

number of degrees of freedom, i.e., N ≪ M. Moreover, the latter problem is given as a

set of decoupled equations, which may be easily solved once the generalized forces are

available. For instance, realizing a direct coupling by solving Eq. (A.18), even a strong

one, is much simpler than in the case of Eq. (A.15). In practice, given the generalized

forces, the generalized coordinates may be computed algebraically, and the degrees of

freedom can then be computed using Eq. (A.17). Note that all the operations that are

necessary to compute the modes Z and the eigenvalues Ω can be performed at once,

prior to the aeroelastic analysis.

Nevertheless, also the coupled solution of Eq. (A.18) may still be too complex for de-

sign purposes. Moreover, it may be time consuming as different conditions on the flight

envelope need to be considered. A less expensive and widely used approach is to evaluate

the generalized forces off-line, with a sampling technique, and then to investigate the

stability of Eq. (A.18) in the frequency domain for different design conditions.

A.2.1 Impulse response and linear behavior

The response u(t) of a linear system to a perturbation g(t) may be computed by

convolution if its transfer function f (t) is known. The convolution integral is defined as

u(t) =

∫ t

0

f (τ)g(t − τ)dτ . (A.19)

The above relation may be conveniently written in the frequency domain, where it ap-

pears to be much simpler:

ũ(ω) = f̃ (ω)g̃(ω) . (A.20)

Initially the transfer function is not known. The impulse function, i.e., the Dirac

function δ(t) may be used for perturbing the system in order to evaluate the transfer

function. The Dirac function has the interesting property of exciting all the frequencies

equally. Its transform is δ̃(ω) = 1,∀ω. Therefore, perturbing the system with the

impulse, gives the response ũ(ω) = f̃ (ω), which is the transfer function.

An example of the impulse response is the following. Consider a pitching and plunging

airfoil. If the airfoil can only move rigidly, only two degrees of freedom exist: the pitching

and the plunging motion. The lift and pitching moment responses may be computed with

respect to impulses in pitch and in plunge independently. One can simply give an impulse

and solve the unsteady equations until the response becomes flat. The unsteady lift and

pitch, which have been recorded during the computation, are the transfer functions.

They may be used in Eq. (A.18) and the stability of the system may be studied in the

frequency domain.

A.2. Application to aeroelasticity 157

Assuming linear behavior

Theoretically, if the flow equations are linear, the impulse response may be used to sample

the generalized forces for whatever perturbation amplitude. In fact, the response of a

linear system to a perturbation is always scalable by the amplitude of the perturbation,

at all frequencies. For instance, in the case of subsonic flow modeled by the potential

flow equations, the response is linear. However, in the case of transonic flow modeled

by the Euler equations, the response may not be linear because of the presence of the

shock.

The non-linear behavior of transonic flow has motivated several researchers to in-

vestigate methods to identify the non-linear operator in the time domain by a series of

convolution integrals, the number of which depends on the degree of non-linearity. The

method may be expensive, depending on the number of convolutions [102].

In the present work a different route has been taken. The author has participated

in research in which it was assumed that the transonic flow around airfoils and wings

could still be modeled linearly for the purpose of aeroelastic analysis of most design

cases. Computations have been made that show how several airfoils behave linearly and

results appeared in the literature [79]. Unfortunately, at the time of the investigation,

the unsteady solver implemented in the present work was not yet available and the scope

of the investigation was limited to 2D airfoils. In the present work, with the unsteady

solver available, calculations have been performed also for 3D wings. Numerical results

given below show that the assumption of linear behavior is reasonable. Before showing

the results, the type of impulse used is briefly described.

The enlarged Gaussian impulse

Performing the perturbation of a flow solver with a digital impulse is not straightforward.

For instance, consider again a perturbation in pitch, which starts at time timp. At that

time the body must be instantaneously rotated of an angle equal to the amplitude of

the impulse. The mesh has to be deformed using a mesh deformation algorithm. Since

the equations are solved iteratively, a sudden change, rather than a smooth continuous

change, may require several iterations in order to converge. Also the flow solver may be

put under stress, as the solution may be very far from that of the previous time step.

If the solvers are not very robust, the consequence may be that the solution process

breaks down.

An alternative is to use a smoothed impulse. Lisandrin proposed the use of a Gaussian

type of impulse, which has smooth derivatives. The time law for the Gaussian impulse

reads

f (t) = δA exp

[
Timp − 2t
2K Timp

]2
, (A.21)

where δA is the amplitude of the impulse, Timp is the time for which the impulse is

non-zero and K is a smoothness parameter. The parameters are chosen to be K = 0.08

and Timp = 0.027s in order to have the bandwidth of the signal equal to a reduced

frequency of kr = 1. In fact, it is usually in the interval delimited by the latter frequency

that aeroelastic phenomena of aeronautical interest make their appearance.

158 Unsteady Flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04

a
m

p
lit

u
d
e

time [s]

 0

 0.001

 0.002

 0.003

 0.004

 0 0.5 1 1.5 2 2.5 3

a
m

p
lit

u
d
e

reduced frequency

Figure A.4: The Gaussian impulse: (a) in the time domain and (b) in the frequency domain.

Figure A.4 shows the impulse function in time and frequency domains for δA = 1. In

the frequency domain it can be observed that the amplitude of the impulse has decreased

to 70% of its initial value at kr = 1.

A.2.2 Impulse response of wings

ONERA-M6 wing

The impulse response of the ONERA-M6 wing has been investigated. A structural model

of the wing was not available. Thus, in order to study the response for a condition that

could reflect a realistic situation, two deformation shapes have been assumed: bending

and twist. The latter shapes are typically obtained for the first two fundamental modes

of vibrations. Here the bending deformation is generated using a quadratic function

of the wing span, which gives no deformation at the root. The twist deformation is

generated applying a twist to the wing sections, around the quarter of chord line, the

amount of which grows linearly with the wing span.

