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This paper presents a computationally efficient framework in which a single focal-plane image is used to obtain a
high-resolution reconstruction of dynamic aberrations. Assuming small-phase aberrations, a non-linear Kalman
filter implementation is developed whose computational complexity scales close to linearly with the number of
pixels of the focal-plane camera. The performance of the method is tested in a simulation of an adaptive optics sys-
tem, where the small-phase assumption is enforced by considering a closed-loop system that uses a low-resolution
wavefront sensor to control a deformable mirror. The results confirm the computational efficiency of the algorithm
and show a large robustness against noise and model uncertainties. © 2020 Optical Society of America

https://doi.org/10.1364/JOSAA.405712

1. INTRODUCTION

Adaptive optics (AO) systems correct in real time for phase
aberrations in optical systems. A deformable mirror (DM) is
used to correct for the phase aberrations and counter their effects
on image quality. Often, the light is split between a wavefront
sensor (WFS), which measures the phase aberration, and a
focal-plane camera, which captures the image of interest. The
reason for including a dedicated WFS is that retrieving the
aberrations from focal-plane images alone is very challenging, as
most methods are based on iterative algorithms, which are dif-
ficult to apply in real time for temporally dynamic wavefronts.
Despite the challenges, focal-plane wavefront sensing is still an
active field, as it simplifies the optical setup and eliminates errors
due to non-common-path aberrations (NCPAs). Assuming a
point source, the focal-plane camera captures the point spread
function (PSF). The problem of retrieving the static phase
aberrations from the PSF is known as the phase retrieval (PR)
problem.

Many PR algorithms have been developed, and these can
be split into three main classes. The first and still the most
commonly used class is based on alternating projections (AP).
The most well-known AP methods include [1,2], but many
more have been developed. See [3] for an overview and [4]
for a recent state of the art method. A second class of methods
reformulates the PR problem as a convex optimization problem
[5,6]. Despite promising convergence results, these methods are
very computationally demanding for larger AO systems. More
recently, a third class, which solves the PR problem in its original

non-convex framework, has gained attention [7–10]. A problem
of this class of methods is the need of an accurate initial guess of
the wavefront, usually computed via techniques that require a
restrictive measurement setup and many more measurements
than unknowns [7,8].

Another approach to focal-plane wavefront sensing is to
assume that the phase to be estimated is small [11] and to apply
a linear or quadratic approximation of the PSF. This approach
includes methods such as iterative linear phase diversity (ILPD)
[12], linearized focal-plane technique (LIFT) [13], and Fast
& Furious [14]. These methods are restricted to small wave-
fronts (RMS value below 0.5 rad [12]). In addition, in [15],
the approach was used to estimate dynamic aberrations using a
non-linear Kalman filtering (KF) framework.

Where the KF implementation proposed in [15] is unprac-
tical for large-scale applications due to its large computational
complexity, this paper presents a computationally efficient
framework in which a single focal-plane image is used to obtain
a high-resolution reconstruction of dynamic aberrations. By
exploiting special matrix structures and efficient linear algebra
operations specific to AO systems, the number of elementary
computations scale just more than linearly (n log(n)) with the
total number of pixels n of the reconstruction. This compu-
tational complexity is of the same order as computationally
efficient small-phase methods [14] and much faster than the
existing KF-based method [15] (which scales with n3). The low
computational complexity opens up the possibility for real-time
large-scale applications.
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An additional goal of this paper is to address the advantages
of reformulating the PR problem for dynamic aberrations into
a KF framework. Due to the similarities between the KF mea-
surement update and the PR problem, the issue of uniqueness
of the PR problem becomes an issue of observability within the
KF framework. Consequently, even when there is no unique
solution to the PR problem when using a single image, the full
dynamic system considered by KF can become observable. In
addition, it will be discussed how the KF measurement update
can be interpreted as an optimally weighted regularization to the
static PR problem.

The KF framework makes the method applicable to cases
where the phase aberrations change over time, i.e., dynamic
phase aberrations. Moreover, by including the temporal and
statistical models of the turbulence and sensors, KF is known to
be robust against modeling errors and measurement noise, mak-
ing it particularly suitable for dealing with dynamic aberrations
and noisy measurements. Small-phase aberrations have also
been assumed in other algorithms that aim to estimate temporal
dynamic aberrations [15,16]. Possible applications include esti-
mating NCPAs (which occur in various fields such as astronomy
[17,18] and ophthalmology [19,20]), wind induced dynamic
non-common path vibrations [21], or the low-wind effect
[18]. This method could also be used to estimate spatial (rather
than temporal) dynamics due to anisoplanatic conditions in
astronomy [22], ophthalmology [23], and microscopy [24].
Small-phase aberrations are the typical situation considering a
closed-loop AO system [12], making the algorithm well-suited
to estimate AO-corrected atmospheric residuals.

The proposed algorithm establishes a generic framework that
can be applied provided its requirements are satisfied (small-
phase aberrations with continuous dynamic evolution). As an
illustration, a simulation of a closed-loop AO system for astron-
omy using the open-source Matlab software Object-Oriented
Matlab AO (OOMAO) [25] is performed, giving a detailed
analysis of the robustness of the method against modeling inac-
curacies and noise. A simple WFS-based controller compensates
for the dominant low-order modes in the wavefront in order to

Table 1. List of Frequently Used Notations and
Symbols

c X Average number of non-zero elements per row/column of
any sparse banded matrix X

m Number of actuators inside the aperture
n̄, n Size of grid in pupil plane (n̄ × n̄) and number of pixels

inside aperture, respectively
p̄, p Size of grid in the image plane ( p̄ × p̄) and p = p̄2

q̄ Size of lenslet grid of the WFS (q̄ × q̄ )
φ(k) Aberrated residual wavefront
a Pupil plane amplitude
u(k) DM control signal
v(k), R(k) Measurement noise and its covariance matrix
y(k) Point spread function (PSF)
A, Q Turbulence dynamics model [see Eq. (10)]
Jφ, cφ Taylor expansion of y(k) [see Eq. (20)]
F ,Fvec Zero-padded 2D DFT andFvec{·} := vec(F{·})
Jφ,M,B Efficient operators [see Eqs. (21), (35), (36)]
N (µ, P ) Gaussian random process (meanµ, covariance P )
SX Set of all matrices that satisfy a chosen sparsity pattern for

matrix X

Fig. 1. Schematic of the classic AO system for astronomy.

keep the wavefront sufficiently small. It should be stressed that
this case study is merely an example and should be considered as
an illustration of the performance of the method under varying
temporal dynamics, noise conditions, and RMS values of the
aberration.

