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NON-ASSOCIATED PLASTICITY FOR SOILS, CONCRETE AND ROCK 

Summary 

With reference to practical engineering problems it is shown that considerable dif
ferences may be encountered between the results from associated and those from non
associated plasticity theories. Next, the need for a non-associated plasticity theory is 
demonstrated by considering test results for sand, concrete and rock. Elementary mate
rial parameters are discussed such as Young's modulus and Poisson's ratio for the 
description of the elastic properties; and a cohesion and a friction angle for the determi
nation of the strength. The salient difference from associated plasticity theory concerns 
the introduction of a dilatancy angle which controls the inelastic (plastic) volume 
changes. This dilatancy angle is not only a suitable parameter for the description of 
soils, but also appears to be useful for concrete and rock. 

Basically, the paper consists of three parts as we consider three types of models of in
creasing complexity. The first model is a perfectly-plastic model, which employs the 
five aforementioned parameters. It is based on test data rather than on Drucker's hypo
thesis of material stability. The consequences thereof are examined. The second model 
is a straightforward extension of the first model by augmenting it with friction harden
ing and cohesion softening. This novel idea is introduced to account for the degrada
tion of the cohesion of cemented granular materials with increasing inelastic deforma
tion. The model is employed in an analysis which shows that plastic deformations tend 
to localize in thin shear bands, which may occur even before peak strength is reached. 
Finally, a review is given of concepts for modelling hysteresis and strain accumulation 
in cyclic loading. The concept of a bounding surface in addition to a yield surface is dis
cussed and is adapted for use in a sophisticated model for loose and cemented granular 
materials under cyclic loading. 
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N on-associated plasticity for soils, 
concrete and rock 

1 Introduction 

The theory of plasticity is now well established for metals. The hypotheses which are 
assumed in metal plasticity are simple and supported by a large amount of experimental 
evidence. Further, these hypotheses provide a firm basis for an elegant mathematical 
theory in which a number of powerful theorems are incorporated. Here, one may think 
of the uniqueness theorems and the upper and lower bound theorems for the limit load 
in quasi-static loading (Koiter, 1960). This theory will here be referred to as the theory of 
associated plasticity. 

Unfortunately, the fundamental hypothesis which forms the basis of associated plas
ticity and consequently also of the successful application of plasticity theory in the 
design of steel structures, does not hold for other civil-engineering materials like soils 
and concrete. For these materials, experiments have disproved the hypothesis of 
normality (postulate of material stability) as formulated by Drucker (1952, 1964). An 
implication thereof is that design methods for soil and concrete structures, such as slip 
circle methods for slopes and yield line analysis for concrete slabs, cannot rigorously be 
characterized as upper bound approaches. A more severe consequence is that the suit
ability of some constitutive models for use in finite element computations becomes 
questionable. Indeed, some such laws employ associated plasticity. Examples thereof 
are the Drucker-Prager model (1952) and the DiMaggio-Sandler model (1971). Both 
models are treated in the recent book by Chen (1982) on concrete plasticity. We will 
show that such models are not generally useful by considering results for several practi
cal problems. 

The shortcomings of associated plasticity were first recognized for soils and later also 
for rock and concrete. The literature thereofis dispersed over journals and congress pro
ceedings. Yet, in recent text books it has received little attention; outstanding excep
tions are the books by Salenyon (1977) and Smith (1982). Many engineers and scientists 
have had little exposure to the theory of non-associated plasticity; others are familiar 
with fragments of the theory. It is for this reason that this paper not only presents novel 
extensions but also well-established concepts. 

The paper starts with a brief explanation of the phenomenon of shear dilatancy in 
loose granular material (sand) or in a cemented granular material (concrete, rock). 
Next it is shown that a plastically volume-preserving material gives a different 
response upon loading than a material which exhibits plastic dilation. Differences are 
found both with regard to the load-deformation curve and with regard to the limit load. 
The fact that even limit loads may depend on the dilatancy characteristics of the granu
lar material is known, but has as yet hardly been demonstrated by examples. Davis 
(1968) presented an example of compression between rough platens, and this example 
was also used by Zienkiewicz et al. (1975). New examples are given here. In the next 
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chapter typical data as obtained in triaxial tests on sand, concrete and rock are con
sidered. It is shown that associated plasticity cannot describe such test result satis
factorily. The novel element in this chapter is the evaluation of the so-called dilatancy 
angle from test data. 

Chapter 4 contains well-established concepts. The elastic-perfectly plastic model 
described here is the basis of the more sophisticated models considered in the later 
chapters. It is also a useful model for solving practical problems. Indeed, we have put 
the model into practice in many finite element calculations. In some of such problems, 
we encountered some unexpected effects which appeared to be consequences of non
associated plasticity. These consequences are reviewed and discussed in Chapter 5. 

Chapter 6 discusses the mechanism of hardening for frictional materials, and devel
ops some thoughts on hardening models. For concrete and rock, which possess both 
cohesion and internal friction, the situation is more complicated than for sand, as the 
hardening can in principle be applied to the cohesion as well as to the mobilised friction 
angle. Considering triaxial test data, we argue that friction hardening generally gives a 
better description of the test results than cohesion hardening, which is commonly 
applied to describe the hardening behaviour of metals. A particular idea, namely in 
which friction hardening is combined with softening on the cohesion is elaborated in 
the next chapter. This idea seems promising, as it is shown by a simple example that the 
increased ductility at higher stress levels can be accommodated very well within such an 
approach. 

Non-associated plasticity models may give rise to non-unique limit loads and may 
involve unstable structural behaviour, as is shown in Chapter 5 for the perfectly-plastic 
model. Non-uniqueness and unstable behaviour may also be encountered for a harden
ing model. This will be illustrated in Chapter 8, where we will present a shear-band 
analysis. It is shown that non-unique solutions (bifurcations) are possible prior to peak 
strength. Again the theoretical analysis is accompanied by some results from numerical 
calculations. 

The last chapter presents a general overview of plasticity models which aim at des
cribing the stress-strain behaviour of loose granular or cemented granular materials 
under cyclic loading. It is argued that there exists little consensus as to which direction 
should be pursued, but some ideas which seem most promising are discussed in some
what greater detail. By means of an example it is shown that such ideas may result in 
models which can reasonably describe the behaviour of granular materials subjected to 
cyclic loading. 

2 The significance of dilatancy 

Shear dilatancy (or dilatancy for short) of a granular material was first discussed by 
Reynolds (1885). Dilatancy may be described as the change in volume that is associat
ed with shear distortion of an element in the material. Here, an element is assumed to 
be macroscopic and large enough to contain many particles as micro-elements. Consid
er for instance a pack of incompressible spheres arranged in a state of packing as dense 
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as possible. If any shear distortion is applied, the relative positions of the spheres must 
change, and the total volume of the pack must increase. Similarly, if the pack has origi
nally been set up in a very loose state of packing, a shear distortion will cause a reduction 
of the volume of the pack. These volume changes are called dilatancy. It is observed in 
all granular materials, including cemented materials like concrete and rock. 

A suitable parameter for characterizing a dilatant material is the dilatancy angle /fl. 

This angle was introduced by Bent Hansen (1958) and represents the ratio of plastic 
volume change over plastic shear strain. Strictly speaking, this definition is only exact 
in the case of simple shear as will be shown in Section 4.3. When testing a particular 
material, the dilatancy angle is found to be constant near and at peak strength. For soils 
the dilatancy angle is known to be significantly smaller than the friction angle. For con
crete and rock the situation is very similar, as we will show in this paper. 

In order to assess the importance of the dilatancy angle, some problems of practical 
interest will now be treated. The first problem concerns a rigid circular plate which is 
pushed into a granular material (insert in Fig. 2.2). A second problem concerns the 
penetration of a circular cone in a sand bed as illustrated in the insert of Fig. 2.3. For 
simplicity, the granular material is idealized by assuming a bilinear stress-strain curve 
as plotted in Fig. 2.1. This constitutive model involves five material parameters, namely 
Young's modulus E, Poisson's ratio v, a cohesion c, an angle of internal friction rjJ, and 
the abovementioned angle of dilatancy /fl. The mathematical details of this model will 
be given in Chapter 4. 

The loading of a circular foundation plate is a classical problem in soil mechanics. We 
performed a finite element analysis for the purpose of examining the influence of the 
dilatancy angle /fl. The plate is taken to be perfectly smooth and the granular material is 
initially stress free. The weight of this material is neglected. This problem was analysed 
for two different dilatancy angles, one giving no dilatancy at all (that means a plastically 
volume preserving model), the other giving an extremely high degree of dilatancy. 

Obviously, the initial slopes of the load-displacement curves must coincide as the 
material behaves in an entirely elastic manner at the onset ofloading. Because of stress 
concentrations, plastic zones will develop near the edge of the plate under continued 

Fig. 2.1 Bilinear idealisation of triaxial test results. 
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loading. As will be explained in greater detail in subsequent chapters, the behaviour 
and the spread of the plastic zones will be influenced by dilatancy. Indeed, it can be 
observed from Fig. 2.2, that the load-displacement curves deviate more and more as the 
load increases. The response of the strongly dilatant is simply much stiffer than the 
response of the non-dilatant (plastically volume preserving) material. At some load 
level the plastic zones will have spread underneath the plate and failure will occur. 
Despite the differences in load-deformation behaviour, it appears that both curves yield 
the same failure load as indicated by the dashed line in Fig. 2.2. The computed limit 
load may safely be relied upon as it closely agrees with a rigid-plastic, semi-analytical 
solution by Cox et al. (1961). Cox solved the problem for the (strongly) dilatant mate
rial and obtained p = 20.1 c, in which p is the average plate pressure at failure, and c 
is the cohesion ofthe material. In contrast with Cox's solution, the finite element calcu
lation not only gives the limit load, but yields the entire load-displacement curve. 

20 
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Fig. 2.2 Finite element results for plate indentation; the limit load does not depend on the dila
tancy angle 1jI. 

The above plate loading problem is somewhat artificial as the plate was considered to 
be perfectly smooth. In such a situation the material can displace freely along the bot
tom of the plate. As a consequence, the material underneath the plate is more or less 
free to move towards the edge, giving an upheave of the adjacent surface. In the begin
ning of this section, dilatancy was defined as the change in volume associated with a 
shear distortion. Clearly for a given shear distortion, a material having more dilatancy 
will show a greater volume increase than a material showing less dilatancy. So we will 
generally observe that a material with a greater dilatancy angle will show a greater 
volume increase than a material with a small dilatancy angle. If, as in the present 
example, the material is free to flow away to a nearby free surface, we will only observe a 
somewhat stiffer behaviour for the more dilatant material, but no or virtually no effects 
upon the limit load. However, the situation is different when the material cannot easily 
be conveyed to a nearby boundary. Here, we may envisage situations such as deeply 
embedded anchors in soil or ribbed steel bars in massive concrete structures. When 
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Fig. 2.3 Finite element results for cone indentation; the limit load depends on the dilatancy 
angle 1fI. 

such an anchor or metal bar is pulled out of the granular material, the limit load will 
certainly be influenced by the intensity of the dilatancy. For such so-called kinematical
ly constrained problems a more dilatant material will involve a higher failure load. This 
phenomenon will be explained more fully in Chapter 4. 

An example involving a kinematically (slightly) more constrained configuration is 
given in Fig. 2.3. It concerns a circular cone which is pushed into a sand bed. Several 
such computations were performed by Zaadnoordijk (1983). Similarly to the plate prob
lem, the response of the material is stiffer as the dilatancy angle increase. Now the load
carrying capacity also increases. In structural mechanics kinematically constrained 
situations are less common than in soil mechanics. For concrete beams and slabs the 
dilatancy is so easily conveyed to the nearby boundaries that the dilatancy angle does 
not influence the failure loads. For such one- and two-dimensional structures a limit 
analysis can be performed on the basis of strength parameters alone, and the results of 
such analyses can still be used with confidence in most cases, despite the fact that upper 
and lower bound theorems (see Koiter, 1960) are strictly speaking no longer valid. For 
truly three-dimensional structures however, we may again expect that the dilatancy 
angle affects the load-carrying capacity. This is exemplified by the dome structure of 
Fig. 2.4, which was analysed using the DIANA computer program. The other sample 
problems were solved using the PLAXIS finite element program (De Borst and Ver
meer, 1984). 

_ non-associated 
concrete ~ ::8.60 

Deflection 

associated, ~;;; ¢ 

UlH P 

concrete c:: 6.7 MPa 

~ 033.6" 

reinforcement: c:: 206.5 MPa 

Fig. 2.4 Finite element results for a dome structure; associated plasticity underestimates the 
deflection. 

9 



3 Triaxial compression tests and elementary parameters 

Uniaxial compression tests are probably the most widely used tests for concrete. A 
simple extension of this type of test is the triaxial compression test, which has found 
widespread application for soil testing. Ideally, a triaxial test should permit indepen
dent control of all three principal stresses (Fig. 3.1a), so that general states of stress can 
be examined. Such tests, however, require rather sophisticated apparatus, which pre
cludes the use thereof for other than research purposes. Therefore, cylindrical speci
mens are tested in the usual triaxial apparatus. These specimens are sealed in a rubber 
watertight membrane and are enclosed in a cell in which the specimens can be sub
jected to a fluid pressure. Next, the axial stress is increased, so that it becomes the major 
compressive stress. The other stresses remain equal to the cell pressure. Thus, a uni
axial test can be conceived as a triaxial test without cell pressure. 

