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Summary 

 

The globalizing economy with its new goods and services, knowledge spread, and competition for 

talent is an increasing complexity for organizations, which requires organizations to adapt more quickly. 

Organizations are essential to society, as people are more productive in groups. For their continuity, it is 

important that organizations continuously keep adapting to their environment. The new economy requires agile 

organizations that can quickly (co-)produce customized responses to the demands of the market. At the present 

moment, the hierarchical organizational structures face limits of their usefulness and are being replaced by a 

lean form of organization. In their place, these decentralized organizations are growing to overcome the 

limitations of these hierarchical structures. The coronavirus pandemic enforced a working from home policy 

that strongly decreased the access to work. This development stimulated organizations to move to decentralized 

organizing with a marketplace for team formation. 

The introduction of self-managing teams enables this desired dynamic and leads to an agile 

organization. Virtualization has further enriched and diversified these teams. These self-managing teams are 

useful for constructive conflict, diversity, innovation, performance gains, and synergy. The coordination of 

work changes with the introduction of self-managing teams. These teams in here in a strong individual choice 

of people, which is both a benefit and a risk for people and organizations. A digital marketplace is a supporting 

institution that can provide overview, insights, and access to several opportunities by combining supply and 

demand of teams and talents across organizational borders. Connecting workers to relevant teams is also the 

main performance criterion. Still, bounded rationality can result in non-optimal individual choices on the 

marketplace and a one-size-fits-all approach does not match the preferences of the heterogeneous workers. A 

filter within the marketplace is needed to decrease the obstacles of decentral coordination of activities, 

however, there is limited research available on this subject. 

This research follows the theory of design science research with the three cycles. The design objective 

is to support users in self-managing team formation with a recommender system and custom filtering 

algorithms. This is achieved with twelve design artifacts: personalization, criteria and objectives, recommender 

system, data engineering, ETL script, logical data model, custom filtering algorithms, data science, validation 

queries, hybrid filtering algorithm, DevOps, and advice on UX design and usage. The designed system was 

built with the requirements of the program of business demands. The constraints for the recommender system 

with custom algorithms are personalized recommendations for each worker and the incorporation of platform 

rules. The objectives are regular updates, scalable, open-source, and easy to set up.  

The recommender system is set up separately from the marketplace for performance and scalability 

reasons. All data is stored in the graph database Neo4j with the plugin GraphAware Reco. This plugin is a 

recommendation framework that runs the algorithms that generate recommendations. There are five main 

filtering techniques: collaborative, content-based, demographic, knowledge-based, and utility-based. 

Collaborative filtering is a method that identifies similar workers or teams to suggest relevant teams. This 

network approach makes it domain independent. However, there is no known research on applying 

collaborative filtering to self-managing team formation. Demographic filtering uses chosen demographic 
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attributes such as language, location, and preferences to filter the available teams. Knowledge-based filtering 

applies knowledge engineering to the reason which items meet the requirements of a user. Content-based 

filtering uses content attributes, which are in this research unrestricted and accordingly very diverse. Utility-

based filtering uses computation to determine the utility of an item for a user. The collaborative, demographic, 

and knowledge-based filtering techniques are chosen because these three are most suitable for the logical data 

model of this marketplace. These three filtering techniques are applied in the development of four filtering 

algorithms: a demographic filtering algorithm, a knowledge-based filtering algorithm, a user-based 

collaborative filtering algorithm, and an item-based collaborative filtering algorithm. Additionally, the fifth 

algorithm is a random filtering algorithm that functions as a control algorithm. 

The recommender system and its algorithms were validated in three ways: quantitative validation, user 

interviews, and qualitative validation. The quantitative validation proved that the algorithms have a high user 

and item coverage while taking care of privacy by respecting the platform rules. 21 workers were interviewed 

to validate trust, user-preference, and utility. Latent trust was not enforced by combining familiar and new 

teams. However, it was surprising that workers tended to like teams better when those are presented as 

recommended. Alleviating them of their choice dilemma, even with only the suggestion of personalization, 

may seem counter-intuitive, but a confirmation that users are in need of support with self-managing team 

formation. Further, seven presentations and discussions reviewed confidence, robustness, and scalability. The 

multiple validations showed that collaborative filtering can indeed be used to personalize the team discovery. 

Most workers liked the recommendations and expected to join the team.  

As a result of this research, a hybrid algorithm is implemented in the marketplace. The most important 

element is a user-based collaborative filtering algorithm. This is combined with a random algorithm to add 

serendipitous suggestions and overcome the cold start. The positive results of the validation led to the 

deployment of the recommender system into the marketplace. To realize the deployment of the system two 

challenges were resolved. The recommender system was updated with the feedback from the validation. New 

elements were developed to feed the system live data, retrieve the recommendations, and present the 

recommendations in the marketplace. All developed software is online available with an open-source license. 

The eventual deployment followed a step-by-step process to track down and fix all errors before the 

recommender system was opened to the public in November 2016. The successful deployment further proves 

the relevance of this research for the workers, marketplace, and academics. 

This research has all three possible additions of design science research to the knowledge base: 

extensions to original theory, new meta-artifacts, and experiences gained. This research extends the literature 

on a recommender system and filtering algorithms for self-managing team formation. To the best of my 

knowledge was there no literature available on this subject. The required modules of a recommendation 

framework are studied and known information filtering algorithms adapted to the characteristics of self-

managing teams. During the research, multiple design artifacts were developed, all open source or public 

domain. These artifacts were deployed as the initial recommender system of Part-up. This research 

demonstrates that recommender systems with custom algorithms can be used to ease the use of a marketplace 

for self-managing team formation. The successful implementation eases the manager of the central division of 
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tasks and team formation. At the same time, it empowers workers to self-organize and choose activities of their 

interest via a marketplace. This new way of working is expected to deliver a productivity increase for both 

managers and workers. The limitations of this research are the governance of algorithms, switching supply and 

demand, and detailed input. Governance and the ethical implications were not neglected, but while designing 

the system there was too little attention to the governance of algorithms. A feature that switches supply-and-

demand can be quite easily developed with new data retrieval and graphic user interface components, relying 

on the same hybrid database, recommendation framework, and algorithms. Human interaction and judgment 

are difficult because not all interactions are tracked by the marketplace This can be better mitigated by 

analyzing and predicting users’ behavior based on the fraction of interactions that were tracked. 

Future research is advised on a case study with soft skills, artificial neural networks, hybrid algorithm, 

live feedback, and presentations of the recommendations. These directions can strengthen the technology or 

the adoption of such a marketplace with a recommender system. A marketplace with a smart filter will change 

the coordination of work. Workers will rely on the overview, easy communication, and vigorous organizational 

functionalities it provides. A new way of working that makes the workers more effective and happier, while 

also contributing to the goals of the organization. A transition that seems impossible without a supportive 

institution of a marketplace with a recommender system. Ready to overcome the complexity of the globalizing 

economy and stimulate a modern way of organizing. 

 

Keywords: algorithm; collaborative filtering; data engineering; data science; design science; marketplace; 

matching; personalization; recommendations; recommender system; self-managing team; 
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Preface 
 

For years I never believed nor may be hoped that this day would ever come. As this research marks 

the end of my academic adventure for now, leaving this university is accompanied by both a feeling of relief 

and unease. As I lack the guts to drop out, I figured that the only suitable escape was finishing it. In search of 

motivation, my curiosity made me drift even further away. It is my own Catch-22. A combination of actions 

that I only blame myself for. Regardless of everything, I love the knowledge-rich climate of universities with 

its passionate people. 

While I was sometimes geographically or mentally far away from the Jaffalaan, there were two drivers 

to always return. My mother and father, who kept stimulating and supporting me in taking every small step. 

And the unique opportunity of this extensive research on a relevant subject. Part-up provided a symbiosis of 

intellectual challenge, social wealth, and time traveling. For this research, it was an honor to be supervised by 

this diverse committee. Marijn Janssen, Zenlin Roosenboom-Kwee, Ralph Boeije, Bram Klievink, and Scott 

Cunningham were essential in structuring my puzzled mind. Where asking Scott as a supervisor is without a 

doubt the best study decision I ever took. 

Maybe this thesis reads like an ordinary research report. That is just the secondary objective and a 

requirement to close the book in Delft at last. When you discover the darkest corners of your life during your 

studies, a projected degree is not what drives you. I hope one day, I will fully value the education that I received, 

by contributing back to dynamic communities with new forms of knowledge sharing. 

My primary objective for finishing this thesis was to show the value of an unpolished university 

journey. During this research finally, the proof originated that my deviating choices made sense. Never wait 

for knowledge to come to you: Ask questions and feed your curiosity. I was pointed back to tech by JC. Learned 

proper programming in Aalborg. Explored graph networks in the Utrecht Data School. Breathed the innovative 

culture of Silicon Valley. Steered accountability at DSC. And I was part of diverse teams throughout Europe. 

A selection of the experiences beyond my studies that were indispensable for this research. The truth is, this 

study trained my analytical mindset and gave me the excuse to combine these experiences. At last, this research 

became a steppingstone for my career. It was a decade that defined me. 

Today I am very grateful for all of the family and friends that were there along the way. The precious 

moments that we shared. Their appreciation that I often underestimated. And the knowledge in a wide range 

of subjects that we gained. But also ashamed towards them I pushed away because I chose the easy-way-out. 

Tomorrow is what it is all about. The warm-up is finally over. Hello world. 

 

Maurits van der Goes 

June 2020 
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Technology glossary 

 

Algorithm A sequence of automatic step-by-step rules. 

API Application Programming Interface. A convenient solution to providing a safe 

access point to create a connection between two software tools. 

Attribute In the context of graph theory, this is a variable that holds information. An 

attribute is always part of an entity or a relationship. 

Collaborative filtering Recommendation technique that uses the similarity of users’ interest to suggest 

items. 

Cypher The query language of Neo4j. Similar to SQL (structured query language). 

Demographic filtering Recommendation technique where personal attributes of a user are matched with 

items. 

Docker Automated deployment and monitoring of software containers. 

Entity In the context of graph theory, this is a node in a graph database. It can be labeled 

or unlabeled and is also known as the vertex. 

ETL Extraction, Transformation, and Load is the collection of processes to move data 

from one data source to another. 

Graph database A database that stores its data in a network structure with entities and 

relationships. The linkages make it easy to extract patterns from the database. 

Knowledge-based filtering Recommendation technique where functional knowledge is used to suggest 

items that match a user’s needs. 

Machine learning System of algorithms that discovers patterns from data without being 

specifically programmed for this. These algorithms are considered self-learning., 

Marketplace A place where supply and demand meet. In this context, a marketplace matches 

the demand of workers with the supply of teams within and across organizational 

borders. 

Memory-based An approach where an algorithm is run every time a recommendation is needed. 

MeteorJS A JavaScript framework to generate a single page application. 

MongoDB A ‘not only SQL’ (NoSQL) database that stores information without schema as 

documents. It is also a popular database because it is open-source and available 

on multiple operating systems. 

Model-based An approach where an algorithm is run regularly to build a model from which 

the recommendations are read. 
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Neo4j The leading graph database technology that is well-known for its reliable, native 

graph processing and storage. Written in Java. Available under an open-source 

or commercial license and for operating systems. 

Platform An environment that assembles people to obtain benefits from each other. 

Recommender system A type of information filtering system that predicts the relevancy of an item for 

a user by running an algorithm. The most relevant items are presented as 

recommendations. 

Relationship In the context of graph theory, this is a connection between two entities. A 

relationship can be labeled or unlabeled and directed (arc) or undirected (edge). 

Self-managing team A team that is responsible for its own organization and actions. 

Software container Virtualization of a Linux operating system to run a software application like a 

website, database, or API. Named after the shipping containers. 

Team A group of people that collaborate for joint actions. 
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1 | Introduction 

 

1.1 | Organizations 

Organizations face new complexity. Trade agreements, emerging markets, and new technologies 

create a new global economy (Townsend et al., 1998; Porter, 2000). This changing environment demands 

organizations to be increasingly more adaptive argues Aughton (1996). Globalization also requires that 

organizations deliver a new set of complex goods and services (Hidalgo & Hausmann, 2009). Simple, bulk 

products add little value. Even mass customized goods offer little sustainable advantage for companies and 

regions since these skills and products can easily be copied by others. Knowledge is spreading and widely 

available (Pinch et al., 2003). Private organizations are forced to specialize their activities and invest in 

knowledge capital. For their continuity, organizations need to be able to adapt more quickly. The individual 

worker becomes the most valuable asset of organizations.  

Organizations are essential to society. They are a bundle of activities performed by people (Nelson & 

Winter, 1997). These collections are more productive than the individual. The success of organizations led to 

an increase in both the number and size of organizations. The symbiosis between organizations and society 

entails two-way traffic. In order to be a successful organization, its activities and structure should be matched 

successfully with society. There are many perspectives on organizations, but for now, it is assumed that 

organizations are a dynamic composition of activities and people with a collective purpose and external 

relations.  

Many organizations currently have a hierarchical structure for the coordination of work, identified by 

Adam Smith as a product of the industrial revolution (Peart & Levy, 2009). The introduction of the assembly 

line required subdivision of tasks (Mintzberg, 1979), which in turn spurred governance. The common 

denominators are siloed departments, standardization of the work process, fixed job descriptions, and static 

hierarchy. The opacity and static nature of these organizational structures limit their ability to adapt to the 

changing environment. The bureaucratic structure is too rigid for the current turbulent ecosystem (Aughton, 

1996). It must be replaced by highly adaptive structures. Traditionally the project-oriented team, an organic 

form of organizational design, was developed to create customized responses to market needs. Most of the US 

organizations chose a team-based structure and were pleased with it (Ranney & Deck, 1995). The hallmark of 

these organizational forms is an assemblage of individuals with specialized skills, deep knowledge of the 

problem, and an ability to broker solutions in concert with customers (Hobday, 2000). Organizations that are 

better able to adapt to external forces can grow and are perpetuated. The hierarchical structure has been 

effective for years but is now facing its limitations. A new organizational structure is needed to overcome these 

limitations. 

Organizations are always trying to improve their efficiency by applying new organizational structures. 

In this process, they review their own and other structures, before switching to new approaches. A new option 

must fit the current activities and aspects of society. Organizational structures are the cumulative result of best 

practices for the current complexity they are facing. Presently, a new, often temporary form of organization, 
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well adapted to the needs of the 21st century is emerging (Bechky, 2006). Organizations are replacing the 

conventional hierarchy with a network of teams. Flat, non-hierarchical organizations with decentralized 

coordination of work are now quickly becoming the norm (Deloitte, 2016). Cutting out layers of management 

and a more flexible workforce are being introduced in traditionally hierarchical organizations. Lee & 

Edmondson (2017) describe self-managing organizations as systematic efforts to progressively decentralize 

leadership within an organization. The self-managing team is a component of this new approach. The 

introduction of self-managing teams is the result of two drivers: first, the desire for an adaptive organization 

requires an agile and lean structure with shared responsibilities, and second, the current educated and self-

determined workers no longer fit the hierarchical structure (Aughton, 1996). This is a vigorous change for 

organizations. This shift in the coordination of work requires a new division of responsibilities. Workers move 

out of fixed functions and into temporary teams (Figure 1.1). Zenger and Hesterly (1997) visualize the infusion 

of markets in organizations by the shift from hierarchical governance to highly autonomous, market-governed 

internal units. The central coordination of work is replaced by decentralized coordination. Parallel to this shift 

a second change is visible: Networked collaboration between organizations. In a network environment sharing 

resources is actively promoted by leaders (Powell, 2003). Network organizing within and between 

organizations is seen as the modern key to success. 

 

 

Figure 1.1: Shift toward decentralized organizations (Zenger & Hesterly, 1997) 

 

1.2 | Self-managing teams 

The introduction of self-managing teams enables this desired dynamic and leads to an agile 

organization. Self-managing teams are an evolutionary form of a network organization (Jarvenpaa & Leidner, 

1998). By utilizing information technology, it is possible to surpass time, space, and culture because of the 

loose boundaries. Research demonstrates that when workers feel responsible for the process it leads to 

increased commitment, productivity, and quality (Aughton, 1996). Joost de Blok came up with Buurtzorg and 
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Eckart Wintzen introduced cell-theory, two successful examples of self-managing teams. Cummings (2004) 

also noticed the beneficial aspects of increased heterogeneity and higher demographic diversity. This 

decentralized structure challenges individual workers to choose for themselves what to work on and who to 

work with. The static hierarchical structures in place today have not taught them the value of change and 

flexibility, making individual workers reluctant to change. Problematically, when the number of options to 

choose from increases, people do not necessarily benefit from it. This is the tyranny of freedom according to 

Barry Schwartz (2000). As self-managing teams strongly rely on the organizational choices of individuals, this 

is both a benefit and a risk for the workers and organizations. Self-formation is the first autonomous act of 

organization by a self-managing team. For this reason, the teams in this report are labeled as self-managing 

teams rather than self-forming teams. In order to become more adaptive as an organization, the organization 

must help its workers to adapt to the new organizational structure. 

Mid-March 2020 the coronavirus pandemic drastically changed work life. The Dutch government 

requested their citizens to work from home for social distancing (Rijksoverheid, 2020). Replacing in-person 

contact by videoconferencing, text messages, and calls. As a result, information distribution throughout 

organizations decreases, and working from home employees turned out to miss the overview of available work 

activities, as observed by a leader of Part-up (personal communication, 8 April 2020). At the same time, 

managers were struggling to divide the work remotely (Gripenstraw, 2020). A preferred management style of 

‘management by walking around’ was no longer possible. This delays decision-making and reduces access to 

work. To overcome this, organizations stimulated decentralized organizing. This resulted in more effort 

necessary for a successful match between an employee and an activity. Accordingly, organizations search for 

solutions that can support their workers with this culture change (Walsh, 2020). A leader of Part-up shared that 

before the corona outbreak, Part-up was already discussing with companies the opportunity to improve the 

access to work (personal communication, 4 June 2020). The subsequent corona crisis created both a necessity 

and momentum to speed up this implementation. Part-up’s marketplace can reduce a manual employee-activity 

match from 45 minutes to a marketplace match in 1.5 minutes. This transition has two advantages: time 

savings, freedom of choice. Both contribute to a productivity increase. 

  

1.3 | Marketplace  

A platform is an environment that assembles people to obtain benefits from each other (Church, 2017). 

Fenwick et al. (2019) call the growth of digital platforms as significant, turning platforms into a routinized 

aspect of people’s daily life. An emergence supported by the availability of digital devices like the computer 

and smartphone. This interconnectedness stimulates the network effects of the platforms, which are essential 

for the success of a platform. This research focuses on a core element of a digital platform: the marketplace 

for connecting users. 

A digital marketplace is a supporting institution for workers in adaptive organizations. It accelerates 

this organizational change by providing overview, insights, and access to self-managing teams. A successful 

marketplace is about matching the demand of workers with the supply of teams within and across 

organizational borders. This marketplace can support freedom of choice for three reasons. First, it provides an 
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overview of the available opportunities and skills. Second, it gives insight into the interactions between people. 

And finally, it allows for control of people’s own activities. The key to the success of the marketplace is the 

interplay between people and technology. However, choosing a self-managing team to join from this vast 

number of available teams creates a challenge for the workers. 

In the present research, team formation is approached as a decision-making problem for an individual. 

The decision-making process aims for a satisfactory solution. It is affected by the bounded rationality of 

humans. This is the psychological assumption by Herbert Simon (1991) that in decision-making humans are 

limited rationally. They are unable to quickly process all the information that is required to make a balanced 

decision. This is caused by three limiting factors: information volume, cognitive capacity, and time. An 

individual is incapable to know all the alternatives for a decision. Due to limited cognitive capacity and time 

this individual is unable to compare the couple of alternatives that he knows. The limiting factors make the 

search process of a worker sequential. An individual stops at the first item found that meets his criteria and 

does not maximize his search effort. As a result, an individual makes a satisfactory decision instead of the 

optimal decision. Or the choice dilemma even paralyzes the individual (Hindle, 2008). The extent of this 

paralysis is not an objective of this present research. The observation that bounded rationality threatens the 

effective use of the platform is enough reason to further study its mitigations. 

A marketplace is only supportive of workers if it matches supply and demand. Other marketplaces like 

Airbnb, Amazon, Netflix, and Spotify have faced the same problem (Koren et al., 2009). These platforms have 

applied an information filter to reduce or even prevent this problem. A system predicts the relevancy of an 

item for a user by running an algorithm. The most relevant items are presented as recommendations, while the 

other items are filtered out. A machine learning expert at Netflix expressed personalization as maximizing 

enjoyment and minimizing search time (personal communication, 8 June 2018). The type of information 

filtering system to automate this process is called a recommender system (Bobadilla et al., 2013). However, 

there is limited research available on the usage of recommender systems for filtering in a marketplace for team 

formation. This limits the successful introduction of self-managing teams and slows down the desired 

transformation to adaptive organizations, which is a requirement in the changing global economy. That is why 

the goal of this research is to study how in a digital marketplace the supply of self-managing teams can be 

filtered to the demands of workers. Vice versa matching is also an option. For example, a team creator invites 

recommended workers to a team. Although, this research chooses the viewpoint of the worker to design a clear 

solution. In the final part of the research and this report, the vice versa option is again addressed with a 

recommendation on how to efficiently use the artifacts of the designed system for this stakeholder. 

1.4 | Structure 

This research report is structured in eight chapters plus appendices. The definition phase is covered by 

the first three chapters. Chapter 2 analyses the characteristics of self-managing teams and recommender 

systems. Chapter 3 discusses the design approach of the research. The development phase is split into three 

chapters. Chapter 4 presents the design of the recommender system, while chapter 5 presents the design of the 

algorithms. In chapter 6, the results of the design evaluation are discussed. The development phase is addressed 
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in chapter 7. Finally, the report is concluded in chapter 8 with a discussion about the conclusions and 

recommendations for future research. 

  



16 

 

2 | Problem exploration 

 

The purpose of this chapter is to further analyze the matching problem in this complex socio-technical 

system. First, the background, stakeholders, and characteristics of a self-managing team are discussed. It is 

important to understand these teams before improvements for the formation process are suggested. In the 

second part, the approach of information filtering including challenges and filtering is discussed. The third part 

describes the environment and requirements of the system. The theoretical foundation of this research and 

design objective is a recommender system with custom filtering algorithms to ease the usage of the digital 

marketplace. The theory of self-managing teams supports the research on recommender systems. 

2.1 | Self-managing teams 

2.1.1 | Historical perspective 

Organizational structures have developed throughout the years by constantly adapting to changes in 

complexity. From the tribal organization forms of hunter-gatherers to the harsh authoritarianism of the middle 

ages and the authority based industrial era, we are now moving into more communitarian and holistic 

structures. These organizational forms were always fit for their purpose: both the value systems of the 

individuals and the tools at hand for task distribution, overview, and communication.  

Kondratiev argued first that the development of the world economy can be divided into cycles. These 

business cycles are driven by innovative technology affecting all industries. The industrial revolution itself 

was for example driven by the invention of the steam engine (Allen, 2009). Schumpeter (1939) further 

developed the concept and Linstone (2002) acknowledges these cycles. Currently, information technology is 

the overarching technology (figure 2.1). 

 

 

Figure 2.1: Kondratiev waves (Wikimedia Commons, 2009) 

 

2.1.2 | Virtualization 

Information technology creates a new dimension for teams: virtualization. This is one of the modern 

organizing trends identified by De Bruijn et al. (2014). Castro and McQuinn (2015) noticed that already half 
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of the world’s services are digitalized. New technology makes collaboration between dispersed coworkers 

possible. Modern teams are location independent, integrate online and offline communication, and overcome 

technical failures. During the COVID-19 pandemic, the Amsterdam Internet Exchange (2020) experienced a 

17% increase in traffic volume compared to February 2020. Walther (1997) notes in his research that the 

competence of social information exchange does not differ between face-to-face communication and 

computer-mediated communication. This report does not speak about virtual teams, but self-managing teams. 

I agree with Venkatraman and Henderson (1998) that a virtual organization is not a distinct structure. Rather 

it is a strategic characteristic that is complementary to functional, divisional, matrix or network organizations. 

Also, it is difficult to determine when a team is primarily virtual or nonvirtual. This is always intertwined. 

 

2.1.4 | Characteristics 

These modern, self-managing teams have five advantageous characteristics (Gibson & Cohen, 2003): 

constructive conflict, diversity, innovation, performance gains, and synergy. However, self-managing teams 

are only effective if there are a shared understanding, integration, mutual trust, and limited team size. An 

aligned effort increases the motivation and satisfaction of the team members. For profiling team members, Bell 

(2007) makes a distinction between surface-level and deep-level composition variables as predictors of team 

performance. The former are demographic characteristics of a user, the latter are psychological characteristics 

like a user's personality, values, and attitude. Over time, while collaborating the diversity of deep-level 

variables strengthens, and diversity of surface-level variables weakens (Harrison et al., 2003). Algorithms 

including both types of variables were developed, either based on demographic variables or soft skill variables 

from a personality test. 

Workers must trust each other: “Trust is the glue of the global workspace.” note O’Hara-Devereaux 

and Johansen (1994, p. 243). However, Langfred (2004) concluded that too much trust leads to decreased 

monitoring of team members. A very important factor for trust is communication. This functions best in a 

supportive and conversational climate.  

Team size is influencing this conversational climate, as extra team members do not necessarily mean 

a better team performance, because of possible communication mishaps and dysfunctional conflict. This 

especially applies to the new virtual domain. There is a performance loss if a team grows from one individual 

to two or three, a phenomenon known as the Ringelmann effect (Ingham et al., 1974). This is the discrepancy 

between potential and actual productivity. When adding a fourth, fifth, and sixth member additional 

decrements occur. If one individual performs at 100%, then the well-known research by Max Ringelmann 

shows that this decreases to an average of 93% for a group of two, 85% for a group of three, 77% for a group 

of four and down to 49% for a group of eight (Moede, 1927). The performance loss is caused by a lack of 

motivation, complex coordination, or a combination of both. First, members will decrease their effort when 

they feel less responsible for the output (Rond, 2012). This can be either intentionally or unintentionally. 