Three different amplitudes are considered for the impulse: 0.025, 0.5 and 1 for the

twist and 0.05, 1 and 2 for the bending. The amplitudes of the impulses are chosen

in a way that the maximum tip deformation due to the bending has the same value as

the maximum tip deformation due to the twist. As there are only two deformations,

the responses in terms of the lift and pitching moment coefficient are considered. The

generalized forces are not computed.

Figure A.5a shows the scaled responses. The lift and the pitch responses to bending

are shown on the first row. The second row shows the responses to the twist. In

each figure the three responses have been scaled by the amplitude of the corresponding

perturbation. As can be seen, the individual responses are hardly distinguishable.

The same responses have been transformed into the frequency domain and are shown

in Fig. A.6. As the impulse is not the theoretical one (Dirac), the transform of the re-

sponses have been divided by the transform of the perturbation, frequency by frequency,

so that the transfer function is obtained. The real part represents the magnitude of the

signal whereas the imaginary part represents the phase of the signal. Very small differ-

A.2. Application to aeroelasticity 159

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0 0.01 0.02 0.03 0.04

C
L

time [s]

A11

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

 0

 1e-04

 0 0.01 0.02 0.03 0.04

C
M

time [s]

A12

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0 0.01 0.02 0.03 0.04

C
L

time [s]

A21

-0.0003

-0.0002

-0.0001

 0

 1e-04

 0.0002

 0 0.01 0.02 0.03 0.04

C
M

time [s]

A22

Figure A.5: Time history of the CL and CM coefficients for three different perturbations around

an angle of attack of 3.06 degrees.

ences are present in the real part of the lift response to the twist and in the imaginary

part of the pitching moment response to the twist. The system may be considered to

behave linearly. Flutter computations in 2D [79], with the same amount of differences

in the transfer function, have given very similar results.

AGARD 445.6 wing

The first AGARD standard aeroelastic configuration for dynamic response, which is

known as AGARD 445.6 wing, has been tested in the 16-foot Transonic Dynamics

Tunnel (TDT) at the NASA Langley Research Center [33]. Geometric data and results

of the testing are given in the AGARD report 765. The wing has a root of 0.556m, a

semi-span of 0.762m, a quarter-chord sweep of 45 degrees, a panel aspect ratio of 1.65,

a taper ratio of 0.66 and a NACA 65004 airfoil section. The modes of vibration and

the eigen-frequencies have been measured during the testing, and are also available in

AGARD report 765.

Four of the available modes have been used, they are depicted in Fig. A.7. The

modes are given on a rectangular grid. In order to link them to the aerodynamic mesh,

a linear interpolation procedure is used. The Generalized Aerodynamic Forces (GAF)

matrix, which gives the response i with respect to a perturbation j , is computed by

160 Unsteady Flows

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

C
L

reduced frequency

A11

Real

Im

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

C
M

reduced frequency

A12

Real

Im

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 0.2 0.4 0.6 0.8 1

C
L

reduced frequency

A21

Real

Im

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
M

reduced frequency

A22

Real

Im

Figure A.6: Real and imaginary parts of the scaled CL and CM response in the frequency domain

for different perturbations around an angle of attack of 3.06 degrees.

(a) first mode (b) second mode

(c) third mode (d) fourth mode

Figure A.7: Fundamental modes of vibration of the AGARD 445.6 wing.

A.2. Application to aeroelasticity 161

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-CP-CP

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-CP-CP

Figure A.8: The steady pressure distribution of the AGARD 445.6 wing at several sections in

spanwise direction: (a) at M∞ = 0.96 and (b) at M∞ = 1.141.

integrating the modes and the unsteady pressure as

Gi j = q∞
1

S

∫

S

Zi · nCpjdS , (A.22)

where S is the wing planform area and q∞ the farfield dynamic pressure. The dynamic

pressure is the parameter which is varied in order to study the stability of the aeroe-

lastic system. Note that the solver computes Gi j/q∞ because the variables in the flow

equations are dimensionless. As only four modes are used, the GAF matrix is a 4 × 4
matrix.

For each mode, three amplitudes are considered, which are given in Table A.2.2. The

amplitudes are chosen to give the same maximum displacement at the tip of the wing.

Two flow conditions are considered: M∞ = 0.96 andM∞ = 1.141, both at zero angle of

attack. The latter conditions have also been considered in the original investigation [33].

The pressure distributions along the span at those two conditions are given in Fig. A.8.

mode 1 mode 2 mode 3 mode 4

δ1 3.6× 10−2 2.0× 10−2 5.0× 10−2 1.0× 10−2
δ2 3.6× 10−3 2.0× 10−3 5.0× 10−3 1.0× 10−3
δ3 3.6× 10−4 2.0× 10−4 5.0× 10−4 1.0× 10−4

Table A.1: Magnitudes of the modal displacements of the first four eigenmodes

The GAF matrix is only given in the frequency domain. For the subsonic condition

the GAF matrix is given in Fig. A.9 whereas for the supersonic condition it is given

in Fig. A.10. For both conditions the matrices compare well with those obtained by

other authors [115, 72]. As can be seen the responses for different amplitudes of the

perturbations seem to overlap. Only for some elements small differences appear. For

instance, Fig. A.11 shows the element for which the differences are the largest. As can

be seen the differences are indeed small. In practice, also in this case the behavior of

the system may be considered to be linear.

162 Unsteady Flows

-15

-10

-5

 0

 0 0.2 0.4 0.6 0.8 1

A11

Real

Im
d1
d2
d3

-20

 0

 20

 40

 0 0.2 0.4 0.6 0.8 1

A12

Real

Im

-20

-10

 0

 10

 0 0.2 0.4 0.6 0.8 1

A13

Real

Im

-20

-15

-10

-5

 0

 0 0.2 0.4 0.6 0.8 1

A14

Real

Im

-10

-5

 0

 5

 0 0.2 0.4 0.6 0.8 1

A21

Real

Im

-40

-20

 0

 20

 40

 0 0.2 0.4 0.6 0.8 1

A22

Real

Im

-40

-20

 0

 20

 0 0.2 0.4 0.6 0.8 1

A23

Real

Im

-20

 0

 20

 40

 60

 0 0.2 0.4 0.6 0.8 1

A24

Real

Im

-2

-1

 0

 1

 0 0.2 0.4 0.6 0.8 1

A31

Real

Im

-5

 0

 5

 10

 0 0.2 0.4 0.6 0.8 1

A32

Real

Im

-15

-10

-5

 0

 0 0.2 0.4 0.6 0.8 1

A33

Real

Im

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

A34

Real

Im

-1

 0

 1

 2

 3

 0 0.2 0.4 0.6 0.8 1

A41

Real

Im

-20

-10

 0

 10

 0 0.2 0.4 0.6 0.8 1

A42

Real

Im

-4

-2

 0

 2

 4

 0 0.2 0.4 0.6 0.8 1

A43

Real

Im

-30

-20

-10

 0

 10

 0 0.2 0.4 0.6 0.8 1

A44

Real

Im

Figure A.9: GAF matrix. AGARD 445.6 wing at M∞ = 0.96 and α = 0.0◦.