Fig. 3.1 Cuboidal specimen for true triaxial and cylindrical specimen for common triaxial 
apparatus. 

Axial Strain 

I a) I b) Ie) 

Fig. 3.2 Typical triaxial test results for a loose or a cemented granular material. 

Under compressive stress the test results for soils, rock and concrete are essentially 
similar. A stress-strain curve typical of the behaviour in a standard triaxial test is shown 
in Fig. 3.2a. The curve consists of three parts. Section I is nearly linear, section II is 
of a monotonically decreasing slope and the post-peak region III is characterized by a 
negative slope of the curve. In terms of plasticity theory we speak of elastic behaviour, 
hardening behaviour, and softening behaviour respectively. For cracked rock the stress
strain curve may initially be concave due to the closing of micro-cracks in the beginning 
of loading (see Fig. 3.3). 
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Fig.3.3 Uniaxial compression test results for rock after Michelis (1981). 

In the following we will discuss the stress-strain curve in greater detail. The novel 
element in our treatment is the introduction of an equation for the evaluation of the 
dilatancy angle If/ from triaxial test data. Using this equation we will show that we need 
non-associated plasticity theory. At present there is much debate on the need of non
associated models for concrete. Chen (1982) argues that there is very little experimental 
evidence to decide in favour of either associated or non-associated plasticity. By an 
evaluation of existing test data, we will show the need for non-associated plasticity. 

3.1 The elastic region 

At the onset ofloading, the behaviour of a specimen may be approximated as elastic, as 
all deformations are recovered upon unloading. Here, a loading-unloading cycle pro
duces so little hysteresis that energy dissipative processes are negligible. Hence there is 
little or no microcracking in a concrete specimen and hardly any particle rearrangement 
in a soil specimen. Consequently, Hooke's law may be applied. Ifwe assume isotropy, 
two constants then suffice for the description of the material behaviour, namely 
Young's modulus E and Poisson's ratio v. 

For concrete, the values for Young's modulus are in the range between 20 and 40 
GPa, which is about a thousand times larger than the values which are common for 
sand. Young's modulus of rock may either approach the typical values for sand or 
exceed values for concrete, depending on the porosity ofthe material. Better agreement 
exists for Poisson's ratio. For concrete, most reported values are in the range 0.15 to 0.2. 
For soils, they are in the somewhat wider range of 0.0 < v < 0.3. Poisson's ratio can only 
be determined ifboth the axial strain and the lateral strain are measured. In soil testing, 
the lateral strain is seldom measured directly. The volumetric strain is measured 
instead. 
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3.2 The hardening regime 

The initiation of the hardening behaviour is gradual and not clearly defined. In this 
stage of the test the deformation becomes more and more inelastic due to micro
cracking in concrete and rock and due to particle sliding in soil specimen. Here, the use 
of non-linear elasticity would lead to an inconsistent and inaccurate description, as such 
theories predict continuing contraction of the specimen under continued loading in 
compression. Such a prediction is disproved by experimental evidence (see Fig. 3.2b), 
which shows a dilatant volume increase at subsequent loading. This phenomenon is 
caused by frictional sliding, either along particles or along micro-cracks (see Fig. 3.4). 

velocitY~ 

~lift 

Cemented granular material Loose granular material 

Fig. 3.4 Sliding at microcracks and sliding between groups of particles; both cases give dilation. 

Figs. 3.6 and 3.7 show that such a dilatant volume increase is characteristic not only of 
sandy soils, but also of concrete and rocks. Anticipating a more rigorous discussion on 
dilatancy, we will now introduce some concepts from plasticity theory which are rele
vant to the description of this phenomenon. To this end, it is first necessary to introduce 
a basic assumption from plasticity theory: 

(3.1) 

This equation states that the total strain rate is the sum of an elastic and a plastic contri
bution. As in the sequel, the superscripts e and p denote elastic and plastic quantities 
respectively, while a symbol in bold type means that we are dealing with a column 
matrix. A dot above a symbol implies the material time derivative. For readers not 
familiar with plasticity theory this dot may be somewhat confusing, because in common 
plasticity theory time is not taken into account, but merely serves as a parameter which 
controls the sequence of the loading process. Consequently, viscous effects are not 
included in this formation, so that we are essentially dealing with an inviscid material 
model. 

N ear the end of the hardening regime the axial stress hardly increases and this means 
that the elastic strain rate is almost zero, so that all further strain increments are of a 
plastic nature. Then the fundamental observation is that there exists a linear relation 
between the volume change and the change of the axial strain (Fig. 3.2c); the so-called 

rate of dilation is found to be a constant. We formulate this observation by means of the 
equations: 
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(3.2) 

(3.3) 

where If! is a constant, which is commonly called the dilatancy angle. In soil mechanics 
literature the dilatancy angle is defined for plane strain conditions, using another equa
tion. In Section 4.4. it will be shown that the above equation holds for triaxial compres
sion conditions as well as for plane strain conditions. 

3.3 The softening regime 

Stress-strain curves from conventional triaxial tests show peaks; these are strongly 
marked for dense sands and also for rocks and concrete when tested at low confining 
pressures, but are very smooth in the case of loose sands and also for concrete and rock 
when tested at high confining pressures. The marked peaks are partly caused by thin 
shear bands (or faults), which separate the specimen in two more or less rigid bodies. 
For such macroscopic non-uniform deformations the strain measurements are no 
longer objective. The situation is comparable to the necking of a steel bar in a tensile 
test, where the length of the bar influences the measured strain. Similarly, the faulting 
or bulging of specimens in triaxial compression tests leads to marked peaks and non
objective strain measurements. As a consequence, the final sections of the stress-strain 
curves in the Figs. 3.2a and 3.2b cannot be used to derive material constants. The axial 
strain-volumetric strain curve of Fig. 3 .2c is much more useful. Indeed, the magnitude 
of the strain increments is incorrectly measured, but the strain rate ratio is not so strong
ly affected by the localization into a shear band. Hence the dilatancy angle can be meas
ured with acceptable accuracy despite the non-uniformity of the deformation. 

Apparently, common triaxial compression tests are not reliable in the softening 
. regime due to the fact that it is virtually impossible to retain a uniformly deformed 

specimen in this range. For this reason, special tests with more objective strain meas
urements have recently been performed on a very dense sand (Hettler and Vardoulakis, 
1984). The stress-strain curves resulting from these tests show a very smooth peak as 
shown in Fig. 3.5a. This strongly indicates that the marked peaks for dense sand which 
are found in common triaxial tests are indeed largely caused by shear bands and other 
non-uniform deformations. For concrete the situation is more complicated, since 
tensile-type fractures occur when the specimen is tested at low cell pressures. However, 
at higher cell pressures concrete and soils again show similar characteristics. An analyti
cal examination of shear-band formation will be given in Chapter 8. 

In Fig. 3.5b, an axial strain-volumetric strain curve is given for a dense sand. From 
this figure we obtain a slope of - 0.7 for ie/ill' which may be substituted into equation 
(3.2) to obtain If! = 15°. This value is typical of a very dense sand, whereas loose sands 
have dilatancy angles of just a few degrees, and normally consolidated clays show no 
dilatancy at alL 

For concrete and rocks we observe essentially the same trend, as can be seen in Figs. 
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Fig. 3.5 Triaxial test results for a dense sand after Hettler and Vardoulakis (1984). 

-12 E, (%) 

3.6 and 3.7, in which plots similar to the one in Fig. 3.5b are displayed for some rocks 
and concrete. Applying formula (3.2), we obtain values for the dilatancy angle ranging 
from 12° to 20° for the rocks. Michelis (1981) also presents data for cell pressures of 
about 200 MPa showing dilatancy angles of 6° to 9° at extremely large pressures. The 
concrete data of Fig. 3.7 can be worked out to give I/f = 13°. Like that of rock and soils, 
the dilatancy of concrete vanishes at high confining pressures. This trend is observed in 
data given by Traina (1983) for a low-strength concrete. Hence, it appears that all values 
for the dilatancy angle are approximately between 0° and 20° whether we are dealing 
with soils, concrete or rocks. Finally, it is remarked that a material can of course not 

U = -19 

90 u3 =-14 90 

-E, % ~ E, 0/0 

Ey 0/0 Ey 0/0 

-14 

'72 

0 
0 -4 -8 'II E,% -8 -11 E,% 

Tests on granulated marbte Tests on intact marble 

Fig.3.6 Triaxial test results for rocks after Michelis (1981); in contrast with Fig. 3.3 there is no 
basic difference between intact and micro-cracked rock. 
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Fig.3.7 Replot of triaxial test result for a high-strength concrete after Green and Swanson 
(1973). 

dilate infinitely. Indeed, after intense shearing the dilatancy angle gradually vanishes 
and any subsequent shearing causes no more volume changes. 

3.4 Strength parameters 

Having considered deformation parameters such as E, v and I/f, we will now consider 
strength parameters. From triaxial tests performed with different cell pressures it is 
found that the peak strength increases as a function of the cell pressure. From an engi
neering point of view a linear strength criterion a1 = a + ba3 is usually accurate enough. 
This criterion can be rewritten as: 

(3.4) 

with c the cohesion of the material and ¢ the angle of internal friction. For soils, most 
values for the angle of internal friction are between 15° and 45°, where values up to 30° 
are typical of clays and the larger values are found for sands. For concrete, most reported 
values are in the range of 30° < ¢ < 35°. Because of this rather narrow range the cohe
sion is almost entirely determined by the uniaxial compression strength 

1- sin ¢ 
c= - a = -0.3a 2 cos ¢ (3.5) 

Note that compressive stresses are treated as negative, so that the constant a in the 
strength criterion a1 = a + ba3 is negative. The data of Fig. 3.5a are well fitted by the 
parameters a = 0 and b = 5.3. These values may be used to calculate c= 0 and ¢ = 43°, 
being typical of a very dense sand. 
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It thus appears that the friction angle is generally much greater than the dilatancy 
angle, whether we consider soils, concretes or rocks. This observation implies that a 
non-associated plasticity theory should be employed for these materials. 

4 The non-hardening model 

For stability analyses a non-hardening model (Fig. 2.1) leads to results that are often as 
good as those obtained by the use of more complicated material models. Since factors 
such as simplicity and computer-run time must be considered, an efficient computer 
program should incorporate a non-hardening model as a first option. We will therefore 
first elaborate a model which neglects the effect of hardening or softening of the mate
rial. In the first sections of this chapter we will confine ourselves to conditions of plane 
strain. In soil mechanics, plane-strain situations (dams, sheets pilings, retaining walls) 
are as common as plane-stress situations are in structural mechanics (beams, slabs, 
shells). The restriction to plane-strain conditions is not essential, as it will be shown in 
Section 4.4 that the model can easily be extended to general three-dimensional stress 
states. 

This chapter is of a somewhat elementary nature. It is included for readers who are 
not very familiar with non-associated plasticity theory. 

4.1 General equations for plane strain conditions 

The definition of plane deformations is given by the following equation for the matrix of 
strain components 

tyXY 

Wn 1 ['" 
1 

~l [ '" iYxy 

tyyX 
eyy tyyZ = ~yyX eyy (4.1) 

iYzx ~yZY ezz 0 0 

These strain components refer to a rectangular Cartesian coordinate system X,y, z. For 
such two-dimensional states of strain it is useful to introduce the computer oriented 
notation 

c = (exx eyy Yxy (4.2) 

where the superscript T denotes a transpose. The general rule of plasticity is that the 
strain rate c is resolved into an elastic contribution ce and a plastic contribution CD (see 
equation (3.1»). Hooke's law is used for the elastic strain rate, giving 

[ a" [ 1 -, 
0 

[' 
v v exx 

E v I-v 0 'e a yy v eyy 

=(1-2v)(1+v) ~ 0 }- v 0 'e ( 4.3) 
axy Yxy 

0 I-v 'e 
(J zz v ezz 
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or in abbreviated symbolic notation 

(4.4) 

Using equation (3.1) we obtain: 

. D(" "P) (1= e-e (4.5) 

Obviously, this equation is incomplete as it has to be complemented by an expression 
for the plastic strain rate. This matter will be discussed in the next sections. 

4.2 The yield junction j 

We will consider a macroscopically homogeneous element of granular material. The 
element is in static equilibrium and uniformly stressed as is shown in Fig. 4.1a. The 
shear component and the normal component of the traction on an arbitrary surface 
element are denoted as Tn and (jn respectively. The Mohr-Coulomb strength criterion 
postulates, in analogy with the law of dry friction between two sliding surfaces, 

(4.6) 

Fig. 4.1 Coordinate system and stress circle for a material element in plane state of strain. 

for any particular surface element. Tensile stress components are treated as positive, as 
is usual in continuum mechanics. The Mohr-Coulomb criterion can also be formulated 
in terms of stress tensor components. Here one should realize that the criterion simply 
means that all possible stress circles are bounded by the cone-type envelope in Fig. 
4.1 b. This can be expressed by the equivalent criterion 

T~' - (j* sin rp - c cos rp <, 0 (4.7) 

where (j* is the centre of the stress circle, 

(4.8) 

and T* is the radius of the stress circle, 

(4.9) 
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Note that r* is half the difference between (JI and (J3, so that the equations (3.4) and (4.7) 
are identical. For rp = 0° the Coulomb criterion reduces to the well-known Tresca criter
ion for metals. Tresca proposed his criterion in 1864, and his ideas were probably in
fluenced by the earlier work of Coulomb. 