However, in both cases, it affects the individual action and the motivation of the other team members. In teams 

that are too large, it is very difficult to relate your effort to collective performance. This missing feedback 

causes a decrease in responsibility. Second, coordination is affected by the necessary number of conversations. 
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Hackman (1983) discovered that within a team of five members it takes only ten conversations for every person 

to touch base. If the group size grows to thirteen the number of necessary conversations for all persons 

combined increases to 78. Research by Darleen DeRosa and Richard Lepsinger (2010) confirms this by 

noticing that self-managing teams with thirteen members or more score the worst. When forming a team, it is 

important to take the team size into account, as performance decreases with too many members. It is preferred 

to form teams of eight members or smaller and not larger than thirteen members. 

 

2.2 | Information filtering 

2.2.1 | Introduction to information filtering 

This complexity of self-managing teams underlines the necessity of supporting the workers in their 

choice dilemma. Information filtering is a common method to address this challenge. Workers are steered 

towards the item that fits their profile best by removing irrelevant information (Tang et al., 2013). A worker 

perceives the filtered overview of relevant teams as recommendations. A recommender system automates the 

process of information filtering. It is expected that the new technology of the marketplace for team formation 

is adopted more easily with these personalized recommendations (Levy et al., 1993). Each recommendation 

must be presented in the proper context and with detailed information according to Sinha and Swearingen 

(2001). To determine the usefulness of a recommended item a worker prefers a more extensive description. 

Usually, this is at first hidden in the user interface, but it can be easily shown in a good design. A clear interface 

is especially important for a successful recommendation. A recommender system can incorporate these 

described characteristics of a self-managing team into the filtering algorithms. This is important in the process 

to advise relevant teams to the workers. An algorithm is a sequence of automatic step-by-step rules (Cormen 

et al., 2009). Algorithms are part of people's daily lives. For example, Google’s search engine runs the 

PageRank algorithm and the Elo-rating is indispensable for the chess world, but also for Tinder. Generating 

personalized recommendations is the main constraint for the proposed solution.  

2.2.2 | Challenges 

Multiple researchers (Resnick & Varian, 1997; Su & Khoshgoftaar, 2009; Melville & Sindhwani, 

2011) identify four main challenges for generating personalized recommendations: data sparsity, gray sheep, 

shilling attacks, and synonymy. Each of these four challenges is briefly discussed and incorporated while 

designing the algorithms in chapter 4. Data sparsity occurs when workers neglect to rate or interact with teams. 

The worker-team matrix is sparse (Melville et al., 2002) and results in a low amount of comparable ratings 

that are required for a proper statistical analysis. This challenge often happens when the system has a very high 

team-to-worker ratio or with the entry of a new worker: the cold start problem. The lack of activity in teams 

means that the system cannot produce any recommendations (Ogul & Ekmekciler, 2012). After all, there is no 

data to perform the statistical analysis. The team-to-worker ratio is 1:4 in the dataset used, thus not an issue. 

The cold start problem is a challenge because a new user profile can hold very limited or diverse information. 

This also applies to gray sheep in the user base. A gray sheep is a worker with ratings on teams that are not 
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consistent with any other group of workers. The diversity activities that the marketplace wants to support, 

means that an algorithm must figure this out. Shilling attacks are fake profiles to influence the predicted ratings 

(Gunes, 2014), often to stimulate the popularity of a team. Ratings are limited used in the platform; the focus 

is on user activity. Accordingly, shilling attacks are a minor challenge. Synonymy covers language issues. The 

tags ‘coding’ and ‘programming’ mean the same to humans, but not to an algorithm. According to Su and 

Khoshgoftaar (2009), this degree in variability is larger than commonly suspected. Again, the freedom in 

specifying and the decision to not categorize users and teams, implies that synonymy was a challenge while 

designing the algorithms. Although, with the attention to diversity these challenges were not insurmountable 

while designing the solution. 

2.2.3 | Governance 

The benefits of automated filtering are accompanied by risks and ethical implications. Governance is 

an important design aspect of technology. As the filtering algorithm is hiding options for a user, a part of this 

human decision is influenced by the algorithm. It is a unique universe of information that is created by a 

system, which changes our perception of information and the creation of ideas (Pariser, 2011). This is 

considered algorithmic bias. Technology is not neutral. An algorithmic bias expert of Spotify claimed that 

human decisions do affect machine learning outcomes, and a lead scientist of Google agreed with the 

importance of addressing bias in algorithm development (personal communication, 8 June 2018). In 

journalism, the filter bubble is a threat that is often referred to. Perhaps there is a team bubble too, that gives 

the impression that the best team is composed while relevant alternatives are left out by a system. During the 

corona crisis, this is likely to be even more important. The working from home policy limits a user in 

comparing the overview of recommended teams to the overview based on office interactions. The dependency 

on a fair algorithm increased. 

 

 

Figure 2.2: Governance of algorithms 

 

The governance of algorithms is a continuous process that consists of three domains (figure 2.2): data 

governance, algorithm design, and operational monitoring. Data governance is required because algorithmic 

bias can also be non-human and unintentional when there is a bias in the data source (Haijan et al., 2016). To 

detect algorithmic bias in data, Cramer et al. (2019) developed a prototype checklist with eight types. While 

designing algorithms, data scientists need to be aware of the bias that they add to an algorithm. To enforce a 
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four-eye principle, Arets emphasizes the importance of algorithmic transparency (Utrecht University, 2019). 

Information filtering can analyze user behavior. Still, the privacy of each user should be ensured in the 

algorithm design. Just like other privacy restrictions of the marketplace. Operational monitoring cannot be 

neglected because even if an algorithm is carefully designed, it can still show unexpected behavior (Bozdag, 

2013). For example, to report changes in the data sources or users that actively try to influence the algorithm. 

The governance of algorithms in these three domains is the responsibility of the marketplace owner. Overall, 

when using recommendations, users should also be aware of any bias in these recommendations. 

 

2.3 | Environment 

Supporting the growth of these self-managing teams within organizations is exactly what three alumni 

of the Faculty Technology, Policy and Management started. In 2014 they founded Part-up, a startup with the 

mission to change organizational structures by empowering users in choosing their own activities and teams. 

With this startup, they have developed an online marketplace for the formation of these teams and collaboration 

on tasks. Individuals can start or join teams of their own or other organizations.  

2.3.1 | Stakeholders 

There are five stakeholders for a recommender system with custom filtering algorithms, presented 

with their goals in table 2.1. The leadership team of an organization ranges from the board of directors to 

managers. Workers of an organization are the people who contribute to the organization on a contract or 

freelance basis. Together they organize themselves in an effective structure. There is no difference in workers, 

even if a worker started a team. The marketplace owner, in this research the leadership of Part-up, determines 

the mission, purpose, features, and development roadmap of the platform. Personalization provides a service 

to users if performs as expected and does not negatively affect other marketplace features. Subsequently, 

governance is the responsibility of the marketplace owner, although performed by the data scientists who hold 

the necessary knowledge. The developers of the marketplace build the features as planned on the roadmap. 

They are responsible for ensuring the stability of the platform. A recommender system with complex 

algorithms can affect the performance and resource costs of the marketplace. The logical data model is 

maintained by the developers on advice of the data scientists. The data scientists design new algorithms, 

improve the performance of current algorithms, and monitor the governance of operational algorithms. 

Although there are five stakeholder types, a person can belong to multiple types. For example, a developer that 

is also a data scientist and organizes his work via the marketplace. 

 

 

 

 

 

Stakeholder Goal 

Leadership team Efficient organizing of employees and external workers by 
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dividing activities. 

Workers Work on activities that fit their skills, interests, and 

availability. 

Marketplace owner (Part-up) Providing a stable and transparent marketplace service to let 

organizations effectively and trustworthy organize work 

themselves. 

Developers Develop and maintain a stable marketplace. 

Data scientists Design, improve, and monitor algorithms that match 

workers and activities. 

Table 2.1: Stakeholders 

2.3.2 | Requirements 

In each team are multiple actors involved, with different interests. Next to the constraint of 

personalized recommendations, there is one other constraint of the proposed solution that is specifically 

important of Part-up. Their marketplace has public and private teams. A worker can only access a private team 

if he is also a member of the corresponding network. That is why it is a constraint that the recommender system 

follows the platform rules when generating recommendations. These two constraints are accompanied by four 

objectives (figure 2.23). An objective is a non-critical goal for the solution. There are four objectives 

formulated: regular updates of the recommendations, scalability, open-source software and easy to set up. 

 

 

Figure 2.3: Program of business demands 

 

The first objective is regular updates of the recommendations. Designing a solution that can be 

integrated differs in some respects to a research setup. The activity of the marketplace is changing the 

information in the database constantly. This means that the dataset to generate recommendations is also 

dynamic. If the generated recommendations do not get updated, then the recommender system becomes 

outdated and irrelevant. That is why the system must regularly update its recommendations. The second 

objective is the scalability of both the recommender system and its algorithm. When the database volume 

grows, the information filtering process should not be noticeably affected. This performance is expressed in 

the time it takes to generate the recommendations. There are multiple ways to ensure high performance in all 
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circumstances and it starts with writing efficient code (Sarwar et al., 2002). Other more complex methods like 

dimensionality reduction or singular value decomposition are not applied. These methods can affect the quality 

of the recommendations negatively in favor of the performance. This trade-off must be researched separately. 

The third objective is the usage of open-source software. Open-source software has a large financial advantage, 

as it often lacks a license fee (Lakhani & von Hippel, 2003). Especially for fellow developers of open-source 

software like Part-up, which published all their code under an open-source license. Another advantage is that 

this research lowers the barriers for others to replicate the solution and develop a recommender system 

themselves. This also aligns with the vision of the former Undersecretary for Education, Culture and Science 

Sander Dekker (2013) that academic research should always be freely available under the Open Access 

principle. According to him, this contributes to the spread of knowledge and the promotion of innovation. The 

fourth and final objective is an easy setup of the recommender system. The Faculty of Technology, Policy and 

Management, Part-up, and me have very limited knowledge of designing and developing a recommender 

system. I rely on online knowledge, external experts, shared use cases, and available technology. For these 

reasons it is preferred that the recommender system is easy to set up. 

 

2.4 | Conclusions 

This literature review delivers three crucial components of the proposed solution: purpose, constraints, 

and objectives. The purpose of this socio-technical system is supporting workers in discovering and joining 

self-managing teams within and across organizational borders. The function of the possible solution is to 

generate personalized recommendations for relevant teams. A structure with this function is a recommender 

system with custom algorithms. The design requirements for this recommender system consist of two 

constraints and four objectives. The constraints are personalized recommendations for each worker and the 

implementation of the platform rules. The objectives are regular updates of the recommendations, scalable 

architecture and algorithms, open-source software, and easy to set up. The purpose, function, constraints, and 

objectives determine the goal and scope of the research and thereby function as the program of business 

demands. This guideline connects the business environment with its strategic objectives to the architecture that 

is developed (Nijhuis, 2006). The distinction between the constraints and objectives implies a trade-off in 

preferences and is a clear indication of the requirements. According to Janssen (2009), this guideline can also 

be used to assess the quality in retrospect. The program of business demands is the starting point for the 

research that is described in detail in the next chapter. 

  



 

23 

3 | Design approach 

 

This chapter presents the approach of designing the proposed solution: a recommender system with 

algorithms for filtering self-managing teams There are multiple platforms that support their users with a 

recommender system, but the problem at hand is a bit different than a regular recommendation challenge. The 

definition of a team as described in the previous chapters implies that a recommendation can only be consumed 

by a limited number of users. A movie, for example, is with its characteristics not limiting the number of users 

who can watch it. Parts of the knowledge that other platforms share about the architecture and algorithms can 

be integrated into this present research for designing this new solution. However, the problem exploration 

exposed that there is limited academic research available on such a specific system in the domain of teams. 

That is why the research objective is to address this knowledge gap on recommender systems within a team 

marketplace, which must lead to the design of a reliable and suitable recommender system for joining self-

managing teams. As this solution is a support system, the workers who use the system are further defined as 

users in this report. This chapter further addresses the research questions, design artifacts, dataset, and concise 

the validation of the research to structure the design phase. 

 

3.1 | Design objective 

The observations as presented in the first two chapters result in the design objective and four sub-

questions. This research has the design objective to support users in self-managing team formation with a 

recommender system and custom filtering algorithms. This design objective is achieved with four sub-

questions, each addressing a different subsystem within this research: 

1. What is the open-source architecture design of a recommender system for this marketplace? 

2. Which information filtering algorithm is evaluated best from theory and user interviews? 

3. How is bias in algorithm design addressed by the governance of algorithms? 

4. What steps are needed to integrate the artifacts of the recommender system and evaluated algorithm 

in the marketplace to provide new opportunities? 

 

3.2 | Research method 

 This research follows the theory of design science research, with the design science research cycles 

by Hevner (2007). This framework builds on the information science research framework (Hevner et al. 2004) 

by adding three cycles: relevance cycle, design cycle, and rigor cycle (figure 3.1). The relevance cycle collects 

the application context from the Part-up marketplace. This consists of the requirements and the technical 

systems of the marketplace. The rigor cycle provides the necessary knowledge base. Hevner (2007) argues to 

ground design science research on various ideas: theories, opportunities from the relevance cycle, existing 

artifacts, and analogies. Exactly the mixture that this research combines, with the theory on information 

filtering and team characteristics and artifacts of recommender systems. The design cycle of this research 
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creates the recommender system with its custom filtering algorithms and algorithms in quick iterations and 

evaluates it once extensively with qualitative validation, quantitative validation, and user interviews. 

Afterward, the recommender system is field-tested on technical feasibility in the deployment phase. The inputs 

are the requirements from the relevance cycle and the rigor cycle. 

 

 

Figure 3.1: Design Science Research Cycles 

 

Within this design science research, multiple methods for the creation of artifacts were applied. Three 

variants for the recommender system were designed and developed with software engineering. One was 

selected with a best-of-class chart and designed in detail with the architecture design meta-framework (Janssen, 

2009). The algorithms are adapted algorithms from scientific methods and meta-artifacts, further developed 

with software engineering. Both the recommender system and the algorithms were evaluated with qualitative 

validation, user interviews, and presentations with expert feedback. Governance advice is the result of 

scientific theories and discussions with experts. The evaluated recommender system and the chosen algorithm 

are deployed following the DevOps methodology (Bass et al., 2015). 

 

3.3 | Design artifacts 

The design cycle builds artifacts to solve organizational problems (Hevner et al, 2004). Offerman et 

al. (2010) identified after literature research of design science publications a typology with eight IT design 

artifacts. Following this typology of Offerman et al. (2010) twelve artifacts are identified, listed in figure 3.2. 
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Figure 3.2: Design artifacts and types. 

 

Personalization is a system design artifact. It describes the structure and process of an IT-related 

system. The criteria and objectives as formulated in chapter 2 are requirement artifacts. In the system design, 

the requirements define the design space and describe the development goals. The recommender system is a 

pattern artifact, a system design element that is generalized. The recommender system consists of the 

recommendation engine, post-processor, blacklist, filter, logger, and config modules. Data engineering, a type 

of software engineering, is the method artifact practiced in the design cycle to develop the recommender 

system. The ELT script to extract, transform, and load the necessary data from the marketplace database to the 

recommendation database is a pattern artifact. The logical data model is a language / notation artifact that 

shows the interrelation between data entities using a graphical notation. It supports the development of the 

system. The four custom filtering algorithms and the hybrid filtering algorithms obviously have the algorithm 

artifact type. This artifact is a sequence of activities executed by a computer. Data science is the method artifact 

to develop the algorithms. The validation queries are examples of metric artifacts. These mathematical metrics 

evaluate the system design from a business perspective. DevOps, development and operations, is the method 

artifact used in the deployment of the initial recommender system. The advice on the UX design and user usage 

of the recommendations within the marketplace is a guideline artifact. 
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3.4 | Available dataset 

This research requires a dataset to design and validate the recommender system with its custom 

filtering algorithms. As the facilitator of the research, Part-up is providing a dataset of their own marketplace. 

On 31 July 2015 Part-up launched its marketplace. Their database contains many different attributes that 

express the activities of the users in their different teams. For security reasons, user passwords are excluded. 

In the Part-up ecosystem, a user is called an upper, a team is a part-up and a network is a tribe. For 

independency and readability reasons, the present report will use common terms like user, team, and network. 

For this research a copy of the database from 27 January 2016 is used, the day that the evaluation started. As 

the platform was growing it had a maximum of entities in its six months of existence. At that moment the 

marketplace had 2.743 users, 656 teams, and 184 networks with an active status. This distinction does not 

imply any activity of the entity (user, team, or network) but confirms that this entity has not been deactivated. 

Two other aspects of this dataset must be noted. First, the logical data model of the marketplace was already 

chosen. This restricted changes or additions of attributes. Second, not everybody is digitally savvy or 

comfortable in the virtual domain, and that implies not all professional interactions take place inside the 

marketplace. Still, the volume and diversity of this dataset provide intriguing opportunities for this research. 

 

3.5 | Evaluation 

Often recommender systems are validated only on accuracy (Said & Bellogín, 2014). This is the 

system’s ability to generate recommended teams based on a training set that is the same as chosen teams in the 

test set. The dataset as provided by Part-up covers a period of just six months and the marketplace has no 

recommender system yet. For these reasons, an interviewed expert reasoned that data validation was not 

reliable and I agree with his argumentation (personal communication, 2015). That is why a different approach 

was chosen. There are three types of experiments to review a recommender system: offline, online, and user 

study. For an offline experiment, exported data is used in a local environment to measure the performance of 

the recommender system. An online experiment is performed within the operational system. Finally, in a user 

study questions about the recommender system are asked to a small set of users. Online experiments cannot 

be performed, as there is currently not a recommender system integrated into the Part-up marketplace. This 

offline database with the provided dataset is running locally on a laptop. That is why in this research only the 

offline and user interviews experiments are used to validate the recommender system. 
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4 | Design of the recommender system 

 

This fourth chapter discusses the design of the recommender system architecture, operationalized from 

the program of business demands. As mentioned, the research architecture is set up separately from the 

marketplace. The integration with the marketplace in the deployment phase will be discussed in chapter 7. 

Also, for the research setup, there are three path dependencies in the ICT-architecture to be considered. These 

are the JavaScript framework MeteorJS, database MongoDB, and the chosen logical data model. 

The recommender system is designed following design science requirements, the criteria, and 

objectives from the program of business demands as formulated in chapter 2. The criteria are personalized 

recommendations and include platform rules. The objectives are regular updates of the recommendations, 

scalable, open-source, and easy to set up. 

 

4.1 | Marketplace 

The platform roughly consists of two parts: a marketplace for team formation and team pages for 

collaboration. The user activity flow in the marketplace is presented in figure 4.1. In the marketplace, each 

user has the option to create a team or search for any accessible team. When creating a team, a user provides 

basic information about the team, like title, description, privacy type, end date, tags, and activities. The team 

overview presents all accessible teams for a user. This research adds the overview of recommended teams to 

the marketplace. This is a personalized view generated by information filtering algorithms. A user can decide 

to join a team as a supporter or search for other teams. If the user picks a task, he or she becomes a partner in 

a team. It is also possible to keep following a team as a supporter and search for other teams. Partners 

collaborate on tasks, while maybe also searching for other teams or collaborating in other teams. This 

collaborative environment is not part of the marketplace aspect of the platform. But the user behavior can be 

valuable data for an algorithm to personalize the team overview for a user. 
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Figure 4.1: User activity flow in the marketplace (UML diagram). 

 

The Part-up marketplace uses the JavaScript web framework MeteorJS for their website. It is the core 

on which the website is designed and developed (Lehmann et al, 2015). All the data of this marketplace is 

stored in a MongoDB database, as this is the usual companion of the MeteorJS framework. MongoDB is a 

document-oriented NoSQL database, which implies that the database does not have a fixed table-based 

structure. The database is divided into collections of documents. For Part-up these are for example users, 

networks, teams, contributions, comments, and ratings. The lack of table-structure means that there is not a 

predefined list of attributes. However, that does not mean that there is no logical data model present in the 

database. This logical data model arises naturally with every value that is stored. Every night the MongoDB 

database generates a data dump with all the data except sensitive information like passwords. This can be easily 

extracted to a local hosted MongoDB database. Another option to access the data is via the MeteorJS 

framework. By integrating code in the marketplace or listening to the events and recreate the database. For 

security reasons, it is not possible to access the marketplace MongoDB database directly. 

 

4.2 | Technology selection 

A recommender system is a combination of an information searching and information filter. The core 

activity of this system is processing data. That is why the choice for a specific database type is essential in 

designing an appropriate research architecture. There are three options identified for the research architecture: 

● Document NoSQL database: MongoDB with MeteorJS. Alternatives for MongoDB are 

CouchDB and RavenDB. 

● Relational database: MySQL with custom Java code. Alternatives for MySQL are Oracle and 

Microsoft SQL Server. 
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● Graph NoSQL database: Neo4j with GraphAware Reco. GraphAware provides a 

recommender framework plugin for Neo4j. Alternatives for Neo4j are Dex, Objectivity/DB, 

OrientDB, and Titan. 

 

These three prescriptive technical structures are compared using a best-of-class chart. The advantages 

of this method are that it is easy to explain and that each alternative is evaluated with respect to the results of 

each metric (Dym et al., 2014). It is also a subjective method with a nontransparent process behind it. For 

choosing the research architecture this is an acceptable disadvantage. This research is about the first application 

of a recommender system with custom filtering algorithms in a marketplace for team formation, and not about 

designing the most optimal system and algorithms. 

 

 MongoDB with MeteorJS 

(Document NoSQL DB1) 

MySQL with  

custom Java code 

(Relational DB2) 

Neo4j with  

GraphAware Reco 

(Graph NoSQL DB) 

C: Personalized 

recommendations 

2 2 1 

C: Include platform rules 1 3 2 

O: Regular updates of the 

recommendations 

2 3 1 

O: Scalable 3 2 1 

O: Open source 1 1 3 

O: Easy to set up 2 3 1 

Table 4.1: Best-of-class chart (Neo4j, 2016a) 

(C: criteria; O: objective) 

 

The option of Neo4j with GraphAware Reco scores best for all constraints and objectives except for 

including platform rules and open source. Confirmation of the constraints is obliged and most important. 

Generating personalized recommendations is expected to be most easy with Neo4j because GraphAware Reco 

is a proven plugin with this functionality. For the other two options, such a recommender framework must be 

custom developed. Including the platform rules are most easy for the MongoDB-option as it can reuse the 

JavaScript code within MeteorJS that was written for this purpose. GraphAware Reco provides via its blacklist 

and filter tools to enforce the platform rules onto Neo4j. Realizing this constraint with the MySQL-option 

requires again writing new code. 

Fulfilling all objectives is desired, but not compulsory. GraphAware Reco enables regular updates of 

the recommendations that are stored in Neo4j. For the MongoDB-option the cron job scheduler via MeteorJS 

can be used. Again, for the MySQL-option, this feature must be developed from scratch. The Neo4j-option is 

best scalable because both Neo4j and GraphAware Reco provide several options and support to realize this. 

The MySQL-option is also quite scalable by adding plugins. The MongoDB-option is the least scalable because 

the recommender function would be included in the MeteorJS framework. This restricts independently scaling, 

 
1 http://neo4j.com/developer/graph-db-vs-nosql/ 
2 http://neo4j.com/developer/graph-db-vs-rdbms/ 
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a freedom that the other two options do have. All three options are open source, but Neo4j and GraphAware 

limit this to only non-commercial use. For this research Neo4j (2016a) provided an educational license 

(personal communication, 7 December 2015). Part-up received a startup license by Neo4j for using the 

technology in its marketplace. They can also apply for the Fair-Trade Licensing option, as all code of Part-up 

is open-source available under a GNU AGPLv3 license. Affero General Public License (AGPL) is a license 

that protects the public modification, sharing, and usage of the software. All derived software products may 

only be shared under the same GNU AGPLv3 license. 

A similar agreement was made with a manager of GraphAware (personal communication, 26 April 

2016). It was confirmed that Part-up can use their products indefinitely without costs in return for sharing their 

own code and implementation experiences. With all the available plugins, knowledge, and support the Neo4j-

option is expected to be most easy to set up. For this objective, it is both an advantage and a challenge that the 

MongoDB-option is intertwined with the marketplace. It gives a head start but also complicates the 

development because it must be integrated with respect for the other modules. As mentioned, the MySQL-

option requires many lines of new code. This means that it is not easy to set up. 

Based on the best-of-class chart and this accompanying analysis, the best research architecture is a 

graph NoSQL database: Neo4j with GraphAware Reco. This option conforms to the constraints and scores 

best on the objectives. The core of this chosen research architecture is Neo4j as the recommendation database. 

Neo4j is available as an embeddable Java server and its transactions are reliable because it is full ACID: 

atomicity, consistency, isolation, and durability. The GraphAware framework will function as the 

recommendation framework running the algorithms. A script will be written in Java to extract, transform, and 

load (ETL) the data from MongoDB to Neo4j. The architecture is structured in table 4.2 following the 

architecture design meta-framework by Janssen (2009) and visualized in figure 4.2. The meta-framework 

highlights the focus of the architecture. In the next paragraphs, this architecture is further described. 

 

Business architecture Generate personalized recommendations for interesting self-managing teams to support 

users in discovering and joining teams within and across organizational borders. 

Business process architecture Analyze the profiles and activities of the users and the features of the teams. Compute 

and rank the teams on relevance to each user using an algorithm. Present the most 

relevant teams to the users. The first and second processes need to regularly run to 

ensure up to date recommendations. 

Information architecture Extracting the necessary information from the marketplace database to the 

recommendation database using an ETL script that applies the logical data model. The 

recommendation framework uses this information to analyze, compute, rank, and store 

the recommended teams for each user. 