This paper is structured as follows. Section 2 gives an intro-
duction to modeling AO systems and dynamic aberrations.
A computationally efficient representation of the model and
its identification procedure is described in Section 3. The
advantage of using KFs in WFS-less AO systems is discussed
in Section 4. The main contribution of this paper, an effi-
cient implementation of the KF, is introduced in Section 5.
Section 6 discusses the simulation environment, and the results
are presented in Section 7. Finally, the main conclusions are
summarized in Section 8. Frequently used symbols are listed in
Table 1.

2. MODELING THE AO SYSTEM

To provide an illustration of the algorithm’s performance, a typi-
cal closed-loop AO system for astronomy depicted in Fig. 1 will
be used. This section introduces the components, aberration
dynamics, and measurement noise models.

A. Overview of the AO System

The effect of the phase aberration on the optical system will be
represented in terms of the generalized pupil function (GPF):

X (ρ, θ)=A(ρ, θ) exp (i8(ρ, θ)) , (1)

where ρ, θ represent the normalized polar coordinates in the
pupil plane, and A(ρ, θ) and 8(ρ, θ) represent the ampli-
tude apodization function and phase aberration, respectively.
Assuming uniform illumination,A(ρ, θ)will correspond to the
characteristic function with a constant value inside the pupil and
zero outside. The image along the optical axis around the focal
plane can be expressed in terms of the GPF via the following
integral:

I(ζ, ω, δ)=
1

π

∫ 1

0

∫ 2π

0
exp

(
iδζ 2)X (ρ, θ) . . .

× exp(2π iζρ cos(θ −ω))ρdρdθ, (2)
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where ζ, ω are the normalized polar coordinates in the focal
plane, and δ represents the position along the optical axis with
respect to the focal plane. The PSF corresponding to the GPF is
defined as the intensity ofI(ζ, ω, δ):

Y(ζ, ω, δ)= |I(ζ, ω, δ)|2. (3)

The pupil plane coordinates will be sampled on a regular n̄ × n̄
grid of pixels. The discretized GPF, its amplitude and its phase
(the wavefront) will be denoted by X ∈Cn̄×n̄ , A ∈Rn̄×n̄ , and
8 ∈Rn̄×n̄ , respectively, related via

X =A� exp i8, (4)

where � represents an element-wise product of two vectors
or matrices. Often, a vectorized representation will be used
in which only the pixels inside the aperture, i.e., the non-zero
elements inA, will be considered:

x = a� exp iφ, (5)

so that a ∈Rn , x ∈Cn , andφ ∈Rn . Moreover, due to the circu-
lar aperture, it can be concluded that n < n̄2.

Similarly, the image plane coordinates are sampled on a
p̄ × p̄ grid, and the PSF will be denoted by Y ∈R p̄× p̄ . A dis-
crete adaptation of Eq. (2) becomes the two-dimensional (2D)
discrete Fourier transform (DFT) denoted byF(·):

Y = |F{X }|2. (6)

To obtain a Nyquist sampled measurement, it is necessary for
simulation purposes that the matrix X ∈Cn̄×n̄ is padded with
zeros to the dimension of p̄ × p̄ , where p̄ = 2n̄. A vectorized
representation of Eq. (6) is defined by

y= |Fvec{x}|2, (7)

where Fvec{·} := vec(F{·}) and y ∈Rp : y := vec(Y ) such that
p = p̄2, with vec(·) representing a vectorization of a matrix.

The WFS is assumed to have a square grid of q̄ × q̄ lenslets.
Measurements from lenslets that do not collect enough light
due to their position outside the aperture will be discarded. The
effect of the DM on the wavefront is modeled by its influence
functions. The actuators are placed such that their centers lie
on a (q̄ + 1)× (q̄ + 1) grid located at the corners of the WFS
lenslet subapertures (known as Fried geometry). Actuators
outside of the aperture will be discarded, hence the number of
active actuators m < (q̄ + 1)2. The wavefront correction by the
DM will be denoted by8dm ∈Rn̄×n̄ , and it is defined as

8dm =

m∑
`=1

B`u`, (8)

where B` ∈Rn̄×n̄ represents the DM influence functions. The
control commands u` ∈R, `= 1, . . . ,m are stored in a vector
u ∈Rm . A vectorized formulation of 8dm is represented by
φdm ∈Rn :φdm := vec(8dm), and

φdm = Bu, (9)

such that each column ` of B ∈Rn×m is equal to vec(B`).

B. Dynamic Aberration Model

In astronomy, the phase aberrations are caused by turbulence
in the earth’s atmosphere. Since atmospheric turbulence is a
well-studied source of dynamic aberrations, it is one of the main
reasons for choosing the astronomy example to illustrate the
algorithm’s performance. The temporal dynamics are usually
modeled by assuming Taylor’s frozen turbulence assumption,
where the atmosphere is modeled by multiple layers, each mov-
ing in a constant direction and speed. The layer’s combined
influence on the wavefront is denoted byφt ∈Rn . The temporal
dynamics of φt are estimated by a vector auto-regressive (VAR)
model of order one, i.e.,

φt(k + 1)= Aφt(k)+w(k), (10)

with k specifying the time index, A ∈Rn×n , and where
w(k) ∈Rn is a Gaussian random process with zero mean
and covariance matrix Q ∈Rn×n , which will be denoted in this
paper as w(k)∼N (0, Q), where the symbol ∼ declares the
statistical distribution of the variable on its left. VAR models
have been a popular choice to model aberration dynamics and
have been particularly used to model turbulence dynamics [26].
During the simulations, the turbulence will be simulated using
OOMAO, so the model of Eq. (10) is not the true model driving
the turbulence dynamics. More detailed information in how to
obtain the VAR model from data is discussed in Section 3.