In plasticity literature a so-called yield function (often denoted by the symbol!) is 
commonly employed to distinguish plastic from elastic states. Ifwe define for the Mohr
Coulomb criterion: 

/= r* - (J* sin rp - c cos rp (4.10) 

we see that equation (4.7) can be abbreviated as: 

(4.11) 

The function/is negative as long as the stress circle makes no contact with the Coulomb 
envelope, while it vanishes when they touch. The material cannot sustain a stress circle 
that intersects the envelope (this would imply /> 0). Hence, a material element is said 
to be in an elastic state ifj< 0, and in a plastic state when/= O. Obviously, an element 
may pass from an elastic state to a plastic state and vice versa. For plastic yielding, the 
element needs to be in a plastic state (1= 0), and to remain in a plastic state (i= 0); 
otherwise the plastic strain rate vanishes. Hence 

eP = 0 for / < 0 or (j < 0 and / = 0) (4.12) 

otherwise there is yielding. Thus, the first condition refers to an element in an elastic 
state, while the second condition refers to an element which passes from a plastic state 
to an elastic state (unloading). 

4.3 Flow rule and plastic potential 

In contrast with elasticity theory, where a one-to-one correspondence exists between 
the total stresses and the total (elastic) strains, such a unique relation does not exist be
tween the plastic strains and the stresses. Instead, the plastic strain rates are assumed 
to be derived from a scalar function g of the stresses as follows: 

eP =A :! (4.13) 

Here, A is a non-negative multiplier ifplastic loading occurs (1= 0 andj = 0), whereas it 
vanishes under condition (4.12). It is emphasized that the multiplier A has no physical 
meaning at all. It can for instance not be identified with a viscosity. How this multiplier 
is computed will be considered in Section 4.5. 

The function g is called the plastic potential function. For planar deformations of 
granular material, whether cemented or not, a suitable definition for g is (Radenkovic, 
1961): 

g= r* - (J* sin If! + constant (4.14) 
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where IjI is the dilatancy angle as discussed in the preceding chapters. This particular 
plastic potential closely resembles the (Mohr-Coulomb) yield function/, the only dif

ference being that the angle of internal friction ¢ inl is replaced by the dilatancy angle 
1jI. Differentiating g with respect to the stresses, we obtain the flow rule 

(4.15) 

In actual computations we thus need the flow rule rather than the plastic potential func
tion g itself. 

In order to understand this flow rule, it is helpful to consider the equation 

sin IjI = e~/"? ( 4.16) 

which follows from the flow rule using 

'p 'p 'p 'p 'p 'p 
ey = exx + eY)' + e7l = exx + eyy 

( 4.17) 
.p-J(.p .p)2 (·P)2 

Y - exx - eyy + Yxy 

The definition ofyP compares with definition (4.9) of the shear stress and yP is referred 
to as the rate of plastic distortion. The above equations give the meaning of the dila
tancy angle. This angle sets the ratio of two plastic strain rates, namely the rate of plastic 

volumetric strain and the rate of plastic distortion. This definition is in agreement with 
definition (3.2), as we can also write: 

U sing the additional equation e~ = 0, we can derive equation (3.2) from equation (4.16). 
The physical meaning of IjI can be even better understood by considering a shear box 

test as indicated in Fig. 4.2. The material at the interface between the two halves of the 
box forms a thin rupture zone. For most of this shear zone there will be no parallel 
strain, that is 

In the beginning of the shear-box test the parallel stress a.\X may change to cause some 

Fig. 4.2 The model predicts an uplift angle IjI for shear bands. 
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elastic strains, but finally (J xx will be constant so that both the elastic contribution and 
the plastic contribution vanish: 

i~x = 0 • P /. P 
eyy Yxy = tan IfI 

The latter equation is obtained by substituting the former in the equations (4.16) and 
(4.17). Let v be the vertical velocity and it the horizontal velocity of a material point in 
a rupture zone. We then find 

v/it = tan IfI 

Thus, IfI is the uplift angle in a shear band. 

4.4 Extension to three-dimensional stress states 

In the foregoing, the discussion concentrated on planar deformations. Especially for the 
Mohr-Coulomb failure criterion, extension to three-dimensional stress states is 
straightforward, although particular difficulties may occur at some points of the yield 
§urface. For this purpose, we first rewrite the yield function in terms of principal 
stresses. Noting that we have for the major ((JI) and minor ((J3) principal stress respect
ively 

(JI = - ((J* + r*) (J3 = - ((J* - r*) 

we can replace equation (4.7) by the equivalent formulation 

j= ~((J3 - (JI) +H(J3 + (JI) sin rjJ - c cos rjJ 

Again, yielding now occurs if j = 0 and j = o. 

( 4.18) 

The yield condition j = 0 describes an angular yield surface in the principal stress 
space as shown in Fig. 4.3. Many researchers have performed true-triaxial tests for the 
purpose of establishing the yield surface empirically. Unfortunately, the various test 

·17, 

Fig. 4.3 Mohr-Coulomb yield surface in principal stress space. 
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results give somewhat different surfaces. It thus seems that the test results are 
influenced by the type of triaxial apparatus. Some devices have stiff platens on all six 
sides of the specimen, other have flexible fluid bags on the sides or a combination of 
both. We consider those types of apparatus which have the same conditions on all sides 
of the specimen to be most reliable. Test results for sand which were obtained by such 
an apparatus, have amongst others been published by Goldscheider (1984). They are 
represented by the dots in Fig. 4.4.a. The experimental results hardly deviate from the 
Coulomb surface. Experiments on concrete (see for instance Gerstle et a!., 1978) show 
the same trend, although more curvature is found (Newman, 1979). For most engineer
ing purposes, however, the observed deviations from the Coulomb surface are not large 
enough to introduce another, more complicated surface. Note that Figs. 4.3 and 4.4 are 
such that ()2 is not necessarily the intermediate principal stress . 

. IT, 

. IT, 

"..- -.... .... "-.... "-
mode~ -~-r- ',-Goldscheider 
~ "'5 / , 

/ \ 
/ \ 

Yield surface Plastic pot-entiat 

I, I Ibl 

Fig. 4.4 Model versus true-triaxial test data for a dense sand. 

It is seen from equation (4.18) that the intermediate principal stress (()2) does not 
influence the conditions for yielding. This property is a notable characteristic of the 
Mohr-Coulomb failure criterion. Moreover, the flow rule for the Mohr-Coulomb (and 
also for the derived Tresca) criterion predicts that there is no plastic straining in the 
direction of the intermediate principal stress. This can be deduced by writing the plastic 
potential (4.14) in terms of principal stresses also. Similarly to equation (4.18), we 
obtain: 

(4.19) 

Differentiating this with respect to the principal stresses, we obtain for the principal 
plastic strain rates 
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[ ~) 1 [ -Hl- sin 1fI) 1 
e~ = A 0 
d' HI + sin 1fI) 

(4.20) 

which proves the assertion. 
The observation that the intermediate principle stress does not influence the Mohr

Coulomb yield criterion makes a generalization to three-dimensional stress states fairly 
straightforward. For the three-dimensional situation, the stress vector has the com
ponents 

( 4.21) 

Similarly, the strain vector has the components: 

( 4.22) 

In a similar way, the elasticity matrix D can be adjusted to form a 6 ':' 6 matrix instead of 
a 4 * 4 matrix. For any given stress state 0, we can compute the principal stresses at, a2, 
a3, and arrange them such that 

Next, we can use al and a3 and substitute them into the yield condition (4.18) in order to 
check whether plasticity occurs. If this happens to be the case, equation (4.20) can be 
used to compute the principal plastic strain rates. 

In reality, we are not so much interested in the principal plastic strain rates, but mere

ly in the ordinary plastic strain rates, as we wish to keep track of the direction in which 
plastic straining occurs in the Cartesian x, y, z-space. To this end, we express the quan
tities a'" and r'~ in the stress invariants p, J2 and 0 ; 

a* = M cos 0 - p 

r* = -If];. sin 0 

where the invariants, p, J2 and 0 are defined as: 

p=±(aJ+ a2+ a3) 

J2 = t[(al - a2)2 + (a2 - a3)2 + (a3 - al):'] 

sin 30 = _ -J3 (al- p)(a2 - p)(a3 - p) 
2 J2M 

Using these expressions for a* and r*, the plastic potential now becomes: 

g = M cos 0 - [-If];. sin 0 - p] sin If! + constant (4.23) 

from which the plastic strain rates can be derived by differentiation. Goldscheider 
(1984) measured the direction of the plastic strain increment slightly prior to peak 

strength. Using this data, we derived the dashed plastic potential curve in Fig. 4.4b. It is 
fairly well fitted by the angular curve for g which is defined by equation (4.23). 
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A complication arises if two of the principal stresses are equalleither (JI and (J2 or (J2 

and (J3). Suppose that we have (J2 = (J3, which happens to be the case in common triaxial 
tests. Then we have two yield conditions which vanish: 

.Ii = ±((J3 - (JI) + H(J3 + (JI) sin rP - c cos rP = 0 

./2 = ~((J2 - (JI) + ~((J2 + (JI) sin rP - c cos rP = 0 

At such a point, at which yielding occurs according to two yield conditions, the total 
plastic strain rate can be conceived to be the sum of the individual contributions of 
either of the two flow rules (Koiter, 1960). We thus have 

'p agl ag2 

c =..11 au +..12 au (4.24) 

so that we have to determine two multipliers AI and ..12. The plastic potential functions gl 

and g2 are defined in analogy with.1i and./2: 

gl = ~((J3 - (JI) + ~((J3 + (JI) sin If/ + constant 

g2 = ~((J2 - (JI) + H (J2 + (JI) sin If/ + constant 

When using these functions, it follows from equation (4.24) that 

iIi = ~(AI + ..12)( - 1 + sin If/) 

and consequently 

sin If/ = ie/( - 2i) + ie) 

How such corner points are to be treated in a computer program, is beyond the scope of 
the present paper. It is merely noted that several approaches are possible. One of the 
classical approaches is due to Nayak and Zienkiewicz (1972) and consists in using only 
one yield function in combination with a rounding offprocedure for points at which two 
planes of the yield function meet (so-called corner points). The authors use a different 
procedure in which equation (4.24) is incorporated exactly. For a detailed treatment 
thereof, the reader is referred to De Borst (1982a, 1982b). 

4.5 The incremental stress-strain relation 

In order to express the constitutive model in a matrix equation, we substitute equation 
(4.13) in (4.5) to obtain: 

(4.25) 

where we recall that A equals zero for elastic states and for unloading. For loading (1=0 
andj= 0) the multiplier A can be calculated from the condition that an element remains 
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in a plastic state when it yields. For a non-hardening material this so-called consistency 
condition is written as 

. aj. aj. aj. aj. 
j=-a-axx+-a-aYY+-a-aXY+-a azz=O axx (Jyy (Ix), (lzz 

or in matrix notation 

( 4.26) 

The expression for A is now obtained by substituting equation (4.25) into the consis
tency condition. This gives 

(4.27) 

where 

( 4.28) 

(4.29) 

These equations do not seem to be very tractable. This is not true as for the Mohr
Coulomb failure condition for instance we can easily deduce that 

( sin If! sin ¢) 
d= G 1 + 1- 2v 

where G is the elastic shear modulus. The stress-strain law is finally obtained by sub
stituting the expression for A in equation (4.25): 

. [ 1 T]' 0'= D- J ab e (4.30) 

In general, this equation cannot be integrated analytically to obtain the resulting 
stresses for a given strain history, so that numerical procedures are needed. Here, a con
siderable number of numerical schemes are available, ranging from simple Euler 
forward-marching schemes to implicit schemes which take account of higher order 
derivatives. Especially for pressure-sensitive materials the choice of such an integration 
scheme is very critical and may significantly influence the results (Vermeer, 1980). 

4.6 Discussion oj the peifectly-plastic model 

In order to avoid the angular form of the Coulomb yield surface, several approximations 
have been proposed. Certainly, the right circular cone of Drucker and Prager (1952) is 
the simplest option. Unfortunately, the circular cone approximates the Coulomb sur
face very poorly for higher friction angles, say ¢ > 30°, which are found for sand and 
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concrete. For high friction angles we almost have a triangular cone (see Fig. 4.4.a), and a 
triangle certainly does not resemble a circle. The Drucker-Prager approximation is use
ful for soft clays with low friction angles but not for sand, rock or concrete. More accu
rate smooth surfaces have been proposed by Lade and Duncan (1975), and by Matsuoka 
and Nakai (1982). Recently Lade (1983) has also compared his criterion for concrete 
data. For a further discussion of smooth and angular yield surfaces the reader is referred 
to Section 7.4, where we will also briefly touch upon the so-called "tension cut-offs". 