Application architecture ● Extract data from the marketplace database 

● Transform data to the defined logical data model 

● Store data in the recommendation database 

● Extract data from the recommendation database 

● Generate recommendations using an algorithm 

Technical architecture Marketplace database (MongoDB), ETL script (Java), recommendation database 

(Neo4j) and recommendation framework (GraphAware plugin) 

Table 4.2: Layers from the architecture design meta-framework (Janssen, 2009) 
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Figure 4.2: Chosen design of the research architecture 

 

The subsystems of a socio-technical system can be split into static and dynamic subsystems (table 4.3). 

The static subsystem structures the behavior of a process (dynamic subsystem). 

 

Static subsystem (Structure) Dynamic subsystem (Process) 

Marketplace database (MongoDB) Generate the daily data dump 

ETL script (Java) Extract, transform and load data 

Recommendation database (Neo4j) Store data 

Recommendation framework (GraphAware) & algorithms Run & check algorithms 

Algorithms (Java) Generate/update recommendations 

Table 4.3: Subsystems of the recommender system 

 

4.3 | Data structure 

To fill the Neo4j with the current data, a custom ETL script written in Java is used. Java was chosen 

as a core programming language of this research for three reasons. First, it has all the libraries to connect with 

both the MongoDB and Neo4j databases. Second, it is the same language as Neo4j is written in. Third, I am 

proficient in Java. Collection by collection and document by document the script reads the data in the 

MongoDB database. This is converted based on the chosen logical data model into a query for Neo4j, which 

will be explained in the following paragraph. Neo4j uses the expressive graph database query language Cypher. 

Alternatives for Cypher are the more complex query languages SPARQL and Gremlin. Cypher is chosen 

because it is a declarative language with the expressive power of a property graph. It is also an advantage that 

Cypher is familiar with SQL. By executing the query, the commands create, read, or update the entities, 

relationships, or attributes. The ETL script is written solely by the author of this report. The code of this ETL 

script is available on GitHub3 under a GNU AGPLv3 open-source license. GitHub is a digital platform for 

code sharing and collaboration. 

The Neo4j graph database exists of two types of properties: entities and relationships. Both the entities 

and relationships can be categorized with none, one or multiple labels, and hold attributes. These are key-value 

pieces. The graph structure is intuitive. In a graph database, the logical data model is the same as the physical 

 
3 https://github.com/part-up/mongo2neo 
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data model (Lopez, 2015). The data is supplied by the Part-up marketplace. All attributes of the users and 

teams are extracted together with the relevant events. The logical data model holds all the attributes that need 

to be extracted from the platform. It is the design of the graph database. Attributes that are expected to be part 

of this logical data model are shown in figure 4.3. The choice for this structure with these attributes is based 

on the literature review, constraints, objectives, and previous property graphs designs. There are more 

attributes available in MongoDB. These are not necessary for the designed algorithms. In later stages, this can 

be expanded as Neo4j is schema-free. The logical data model is the digital basis of the recommender system. 

Both from the capabilities and performance point of view it is very important that this artifact is well designed. 

 

 

Figure 4.3: Logical data model 

 

Neo4j also automatically provides every entity and relationship with the ‘<id>’-attribute. With this 

attribute, every entity or relationship can be uniquely identified. This value is not stored in the MongoDB 

database. That is why this attribute is not used, nor included in figure 4.2. The attributes of the entities are on 

purpose named the same as in the MongoDB database. Hence the Neo4j convention of CamelCase is not 

respected for the attributes. For the labels, the Neo4j convention is used. The ‘role’-attribute of the 

‘ACTIVE_IN’-relationship is categorized with weights on an ordinal scale as shown in table 4.4. The scale in 

my general interpretation of a user’s commitment to a team. To have a clear distinction between the 

recommendations of the different algorithms the ‘RECOMMEND’-label is altered during the research. The 
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label of each recommendation relationship is the concatenation of ‘RECO_’ and the code of the algorithm. For 

example, ‘RECO_RAND’. The extensive data dictionary is included in appendix B. 

 

Role Value 

Creator 2,0 

Partner 1,5 

Supporter 1,0 

Table 4.4: Role of a user in a team. 

 

4.4 | Recommendation framework 

The GraphAware plugin extends Neo4j with a framework for data analysis and processing. Part of this 

framework is the product GraphAware Reco. This is a recommendation framework for Neo4j. The built-in 

structure for the different algorithm modules and monitoring the process of generating recommendations make 

it a suitable product for this kind of analysis (GraphAware, 2015). It is even more favorable because it has a 

high performance and a flexible design. This solution is also scalable because of the feature to pre-compute 

recommendations that are too complex to compute in real-time. To conclude, GraphAware Reco has two 

advantages and disadvantages. The advantages are that GraphAware Reco is a developed product and that a 

manager of GraphAware offered their support to this research (personal communication, 10 September 2015). 

The disadvantages are that the algorithms must fit the structure of the product and the limited documentation 

and examples. The efforts to overcome the limitations of the structure can be expected to be smaller than the 

efforts to develop the necessary functions from scratch. The small knowledge pool can be solved by actively 

using the offered support of GraphAware. This line of reasoning resulted in the confidence of choosing 

GraphAware Reco as a recommendation framework.  

 

4.5 | Conclusions 

 Following multiple methods, the recommender system for this marketplace is designed from existing 

meta-artifacts and new artifacts. Considering the requirements and technology from the environment, an 

architecture was selected with a best-of-class chart. The architecture design meta-framework specifies an 

architecture to generate personalized recommendations for relevant self-managing teams, to support users in 

team formation. Essential subsystems are the marketplace database, ETL script, recommendation database, 

recommendation framework, and algorithms. The data is extracted with a Java script from the marketplace 

database MongoDB and transformed following the designed logical data model before stored in the 

recommendations database Neo4j. GraphAware Reco was chosen as a recommendation framework, because 

it is scalable, flexible, a good fit with Neo4j, and well supported. Together it creates the initial version of a 

recommender system for self-managing team formation.  
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5 | Design of the recommender algorithm 

 

The core of the recommender system is the algorithm. An algorithm is a collection of rules that are 

applied sequentially (Cormen et al., 2009). The algorithm for this recommender system must create a filter by 

awarding a score to several teams. This can also be a combination of algorithms, but for evaluation purposes, 

each algorithm is designed separately. A recommender system can be driven by several filtering techniques 

(Melville et al., 2002): collaborative, content-based, demographic, utility-based, and knowledge-based 

recommendations. Burke (2002) analyzed the five techniques on their background, input, process, advantages, 

and disadvantages. Collaborative filtering is according to Burke (2002) the most mature technique. For this 

reason, two variants of this method are chosen: user-based and item-based collaborative filtering. Content-

based and demographic filtering are similar techniques. Just like knowledge-based and utility-based are 

analogous. From each duo the technique that fits the logical data model the best is chosen. Hence, the five 

algorithms that are developed for the recommender system are: 

● Random filtering (RAND) algorithm 

● Demographic filtering (DF) algorithm 

● Knowledge-based filtering (KBF) algorithm 

● User-based collaborative filtering (UBCF) algorithm 

● Item-based collaborative filtering (IBCF) algorithm 

 

This chapter explains the design choices of each algorithm in detail. Providing this transparency into 

the functioning of the algorithm prevents it from becoming a black box (Herlocker et al., 2000). The rationale 

of each algorithm should be explainable to both experts and users, otherwise, it is according to Holton (2001) 

difficult to perceive a system that is supported by technology without distrust. Further, Xiang (2011) supports 

this by noting that providing the context of a recommendation is one of the most important components of 

every recommender system. This transparency for the experts, product owner, and users contribute to the 

governance of the architecture. Janssen (2009) identified governance as an indispensable element of the meta-

framework for architecture design. For experts and the product owner, this required transparency is ensured 

by four components. First, by describing the design choices and working of each algorithm. Second, by 

including multiple Cypher queries are for reproducibility and knowledge-sharing in the report. Cypher is the 

query language of Neo4j and is used in the algorithms. Third, by applying the ten guidelines for future-proof 

code by Joost Visser (2015) during the development phase. These guidelines guard the readability of the code. 

Fourth, by publishing the algorithms on the code-sharing platform on GitHub. The transparency for the users 

is addressed in the development phase. 

 

5.1 | General algorithm structure 

The recommendation framework GraphAware Reco consists of six modules: recommendation engine, 

config, logger, blacklist, filter, and post-processor. The config, logger, blacklist, and filter modules are always 
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the same for each algorithm. The config module contains essential information like the maximum number of 

recommendations. The two loggers present information on the activities by the recommendation framework in 

the terminal. The RecommendationLogger shows the entity for which the recommendation is generated. The 

StatisticsLogger shows the composition of the recommendation score. The blacklist and filter modules are the 

context. This context is determined if the recommendations can be served to a user based on predefined rules 

within the Part-up marketplace. Each of the five modules that together form the context of Part-up is shortly 

described in the following paragraphs. 

The blacklist module removes results based on user interaction. There is only one blacklist element: 

ExistingRelationships. This element checks if the user is already a partner or creator of a team because these 

teams should not be suggested. Supporting of a team does not affect the recommendations list. Even while 

there already is a relationship, the expectation is that it still makes sense to recommend the team for two 

reasons. The goal of the recommender system is to suggest teams to become a partner in and not just a supporter 

of. And Swearingen and Sinha (2001) discovered that the confidence of users in the recommender system 

increases when some recommendations are familiar. This element is written in Cypher (query 5.1) and runs 

inside GraphAware Reco. 

 

MATCH (u:User)-[r:ACTIVE_IN]->(t:Team) 
WHERE id(u)={id} AND r.role>1.0 
RETURN t as blacklist 

Cypher query 5.1: ExitingRelationships element (Blacklist for current relationships). 

 

The filter module applies the marketplace rules to the initial list with recommended teams. There are 

four filters. The marketplace has a couple of platform rules to offer private teams next to the public teams. The 

closed teams cannot be suggested to all users. The FilterOutPrivate element inspects if a team can be joined 

by a user. As shown in table 3.3, there are five privacy options for a team: open, closed, part of an open 

network, part of an invitational network, and part of a closed network. The privacy restrictions for teams that 

are part of a network are covered by the FilterOutNetwork element. Cypher query 5.2 only filters out the 

private teams without a network where the user is not already active in as a supporter. As mentioned, pending 

invitations for a team are neglected by this filter. 

 

MATCH (u:User),  
 (t:Team) 
WHERE id(u)={id}  
 AND t.privacy_type=2 
 AND NOT (u)-[:ACTIVE_IN {role:1.0}]->(t) 
RETURN t as blacklist 

Cypher query 5.2: FilterOutPrivate element (filters out private teams). 
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Teams in a network can only be suggested if this network is open (privacy type 3), or the user is a 

member of the invitational, or closed network (privacy type 4 and 5). The FilterOutNetwork element verifies 

this relationship. This is done inside GraphAware Reco with the Cypher query 5.3. 

 

MATCH (u:User),  
 (n:Network)<-[:PART_OF]-(t:Team) 
WHERE id(u)={id}  
 AND ( t.privacy_type=4 OR t.privacy_type=5 ) 
 AND NOT ( (u)-->(n)  
 OR (u)-[:ACTIVE_IN {role:1}]->(t) ) 

RETURN t as blacklist 

Cypher query 5.3: FilterOutNetwork element  

(Filters out private teams of an invitational network or a closed network). 

 

To exclude old teams the FilterOutEnded element was included. The FilterOutDeactivated element 

was developed to exclude deactivated teams. Each team holds the Boolean attribute ‘active’ which can be set 

to false for deactivation. This is not an automatic process. Thus, teams can have a passed end date but still 

categorized as active. Both are written in Java. Table 5.1 shows that with these two filters only 287 teams can 

be recommended. 

 

Active End date before 

27 January 2016 

End date after 

27 January 2016 

Total 

True 367 287 654 

False 125 35 160 

Total 492 322 814 

Table 5.1: Division of active and/or ended teams. 

 

In the post-processing module were five elements developed. These post-processor elements influence 

the generated list with recommendations more gently. Instead of excluding teams, the score of some teams is 

positively or negatively adjusted. The DF-, KBF- and UBCF-algorithms apply the five post-processor 

elements. The RAND-algorithm must be strictly random. The IBCF-algorithm cannot use these post-processor 

elements, because it calculates the initial score of each recommended team differently. All post-processor 

elements are written in Java. The code is included in each GitHub repository. Table 5.2 presents an overview 

of the five post-processor elements. The attribute is added to the ‘RECOMMEND’-relationship for the total 

score. The score can be negative or positive and multiple distributions are supported. Each element is discussed 

in alphabetical order in the following four paragraphs. 
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Element Attribute Max negative score Max positive score Distribution 

PenalizeTeamSize partnersLimit -5 0 Pareto 

RewardSameCity sameCity 0 5 Degenerate 

RewardSameCountry sameCountry 0 1 Degenerate 

RewardSameLanguage sameLanguage 0 1 Degenerate 

RewardSameTags sameTags 0 50 Uniform distribution 

 Total: -5 57  

Table 5.2: Post-processing score 

 

The PenalizeTeamSize element negatively influences the recommendation of large teams following 

the mentioned Ringelmann effect. For the team size, only the creator and partners count as team members. The 

supporters are ignored because they are not active in activities. This element awards a negative score based on 

a Pareto-distribution starting at five team members with the 80% point at thirteen team members. As presented 

in table 5.3, 612 (93%) teams have five team members or less and almost all teams have thirteen or fewer team 

members (645; 98%). The maximum negative score is five points. 

 

1 2 3 4 5 6 7 8 9 10 12 13 15 16 18 19 Total 

370 124 57 39 22 11 8 6 6 4 2 2 1 1 2 1 656 

Table 5.3: Distribution of team sizes. 

 

There are two geographical post-processing elements: RewardSameCity and RewardSameCountry. If 

a user and a team are located in the same city the total score is increased with five points. For the same country, 

one point is awarded, also if the user and team are located in the same city. It should be noted that only 376 

(14%) users and 563 (86%) teams hold the geographical information of a city and a country. This strongly 

limits the applicability of these elements. 

The RewardSameLanguage element increases the score with one point when a user and team have the 

same language. All users and all teams hold the ‘language’-attribute. The user language is chosen by the user. 

The team language is determined by analyzing the title and description via a Google service. As shown in 

Table 5.4, are English and Dutch by far the most popular languages in the marketplace. These are also the only 

two languages that are currently present within both the users and teams. 

 

Language AF DE EN FI IT HR NL RU ZH Total 

Users 1 1 1.222 2 1 0 1.514 1 1 2.743 

Teams 0 0 346 0 0 1 309 0 0 656 

Table 5.4: Languages of the users and teams. 

 

The RewardSameTags searches for similar tags of a user and team. It was hard to design an effective 

element to compare the tags because a user is free to choose them. The marketplace does not contain a bag-of-

words model. This is a method to steer a user voluntarily towards tags that were already submitted by other 

users. If the tag differs, the user is still free to submit and pick this new tag. This especially prevents multiple 
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tags that mean the same but have a couple of different letters. To restrict the development complexity a full 

string match and not a fuzzy match was chosen. This strongly reduces the chance of a match; however, this 

specific element was not identified as crucial for this research. For the same reason was synonymy not 

addressed in this element. This even further decreases the chance of a match between a user and a team based 

on tags. It should also be noted that half of the users do not even have tags added to their profile (table 5.5). 

For each tag that matches ten points are awarded. With a maximum score of 50 points. Compared to the other 

elements this is a very high reward, but as described the chance of an exact tag match is very small. When such 

a match occurs, this indicates a shared interest. 

 

Tags 0 1 2 3 4 5 Total 

Users 1.454 166 60 139 212 712 2.743 

Teams 0 25 27 67 126 411 656 

Table 5.5: Number of tags of the users and teams. 

 

Algorithms can be executed with a memory-based or model-based approach. The former means that 

the algorithm is run when the recommendation is needed, while the latter means that the algorithm creates a 

model from which the recommendation is read. The advantages of memory-based collaborative filtering over 

its model-based counterpart are according to Breese et al. (1998) the simplicity of implementing this algorithm 

and the adaptivity of the recommendations as the algorithm runs on the latest data. Although these researchers 

also point out the disadvantage that running the algorithm for each recommendation individually takes time or 

large amounts of memory. This lack of model building in memory-based collaborative filtering limits the 

scalability. That is why this method is considered impractical for large datasets (Linden et al., 2003) and is 

also the main reason why in the research setup, all algorithms are run with a model-based approach. 

 

5.2 | Random filtering algorithm 

The random filtering (RAND) algorithm produces complete random recommendations. Therefore, this 

RAND algorithm can function as a control algorithm. For collecting the random recommended teams, a Java 

method of the GraphAware framework is used. The generated list is also not post-processed. Only the blacklist 

and the four filters are applied. The structure of this RAND algorithm with all its elements is shown in figure 

5.1. 
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Figure 5.1: RAND algorithm modules in the GraphAware Reco framework. 

 

5.3 | Demographic filtering algorithm 

The technique of demographic filtering uses chosen demographic attributes such as language, location, 

and preferences to filter the available teams. Pazzani (1999) amongst others conclude that demographic 

information can be used to identify which items a user likes. The recommendation engine of the demographic 

filtering (DF) algorithm is the same as the RAND algorithm, but by using all described post-processor elements 

a filter on demographic information is realized. The structure of this DF-algorithm with all its elements is 

shown in figure 5.2. 

 

 

Figure 5.2: DF-algorithm modules in the GraphAware Reco framework. 
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5.4 | Knowledge-based filtering algorithm 

To include soft skills in an information filtering algorithm, a knowledge-based filtering method is 

chosen. The technique of knowledge-based filtering applies knowledge engineering to the reason which items 

meet the requirements of a user (Trewin, 2000). This knowledge engineering process involves understanding 

the specific features of users and teams. Investing in understanding the features and requirements prevents a 

cold start, but also results in a static recommendation ability (Burke, 1999). This knowledge-based filtering 

(KBF) algorithm uses the results of a personality test with the soft skills of a user. Human resource specialist 

Meurs HRM developed a personality test for the Part-up marketplace. Based on ten questions a user receives 

two out of five available individual strengths: influential strength, managerial strength, mental strength, social 

strength, and personal strength. As Sinha and Swearingen (2001) argued, in exchange for better ratings, users 

are willing to fulfill these kinds of system requests for more information but only if the outcome is likely to 

improve. The structure of this KBF-algorithm with all its elements is shown in figure 5.3. 

 

 

Figure 5.3: KBF-algorithm modules in the GraphAware Reco framework. 

 

The core of this knowledge-based filtering algorithm is the StrengthsNeeded element (Cypher query 

5.4). This element functions in two steps. First, the element retrieves the two strengths of the user for which 

the recommendations are generated. The algorithm completely depends on the identified strengths a user holds. 

If the user does not hold any strengths, because he did not complete the inquiry, then this algorithm will not 

function for this user. In the second step for each team, the distribution of the strengths of its members is 

analyzed. For this initial version of the algorithm, it is assumed that each team strives for an equal distribution 

of each strength. If one of the user’s strengths is underrepresented in a team then the team is recommended. 

The score of the recommended team depends on the need for a strength. The maximum awarded score for each 

strength is ten points. That means that this element can recommend a team with a maximum of twenty points. 

This score can be further increased or decreased by the post-processing elements. Of course, the blacklist and 

filters are also applied to the generated list of recommended teams. 
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MATCH (u:User)-[:HOLDS]-(s:Strength) 
WHERE id(u)={id} 
WITH s.name AS userStrength 
MATCH (reco:Team)-[r:ACTIVE_IN]-(u:User), 
 (u)-[:HOLDS]-(s:Strength) 
WITH userStrength,  
 reduce(need=0,  
  i IN COLLECT(s.name) |  
  need +  
   CASE i WHEN userStrength  
    THEN 1  
    ELSE 0  
   END 
 )/toFloat(COUNT(s.name)) AS needs,  
 reco  
WHERE needs<0.2 
RETURN reco, (0.2-needs)*50 AS score 

Cypher query 5.4: StrengthsNeeded element (Core of the knowledge-based filtering algorithm). 

 

The code of this algorithm is published on GitHub under a GNU AGPLv3 open-source license4. 

 

5.5 | User-based collaborative filtering algorithm 

The DF- and KBF-algorithms strongly depend on a couple of chosen attributes. This static structure 

makes the algorithm domain dependent. As a result, every time the interests of the users change the algorithm 

needs to be adjusted. In Palo Alto, the researchers at Xerox Parc already faced this challenge in the early 

nineties. They developed a system called Tapestry that can filter the continuous stream of electronic documents 

(Goldberg et al., 1992). The annotations of users on these documents are compared to other users to discover 

similar interests. For this reason, the new approach was named collaborative filtering (Bell & Koren, 2007). 

Independent of the domain, the purpose of collaborative filtering is to find user-item pairs based on the user’s 

interests and interaction. This replaced straightforward correlation statistics and predictive modeling (Melville 

& Sindhwani, 2011). The technology was further developed by Amazon for shopping suggestions. Later 

similar technology was implemented and developed by Facebook, Google, Hulu, LinkedIn, Netflix, and 

Twitter to support their customers because from a scalability perspective a domain-independent algorithm is 

preferred. The lack of a domain dependency ensures that this algorithm automatically adjusts to the diverse 

interests of users, which solves the necessity for a new algorithm each time a new topic is introduced on the 

platform. 

Multiple researchers describe collaborative filtering as one of the most successful filtering methods 

(Lemire & Maclachlan, 2005; Su & Khoshgoftaar, 2009). It delivers the most complete package with its ability 

to identify cross-genre niches, the lack of required domain knowledge, quality improvements, and enough 

implicit feedback. The main advantage of collaborative filtering is that it performs well while a user or team 

 
4 https://github.com/part-up/KBF-algorithm 
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holds limited content, but has relationships with other entities (Melville et al., 2002). Koren et al. (2009) agree 

by stating that technology is domain independent. This content-agnostic aspect means that algorithms can be 

applied to various subjects without adjustments. A second advantage is that it can deliver serendipitous 

recommendations. Melville et al. (2002) describe this as relevant recommendations of items (teams), although 

not matched on content supplied by the user via its profile. Multiple researchers conclude that these two reasons 

led to the successes of recommender systems in different domains (Goldberg et al., 1992; Resnick et al., 1994). 

According to Koren et al. (2009), there are two main areas of collaborative filtering: neighborhood 

methods and latent factor models. The former focuses on the relationships between users and teams. User-

based collaborative filtering is based on this principle. The latter infers a latent variable of a user’s appreciation 

for a team by analyzing observable variables about their activity in that team. Item-based collaborative filtering 

is a successful implementation of latent factor models. The item-based collaborative filtering algorithm is 

described in section 5.6. 

User-based collaborative filtering is by Wang et al. (2006) illustrated as the “Word of Mouth” 

phenomenon. This is the traditional version of collaborative filtering where team suggestions are generated 

based on users with similar interests (Breese et al., 1998). Figure 5.4 shows a simplified version of the user-

based collaborative filtering approach visualized for users active in teams. To generate recommended teams 

the algorithm follows a four-step-process. First, for a user, the algorithm lists the teams in which the user is a 

member. Second, for each listed team, the algorithm collects which team members are also part of that team. 

Third, for these collected members, the algorithm gathers the other teams in which they are also a member. 

Finally, these discovered teams are ranked on frequency in the third step. All these users, teams, and 

relationships are usually merged in a table. However, as figure 5.4 shows, this method is very suitable for path 

querying in a graph database. 

 

 
Figure 5.4: User-based collaborative filtering for teams. 

 

The structure of this UBCF-algorithm with all its elements is shown in figure 5.5. 
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Figure 5.5: UBCF-algorithm modules in the GraphAware Reco framework. 

 

The core of the collaborative filtering algorithm is the NearbyTeams element (Cypher query 5.5). The 

approach is as shown in figure 5.4. For each discovered path of the three relations, the average of the three 

roles is awarded to the team. The value can vary between 1 and 2. For example, if the path consists of a creator 

(2 points), partner (1,5 points) and supporter (1 point) in the two teams then the score is 1,5 points. 

 

MATCH (u1:User)-[r1:ACTIVE_IN]->(t:Team) 
 <-[r2:ACTIVE_IN]-(u2:User)-[r3:ACTIVE_IN]->(reco:Team) 
WHERE id(u1)={id} 
RETURN reco, 
 COLLECT(t._id) as team_id, 
 u2._id as partner_id, 
 (r1.role + r2.role + r3.role)/3 AS score 

Cypher query 5.5: NearbyTeams element (User-based collaborative filtering algorithm via teams). 

 

The discovery process of relevant teams for a user by this NearbyTeams element is supported by the 

NearbyNetworkTeams element (Cypher query 5.6). This second element has a similar approach and analyses 

in which teams the fellow members of a network are active as a creator or partner. For each discovered path 

of three relations, a score of 0,5 points is awarded to the team, regardless of the role. This low score is chosen 

to value a discovered path by the NearbyNetworkTeams element always lower than a discovered path by the 

NearbyTeams element. As the similarity between users who are active in the same network is assumed to be 

lower than users who are active in the same team. 

 

 

 

 

 



44 

 

MATCH (u1:User)-[r1:MEMBER_OF]->(n:Network) 
 <-[r2:MEMBER_OF]-(u2:User)-[r3:ACTIVE_IN]->(reco:Team) 
WHERE id(u1)={id} AND r3.role>=1.5 
RETURN reco, 
 n._id as network_id, 
 u2._id as member_id, 
 0.5 AS score 

Cypher query 5.6: NearbyNetworkTeams element (User-based collaborative filtering algorithm via networks). 

 

The code of this algorithm is reviewed by a senior data scientist of GraphAware and a platform 

architect of Part-up. The code of this algorithm is published on GitHub5 under a GNU AGPLv3 open-source 

license. 

 

5.6 | Item-based collaborative filtering algorithm 

The most complex algorithm being designed in this research is the item-based collaborative filtering 

algorithm. It was chosen to resolve the scalability challenge, which is a well-known issue of the user-based 

collaborative filtering algorithm (Sarwar et al., 2001). Linden et al. (2003) addressed especially this problem 

while designing the item-based collaborative filtering algorithm for Amazon. This collaborative filtering 

technique focuses on the rating distributions per item as usually, a digital marketplace holds more users than 

items. It scales independently of the number of users or items on a platform by building a similar-items table. 