Closing the loop using the DM model of Eq. (9), the residual
wavefront φ(k) ∈Rn , defined as φ(k)= φt(k)− φdm(k),
which is combined with Eq. (10), becomes

φ(k + 1)= Aφ(k)− Bu(k)+ ABu(k − 1)+w(k). (11)

Finally, usingφ as the state and Eq. (11) as the state update equa-
tion, a state-space model [27] can be formulated by including
the measured PSF as an output equation:

y(k)= |Fvec
{
a� exp(iφ(k))

}
|
2
+ v(k). (12)

The measurement noise v(k) is in reality a combination of
Guassian read-out noise and Poissonian shot noise, but will be
modeled as a Gaussian process: v(k)∼N (0, R(k)), this will be
motivated in the next subsection.

C. Measurement Noise Model

The true measurement noise can be seen as combination of
Gaussian read-out noise and Poissonian shot noise, i.e.,

y= ytrue + vshot + vread, (13)

where ytrue is the number of photons that would have arrived
at each pixel of the camera in the noiseless case. The read-out
noise is a zero-mean white Gaussian noise vread ∼N (0, σ 2

r I ).
The shot noise is known to correspond to a Poisson distribution:
( ytrue + vshot)∼ Pois( ytrue).

By approximating the Poisson distribution by a Gaussian
distribution, the use of the Kalman filter theory is allowed.
An important reason this approximation is adopted is that
the Poisson distribution is known to converge to a Gaussian
distribution when y true is large, i.e.,

lim
ytrue→∞

Pois(y true)=N (y true, y true), (14)
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where in this case y true represents a single pixel. Consequently, if
y true is large,

y ≈ y true + ṽshot + vread, (15)

with ṽshot ∼N (0, y true) and vread ∼N (0, σ 2
r ). Since the

read-out and shot noise can be considered to be uncorrelated,
the total noise is v := ṽshot + vread, v ∼N (0, y true + σ

2
r ). Of

course, this remains an approximation, so the robustness of the
method against this modeling inaccuracy will be discussed in
Section 7.

When the approximation of Eq. (15) is extended to the
multivariate case of Eq. (13), the approximation of the shot
noise becomes ṽshot(k)∼N (0, diag( y(k))), with diag( y)
a diagonal matrix with the entries of y on its diagonal. The
total measurement noise, given by v(k) in Eq. (12), will be
modeled by

v(k)∼N (0, R(k)), with R(k)= σ 2
r I + diag( y(k)).

(16)
In the simulations, the shot noise and read-out noise will be sim-
ulated according to their true distributions, and the approxima-
tion of Eq. (16) is not used to simulate the noise.

Furthermore, since the number of arriving photons (y true)
influences the severity of the noise, the brightness of the point
source becomes an important parameter. A commonly used
unit for the flux of photons arriving at the telescope is the (Vega)
magnitude, βm . The relation βm and the photon flux β f in
photons/m2/s depends on the photometric system:

β f = cβ10−
2
5 βm , (17)

with constant cβ ≈ 8.97 · 109 for the simulations in Section 7.

3. STRUCTURES AND EFFICIENT
COMPUTATIONS IN AO SYSTEMS

This section discusses a number of structures of matrices that
appear in the state-space model defined by Eqs. (11) and (12).
The model structures and efficient operators presented in this
section will be used to develop an efficient non-linear Kalman
filter implementation discussed in Section 5.

A. Identification of Structured Matrices in Dynamic
Aberration Models

The key realization for efficiently modeling the aberration
dynamics is that the VAR with exogenious variables (VARX)
model of Eq. (11) can be accurately represented by highly sparse
matrices A, Q−1, and B . When a type of DM is considered,
for which its actuators only have a local influence on the total
wavefront, B will be a sparse matrix. The remainder of this
subsection will focus on the sparsity of the matrices A and Q−1.

To support this assumption, a graphical model representa-
tion of the VARX model can be considered [28]. An intuitive
interpretation of the theory in [28] to atmospheric turbulence
implies that the matrices A and Q−1 are sparse banded matrices.
This banded sparsity corresponds to the ability of predicting a
single pixel only using those in its close neighbourhood. Such
an assumption holds, for example, in situations where the tur-
bulence can indeed be approximated by Taylor’s frozen flow

hypothesis, as is done in this work. The sparsity structure of the
matrices A and Q−1 is defined by the sets SA and SQ−1 , respec-
tively, each denoting the location of the non-zero entries in their
corresponding matrix. A more detailed analysis of sparsity struc-
tures in dynamic AO systems can be found in [29,30]. Sparsity
structures in AO systems are not unique to the dynamic aberra-
tion model. For example, [31] shows that the sparsity structure
can also be exploited for static wavefront reconstruction.

To compute A and Q−1, different approaches are possible,
depending on the available information, such as computing
them from first principles by manual tuning or via system iden-
tification techniques [27]. The remainder of this subsection will
show how A and Q−1 can be computed via system identifica-
tion; however, if the covariance matrix Cφ = E [φ(k)φT(k)] is
known, A and Q are related via Q =Cφ − ACφ AT .

To identify A and Q−1 from data, a time series with
Nid time samples of open-loop wavefront data is retrieved
using either a dedicated WFS or any WFS-less wavefront
reconstruction method. This batch will be denoted by
{φid (i)|i = 1, 2, . . . , Nid }. The matrix A can be identified
by solving the following constrained least squares problem [27]:

min
A
‖A81 −82‖

2
F

s.t. A ∈ SA, (18)

where 81 = [φid (1) · · · φid (Nid − 1)] and 82 =

[φid (2) · · · φid (Nid )]. The set SA describes the set of all
matrices A that have a desired sparsity pattern. Since the exact
optimal sparsity pattern is usually unknown, but rather an
over-approximation is used, one-norm regularization on A can
be added to further increase the sparsity [30].

Having computed an estimate of A, an estimate ofw(k) can
be found by computing ŵ(k)= φid (k + 1)− Aφid (k) for k =
1, . . . , Nid − 1. Afterwards, a sample covariance matrix,

Qs =
1

Nid − 1

Nid−1∑
i=1

ŵ(k)ŵT
(k), (19)

can be computed such that a sparse approximation of Q−1
s

could serve as an estimate of Q−1. Alternatively, Q−1
s can be

estimated directly from ŵ(k) by creating a matrix W , where
each kth column of W corresponds to 1

√
Nid−1

ŵ(k). Next, a

matrix 4 is computed such that 4W = O, O ∈Rn×n being
an orthonormal matrix. This matrix 4 can be found using the
Gramm–Schmidt method, and Q−1

s can then be computed
via Q−1

s =4
T4, since Qs =WWT

=4−1 O OT4−T
=

4−14−T . Hence,4 can be seen as the inverse square root of Qs .
Since Q−1 is expected to be banded and sparse, its square root
4 is expected to have an accurate sparse approximation. During
the Gramm–Schmidt procedure, the desired sparsity pattern
of 4 can easily be enforced, both speeding up the process and
finding a sparse approximation.