Obviously, the assumption of perfect plasticity is by far the most rigorous. It has been 
adopted merely as a first approximation to the behaviour of real granular materials, and 
this first approximation is useful mainly for three purposes: 

- The calculation of limit loads: more sophisticated models generally cost more com
puter time, whilst the limit loads are not calculated much more accurately. 

- The estimate of displacements and stresses in non-homogeneous soil and rock 
masses where we have relatively little data so that there is no point in the application 
of more sophisticated models. 

- It is a good introduction into the behaviour of granular materials. 

Another important idealization has tacitly been assumed. When choosing the Cartesian 
coordinate axes in the directions of the principal axes of stress, the model yields y~y = 0 
independently of the stress increments applied. The model has the property that the 
plastic strain rate is coaxial with the principal axes of stress. For non-rotating stress 
axes, as occur in most testing devices, this seems plausible, but it is not rational when 
the axes rotate. For a theoretical treatment of this subject the reader is referred to De 
Josselin de J ong (1971), to Rudnicki and Rice (1975) and to Vermeer (1981). Deviations 
from coaxiality have for instance been found in experiments on crushed glass, which 
have amongst other been carried out by Allersma (1982). Throughout this paper we 
adopt the idealization of coaxiality, as it facilitates the implementation and operation of 
plasticity models in finite element codes. Nevertheless, considering the increasing 
enhancement of numerical capabilities, we expect that non-coaxial models will become 
operational in the future. 

5 Some consequences of non-associated plasticity 

Numerical solutions of practical problems have already been shown in Figs. 2.2, 2.3 and 
2.4. All the load-deflection curves have a small linear elastic portion and then a por
tion of decreasing slope. It depends on the particular problem whether or not a limit 
point is found where the load-deflection curve has a slope equal to zero. Limit points 
are, for instance, found for the indentation problems in the Figs. 2.2 and 2.3 but not for 
the dome structure in Fig. 2.4. The curves in Fig. 2.2 show a post-peak regime with some 
softening, but this is due to numerical inaccuracies. However, the use of the present 
model may well lead to real softening, that is, a negative slope of the load-deflection 
curve. We happened to find this behaviour when calculating load-displacement curves 

for simple-shear tests (e.g. Fig. 5.4). These tests are widely used for soil and currently 
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also in some research projects for concrete, for example by Sture (1983) and by Chris
tensen and Willam (1983). 

5.1 Softening and hardening in isochoric simple-shear tests 

The shear-box test as depicted in Fig. 4.2 has fallen from favour as an instrument offun
dam ental research because it tends to give non-uniform stresses in the rupture zone 
(see for instance Christensen and Willam, 1983). In order to obtain uniform stresses, a 
so-called simple-shear apparatus was developed (Roscoe, 1953). A particular version of 
this device is shown in the insert to Fig. 5.1. Unfortunately, uniformity of stresses and 
strains is not generally achieved (Wood and Budhu, 1980), but we will assume an ideal 
test with full uniformity. 

The apparatus in Fig. 5.1 is such that all normal strains can be kept equal to zero, so 
that we have a so-called isochoric test (no volume changes). We consider such a test for a 
sand with 

E= 45 MPa, V= 0.2, c= 0 

These particular data follow from the experimental curves in Fig. 3.5. For the initial 
stress state in the specimen, we assume an = - 100 kPa, axx = azz = - 25 kPa and 
aX) = O. During the test all strain rates vanish, with the exception of the shear-strain rate 

So equation (4.14) simply gives 

aXY = (D33 - ~ a3b3) (5.1) 

Numerical integration of this equation then results in the curves of Fig. 5.1. The upper 
curve is obtained for a dilatancy angle ofl5°. Despite the use of a non-hardening model, 
this curve shows hardening. Indeed, the slope of the curve gradually decreases to reach 
a constant, but positive value. So elastic-perfectly plastic models do not necessarily 

0.01 0.02 Yxy Uyy ~ - 100 

inirially uxx =: - 25 kPa 

Fig. 5.1 Computed responses of sand in isochoric shear tests. 
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involve limit loads. Indeed, for the particular case of rjJ = 1(/, which is commonly referred 
to as associated plasticity in contrast to non-associated plasticity (rjJ =t= 1(/), we observe 
that there exists no limit load. 

When using a negative dilatancy angle, we find the lower curve in Fig. 5.1. This stress
strain curve gradually approaches a line with a negative slope. In other words, harden
ing is followed by softening and during this unstable behaviour the shear resistance 
vanishes completely. Slightly negative dilatancy angles are characteristic of extremely 
loose sands as are found along some coastal lines of the Netherlands. The present con
stitutive model explains the sudden liquefaction phenomena as observed on some such 
coasts. The computed softening is somewhat surprising as the model is based on perfect 
plasticity, but we will see that this is a merit of non-associated plasticity. 

In plasticity literature (for instance Drucker, 1952) softening behaviour is referred to 
as unstable. In fact, the equilibrium is unstable under dead load, and it would be more 
accurate to say "potentially unstable", but all softening is conveniently referred to as 
unstable. In order to arrive at a better understanding of the phenomenon, it is helpful to 
consider the stress path for the isochoric shear test by plotting the major and minor prin
cipal stresses (al and a3) in a stress plane. The stress path begins at the point A in Fig. 5.2 
with a1 = - 100 kPa and a3 = - 25 kPa. Then the stresses are more or less controlled by 
the elastic volume change 

'e E ( . . .) E 1 + v (. . ) 
Bv = 1 _ 2v a1 + a2 + a3 = 1 _ 2v a1 + a3 (5.2) 

The first identity follows from Hooke's law and the subsequent derivation is obtained 
by substituting the plane-strain condition 0-2 = v (0- 1 + 0-3), In the beginning of the test 
the strains are entirely elastic, so that the condition of zero volume strain implies 

(5.3) 

This gives the elastic stress path A-B in Fig. 5.2. 
The stress point B is on the yield locus for/= 0, and from this point on plastic strains 

'°3 

Fig.5.2 The negative ness of i?i: p and uTi: explains the unstable. lower curve in Fig. 5.1. 
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develop, including plastic volume change when 1(/ is non-zero. Then an elastic volume 
change is needed to compensate for the plastic volume change. For a negative dilatancy 
angle, plastic contraction must be balanced by elastic expansion, or in formula 

(5.4) 

The elastic expansion gives rise to tensile stress increments, so that the existing com
pressive stresses will vanish. This is visualised by the stress path B-C in Fig. 5.2. Here, 
the stress-rate vector is tangent to the yield locus (J = 0) and points in the direction of 
the origin (0- 1 + 0-3 > 0). In Fig. 5.2 we have also plotted the plastic strain rate as a vector. 
Then it is seen that the plastic strain-rate vector forms an obtuse angle with the stress
rate vector. As a consequence the inner product is negative, or in formula 

(5.5) 

This is the usual definition of unstable material behaviour. The negativeness of the 
above inner product is a necessary but not a sufficient condition for softening behav
iour. For softening we need to consider the inner product of the stress rate and the total 
strain rate rather than the plastic strain rate. In Fig. 5.2 the total strain rate is always 
parallel to the line AS, making an obtuse angle to the stress-rate vector. Finally it is 
noted that softening is not only possible for 1(/ < 0 but more generally for 1(/ < rp as 
demonstrated in Fig. 5.4. 

5.2 Theoretical basis for 1(/ < rp 

In the theory of associated plasticity, material stability is assured by Drucker's postu
late, and unstable stress paths are excluded by assuming a plastic strain rate that is 
normal to the yield locus. For granular material this can be achieved by taking rp = 1(/, 

but this is not observed in triaxial testing and neither in shear testing (Roscoe, 1970). 
Furthermore, the idea is to be rejected from a theoretical viewpoint. We pursue the 
theoretical argument by considering the dissipated energy in a test, say a shear test on a 
material element of unit volume. 

[ T" W= J (J edt 
o 

(5.6) 

A theoretically sound model should be such that the dissipated energy is non-negative 
for any possible stress cycle ofloading and reloading; otherwise the material would pro
duce energy. For the model under consideration this implies a non-negative integrand. 

For a cohesionless material we can show that 

(5.7) 

Rather than proving these inequalities in detail, we will demonstrate that there is no 
energy dissipation for rp = 1(/. The situation is visualised in Fig. 5.3 where the plastic 
strain rate is plotted normal to the yield locus of a cohesionless material. We then see 
that the plastic strain-rate vector is also normal to the total stress vector. Hence, the 
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-u, 

Fig. 5.3 For cohesionless material the flow cannot be normal to the yield surface as the plastic 
work would vanish. 

inner product of these vectors vanishes so that there is no energy dissipation (TV = 0) 
when normality holds. As plastic deformation without energy dissiplation is inconceiv
able and we are forced to abandon associated plasticity. 

5.3 Non-uniqueness of the limit load 

In the foregoing we have seen that a load-deflection curve may involve a limit load. In 
associated plasticity a limit load is unique in that the value does not depend on the 
initial stresses before loading nor on the sequence in which different load components 
are applied. In non-associated plasticity, however, the limit load may be influenced by 
initial stresses and the sequence of loading. In order to demonstrate this influence we 
consider the simple-shear test again, but this time we allow volume changes. 

First consider a specimen in an initial state "A" with specifications 

A: a yy = - 100 kPa, axx = azz = - 25 kPa, 

This state of stress coincides with the initial stresses of the isochoric test treated earlier 
in this chapter. The material constants are also assigned the same values as in the iso
choric shear test. In the standard (simple) shear test considered now, the specimen is 
sheared at a constant vertical stress of - 100 kPa. On simulating this test in a computer 
run, we find the curve A of Fig. 5.4. Curve B represents results ofa computer run for a 
specimen with the same constant vertical stress but a much higher initial horizontal 
stress, viz. - 400 instead of - 25: 

B: a yy = - 100 kPa, (lxx = a zz = - 400 kPa, a xy = 0 

These initial stresses give a marked peak in the load-deflection curve with a high limit 
load (or peak strength). By carrying out a whole series of computations for different 
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Fig. 5.5 Finite element results for an anchor in sand; the limit load depends on Poisson's ratio. 

initial horizontal stresses, different limit loads are found. On the other hand, the 
residual strength is found to be the same. 

The influence ofthe initial stresses is also relevant to practical engineering problems. 
An illustrative example is the anchor problem as schematized in the insert to Fig. 5.5. 
Again, the non-hardening Coulomb model was used to compute the load-carrying 
capacity of the anchor (Vermeer and Sutj iadi, 1985). Similarly to the standard shear test, 
different initial stresses show different limit loads, but again a unique residual load is 
found. As the initial stresses are seldom known precisely, such anchors should be 
designed for the residual load and not for a peak strength that happens to be found for a 
particular assumption as to the initial state of stress. Fig. 5.6 shows a measured load
deflection curve for an anchor that involves a marked peak. It is a typical response of an 
embedded structure. Many computer programs cannot simulate the unstable post-peak 
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behaviour and then the computations are stopped slightly prior to the limit load. The 
present examples show that there is a need for computations beyond the limit load 
down to a possibly lower residual load. For small-deformation problems in associated 
plasticity, softening is precluded and the limit load simply coincides with the residual 
load. Then there is less need for calculations in the fully plastic range. 

5.4 Geometric destabilization and stabilization 

The measured data in Fig. 5.6 show continuing destabilization (or softening), whereas 
the computed curves in Fig. 5.5 have a constant residual load. This is because geometry 
changes are neglected in the computations. When an embedded anchor is pulled, the 
anchor depth diminishes so that the load-carrying capacity decreases and it vanishes 
when the anchor reaches the soil surface. This effect produces the linear softening in the 
measurements of Fig. 5.6. It is referred to as a geometric destabilization as it is a con
sequence of geometry changes. It is also possible that geometry changes invoke a sta
bilization instead of a destabilization. An example of such a problem is the foundation 
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Fig. 5.6 Experimental results for an anchor in sand. 

plate on soil. When a non-tilting plate is thrust by punching into a soil bed, the meas
ured load deflection-curve will not show a limit load but continued hardening. The 
load-carrying capacity increases with deformation due to the upheave of the adjacent 
soil surface and the increasing embedment of the plate. The computational results in 
Figs. 2.2 and 2.3 do not show this as geometry changes are neglected in the conventional 
small-deformation analysis that is used for all the computations in this paper. 

6 Concepts of isotropic hardening 

The non-hardening model is very useful for failure problems, as limit loads and residual 
loads can be computed quite accurately. On the other hand, perfect plasticity is less suit-
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able for the study of the development of displacements under working loads, because 
this type of model involves a considerable overestimation of the elastic range. For this 
application hardening plasticity is much more suitable. 