A.2. Application to aeroelasticity 163

-10

-5

 0

 0 0.2 0.4 0.6 0.8 1

A11

Real

Imd1
d2
d3

-20

 0

 20

 40

 0 0.2 0.4 0.6 0.8 1

A12

Real

Im

-30

-20

-10

 0

 10

 0 0.2 0.4 0.6 0.8 1

A13

Real

Im

-20

-15

-10

-5

 0

 0 0.2 0.4 0.6 0.8 1

A14

Real

Im

-5

 0

 5

 0 0.2 0.4 0.6 0.8 1

A21

Real

Im

-40

-20

 0

 20

 0 0.2 0.4 0.6 0.8 1

A22

Real

Im

-20

 0

 20

 0 0.2 0.4 0.6 0.8 1

A23

Real

Im

-20

 0

 20

 40

 0 0.2 0.4 0.6 0.8 1

A24

Real

Im

-2

-1

 0

 1

 0 0.2 0.4 0.6 0.8 1

A31

Real

Im

-5

 0

 5

 10

 15

 0 0.2 0.4 0.6 0.8 1

A32

Real

Im
-20

-15

-10

-5

 0

 5

 0 0.2 0.4 0.6 0.8 1

A33

Real

Im

-5

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

A34

Real

Im

-1

 0

 1

 2

 0 0.2 0.4 0.6 0.8 1

A41

Real

Im
-10

 0

 10

 0 0.2 0.4 0.6 0.8 1

A42

Real

Im

-4

-2

 0

 2

 4

 6

 0 0.2 0.4 0.6 0.8 1

A43

Real

Im
-30

-20

-10

 0

 0 0.2 0.4 0.6 0.8 1

A44

Real

Im

Figure A.10: GAF matrix. AGARD 445.6 wing at M∞ = 1.141 and α = 0.0◦.

164 Unsteady Flows

-2

-1

 0

 1

 0 0.2 0.4 0.6 0.8 1

A31

Real

Im

d1
d2
d3

Figure A.11: A31 element of the GAF matrix. AGARD 445.6 wing at M∞ = 1.141 and

α = 0.0◦.

A.3 Concluding remarks

The unsteady solver implemented in the present work is suitable for the computation

of the inviscid flow around a deforming body. Numerical results show that the solver

is accurate and efficient, and may be used for cases of aeronautical interest. The

computation of the transonic flow around oscillating airfoils and wings, which have been

presented, is an example of one of such cases.

The solver has also been used for investigating the impulsive response of wings in

transonic flows. The purpose of the investigation was to show that wings may be as-

sumed to behave linearly in transonic flows and, therefore, the aeroelastic stability of

the system may be studied very easily using frequency domain analysis of the impul-

sive response. Results for two wings appeared to confirm the linear behavior that was

previously observed for airfoils. In fact, the responses obtained with different impulse

amplitudes appeared to overlap when scaled properly.

In the present work there has been no time to use the responses for the stability

analysis and therefore for the computation of the flutter speed. It is recommended that

future work should also consider whether the flutter speed obtained by the different

scaled responses is the same. Moreover, it would be interesting to compare the speed

obtained by the stability analysis with that obtained by time-marching the structure and

the airflow simultaneously. The solver seems to be suitable for such applications and

would require minor modifications only.

Bibliography

[1] Community Portal for Automatic Differentiation. Website on Automatic Differentiation

available at http://www.autodiff.org.

[2] Edge User Guide. Edge software documentation available at http://www.foi.se/edge.

[3] Tapenade c©INRIA 2002, version 2.0. Software and documentation available at

http://tapenade.inria.fr:8080/tapenade/index.jsp.

[4] SLATEC Common Mathematical Library, Version 4.1, 1993. Public domain software

available at http://www.netlib.org/slatec.

[5] O. Amoignon. Numerical Methods for Aerodynamic Shape Optimization. PhD the-

sis. Voume 135 of Digital Comprehensive Summaries of Uppsala Dissertations from the

Faculty of Science and Technology, Uppsala: Acta Universitatis Upsaliensis, 2005.

[6] O. Amoignon and M. Berggren. Adjoint of a median-dual finite-volume scheme: Appli-

cation to transonic aerodynamic shape optimization. Technical Report 2006-013, De-

partment of Information Technology, Uppsala University, Uppsala, Sweden, 2006.

[7] W. Anderson and D. Bonhaus. Airfoil Design on Unstructured Grids for Turbulent Flows.

AIAA Journal, 37:185–191, 1999.

[8] T. J. Barth. Analysis of Implicit Local Linearization Techniques for Upwind and TVD

Algorithms. AIAA Paper 87-0595, Reno, NV, Jan. 1987.

[9] T. J. Barth. Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and

Navier-Stokes Equations. In Unstructured Grid Methods for Advection Dominated Flows.

AGARD-R-787, May 1992.

[10] T. J. Barth and D. C. Jespersen. The Design and Application of Upwind Schemes on

Unstructured Meshes. AIAA Paper 89-0366, Reno, NV, Jan. 1989.

166 Bibliography

[11] T. J. Barth and S. W. Linton. An Unstructured Mesh Newton Solver for Compressible

Fluid Flow and its Parallel Implementation. AIAA Paper 95-0221, Reno, NV, Jan. 1995.