Since the model of Eq. (10) is not capable of exactly
representing the true turbulence dynamics, manually fine-
tuning Q̂ could improve the performance. Also, when n is
very large, and the dataset Nid is limited, problems could
occur regarding ill-conditioning of the matrix Qs . One sim-
ple way of tuning Q̂ is to make it equal to Qs + γI . As a
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rule of thumb throughout this paper, γ is tuned such that
mean(diag(4T4))= 1/mean(diag(Q̂)).

Furthermore, for applications where the sparsity of Q−1

would be unknown, finding a sparse inverse of an sample covari-
ance Qs has been studied well in graphical modeling literature.
Several algorithms have been presented that solve this problem,
which can be used to increase the sparsity of the estimate Q−1

further when desired, see for example [32].

B. Efficient Computations of the Output Equation

Since the output equation is non-linear, a first-order Taylor
approximation with respect to φ can be used to linearlize
Eq. (12). The first-order Taylor approximation around the
initial estimate φ̂ will be denoted by

y(k)≈ J φ̂(φ(k)− φ̂)+ cφ̂ + v(k), (20)

where, if we define f (φ)= |Fvec{a� exp(iφ)}|2, cφ̂ = f (φ̂)

and J φ̂ = f ′(φ̂), i.e., the Jacobian matrix corresponding f (φ)

evaluated at φ̂.
Although there are no sparse matrices in the output equation,

Eq. (12), the efficient FFT algorithm can be used to compute the
2D DFT. For the first-order Taylor approximation of Eq. (20),
an efficient computation of the matrix-vector multiplication
J φ̂φ can be formulated using the FFT algorithm, thereby avoid-
ing the explicit computation of the complete Jacobian. When
introducing x̂ = a� exp(i φ̂) and ŷ=Fvec{x̂}, the following
operators can be introduced:

J φ̂φ→Jφ̂(φ)
1
=<

(
2i ŷ�Fvec

{
x̂ � φ

})
, (21)

J T
φ̂
ψ→J T

φ̂
(ψ)

1
=<

(
−2i ŷ∗ �F−1

vec

{
x̂∗ �ψ

})
, (22)

whereF−1
vec {·} represents the vectorized 2D inverse DFT, and ŷ∗

and x̂∗ represent the element-wise complex conjugates of ŷ and
x̂ , respectively. In Section 5, both the sparsity structures of A
and Q−1 and the operators in Eqs. (21) and (22) will be used to
develop an efficient non-linear Kalman filter implementation.

4. KALMAN FILTERS FOR WFS-LESS AO

Kalman filters are widely used as a state observer for many appli-
cations, and they are treated in many textbooks [27]. At each
time step k, the Kalman filter involves two steps: a measurement
update and a time update. The goal of the measurement update is
to optimally combine a new measurement y(k) with a previous
state estimate φ̂(k|k − 1) into an improved update φ̂(k|k). The
time update uses the dynamical model to predict the state for the
next time step, which will be denoted by φ̂(k + 1|k).

The accuracy of the estimates is expressed in terms of the
error-covariance matrices P (k + 1|k) and P (k|k) for the time
update and measurement update, respectively:

P (k + 1|k) := E [(φ(k)− φ̂(k + 1|k))(φ(k)− φ̂(k + 1|k))T],
(23)

P (k|k) := E [(φ(k)− φ̂(k|k))(φ(k)− φ̂(k|k))T ]. (24)

The Kalman filter computes the estimates φ̂(k + 1|k) and
φ̂(k|k), such that their error-covariance matrices are minimal
[27]. Since the state equation, Eq. (11), is linear, the time update
will be equivalent to the classical Kalman filter. The measure-
ment update can be formulated as a regularized non-linear least
squares problem:

φ̂(k|k)= arg min
φ∈Rn

∥∥φ̂(k|k − 1)− φ
∥∥2

P−1(k|k−1) + · · ·∥∥ y(k)−
∣∣Fvec

{
a� exp(iφ)

}∣∣2∥∥2
R−1(k), (25)

where the weight matrix P (k|k − 1) is the error-covariance
matrix corresponding to φ(k)− φ̂(k|k − 1). Because of the
non-linearity of the output equation of the state-space model,
a non-linear adaptation of the measurement update has to be
used.

A. Kalman Filtering and the Phase Retrieval Problem

If the Kalman filter measurement update is compared to the
PR problem, many similarities appear, see, for example, [33]
for an overview of different phase estimation methods. Many
algorithms have been proposed that aim to solve the PR problem
in its original non-convex optimization framework [7,10]. In
general, the optimization framework could be formulated as

min
x∈Cn
‖ y− |Fvec(x)|2 ‖2

Wy
+ ‖ x̂ − x ‖2

Wx
, (26)

where Wx ,Wy are weight matrices and for any vector α and
matrix M: ‖ α ‖2

M:= α
H Mα. Most methods do not use the

second term, as there generally is no prior information (x̂ ,Wx )

considered to be available. Due to the non-convexity of the first
term, a very accurate initial condition is computed first before
attempting to solve the problem using either a gradient descent
or second-order optimization algorithm. Obtaining this initial
estimate when considering Fourier measurements is not trivial.
This is where a Kalman filter and knowledge of the aberration
dynamics can be used to its advantage.