From a theoretical viewpoint, the theory of hardening plasticity is not much different 
from perfect-plasticity theory. Again, the strain rate is divided into two additive contri
butions. The elastic component occurs for all changes of stress and the plastic compo
nent may occur when the stresses satisfy the yield conditionl= O. Hence, similar to a 
non-hardening model, a hardening model involves the equations 

The multiplier A vanishes for stress variations in the elastic rangel < 0 and for unloading 
j < O. The difference from the theory of perfect plasticity relates to the size of the elastic 
range and thus to the yield function! The difference is represented in Fig. 6.l. In 
hardening plasticity the elastic range depends on the plastic strain of the material 
element considered and we speak of isotropic hardening when an initially small elastic 
range expands as a functional of the plastic deformation, but when the centre of the 

Perfect Plasticity Isotropic Hardening 

Fig. 6.1 For isotropic hardening, the elastic range expands with increase of plastic deformation. 

yield surface does not change during the loading process. As a consequence, some 
plastic strain measure must enter into the yield function! The yield condition must be 
of the form 

(6.1) 

at least for isotropic hardening as considered in this section. The scalar parameter x is 
some functional of the plastic strain history, and is usually named a hardening param
eter. When using such a yield function it can be shown that there are no orientation 
effects in a stress free material, so that the material remains isotropic. 
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6.1 The hardening parameter 

A simple example of a possible definition for a hardening parameter is the volumetric 
plastic strain 

(6.2) 

This particular choice is useful for a highly compressible material like clay (Schofield 
and Wroth, 1968). In general the elastic range will depend not only on the current plas
tic strain, but on the plastic strain history as well: the elastic range is said to be a func
tional of the plastic strain rather than a function of the plastic strain. Obviously, this 
could lead to a complicated theory, but this is avoided by assuming that the plastic 
strain history can also be captured in the hardening parameter. In metal plasticity this is 
done by the hardening parameter (Hill, 1950). 

eP = jJGcpTcP) dt (6.3) 

or in terms of principal strain rates 

(6.4) 

The factor ~ is convenient for the evaluation of uniaxial tests. In stressing a metal bar we 
have 

(uniaxial test with 6"0 = 0) 

as metals show no plastic volume change. Then the so-called effective strain, eP, simply 
coincides with the uniaxial plastic strain. 

(uniaxial test with 6"~ = 0) 

Instead of the effective strain integral, a plastic work integral is sometimes employed. 
The plastic work that is done in a deformation process is 

(6.5) 

In metal plasticity it is quite possible to make use of the plastic work, as it leads to a 
model which is entirely equivalent to a model that employs the effective strain. Indeed, 
for the Von Mises yield function for metals, both definitions yield exactly the same 
results. Some recent models for soils are also based on the concept of plastic work, but 
we will show that for granular materials (both non-cemented and cemented), the effec
tive strain is much more suitable and not equivalent to the plastic work. Further, many 
experiments were performed on sand specimens for the purpose of assessing the best 
definition of the hardening parameter. Both Stroud (1971) and Tatsuoka and Ishihara 
(1975) reported evidences for quantities that resemble the effective strain very closely. 
Therefore, the derivations in the following will be based on a parameter which is either 
exactly or approximately equal to the effective strain. 
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6.2 Friction hardening for sand 

Fig. 6.2 shows the results of two triaxial tests on a dense sand. These responses are typ
ical, as an initially stiff response is followed by a flat peak in the shear stress-axial strain 

curve. The peak strength increases almost linearly with the radial stress a3. In order to 
obtain a unique curve for aJl tests, the shear stress must be replaced by the principal 
stress ratio aI/a3 as was done in Fig. 3.5. Indeed, the stress ratio-axial plastic strain curve 
appears to be unique for aJl compression tests with various axial stresses. Hence, there 
exists a relationship of the form 

for a3-constant tests (6.6) 
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Fig. 6.2 Replot of sand data after Hettler and Vardoulakis (1984). 

Restriction must be made to increasing stress ratios as unloading and reloading show a 
different more or less elastic response. The use of the principal stress ratio is not strictly 
necessary. In fact, we may also use the stress measures r* and a* as previously used in 
the yield function of the non-hardening model. 

( * *) al = - a + r , * * a3 = - a + r , 

This implies that r"'j a" instead of all a3 may be used in a yield condition of the form 
!(r*la*,e\') = O. 

In order to include other tests in addition to the common a3-constant tests, the axial 
strain must be replaced by the more general effective strain fl'. Replacing e\' by flO the 
condition! (r* la*, flO) = 0 foJlows. In the foJlowing we will use the equivalent condition 

!=r*-a*sin¢*=O or r*=a*sin¢* (6.7) 

where sin ¢* is some function of the effective strain. This notation of the yield condition 
is chosen because it resembles the non-hardening yield condition (4.7) very closely. 
Instead of a constant friction angle ¢, we now use a strain-dependent quantity ¢* that 
will be referred to as the mobilised friction angle. Experience shows that the experi-
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mental curves from sand testing can usually be expressed in a simple form, e.g. the 
relationship 

~("iP'/) 
sin rjJ* = 2 --- sin rjJ 

"i P + r/ 

sin rjJ* = sin rjJ (6.8) 

so that the mobilised friction angle gradually increases with strain to reach the limit fric
tion angle when "i P has reached the constant ,/ Other useful formulas are given by 
Brinch Hansen (1965). 

For an uncemented granular material, the concept of friction hardening is quite ra
tional. Consider for instance an assembly of particles in static equilibrium under a verti
cal load intensity of a1 and a horizontal load intensity a3. Furthermore, let the particles 
be rigid and unbreakable. Then a proportional increase of al and a3 will cause a propor
tional increase of the interparticle forces at the contact points between the particles, so 
that the directions of the contact forces are not changed. On the other hand, a change of 
the ratio al/a3 will change the direction of the contact forces and will result in slip at a 
number of contact points. The occurrence of interparticle slip implies a rearrangement 
of the particles, that is plastic deformation in a macroscopic sense. Thus, the plastic 
deformation is related to the stress ratio alone, as formulated by the above yield func
tion and confirmed by the test data in Fig. 3.5. Here, it should be noted that the test data 
in Figs. 3.5 and 6.2 were obtained for a pure quartz sand with very hard and strong 
particles. Other sands have softer particles with breakable edges, in which case the test 
data are not entirely matched by pure friction hardening. The yield function must then 
be modified by making rjJ* also a function of a stress level measure such as a*. For details 
the reader is referred to Vermeer (1984). 

6.3 Friction hardening versus cohesion hardening 

Obviously, the above yield condition cannot be applied to concrete or rock in a straight
forward manner as it incorporates no cohesive strength. For such cohesive materials, 
the yield condition could be extended to 

r* = a* sin rjJ* + c cos rjJ* (6.11) 

When rjJ'" has increased up to rjJ, this formulation gives the yield condition (4.10) as 
previously used in the non-hardening model. However, this is not the only possibility 
for modelling concrete behaviour, and a different yield condition will be considered in 
the following. 

Isotropic hardening models were initially developed for the study of metals, with 
yield conditions of the form 

r*=c*, c*=co+h"iP (for metals) (6.12) 

or non-linear relations between c* and "i P with constants similar to CO and h. This type 
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of hardening (for h > 0) may be referred to a cohesion hardening because the cohesion 
increases as a function of the effective strain. Note that many authors on metal plasticity 
employ the yield stress in uniaxial tension rather than the mobilised cohesion c*, but 
this is not important as the uniaxial yield stress is twice the mobilised cohesion. The 
concept of cohesion hardening could also be extended to include friction and this would 
lead to a yield condition like 

r* = a* sin rjJ + c* cos rjJ (6.13) 

Mathematically there is little difference from the friction hardening formulation (6.11), 
but cohesion hardening gives entirely different stress-strain curves as illustrated in Fig. 
6.3. For friction hardening different triaxial compression tests have the same elastic 
range, whereas this range increases with the radial stress a3 in the case of cohesion 
hardening. The hardening range in Fig. 6.3a is determined by relation (6.10) between 
sin rjJ* and eP, and a similar non-linear relationship between c* and eP is used in Fig. 
6.3b. Experimental data as plotted in Fig. 3.7 indicate that concrete behaviour is much 
better fitted by friction hardening than by cohesion hardening. Therefore, pure 
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Fig. 6.4 Largely different modes of expansion for the elastic range. 
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cohesion hardening is not attractive and recent trends in modelling concrete behaviour 
employ a form of friction hardening (see for instance Schreyer, 1983). The difference 
between friction hardening and cohesion hardening is most clearly reflected by the 
expansion of the yield surface in the stress space. Fig. 6.4a shows successive positions of 
the yield surface when using the condition (6.11) whilst Fig. 6.4b corresponds to 
equation (6.13). 

In order to demonstrate that we have several slightly different versions of friction 
hardening rather than one unique form, we give 

r* = (a* + c cotan ¢) sin ¢* (6.14) 

as an alternative for the yield condition (6.11). The difference between both formula
tions for friction hardening is illustrated in Fig. 6.5. The question of the best formulation 
is still open; it must be answered by considering a great deal of empirical data. 

Friction Hardening eq.6.1' Friction Hardening eq.6.14 

Fig. 6.5 Alternatives within friction hardening. 

7 A hardening-softening model unifying granular materials 

In this chapter we will attempt to give a unified treatment of loose and of cemented 
granular materials. This will be done within the framework of isotropic hardening and 
softening. Rather than modelling all subtleties of the material behaviour, we will con
centrate on the main features as observed in monotonic loading. 

7.1 The yield junction 

In the preceding chapter, friction hardening was found to be important for loose as well 
as for cemented granular materials, i.e. the mobilised friction angle increases as a func
tion of the effective strain. It is also obvious that, for a proper description of cemented 
materials, the yield function must take account of the cohesive strength. Just as for the 
mobilised friction angle ¢*, we introduce a mobilised cohesion c* in the yield functionj 

j= r* - a* sin ¢* - c* (7.1) 
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where the equation for the mobilised friction angle is similar to the one introduced in 
the preceding chapter, and is only repeated here for the sake of self-sufficiency of this 
chapter. The reader may also note that the yield function (7.1) differs only marginally 
from the friction hardening formulation (6.11); the term c cos ¢* is simply replaced 
by c*. 
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Fig. 7.1 Triaxial test results for sandstone after Kovari (1977); the cohesive strength vanishes 
due to micro-cracking. 

Some idea of the c* - if P relation is given by Fig. 7.1, which present test results on a 
sandstone. We observe a considerable difference between the peak strength and the 
residual strength, the difference being approximately equal to the cohesion. Other test 
results indicate that the difference between the two strengths tends to vanish when the 
confining pressure increases. These phenomena could be modelled by applying soften
ing on the cohesion. A possible choice for the c* - ifP relation is: 

(7.2) 

where ee is a constant similar to / in de hardening relation (6.8) for the mobilised fric
tion angle ¢*. Both the softening relation for c* and the hardening relation for ¢* are 
plotted in Fig. 7.2. The softening on the cohesion can be made plausible by considering 
that when a specimen of intact rock or concrete is sheared, micro-cracks first develop, 
and that at failure the specimen is heavily cracked. Hence, the cementation of the mate
rial gradually decreases so that also the cohesive strength of the material vanishes. 
Accordingly, the initially cemented material will become more similar to a particulate 
material with only friction hardening. The performance of the model is demonstrated in 
Fig. 7.3. This figure gives only an impression of the possibilities of the model, but no at
tempt has been made to fit any existing data accurately. Nevertheless, the increased 
ductility with increasing confining pressure is modelled. 
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Fig. 7.3 Computed responses of a cemented material m triaxial tests. 

7.2 Plastic potential and row flow rule 

For the hardening model, and also for the hardening-softening model developed in this 
chapter, we use again a plastic potential function which is almost identical with the 
yield function, namely 

g= To' - a* sin lfIo' + constant (7.3) 

For lfIo' = rjJ* this function would coincide with the yield function (7.1) and we would 
arrive at an associated model. Like the perfectly plastic model, the hardening model is 
formulated in the spirit of Coulomb and Tresca by using an angular yield surface and an 

angular plastic potential surface in the principal stress space (Figs. 4.3 and 4.4). As also 
discussed in Chapter 4 for the perfectly-plastic model, the derivation of the flow rule 
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from the potential function resolves itself into two procedures, one for stress points at 
the corners and the other for stress points at the flat sides with al < a2 < a3. For brevity, 
we will only consider the latter case. 

When the intermediate principal stress does not coincide with the major or minor 
principal stress, the plastic potential function is differentiable and we have the usual 
flow rule 

In terms of principal strain rates this gives 

• P 1 Sg 11 (1 . *) e I = IL ~ = - :ill - Sill 1jI. 
aal 

• P 1 Sg I 1 (1 . ~) e3 = IL ~ =:i1L + Sill 1jI~ 
Sa3 

(7.4) 

In analogy with the mobilised friction angle ¢*, we have now introduced a mobilised 
dilatancy angle 1jI*. We retrieve the flow rule for the perfectly-plastic model by setting 
1jI* = 1jI. For the present model, a constant dilatancy angle is not sufficient, and we will 
need some stress-dilatancy relation, which will be discussed in a subsequent section. 
Equation (6.3) may now be used to derive that 

t p = A J[t(l + sin ¢* sin 1jI*)] 

This relationship with the effective strain is important because it allows further calcula
tion of the multiplier A. For this calculation we also use the consistency equation 

· ClfT. SfT..:.p 
f=~(J+~e =0 

aa ae P 

The combination of the two equation gives 

1 afr 
A=-;--·-O 

n aa 

h = - J[t(l + sin ¢* sin 1jI*)] ::P 
C7.5a) 

(7.5b) 

In fact, the influence of the (mobilised) dilatancy angle on the hardening modulus h is 
negligible. Consider for instance an extremely large dilatancy angle of 20° and a friction 
angle of35°. Then we have J (1 + sin ¢* sin 1jI") = l.094 which means that the influence 
of the dilatancy angle upon the hardening modulus is at most 9.4%. 