[12] F. Bauer, P. Garabedian, and D. Korn. A Theory of Supercritical Wing Sections, with

Computer Programs and Examples. Springer Verlag, 1972.

[13] O. Baysal and K. Ghayour. Continuous Adjoint Sensitivities for Optimization with General

Cost Functionals on Unstructured Meshes. AIAA Journal, 39(1):48–55, 2001.

[14] M. O. Bristeau, R. Glowinski, J. Périaux, P. Perrier, O. Pironneau, and G. Poirier. On the

Numerical Solution of Nonlinear Problems in Fluid Dynamics by Least Squares and Finite

Element Methods II. Application to Transonic Flow Simulations. Computer Methods in

Applied Mechanics and Engineering, 51:363–394, 1985.

[15] O. Brodersen and A. Stürmer. Drag Prediction of Engine-Airframe Interference Effects

Using Unstructured Navier-Stokes Calculations. AIAA Paper 2001-2414, June 2001.

[16] G. Carpentieri, B. Koren, and M. J. L. van Tooren. Adjoint-Based Aerodynamic Shape

Optimization on Unstructured Meshes. Journal of Computational Physics, 224(1):267–

287, 2007.

[17] G. Carpentieri, B. Koren, and M. J. L. van Tooren. Development of the Discrete Adjoint

for a 3D Unstructured Euler Solver. Journal of Aircraft, 45(1):237–245, 2008. Also

AIAA Paper 2007-3954. Presented at the 18th AIAA Computational Fluid Dynamics

Conference, 25-28 June 2007, Miami, FL.

[18] G. Carpentieri and M. J. L. van Tooren. A Framework for Aerodynamic Shape Opti-

mization. In G. Buttazzo and A. Frediani, editors, Variational Analysis and Aerospace

Engineering, volume 33 of Springer Optimization and Its Applications, 2009. Proceedings

of the 47th Workshop on Variational Analysis and Aerospace Engineering held in Erice,

Italy in September 2007.

[19] G. Carpentieri, M. J. L. van Tooren, M. Kelly, and R. Cooper. Airfoil Optimization Using

an Analytical Shape Parameterization. CEIAT Paper 05-0073, Belfast, UK, Aug. 2005.

[20] G. Carpentieri, M. J. L. van Tooren, and B. Koren. Improving the Efficiency of Aerody-

namic Shape Optimization on Unstructured Meshes. AIAA Paper 2006-298. Presented

at the 44th AIAA Aerospace Sciences Meeting and Exhibit, 9-12 January 2006, Reno,

Nevada.

[21] G. Carpentieri, M. J. L. van Tooren, and B. Koren. Aerodynamic Shape Optimization by

means of Sequential Linear Programming Techniques. ECCOMAS CFD 2006 conference

paper, Egmond aan Zee, The Netherlands, 2006.

[22] G. Carpentieri, M. J. L. van Tooren, and B. Koren. Comparison of Exact and Approximate

Discrete Adjoint for Aerodynamic Shape Optimization. In H. Deconinck and E. Dick,

editors, Computational Fluid Dynamics 2006. Springer, 2009. Proceedings of the Fourth

International Conference on Computational Fluid Dynamics, ICCFD, Ghent, Belgium,

10-14 July 2006.

[23] L. Catalano, A. Dadone, V. Daloiso, and G. Mele. Progressive Optimization Using

Orthogonal Shape Functions and Efficient Finite-Difference Sensitivities. AIAA Paper

2003-3961, June 2003.

[24] T. Cebeci. Analysis of Turbulent Flows. Elsevier Science, second edition, 2004.

[25] R. F. Chen and Z. Wang. An Improved LU-SGS Scheme with Faster Convergence for

Unstructured Grids of Arbitrary Topology. AIAA Paper 99-16759, Jan. 1999.

Bibliography 167

[26] R. Courant, K. Friedrichs, and H. Lewy. On the Partial Difference Equations of Mathe-

matical Physics. IBM Journal, 11(2):215–234, 1967.

[27] N. Cumpsty. Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic

Design and Performance of Jet Engines. Cambridge University Press, Cambridge, United

Kingdom, 2nd edition, 2003.

[28] J. Désidéri, B. E. Maid, and A. Janca. Nested and Self-Adaptive Bézier Parameterization

for Shape Optimization. Journal of Computational Physics, 224(1):117–131, 2007.

[29] J. A. Désidéri and A. Dervieux. Compressible Flow Solvers using Unstructured Grids.

Lecture Series 1988-05, Von Karman Institute for Fluid Dynamics, 1988.

[30] S. Davis. NACA 64A010 (NASA Ames Model) Oscillatory Pitching. AGARD Report

702, Jan. 1982.

[31] E. Dowell, E. Crawley, H. J. Curtiss, D. Peters, R. Scanlan, and F. Sisto. A Modern

Course in Aeroelasticity. Kluwer Academic Publisher, Dordrecht, The Netherlands, 3rd

revised and enlarged edition, 1995.

[32] R. P. Dwight and J. Brezillon. Effect of Approximations of the Discrete Adjoint on

Gradient-Based Optimization. AIAA Journal, 44(12):3022–3031, 2006.

[33] J. E. C. Yates. AGARD Standard Aeroelastic Configurations for Dynamic Responses.

Candidate Configuration I- Wing 445.6. AGARD Report-765, 1988.

[34] P. Eliasson. Edge, a Navier-Stokes Solver, for Unstructured Grids. Technical Report

FOI-R-0298-SE, Swedish Defence Research Agency, Stockholm, Sweden, 2001.

[35] J. Elliott and J. Peraire. Practical 3D Aerodynamic Design and Optimization Using

Unstructured Meshes. AIAA Journal, 35(9):1479–1485, 1997.

[36] V. Frayssé, L. Giraud, S. Gratton, and J. Langou. A Set of GMRES Routines for

Real and Complex Arithmetics on High Performance Computers. CERFACS Tech. Rep.

TR/PA/03/3, 2003. public domain software available on www.cerfacs/algor/Softs.