When the amplitude in the pupil plane a is known, the prob-
lem can be rewritten to solve forφ directly:

min
φ∈Rn
‖ y− |Fvec{a� exp(iφ)}|2 ‖2

Wy
+ ‖ φ̂ − φ ‖2

Wφ
, (27)

with Wφ as another weighting matrix. Although this for-
mulation of the PR problem is not often used in existing
literature due to the required extra information a and the extra
non-linearity caused by the exponential exp(iφ), it is more con-
venient for the dynamic case due to the convenient linear state
update equation, Eq. (11), in terms of φ. Moreover, when aim-
ing to reconstruct the wavefront from a single image, knowledge
of a is a significant advantage for obtaining a good performance.
Considering the formulation of the PR problem as in Eq. (27)
and comparing it to the Kalman filter measurement update of
Eq. (25), the similarities are obvious. The Kalman filter provides
a framework to define optimal weight matrices Wφ and Wy and
uses the model dynamics to find the initial estimate φ̂.
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B. Solving the Phase Retrieval Problem Using a
Kalman Filter

The next step is to solve the non-linear measurement update
of Eq. (25). The most well-known method is to use a linear
Taylor approximation to solve the non-linear measurement
update, which is known in the Kalman filter theory as the
extended Kalman filter (EKF). In this paper, the Gauss–Newton
algorithm is applied to the non-linear optimization problem.
Solving the measurement update of Eq. (25) using the Gauss–
Newton algorithm leads to a filter that is known as the iterated
EKF (IKF) [34]. The IKF, as the name suggests, is an iterative
version of the EKF. It is interesting to draw similarities here
with other existing PR algorithms in literature that aim to solve
the related formulation of Eq. (26) via a gradient descend or
Gauss–Newton optimization schemes [7,10].

When a straightforward implementation of the IKF is
used, the iterations of the measurement update become as fol-
lows: initializing φ0 = φ̂(k|k − 1) and P0 = P (k|k − 1) for
`= 0, 1, . . . , L :

φ`+1 = (I − K ` Jφ`)φ̂(k|k − 1)+ K `

(
y(k)− cφ` + Jφ`φ`

)
,

(28)

P`+1 =
(
I − K ` Jφ`

)
P (k|k − 1), (29)

with Jφ` and cφ` as defined in Eq. (20), where

K ` = P (k|k − 1)J T
φ`

(
Jφ` P (k|k − 1)J T

φ`
+ R(k)

)−1
, (30)

and, after the last iteration, φ̂(k|k)= φL and P (k|k)= PL . The
time update becomes equal to the standard KF update:

φ̂(k + 1|k)= Aφ̂(k|k)− Bu(k)+ ABu(k − 1), (31)

P (k + 1|k)= AP (k|k)AT
+ Q. (32)

The most important problem with this method is its large com-
putational complexity; therefore, this paper presents a computa-
tionally efficient formulation of the IKF in Section 5.

C. Advantage Dynamic versus Static Approach

This subsection discusses the advantages of considering the
dynamic case with respect to the static case. For both cases,
we restrict this discussion to the case in which the pupil plane
amplitude is considered to be known, i.e., the optimization
problem of Eq. (27).

In the static case, without any knowledge of the model
dynamics, the PR aims to solve Eq. (27) for Wy = I and Wφ = 0
(i.e., disregarding the second term). This often creates prob-
lems regarding the non-uniqueness of the solution when only
a single image is used, and, without an accurate initial guess,
algorithms usually do not converge to an accurate solution.
Usually, the uniqueness problem is overcome by considering
multiple images along the optical axis [also known as phase
diversity (PD) [35]], but this involves splitting the light further
and re-introduces the problem with NCPAs.

When considering the dynamic case, the PR problem is
reformulated as the measurement update of the Kalman fil-
ter, i.e., Eq. (25). Compared to the static case, the problem
of uniqueness becomes the problem of observability [27].
Where the uniqueness in the static case is purely defined by
the output equation, observability depends on both the out-
put equation and the state dynamics. Even when the output
equation alone does not lead to a unique solution in the static
case, adding knowledge of the dynamics can make the system
observable. As a consequence, the Kalman filter measurement
update in Eq. (25) is much more likely to result in an accurate
estimate compared to the static case. The prior information
φ̂(k|k − 1), P (k|k − 1), R(k) obtained from the dynamic
model and noise model, acts as an optimally weighted regulari-
zation to the static PR problem. Since the regularization term
‖φ̂(k|k − 1)− φ‖2

P (k|k−1)−1 is convex, it significantly helps

solvers aiming to solve the non-linear optimization problem
in Eq. (25). The addition of this extra knowledge opens the
possibility for considering situations impossible to accurately
solve in the static case, such as only considering a single out of
focus image, or even considering a single in focus image.

Another advantage of this optimally weighted regularization
term is that due to the extra knowledge of the measurement
noise, the algorithm also becomes much less sensitive to noise.
A common method to deal with measurement noise in the static
case is to hard-threshold the image and discard all measured
pixels in y(k) smaller than ymin from the measurements. Since
the optimal choice of ymin depends on the noise level σr , the
value of ymin is difficult to optimally tune. The Kalman filter
does not need this truncation parameter, as the noise is already
taken into account by the application of the weighting matrices
R(k) and P (k|k − 1), resulting in a more consistent algorithm
under noisy circumstances.

5. EFFICIENT NON-LINEAR KALMAN FILTER
IMPLEMENTATION

In Section 3, it was discussed how, due to the underlying nature
of the dynamics, the inverse covariance matrices corresponding
to φ(k) andw(k) (i.e., C−1

φ and Q−1) are expected to be sparse.
As a consequence, the inverse error-covariance matrix of the KF,
P−1, is expected to have an accurate sparse approximation as
well. Therefore, the information filter representation of the KF
is used, which only uses the inverse error-covariance matrices
P−1(k|k) and P−1(k + 1|k). To summarize, the new filter con-
sists of four main steps: (1) compute the measurement update
φ̂(k|k) via Eq. (25), (2) compute inverse error-covariance
matrix P−1(k|k), (3) compute time update φ̂(k + 1|k) via
Eq. (31), and (4) compute inverse error-covariance matrix
P−1(k + 1|k). The computation of the time update φ̂(k + 1|k)
(step 3) is straightforward. Since the matrix A and B are sparse,
this update can be performed very efficiently. Efficient imple-
mentations of the other steps will be discussed in the remainder
of this section.

