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Abstract. We propose efficient algebraic multilevel preconditioning for the Helmholtz

equation with high wave numbers. Our algebraic method is mainly based on using new

multilevel incomplete LDLT techniques for symmetric indefinite systems.

1 INTRODUCTION

We discuss the numerical solution of Helmholtz equations

−∆u − k2u = f ∈ Ω ⊂ R2

on a bounded domain Ω. This kind of problem arises e.g. in modeling of acoustic scat-
tering. Often one is interested in using high wave numbers k which leads to a symmetric
but highly indefinite system.
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When Ω corresponds to the truncation of an originally infinite region, we typically have
to impose on part of ∂Ω a Sommerfeld boundary condition,

∂u

∂n
= iku,

to avoid spurious reflection from the boundary. In this case the system even is complex–
valued. We consider the discretization of this system using finite differences and investi-
gate algebraic multilevel preconditioning for this type of problem. Note that in order to
resolve the wave numbers properly, the grid size has to be proportional to 1

k
which means

that the size of the system is increasing as the wave number increases. Our approach to
solve these systems of equations with increasing wave number consists in a new algebraic
multilevel method designed for symmetric indefinite systems. The method uses:

1. symmetric maximum weight matchings to improve the block diagonal dominance of
the system on every level,

2. an inverse–based pivoting strategy to compute A ≈ LDLT while at the same time
keeping ‖L−1‖ ≤ κ below a bound κ. This requires to postpone several rows and
columns to the end, which are then recursively treated within a multilevel frame-
work.

2 SYMMETRIC WEIGHTED MATCHINGS

Symmetric weighted matchings [5, 7, 15] can be viewed as a preprocessing step that
rescales and permutes the original matrix such that the block diagonal dominance of the
system is improved. As a consequence of this strategy, all entries are at most one in
modulus and in addition the diagonal blocks are either 1×1 scalars aii, such that |aii| = 1
(in exceptional cases we will have aii = 0), or they are 2 × 2 blocks

(

aii ai,i+1

ai+1,i ai+1,i+1

)

such that |aii|, |ai+1,i+1|1 and |ai+1,i| = |ai,i+1| = 1. (1)

Numerical observations [7, 15, 11, 14] indicate that symmetric maximum weight matchings
typically waive dynamic symmetric pivoting strategies like [3].

We will briefly describe the idea of symmetric maximum weight matchings. Basically,
symmetric maximum weight matchings consist of two steps:

In a first step, a nonsymmetric maximum weight matching [6, 13] is applied that yields
n × n positive diagonal matrices Dr, Dc and a permutation matrix PM such that

AM := P T
MDrADc

satisfies
|aM,ij| ≤ 1, |aM,ii| = 1, for all i, j = 1, . . . , n.
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In a second step, the permutation from the first step is decomposed into a product
of cycles. Each cycle itself is broken up into a product of 2–cycles which gives a new
permutation matrix PS . The scaling procedure is symmetrized by taking Ds = (DrDc)

1/2.
The associated matrix is given by

AS = P T
S DsADsPS .

If |A| = |A|T , then |aS,ij| ≤ 1 for all i, j = 1, . . . , n and AS can be written as D +E where
D is a block diagonal part of AS with blocks of size 1 × 1 and 2 × 2 such that any 2 × 2
block satisfies (1), while the 1 × 1 blocks are either 1 or zero in modulus. For details we
refer to [7, 15].

In order to construct the incomplete, algebraic, multilevel factorization efficiently, care
has to be taken that not too much fill-in is introduced during the elimination process.
To do we compress the graph of AS and apply the fill-in reducing reordering to the
compressed system. Here we will use a nested dissection reordering from Metis [12].
Finally, we extend the permutation to the original system AS to get a suitable reordering.

3 ALGEBRAIC MULTILEVEL PRECONDITIONING

Next we give an overview over a symmetric approximate multilevel factorization that
is based on three parts which are repeated in a multilevel framework. The components
consist of (i) reordering of the system, (ii) approximate factorization using inverse-based
pivoting and, (iii) recursive application to the system of postponed updates.

Suppose that initially the system is reordered and rescaled such that

P TDADP = Â, (2)

where D, P ∈ Rn,n, D is a diagonal matrix and P is a permutation matrix, both obtained
from symmetric maximum weight matchings followed by the reordering. We expect Â to
have many diagonal blocks of size 1 × 1 or 2 × 2 that are well-conditioned.