[37] M. B. Giles, M. C. Duta, J.-D. Müller, and N. A. Pierce. Algorithm Developments for

Discrete Adjoint Methods. AIAA Journal, 41(2):198–205, 2003.

[38] M. B. Giles and N. A. Pierce. An Introduction to the Adjoint Approach to Design. Flow,

Turbulence and Combustion, 65(3-4):393–415, 2000.

[39] S. Godunov. A Difference Scheme for Numerical Solution of Discontinuous Solution of

Hydrodynamic Equations. Math. Sbornik, 47:271–306, 1969.

[40] A. Guardone and L. Quartapelle. Spatially Factorized Galerkin and Taylor-Galerkin

Schemes for Multidimensional Conservation Laws. Scientific Report DIA-SR 00-18, Po-

litecnico di Milano, 2000.

[41] R. L. H. Luo, J.D. Baum. A Fast, Matrix-Free Implicit Method for Compressible Flows

on Unstructured Grids. Journal of Computational Physics, 146:664–690, 1998.

[42] A. Harten. High Resolution Schemes for Hyperbolic Conservation Laws. Journal of

Computational Physics, 49:357–393, 1983.

[43] A. Haselbacher, J. McGuirk, and G. Page. Finite Volume Discretization Aspects for

Viscous Flows on Mixed Unstructured Grids. AIAA Journal, 37(2):177–184, 1999.

[44] P. Hemker and S. Spekreijse. Multiple Grid and Osher’s Scheme for the Efficient Solution

of the Steady Euler Equations. Applied Numerical Mathematics, 2(6):475–494, 1986.

168 Bibliography

[45] J. Hess and A. Smith. Calculation of Potential Flow About Arbitrary Bodies. Progress

in Aeronautical Sciences, 8:1–138, 1967.

[46] R. Hicks and P. Henne. Wing Design by Numerical Optimization. Journal of Aircraft,

15(7):407–412, 1978.

[47] R. Hicks and G. Vanderplaats. Application of Numerical Optimization to the Design of

Supercritical Airfoils Without Drag-Creep. SAE Paper 770440, 1977.

[48] R. Hicks, G. Vanderplaats, E. Murman, and R. King. Airfoil Section Drag Reduction at

Transonic Speeds by Numerical Optimization. SAE Paper 760477, 1976.

[49] C. Hirsch. Numerical Computation of Internal and External Flows. Volume 1: Funda-

mentals of Numerical Discretization. John Wiley & Sons, 1988.

[50] C. Hirsch. Numerical Computation of Internal and External Flows. Volume 2: Compu-

tational Methods for Inviscid and Viscous Flows. John Wiley & Sons, 1988.

[51] A. Jameson. Iterative Solution of Transonic Flows over Airfoils and Wings, Including Flow

at Mach 1. Communications in Pure and Applied Mathemathics, 27:238–309, 1974.

[52] A. Jameson. Aerodynamic Design via Control Theory. Journal of Scientific Computing,

3:233–260, 1988.

[53] A. Jameson. Optimum Aerodynamic Design using CFD and Control Theory. AIAA Paper

95-1729-CP, 1995.

[54] A. Jameson. Re-engineering the Desing Process Through Computation. Journal of

Aircraft, 36(1):36–50, 1999.

[55] A. Jameson. CFD for Aerodynamic Design and Optimization: Its Evolution over the Last

Three Decades. AIAA Paper 2003-3438, 2003.

[56] A. Jameson, T. Baker, and N. Weatherill. Calculation of Inviscid Transonic Flow Over a

Complete Aircraft. AIAA Paper 86-0103, 1986.

[57] A. Jameson, N. Pierce, and L. Martinelli. Optimum Aerodynamic Design using the

Navier-Stokes Equations. AIAA Paper 97-0101, 1997.

[58] A. Jameson, W. Schmidt, and E. Turkel. Numerical Solution of the Euler Equations

by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA Paper

81-1259, 1981.

[59] A. Jameson and J. Vassberg. Computational Fluid Dynamics for Aerodynamic Design:

Its Current and Future Impact. AIAA Paper 2001-0538, 2001.

[60] A. Jameson and S. Yoon. Lower-Upper Implicit Schemes with Multiple Grids for the

Euler Equations. AIAA Journal, 25:929–935, 1987.

[61] F. Johnson, E. Tinoco, and N. Yu. Thirty Years of Development and Application of

CFD at Boeing Commercial Airplanes, Seattle. Computers & Fluids, 34(10):1115–1151,

2005.

[62] J. Katz and J. Plotkin. Low Speed Aerodynamics. Cambridge University Press, second

edition, 2001.

[63] C. Kim, C. Kim, and O. Rho. Sensitivity Analysis for the Navier-Stokes Equations with

Two-Equation Turbulence Models. AIAA Journal, 39:838–845, 2001.

[64] D. A. Knoll and D. E. Keyes. Jacobian-Free Newton-Krylov Methods: a Survey of

Approaches and Applications. Journal of Computational Physics, 193:357–397, 2004.

Bibliography 169

[65] B. Koobus and C. Farhat. Second-Order Time-Accurate and Geometrically Conservative

Implicit Schemes for Flow Computations on Unstructured Dynamic Meshes. Computed

Methods in Applied Mechanics and Engineering, 170:103–130, 1999.

[66] B. Koren. Defect Correction and Multigrid for an Efficient and Accurate Computation

of Airfoil Flows. Journal of Computational Physics, 77(1):183–206, 1988.

[67] B. Koren. Multigrid and Defect Correction for Steady Navier-Stokes Equations: Ap-

plication to Aerodynamics . PhD thesis, Delft University of Technology, Delft, The

Netherlands, May 1989.

[68] B. M. Kulfan. A Universal Parametric Geometry Representation Method-“CST”. AIAA

Paper 07-0062, Reno, NV, Jan. 2007.

[69] G. Kuruvila, S. Ta’asan, and M. Salas. Airfoil Design and Optimization by the One-Shot

Method. AIAA Paper 95-0478, 1995.