As the user rating of an item is expected to be stable, this model-based algorithm can create a model of the 

database. Accordingly, the algorithm does not have to identify the neighborhood of similar users first. As a 

result, the recommender system can produce much faster results, note Sarwar et al. (2001). In this context of 

team formation an item references to a team. 

The item-based collaborative filtering algorithm requires a valuation of a team by a user. For a 

recommender system, the relationship between a user and an item is defined by several attributes. The input 

data of the user on a team can be split into two types: explicit feedback and implicit feedback (Koren et al., 

2009; Xiang, 2011). The explicit feedback is the most valuable one because this is the rating a user gives to a 

team. However, the availability of this information is low, as users give only ratings to fellow team members 

after they finished a collaborative task. This is usually at the end of a team’s lifespan. Implicit feedback is, for 

example, browsing history, mouse movements, page visits, search patterns, or other interactions. This user 

preference can be modeled as a pseudo-rating with a formula. Ensuring that the outcome of the formula is quite 

static and robust were two additional design goals. Otherwise, every change in the database needs a wide 

recalculation of the participation-values.  

For the Part-up marketplace, a participation formula (formula 5.1 & Cypher query 5.7) was developed 

that combines four attributes from the logical data model: ratings, role, contributions, and comments. The 

composition of the participation formula is mainly based on experiences from the Part-up environment gained 

 
5 https://github.com/part-up/UBCF-algorithm 
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during the relevance cycle, combined with literature from the knowledge base gained during the rigor cycle. 

The ratings a user receives on his activities in a team by another user is the most valuable information, as this 

is the only available explicit feedback on the quality of a user’s activities in a team. When a user receives high 

ratings, he is actively participating in that team. Each rating is divided by twenty to transform it to a scale of 

one to five. Next to these available explicit ratings also an implicit rating is constructed based on three attributes 

that every user-team-relation contains: role, number of contributions and number of comments. The role a user 

holds in a team is expressed following the ordinal scale from table 4.4 (creator: 2 points, partner: 1.5 points, 

supporter: 1 point). The number of contributions the user has in the team is divided by the maximum number 

of contributions this user has in all its teams. The same calculation is chosen to normalize the number of 

comments. Note that the normalization is applied with a smoothing term to prevent the dividing by zero when 

a user has no contributions or comments. The normalized contributions are weighted double compared to the 

normalized comments because a contribution is a commitment to a team and scarcer than a comment. The 

implicit rating is the sum of the role-weight, normalized contributions and normalized comments and results 

in a value between one and five. The average of these explicit ratings and the implicit rating is the participation 

score of a user in a team. That means that when the number of explicit ratings increases, the influence of the 

implicit rating on the participation score directly decreases. A high participation score implies that the user is 

interested in the team. More design cycle iterations with additional evaluation and field testing of the formula 

are necessary to optimize these participation scores. With this formula, the similarity between teams can be 

calculated to perform item-based collaborative filtering. 

 

 

 

𝑅𝑢 =
∑𝑟𝑎𝑡𝑖𝑛𝑔𝑠

𝑖=1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠(𝑖)

20
+ 𝑟𝑜𝑙𝑒 +

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠

𝑚𝑎𝑥𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠
⋅ 2,0 +

𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠

𝑚𝑎𝑥𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑠

𝑟𝑎𝑡𝑖𝑛𝑔𝑠 + 1
 

Formula 5.1: Participation formula. 

 

MATCH (u:User)-[r:ACTIVE_IN]->(t:Team) 
WITH MAX(r.contributions) AS maxContributions, 
 MAX(r.comments) AS maxComments, u 
MATCH (u)-[r:ACTIVE_IN]->(t:Team)  
WITH 
r.role+(r.contributions/(toFloat(maxContributions)+0.00001)*2.0
) 
 +(r.comments/(toFloat(maxComments)+0.00001)*1.0) AS part,  
 r 
SET r.participation=((REDUCE(avg=0, i IN r.ratings | avg + 
(i/20)))+part) 
 /(LENGTH(r.ratings)+1) 

Cypher query 5.7: Participation formula. 
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With these participation scores, a user-team matrix is constructed. The first step is the analysis of the 

user-item matrix on similarity as presented in figure 5.6. The similarity between the two teams is determined 

by comparing the participation scores in those teams. For the core analysis, only the participation scores of the 

users who are active in both teams are used. Otherwise, it is not possible to compare the similarity. 

 

 

Figure 5.6: Item-based similarity (Sarwar et al., 2001). 

 

Sarwar et al. (2001) advise three types of similarity methods to compare items: cosine-based similarity, 

Pearson correlation-based similarity or adjusted cosine similarity. The first option is cosine-based similarity 

(formula 5.2). This similarity formula is also known as vector-based similarity because this similarity is the 

cosine angle between the vectors. It is the simplest approach for a mathematical similarity comparison. 

 

  

Formula 5.2: Cosine-based similarity (Sarwar et al., 2001). 

 

The second option is the Pearson correlation-based similarity (formula 5.3). An improved version of 

the cosine-based similarity formula that normalizes the result with the average rating of all users on a team, 

not just the ratings of the users that are active in both teams. This normalization is advantageous in this research 

on team formation, as it corrects the valuation of younger teams with relatively low participation scores. This 

self-damping effect improves the accuracy of the algorithm. However, this extra calculation also affects 

performance. 

 

 

Formula 5.3: Pearson correlation-based similarity (Sarwar et al., 2001). 
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The third option to determine the similarity is the adjusted cosine similarity (formula 5.4). This is an 

improved version of the cosine-based similarity. It corrects for a user’s rating scheme by normalizing the rating 

on a team with the average of all ratings that the user has given. Some users have a rating scheme in which 

they consistently rate items lower or higher. This additional normalization is not advantageous for this research 

on team formation, as the primary participation value is an implicit rating. Accordingly, it does not need to be 

corrected for a rating scheme. If the participation score is not a good representation of the activities by all users 

in a team, then it must be corrected by the participation formula and not the similarity method. For example, 

by adjusting the chosen attributes or their weights. 

 

 

Formula 5.4: Adjusted cosine similarity (Sarwar et al., 2001). 

 

Taking the arguments on the normalization of the participation scores into account the Pearson 

correlation-based similarity is chosen. This Pearson correlation-based similarity is applied to the requirement 

that there is a minimum of three users to determine the similarity. The reason for this threshold is quality and 

accuracy (Herlocker et al., 2002). Multiple users ensure that there are enough scores available to normalize 

and compare. There is no maximum in the number of similarity relationships that a team can hold with the 

other teams. Between two teams there can only be one similarity relationship. This means that every time the 

similarity scores are recalculated, the previous score is replaced. The chosen similarity formula including the 

additional rules is transformed into Cypher query 5.8 to create the ‘SIMILARITY’-relationships in the Neo4j 

database. 

 

MATCH (t1:Team),  
 (t2:Team) 
WHERE t1<>t2 
MATCH (t1)<-[r:ACTIVE_IN]-(u:User) 
WITH toFloat(AVG(r.participation)) AS t1Mean, t1, t2 
MATCH (t2)<-[r:ACTIVE_IN]-(u:User) 
WITH toFloat(AVG(r.participation)) AS t2Mean, t1Mean, t1, t2 
MATCH (t1)<-[r1:ACTIVE_IN]-(u:User)-[r2:ACTIVE_IN]->(t2) 
WITH toFloat(SUM((r1.participation-t1Mean)* 
 (r2.participation-t2Mean))) AS numerator, 
 toFloat(SQRT(SUM((r1.participation-t1Mean)^2)) *  

 SQRT(SUM((r2.participation-t2Mean)^2))) AS denominator, 
 t1, t2, COUNT(r1) AS r1Count 
WHERE denominator<>0 AND r1Count>2 
MERGE (t1)-[q:SIMILARITY]-(t2) 
SET q.coefficient=toFloat((numerator/denominator)) 

Cypher query 5.8: Pearson correlation-based similarity 
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The model learning stage is followed by the recommendation stage. This model is used to make 

predictions (Breese et al., 1998). The user gets teams suggested that are like teams the user has interacted with 

earlier. This prediction is either a weighted average or a regression according to Sarwar et al. (2001). For this 

research, the weighted average (formula 5.5; Cypher query 5.9) was used following the objective of easy to 

set up. 

 

𝑃𝑢,𝑖 =
𝛴𝑎𝑙𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑒𝑎𝑚𝑠,𝑁(𝑠𝑖,𝑁  ∗  𝑅𝑢,𝑁)

𝛴𝑎𝑙𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑒𝑎𝑚𝑠,𝑁(|𝑠𝑖,𝑁|)
 

Formula 5.5: Weighted average 

 

MATCH (u:User)-[a:ACTIVE_IN]->(t:Team) 
 -[s:SIMILARITY]-(reco:Team) 
WHERE id(u)={id} 
WITH AVG(a.participation*s.coefficient) AS score, reco 
RETURN score, reco 

Cypher query 5.9: Weighted average 

 

A simplified overview of item-based collaborative filtering incorporating the described formulas is 

shown in figure 5.7. Some user-team pairs were left out and only one predicted participation score was included 

to ensure an uncluttered figure. The green arrows and corresponding values are the participation scores of user-

team pairs. The blue arrows and values represent the Pearson correlation-based similarity of two teams. The 

weighted average formula uses this information to predict a user’s participation score in a team. The red arrow 

with the value is this predicted participation score. A high predicted participation score is a high likelihood for 

this user to actively participate in a team. The teams with the highest predicted participation scores are 

recommended to the user. 
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Figure 5.7: Item-based collaborative filtering (Some relationships are left out for overview reasons). 

 

The item-based collaborative filtering approach has four disadvantages. First, when an entity changes 

the whole model needs to be updated. Shani and Gunawardana (2011) already mentioned adaptivity. Users 

expect that recent activity is also used for generating recommendations. Although, this does not necessarily 

require instant update of the model. This can be done with a daily routine, for example in the night when the 

servers have overcapacity due to low web traffic. In this offline research, the data does not change. Thus, 

updating the model is not a major disadvantage. 

Second, calculating the similarities between teams is complex. For this similarity, it is necessary to 

analyze the activity of multiple users in multiple teams. This requires a framework with computational power 

that can run the chosen similarity formula for all teams. During this offline research, the similarity can be 

calculated by the ETL-script after all data is stored in Neo4j, as the data does not change in the research setup. 

In an online situation, this similarity-formula can be run within GraphAware Reco or by an external script that 

accesses Neo4j. This latter option is better from a scalability point of view. 

Third, with data sparsity the system performance is weak. This challenge was mentioned earlier and 

applies to multiple algorithms, but an IBCF-algorithm specifically suffers from it. To run an IBCF-algorithm 

both the user and its teams must hold multiple relationships. Just one relationship is not enough to generate 

relevant recommendations. This requirement strikes out many users, but not all users. For users with many 

data points, this technique can be advantageous. Analyzing more data can result in better recommendations. 

For using it in a marketplace it is necessary to combine it with other algorithms with a lower data threshold 

into a hybrid algorithm. 

Fourth and finally, item-based collaborative filtering with a model-based approach was patented by 

Amazon (Linden et al., 2001a) in the United States of America until 18 September 2018. This restricted the 

use and sale of a product containing this patent in the USA. However, this did not imply that it was also 

protected in Europe. Therefore, Amazon had also filed a copy to the European Patent Office (EPO). The 

European version of this patent (EP1121658) by the same authors (Linden et al., 2001b) was rejected by the 

EPO. The discrepancy between the EPO and Amazon is the result of two issues. First, the data preparation in 

the IBCF-algorithm is based on existing mathematical formulas. But the process of generating 

recommendations is not recognized as a mathematical method by the EPO. This EU organ characterizes this 

method as a marketing strategy and thus non-technical, while Amazon claims that it is an engineering strategy. 

Second, the division in online and offline tasks is seen by the EPO as an obvious manner to solve a technical 

problem. The decision of the EPO was under appeal by Amazon (T1056/11) until the patent expired in the 

USA in September 2019. The EPO ceased the case. Thus, the former patent is now free to use. As described 

are none of the four mentioned disadvantages of item-based collaborative filtering a showstopper. The structure 

of this IBCF-algorithm with all its elements is shown in figure 5.8. 
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Figure 5.8: IBCF-algorithm modules in GraphAware Reco framework 

 

The code of this algorithm is published on GitHub6 under a GNU AGPLv3 open-source license. 

 

5.7 | Conclusions 

As described, there are multiple information filtering techniques to apply to this case of self-managing 

teams. It has been mentioned that there is little research in these fields. That is why these algorithms first must 

be tested with validation experiments. Although some algorithms are only slightly different, it can still lead to 

different results. Hence, it is important to compare multiple algorithms. Table 5.6 shows the advantages and 

disadvantages of the four algorithms. Random filtering is not covered by this comparison as it operates as a 

control algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
6 https://github.com/part-up/IBCF-algorithm 
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Algorithm Advantage Disadvantage 

Random filtering (control) (control) 

Demographic filtering No cold start 

 

Domain dependent 

Static profile 

Only demographic values included 

Knowledge-based 

filtering 

Based on soft skills (personality test) 

Cold start mitigation 

Domain dependent 

Static profile 

Perfect composition per team unknown 

User-based 

collaborative filtering 

Domain independent 

Performs well with entities that have 

relationships with other entities, even with 

limited entity content 

Dynamic profile with team frequency 

Serendipitous recommendation 

Cold start (data sparsity) 

Unstable rating 

Item-based 

collaborative filtering 

Domain independent 

Scales independently 

Detailed, dynamic profile with participation 

score 

Stable rating 

Frequent update of the full model 

Complex similarity calculation 

Cold start (data sparsity) 

Formerly patented 

Table 5.6: Algorithm comparison. 

 

The demographic filtering and knowledge-based filtering algorithms have the advantage that their 

approach does not suffer from a cold start or mitigates this. The other two collaborative filtering algorithms 

require user activity before they can generate any recommendations. Both the demographic and knowledge-

based filtering algorithms are domain-dependent, which means that they do not automatically adapt to changes 

in the interests of users. An aspect that is successfully addressed in the design of the collaborative filtering 

algorithms. These algorithms also have dynamic profiles based on either the team frequency for user-based 

filtering or the participation score for item-based filtering. User-based collaborative filtering performs well 

with teams that hold little information but have several active team members. As a result, this algorithm 

generates serendipitous recommendations. If the team is just created it suffers from the cold start problem, 

hence it is hard to recommend. Item-based collaborative filtering is expected to be a stable predictor of a user’s 

interest in a team. The stability of this rating is essential for scaling a collaborative filtering algorithm for a 

large volume of users. Otherwise frequent updates of the full model are required. This requires calculating the 

team similarity, a complex and thus resource-intensive process. This comparison shows that all algorithms 

have different advantages and disadvantages. However, none of the algorithms is unsuitable or a clear winner 

based on this comparison. In the evaluation, the algorithms are further and extensively compared. 

  



52 

 

6 | Design evaluation 

 

The  evaluation of the five algorithms is, as described in chapter 3. An expert on human-centered data 

science advised validating the recommender system on different aspects that combined ensure the correct 

functioning (personal communication, 3 December 2015). Shani and Gunawardana (2011) name twelve 

dimensions to validate a recommender system: adaptivity, confidence, coverage, diversity, novelty, privacy, 

risk, robustness, scalability, serendipity, trust, and utility. These are expanded and categorized by Avazpour et 

al. (2014). The  evaluation should always be a combination of multiple dimensions as they state: “Just one 

dimension and metric for evaluating the wide variety of recommendation systems and application domains is 

far too simplistic to obtain a nuanced evaluation of the approach as applied to the domain” (Avazpour et al., 

2014, p.2). The categorized list of all these evaluation dimensions is shown in table 6.1. 

 

 Recommendation-centric User-centric System-centric Delivery-centric 

Selected Confidence 

Coverage 

Trust 

Utility 

Privacy 

Robustness 

Scalability 

User preference 

Not selected Correctness 

Diversity 

Novelty 

Risk 

Serendipity 

Adaptivity (Learning 

rate) 

Stability 

Usability 

Table 6.1: Dimensions of  evaluation, selected for the research 

(Shani and Gunawardana, 2011; Avazpour et al., 2014). 

 

Each category of  evaluation dimensions is described in one sentence. The recommendation-centric 

category includes the dimensions that can be used to assess the generated list with recommendations. The user-

centric category holds five dimensions that evaluate if the recommendations fulfill the target end-user needs. 

The system-centric category ignores the recommendations quality or user-perspective but reflects on the 

technology and system behind the results. The delivery-centric category is the functioning of the recommender 

system in its context of use. For each category at least one dimension is chosen (table 6.1). 

The adaptivity, correctness, diversity, novelty, risk, serendipity, stability, and usability dimensions are 

not used for the following reasons. The adaptivity of the recommender system is expressed with the learning 

rate to incorporate new information in the recommendations list. The algorithm needs to be adaptive to changes 

in the user’s interests, the user’s profile, or team collection. This is a trade-off between the speed of shifts in 

trends and accuracy. This can be measured by determining the time that is needed to process the information 

before the algorithm can perform its analysis, which falls outside the scope of this research. Correctness 

influences the value of the recommender systems. The definition of correct is when the recommended team is 

affiliated with the intentions, interests, or applications of the user. This can be validated with a user interview, 

but this dimension was dropped in favor of trust, user-preference, and utility which combined do quite the 

same. 

Diversity is the dissimilarity of the items in a recommendations list. According to Avazpour et al. 

(2014) in some cases generating a recommendation list with similar items is not functional. Users prefer 
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recommendations that reflect the diversity of the system. Diversity can be considered as an enhancement of 

the algorithm (Castells et al., 2015). This will not be a requirement for the current research. However, it is an 

interesting direction for future research within this subject. Novelty is the difference in user experience 

between past and present recommendations (Castells et al., 2015). In this offline research with a frozen dataset, 

it is not possible to test the recommendations on their novelty. That is why the novelty dimension is not 

included in this  evaluation. Risk is connected to the expected utility variance. This is something that must be 

tested over a longer period and is therefore not part of this evaluation. 

Serendipity involves including attractive, surprising, and unknown items to reveal unexpressed user’s 

interests (Ge et al., 2010). A recommendation is only serendipitous when it is picked by a user. It negatively 

impacts accuracy, but it can also be an added value. That is why accuracy and serendipity need to be balanced. 

This dimension is hard to test. Stability is the consistency of the generated recommendations list over time. As 

this design research focuses on the definition and development phases it is not considered. The usability is 

defined by the convenience of adopting the recommender system in an appropriate way for the users. 

Guidelines for this dimension are effectivity, efficiency, and user satisfaction. This is strongly related to the 

user interface. This includes the forms that need to be filled in to generate recommendations, the option to 

easily explore target items, and the generation rate of the recommendation list as perceived by the user. The 

evaluation of this dimension is not possible as the recommender system still must be integrated into the Part-

up marketplace. 

This chapter structured the evaluation phase into three experiment types: quantitative validation, user 

interviews, and qualitative validation. Together these experiments validate the recommender system with its 

five custom filtering algorithms on eight dimensions: confidence, coverage, privacy, robustness, scalability, 

trust, user preference, and utility. 

 

6.1 | Quantitative validation 

The quantitative validation analyses the recommendations from a numerical point of view. This 

validation consists of the coverage and privacy dimensions. To validate the algorithms on these dimensions 

multiple Cypher queries were written for this specific logical data model. Without this artifact, the quality and 

privacy of an algorithm could not be guaranteed. These queries can be run in the simple web-interface of Neo4j 

or with code by using its Application Programming Interface (API), a software connection. In the web-

interface, the queries are stored in a ‘Validation’-folder. This ensures that it is easy to do routine governance 

audits on the live database. All validation queries are included in appendix C. 

Table 6.2 presents three metric criteria for quantitative validation. The category relates back to the 

dimensions of evaluation from table 6.1. The goal value is the desired outcome value for the user space 

coverage and items space coverage and the required outcome value for the privacy criteria. The unit column 

is the measurement unit of the goal value. 
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Criteria Category Type Goal Unit 

User space 

coverage 

Recommendation- 

centric 

Quantitative 100 % (users with recommended teams 

/ total users) 

Item space 

coverage 

Recommendation- 

centric 

Quantitative 90 % (recommendable teams  

/ total teams) 

Privacy System-centric Quantitative 0 recommended teams that should 

not be accessible 

Table 6.2: Quantitative validation criteria. 

 

Coverage is the proportion of available data that can be used for generating recommendations. It is an 

indication of the quality of the recommendations because according to Shani and Gunawardana (2011) 

recommender systems that cover a wider range of users or teams are preferred. When a user or team holds 

insufficient information, it is impossible to project a recommendation. In technical terms, this is called a cold 

start. This is related to the low accuracy in the prediction. The coverage dimension can be split into two types. 

User space coverage (prediction coverage) is the percentage of users that a recommender system can generate 

predictions for. Item space coverage (catalog coverage) is the percentage of items (teams) that are 

recommended to a user by the system. In this validation the item-space coverage is less important for two 

reasons: first, this research is from the user perspective, and second, the configuration is set to a maximum of 

five recommendations for each user. The maximum of 13.715 recommendations is not necessarily equally 

distributed over the 287 active teams that have an end date after 27 January 2016. This is the result of the 

unequal distribution of user activity in teams and the privacy restrictions of teams. Both the user-space 

coverage and item-space coverage are used in this quantitative validation. 

First, the user-space coverage of the 21 interviewed users is discussed as shown in table 6.3. Each 

algorithm column shows the number of users in each group that have a recommendation by this algorithm. The 

maximum count is seven, as there are seven users in each group. The last column ‘Total’ reflects the coverage 

of all algorithms. That the RAND-algorithm scores best is no surprise because the random-aspect requires no 

specific data points to suggest a team. That should be the same for the DF-algorithm. Early in the interview 

process, a small error was discovered with this algorithm. Due to a configuration error, this algorithm-

generated no recommendation for one user. This was adjusted after the interview. Therefore, the coverage of 

the DF-algorithm is one case smaller than the RAND-algorithm. 
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User group RAND DF KBF UBCF IBCF Total 

High 7 6 7 7 7 7 

Medium 7 7 4 7 7 7 

Low 7 7 2 4 0 7 

Total interview group 21 20 13 18 14 21 

 100% 95% 62% 86% 67% 100% 

Total database 2.475 2.089 338 1.514 764 2.714 

 90% 76% 12% 55% 28% 99% 

Table 6.3: User-space coverage of the algorithms. 

 

 Second, the user-space coverage is validated for all users in the database with the active status. This 

is the standard status for all users and implies that the user is not deactivated on request. It does not represent 

the activity level of a user. The results are included in the bottom rows ‘Total database’ of table 6.4. The 

RAND-algorithm has generated recommendations for 90% of the users, which is the user-space coverage. It 

is remarkable that it does not have 100% coverage, as the algorithm requires no specific attributes or 

relationships. This must be an error in running the algorithm. The same counts for the DF-algorithm, which 

only has a 76% user-space coverage. The KBF-algorithm has a 12% user-space coverage which is very low. 

The algorithm requires that a user has discovered his two strengths via a small questionnaire. The questionnaire 

is voluntary and not well visible on the marketplace. This algorithm has 100% user-space coverage for the 

users who have completed this questionnaire. The UBCF-algorithm has 55% user-space coverage. Although 

it has 97% user-space coverage for the users that are active in a team or member of a network this should be 

100%, an indication of a small error. The IBCF-algorithm has 28% user-space coverage - quite a low score. 

The algorithm has 87% user-space coverage for the users that are active in a team with a similarity relationship 

to another team. Reflecting on the user-space coverage for the algorithm, the conclusion is that currently none 

of the algorithms can be used for the Part-up marketplace. The user-space coverage of the KBF- and IBCF-

algorithms is too low. And the RAND-, DF-, UBCF- and IBCF-algorithms seem not to be running error-free. 

There is room for improvement. Combining multiple algorithms into one hybrid algorithm can be the solution. 

Overall 99% of the users have at least one recommendation generated by one of the algorithms. The user-space 

coverage confirms that with a combination of multiple algorithms nearly all users receive recommendations. 

The results of the item-space coverage validation are included in table 6.4. Some users had multiple 

recommendations generated by the RAND- and DF-algorithm, because of configuration issues. It was not 

possible to run the algorithms at the same time, so each algorithm ran once in sequence. Each user can have a 

maximum of five recommendations. As mentioned in chapter 3 are these recommendations not necessarily 

evenly distributed. This explains why only three-quarters of the teams were recommended via the algorithms. 

This is a satisfying percentage. 
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Items RAND DF KBF UBCF IBCF Total 

Total 179 173 48 141 65 211 

 62% 60% 17% 49% 23% 74% 

Table 6.4: Item space coverage of the algorithms. 

 

Privacy is an important dimension if the service processes the personal data of users. The risk is that 

the privacy of these users and their teams is harmed. The external privacy is not validated in this research. The 

Dutch Data Protection Authority drafted guidelines to guarantee that personal data of users is protected. All 

organizations in the Netherlands that store or process personal data must comply with the seven requirements 

of the National Personal Data Protection Law (‘Wet bescherming persoonsgegevens’). Part-up follows a 

privacy policy7 that covers these requirements. This validation is on internal privacy. The digital marketplace 

incorporated platform rules in order to enable private teams next to the public teams. The privacy of the teams 

is divided into five types (table 6.5). Each team holds a ‘privacy type’-attribute with an integer value. Most 

teams are public and not part of a network, meaning they are type 1. Some teams are private and not part of a 

network (type 2). These teams can only be accessed by invited users. Pending invitations are for complexity 

reasons not included in this initial version. That means that these private teams (type 2) can only be 

recommended to their supporters. There are also public teams that might be part of a network, which are 

classified as type 3. The same accounts for private teams in an invitational network (type 4) and private teams 

in a closed network (type 5). The public teams can be recommended to all users irrespective of whether the 

teams are part of their network. This means that only the teams with the privacy types 2, 4 and 5 are validated 

on privacy. This dimension is measured by the number of recommended teams that should not be accessible. 