The notation O(·) will be used to describe how the number
of elementary computations (+,−,×,÷) scale with respect to
certain parameters. For example, the notation O(n3) represents
that if the system dimension n doubles, the number of required



Research Article Vol. 38, No. 1 / January 2021 / Journal of the Optical Society of America A 31

Table 2. Computational Complexities Per Step of the
Algorithm

a

Step in Algorithm Computational Complexity

Computeφ(k|k) by solving
Eq. (34) via CG method

O(n(c p−1 + log n)LLCG)

Explicitly computing pc rows of
the Jacobian

O(n pc )

Sparse low-rank approximation of
P−1(k|k) in Eq. (37)

O(n pc c P−1)

Compute φ̂(k + 1|k) via Eq. (31) O(ncA +mcB )

Computing sparse inverse
approximation via solving Eq. (39)

O(n(c 3
0 + c M2 c 2

0))

Sparse approximation of
P−1(k + 1|k) in Eq. (40)

O(nc 2
M1

cP−1)

a pc represents the rank of the approximated term in Eq. (37), L is the num-
ber of the IKF iterations, and LCG is the average number of CG iterations. The
other symbols are included in Table 1.

elementary computations increase by a factor 23
= 8. A method

is considered to scale better with respect to the system dimen-
sions when the exponent is as low as possible. All computational
complexities will be summarized in Table 2.

An important advantage of the implementation presented
is that the state measurement update is computed efficiently
using the full PSF as input, i.e., no truncation or cropping of the
image is performed. The only necessary approximations are in
the updates of the matrix P−1. Since P−1 acts as just a weight
matrix in the measurement update, it is expected that small
inaccuracies in P−1 affect the performance of the algorithm
much less significantly than manually truncating the data y(k).

A. State Measurement Update

Recall the Kalman filter measurement update formulation given
by Eq. (25). Introducing the increment δφ` := φ`+1 − φ`,
the `th iteration of the IKF measurement update can be
reformulated into the following optimization problem:

δφ` = arg min
δφ∈Rn

∥∥∥φ̂(k|k − 1)− φ` − δφ
∥∥∥2

P−1(k|k−1)

+
∥∥ y(k)− Jφ`δφ − cφ`

∥∥2
R−1(k) , (33)

where φ`+1 = δφ` + φ` is equal to the results presented in
Eq. (28). Since computing Eq. (28) by using Eq. (30) has a
computational complexity of O(n3), it is too computationally
demanding for large values of n. Therefore, the above least
squares problem is solved using an iterative solver that exploits
the fast operators of Eqs. (21) and (22). One possible iterative
algorithm is the conjugate gradient (CG) algorithm, which can
be found in many textbooks, e.g., [36].

First, the normal equations corresponding to the least squares
problem are formulated:(

J T
φ`

R−1(k)Jφ` + P−1(k|k − 1)
)
δφ = . . .

J T
φ`

R−1(k)
(

y(k)− cφ`
)
+ P−1(k|k − 1)

(
φ̂(k|k − 1)− φ`

)
,

(34)

Algorithm 1. Efficient IKF Meausurement Update

1: procedure: IKF-MU( y(k), δφ0, tol)
2: φ0← φ̂(k|k − 1)
3: for `← 1 : L do F Start IKF iterations
4: r0←B( y(k); `, k)−M(δφ0; `, k) FEq. (35), (36)
5: p0← r0

6: i← 0
7: while rT r > tol do F Start CG iterations
8: zi←M(δφi ; `, k) FEq. (35)

9: αi←
rT

i ri

pT
i zi

10: δφi+1← δφi + αi pi

11: r i+1← r i − αi zi

12: βi←
rT

i+1 ri+1

rT
i ri

13: pi+1 = r i+1 − βi pk

14: i← i + 1
15: φ`+1← δφi+1 + φ` FEnd CG iterations
16: φ̂(k|k)← φ` FEnd IKF iterations
17: return

such that the matrix on the left-hand side is square, symmetric,
and positive definite. With the insights of Section 3, evaluating
the vectors on both the left- and right-hand side of this system
of equations requires only matrix-vector multiplications with
sparse matrices P−1 and R−1 and operators of Eqs. (21) and
(22). Hence, two new efficient operators are introduced:

M(δφ; `, k) :=J T
φ`

(
R−1(k)Jφ` (δφ)

)
+ P−1(k|k − 1)δφ,

(35)

B( y; `, k) :=J T
φ`

(
R−1(k)

(
y(k)− cφ`

))
+ · · ·

P−1(k|k − 1)
(
φ̂(k|k − 1)− φ`

)
, (36)

such that M(δφ; `, k) is equal to the vector on the left-hand
side of Eq. (34) and B( y(k); `, k) to the right-hand side.
Since R−1 is diagonal, both Eqs. (35) and (36) have a compu-
tational complexity of O(n(c P−1 + log n)), c P−1 being the
average number of non-zero elements per row/column of P−1.
This allows the CG algorithm to find the solution φ̂(k|k) in a
computationally efficient manner, presented in Algorithm 1.

B. Error-Covariance Measurement Update

The next step is to find an update of the matrix P−1(k|k):

P−1(k|k)= P−1(k|k − 1)+ J T
φ`

R−1(k)Jφ` , (37)

which has two difficulties. First of all, computing term
J T
φ`

R−1(k)Jφ` using the operators of Eqs. (21) and (22) still
has a complexity of O(n2 log(n)). Second, the same term is
not necessarily sparse, so in order to maintain a sparse matrix
P−1(k|k), a sparse approximation has to be made. The approxi-
mation that is proposed in this paper is to represent the matrix
J T
φ`

R−1(k)Jφ` as a low-rank, sparse matrix. By assuming the
low-rank property, only a small part of the Jacobian has to be
computed. The sparsity property is necessary to obtain a sparse
updated matrix that can be efficiently used in the next time step.
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The method for computing the low-rank approximation is
based on a common procedure in PR algorithms, which is to
discard dark pixels in the PSF that are highly corrupted by noise.
Since the proposed method is to be used for small-phase aberra-
tions only, it is expected that the PSF will be relatively sharp, and
its brightest pixels will be concentrated around its center. Hence,
most of the information used for the measurement update is
contained in the center pixels, and, consequently, the update
P−1(k|k) will mainly depend on the part of the Jacobian corre-
sponding to these center pixels. Explicitly computing the rows
of the Jacobian corresponding to the pixels located in the (much
smaller) p̄c × p̄c center square has a computational complexity
ofO(n pc ), where pc := p̄2

c .
Finally, it is used so that the desired sparsity pattern

of P−1(k|k) is known; therefore, only the elements of
J T
φ`

R−1(k)Jφ` that correspond to this sparsity pattern have
to be computed. When there are an average of c P−1 non-zero
elements per row of P−1(k|k), the total computation of this step
isO(n pc c P−1).