[70] C. B. Laney. Computational Gasdynamics. Cambridge University Press, 1998.

[71] R. J. Le Veque. Finite Volume Methods for Hyperbolic Problems. Cambridge University

Press, 2002.

[72] E. M. Lee-Rausch and J. T. Batina. Calculation of AGARD Wing 445.6 Flutter Using

Navier-Stokes Aerodynamics. AIAA Paper 93-3476, 11th Applied Aerodynamics Confer-

ence, Monterey, California, 1993.

[73] J. Lépine, F. Guibault, J. Trépanier, and F. Pépin. Optimized Non Uniform Rational

B-Spline Geometrical Representation for Aerodynamic Design of Wings. AIAA Journal,

39(11):2033–2041, 2001.

[74] J. Lépine, J. Trépanier, and F. Pépin. Wing Aerodynamic Design Using an Optimized

NURBS Geometrical Representation. AIAA Paper 2000-0669, Jan. 2000.

[75] M. Lighthill. A New Method of Two Dimensional Aerodynamic Design. Aeronautical

Research Council’s Reports and Memoranda 2112, 1945.

[76] M. Lighthill. The Hodograph Transformation in Trans-sonic Flow. I-III. Proceedings of

the Royal Society, 191:323–369, 1947.

[77] M. Lighthill. On Displacement Thickness. Journal of Fluid Mechanics, 4:383–392, 1958.

[78] J. L. Lions. Optimal Control of Systems Governed by Partial Differential Equations.

Springer-Verlag, 1971.

[79] P. Lisandrin, G. Carpentieri, and M. J. L. van Tooren. An Investigation over CFD-Based

Models for the Identification of Non-Linear Unsteady Aerodynamics Responses. AIAA

Journal, 44(9):2043–2050, 2006.

[80] D. J. Mavriplis. Multigrid Techniques for Unstructured Meshes. Lecture Series VKI-LS

1995-02, Von Karman Institute for Fluid Dynamics, 1995.

[81] D. J. Mavriplis. Unstructured Grid Techniques. Annual Review of Fluid Mechanics,

29:473–514, 1997.

[82] D. J. Mavriplis. On Convergence Acceleration Techniques for Unstructured Meshes.

AIAA Paper 98-2966, June 1998.

[83] D. J. Mavriplis. Formulation and Multigrid Solution of the Discrete Adjoint for Op-

timization Problems on Unstructured Meshes. AIAA Paper 05-0319, Reno, NV, Jan.

2005.

170 Bibliography

[84] D. J. Mavriplis. Discrete Adjoint-Based Approach for Optimization Problems on Three-

Dimensional Unstructured Meshes. AIAA Journal, 45(4):740–750, 2007.

[85] J.-D. Müller and P. Cusdin. On the Performance of Discrete Adjoint CFD Codes Using

Automatic Differentiation. International Journal for Numerical Methods in Fluids, 47(8-

9):939–945, 2003.

[86] B. Mohammadi. A New Optimal Shape Design Procedure for Inviscid and Viscous Tur-

bulent Flows. International Journal for Numerical Methods in Fluids, 25(2):183–203,

1997.

[87] B. Mohammadi and O. Pironneau. Shape Optimization in Fluid Mechanics. Annual

Review of Fluid Mechanics, 36:255–279, Jan. 2004.

[88] C. Morawetz. On the Non-Existence of Continuous Transonic Flows Past Profiles, Part

1 . Communications on Pure and Applied Mathematics, 9:45–68, 1956.

[89] L. Morino and C. Kuo. Subsonic Potential Aerodynamics for Complex Configurations:

a General Theory. AIAA Journal, 12(2):191–197, 1974.

[90] W. A. Mulder. Multigrid Relaxation for the Euler Equations. Journal of Computational

Physics, 60(2):235–252, 1985.

[91] E. Murman and J. Cole. Calculation of Plane Steady Transonic Flows. AIAA Journal,

9:114–121, 1971.

[92] S. K. Nadarajah and A. Jameson. A Comparison of the Continuous and Discrete Adjoint

Approach to Automatic Aerodynamic Optimization. AIAA Paper 00-16527, Jan. 2000.

[93] N. Nemec and D. Zingg. Newton-Krylov Algorithm for Aerodynamic Design Using the

Navier Stokes Equations. AIAA Journal, 40(6):1146–1154, 2002.

[94] J. C. Newman III, A. C. Taylor III, R. Barnwell, P. Newman, and G.-W. Hou. Overview

of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations.

Journal of Aircraft, 36(2):87–96, 1999.

[95] E. Nielsen and W. Anderson. Aerodynamic Design Optimization on Unstructured Meshes

Using the Navier-Stokes Equations. AIAA Journal, 37:1411–1419, 1999.

[96] E. Nielsen and M. Park. Using an Adjoint Approach to Eliminate Mesh Sensitivities in

Computational Design. AIAA Journal, 44(5):948–953, 2006.

[97] E. J. Nielsen, J. Lu, M. A. Park, and D. L. Darmofal. An Implicit, Exact Dual Ad-

joint Solution Method for Turbulent Flows on Unstructured Grids. Computers & Fluids,

33(9):1131–1155, 2004.

[98] G. Nieuwland. Transonic Potential Flow Around a Family of Quasi-Elliptical Airfoil Sec-

tions. NLR Report TRT 172, 1967.

[99] B. Nkonga and H. Guillard. Godunov-Type Method on Non-Structured Meshes for Three-

Dimensional Moving Boundary Problems. Computational Methods in Applied Mechanics

and Engineering, 113:183–204, 1994.

[100] O. Pironneau. On Optimum Design in Fluid Mechanics. Journal of Fluid Mechanics,

64:97–110, 1974.

[101] O. Pironneau. Control of Transonic Shock Position. ESAIM: Control, Optimisation and

Calculus of Variations, 8(2):907–914, 2002.

[102] R. J. Prazenica, P. H. Reisenthel, A. J. Kurdila, and M. J. Brenner. Volterra Kernel

Extrapolation for Modeling Nonlinear Aeroelastic Systems at Novel Flight Conditions.