 

Team  

privacy type 

Network 

privacy type 

Description Number 

1 - Public teams 357 

2 - Private teams 37 

3 1 Public teams in a public network 193 

4 2 Private teams in an invitational network 174 

5 3 Private teams in a closed network 55 

  Total: 656 

Table 6.5: Privacy types of teams. 

 

For the validation of the privacy and platform rules a series of experiments were performed. There are 

no teams recommended in which a user was already active as a partner or creator. The recommendable 

distinction in table 6.6 covers again the teams which are not deactivated and have an end date after 27 January 

2016. The validation confirmed that only the 287 teams with these two criteria are recommended and there are 

no incorrect recommendations of private teams that are not part of a network. However, during the validation, 

it was also discovered that not all relationships were created correctly. A total of sixteen teams were created 

 
7 privacy.part-up.com 
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without the network they are part of. This error is the result of an incomplete ETL script. Only the network 

teams with location information were imported correctly. The network teams without location information 

were imported, but without the relationship to the network they are part of. As a result, eleven teams with the 

privacy type 4 or 5 were not filtered out by the FilterOutNetwork element. This resulted in 576 possible 

incorrect recommendations, which poses a privacy risk. This is 73% of the total 785 recommendations for 

teams with the privacy type 4 or 5.  

 

Team  

privacy 

type 

Network 

privacy 

type 

Description Recommendable 

teams 

Recommendations 

Possible 

incorrect 

Total 

1 - Public teams 135 - 7.841 

2 - Private teams 8 0 2 

3 1 Public teams in a public network 65 - 3.405 

4 2 Private teams in an invitational network 58 454 604 

5 3 Private teams in a closed network 21 122 181 

  Total: 287 576 12.033 

Table 6.6: Privacy validation of all teams. 

 

To still check the functioning of the FilterOutNetwork element a second validation round was 

performed (Table 6.7). Now only the recommendations of the correctly imported teams were reviewed. This 

validation shows that there were no incorrect recommendations. The FilterOutNetwork element functions as 

desired when the necessary information is included in the Neo4j-dataset. It can be concluded that the privacy 

of the teams and the platform rules are respected with the five context (blacklist and filter) elements. 

 

Team  

privacy 

type 

Network 

privacy 

type 

Description Recommendable 

teams 

 

Recommendations 

Incorrect Total 

1 - Public teams 135 - 7.841 

2 - Private teams 8 0 2 

3 1 Public teams in a public network 60 - 3.237 

4 2 Private teams in an invitational network 49 0 150 

5 3 Private teams in a closed network 19 0 59 

  Total: 271 0 11.289 

Table 6.7: Privacy validation of the teams with correct network relationships. 
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6.2 | User interviews 

 

Criteria Category Type Question 

Trust User-centric Qualitative Do these recommendations reflect your profile? 

User-preference Delivery-centric Qualitative Which part-up is the most likely you will join as 

a partner? 

How would you rank this recommendations set 

yourself? 

Utility User-centric Qualitative On a scale from 0-7, will you join it? 

Table 6.8: evaluation criteria via user interviews 

 

The user interviews perform a face validation of the recommender system. This is a subjective view 

test to gather the opinion of non-experts. This validation must be performed in a representative simulator. 

When the outcome is positive, then this is an endorsement for the application of recommender systems. In the 

user interviews, the recommender system is validated for the trust, user-preference and utility dimensions. 

Trust is the confidence of a user in the provided recommendation. Trust can be increased by combining known 

and unknown items or by delivering the recommendations with an explanation. Multiple incorrect 

recommendations decrease the trust in the recommender system, with the possible end state being ignorant of 

the recommendations by the users. The most common method to validate trust is asking the reasonability of 

recommendations in a user study. User preference is the ideal order of the recommended teams. This preference 

can be determined by letting a user rank his selected teams from best to worst recommendation. Utility is the 

value a user or the system gains from using the recommender system.  

For the interviews were users selected from three groups. This split is made because Avazpour et al. 

(2014) note that users experience the recommendations differently based on their previous activities. Current 

and former Part-up team members or developers are excluded from the validation because they may have too 

much knowledge of the algorithms to give an independent opinion. There are 27 Part-up team members 

excluded from the user base for this reason. To group the users in three categories an engagement score 

(formula 6.1) is calculated. Each role a user holds in a team is multiplied with the role-weight (table 4.4) as 

described in paragraph 4.3. The engagement score approximates the engagement of a user with the Part-up 

marketplace. This formula 6.1 is constructed by this author. 

 

𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 = 𝑐𝑟𝑒𝑎𝑡𝑜𝑟 ⋅ 2,0 + 𝑝𝑎𝑟𝑡𝑛𝑒𝑟 ⋅ 1,5 + 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑟 ⋅ 1,0 

Formula 6.1: Engagement score of a user in all its teams. 

 

The three interview groups for low, medium, and highly engaged users are presented in table 6.10. 

The two cut-off points for the groups were an arbitrary decision by this author. The ‘Total’ column contains 

the number of all users with engagement within the group’s range. The ‘Cleaned total’ column is this number 

of users minus the Part-up team members that were excluded. Especially the group with highly engaged users 

is small. Still, it is valuable to also receive feedback from users who are active in a high number of teams. 
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Group Engagement score Total Cleaned total 

Low engaged users 0 1.608 1.608 

Medium engaged users 0 <> 20 1.102 1.089 

Highly engaged users ≥ 20  33 19 

Table 6.10: Three user groups based on the engagement score. 

 

 From each group, seven people were randomly selected for a user interview by phone, a total of 21 

users from three groups. This selection did not correct for age, gender, background, or location, because this 

information was not at all or not always available in the user profile. Each interview was performed following 

a drafted protocol (appendix D). Consistently following this protocol ensures the reproducibility of the 

validation. As this validation was not about the statistical validity, the protocol also provided room to use the 

interview to collect extra feedback about the algorithms. A limitation of the research set up is that it does not 

have a graphic user interface to present the generated recommendations. To retrieve these recommendations 

for the users’ interviews in chapter 6 the following Cypher query (6.1) is used. The overview with the 

recommended teams resembles the 'Discover'-page of Part-up. Shortly before the interview, the overview was 

sent to ensure the first impression of the user. Some interviews were more extensive, as some users enjoyed 

elaborating more on their answers and giving broad feedback about the Part-up marketplace. 

 

MATCH (u:User)-[r:RECO_RAND]->(t:Team {active}) 
WHERE u.name="maurits van der goes" 
MATCH (t:Team)<-[a:ACTIVE_IN]-(p:User) 
WHERE a.role>1 
WITH COLLECT(p.name) AS partners, t 
MATCH (t:Team)<-[a:ACTIVE_IN]-(s:User) 
WHERE a.role=1 
WITH COUNT(s) AS supporters, t, partners 
OPTIONAL MATCH (t)-[:PART_OF]-(n:Network) 
WITH n.name AS tribe, supporters, t, partners 
RETURN t.name, t.tags, partners, t.activity_count, supporters,  
 t.days_active, tribe, t.link 

Cypher query 6.1: Retrieve generated recommendation of for example the RAND-algorithm. 

 

A couple of users expressed that they were not searching for teams at all. This was for several reasons. 

Some used it only for work, others were too busy with their regular daytime job or they already had too many 

tools for digital collaboration. They tried Part-up out of curiosity. The question if people are actually searching 

for teams was not included until the last two interviews. However, some of the users also answered the question 

by themselves. Two questions should have been part of the interview: “What is your main purpose to use Part-

up?” and “On a scale from 0-7, are you searching for new part-ups to join?”. The quality of the offered teams 

is also an issue. An often-mentioned reason for not joining a team was that it lacks a clear description and goal 

even though a user liked the recommendation because the subject matches his profile. 

The trust in the recommender system with its custom algorithms was expressed with the interview 

question: “Do these recommendations reflect your profile?”. The average results per user group are included 
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in table 6.11. The first seven interviewees, coincidentally also all highly engaged users, did not express the 

valuation of their profile reflection as a number on a scale of 0-7. Instead, they described this valuation in 

multiple sentences. With these recorded answers this valuation was later projected as a number by this author. 

The results of all user groups are hardly a surprise. The high user group is active in many teams. These are 

valuable data points for the recommender system, but also leave fewer teams available to recommend 

especially when the catalog of teams is still relatively small. That is why their average projected score is 

halfway the range. Almost the same line of reasoning explains why the medium user group scored well. This 

group has enough data points, while there are still enough teams available to recommend. The low user group 

scores just below average. This was a bit disappointing and an indication that the algorithms do not perform 

well with few data points. 

 

User group All 

High 3,6 

Medium 5,1 

Low 3,3 

All 4,0 

Table 6.11: Average reflection (scale 0-7) of the user’s profile by the recommendations 

 

The user-preference dimension was validated with two questions. The first question was: “Which part-

up is the most likely you will join as a partner?”. This was an indication of which recommendation they liked 

the most. The sum of all first picks is included in table 6.12. The UBCF-algorithm scored by far the best. Even 

in the low user group three out of the seven interviewees chose it even though they are not active in a team yet. 

That is because the algorithm also uses networks in identifying similar users, which is why this algorithm 

scored best overall. Some interviewees confirmed this. They recognized teams they were co-initiator of or 

familiar with. The RAND-algorithm scores surprisingly good in the medium user group. This is important 

from a serendipity point of view. These serendipitous recommendations can uncover unknown interests and 

this validation shows that these random recommendations are indeed appreciated. A final note about the score 

of the DF-algorithm in the low user group: this gave the confidence that successful recommendations can also 

be generated based on limited attributes a user and team hold, which is an important discovery for preventing 

a cold start among users that suffer from data sparsity. 

 

User group RAND DF KBF UBCF IBCF 

High 0 0 2 3 2 

Medium 3 0 0 4 0 

Low 0 4 0 3 0 

Total 3 4 2 10 2 

Table 6.12: Sum of first picks to join as a partner 
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The follow-up question for this dimension was: “How would you rank this recommendations set 

yourself?”. This gives a wider impression of the user preference for an algorithm. Again, the UBCF-algorithm 

scores best overall, but now also in all user groups. The DF-algorithm is a good second best, especially for the 

low user group, as was also noticed in the previous paragraph. The IBCF-algorithm scores surprisingly badly, 

also because it is equal with the RAND-algorithm. This latter algorithm, which functions partly as a control 

algorithm, scores exactly average. The disappointing score of the IBCF-algorithm is an indication that the 

participation formula is incorrect because this is a core element in the generation of recommendations. The 

KBF-algorithm did not score well because users do not understand why these recommended teams are relevant 

to them. They expect to receive recommendations based on their profile and activity, not especially on their 

role in a team. This shows that it is important to always present the recommendations in the right context, for 

example with a small explanation of what recommendations are based on.  

Multiple interviewees mentioned two comments, independent of a specific algorithm. First was that 

they do not want to receive recommendations of teams they are already active in as a supporter. This contradicts 

the statement of Swearingen and Sinha (2001) as mentioned in chapter 5 that when some recommendations 

are familiar, the confidence in the recommender system increases. Second, users expressed that some 

recommended teams were quite old and had minimal activity. They perceived teams that started weeks or 

months ago as less interesting. Both raised issues should be addressed before the implementation of the 

recommender system in the marketplace. 

 

User group RAND DF KBF UBCF IBCF 

High 2,3 3,2 3,3 3,9 2,7 

Medium 3,1 2,6 2,0 4,6 3,3 

Low 3,4 4,3 3,5 4,5 - 

All 3,0 3,4 2,9 4,3 3,0 

Table 6.13: Average rank (1-5) of the algorithms. 

 

The utility dimension was validated by reflecting on their first pick to join as a partner. The question 

was: “On a scale from 0-7, will you join it?”. Table 6.14 shows the results of this question. The two 

collaborative filtering algorithms perform the best. The rating of the UBCF-algorithm is most relevant because 

it is based on ten ratings, against the two for the IBCF-algorithm. The results for the RAND-algorithm confirm 

that these recommendations can be useful from the mentioned serendipity factor. The average of the three 

ratings is just below average. The DF-algorithm scores very low with four ratings of three and lower. This 

makes it doubtful that this algorithm can overcome data sparsity. The score of the KBF-algorithm confirms 

that the two users are unaware of their potential value to the team. Some interviewees also expressed that their 

limited time was a reason why they rated their first pick quite low. 
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User group RAND DF KBF UBCF IBCF 

High - - 3,5 5 5 

Medium 3,33 - - 4,5 - 

Low - 2 - 5,33 - 

All 3,33 2 3,5 4,9 5 

Table 6.14: Average rating (scale 0-7) to join the first pick as a partner 

 

6.3 | Qualitative validation 

 

Criteria Category Type Goal Unit 

Confidence Recommendation- 

centric 

Qualitative - - 

Robustness System-centric Qualitative - - 

Scalability System-centric Qualitative - - 

Table 6.15: evaluation criteria via observation/analysis 

 

Next to the face validation, construct validation is performed. The dimensions that are tested in this 

qualitative validation are confidence, robustness, and scalability. Confidence is the accuracy of the 

recommender system and its algorithms compared to the design. It is the technical trust that the system 

performs the steps and calculations indeed as defined. This is connected to the trust of the user-centric category 

(Herlocker et al., 2000). Robustness is the resistance of fake information on the recommendation. An ideal 

recommender system is resistant against biased or false information. The insertion of fake ratings or actions is 

also known as shilling attacks. Scalability is the capacity of the recommender system to keep performing when 

the number of users or teams increases. Both the architecture as the algorithms should scale along the growth 

without quality loss. This quality is perceived by the time it takes to generate the recommendation. 

This research was already presented during seven occasions: the DataDonderdag meetup8, Graph 

Database Amsterdam meetup9, Big Data Analytics Europe 2016 conference10, Utrecht Data School guest 

lecture, TPM Policy Analysis section lunch lecture Neo4j’s GraphConnect Europe 2016 conference11, and 

Data Science Utrecht meetup. The Q&A sessions and informal discussions afterwards also functioned as 

validation of this research on the confidence, robustness, and scalability dimensions. These audiences differed 

quite a bit. Both events by Neo4j, GraphConnect conference, and Graph Database Amsterdam meetup, had the 

most tech-savvy attendees. Most attendees use Neo4j or other database technologies professionally on a weekly 

basis. The DataDonderdag, Data Science Utrecht and Big Data Analytics events attracted technology aware 

people, but who are not necessarily developers such as managers and other people that are interested in 

 
8 https://issuu.com/cre-aid/docs/datadonderdag_editie11/17 
9 https://www.youtube.com/watch?v=ClJEoA0a4Rc 
10 https://www.youtube.com/watch?v=OBuDBC9y_KU 
11 https://neo4j.com/blog/collaborative-filtering-creating-teams/ 
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innovations for strategic decisions. The academic groups, Utrecht Data School and TPM’s Policy Analysis 

section, approached the research from a theoretical point of view. 

The recommender system and its custom filtering algorithms as a solution were well received by the 

different audiences. The added value of a recommender system was acknowledged with some reservations. 

For example, the understanding of the relation between a user and a team was questioned, as collaborative 

filtering was never applied to self-managing team formation. The participation formula was especially disputed 

for its academic relevance. As this is the heart of the IBCF-algorithm, the confidence in the whole algorithm 

was challenged. During the presentations and in the discussions,  it was emphasized that the research focus 

was on applying these methods to this case, not providing the optimal configuration of the algorithms. Because 

this is the first recommender system for the Part-up marketplace, the expressed concern of translating self-

managing team characteristics into algorithms was acknowledged. This requires a multidisciplinary research 

team with at least a psychologist next to an IT-developer. 

Questions were also asked about including latent user feedback in the dataset for example if a user 

leaves a team or dismisses a recommended team. It was suggested that with this information a user shall no 

longer get similar teams recommended. This was on purpose excluded in this research. As mentioned, the 

whole research was performed offline. Thus, it was not possible to gather that type of user feedback. However, 

it is worthwhile to investigate that. For example, if a user neglects a team, a new relationship between both 

entities is added with the label: NOT_INTERESTED_IN, improving the confidence in the model by including 

latent user feedback is a subject for future research. 

The robustness dimension was addressed by raising importance for algorithms to be coalition proof. 

Both collaborative algorithms use an implicit rating. This rating can be influenced by becoming active in teams. 

The ratings that a user can receive for its activity in a team is a risk for this robustness. The implicit rating of 

a team can also be influenced, although this is harder. Trying to steer the rating by adding contributions or 

comments is especially troublesome, as both user actions are very visible on the marketplace. Such misuse can 

be easily identified and reported by users.  

Multiple doubts were raised about the scalability of the similarity query. Currently, it is not memory-

efficient for two reasons. First, because it is collecting the required data in an inefficient way, calculating the 

similarities was a tedious job. It takes a lot of time and machine power. With the database growing this even 

becomes a larger problem. Second, the query is running inside Neo4j next to the other tasks. This processing 

unit cannot be scaled independently of the whole Neo4j database. It was suggested to explore Apache Spark 

for the external calculation of the query. Future research was advised on the opportunities of applying steepest 

descent. The comparison of the algorithms is currently a time-consuming and complex process, and not 

scalable. The desire was expressed to run multiple algorithms in the recommender system. This would create 

the opportunity to A/B-test the algorithms and use the algorithm that functions best for a user group. A feature 

to perform an A/B-test with multiple algorithms was not part of the GraphAware Reco version used in this 

research. 

 



64 

 

6.4 | Conclusions 

Reflecting on all evaluation sections and dimensions it can be concluded that a recommender system 

with these custom algorithms is promising. The users value it, experts support it, and technically it is functional. 

Based on the constraints and objectives it can be concluded that a recommender system can successfully 

support a user in discovering teams. The constraints were personalized recommendations for each user and the 

implementation of the platform rules. First, the recommender system-generated personalized recommendations 

for each user based on their activity or profile. Many users valued the recommended teams as they recognized 

themselves in it. Second, the algorithms ran correctly with the incorporation of the platform rules. This 

constraint was confirmed with the accompanying Cypher queries that were written to validate the 

recommended teams on coverage and privacy.  

The objectives were regular updates of the recommendations, scalability, open-source software, and 

easy to set up. Most of these objectives were met. First, the framework regularly updates the recommendations. 

Second, the algorithms, framework, database, and architecture were designed to scale up. Especially when a 

model-based approach with an offline model and online recommendation framework is chosen. However, this 

scalability objective is not tested in detail with different scenarios. Third, all used software is open-source 

available. And this research also contributes to this generous movement of software development with 

publishing the code of the algorithms, the MongoDB to Neo4j ETL script, and the MeteorJS to Neo4j ETL 

API under an open-source license. Fourth and final, the architecture was easy to set up. Although existing 

software was used, there were only limited use cases and experience available. Despite this, developing the 

research setup went relatively smoothly. A new logical data model was designed that is suitable for a 

recommender system. This model proved to be diverse enough for using different algorithms and efficient in 

rapidly processing data. Most of the development time was spent on transforming well-known techniques like 

collaborative filtering to this recommender system with a graph database. By meeting the purpose, function 

constraints, and objectives as defined for the program of business demands this new recommender system is 

ready to support all workers struggling to find the teams, they will love to work in. 

However, stimulating trust in the recommender system via the recognition of supported teams was not 

appreciated. This is the opposite of the mentioned conclusion by Swearingen and Sinha (2001) that the 

confidence in the recommender system increases when the recommendations list includes familiar teams. This 

can be explained by the assumption that the action of supporting a team not only makes a user familiar with a 

team but also connected. Familiarity is more related to teams that a user has seen in other search results before, 

or even checked out shortly. These viewed teams are not filtered out of the recommended teams, but also not 

included on purpose. With no longer including the supported teams, another way must be found that can create 

recognition that is satisfying and not distracting. A positive observation is that users tend to like teams more 

when those are recommended. Part-up should also clearly mention that the teams that are picked by the 

recommender system are recommended teams. When users get teams advised based on their team fit, they 

should be better presented. 

A combination of multiple types of algorithms has arisen as a promising method. Multiple researchers 

(Claypool et al., 1999; Melville et al., 2002; Ogul & Ekmekciler, 2012) argue that a combination can overcome 
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limitations that are imposed by the data, leading to more stable results than collaborative filtering. Based on 

the results of the evaluation, a hybrid version of the UBCF-algorithm and RAND-algorithm was chosen (figure 

6.1). This was because the UBCF-algorithm performed best and the RAND-algorithm provides a serendipitous 

element and addresses data sparsity. It covers 2,627 (96%) users while respecting privacy and platform rules. 

This hybrid algorithm provides qualitative recommendations to high, medium, and low engaged users - 

recommendations that users trust and can use. The straightforward algorithm structure without a complex 

similarity query makes it reliable, robust, and scalable. The recommender system with this hybrid algorithm 

and a couple of adjustments is implemented into the marketplace. 

 

 

Figure 6.1: Hybrid algorithm modules in the GraphAware Reco framework. 
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7 | Deployment phase 

 

The deployment of the recommender system is the final phase of this research. This chapter tests the 

technical feasibility of the research in the marketplace: Is the designed recommender system with its custom 

filtering algorithms able to suggest relevant self-managing teams to users in a digital marketplace? The 

evaluation was performed in an offline environment and without a graphic user interface, before moving to 

field testing. All elements were designed and developed to eventually run in an online production environment. 

The theory is more beautiful than practice. Robert Goodin (1996) defined inventions in socio-technical systems 

as an evolutionary process of trial-and-error. The eventual artifact is developed while trying to influence the 

system. The system is deployed followed by the DevOps methodology (Bass et al., 2015), aimed to continuous 

deploy improved releases. Hereby lowering the time to market and increasing customer satisfaction. The 

technical feasibility is discussed with four key aspects of the recommender system: infrastructure, data flow, 

algorithm, and graphical user interface. 

 

7.1 | Infrastructure 

Before the recommender system can be implemented in the Part-up marketplace a couple of steps must 

be taken. The architecture is visualized at a high level in figure 7.1. Each new or adjusted element and the 

implementation steps are described in this chapter. 

 

 
Figure 7.1: Design recommender system in production 

 

The Part-up marketplace is as mentioned based on the open-source JavaScript web application 

framework MeteorJS. The main advantage of MeteorJS is that it is cross-platform and integrates with the 
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document-oriented database MongoDB. The marketplace database MongoDB and the recommendation 

database Neo4j act together as a hybrid database structure. Each optimally designed and scalable for their 

specific purpose. MongoDB rapidly delivers the content of the marketplace, while Neo4j excels at revealing 

relationships within this content. Data is flowing from MongoDB to Neo4j via the marketplace and the 

Application Programming Interface (API). All these parts of the recommender system are hosted on Amazon 

Web Services just like the marketplace. This is a scalable hosting solution. The elements of the marketplace 

and recommender system are packed in Docker containers. Docker provides virtual software containers. This 

container structure makes the architecture even more scalable. The four Docker containers are MeteorJS 

framework, MongoDB, API, and Neo4j with GraphAware Reco. The scalability of Neo4j can be separated 

into two parts: read and write. In the online version of the recommender system, there are not one but two 

software tools that read and write to Neo4j: the API and the GraphAware Reco. The size of the Neo4j database 

is rapidly increasing especially because of the relationships. That is why it is efficient that these functions are 

separated. 

The code was written following the ten guidelines for future-proof code by Joost Visser (2015). These 

guidelines improved the readability of the code for a broad range of developers. Before the recommender 

system was sent to production each piece was reviewed by at least one other developer. The web-based 

repository service GitHub was used to co-develop. All code is also publicly available on GitHub with a GNU 

AGPLv3 open-source license. This gives the opportunity to a wide audience of interested developers to reflect 

on it. 

 

7.2 | Data flow 

The API is written in the programming language Scala by developers of Part-up and me. These 

developers were, like the other people that are mentioned in this chapter, all members of the Part-up 

development community. The code of this API is available on GitHub12. The API provides several functions 

to the marketplace. For this research, an ETL-module was added. It receives the events that are broadcasted 

by the marketplace to a specified endpoint. These events are unpacked into objects and transformed into 

queries. These queries are needed to insert, change, update or remove entities, relationships, or attributes in 

the recommendation database Neo4j. All entities or relationships that do not exist yet in Neo4j are created by 

the API. The JCypher library was used to construct the queries reading and writing in the recommendation 

database. With this library, it is possible to access Neo4j with commands written in the Scala. These Scala 

commands are translated by the library into the query language of Neo4j. Combining the functionality of Scala 

with the structure of Neo4j is an advantage of using this library. A disadvantage is that the library is young 

and incomplete. However, a developer of JCypher has pledged his support to this recommender system by 

delivering the required features in extra releases (personal communication, 26 April 2016). There are only 

thirteen events used to recreate the required part of the database (Table 7.1 & 7.2). The API sends also on 

request the recommended teams from the recommender database to the marketplace.  

 
12 https://github.com/part-up/api 
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Event Inserted Updated Changed Removed 

Networks ✖ ✖   

Teams  ✖ ✖  

Users ✖ ✖ ✖  

Table 7.1: Collection events 

 

All these collection events are sent with the user ID and document in the payload. Networks, teams, 

and users can only be deactivated and not removed for marketplace technical reasons. They are interdependent 

for the correct functioning of the marketplace. Not removing these entities also ensures that the 

recommendation framework can continue processing this data for additional insights. There are also six custom 

events used (table 7.2). 

 

Event Eventname Attributes 

Network location changed ‘networks.location.changed’ tribes, newLocation, 

oldLocation 

Network member removed ‘networks.uppers.removed’ user._id, network._id 

Team location changed ‘partups.location.changed’ partup, newLocation, 

oldLocation 

Team supporter removed ‘partups.supporters.removed’ team, user 

Team unarchived ‘partups.unarchived’ user, team 

User settings updates ‘settings.updated’ user._id, language 

Table 7.2: Custom events 

 

The logical data model was slightly adjusted for the implementation. It was the ambition to remove all 

unnecessary attributes in the online version of the Neo4j database. For generating the recommendations, the 

‘name’-attributes are not used. This information only needs to be presented to the user. The MeteorJS-

framework retrieves that data directly from the MongoDB database. For navigating in the simple GUI of the 

Neo4j database it was decided to keep these ‘name’-attributes. Otherwise are the entities only identifiable via 

the ‘_id’-attribute which is a string of random letters and numbers. Because the IBCF-algorithm was not chosen 

all the attributes of the ‘ACTIVE_IN’-relationship were dropped except from role (figure 7.2). The extensive 

data dictionary of the logical data model is included in appendix B. 