Given Â we compute an incomplete factorization LDLT = Â + E of Â. Suppose that
at step k of the algorithm we have

Â =

(

B F T

F C

)

=

(

LB 0
LF I

)(

DB 0
0 SC

)(

LT
B LT

F

0 I

)

, (3)

where LB ∈ Rk,k is lower triangular with unit diagonal and DB ∈ Rk,k is block diagonal
with diagonal blocks of size 1 × 1 and 2 × 2. Also, SC = C − LF DBLT

F denotes the
approximate Schur complement. Following [1] we can easily estimate

‖

(

LB 0
LF I

)−1

‖ ≤ κ (4)

in every step for a prescribed bound κ based on a sparse adaption of the method presented
in [4]. If at step k the approximate factorization fails to satisfy (4), then row and column
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k are permuted to the end. Otherwise we proceed with the approximate factorization
where essentially any |lik| ≤ ε is dropped. Here ε is a given drop tolerance.

When the approximate LDLT decomposition has finally traversed Â we are faced with
a system of the form

QT ÂQ =

(

L11 0
L21 I

)(

D11 0
0 S22

)(

LT
11 LT

21

0 I

)

. (5)

We then apply the algorithm recursively to the remaining Schur–complement system S22

that consists of all postponed updates. Hence, S22 is now explicitly computed and the
strategies for reordering, scaling and factorization are recursively applied to S22 finally
leading to a multilevel factorization.

For the iterative solution of linear systems we use the simplified QMR method [10,
9] in order to fully exploit the symmetry of the original system A and the computed
preconditioner.

4 NUMERICAL EXPERIMENTS

We now present numerical experiments that show that the previously outlined AMG
preconditioners can be successfully applied to the Helmholtz equations. All large scale
numerical experiments were computed in Matlab using the Ilupack toolbox [2]. We
use a Linux AMD Dual Opteron 1.6 GHz with 16GB memory. The toolbox was compiled
using gcc and g77 with -O flag. The Ilupack toolbox uses Pardiso’s maximum weighting
interface [16].

As test example we consider the model problem

−∆u − k2u = 0 in Ω = [0, 1]2

with boundary conditions

∂u

∂ν
= 0 north and south boundaries

∂u

∂ν
= e−

1

2
(y− 1

2
)2 west boundary

∂u

∂ν
= −iku east boundary

As discretization we use second order finite differences for the Laplacian operator and first
order discretization for the boundary conditions. Thus, the discretized system Ah will be
complex symmetric. It can be decomposed as

Ah = Kh + Sh − k2Mh,

where Kh denotes the stiffness matrix, Mh denotes the mass matrix and Sh denotes the
contribution from the Sommerfeld boundary condition ∂u

∂ν
= −iku. Since we are interested
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Iteration steps (SQMR), backward error 10−12

wave number k 10 20 40 60 80 100
complete LDLT for

Kh + k2Mh 44 132 543 1556 > 2000 —
Kh + Sh − ik2Mh 35 126 679 > 2000 — —

Algebraic multilevel preconditioning for
Kk + k2Mh 65 223 967 2435 3713 —

Kk + Sh − ik2Mh 58 212 1058 2999 — —
Ah 13 17 21 28 34 72

Table 1: Number of SQMR steps: LDL
T versus algebraic multilevel preconditioning

Computation time [sec]

wave number k 10 20 40 60 80 100
Algebraic multilevel preconditioning for

Kk + k2Mh 0.02 0.20 2.90 18.0 55.0 —
Kk + Sh − ik2Mh 0.04 0.20 3.30 24.0 — —

Ah 0.07 0.20 0.53 1.60 3.09 8.60

Table 2: Computational time for the algebraic multilevel preconditioning method

in varying high wave numbers k = 10, 20, . . . , 100, the mesh size hk = 2π/20 needs to be
adapted with respect to the wave number. In our experiments we used approximately 20
grid points per wavelength. For the algebraic multilevel preconditioning parameters we
used ε = 10−2 and κ = 5.

First, we compare the performance of the AMG applied to different parts of the original
system. Here we focus on Kh + k2Mh, Kh + S − h − ik2Mh and finally on Ah itself. The
first matrix Kh +k2Mh is real symmetric positive definite and with respect to the spectral
properties better than using Kh as approximation to Ah (see [8]). Numerical methods
will also compare preconditioners applied to Kh + Sh − ik2Mh and Ah itself. The results
are summarized in Tables 1 and 2.

The numerical example indicates that our algebraic multilevel method can be success-
fully applied to the numerical solution of Helmholtz equations with high wave numbers.
Currently filtering techniques are being developed to improve the preconditioner even
further.
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