Journal of Aircraft, 44(1):149–162, 2007.

Bibliography 171

[103] J. Reuther and A. Jameson. Control Based Airfoil Design Using the Euler Equations.

AIAA Paper 94-4272-CP, 1994.

[104] J. Reuther, A. Jameson, J. Alonso, M. Remlinger, and D. Saunders. Constrained Multi-

point Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Com-

puters, Part 1. Journal of Aircraft, 36(1):51–60, 1999.

[105] J. Reuther, A. Jameson, J. Alonso, M. Remlinger, and D. Saunders. Constrained Multi-

point Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Com-

puters, Part 2. Journal of Aircraft, 36(1):51–60, 1999.

[106] J. Reuther, A. Jameson, A. Farmer, J. Martinelli, and D. Saunders. Aerodynamic Shape

Optimization of Complex Aircraft Configurations via an Adjoint Formulation. AIAA Paper

96-0094, 1996.

[107] G. Robinson and A. Keane. Concise Orthogonal Representation of Supercritical Airfoils.

Journal of Aircraft, 38(3):580–583, 2001.

[108] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes.

Journal of Computational Physics, 43(2):357–372, 1981.

[109] P. Sacher. Numerical Solutions of Two-Dimensional Reference Test Cases. In Test Cases

for Inviscid Flow Field Methods. AGARD-AR-211, May 1985.

[110] J. Samareh. Novel Multidisciplinary Shape Parameterization Approach. Journal of Air-

craft, 38(6):1015–1024, 2001.

[111] J. A. Samareh. Survey of Shape Parameterization Techniques for High-Fidelity Multidis-

ciplinary Shape Optimization. AIAA Journal, 39(5):877–884, 2001.

[112] V. Schmitt and F. Charpin. Pressure Distributions on the ONERA-M6 Wing at Transonic

Mach Numbers. In Experimental Data Base for Computer Program Assessment. AGARD-

AR-138, May 1979.

[113] V. Selmin and L. Formaggia. Unified Construction of Finite Element and Finite Volume

Discretizations for Compressible Flows. International Journal for Numerical Methods in

Engineering, 39(1):1–32, 1996.

[114] J. Shim, K. D. Lee, and A. Verhoff. An Efficient Aerodynamic Design Method Using

Asymptotic Solution of Euler Equations. AIAA Paper 02-3141, St. Louis, Missouri, June

2002.

[115] W. A. Silva and R. E. Bartels. Development of Reduced-Order Models for Aeroelas-

tic Analysis and Flutter Prediction using the CFL3Dv6.0 Code. Journal of Fluids and

Structures, 42:581–606, 2003.

[116] B. Soemarwoto and T. Labrujere. Airfoil Design and Optimization Methods: Recent

Progress at NLR. International Journal for Numerical Methods in Fluids, 30(2):217–

228, 1999.

[117] M. Sohn and K. Lee. Bézier Curve Application in the Shape Optimization of Transonic

Airfoils. AIAA Paper 2000-4523, Aug. 2000.

[118] S. Spekreijse. Multigrid Solution of Monotone Second-Order Discretizations of Hyper-

bolic Conservation Laws. Mathematics of Computation, 49(179):135–155, 1987.

[119] J. Steger and R. Warming. Flux Vector Splitting of the Inviscid Gasdynamic Equa-

tions with Application to Finite-Difference Methods. Journal of Computational Physics,

40(2):263–293, 1981.

172 Bibliography

[120] T. Theodorsen and I. Garrick. General Potential Theory of Arbitrary Wing Sections.

NACA Tech. Rept. 452, 1933.

[121] P. D. Thomas and C. K. Lombard. Geometric Conservation Law and its Application to

Flow Computations on Moving Grids. AIAA Journal, 17:1030–1037, 1979.

[122] J. I. Trépanier, J. Lépine, and F. Pépin. An Optimized Geometric Representation for

Wing Profile using NURBS. CASI Journal, 46(1):12–19, 2000.

[123] G. van Albada, B. van Leer, and W. W. Roberts. A Comparative Study of Computational

Methods in Cosmic Gas Dynamics. Astronomy and Astrophysics, 108(1):76–84, 1982.

[124] B. van Leer. Towards the Ultimate Conservative Difference Scheme. V. A second-Order

Sequel to Godunov’s Method. Journal of Computational Physics, 32:101–136, 1979.

[125] G. Vanderplaats, R. Hicks, and E. Murman. Application of Numerical Optimization

Techniques to Airfoil Design. NASA Report sp-347, 1975.

[126] G. N. Vanderplaats. Numerical Optimization Techniques for Engineering Design. Van-

derplaats Reasearch & Development, Inc, third edition, 2001.

[127] D. Venditti and D. Darmofal. Grid Adaptation for Functional Outputs: Application to

Two-Dimensional Inviscid Flows. Journal of Computational Physics, 176(1):40–69, 2002.

[128] V. Venkatakrishnan. Convergence to Steady State Solutions of the Euler Equations on

Unstructured Grids with Limiters. Journal of Computational Physics, 118(1):120–130,

1995.

[129] V. Venkatakrishnan. Perspective on Unstructured Grid Flow Solvers. AIAA Journal,

34(3):533–547, 1996.

[130] V. Venkatakrishnan and D. Mavriplis. Implicit Method for the Computation of Unsteady

Flows on Unstructured Meshes. AIAA Paper 95-1705-cp, 1995.

[131] V. Venkatakrishnan and D. J. Mavriplis. Implicit Solvers for Unstructured Meshes. Journal

of Computational Physics, 105:83–91, 1993.

[132] A. Verhoff, D. Stooksberry, and A. B. Cain. An Efficient Approach to Optimal Aero-

dynamic Design Part 1: Analytic Geometry and Aerodynamic Sensitivities. AIAA Paper

93-0099, Jan. 1993.

[133] H. Viviand. Numerical Solutions of Two-Dimensional Reference Test Cases. In Test

Cases for Inviscid Flow Field Methods. AGARD-AR-211, May 1985.

[134] P. Wesseling. Principles of Computational Fluid Dynamics. Springer, 2001.