C. Error-Covariance Time Update

After computing the time update via Eq. (31), the correspond-
ing inverse error-covariance matrix can be computed via

P−1(k + 1|k)= Q−1
−M1

(
P−1(k|k)+M2

)−1
MT

1 , (38)

where M1 := Q−1 A and M2 := AT Q−1 A can be pre-
computed offline to speed up the computations. Notice that all
matrices A, Q−1 and P−1(k|k) are sparse banded matrices, but
that the inverse (P−1(k|k)+M2)

−1 is not sparse in general.
However, it is known that since the matrix P−1(k|k)+M2 is
a banded and positive definite matrix, its inverse belongs to the
class of off-diagonal decaying matrices and can be approximated
by a sparse matrix [37].

The computation of this approximation of P−1(k + 1|k) is
split in two steps. First, the following approximate sparse inverse
matrix is computed via

0̂ = arg min
0

∥∥(P−1(k|k)+M2)0 − I
∥∥2

F

s.t. 0 ∈ S0, (39)

such that 0̂ is a sparse estimate of (P−1(k|k)+M2)
−1, and S0

is the set of all matrices corresponding to the desired (chosen)
sparsity pattern for0. The second step is to compute

P−1(k + 1|k)= Q−1
−M10MT

1 . (40)

The sparsity of P−1(k + 1|k) (defined by the set SP−1 ) is
known. Hence, when computing Eq. (40), only the entries in
P−1(k + 1|k) corresponding to this desired sparsity pattern
SP−1 have to be computed.

To analyze the computational complexity, the average num-
ber of non-zeros per row/column of the matrices 0, M1, and
M2 are denoted by c0, c M1 , and c M2 , respectively, and the sets
of matrices corresponding to the chosen sparsity patterns of M1

and M2 will be defined as SM1 and SM2 , respectively. For the
sake of simplifying the notations, we restrict this analysis to the
typical case where all matrices are banded and where c0 ≥ c M1 is

chosen such thatSM1 ⊆ S0 . By exploiting the sparsity structures
and only computing the elements of P−1(k + 1|k) that are in
the sparsity set SP−1 , the computational complexity of Eq. (40)
will be of the orderO(nc 2

M1
c P−1), and computing the matrix 0̂

in Eq. (39) will be of the orderO(n(c 3
0 + c M2c 2

0)).

6. SIMULATION DESIGN

This section discusses the simulation environment used to pro-
vide an illustration of the IKF’s performance. For the first-order
Taylor approximation in Eq. (20) to hold, the RMS value of
the wavefront observed by the focal-plane camera, denoted
by RMS(φ), should be sufficiently small. Unfortunately, for
larger telescope diameters and realistic atmospheric conditions,
RMS(φ) will be too large; therefore, it is chosen to position the
IKF within a closed-loop AO system, as small-phase aberrations
are the typical situation within a control loop [12]. In this exam-
ple, a WFS-based minimum variance estimate (WFS-MVE) of
the wavefront is used to drive the controller [38]. The goal of
this parallel controller is to compensate for dominant low-order
aberrations in the wavefront in order to keep RMS(φ) suffi-
ciently low. The open-source Matlab toolbox OOMAO [25] is
used to simulate the turbulence and AO system.

The WFS-MVE will also be used as a baseline during the
performance evaluations, as it defines the value of RMS(φ) to
be estimated by the focal-plane wavefront sensing methods. It
is important to note that the WFS-MVE should not be inter-
preted as the optimal performance of WFS-based methods in
general, as the Shack–Hartmann (SH) sensor only estimates the
low-order aberrations due to its limited number of lenslets.

In order to put the performance of the IKF in further
perspective, it is compared to an AP method based on the
Gerchberg–Saxton [1] algorithm in a PD framework [35]
(referred to as AP-PD). To improve the convergence of the
AP-PD algorithm, its estimate at the previous time instance
is used as an initial estimate, and all pixels observing less than
ymin = 5 photons are set to zero to decrease the influence of the
measurement noise.

It should be emphasized that the AP-PD method assumes
to have two phase diversity images taken simultaneously along
the optical axis, while the proposed IKF only uses a single
focal-plane image. Although the AP-PD method has this unfair
advantage over the IKF method, it will provide an estimate of
the expected maximum achievable performance of classical
PR methods. Due to its access to two diversity images, the per-
formance of AP-PD should not be significantly affected by the
aberration dynamics and therefore serves as a benchmark to
see if the IKF can achieve a similar performance under highly
dynamic circumstances.

As a measure of performance, the distance d(k) in the pupil
plane between the true and estimated GPF will be used in order
to avoid issues regarding phase unwrapping:

d(k)= min
φp∈[0,2π ]

‖ x(k)− e iφp x̂(k|k) ‖2
2, (41)

where x(k)= a� e iφ(k) and x̂(k|k)= a� e i φ̂(k|k) for φ̂(k|k),
as given in Eq. (25). The scalar φp expresses the piston offset
between the real and estimated phase. A normalization of this
distance is defined as
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dn(k)=
d(k)

‖ x(k) ‖2
2

. (42)

Once a time sequence of ktot steps has been obtained, a scalar
measure of the accuracy over the full time sequence is computed
by taking the RMS: RMS(dn), where dn ∈Rktot is a vector
containing dn(k), k = 1, . . . , ktot.

7. RESULTS

This section presents the results of the simulations discussed in
the previous section. All parameters have their standard value of
Table 3 unless mentioned otherwise.

A. Computational Efficiency

The main result of the paper is the scalable IKF implementation;
therefore, the computational efficiency of the algorithm in terms
of execution time will be tested for an increasing system size. In
this experiment, the telescope diameter D, number of WFS
lenslets q̄ , and resolution of the reconstruction n̄ are increased in
a way such that their relative ratios are still the same as in Table 3.
For each parameter setting, a time sequences of 50 steps is simu-
lated, and the execution time is tracked for each time step. The
increase in computational burden due to the higher resolution is
visualized in Fig. 2 and compared with the straightforward IKF
presentation of Section 4. Comparing the results of the efficient
IKF with the reference line of O(n) confirms the almost linear
complexity [O(n log(n))] of the efficient implementation. The
improvement in terms of the scalability of the new algorithm
opens up the possibility for a real-time implementation.