Substituting the expression for A in the flow rule (7.4) and adding elastic strain rates, 
we obtain 
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• • e • P _ I • 1 ag aj T • 
c=c +c =D 0+---0 

h ao ao 
or in inverse form 

0= 

(7.6a) 

(7 .6b) 

The first form can be integrated when the stress path is given and the second form must 
be used when the stresses have to be computed for a given strain path. 

7.3 The hardening modulus h 

The hardening modulus governs the plastic strain rates in the same way as Young's 
modulus governs the elastic strain rates. We can demonstrate this by considering a com
pression test with both (J2 and (J3 being constant. Then we have 

or after elaboration 

1 1 
iii = E al + Ii (1 - sin 1jf*)(1 - sin ¢*)a] 

In the special case of non-granular materials the angles offriction and dilatancy vanish 
and we obtain iii = al/E + al/h, which illustrates the analogy beween E and h. For 
granular materials, the involvement of the angles of dilatancy and friction make the 
situation more complicated, but it will be clear that the slope of a stress-strain curve is 
largely determined by the hardening modulus. 

The hardening modulus increases almost linearly with the stress measure (J*. It 
follows from equation (7.5b) and the yield function (7.1) that 

aj .0 a sin ¢* ac* 
hJ3 = - asp = (J'" asp + asp 

Indeed, the hardening modulus becomes truly proportional to (J* when the mobilised 
cohesion vanishes or in the case where c* is assumed to be a constant. The hardening 
modulus depends even more closely on the empirical relations for sin ¢* versus Sll and 
c* versus sp. The equations (6.8) and (7.2) that we proposed are such that the hardening 
modulus decreases dramatically with plastic strain increase. In Fig. 7.1 this is reflected 
by decreasing slopes of the stress-strain curves. 

7.4 The mobilised dilatancy angle 

In the foregoing we have defined a yield function including particular relations for 
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the mobilised friction angle ¢/' and the mobilised cohesion c". On the other hand, the 
plastic potential function was introduced without specifying a precise relation between 
ljf* and i D• In this section the model will be completed by adding such a relationship. 

The physical meaning of the mobilised dilatancy angle ljf* is identical with the mean
ing of the (limit) dilatancy angle ljf which was used in the non-hardening model, namely 

This equation follows from the flow rule (7.4) and must be regarded as a definition. For 
the Coulomb type model considered here, the situation a) < 0'2 < 0'3 implies i~ = 0 so 
that we may also write 

(7.7) 

We prefer the latter notation as it can also be used in the case of common triaxial com
pression tests when a) < 0'2 = 0'3 (see Section 4.4.). Note that a) is the major compres
sive stress; it is negative, as tension is treated as positive. Test results as plotted in Figs. 
3.5,3.6 and 3.7 show a gradual increase of the dilation rate - ie/il up to a limit value at 
peak stress states. As a consequence, the mobilised dilatancy angle ljf* gradually 
increases to a limit dilatancy angle ljf, which was used in the non-hardening model. 

The gradual increase of the mobilised dilatancy angle will be modelled by adopting a 
relationship between ljf* and the effective strain i p. In soil mechanics the most popular 
approach has been to relate the dilation rate - ie/il to a stress ratio like aI/a3 or equi
valently to the mobilised friction angle. Several more or less theoretical relations have 
been proposed. Roscoe et al. (1963) proposed a single-parameter equation on the basis 
of energy considerations. Another single-parameter equation was put forward by Rowe 
(1971), namely 

'P'p {tan (45°+ rP*/2)}2 
1- Bv/B) = tan (450 + rPcv/2) (7.8) 

where rPcv is a constant. It is referred to as the "friction angle of constant volume". This 
name is logical as the above mentioned equation gives ie = 0 for rP* = rPcv. In fact, the 
equation predicts negative dilation for small angles of mobilised friction (rP* < rPcv) and 
positive dilation for larger values of this angle (rP* > rPCy). The constant marks a smooth 
turning point where plastic contraction stops and dilation begins. For sand the above 
equation was validated by several researchers, e.g. Stroud (1971) and Vermeer (1978), 
including the plastic contraction at the beginning ofloading. For loose granular mate
rials this contraction is plausible; the contraction is associated with plastic deformation 
due to the rearrangements of individual particles, whereas positive dilatation is asso
ciated with continued plastic deformation due to sliding between groups of particles. 
On the other hand, we may not expect plastic contraction when loading a solid concrete 
or non-porous rocks, because there are no voids that can be filled with material. For 
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such solid materials the above equation seems useful only in the range ¢* > ¢cv where 
positive dilation is predicted. 

We will use Rowe's so-called stress-dilatancy equation (7.8) as it is simple and accu
rate; it has been proved that it is accurate for sand whilst we expect reasonable accuracy 
for concrete and rock. However, we will conveniently use the equation in a different 
form. Eliminating iejil from the equation (7.7) and (7.8), we obtain the more suitable 
form 

. ~ sin ¢* - sin ¢cv 
sm If/~ = 1 . rio * . rio - sm 'I' sm'l'cv 

(7.9) 

This is the desired relationship between the mobilised dilatancy angle and the effective 
strain as ¢* is a function of eP• The mobilised dilatancy angle is initially negative and 
increases with increase of ¢*, i.e. when the effective strain increases. The negative 
values must not be used for solid materials; instead If/* = 0° can be useful for ¢* < ¢cv. 
The constant ¢cv is readily calculated from the limit dilatancy angle If/ and the limit fric
tion angle ¢. By substituting ¢* = ¢ and If/* = If/ and rearranging equation (7.9) we 
obtain 

. sin ¢ - sin If/ 
sm ¢cv = 1 . rio • - sm 'I' sm If/ 

(7.10) 

From the concrete data in Fig. 3.7 we can derive ¢ = 35°, If/ = 12,6° and consequently 
¢cv = 24° by means of the above equation. This is slightly below the range 25° < ¢ < 33° 
that we know for quartz sands. 

7.5 Discussion of the model 

Sand, rock and concrete are complex materials and their mechanical behaviour is cer
tainly not completely described by the idealization of isotropic hardening and soften
ing. However, this idealization strikes a balance between accuracy and simplicity. Due 
to this combination, isotropic hardening is potentially capable of giving the engineer a 
true understanding of material behaviour. That merit is lost when complex functions 
are used in the formulation of the actual model. It is mainly for this reason that we use 
the Coulomb yield surface and a plastic potential of similar form. Other useful yield 
surfaces exist. A resembling smooth yield surface was for instance used in a so-called 
double hardening model (Vermeer, 1984). Lade (1983) and Schreyer and Babcock 
(1984) employ another function for the yield surface of concrete. Other options are for 
instance given by Willam and Warnke (1974) and by Chen (1982). However, the partic
ular choice of a yield surface does not affect the basic ideas outlined here. 

For plane strain situations the implementation of the model in a computer program is 
straightforward, but a special subroutine is needed for treating stress states at the apex 
of the yield cone. In fact, it is worthwhile to implement a subroutine that can treat any 
corner in a yield surface. Such a subroutine is also needed when we consider axisym
metric or general three-dimensional problems, due to the occurrence of ridges in the 
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yield surface. Ridges (common corners) are also introduced when tension cut-offs are 
introduced. For cohesive-frictional materials the apex ofthe Coulomb surface is usually 
cut off because a mere Coulomb yield condition would permit too large tensile stresses. 
Such a so-called tension cut-off also causes a singularity at the intersection with the 
Coulomb surface. 

If follows from the above considerations that the model must be extended to include 
tension cut-offs when the material is cohesive. Obviously, the importance of this exten
sion grows with increasing initial cohesion c. The significance of other extensions 
depends on the porosity of the material. Consider for instance a specimen of sand that is 
loaded hydrostatically. Then we may expect some densification, i.e. plastic volume con
traction due to isotropic stressing. Indeed, loose sands show high densification and 
dense sands show moderate plastic volume changes approximately of the same magni
tude as the elastic volume changes. Porous rocks display the same phenomenon, espec
ially when the pressure exceeds a threshold value beyond which the interparticle bonds 
begin to collapse. Concrete is usually not very porous but even then the phenomenon is 
noticeable. The plastic volume change under hydrostatic load is not captured by the 
Coulomb yield surface as it is open in the direction of hydrostatic pressure. In order to 
capture the phenomenon, we need a yield cap that closes the Coulomb surface. Again, 
this extension gives a yield corner at the intersection ofthe two surfaces. DiMaggio and 
Sandler (1971) use a smooth intersection, but we consider this to be rather unrealistic 
(Vermeer, 1978, 1984). In recent years, there has been an increasing tendency to model 
plasticity by means of yield corners (or yield vertices). Examples thereof are the papers 
by Mandel (1965) and Rudnicki and Rice (1975). 

The hardening-softening model employs seven constants, which is two more than the 
non-hardening model. The extra constants are / and Bo, the former is used in the 
¢* - i P relation (6.8) and the latter is used in the c* - i P relation (7.2). / is the strain 
needed to mobilise the limit friction angle, and Be denotes the strain that is needed to 
degrade the cohesion. The combination of friction hardening and cohesion softening 
seems very powerful, but a detailed study of reported test data is necessary for checking 
the relations to the effective strain as proposed in this study; slightly different relation
ships may turn out to be more appropriate. 

In analogy with ¢* and c*, we also introduced a relationship between the mobilised 
dilatancy angle 1fI* and the effective strain i p • This relation derives from Rowe's stress 
dilatancy theory which has proved to be accurate for sand, but it is to some extent 
premature for cemented granular materials. Again, we need a follow-up by a detailed 
study of tests results. Attention should be focussed on the pre-peak hardening behav
iour and not on the experimental results for the post-peak softening which are bound 
to be non-objective; specimens of different size give different post-peak responses due 
to non-uniformity of the strain over the specimen. Rudnicki and Rice (1975) analysed 
this non-uniformity for brittle rock, Vardoulakis (1980) did the same for sand, and Van 
Mier (1983) measured the non-uniformity on concrete specimens. In the next chapter 
we will show that the present model predicts non-uniform strain responses slightly prior 
and beyond peak. 

44 



8 Shear-band formation 

For granular materials as well as for metals it is observed quite regularly that a smoothly 
varying deformation pattern suddenly changes and that all further deformations are 
localized in narrow so-called shear bands. This phenomenon is observed for instance 
during the collapse of embankments, dams, ground anchors (Fig. 8.1) and so on. The 
deformations in dense sand deposits and in rock formations are often completely dom
inated by these shear bands. A typical example is shown in Fig. 8.2, which gives the 
result of an experiment in a narrow vertical box filled with dense sand layers separated 
by thin layers of coloured sand. In the experiment, the flexible bottom has been pushed 
upwards to simulate a particular geological process. We see that the resulting deforma
tion pattern is completely determined by a large number of shear bands. 

In most soil mechanics literature a shear band is called a slip surface or a rupture 
surface. The traditional view is that a shear band forms an angle of e = 45° + irfJ with 
the minor compressive stress. However, experiments by Arthur et al. (1977) and by 

Fig. 8.1 Failure mechanism involving a shear band for a ground anchor. 
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Fig. 8.2 Crestal faults over arch of uniform curvature, simulated in a sand box (Mandl, 1984). 

Vardoulakis (1980) give a smaller inclination angle, namely () = 45° + ±( rjJ + If). In the 
following, we will use the hardening-softening model to derive the experimental find
ings theoretically. 

8.1 Basic equations 

A shear band has a small, but finite thickness. In a sand body it has a thickness of about 
20 times the mean grain size, which is equal to a few millimeters. In the following, we 
will again consider planar deformations, so that we have four stress and four strain com
ponents (see Section 4.1.). For the hardening-softening model elaborated in the preced
ing chapter, we have the following constitutive relation (see equation (7.6a)): 

with 

. { _ 1 I ag aj T} . 
c= D +--- 0 

h au au (8.1) 

Here, h is the hardening modulus and D - 1 represents the elastic compliance matrix, 
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-v 0 -v 
-v 0 -v 

o 0 2(1 - v) 0 
-v -v 0 

j is the yield function and gis the plastic potential function, for which we recall the defi
nitions for the hardening-softening model 

j= r* - a* sin ¢* - c* 

g= r* -- a* sin If/* + constant 

In the sequel of this chapter we will need the first and the last of the four equations ofthe 
matrix equation (S.l). Therefore, we state these equations more fully: 

. ( 1 1 ag aj ). ( - v 1 ag aj ). 1 ag aj. v. 
exx = E- + -h -a- -a- axx + -E + -h -a- -a- ayy + -h a-- -a- axy - E- aZl axx axx axx ayy axx axy 

(S.2) 

. v. v. 1. 
ezz = - E axx - E ayy + E aZl 

where we have used the fact that a Zl is the intermediate principal stress, so that af/aa II 
and ag/aaZ' vanish. 

We now consider a homogeneous element of granular material as shown in Fig. S.3a. 