[135] D. C. Wilcox. Turbulence Modeling for CFD. D. C. W. Industries, second edition, 2002.

[136] O. Zienkiewicz, R. Taylor, and P. Nithiarasu. The Finite Element Method For Fluid

Dynamics. Butterworth-Heinemann, sixth edition, 2005.

Acknowledgements

The present thesis could have never been realized without Prof. Michel van Tooren. We met

in his department when I arrived in Delft to work on my master thesis. He noticed my interest

for aerodynamics and engineering optimization and suggested working on the multidisciplinary

design of the Blended Wing Body aircraft. I did not know anything about aircraft design but

I was fascinated by the assignment. He introduced me to the basics of aircraft design and

pointed my attention to several interesting optimization problems. I gained valuable knowledge

from that assignment and realized that I wanted to continue. At the end of the master thesis

work, when he offered me a PhD position, I accepted it immediately. I really appreciated that I

was given the freedom to chose the direction of my research. However, the first year I felt the

pressure of having to decide which way to go and complained with him about it. I remember him

answering that I was given the very rare opportunity of doing what I liked, for four years, with

even being paid for it. He was right and since then I have just tried to make the most of that

opportunity. It was not difficult to do so because Prof. van Tooren was very supportive. He was

always there to show his appreciation at every little achievement and to provide encouragement

to do more.

A person who played a major role in my research is Prof. Barry Koren. I remember the day

I passed by his office for the very first time, with the intention of asking suggestions for my

work. He manifested a genuine interest for what I was doing and immediately offered his help.

In the following three years we met constantly to discuss future research directions and ways

to improve the work. He drew my attention to interesting conferences and seminars, within

which I presented my work and obtained valuable feedback. Also, he helped me very much in

putting my work on paper. His attention to details was important and decisive for the writing.

I really feel that Prof. Barry Koren helped me in constructing this thesis, one piece at a time,

in a very structured way.

174 Bibliography

During my PhD time it was really pleasant to spend time at the faculty with my colleague

and friend Paolo Lisandrin. At lunch times or coffee breaks we always had discussions on

several non-work related issues. Those discussions continue until today. I was also a co-worker

of Paolo, and it was very interesting to work with him on unsteady flow problems. It is a pity

that we had no chance to continue with that work.

A student of the department, Wouter Terra, helped me in extending the work carried out

with Paolo on airfoil sections, to wings. In fact, Wouter implemented almost all the work

contained in the appendix. He carried out his master thesis under my supervision and later

became my co-worker. I do not really like teaching/supervising but I have to admit that it gives

a fine feeling to see a student achieve so much as Wouter did.

In order to implement my code I spent the second and third year of my PhD project in an

office room for my own. I shared an office room in the first and fourth year. Ton van der Laan

was my roommate in the first year. He was also my “Belasting Adviseur” (tax consultant). His

help was crucial in understanding how to buy a house in the Netherlands and how to make the

most of mortgage interest deductions. Apart from taxes, it is thanks to him that I discovered a

lot about Dutch culture and habits. Gandert van Raemdonck was my roommate in the fourth

year. We shared the same taste for music and, unfortunately, also the same kind of humour.

It was very nice to see him making the first steps in the creation of his own company. Luckily,

there is someone who is transferring knowledge to the industry.

I have been very happy to be surrounded by nice people at the faculty. I remember the

original members of the department: Gianfranco La Rocca, Lin Pijpaert and Lars Kracker.

They had to cope with me since the very beginning. When I was tired of my work, every

occasion was good to make a trip to their desks and engage in endless conversations. It has

been very nice to meet other students and employees in the department. Martijn, Mary, Haroon,

Michiel, Jochem, Joost, Wim, Teodor, Meng and Benedetto have contributed to make my stay

at the faculty very pleasant.

All the friends that my girlfriend Tamara and I met in Delft have been special for us. They

are: Ali, Barbara, Alexis, Marco, Lara, Simon, Christian, Elvira, Pascal, Greg, Alet, Adriano,

Verena, Emile, Eleonora, Aurelie, Marcos, Carla, Lena, Nicholas, Marco, Regan, Amer, Valeria

and Mariska. Together we shared beautiful moments and without them living in Delft would

have been much less enjoyable.

My girlfriend Tamara was the person who supported me the most during my PhD project.

She moved with me to The Netherlands when I started on the project; she had to give up family

and friends. In the beginning there were plenty of difficulties for her. However, she was very

strong and never stepped back. Her optimism kept me going and when I felt really tired and

unmotivated she was always there to encourage me and to tell me that everything would be

fine. We went through a lot together but it was really worth it because the time I spent with

her has been the happiest of my life so far. I am very confident that we will make it, also this

time.

Finally, I could reach the point of starting my PhD research because of the support that I

received from my family since I was a child. My sister, my mother and my father were always

there for me and always provided encouragement in all the challenges that I faced. My mother

and my father worked very hard for my sister and me to make sure that we always got the best

of everything. And I know that it was not easy for them, not at all. Words such as holidays or

weekends were not in their dictionary. By looking at them I understood that things do not get

done from 9 to 5, especially if you want to change your luck.

About the author

Giampietro Carpentieri was born on the 16th of October 1978 in Rome, Italy. From Septem-

ber 1992 to July 1997 he attended high school at the “Instituto Tecnico Agrario Statale G.

Garibaldi,” in Rome. In October 1997 he enrolled at the Faculty of Mechanical Engineering

of the “Università degli Studi Roma Tre.” He carried out most of the work for his graduation

thesis at the Faculty of Aerospace Engineering of the Delft University of Technology, in The

Netherlands. He obtained his cum laude university degree, “Laurea di Dottore in Ingegneria

Meccanica,” in October 2003. In December of the same year he accepted a PhD student

position at the Faculty of Aerospace Engineering in Delft. During the following four years he

conducted research on numerical methods for aerodynamic shape optimization and obtained

the results presented in this thesis. In March 2008 he started working as a quantitative analyst

for a Dutch bank in London. In March 2009, following the worldwide financial crisis, he was

relocated to The Netherlands, where he is currently working.