A secondary reason to drop these attributes is that these were not fully functional yet in the API. Along 

with Eric Raymond’s philosophy (1999): “Release early. Release often. And listen to your customers.", it was 

decided to deliver an initial recommender system first instead of trying to create the most complete database 

for future algorithms. The updated logical data model for the Neo4j database was designed explicitly for the 

UBCF-algorithm. As a result, the API also contains methods to structure the data according to this. If this 

algorithm is adjusted or replaced, then probably the logical data model and the API must also be updated. 
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Figure 7.2: New logical data model 

 

7.3 | Algorithm 

The UBCF-algorithm was improved by a developer of Part-up and me for four reasons: evaluation 

results, changes in the marketplace, online environment, and small fixes. First, the feedback of the evaluation 

research was incorporated. This means that every team a user is active in is blacklisted for the recommendations 

(Cypher query 7.1, 7.2 & 7.3). This used to be only the teams in which a user was a creator or partner. Now 

also the supported teams are not included in the recommendations anymore.  

 

MATCH (u:User)-[r:ACTIVE_IN]->(t:Team)  
WHERE id(u)={id}  
RETURN t as blacklist 

Cypher query 7.1: New Blacklist for current relationships. 

 

MATCH (u:User),  
 (t:Team) 
WHERE id(u)={id}  
 AND t.privacy_type=2 
RETURN t as blacklist 

Cypher query 7.2: New filter out private teams. 
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MATCH (u:User),  
 (n:Network)<-[:PART_OF]-(t:Team) 
WHERE id(u)={id}  
 AND (t.privacy_type=4 OR t.privacy_type=5) 
 AND NOT (u)-[:MEMBER_OF]->(n) 
RETURN t as blacklist 

Cypher query 7.3: New filter out private teams in a network. 

 

Older teams are less likely to be included because users experienced these as less relevant. It was 

considered to filter out all older teams, for example, teams that were started longer than 30 days ago. Still some 

teams exist for months, are still active, and are also relevant to join in a later stage, for example, teams that 

organize an event. That is why the new post-processing element PenalizePartnerAmount was developed. A 

team that is older than 7 days can get a maximum deduction of 5 points. The penalty follows a Pareto-scale 

with the 80% point at 90 days. This scoring hardly affects the active teams, while it naturally filters out the 

inactive teams. The new overview of the different post-processing elements is included in Table 7.3. 

 

Element Variable Max negative score Max positive score Distribution 

PenalizeDaysActive daysActive -5 0 Pareto 

PenalizePartnerAmount partnersLimit -5 0 Pareto 

RewardSameCity sameCity 0 5 Degenerate 

RewardSameCountry sameCountry 0 1 Degenerate 

RewardSameLanguae sameLanguage 0 1 Degenerate 

RewardSameTags sameTags 0 50 Uniform distribution 

 Total: -10 56  

Table 7.3: Post-processing elements 

 

The second reason why adjustments were made is that the marketplace was further developed. The 

privacy type of teams was expanded with two new types for teams in any network (table 7.4). Privacy type 6 

is a hidden team for the co-creators in a network. Privacy type 7 is a hidden team for the co-creators and 

colleagues in a network. Co-creators function like the administrators of a network. Colleagues are users who 

are identified by the co-creators as regular contributors. 

 

Team  

privacy type 

Network 

privacy type 

Description 

1 - Public teams 

2 - Private teams 

3 1 Public teams in a public network 

4 2 Private teams in an invitational network 

5 3 Private teams in a closed network 

6 1/2/3 Hidden teams for co-creators in a network 

7 1/2/3 Hidden teams for co-creators and colleagues in a network 

Table 7.4: New privacy types of the teams. 
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As a result, both the API and the algorithm were adjusted. The API supports multiple admins (co-creators). 

The ‘colleague’-attribute is also added to the ‘MEMBER_OF’-relationship. Two filter-modules were added in 

native Cypher: queries 7.4 and 7.5. This can be validated and governed with the Cypher queries C.12 and C.13 

included in appendix C. 

 

MATCH (u:User), 
 (n:Network)<-[:PART_OF]-(t:Team) 
WHERE id(u)={id} AND (t.privacy_type=6)  
 AND NOT (u)-[:MEMBER_OF {admin:true}]->(n)  
RETURN t as blacklist 

Cypher query 7.4: Filter out hidden teams for co-creators in a network. 

 

MATCH (u:User), 
 (n:Network)<-[:PART_OF]-(t:Team) 
WHERE id(u)={id} AND (t.privacy_type=7)  
 AND NOT ( (u)-[:MEMBER_OF {admin:true}]->(n)  
 OR (u)-[:MEMBER_OF {colleague:true}]->(n) ) 
RETURN t as blacklist 

Cypher query 7.5: Filter out hidden teams for co-creators or colleagues in a network. 

 

The third and fourth reasons for adjusting the algorithm were smaller. The algorithm was prepared for 

a database that is live updated, and improvements were made in the code style and error fixes. The code of this 

algorithm was reviewed by a senior data scientist of GraphAware. It was expressed that the recommendation 

framework is applied in a really good way by writing clean code and utilizing the different options it provides 

(personal communication, 16 March 2016). 

Currently, it is not possible to return the context of the recommendations via GraphAware Reco. The 

context includes the filter criteria that are met. This can be for example the fellow team members who are 

active in the recommended team or the tags that the user and team share. For this purpose, the initial versions 

of the NearbyTeams and NearbyNetworkTeams recommendation engines also return the IDs of the entities in 

the queried path. For example, the team ID and user ID for the NearbyTeams element. These values were 

dropped for performance reasons as it is not possible to use this information yet. Another adjustment to slightly 

improve the performance is the addition of entity exclusions. When querying the defined path, it is no longer 

possible that both users are the same (u1<>u2) and the teams are the same (t<>reco). The new NearbyTeams 

and NearbyNetworkTeams elements are included as Cypher queries 7.6 and 7.7. 
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MATCH (u1:User)-[r1:ACTIVE_IN]->(t:Team) 
 <-[r2:ACTIVE_IN]-(u2:User)-[r3:ACTIVE_IN]->(reco:Team) 
WHERE id(u1)={id} 
 AND u1<>u2 
 AND t<>reco 
RETURN reco, 
 (r1.role + r2.role + r3.role)/3 AS score 

Cypher query 7.6: User-based collaborative filtering algorithm via teams (NearbyTeams). 

 

MATCH (u1:User)-[r1:MEMBER_OF]->(n:Network) 
 <-[r2:MEMBER_OF]-(u2:User)-[r3:ACTIVE_IN]->(reco:Team) 
WHERE id(u1)={id} AND r3.role>=1.5 
 AND u1<>u2 
RETURN reco, 
 0.5 AS score 

Cypher query 7.7: User-based collaborative filtering algorithm via networks (NearbyNetworkTeams). 

 

To improve the models, it is advised to include a psychologist to better understand the team formation 

process and team interaction. Inside the recommender system, multiple algorithms can be tested easily to 

incrementally increase the quality of the recommendations. Still, this first hybrid filtering algorithm generates 

relevant recommendations for the users and is a building block for future developments in this direction. 

 

7.4 | Graphical user interface 

The recommendations are presented in a separate page of the marketplace. It was not possible to 

replace the teams with the recommendations on the 'Discover'-page of Part-up. This page shows the newest or 

most popular teams with a search function. The latter is the showstopper for integrating recommended teams 

into this page. The database-wise search function would stop working with only the recommendations. For this 

reason, a button was added to the 'Discover'-page, opening a page (figure 7.3) with a maximum of four 

recommendations. This page also contains a clear title and short explanation on why these teams are 

recommended. Providing this context is an important element as Holten (2001) and Xiang (2011) mentioned. 

The page was developed by two web developers of Part-up. With this last piece of the puzzle ready, deployment 

to the marketplace could start. 

 

 

 



 

73 

 

Figure 7.3: Recommendations page on part-up.com. 

 

The recommender system was deployed in four steps. First, the API was added to the architecture. 

Second, the Neo4j database with GraphAware Reco and algorithms was added to the architecture and 

connected to the API. Third, on 3 October 2016, the recommendation page was added to the marketplace and 

connected to the API without being exposed to the users. Only informed users with a direct link could access 

the page. Fourth and finally, the recommender system was opened to the public on 27 November 2016. This 

step-by-step process gave us the opportunity to track down and fix all errors. 

Research by Kujala (2003) shows that user involvement in software development leads to systems 

success and user satisfaction. For the development of this matching solution the users were included during 

the model development. However, they were not involved in the final phase. The output on the platform was 

not tested with users. Although this involved a slight change in the model. Additionally, the final interface of 

the recommendations was neither tested with the users. Still, this research contributed to the smooth integration 

of the recommender system into the marketplace. 
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7.5 | Conclusions 

The successful integration of the recommender system into the marketplace is again a confirmation 

that the proposed solution is very suitable. The technical feasibility of the solution was proven. The 

infrastructure with a hybrid database and additional API can process the data events, run the algorithm, and 

return recommendations to the marketplace. The chosen merge-method either creates or updates an item or 

relationship. This decision not only prevents data duplication, but it also makes the database stateless. Any 

failures of the database or data loss are automatically recovered. This data was stored following an adjusted 

logical data model for the functioning of the new hybrid algorithm. Based on user feedback a new penalize 

module was developed, and some smaller modules updated. Also, developments of the marketplace itself were 

successfully incorporated in the deployed version. The lacking ability to return the context of a 

recommendation is considered not a vital feature for the first version of the recommender system. The graphical 

user interface of the recommendations provides enough information about the teams and presents the 

recommendations in the right context. However, this part was not validated with users. 

In data projects, there are often three people involved: a data scientist, a data engineer, and a 

development-operations (DevOps) engineer. The data scientist is responsible for algorithm development. The 

data engineer builds for the recommender system framework. The DevOps engineer deploys and monitors the 

system. The algorithm and the framework are closely related and require coordination. Therefore, it was an 

advantage that both the algorithm and the framework were developed by one person, this author. Considering 

the technical achievements in the deployment phase and considering the positive three-step evaluation, the 

recommender system is feasible in production. 
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8 | Conclusions & future research 

 

This final chapter discusses how the findings of the research impact organizations and their workers. 

Reflecting on the design objective of supporting users in self-managing team formation with a 

recommender system and custom filtering algorithms. While this may indicate the end, it is, perhaps, also a 

beginning - the conclusions are accompanied by the recommendations for future research. 

 

8.1 | Conclusions 

8.1.1 | Conclusions 

Custom filtering algorithms can generate recommendations of self-managing teams. The five 

algorithms described all generated recommendations for teams to join and some also met the constraint of 

personalized recommendations. These recommendations are suggestions for available self-managing teams 

that reflect the profile of a user. Above all, the user-based collaborative filtering algorithm performed best in 

recommending teams which indicates that this domain-independent approach is also applicable in this context 

of self-managing team formation. Furthermore, the hybrid approach with additional random filtering addresses 

data sparsity challenges of collaborative filtering. The enrichment provides serendipity to the recommendation 

while maintaining performance. 

By incorporating a recommender system, the marketplace is addressing the issue of bounded 

rationality of humans. Organizational structures are flattening, and workers receive more responsibilities with 

the introduction of self-managing teams. Workers can perceive this new freedom both as a pleasure and a 

challenge. When function profiles and departments no longer form the perimeter of their professional activities, 

workers are overwhelmed by the opportunities in different teams. The bounded rationality of humans results 

in the risk of non-optimal team choices, which is not beneficial for the workers and the organization. It also 

threatens the successful adoption of the new structures that rely on this decentralized coordination of work. 

These new structures are essential for organizations to remain competitive in a globalizing and increasingly 

competitive environment.  

This choice dilemma needed to be addressed because combining the supply in a digital marketplace 

can cause information overload. It is for this reason that a socio-technical system must support users in 

discovering and joining self-managing teams within and across organizational borders. The recommender 

system addresses this need for the marketplace in two ways. First, the marketplace ensures a soft landing. The 

recommender system suggests teams to workers who do not know which teams are relevant to them. Instead 

of dropping out due to overload, they can use the recommender system as a starting point. Second, for workers 

that feel already familiar with this new way of working, the recommender system can function as a control 

mechanism. Do they have an overview of all teams that are relevant for them to join? A significant note is that 

not all the interactions of the workers are tracked by the marketplace. In the end, only a fraction of all 

professional interactions take place within the online domain. The marketplace functions for the decentralized 
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coordination of work as a supporting institution for the workers and the organization. It must be clear that the 

marketplace is not the enforcing institution. Rather, the marketplace that has a smart filter can support self-

organization in teams. 

The adoption of a marketplace to structure the organization is an investment in easing the process via 

technology instead of more management institutionalization. It is about trusting the workers to make their own 

decisions. The future of organizations has no longer a top-down, but a bottom-up approach. The marketplace 

is an instrument to empower workers to enforce this change within their organizations. By simplifying 

communication, information gets decentralized. This enables workers to organize their tasks and teams 

themselves. The marketplace brings together workers and teams. While the recommender system is a digital 

form of coaching. The introduction of this technology leads to the discovery of colleagues with unknown skills. 

As skills are more diverse and specialized nowadays, supporting technology is necessary to match the 

capabilities of workers with the goals of an organization. With this digital institution, the optimal usage of the 

talents can be realized. The design of the recommender system ensures that it keeps adapting to the changing 

activities and interests of the workers. For these reasons, a marketplace with a recommender system is essential 

in this pioneering way of professional collaboration. It is this agile approach that enables organizations to better 

respond to the changing demands of the market. This socio-technical system fundamentally reshapes how 

organizations are structured and workers function. Workers will rely on the overview, easy communication, 

and vigorous organizational functionalities it provides. Repeated use of the recommender system increases 

their trust in the system, which means that the recommended teams will be followed more often by the workers. 

A new way of working that makes the workers more effective and happier, while also contributing to the goals 

of the organization. This modern way of organizing is impossible without a supporting institution like this 

marketplace with a smart filter. 

8.1.2 | Limitations 

The limitations of this research are the governance of algorithms, switching supply and demand, and 

detailed input. While designing the system there was too little attention to the governance of algorithms. There 

was no data bias check or a review on the algorithmic bias. But the algorithm is transparent as it is publicly 

available on GitHub for inspection. Within the marketplace though, there is little information presented on the 

version of the algorithm, any A/B-test experiments, or the context of the recommendations. Monitoring with 

the validation queries showed that roughly 76 % of the users have recommendations because these users have 

provided any demographic details in their profile or have joined a team. Nonetheless, also a significant group 

of users is missing the benefits of the recommendations. 60 % of the teams are recommended to minimal one 

user. For both the left-out users and teams the level of activities is unknown. It is advised to monitor these 

coverage metrics, plus additional metrics to have insights on the performance and health of the hybrid 

algorithm. Governance and the ethical implications were not neglected, but with the growing attention for 

algorithmic bias, this should have been addressed more. 

On switching supply-and-demand, there is not a preferred position for team creators. All users can use 

the recommender system for discovering new teams. This system does not work the other way around yet, 



 

77 

demand-driven instead of supply-driven instead of supply-driven. A feature to invite users in a team. Although, 

this new feature can be quite easily developed with new data retrieval and graphic user interface components, 

relying on the same hybrid database, recommendation framework, and algorithms. 

Human interaction and judgment are two very difficult issues for a marketplace including the 

recommender system. Simply not all interactions are tracked by the marketplace or judgments understood by 

the recommender system. Although it is artificial that it is. Users meet in real life, use several tools to 

collaborate, or have other creative ways of interacting outside the marketplace. That is a fact to consider when 

developing an algorithm. For example, by analyzing and predicting users’ behavior based on the fraction of 

interactions that were tracked. 

8.1.3 | Reflection 

The powerful symbiosis between technology and management is confirmed once again, as this 

research shows that a recommender system can contribute to the process of self-organizing. The theoretical 

findings from the literature review were successfully translated into technology. The evaluation and 

deployment prove that it is technically feasible, and the user feedback confirmed both the desire and 

appreciation for such a supporting institution. Self-managing teams are the cornerstone of a modern 

organization with a network structure. The network structure makes the organization flexible to adjust to 

market demands and use their available resources optimally. This lean structure is required to compete in a 

competitive economy that is increasingly global. For the continuity of the organization and its workers, it is 

important that their structure can face these new complexities. organizations are essential to society, 

accordingly this evolution has even more stakeholders. This line of reasoning does not mean that placing a 

filter on the supply of teams is enough to adjust to the new complexities, but it does confirm that workers are 

better able to face these complexities with a filter that supports them. 

 

8.2 | Future research 

It is vital to explore directions for future research, as subsequent research can challenge and improve 

the present research. Four recommendations for future research in different directions are formulated: case 

study with soft skills, artificial neural network, hybrid algorithm, and presentation of the recommendations. 

Each recommended research is briefly described in the following paragraphs.  

The first and foremost recommendation for future research is a case study on the effects of the 

recommender system on an organization and its workers. Including a study into the incorporation of soft factors 

by the algorithms. Examples of these soft factors are psychological factors of workers and their working styles 

and preferences. The present research reasoned this effect based on the literature study and evaluation. 

Extensive empirical research within an organization was outside the scope of this present research. A case 

study can analyze multiple assumptions of this report. Testing the described scenarios of use: soft landing and 

control mechanism. And explore if there are also other notable scenarios. The next step is relating this influence 

on the worker’s overview of their organization and his organizational choices. On a higher level, it is relevant 

to know if the recommender system stimulates activity in teams throughout the whole organization. Ultimately 
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it is very valuable to assess the relationship between the usage of the recommender system and the improved 

human allocation within the organization, which is important for the organization’s productivity. Performing 

this formal research method on this subject would be a significant contribution to agile organizations. 

A technical direction for future research is testing an artificial neural network as the engine of the 

recommender system. An artificial neural network is a self-learning system with great computational 

capacities. The system is a collection of loosely modeled neurons. Each neuron is connected to other neurons 

by multiple axons. This network of input, hidden and output neurons can be trained to perform complex 

computations. A wide range of tasks can be solved by this smaller and digital version of the human brain. 

YouTube already replaced the core of its recommender system with this method (Covington et al., 2016). In 

the past YouTube applied matrix factorization methods just like the item-based collaborative filtering 

algorithm in this research. A big advantage of neural networks over matrix factorization methods is the 

increased domain independence. Neural networks take all the available parameters and learn the right 

combination autonomously. Google open-sourced the technology for this method as TensorFlow. While 

scalable processing power is provided by cloud hosting services like Amazon Web Services. That is why no 

longer the technology nor the processing power, but the dataset is the limiting factor for applying this approach 

to this research subject. Neural networks are beneficial for recommender systems as they can discover and 

compare many more relations to build a model. This highly relevant model is used by the recommender system 

to generate recommended teams for each user. The performance of the recommender system can be enhanced 

by integrating live user data. In the offline setup of this research that specific type of information was not 

available. Questions to be researched include: On which recommended teams does the user click? Or which 

teams does he dismiss? In which teams does he become a supporter? And even better, in which teams does he 

become active as a partner? The research should focus on identifying what user feedback correlates with the 

quality of the recommended teams. Being part of the marketplace, this specific user feedback can be directly 

returned to the recommender system too. Novel reinforcement learning methods use these broad data volumes 

to generate recommendations. In combination with the previous paragraph, this live feedback can be fed to a 

neural network to ensure scale. This research subject would enable continuous improvements to the algorithms. 

The chosen hybrid algorithm is just the start of a far more complicated blending of algorithms. Netflix 

for example also combines multiple algorithms to get to the best prediction of their users’ preferences. 

Effectively blending the algorithms can further solve the weak aspects of each algorithm, like the cold start 

problem for collaborative filtering algorithms. However, this research expresses doubts about the computing 

capacities of Neo4j. Especially for machine learning applications, which are even more complex, this is a 

blockade. These limitations can be resolved with an external computing framework like Apache Spark. This 

is an open-source cluster computing framework that performs clustered, in-memory data processing tasks 

(Neo4j, 2016b). A subset of the Neo4j-graph is exported to Spark where these complex analytical tasks are 

performed, and the results are then written back into Neo4j. Separating the computation and storage functions 

ensures that the recommender system is scalable. However, blending algorithms is not just a simple sum. The 

coverage and weight of each algorithm can be adjusted to create the best mix. The most optimal mix can be 
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identified by applying A/B-tests with different algorithms combinations. These specific merge details are why 

there is more research needed in the combination of different algorithms.  

The opportunities for practical improvements are based on experiences with the recommender system 

in the Part-up marketplace. The presentation of the generated recommendations can be improved and 

diversified. As concluded, it is important for a user to present on which criteria a team is recommended. This 

is called the context information of a recommendation. Most recommendations are generated while assessing 

multiple criteria. Which criterion or combination of criteria to show next to the recommended team should be 

further researched. A successful presentation of this context information can be measured with a higher click-

through-rate and users becoming active in a team as a partner. Ideally are the marketplace pages with search 

results and recommendations of teams combined. Currently, there are two separate pages as described in 

chapter 7. An option to realize this is by combining the technology of Elasticsearch, GraphAware Reco, and 

Neo4j. Elasticsearch is the most popular open-source search engine according to solid IT’s DB-Engines 

Ranking (2016). It is schema-free, multitenant-capable, and distributed. The connecting element between 

Elasticsearch and Neo4j is Graph-Aided Search by GraphAware. This new module combines the score of the 

search engine with the score of the recommender system (Bachman, 2015). Thus, for example, when a user 

searches for a team, based on this textual match he does not get the most relevant teams overall. He gets the 

most relevant teams specifically for him. The integration of recommendations into the search engine creates 

one central and familiar point on the marketplace for discovering teams. This development not only makes it 

easier to access the recommended teams but also ensures that when a user is searching for teams himself, these 

presented teams are an optimal selection too. Next to this improved presentation, the presence of the 

recommended teams on the marketplace can also be diversified. Three examples for different usage are: to 

show on a team page a couple of teams that are similar, to send out a weekly email with recommended teams, 

or to push a message via the mobile app when an interesting team is started. Other digital marketplaces already 

do this; however, it is unknown what users desire in a marketplace for team formation. Research into the 

preferred context information and communication channels are important design information. 

This future research section shows that there are many opportunities to continue this research on 

matching supply and demand in a marketplace for team formation. There is not one specific next step, nor an 

exact roadmap. Some described subjects are in even different directions. These future research suggestions 

seem to be exclusive for team formation. However, this research shows that the methods of different industries 

can be successfully transferred. With the volume of data increases in this age of information. This should be 

another argument to further invest in the research on recommender systems. 

 

8.3 | Reflection CoSEM program 

Graduation research for the Complex Systems Engineering and Management (CoSEM) master 

program must design a complex system in a socio-technical environment. In detail, this research confirms this 

criterium on multiple aspects. This is interdisciplinary research that takes technical, institutional, economic, 

and social knowledge into account. It manages multiple stakeholders of a recommender system for the 

formation of self-managing teams. Each with diverse interests towards collaboration in a digital marketplace. 
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The research applies several CoSEM methods, tools, and techniques for design and impact. Examples are 

design science research, architecture design meta-framework, and the best-of-class chart. The research designs 

a complex system in a socio-technical environment with technical innovation achieved by creating a 

recommender system for team formation. Combining management strategies and systems engineering 

approaches.  This system includes a cultural aspect of people collaborating in teams and in a virtual 

environment. It involves human behavior and users’ demands in team formation. But also included user 

involvement in the design process. The research addresses the platform governance and algorithmic bias as 

ethical issues that are part of the system. Although the application of this research is domestic. The knowledge 

base of literature, available artifacts, and personal communication has certainly an international character. 

Corresponding with the information and communication track, which I followed, there is a strong information 

technology component that is specially designed for this research. It designs a system architecture with 

technical complexity. While designing and developing the recommender system this research dealt 

systematically with design issues. Reasoning from this reflection, it can be concluded that this research fits the 

CoSEM master program. 
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Abstract 

This paper presents the design and comparison of four filtering algorithms for self-managing team formation. 

Organizations introduce self-organization to reduce dependency on managers, subsequently, workers need 

support in the new team formation process. There is no known research on information filtering during this 

process. This design science research developed algorithm artifacts to compare demographic, knowledge-

based, user-based collaborative filtering, and item-based collaborative filtering. User-based collaborative 

filtering has important advantages and is valued best by the interviewed users. Algorithmic bias is a governance 

limitation for implementing this in the marketplace for team formation. The research adds extensions to 

original theory, new meta-artifacts, and experiences gained. For society, the filtering algorithm saves time of 

managers in finding worker-activity matches and increases the workers’ happiness in selecting from activities 

of interest. Stimulating a productivity increase. 

Introduction 

Organizational structures are changing. 

Hierarchies are replaced by flat organizations. This is 

a shift from central to decentral coordination 

(Bechky, 2006). Workers need support with this new 

responsibility of self-organization. A digital 

marketplace can unite the supply and demand of self-

managing teams. However, this accumulation of 

work also creates an information overload and 

bounded rationality for users. This can be reduced by 

the introduction of a recommender system that 

applies filters to the available teams (Bobadilla et al., 

2013). Only the most relevant teams for a user are 

shown. The core of the recommender system is the 

algorithm. An algorithm is a sequence of automatic 

step-by-step rules (Cormen et al., 2009). Algorithms 

became part of people's daily lives. For example, 

Google’s search engine runs the PageRank 

algorithm, and the Elo-rating is indispensable for the 

chess world, but also for Tinder. A recommender 

system can be driven by several other algorithm types 

(Melville et al., 2002). Burke (2002) distinguishes 

five recommendation techniques: collaborative 

filtering, content-based, demographic, utility-based, 

and knowledge-based recommendation. Next to a 

random filtering algorithm, four options are further 

explored: demographic filtering, knowledge-based 

filtering, user-based collaborative filtering, and item-

based collaborative filtering. The algorithm must 

create a filter by awarding a score to several teams. 