Fig. 8.3 a. Uniform deformation up to current state 
b. Further deformation localized in a shear band 
c. Incorrect mechanism. 

incorrect 

Exx -10 

The element may be a specimen that is loaded in a biaxial or a triaxial device. Up to 
some critical point, the deformations are quite homogeneous, giving stresses and 
strains which are uniform throughout the specimen. Beyond a critical point however, all 
further deformations are localized in a shear band as indicated in Fig. S.3b, and the 
material outside the shear band is assumed to behave rigidly. 

The shear band mechanism is subjected to some kinematical restrictions, 

ixx = 0 (S.3) 
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which are caused by the fact that displacement jumps cannot occur (see Fig. 8.3c). The 
x-axis has conveniently been taken in the direction of the shear band. 

In addition to the kinematical conditions, we have equilibrium conditions. Outside 
the shear band, the material does not deform any further, so that the stresses outside the 
band have to remain constant. Inside the shear band, there may be stress changes, but 
these changes cannot be arbitrary, as we must have equilibrium across the boundaries 
of the shear band. Hence, the stresses inside the shear band must satisfy. 

(8.4) 

as we can have stress discontinuities only for the normal stresses axx and azz (Fig. 8.4). 

r-~------------------~---1 

r x 
------>-

I 
I 
I 
I 

Fig. 8.4 Stress discontinuities across the shear-band boundaries. 

8.2 Elaboration of the equations 

Let us assume that the current state of the specimen is characterized by point C of the 
stress-strain curve in Fig. 8.5. Up to point C, the specimen deforms uniformly, but at 
point C we have a so-called bifurcation and a shear band develops. The critical value for 
the hardening modulus at which a shear band can first develop, and the inclination 
angle for a shear band, can be determined by inserting the constitutive equations (8.2) 
into the kinematic restrictions (8.3). Together with the equilibrium condition (8.4) this 
yields: 

uniform strain 
c , 

h la 

'--'-~~~~~~~~~~~~~~+ -£, 

Axial Strain 

Fig. 8.5 Possible post-bifurcation response. 
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Inserting the last equation into the first identity gives: 

. { 1 - V 2 1 ag aj I . 
exx = ~ + Ii aaxx aaxx J axx = 0 

The particular case with a xx = 0 is a trivial solution, which is of minor importance here. 
The other solutions are given by the shear-band equation 

-E ag aj 
h=--2----

1 - v aaxx aaxx 
(8.5) 

The differentials is this equation can be evaluated by differentiating the functions j and 
g as given in the beginning of this chapter, yielding: 

aj 1 (axx - ayy . *) -a- =:;: 2 * + sm rjJ axx T 

~_~(axx-ayy . *) a - 2 2 * + sm IjI a xx T 

The first terms in this equation relate to the inclination angle 8, as can be observed in 
Mohr's stress circle (Fig. 8.6). Hence, we can write: 

aj . -a- = Hcos 28 + sm rjJ*) 
a xx 

ag 
-a- = t(cos 28 + sin 1jI*) 

a xx 

Substituting these expressions into equation (8.5), we obtain the relatively simple equa
tion: 

-E 
h = ( 2) (cos 28 + sin 1jI*)( cos 28 + sin rjJ"') 

4 1- v 
(8.6a) 

or solving for cos 28, 

cos 28 = -Hsin rjJ* + sin 1jI*) ±±J(sin rjJ*- sin 1jI*)2 -16(1- v 2)h/E (8.6b) 

Fig. 8.6 Inclination angle and Mohr's stress circle. 
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Equation (S.6b) reveals that the inclination angle 8 strongly depends on the current 
hardening modulus, which is represented in Fig. 8.7. 

For large values of the hardening modulus h, that is in the beginning ofloading, shear 
bands cannot develop, as this can take place only if equation (8.6b) has a real solution. 
The critical value of the hardening modulus he for which shear-band formation is first 
possible is derived from the condition that the expression under the square root has a 
non-negative sign, yielding: 

45 0 

I------------+----Ic--+----'K----+ 8 

(8.7) 

Fig. 8.7 Relation between hardening modulus and inclination angle of the shear band. 

Then, that is for h = he, equation (8.6b) gives one unique solution for the inclination 
angle 8 of the shear band 

cos 28 = - Hsin rP* + sin If/*) = - sin GrP* + ~If/*) cos GrP* - ~If/*) 

or 

sin (90° - 28) = - sin GrjJ* + ±If/*) cos GrP* - ~If/*) 

This equation can further be simplified by noting that the difference between the 
mobilised friction angle and the mobilised dilatancy angle seldom exceeds 30°. Hence, 
cos GrjJ* - ~If/*) is in the range between 0.96 and 1.0. We can thus omit the cosine term in 
the above equation, so that we obtain for the inclination angle 8: 

(8.S) 

which equals the experimental values given by Arthur et al. (1977), and by Vardoulakis 
(1980). 

In many testing devices, the shear band mechanism of Fig. 8.3b cannot occur precise
ly because frictional end platens prevent a horizontal displacement of the material. 
Even a little friction at the end platens can delay the inception of a shear band. We then 
have a situation in which h < he, and we not longer have a unique inclination angle. Ins
tead, two different inclination angles are now possible, as indicated by equation (S.6b) 
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and shown in Fig. 8.7. A special situation occurs for h = O. Then equation (8.6b) gives 

the solutions: 

(8.9) 

Which solution will occur will depend on the particular boundary conditions and 
second order effects. It is noted that the solution for e = 45° + ~If/* corresponds to 
axx = O. 

We thus see that non-unique solutions (bifurcations) can occur if 

Hence, bifurcations are possible when the hardening modulus is still positive. The 
special case of associated plasticity (r = If/*) is an exception. Then non-unique solu
tions can occur only for h < 0, so that a shear band cannot develop in the hardening re
gime, but only at and beyond peak strength. 

Finally, it is to be noted that the formation of shear bands can also be simulated in a 
numerical analysis. This is shown in Fig. 8.8. 

I I I I I , : : ' .: ..• :JiJ : ' : :: ' : : : " I I I I " , 

I I I I I , I , , I , I , I , 

I " I' " 
I , I , t , , 

~"'" , 

Fig. 8.8 Computed velocity field for a biaxial test (plane strain) involving a shear band. 

8.3 Previous studies 

Equation (8.7) for the critical hardening modulus was first derived by Mandel (1964). 
Mandel's paper is somewhat difficult to read and attracted relatively little notice. 
Moreover, he included inertia effects which complicated the analysis. Probably una
ware of Mandel's paper, Rudnicki and Rice (1975) presented a similar analysis for rock. 
Their expression for the critical hardening modulus differs from equation (8.7), as they 
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used the Drucker-Prager yield criterion. Rudnicki and Rice also showed that a conven
tional small-strain formulation is accurate enough for a shear-band analysis, which 
justifies the present approach. 

In 1980 Vardoulakis also used a Mohr-Coulomb type yield criterion, but his model is 
not entirely equivalent to the hardening-softening model developed here. Using a large 
velocity-gradient analysis, he derived a fairly complex condition for the critical har
dening modulus, but arrived at the same simple equation (8.8) for the inclination angle 

of the shear band. Hence, the condition for the critical hardening modulus he was first 
derived by Mandel, and the expression for the inclination angle e was first presented by 
Vardoulakis. The analysis given here, which gives both equations, was previously pres
ented by Vermeer (1982). In contrast with Mandel, inertia effects have been omitted, 
while the difference from Vardoulakis' approach is the neglect of extra terms for large 
velocity gradients. 

9 Plasticity models for cyclic loading 

The development of reliable models for cyclic loading of materials is one of the most dif
ficult tasks in constitutive modelling. At present, only models which aim at describing 
the cyclic behaviour of metals seem to be fairly successful. In this context we think 
of Besseling's fraction model (1958), Mr6z's nested yield surface model (1967), and 
Dafalias' bounding surface model (1975). All these models are based on plasticity theo
ry, although especially the last-mentioned model departs from classical concepts. 

9.1 Review of concepts 

For soils and concrete, the situation seems to be rather diffuse at the moment. Some at
temps have been made to model cyclic soil behaviour using incrementally non-linear 
models (for instance Chambon and Darve, 1984, Robinet and Mohkam, 1982). In such 
models, the incremental stress-strain law takes the following form: 

(9.1) 

We see that the constitutive matrix now depends not only upon the current stress (J and 
some hardening parameter x, but also on the stress rate 0-. Consequently, we have a non
linear relation between 0- and c, which is not very convenient from a computational 
point of view. Further, we usually need a very large number of material constants 
(sometimes more than 20) in such models, which seems to preclude their use for practi
cal engineering applications. 

Another type of models which falls in this category of incrementally non-linear 
models is the endochronic theory, originally proposed by Valanis (1971) to describe 
metal behaviour, and extended by Bazant and Bhat (1976) for the description of gran
ular materials. Indeed, some phenomena exhibited by metals and granular materials 
can be represented quite well using endochronic models. However, it appears that some 
other phenomena which should be captured in a good constitutive model describing the 
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hysteretic behaviour of granular and cemented granular materials can be represented 
only by applying artifices such as the concept of jump-kinematic hardening (Bazant, 
1978). This, together with the fact that endochronic theories are incrementally non
linear, makes the use of this type of models rather unwieldy. 

Yet another line of thinking was offered by Bazant and Kim (1979), who combined 
non-associated plasticity with the fracturing theory developed by Dougill (1976). In the 
latter theory, a criterion which is expressed in strains instead of in stresses is employed 
to bound the elastic domain. Further, fracturing theory deviates from plasticity theory 
in that unloading is assumed to occur along a secant branch instead of using the elastic 
stiffness (see Fig. 9.1). In its present stage of development, fracturing theory including 
the combination with plasticity does not seem to be of much practical significance, as 
some fundamental questions still have to be resolved. These partially relate to fractur
ing theory, as implementation in a computer program is hampered by some deficiencies 
in the theory. Further, the combination of plasticity and fracturing theory is not unique, 
and not all combinations lead to a theoretically consistent model. 

-----~E 

Fracturing Theory Experiment 

Fig. 9. J Dougill's theory exaggerates the degradation of the unloading-reloading modulus. 

Considering test results, we observe that near and beyond peak strength cemented 
granular materials indeed show an increasing degradation of the elastic stiffness due to 
micro-cracking. However, this effect is strongly exaggarated by Dougill's fracturing 
theory. In principle, this degradation can be incorporated in the theory of plasticity; 
rather than using a constant Young's modulus, it can be related to the porosity of the 
material. Instead of using the porosity directly, we can use a plastic deformation param
eter such as the effective strain. Both elastic degradation and cohesive softening (see 
Chapter 7) are caused by micro-cracking of cemented materials and should be treated in 
a more or less similar way. 

From this discussion it will be clear that there is little consensus as to which direction 
should be pursued in the constitutive modelling of the cyclic behaviour of granular and 
cemented granular materials. It is the authors' opinion that, pending other develop
ments, it seems best to pursue ideas which have proved to be fairly successful in metal 
plasticity. Some attempts in this direction have already been published. Mr6z (1978, 
1979) and Dafalias (1979, 1982) have adapted their models for predicting the response 
of clay. Molenkamp (1982) has develo·ped a kinematic hardening model for sand based 
upon Mr6z's nested yield surface model. A bounding surface plasticity model which 
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describes cyclic behaviour of concrete has also been proposed (Fardis et aI., 1983), 
although this particular model suffers from the drawback that it is also incrementally 
non-linear due to the fact that the elastic region is assumed to vanish. 

In the following, we will first give an exposition of Dafalias' ideas. The treatment 
which will be given here, deviates from Dafalias' presentation in that our derivation fol
lows the classical approach rather closely, whereas Dafalias' treatment uses the more 
mathematical concept of plastic internal variables. Next, we will discuss how hysteretic 
models for soils and concrete can be developed using these concepts, and the ideas 
developed in the preceding chapters for monotonic loading. Before proceeding, how
ever, we note that Mr6z's ideas are closely related to the work of Dafalias, and they can 
of course also be employed as a starting point for the development of models for des
cribing the hysteretic behaviour of sand and concrete. 

9.2 Bounding sUlface plasticity 

We start our discussion from a typical stress-strain curve which may be obtained from a 
standard tension test on a metal, for instance on annealed copper (see Fig. 9.2a). Ifwe 
subtract the elastic strain from the total strain (according to equation (3.1», we get a 
stress-plastic strain diagram (Fig. 9.2b). The essence of bounding surface plasticity is 
that the current plastic modulus h is assumed to depend on the distance b to the dashed 
line, the so-called bounding surface. So we assume the uniaxial relation 

(9.2) 

( a) ( b) 

Fig. 9.2 The hardening modulus is calculated from the distance b and the ultimate value H, 
which can be zero. 

where the magnitude of h depends on the distance i5 between the current stress all and 
the bounding surface line, and possibly on some other parameters such as H, the slope 
of the bounding surface line. Hence we have 

h = h (b, H, other constants) (9.3) 

The function h must obviously satisfy the requirements h> H, ah/ab> 0, h = H for 
i5 = 0, and h = 00 at the onset of yielding so that a smooth transition from elastic to 
elastic-plastic behaviour is obtained. 