B. Influence of the Wavefront Dynamics and RMS(φ)

Next, the robustness of the method with respect to the wave-
front dynamics and value of RMS(φ) is investigated by varying
ν and r0. For each parameter setting, 10 independent time
sequences of 500 steps are simulated in a Monte Carlo simula-
tion. The results in Fig. 3 show that the IKF algorithm performs
significantly better for moderate conditions (low ν, large r0).
This can be explained by two factors.

Table 3. Simulation Parameters
a

Parameter Standard Value

Fried parameter r0 [m] 0.2
Wind speed v, layer 1 [m/s] 12
Wind speed v, layer 2 [m/s] 16
Source magnitudeβm 8
read-out noise σr [photons] 2
Telescope diameter D [m] 1
WFS lenslet grid size q̄ 6
DM grid size q̄ + 1 7
Wavefront grid size n̄ 30
Sample frequency f s [Hz] 500
Outer scale L0 [m] 15

aIf not mentioned otherwise, the standard values are used. Turbulence layer 2
is located at an altitude of 5000 m and is moving at an angle of 90◦ w.r.t. layer
1 located at 0 m. The conversion of magnitude βm to photon flux is given by
Eq. (17). The source is a single natural guide star.

102 103 104
10–2

10–1

100

101

102

103

IKF
Efficient IKF

Fig. 2. Computation time per time step for an increasing resolution
n. The boxes indicate the 25th and 75th percentiles over the time
sequence. Lines are drawn through the medians. The dotted lines
present a slope corresponding to a complexity of O(n3) and O(n) for
reference purposes. “Efficient IKF” is the new method, “IKF” is the
IKF implementation of Section 4.

Firstly, since the VAR-1 aberration dynamics model is more
accurate at mild conditions, varying ν and r0 will provide
information on the limits of the method with respect to the
accompanying model. This effect explains the decrease in per-
formance when increasing ν, as the wind speed has the largest
influence on the accuracy of the model.

Secondly, since the IKF relies on a linear Taylor approxima-
tion, it is expected to rely significantly on the magnitude of the
residual aberrations, RMS(φ). When RMS(φ) becomes too
large, the Taylor approximation will no longer be valid at this
range. Consequently, the performance will rely on the accuracy
of the controller, since the accuracy of the WFS-MVE deter-
mines the value of RMS(φ). The clear dependence on RMS(φ)
is visualized in Fig. 3(b), which shows corresponding values of
RMS(φ) for a certain choice of r0 on the top horizontal axis.
This shows that the method is able to track aberrations up to a
value of RMS(φ)≈ 1 rad.

Since the wavefront estimates φ̂(k|k) are compared and not
the predictions φ̂(k + 1|k), the AP-PD algorithm is influenced
much less by the atmospheric conditions. This is expected,
since it uses multiple simultaneous images, and it does not rely
on prior information given by a dynamical model or a linear
approximation.

The results of Fig. 3(b) are particularly interesting, since it
gives useful insights with respect to the estimation of NCPAs.
That is, the residual wavefront φ represents a mismatch
between the WFS-based wavefront reconstruction and the
corresponding measured PSF image. Hence, this implies that
compensating for NCPAs should not be a problem under two
assumptions. The first being that the total residual aberration
has RMS(φ) < 1 rad, and the second that the dynamics of the
NCPAs are contained within the dynamical model.
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Fig. 3. Results for varying the atmospheric conditions. The box-
plots show the RMS of the normalized distance of Eq. (42). The boxes
indicate the 25th and 75th percentiles of the results in a Monte Carlo
simulation. Lines are drawn through the medians. “Efficient IKF”
has a single focal-plane camera out of focus, whereas “Eff. IKF (focus
img.)” has a camera placed in focus. The AP-PD method uses two
phase diversity images. (a) Results for varying ν. The value shown on
the x axis is the speed of the layer 1. The speed of layer 2 is changed
accordingly. (b) Results when varying r0. The top horizontal axis shows
the value of RMS(φ) for the corresponding r0.

C. Robustness to Measurement Noise

The robustness to measurement noise was previously addressed
in Section 4, where it was argued that the KF algorithm is
expected to have an increased performance under noisy condi-
tions without user defined tuning parameters. The influence
of the shot noise is now investigated by varying the brightness
of the source. Figure 4 shows the performance for an increasing
magnitude βm , i.e., a decreasing brightness in terms of photon
flux β f [see Eq. (17)]. The performance of the IKF deterio-
rates much less significantly when the magnitude is increased
compared to the AP-PD algorithm. This shows that the IKF is
more robust for low signal-to-noise ratios, which occur in low
brightness conditions, than classical phase diversity methods.
Moreover, under low-noise conditions, it shows that the IKF,
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Efficient IKF
Eff. IKF (focus img.)

Fig. 4. Results for varying the brightness of the source. The presen-
tation of the boxplots is the same as Fig. 3.

using only a single focal-plane image, is able to retrieve an esti-
mate that is as accurate as the AP-PD method, which uses two
images. The low medians show that even when using a single
in focus image, the IKF performs well in most cases, but the
performance is much less consistent considering the large spread
of the boxplots.

8. CONCLUSIONS

A computationally efficient framework has been proposed
in which a single focal-plane image is used to obtain a high-
resolution reconstruction of dynamic aberrations. The
framework is based on a reformulation of the PR problem
for dynamic aberrations into a KF framework using a simple
identified model of the dynamics. The computationally effi-
cient implementation scales almost linearly with the number of
pixels of the focal-plane camera, making the method suitable
for high-resolution AO systems and opening up a real-time
implementation as a topic for future research. In a simulation
study, the low computational complexity was confirmed, and
the accuracy of the method was analyzed under varying con-
ditions. It was discovered that the Kalman filter (using a single
focal-plane image) is able to obtain an estimate that is as accurate
as phase diversity methods (using two focal-plane images), even
when considering highly dynamic aberrations. Moreover, it
was shown that the Kalman filter is able to maintain a much
better performance than classical phase diversity methods when
considering lower signal-to-noise ratios. Finally, although in
general measuring the PSF out of focus usually increases the
performance, a single in-focus PSF image was able to achieve
satisfying results in many cases.
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