This can also be a combination of algorithms, but for 

evaluation purposes, each algorithm is tested 

separately. With design science research known 

algorithms adapted to this organizational context.  

The algorithms were designed as part of a 

larger design science research. The design objective 

is to support users in self-managing team formation 

with a recommender system and custom filtering 

algorithms. This is achieved with design artifacts like 

personalization, recommender system, custom 

filtering algorithms, and validation queries. The 

designed system was built with the requirements of 

the program of business demands. The constraints for 

the recommender system with custom algorithms are 

personalized recommendations for each worker and 

the incorporation of platform rules. The objectives 

are regular updates, scalable, open-source, and easy 

to set up. This article focusses on the design and 

comparison of four information filtering algorithms 

for self-managing team formation. 
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Recommendation algorithms 

The six modules in the recommendation 

framework are recommendation engine, post-

processor, blacklist, filter, config, and logger. The 

context determines if the recommendations can be 

served to a user based on predefined rules. It consists 

of the Blacklist and the Filter modules. These 

modules incorporate the platform rules of the Part-up 

marketplace. That means that those modules are the 

same for all five algorithms. 

The ExistingRelationships element checks if 

the user is already a partner or creator of a team. 

These teams should not be suggested. Being a 

supporter of a team does not affect the 

recommendations list. Even while there already is a 

relationship it makes sense to still recommend the 

team for two reasons. The goal of the recommender 

system is to suggest teams to become a partner in and 

not just a supporter. Swearingen and Sinha (2001) 

discovered that the confidence of users in the 

recommender system increases when some 

recommendations are familiar. 

The marketplace has a couple of platform 

rules to offer private teams next to the public teams. 

The closed teams cannot be suggested to all users. 

The FilterOutPrivate element inspects if a team can 

be joined by a user. There are five privacy options for 

a team: open, closed, part of an open network, part of 

an invitational network and part of a closed network. 

The privacy restrictions for teams that are part of a 

network are covered by the FilterOutNetwork 

element. Only the private teams without a network 

are filtered out where the user is not already active in 

as a supporter. As mentioned, pending invitations for 

a team are neglected by this filter. Teams in a 

network can only be suggested if this network is open 

or the user is a member of the invitational or closed 

network. The FilterOutNetwork element verifies this 

relationship.  

To exclude teams with a passed end date, the 

FilterOutEnded element was included. The 

FilterOutDeactivated element was developed to 

exclude deactivated teams. Each team holds the 

Boolean attribute active which can be set to false for 

deactivation. This is not an automatic process. Thus, 

teams can have a passed end date but still categorized 

as active. Both filters are written in Java. Applying 

these filters, 287 teams can be recommended, 

because these have an active status and an end date 

after 27 January 2016. This was the start date of the 

user interviews. For this reason, the dataset including 

the recommendations was frozen on this date. 

The post-processor elements influence the 

generated list with recommendations more gently. 

Instead of excluding teams, the score of some teams 

is positively or negatively adjusted. The DF-, KBF- 

and UBCF-algorithms apply the five post-processor 

elements. The RAND-algorithm must be strictly 

random. The IBCF-algorithm cannot use these post-

processor elements, because it calculates the initial 

score of each recommended team differently. All 

post-processor elements are written in Java. The code 

is included in each GitHub repository. GitHub is a 

digital platform for code sharing and collaboration. 

Table 1 presents an overview of the five post-

processor elements. The attribute is added to the 

RECOMMEND-relation between a user-team pair 

for the total score. The score can be negative or 

positive and multiple distributions are supported. 

Each element is discussed in the following four 

paragraphs. 

 

Attribute Score range Distribution 

Penalize 

Team size [-5, 0] Pareto 

Reward 

Same city [0, 5] Degenerate 

Same country [0, 1] Degenerate 

Same language [0, 1] Degenerate 

Same tags [0,50] Uniform distribution 

Total: [-5, 57]  

Table 1: Post-processing score 

 

The PenalizeTeamSize element negatively 

influences the recommendation of large teams 

following the mentioned Ringelmann effect. For the 

team size, only the creator and partners count as team 

members. The supporters are ignored because they 

are not active in activities. This element awards a 

negative score based on a Pareto-distribution starting 

at 5 team members. With the 80% point at 13 team 

members. 612 (93%) teams have five team members 

or less and almost all teams have 13 or fewer team 

members (645; 98%). The maximum negative score 

is five points. 

There are two geographical post-processing 

elements: RewardSameCity and 

RewardSameCountry. If a user and a team are located 
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in the same city the total score is increased with five 

points. For the same country, one point is awarded. 

Also, if the user and team are located in the same city. 

It should be noted that only 376 (14%) users and 563 

(86%) teams hold geographical information of a city 

and a country. This strongly limits the applicability 

of these elements. 

The RewardSameLanguage element 

increases the score with one point when a user and 

team have the same language. All users and all teams 

hold the ‘language’-attribute. The user language is 

chosen by the user. The team language is determined 

by analyzing the title and description via a Google 

Cloud service. English and Dutch are by far the most 

popular languages in the marketplace. These are also 

the only two languages that are currently present 

within both the users and teams. 

The RewardSameTags searches for similar 

tags of a user and team. It was hard to design an 

effective element to compare the tags because a user 

is free to choose them. The marketplace does not 

contain a bag-of-words model. This is a method to 

steer a user voluntarily towards tags that were already 

submitted by other users. If the tag differs, the user is 

still free to submit and pick this new tag. This 

especially prevents multiple tags that mean the same 

but have a couple of different letters. To restrict the 

development complexity a full string match and not 

a fuzzy match was chosen. This strongly reduces the 

chance of a match; however, this specific element 

was not identified as crucial for this research. For the 

same reason was synonymy not addressed in this 

element. This even further decreases the chance of a 

match between a user and a team based on tags. It 

should also be noted that half of the users do not even 

have tags added to their profile. For each tag that 

matches ten points are rewarded. With a maximum 

score of 50 points. Compared to the other elements 

this a very high reward, but as described the chance 

of an exact tag match is very small. When such a 

match occurs, this indicates a shared interest. 

Also, the logger modules are the same for 

each of the developed algorithms. Two loggers 

present information on the activities by the 

recommendation framework. The 

RecommendationLogger shows the entity for which 

the recommendation is produced. The 

StatisticsLogger shows the composition of the 

recommendation score. 

Algorithms can be executed with a memory-

based or model-based approach. The advantages of 

memory-based collaborative filtering are according 

to Breese et al. (1998): the good quality of 

predictions, the simplicity of implementing this 

algorithm, and the ability to update the database as 

the algorithm uses the entire database every time. 

Although they also see disadvantages like using the 

entire database takes time, an extensive database 

requires large available memory and it does not 

generalize the data and thereby overfits. Due to this 

lack of offline calculations, memory-based 

collaborative filtering is now considered unpractical 

for large datasets (Linden et al., 2003). In the 

research setup, all algorithms are run with a model-

based approach. 

 

Random filtering algorithm 

The random filtering (RAND) algorithm 

produces complete random recommendations. This is 

why this RAND-algorithm can function as a control 

algorithm. For collecting the random recommended 

teams, a Java method of the GraphAware framework 

is used. The generated list is also not post-processed. 

Only the blacklist and the regular filters are applied.  

 

Demographic filtering algorithm 

The technique of demographic filtering uses 

chosen demographic attributes such as language, 

location, and preferences to filter the available teams. 

Pazzani (1999) amongst others conclude that 

demographic information can be used to identify 

which items a user likes. The recommendation 

engine of the demographic filtering (DF) algorithm is 

the same as the RAND algorithm, but by using all 

described post-processor elements a filter on 

demographic information is realized.  

 

Knowledge-based filtering algorithm 

The technique of knowledge-based filtering applies 

knowledge engineering to the reason which items 

meet the requirements of a user (Trewin, 2000). This 

knowledge engineering process involves 

understanding the specific features of users and 

teams. Investing in understanding the features and 

requirements prevents a cold start, but also results in 
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a static recommendation ability (Burke, 1999). This 

knowledge-based filtering (KBF) algorithm uses the 

results of a personality test. Human resource 

specialist Meurs HRM developed a personality test 

for the Part-up marketplace. Based on ten questions 

a user receives two out of five available individual 

strengths: influential strength, managerial strength, 

mental strength, social strength, and personal 

strength. As Sinha and Swearingen (2001) argued, in 

exchange for better ratings, users are willing to fulfill 

these kinds of system requests for more information 

but only if the outcome is likely to improve. 

 

User-based collaborative filtering 

algorithm 

The DF- and KBF-algorithms strongly 

depend on a couple of chosen attributes. This static 

structure makes the algorithm domain dependent. As 

a result, every time the interests of the users change 

the algorithms need to be adjusted. From a scalability 

perspective, a domain-independent algorithm is 

preferred. Independent of the domain is the purpose 

of collaborative filtering to find user-item pairs based 

on the user’s interests and interaction. This replaced 

straightforward correlation statistics and predictive 

modeling (Melville & Sindhwani, 2011). The 

technology was further developed by Amazon for 

shopping suggestions. Later similar technology was 

implemented and developed by Facebook, Google, 

Hulu, LinkedIn, Netflix, and Twitter to serve their 

customers. 

Collaborative filtering holds great 

momentum as multiple researchers describe it as one 

of the most successful approaches for a recommender 

system (Lemire & Maclachlan, 2005; Su & 

Khoshgoftaar, 2009). It delivers the most complete 

package with its ability to identify cross-genre 

niches, the lack of required domain knowledge, 

quality improvements and sufficient implicit 

feedback. The main advantage of collaborative 

filtering is that it performs well while a user or team 

holds limited content, but has relationships with other 

entities (Melville et al., 2002). Koren et al. (2009) 

agree by stating that technology is domain 

independent. This aspect means that algorithms can 

be applied to various subjects without adjustments. A 

second advantage is that it can deliver serendipitous 

recommendations. Melville et al. (2002) describe this 

as relevant recommendations of items (teams), 

although not matched on content supplied by the user 

via its profile. Multiple researchers conclude that 

these two reasons led to the successes of 

recommender systems in different domains 

(Goldberg et al., 1992; Resnick et al., 1994). 

According to Koren et al. (2009), there are 

two main areas of collaborative filtering: 

neighborhood methods and latent factor models. The 

former focuses on the relationships between users 

and teams. User-based collaborative filtering is based 

on this principle. The latter calculates the user’s 

appreciation of a team by analyzing their activity. 

Item-based collaborative filtering is a successful 

implementation of this approach. 

User-based collaborative filtering is by 

Wang et al. (2006) illustrated as the “Word of 

Mouth” phenomenon. This is the traditional version 

of collaborative filtering where team suggestions are 

generated based on users with similar interests 

(Breese et al., 1998). In figure 1 is a simplified 

version of the user-based collaborative filtering 

approach visualized for users active in teams. To 

generate recommended teams the algorithm follows 

a four-step process. First, the algorithm inspects in 

which teams a user is active. Second, for each team, 

the algorithm inspects which team members are 

active in that team. Third, the algorithm gathers the 

other teams these team members are active. Fourth 

and final, these discovered teams are ranked by the 

algorithm. All these items and relationships are 

usually merged in a table. However, as figure 1 

shows, this method is very suitable for path querying 

in a graph database. 

 

 
Figure 1: User-based collaborative filtering for teams. 

 

The core of the collaborative filtering 

algorithm is the NearbyTeams element. The 

approach is shown in figure 1. For each discovered 

path the average of the three roles is awarded to the 

team. The value can vary between 1 and 2. For 
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example, if the path consists of a creator, partner, and 

supporter in the two teams. Then the score is 1.5 

points. Further supported by the 

NearbyNetworkTeams element. This second element 

analyses in which the other members of a network are 

active as a creator or partner. For each discovered 

path a score of 0.5 points is awarded to the team. The 

code of this algorithm is reviewed by a lead data 

scientist of GraphAware and a developer of Part-up. 

The code of this algorithm is published on GitHub13 

under a GPLv4 open source license. 

 

Item-based collaborative filtering 

algorithm 

User-based collaborative filtering algorithms 

suffer scalability issues (Sarwar et al., 2001). Linden 

et al. (2003) addressed this problem especially while 

designing the item-based collaborative filtering 

algorithm for Amazon. It scales independently of the 

number of users or items (teams) on their 

marketplace by building a similar-items offline table. 

While the recommendation framework still runs 

online. 

For the recommender system, the 

relationships between a user and a team are defined 

by several attributes. The input data of the user on a 

team can be split into two types: explicit feedback 

and implicit feedback (Koren et al., 2009; Xiang, 

2011). The explicit feedback is the most valuable one 

because this is the rating a user gives to a team. 

However, the availability of this information is low, 

as users give only ratings to fellow team members 

after they finished a collaborative task. This is 

usually at the end of a team. The implicit feedback 

includes browsing history, mouse movements, page 

visits, search patterns, or other interactions. This user 

preference can be modeled as a pseudo rating with 

this matrix factorization. This information is used by 

the collaborative filtering algorithms to produce a list 

of raw recommendations. These cannot be 

distributed to the users without filtering and ranking 

(Linden et al., 2003). 

Therefore, Amazon's developers Linden et 

al. (2003) developed an item-to-item approach for 

collaborative filtering. This collaborative filtering 

version focuses on the rating distributions per item 

 
13 https://github.com/part-up/UBCF-algorithm 

(team). Usually, a digital marketplace holds more 

users than items. As the user rating of an item is 

expected to be stable, this model-based algorithm can 

create a model of the database. That is why the 

algorithm does not have to identify the neighborhood 

of similar users first. Thus, the recommender system 

can produce much faster results note Sarwar et al. 

(2001). The first step is the analysis of the user-item 

matrix as presented in figure 1. The similarity 

between items is often determined by the methods: 

cosine-based similarity (vector-based similarity), 

correlation-based similarity (Pearson-r) or adjusted 

cosine similarity. 

As the collaborative filtering algorithms still 

require a rating for each relationship between a user 

and a team, this must be composed of a defined 

formula. For the Part-up marketplace, a participation 

formula (formula 1) was developed that combines 

four attributes from the logical data model: ratings, 

role, contributions, and comments. The selection and 

the weight of these attributes were determined based 

on the problem definition. The ratings (‘rat’) a user 

receives on his activities in a team by another user is 

the most valuable information, as this is the only 

available explicit feedback on the quality of a user’s 

activities in a team. When a user receives high ratings 

he is actively participating in that team. Each rating 

is divided by twenty to transform it to a scale of one 

to five. Next to these available explicit ratings also an 

implicit rating is constructed based on three attributes 

that every user-team-relation contains: role, number 

of contributions, and number of comments. The role 

a user holds in a team is expressed following an 

ordinal scale (creator: 2 points, partner: 1,5 points, 

supporter: 1 point). The number of contributions 

(‘cont’) the user has in the team is divided by the 

maximum number of contributions (‘maxCont’) this 

user has in all of its teams. The same calculation is 

chosen to normalize the number of comments 

(‘com’). Note that the normalization is applied with a 

smoothing term to prevent the dividing by zero when 

a user has no contributions or comments. The 

normalized contributions are weighted double 

compared to the normalized comments because a 

contribution is a commitment to a team and scarcer 

than a comment. The implicit rating is the sum of the 

role-weight, normalized contributions and 

normalized comments and results in a value between 
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one and five. The average of these explicit ratings 

and implicit rating is the participation score of a user 

in a team. That means that when the number of 

explicit ratings increases, the influence of the implicit 

rating on the participation score directly decreases. A 

high predicted participation score is a high likelihood 

for this user to actively participate in a team. With 

this formula, the similarity between teams can be 

calculated to perform item-based collaborative 

filtering. 

 

𝑅𝑢

=
∑𝑟𝑎𝑡

𝑖=1

𝑟𝑎𝑡(𝑖)

20
+ 𝑟𝑜𝑙𝑒 +

𝑐𝑜𝑛𝑡

𝑚𝑎𝑥𝐶𝑜𝑛𝑡
⋅ 2.0 +

𝑐𝑜𝑚

𝑚𝑎𝑥𝐶𝑜𝑚

𝑟𝑎𝑡 + 1
 

Formula 1: Participation formula. 

 

Sarwar et al. (2001) advise three types of 

similarity to compare items (teams). For this 

research, the Pearson correlation-based similarity 

(Formula 2) is chosen. This formula corrects the 

result with the average rating of all users on a team. 

Not only the ratings of the users that are active in both 

teams. With the requirement that there is a minimum 

of 3 users to determine the similarity. Between two 

teams there can only be one similarity relationship. 

There is no maximum in the number of similar 

relationships that a team can hold. The discovered 

relationships between the teams are used to indirectly 

compute ratings to base the recommendations (figure 

2). Algorithms that can be applied for the model 

building are according to Sarwar et al. (2001) for 

example Bayesian network, clustering, and rule 

based. In this research, the rule-based approach is 

chosen. The prediction of the user rating of a team is 

calculated based on the user ratings on similar teams. 

 

 
Formula 2: Pearson correlation-based similarity (Sarwar 

et al., 2001). 

 

 

 
14 https://github.com/part-up/IBCF-algorithm 

 
Figure 2: Item-based collaborative filtering (Some 

relationships are left out for overview reasons). 

 

This is called the model learning stage, 

followed-up by the recommendation stage. This 

model is used to make predictions (Breese et al., 

1998). The user gets teams suggested that are similar 

to teams this user has interacted with earlier. This 

prediction is either a weighted average or a 

regression according to Sarwar et al. (2001). For this 

research, the weighted average was used. 

The item-based collaborative filtering 

approach has three disadvantages. First, when an 

entity changes the model needs to be updated. 

Second, calculating the similarities between teams is 

complex. Third, with data sparsity the system 

performance is weak. The code of this algorithm is 

published on GitHub14 under a GPLv4 open source 

license. 

As described, there are multiple information 

filtering techniques to apply to this case of self-

managing teams. It has been mentioned that there is 

little research in these fields. That is why these 

algorithms first must be tested with validation 

experiments. Although some algorithms are only 

slightly different, it can still lead to different results. 

Hence, it is important to compare multiple 

algorithms. Table 5.6 shows the advantages and 

disadvantages of the four algorithms. Random 

filtering is not covered by this comparison as it 

operates as a control algorithm. 
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 Advantage Disadvantage 

RF (control) (control) 

DF No cold start 

 

Domain dependent 

Static profile 

Only demographic 

values included 

KBF Based on soft skills 

(personality test) 

Cold start mitigation 

Domain dependent 

Static profile 

Perfect composition 

per team unknown 

UBCF Domain independent 

Performs well with 

entities that have 

relationships with 

other entities, even 

with limited entity 

content 

Dynamic profile with 

team frequency 

Serendipitous 

recommendation 

Cold start (data 

sparsity) 

Unstable rating 

IBCF Domain independent 

Scales independently 

Detailed, dynamic 

profile with 

participation score 

Stable rating 

Frequent update of the 

full model 

Complex similarity 

calculation 

Cold start (data 

sparsity) 

Formerly patented 

Table 2: Algorithm comparison. 

 

The demographic filtering and knowledge-

based filtering algorithms have the advantage that 

their approach does not suffer from a cold start or 

mitigates this. The other two collaborative filtering 

algorithms require user activity before they can 

generate any recommendations. Both the 

demographic and knowledge-based filtering 

algorithms are domain-dependent, which means that 

they do not automatically adapt to changes in the 

interests of users. An aspect that is successfully 

addressed in the design of the collaborative filtering 

algorithms. These algorithms also have dynamic 

profiles based on either the team frequency for user-

based filtering or the participation score for item-

based filtering. User-based collaborative filtering 

performs well with teams that hold little information 

but have several active team members. As a result, 

this algorithm generates serendipitous 

recommendations. If the team is just created it suffers 

from the cold start problem, hence it is hard to 

recommend. Item-based collaborative filtering is 

expected to be a stable predictor of a user’s interest 

in a team. The stability of this rating is essential for 

scaling a collaborative filtering algorithm for a large 

volume of users. Otherwise frequent updates of the 

full model are required. This requires calculating the 

team similarity, a complex and thus resource-

intensive process. This comparison shows that all 

algorithms have different advantages and 

disadvantages. However, none of the algorithms is 

unsuitable or a clear winner based on this 

comparison. In the evaluation, the algorithms are 

further and extensively compared. 

 

Evaluation 

The evaluation of the five algorithms is 

divided into two parts: quantitative validation and 

user interviews. Multiple researchers (Shani and 

Gunawardana, 2011; Avazpour et al., 2014) name 

twelve dimensions to validate a recommender 

system. Of these dimensions are coverage, privacy, 

trust, user-preference, and utility chosen. The other 

dimensions are not chosen for various reasons. 

Primarily because the offline research setup with 

static data lacks user interaction. Although some 

algorithms are only slightly different, it can still lead 

to different results. Hence, it is interesting to compare 

multiple algorithms. It would be even more 

interesting to improve the performance of each 

algorithm by changing the score profile. However, 

this falls outside the scope of this research. 

 

Quantitative validation 

The quantitative validation analyses the 

recommendations from a numerical point of view. 

This validation consists of the coverage and privacy 

dimensions. Coverage is the proportion of available 

data that can be used for generating 

recommendations. It is an indication of the quality of 

the recommendations because according to Shani and 

Gunawardana (2011) recommender systems that 

cover a wider range of users or teams are preferred. 

When a user or team holds insufficient information, 

it is impossible to project a recommendation. In 

technical terms, this is called a cold start. This is 

related to the low accuracy in the prediction. The 

coverage dimension can be split into two types. User-

space coverage (prediction coverage) is the 

percentage of users that a recommender system can 

generate predictions for. Item space coverage 
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(catalog coverage) is the percentage of teams (items) 

that are recommended to a user by the system. In this 

validation, the item space coverage is less important 

for two reasons. This research is from the user 

perspective. And the configuration is set to a 

maximum of five recommendations for each user. 

The maximum of 13.715 recommendations is not 

necessarily equally distributed over the 287 active 

teams with an end date after 27 January 2016. Again, 

is active the standard attribute setting that indicates 

that it is not deactivated. Still, both types are used in 

this quantitative validation. 

Privacy is an important dimension if the 

service processes the personal data of users. The risk 

is that the privacy of these users and their teams is 

harmed. The external privacy is not validated in this 

research. The Dutch Data Protection Authority 

drafted guidelines to guarantee that personal data of 

users is protected. All organizations in the 

Netherlands that store, or process personal data must 

comply with the seven requirements of the national 

Personal data protection law (‘Wet bescherming 

persoonsgegevens’). Part-up has a privacy policy15 

that covers these requirements. 

This validation is on internal privacy. The 

digital marketplace incorporated platform rules in 

order to enable private teams next to the public 

teams. The privacy of the teams is divided into five 

types. Each team holds a ‘privacy_type’-attribute 

with an integer value. Most teams are public and not 

part of a network. Some teams are private and not 

part of a network. These teams can only be accessed 

by invited users. Pending invitations are for 

complexity reasons not included in this initial 

version. That means that these private teams can only 

be recommended to their supporters. There are also 

public teams that might be part of a network. The 

same accounts for private teams. The public teams 

can be recommended to all users. Irrespective of the 

teams are part of a network. This means that only the 

private teams are validated on privacy. This 

dimension is measured by the number of 

recommended teams that should not be accessible. 

First, the user-space coverage of the 21 

interviewed users is discussed as shown in table 3. 

The last column ‘Total’ reflects the coverage of all 

algorithms. That the RAND-algorithm scores best is 

no surprise because the random-aspect requires no 

 
15 privacy.part-up.com 

specific data points to suggest a team. That should be 

the same for the DF-algorithm. Early in the interview 

process, a small error was discovered with this 

algorithm. Due to a configuration error, this 

algorithm produced no recommendation for one user. 

This was adjusted after the interview. This is why the 

coverage of the DF-algorithm is one case smaller 

than the RAND-algorithm. 

 

User group RAND DF KBF UBCF IBCF Total 

High 7 6 7 7 7 7 

Medium 7 7 4 7 7 7 

Low 7 7 2 4 0 7 

Total 

interviews  

21 20 13 18 14 21 

100% 95% 62% 86% 67% 100% 

Total 

database 

2475 2089 338 1514 764 2714 

90% 76% 12% 55% 28% 99% 

Table 3: User-space coverage of the algorithms. 

 

 Second, the user-space coverage is validated 

for all users in the database with the active status. 

This is the standard status for all users and implies 

that the user is not deactivated on request. It does not 

represent the activity level of a user. The results are 

included in the bottom rows ‘Total database’ of table 

3. The RAND-algorithm has a 90% user-space 

coverage. It is remarkable that it has not 100% 

coverage. The same counts for the DF-algorithm. 

Which only has a 76% user-space coverage. As both 

algorithms require no specific attributes or 

relationships, this must be an error in running the 

algorithms. The KBF-algorithm has a 12% user-

space coverage. Which is very low. The algorithm 

requires that a user has discovered his two strengths 

via a small questionnaire. The questionnaire is 

voluntary and not well visible on the marketplace. 

This algorithm has a 100% user-space coverage for 

the users who have completed this questionnaire. The 

UBCF-algorithm has a 55% user-space coverage. 

Although it has a 97% user-space coverage for the 

users that are active in a team or member of a 

network. This should be 100%. An indication of a 

small error. The IBCF-algorithm has a 28% user-

space coverage. Quite a low score. The algorithm has 

87% user-space coverage for the users that are active 

in a team with a similarity relationship to another 

team. Reflecting on the user-space coverage for the 
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algorithm the conclusion is that currently none of the 

algorithms can be used for the Part-up marketplace. 

The user-space coverage of the KBF- and IBCF-

algorithms is too low. And the RAND-, DF-, UBCF- 

and IBCF-algorithms seem not to be running error-

free. There is room for improvement. Also 

combining multiple algorithms into one hybrid 

algorithm can be the solution. Overall 99% of the 

users have at least one recommendation generated by 

one of the algorithms. The user-space coverage 

confirms that with a combination of multiple 

algorithms nearly all users receive recommendations. 

The results of the item space coverage 

validation are included in table 4. Some users had 

multiple recommendations generated by the RAND- 

and DF-algorithm, because of configuration issues. It 

was not possible to run the algorithms at the same 

time. Each algorithm ran once in sequence. Each user 

can have a maximum of five recommendations. As 

mentioned, these recommendations are not 

necessarily evenly distributed. This explains why 

only three-quarters of the teams were recommended 

via the algorithms. This is a satisfying percentage. 

 

Items RAND DF KBF UBCF IBCF Total 

Total 179 173 48 141 65 211 

 62% 60% 17% 49% 23% 74% 

Table 4: Item space coverage of the algorithms. 

 

For the validation of the privacy and 

platform rules a series of experiments were 

performed. There are no teams recommended in 

which a user was already active as a partner or 

creator. Nor are there any incorrect recommendations 

of private teams that are not part of a network. 

Further validation shows that there were no incorrect 

recommendations of teams that are part of a network. 

It can be concluded that the privacy of the teams and 

the platform rules are respected with the five context 

(blacklist and filter) elements. 
 

User interviews 

The user interviews perform a face 

validation of the recommender system. This is a 

subjectively view test to gather the opinion of non-

experts. This validation must be performed in a 

representative simulator. When the outcome is 

positive, then this is an endorsement for the 

application of recommender systems. In the user 

interviews, the recommender system is validated for 

the trust, user-preference, and utility dimensions. 

Trust is the confidence of a user in the provided 

recommendation. Trust can be increased by 

combining known and unknown items. Or by 

delivering the recommendations with an explanation. 

Multiple incorrect recommendations decrease trust in 

the recommender system. The most common method 

to validate trust is asking the reasonability of 

recommendations in a user study. The user 

preference is its perception of the configuration of the 

algorithm or combination of algorithms that are 

running under the hood. A user study with 

recommendation lists generated by different 

algorithms is an appropriate way to test this. Utility 

is the value a user or the system gains from using the 

recommender system. The preference of 

recommendations by users can be determined by 

ranking the options. 

For the interviews were users selected from 

three groups. This split is made because Avazpour et 

al. (2014) note that users experience the 

recommendations differently based on their previous 

activities. Current and former Part-up team members 

or developers are excluded from the validation 

because they may have too much knowledge of the 

designed algorithms to give an independent opinion. 

There are 27 Part-up team members excluded from 

the user base for this reason. To group the users in 

three categories an engagement score is calculated. 

Each role a user holds in a team is multiplied with the 

role-weight. The engagement score is an 

approximation of the engagement of a user with the 

Part-up marketplace. The three interview groups for 

low, medium and highly engaged users are presented 

in table 5. The two cut-off points for the groups were 

an arbitrary decision by this author. 

 

Group Engagement  

score 

Cleaned  

total 

Low engaged users 0 1608 

Medium engaged users 0 <> 20.0 1089 

Highly engaged users ≥ 20  19 

Table 5: Three user groups based  

on the engagement score. 

 

From each group randomly seven people are 

selected for a user interview by phone. This selection 

is not corrected for age, gender, background or 

location. Each interview is performed following a 
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drafted protocol. Shortly before the interview, the 

overview with the recommended teams was sent to 

ensure the first impression of the user. This overview 

resembles the Discover-page of Part-up. A couple of 

users expressed that they were not searching for 

teams at all. This was for several reasons. Some used 

the marketplace only for work, others were too busy 

with their regular daytime job or they had already too 

many tools for digital collaboration. They tried Part-

up out of curiosity. The question if people are 

actually searching for teams was not included until 

the last two interviews. However, some of the users 

also answered the question by themselves. Two 

questions should have been part of the interview: 

“What is your main purpose to use Part-up?” and 

“On a scale from 0-7, are you searching for new 

part-ups to join?”. The quality of the offered teams 

is also an issue. An often-mentioned reason for not 

joining a team is that it lacks a clear description and 

goal. Even though a user likes the recommendation 

because the subject matches his profile. 

The trust in the recommender system with its 

custom algorithms was expressed with the interview 

question: “Do these recommendations reflect your 

profile?”. The average results per user group are 

included in table 6. For the first seven interviews, 

coincidentally also all highly engaged users, the 

valuation of the reflection of their profile was not 

expressed as a number on a scale of 0-7. This was 

later projected based on their recorded answers. The 

results of all user groups are hardly a surprise. The 

high user group is active in many teams. These are 

interesting data points for the recommender system, 

but also leaves fewer teams available to recommend. 

Especially when the catalog of teams is still relatively 

small. That is why their average projected score is 

halfway the range. Almost the same line of reasoning 

explains why the medium user group scores well. A 

sufficient number of data points, while still enough 

teams available. The low user group scores just 

below average. A bit disappointing and an indication 

that the algorithms do not perform well with little 

data points. 

 

User group All 

High 3.6 

Medium 5.1 

Low 3.3 

All 4.0 

Table 6: Average reflection (scale 0-7) of the user’s 

profile by the recommendations 

 

The user-preference dimension was 

validated with two questions. The first question was: 

“Which part-up is the most likely you will join as a 

partner?”. This is an indication which 

recommendation they like the most. The sum of all 

first picks is included in table 7. The UBCF-

algorithm scored by far the best. Even in the low user 

group three out of the seven interviewees chose it. 

Even though they are not active in a team yet. That is 

because the algorithm also uses networks in 

identifying similar users. That is why this algorithm 

scored best overall. Some interviewees confirmed 

this. They recognized teams they were co-initiator of 

or familiar with. The RAND-algorithm scores 

surprisingly good in the medium user group. This is 

important from a serendipity point of view. These 

serendipitous recommendations can uncover 

unknown interests. And this validation shows that 

these random recommendations are indeed 

appreciated. A final note about the score of the DF-

algorithm in the low user group. This gives the 

confidence that successful recommendations can also 

be generated based on limited attributes a user and 

team hold. An important discovery for preventing a 

cold start among users that suffer of data sparsity. 

 

User group RAND DF KBF UBCF IBCF 

High 0 0 2 3 2 

Medium 3 0 0 4 0 

Low 0 4 0 3 0 

Total 3 4 2 10 2 

Table 7: Sum of first picks to join as a partner. 
 

The follow-up question for this dimension 

was: “How would you rank this recommendations set 

yourself?”. This gives a wider impression of the user 

preference for an algorithm (table 8). Again, the 

UBCF-algorithm scores best overall, but now also in 

all user groups. The DF-algorithm is a good second 

best. Especially for the low user group. Like also was 

noticed in the previous paragraph. The IBCF-

algorithm scores surprisingly bad. Also, because it is 

equal with the RAND-algorithm. This latter 

algorithm, which functions partly as a control 

algorithm, scores exactly average. The disappointing 

score of the IBCF-algorithm is an indication that the 

participation formula is incorrect. Because this is the 
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core element in the generation of recommendations. 

The score of the KBF-algorithm is not good, because 

users do not recognize themselves. They expect to 

receive recommendations based on their profile and 

activity. Not especially on their role in a team. This 

shows that it is important to always present 

recommendations in the right context. For example, 

with a small explanation where recommendations are 

based on.  

Multiple interviewees mentioned two 

comments, independent of a specific algorithm. First 

that they do not want to receive recommendations of 

teams they are already active in as a supporter. This 

contradicts the mentioned statement of Swearingen 

and Sinha (2001) that when some recommendations 

are familiar, the confidence in the recommender 

system increases. It shows that for these users, 

recommendations are about discovering new teams. 

Second, users expressed that some recommended 

teams were quite old and with minimal activity. They 

perceived teams that started weeks or months ago as 

less interesting. Both raised issues should be 

addressed before the implementation of the 

recommender system in the marketplace. 

 

User group RAND DF KBF UBCF IBCF 

High 2.3 3.2 3.3 3.9 2.7 

Medium 3.1 2.6 2.0 4.6 3.3 

Low 3.4 4.3 3.5 4.5 - 

All 3.0 3.4 2.9 4.3 3.0 

Table 8: Average rank (1-5) of the algorithms. 

 

The utility dimension was validated by 

reflecting on their first pick to join as a partner. The 

question was: “On a scale from 0-7, will you join 

it?”. Table 9 shows the results of this question. The 

two collaborative filtering algorithms perform the 

best. Where the rating of the UBCF-algorithm is most 

relevant because it is based on ten ratings, against the 

two for the IBCF-algorithm. The results for the 

RAND-algorithm confirm that these 

recommendations can be useful from the mentioned 

serendipity factor. The average of the three ratings is 

just below average. The DF-algorithm scores very 

low with four ratings of three and lower. This makes 

it doubtful that this algorithm can overcome data 

sparsity. The score of the KBF-algorithm confirms 

that the two users are unaware of their potential value 

to the team. Some interviewees also expressed that 

their limited time was a reason why they rated their 

first pick quite low. 

 

User group RAND DF KBF UBCF IBCF 

High - - 3.5 5 5 

Medium 3.33 - - 4.5 - 

Low - 2 - 5.33 - 

All 3.33 2 3.5 4.9 5 

Table 9: Average rating (scale 0-7) to join the first pick 

as a partner. 
 

Conclusions 

Reflecting on this research it can be 

concluded that a recommender system with these 

custom algorithms is valued by users while being 

technically functional. A combination of multiple 

types of algorithms has arisen as a promising method. 

Multiple researchers (Ogul & Ekmekciler, 2012; 

Melville et al., 2002) argue that a combination can 

overcome limitations that are imposed by the data. 

Leading to more stable results than collaborative 

filtering. Based on the results of the evaluation a 

hybrid version of the UBCF-algorithm and RAND-

algorithm was chosen. The UBCF-algorithm 

performed best. And the RAND-algorithm provides 

a serendipitous element and addresses data sparsity. 

It covers 2.627 (96%) users while respecting privacy 

and platform rules. This hybrid algorithm provides 

qualitative recommendations to high, medium and 

low engaged users. Recommendations that users trust 

and can use. The straightforward algorithm structure 

without a complex similarity query makes it reliable, 

robust and scalable. The recommender system with 

this hybrid algorithm and a couple of adjustments is 

implemented into the marketplace. 
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Appendix B | Data dictionary 

Each attribute that is in the logical data model of either the research architecture or deployed 

architecture is included in the tables B.1 and B.2. Table B.1 contains all the attributes of the entities. The 

columns hold for these attributes the name, the type in MongoDB, type in Neo4j, scale of measure, part of the 

offline solution for research and part of the online solution for deployment. The ‘<id>’-attribute is 

automatically created by Neo4j for all entities and that is why it is not available in MongoDB. The sub-headers 

represent the labels of the entities to which the attributes belong to. 

 

Attribute MongoDB type Neo4j type Scale of measure Offline Online 

City 

<id> - id Nominal ✖ ✖ 

_id String String Nominal ✖ ✖ 

name String String Nominal ✖ ✖ 

Country 

<id> - id Nominal ✖ ✖ 

name String String Nominal ✖ ✖ 

Network 

<id> - id Nominal ✖ ✖ 

_id String String Nominal ✖ ✖ 

language String String Nominal ✖ ✖ 

name String String Nominal ✖ ✖ 

tags Array String[] Nominal ✖ ✖ 

privacy String String Nominal ✖ ✖ 

Strength 

<id> - id Nominal ✖  

code Int32 int Nominal ✖  

name String String Nominal ✖  

Team 

<id> - id Nominal ✖ ✖ 

_id String String Nominal ✖ ✖ 

active - Boolean Nominal ✖ ✖ 

activity_count Int32 int Ratio ✖ ✖ 

archived - Boolean Nominal  ✖ 

archived_at Date int Interval  ✖ 

deleted - Boolean Nominal  ✖ 

deleted_at Date int Interval ✖ ✖ 
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end_date Date int / String Interval ✖ ✖ 

language String String Nominal ✖ ✖ 

link String String Nominal ✖  

name String String Nominal ✖ ✖ 

partners - int Ratio ✖  

phase String String Nominal ✖ ✖ 

privacy_type Int32 int Nominal ✖ ✖ 

purpose String String Nominal ✖ ✖ 

tags Array String[] Nominal ✖ ✖ 

type String String Nominal ✖ ✖ 

User 

<id> - id -Nominal ✖ ✖ 

_id String String Nominal ✖ ✖ 

active - Boolean Nominal ✖ ✖ 

deleted - Boolean Nominal  ✖ 

deactivated_at Date int Interval ✖ ✖ 

name String String Nominal ✖ ✖ 

language String String Nominal ✖ ✖ 

name String String Nominal ✖ ✖ 

tags Array String[] Nominal ✖ ✖ 

Table B.1: Data dictionary entities 

 

 Table B.2 contains all the attributes of the relationships. The columns hold for these attributes the 

name, type in Neo4j, scale of measure, part of the offline solution for research and part of the online solution 

for deployment. The ‘<id>’-attribute is automatically created by Neo4j for all relationships. The other 

attributes do not exactly exist in MongoDB but are constructed with one or more attributes from MongoDB or 

are the scores of the recommender system. The sub-headers represent the labels of the relationships to which 

the attributes belong to. 

 

Attribute Neo4j type Scale of measure Offline Online 

ACTIVE_IN 

<id> id Nominal ✖ ✖ 

comments int Ratio ✖  

contributions int Ratio ✖  

participation float Ratio ✖  

ratings int[] Ratio ✖  
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role int Nominal ✖ ✖ 

HOLDS 

<id> id Nominal ✖  

score int Interval ✖  

LIVES_IN 

<id> id Nominal ✖ ✖ 

LOCATED_IN 

<id> id Nominal ✖ ✖ 

MEMBER_OF 

<id> id Nominal ✖ ✖ 

admin Boolean Nominal ✖ ✖ 

colleague Boolean Nominal  ✖ 

PART_OF 

<id> id Nominal ✖ ✖ 

RECOMMEND 

<id> id Nominal ✖ ✖ 

daysActive float Ratio  ✖ 

nearbyTeams int Ratio ✖ ✖ 

nearbyTeamsinNetworks int Ratio ✖ ✖ 

partnersLimit float Ratio ✖ ✖ 

pred_part float Ratio ✖  

sameCity int Nominal ✖ ✖ 

sameCountry int Nominal ✖ ✖ 

sameLanguage int Nominal ✖ ✖ 

sameTags int Ratio ✖ ✖ 

SIMILARITY 

<id> id Nominal ✖  

coefficient float Ratio ✖  

Table B.2: Data dictionary relationships  
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Appendix C | Validation queries 

All Cypher queries to validate the different dimensions of the algorithms are included in this appendix. 

Cypher query C.1 returns the number of users that have recommendations of one algorithm. If a user has 

multiple recommendations by a recommendation this is counted as one. An example is chosen for the RAND-

algorithm. Also, the total number of active users is returned. 

 

MATCH (x:User) 
WHERE x.active 
WITH COUNT(x) AS Total 
MATCH (u:User) 
WHERE u.active  
 AND (u)-[:RECO_RAND]->(:Team) 
WITH COUNT(u) AS Coverage, Total 
RETURN Coverage, Total 

Cypher query C.1: User space coverage of the RAND-algorithm 

 

Cypher query C.2 functions almost the same as the previous query. The only difference is that it returns 

the user-space coverage of all algorithms. Again, if a user has multiple recommendations, also from different 

algorithms, this still counts as one. 

 

MATCH (x:User) 
WHERE x.active 
WITH COUNT(x) AS Total 
MATCH (u:User) 
WHERE u.active  
 AND ( (u)-[:RECO_RAND]->(:Team) 
 OR (u)-[:RECO_DF]->(:Team) 
 OR (u)-[:RECO_KBF]-(:Team) 
 OR (u)-[:RECO_UBCF]-(:Team) 
 OR (u)-[:RECO_IBCF]-(:Team) ) 
WITH COUNT(u) AS Coverage, Total 
RETURN Coverage, Total 

Cypher query C.2: User space coverage of all algorithms 

 

The item-space coverage is the percentage of teams that have a recommendation by an algorithm. 

Cypher query C.3 only inspects teams that are active with an end date after 27 January 2016. All teams that 

have an earlier end date are ignored by the algorithm regardless of whether these teams still hold the ‘active’-

attribute. The coverage is the number of teams that are at least recommended once by an algorithm. For this 

example, is again the RAND-algorithm chosen The query also returns the total number of teams within the 

mentioned criteria. 

 

MATCH (x:Team) 
WHERE x.active  
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 AND x.end_date > 20160127 
WITH COUNT(x) AS Total 
MATCH (t:Team) 
WHERE t.active  
 AND t.end_date > 20160127  
 AND (t)<-[:RECO_RAND]-(:User) 
WITH COUNT(t) as Coverage, Total 
RETURN Coverage, Total 

Cypher query C.3: Item space coverage of the RAND-algorithms 

 

Cypher query C.4 returns the item-space coverage for all algorithms and the total number of teams. 

Again, only for the teams that are active and have an end date after 27 January 2016. When a team is 

recommended by multiple algorithms it still counts as one. 

 

MATCH (x:Team) 
WHERE x.active  
 AND x.end_date > 20160127 
WITH COUNT(x) AS Total 
MATCH (t:Team) 
WHERE t.active AND t.end_date > 20160127  
 AND ( (t)<-[:RECO_RAND]-(:User)  
 OR (t)<-[:RECO_DF]-(:User)  
 OR (t)<-[:RECO_KBF]-(:User) 
 OR (t)<-[:RECO_UBCF]-(:User) 
 OR (t)<-[:RECO_IBCF]-(:User) ) 
WITH COUNT(t) as Coverage, Total 
RETURN Coverage, Total 

Cypher query C.4: Item space coverage of all algorithms 

 

To validate the ExistingRelations element Cypher query C.5 was written to execute in the web-

interface of Neo4j or from code using its API. It returns the number of team recommendations where a user is 

already a partner or creator. These are incorrect. 

 

MATCH (u:User)-[r]->(t:Team) 
WHERE ( (u)-[:RECO_RAND]->(t) 
 OR (u)-[:RECO_DF]->(t) 
 OR (u)-[:RECO_KBF]-(t) 
 OR (u)-[:RECO_UBCF]-(t) 
 OR (u)-[:RECO_IBCF]-(t) ) 
 AND ( (u)-[:ACTIVE_IN {role: 1.5}]->(t) 
 OR (u)-[:ACTIVE_IN {role: 2}]->(t) ) 
RETURN COUNT(r) as Errors 

Cypher query C.5: Current relationships validation. 

 

The FilterOutPrivate element is validated with Cypher query C.6. It checks for all algorithms if there 

are teams with privacy type 2 that are recommended to users who are not active in this team as a supporter. As 
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mentioned in chapter 3 are only the teams with privacy types 2, 4, and 5 validated on privacy. It returns the 

total number of incorrect recommendations as errors. 

 

MATCH (u:User)-->(t:Team) 
WHERE t.privacy_type=2 
 AND ( (u)-[:RECO_RAND]->(t)  
 OR (u)-[:RECO_DF]->(t) 
 OR (u)-[:RECO_KBF]-(t) 
 OR (u)-[:RECO_UBCF]-(t) 
 OR (u)-[:RECO_IBCF]-(t) )  
 AND NOT (u)-[:ACTIVE_IN {role:1}]->(t) 
RETURN COUNT(u) as Errors 

Cypher query C.6: Privacy validation for recommended teams  

which are private but the user is active in as a supporter. 

 

The FilterOutNetwork element is validated with Cypher query C.7. All recommended teams with 

privacy type 4 or 5 are checked on two criteria. If the user is a member of the network the team belongs to or 

if the user is already active in the team as a supporter. The total number of incorrect recommendations are 

returned as errors. 

 

MATCH (u:User)-->(t:Team)-->(n:Network) 
WHERE ( t.privacy_type=4 OR t.privacy_type=5 ) 
 AND ( (u)-[:RECO_RAND]->(t)  
 OR (u)-[:RECO_DF]->(t) 
 OR (u)-[:RECO_KBF]-(t) 
 OR (u)-[:RECO_UBCF]-(t) 
 OR (u)-[:RECO_IBCF]-(t) )  

 AND NOT ( (u)-->(n)  
 OR (u)-[:ACTIVE_IN {role:1}]->(t) ) 
RETURN COUNT(u) AS Errors 

Cypher query C.7: Privacy validation for recommended teams in networks. 

 

The FilterOutEnded element is validated with Cypher query C.8. The ‘end_date’-attribute is compared 

with the current date. In this query example, this is 27 January 2016 (20160127), because this was the date of 

the data export from the marketplace. 

 

MATCH (u:User)-[r]->(t:Team) 
WHERE t.end_date < 20160127 
 AND ((u)-[:RECO_RAND]->(t) 
 OR (u)-[:RECO_DF]->(t) 
 OR (u)-[:RECO_KBF]-(t) 
 OR (u)-[:RECO_UBCF]-(t) 
 OR (u)-[:RECO_IBCF]-(t)) 
RETURN COUNT(r) AS Errors 

Cypher query C.8: Validation of no teams with a passed end date as recommendations. 
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The FilterOutDeactivated element is validated with Cypher query C.9. 

 

MATCH (u:User)-[r]->(t:Team) 
WHERE t.active=false 
 AND ( (u)-[:RECO_RAND]->(t) 
 OR (u)-[:RECO_DF]->(t) 
 OR (u)-[:RECO_KBF]-(t) 
 OR (u)-[:RECO_UBCF]-(t) 
 OR (u)-[:RECO_IBCF]-(t) ) 
RETURN COUNT(r) AS Errors 

Cypher query C.9: Validation of only active teams as recommendations. 

 

The deployed FilterOutPrivate element is validated with Cypher query C.10, which is a slightly 

adjusted version of Cypher Query C.6. No longer teams are included in which the user is already active as a 

supporter. 

 

MATCH (u:User)-[:RECOMMEND]->(t:Team) 
WHERE t.privacy_type=2 
RETURN COUNT(u) AS Errors 

Cypher query C.10: New privacy check for recommended teams that are private. 

 

The deployed FilterOutNetwork element is validated with Cypher queries C.11, C.12, and C.13. 

 

MATCH (u:User)-[:RECOMMEND]->(t:Team)-[:PART_OF]->(n:Network) 
WHERE (t.privacy_type=4 OR t.privacy_type=5)  

 AND NOT (u)-[:MEMBER_OF]->(n) 
RETURN COUNT(u) AS Errors 

Cypher query C.11: New privacy check for recommended teams that are part of a private network. 

 

MATCH (u:User)-[:RECOMMEND]->(t:Team)-[:PART_OF]->(n:Network) 
WHERE t.privacy_type=6  

 AND NOT (u)-[:MEMBER_OF {admin:true}]->(n) 
RETURN COUNT(u) AS Errors 

Cypher query C.12: Privacy check for recommended teams  

that are exclusive for the co-creators in a private network. 

 

MATCH (u:User)-[:RECOMMEND]->(t:Team)-[:PART_OF]->(n:Network) 
WHERE t.privacy_type=7 

 AND NOT ( (u)-[:MEMBER_OF {admin:true}]->(n) 
 OR (u)-[:MEMBER_OF {colleague:true}]->(n) ) 
RETURN COUNT(u) AS Errors 

Cypher query C.13: Privacy check for recommended teams that are exclusive  

for the co-creators or colleagues in a private network. 
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The data type of the ‘end_date’ was changed from an integer to string. As a result, was Cypher query 

C.8, to validate the FilterOutEnded, also slightly adjusted with the addition of str() encapsulation (Cypher 

query C.14). 

 

MATCH (u:User)-[r]->(t:Team) 
WHERE t.end_date < str(20160127) 
 AND ((u)-[:RECO_RAND]->(t) 
 OR (u)-[:RECO_DF]->(t) 
 OR (u)-[:RECO_KBF]-(t) 
 OR (u)-[:RECO_UBCF]-(t) 
 OR (u)-[:RECO_IBCF]-(t)) 
RETURN COUNT(r) AS Errors 

Cypher query C.14: Validation of no teams with a passed end date as recommendations. 

 

  



108 

 

Appendix D | Interview protocol 

 

D.1 | Preliminary 

A PDF-document with a maximum of five recommended teams is sent via email a couple of minutes 

in advance. 

● Each recommended team is generated by one of the five algorithms: 

○ Random (RAND) algorithm 

○ Demographic filtering (DF) algorithm 

○ Knowledge-based filtering (KBF) algorithm 

○ User-based collaborative filtering (UBCF) algorithm 

○ Item-based collaborative filtering (IBCF) algorithm 

● Each team is presented with almost the same information as on the ‘Discover’-page of Part-up. Only 

the picture is excluded for technical reasons. These seven elements are presented in a basic tabular 

format: 

○ Title 

○ Description 

○ Names of the partners 

○ Tags 

○ Number of activities 

○ Number of supporters 

○ Number of days active 

 

D.2 | User interview 

All interviews are performed via a telephone, Skype or Hangouts conversation. During the short 

introduction and informal conversation, permission is asked for recording the interview. 

 

The first question is not related to the provided recommendations: 

1. On a scale from 0-7, are you able to find interesting part-ups? 

 

Questions about the provided recommendations: 

2. Which part-up is the most likely you will join as a partner? 

3. On a scale from 0-7, will you join it? 

4. How would you rank these recommendations yourself? 

5. On a scale from 0-7, do these recommendations reflect your profile? 

6. What is the most important element for each recommendation in making your decision? 

7. My colleague Oana, a student of Erasmus University, will do further research on the relation of users 

to a team. Can she approach you later this month for an interview too? 
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8. Do you have other comments or suggestions? 

 

The user is thanked for sharing his opinion. He is also informed that he will receive the key takeaways 

after all interviews are done. The conversation has ended. 

 

D.3 | Processing 

The numerical values and element options are transformed into a tabular format. The most important 

comments are transcribed for the appendix. These comments are aggregated on the subject and similarity for 

the results & evaluation chapter. 