Generalizing to multi-dimensional stress space, we first revise the definition of a 
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Fig. 9.3 Bounding surface around a relatively small elastic region. 

yield function. When we introduced this concept for a non-hardening material (Chapter 
4), the yield function f was assumed to depend only upon the stress tensor IJ, so that 
f =f (IJ). Extension to isotropic hardening forced us (Chapter 6) to include a hardening 
parameter in the definition forfJ=f(lJ, x). For a proper description of cyclic loading it 
is necessary that the yield surface not only expands, but also translates (kinematic 
hardening, see Fig. 9.3). Hence, it is imperative that we include the current centre of the 
yield surface a in our definition for f as well, so that a point is said to be in a plastic state 
whenever 

f(IJ-a,x)=O (9.4) 

In a similar way, we can extend the bounding surface line of Fig. 9.2b to a so-called 
bounding surface F in the multi-dimensional stress space, which always encompasses 
the yield surface f (see Fig. 9.3). The bounding surface is so defined that we also have 
F = 0 if a point is in a plastic state. Obviously, the stress IJ will never make F zero if the 
yield surface f lies inside the bounding surface F. Therefore, the function F is assumed 
to depend on an "image" stress tensor 1:, so that 

F = F(r. - A, x) (9.5) 

where A is the centre of the bounding surface F. The question of how the stress 1: is 
obtained from the actual stress (J will be discussed in the next section. 

As in the preceding chapters, the plastic strain rate is derived from a plastic poten
tial g: 

(9.6) 

To determine the multiplier A, we again make use of the consistency condition, which 
now reads: 

(9.7) 
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N ow, we must make an assumption as to the direction of U. One ofthe most widely used 
assumptions is (Ziegler, 1959), 

a = scalar", ((f - a) (9.8) 

with the subsidiary assumption that: 

(9.9) 

where h U can be conceived as a plastic modulus for the centre of the yield surface. With 
aid of the flow rule we now obtain 

(9.10) 

Ifwe insert equations (9.9) and (9.10) in equation (9.6), we obtain the following expres
sion for the plastic strain rate: 

(9.11) 

So far, the derivations closely resemble the classical concepts of kinematic/isotropic 
hardening. The salient difference between classical plasticity ideas and the bounding 
surface concept is that in the former approach we choose h, so that the total plastic stiff
ness due to isotropic and kinematic hardening follows from the choices for each of 
them. In the bounding surface concept, the total plastic stiffness is determined through 
the distance t5 to the bounding surface, and the value of the modulus hU follows as a 
result of the consistency condition. In the bounding surface philosophy we replace 
equation (9.11) by: 

(9.12) 

It can now be deduced that this equation reduces to equation (9.2) for the uniaxial case. 
Comparing equations (9.11) and (9.12), we see that h" is given by 

" ax acP au 
h =h+ T 

aj ag 
(9.13) 

au au 
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Hence, in classical plasticity, we choose h" and aI/ax and the plastic modulus h will 
result from those choices, whereas in the bounding surface approach we take hand 
aI/ax as starting point and derive h a from the consistency condition. 

9.3 The image stress E 

In the preceding section the image stress E was introduced. This image stress tensor was 
assumed to be on the bounding surface F whenever the actual stress u was on the yield 
surface f This condition is of course not sufficient to define E, but is merely a require
ment. Another requirement is imposed on E by the condition that the bounding surface 
and the yield surface may only touch, bur never intersect. This implies that in the limit
ing state (u = E) we must require (see Fig. 9.4a), 

au au (9.14) 

~""'-~---+~~+ ", 

Fig. 9.4 The elastic region translates within the bounding surface. 

This condition is satisfied a priori if it is required that E is so defined that u and E have 
the same normals respectively to the yield surface and to the bounding surface during 
the entire loading process (Dafalias and Popov, 1976, see Fig. 9.4b), 

au aE (9.15) 

For strictly convex yield surfaces and bounding surfaces this relation defines a unique 
image stress tensor for any given stress which is on the yield surface. As we will argue in 

the next section, this idea is not very suitable for frictional materials. For metals how
ever, it is rather convenient. Moreover, it allows for a more general kinematic hardening 
rule than given by equations (9.9) and (9.10), see Dafalias and Popov (1976). 

With a definition for the image stress tensor the constitutive model is almost com
pleted. We only have to define some rule for the translation of the centre of the bound
ing surface, as represented by the vector A. Here, it is important to recall the require
ment that the bounding and the yield surface may only touch, but not intersect. This 
requirement can be satisfied by defining: 

A = it, - scalar * (E - u) (9.16) 
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where the scalar may be determined from the consistency condition for the bounding 
surface: FCr. - A, x) = O. 

9.4 Specialization to frictional materials 

For frictional materials, proposition (9.15) for determining the image stress is not very 
convenient, at least if we adhere to the concept of friction hardening. Then the normal 
to any point of the yield surface can never correspond to the normal of any point of the 
bounding surface (see Fig. 9.5a). For this reason another mapping, namely 

(9.16) 

is suggested, where b is a scalar multiplier which may be determined from the condition 
that 1: be on the bounding surface: F(1: - A, x) = O. This mapping cannot be used for 
arbitrary yield and bounding surfaces, as ii is not guaranteed a priori that they will not 
intersect. For judicious choices of the yield and bounding surfaces, however, this con
dition can definitely be satisfied. An example thereof is the pure friction hardening 
model for dry sand (see Chapter 6), which obeys the Mohr-Coulomb failure criterion. 
This criterion is now written as 

f= r* - O'*(sin rP* + sin a) (9.17) 

where rP* is the mobilised friction angle, and a is the inclination of the centreline of the 
yield surface (see Fig. 9.5b). The bounding surface is now postulated to be of the form 

F = T* - L * sin ¢ (9.18) 

-U, 

F<O 

Fig. 9.5 Proposed bounding surface and elastic region. 

where T* and L * are functions ofthe image stress tensor 1:, and are defined in analogy 
with to 0'* and r*. It is recalled that ¢ is the friction angle in the limiting state. It is noted 
that kinematic hardening on the bounding surface as discussed in the preceding section 
is neglected in equation (9.18). This is certainly not correct, as the movement of the 
bounding surface is coupled to the movement of the yield surface through the condition 
that both surfaces may not intersect. For triaxial testing conditions with 0'2 = 0'3, how-
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ever, neglecting the kinematic hardening on the bounding surface does not lead to 
intersecting yield and bounding surfaces, at least for the Mohr-Coulomb function. 

The model which is defined by equations (9.16) to (9.18) satisfies condition (9.14). To 
show this, we first note that for yield surfaces, which are linear in the principal stresses 
(see equation 4.18), a Taylor's expansion yields for the multiplier b: 

(9.19) 

Hence we have upon loading: 

(9.20) 

When the stress u is on the bounding surface, we have by definition F(u) = 0, so that 
according to equation (9.20), the image stress coincides with the actual stress: u = 1:. 
Furthermore, we can derive from equations (9.16) and (9.17) that 

aj aT* aa* 
au = -ao- (sin rjJ* + sin a) au 
aF aT* a.E" 
a1: = a1: - sin rjJ a1: 

(9.21 ) 

(9.22) 

In the limiting state it follows from u = 1: that T* = T* and a" = .E*, and hence 

aT" aT" 
~--

au a1: 

aa* a.E* 
----
au a1: 

so that we can rewrite equation (9.22) as follows 

aF aF aT" aa* 
-=-=~-sinrjJ
a1: au au au 

(9.23 ) 

(9.24 ) 

(9.25) 

Comparing equations (9.21) and (9.25), we observe that the requirement (9.14) is com
plied with, provided that in the limiting state we have 

sin rjJ = sin rjJ* + sin a (9.26) 

In order to get an idea of the merits of this type of models, it is useful to consider an 
example of a sand specimen subjected to cyclic loading in a triaxial device. Here we 
have considered a sand with the same properties as in Chapter 5. It is assumed that the 
specimen was first loaded isotropically and subsequently subjected to a number ofaxial 
loading cycles. The response of the specimen according to the model as outlined above 
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is shown in Fig. 9.6. In the calculations the following functional relationship for the 
plastic modulus h has been used: 

(9.27) 

where a and b are parameters which may be used to fit test data adequately. i5 0 is the 
distance between the actual stress (J and the image stress!: at the beginning of each 
loading process. 

___ ~ _ .c=~x~~~m~~t _________ _ 
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Fig. 9.6 Model simulation of cyclic loading of dry sand in a triaxial apparatus. 

10 Conclusions 

Considering test results, we observe that concrete and rock are stiffer and stronger 
than a loose granular material, but that plastic yielding is described reasonably well by a 
Mohr-Coulomb yield criterion which involves a friction angle and a cohesive strength. 
Plastic yielding is nearly always accompanied by a plastic volume increase, but the 
amount of dilation differs considerably from the value that would follow from associ
ated plasticity theory. 

The soil mechanics concept of a dilatancy angle is useful for concrete and rock as 

well. Slightly before and beyond peak strength the dilatancy angle attains a constant 
value depending on the particular material. The dilat;mcy angle is at least 20° less than 
the friction angle. Because of this large difference we are forced to use a non-associated 
flow rule. This flow rule corresponds to a plastic potential which resembles the yield 
function, but which involves a dilatancy angle instead of a friction angle. 

The need for non-associated plasticity has been demonstrated by numerical results 
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for some practical problems. The use of an associated flow rule leads to an overestima
tion of the stiffness and the load-carrying capacity. The most striking numerical result is 
the occurrence of post-peak softening as a consequence entirely of the non-associated 
flow rule. This can be explained from the violation of Drucker's stability postulate. 

We have described three material models of increasing complexity. The first is a 
perfectly-plastic model. It might be referred to as a "student's model" as it is a good 
introduction to plasticity theory. This five-parameter model is appropriate for limit 
analyses and for a gross approximation of deformations under working loads. The 
perfectly-plastic model has been extended to obtain a model with friction hardening 
and cohesion softening. This model could be called an "engineer's model", as it strikes a 
balance between accuracy and simplicity. When extending the second model to include 
phenomena such as hysteresis and strain-accumulation in cyclic loading, the complex
ity again increases, and we arrive at a "scientist's model". Nevertheless, a computation
ally attractive model can be established when using the concept of a bounding surface 
and a mapping rule. In order to employ these concepts within a non-associated model of 
the Mohr-Coulomb type, we have proposed a new mapping rule. 

A general feature of this study is the unified treatment of the mechanical behaviour of 
sand, rock, and concrete. The difference between soil mechanics, concrete mechanics 
and rock mechanics basically lies in the application. Then the three disciplines diverge 
because of the dominant role of water in soils, the role offissures andjoints in rocks and 
the role of tension cracks and reinforcement in concrete. 
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12 Principal notation 

c cohesion 
c* mobilised cohesion 
E Young's modulus 
v Poisson's ratio 
rjJ angle of internal friction 

rP* mobilised angle of internal friction 

IfI dilatancy angle 

IfI * mobilised dilatancy angle 
T * radius of Mohr's circle 
u* centre of Mohr's stress circle 

f yield function 
g plastic potential function 
h hardening modulus 

61 



13 References 

ALLERSMA, H. G. B. (1982), Photo-elastic stress analysis in simple shear, Proc. IUTAM Conf. on 
Deformation and Failure of Granular Materials, Delft, 345-353. Balkema, Rotterdam. 

ARTHUR. J. R. F., T. DUNSTAN, Q. A. J. AL-ANI andA. ASSADI (1977), Plastic deformation and 
failure in granular media, Geotechnique 27, 53-74. 

BAZANT, Z. P. and P. BHAT (1976), Endochronic theory of inelasticity and failure of concrete, J. 
Eng. Mech. Div. ASCE 102, No. EM4, 701-722. 

BAZANT, Z. P. (1978), Endochronic inelasticity and incremental plasticity, Int. J. Solids and Struc
tures 14,691-714. 

BAZANT, Z. P. and S. S. KIM (1979), Plastic-fracturing theory for concrete, J. Eng. Mech. Div. 
ASCE 105, No. EM3, 407-428. 

BESSELING, J. F. (1958), A theory of elastic, plastic and creep deformations of an initially isotropic 
material, J. Appl. Mech. 25, 529-536. 

BORST, R. DE (1982a), Calculation of collapse loads using higher order elements, Proc. IUTAM 
Conf. on Deformation and Failure of Granular Materials, Delft, 503-513. Balkema, Rotterdam. 

BORST, R. DE (1982b), Numerical prediction of the ultimate bearing capacity of soil masses, Report 
No. 220 of the Geotechnical Laboratory, Delft University of Technology, Delft. 

BORST, R. DE and P. A. VERMEER (1984), Possibilities and limitations of finite elements for limit 
analysis, Geotechnique 34, No.2, 199-210. 

CHAMBON, R. and F. DARVE (1984), On two directionally linearizable incremental constitutive 
laws. In: Constitutive relations for Soils (Eds. G. Gudehus, F. Darve and I. Vardoulakis), 
Balkema, Rotterdam. 

CHEN, W. F. (1982), Plasticity in reinforced concrete. McGraw-Hill. 
COULOMB, C. A. (1776), Essai sur une application des regles de maximis et minimis a quelques 

problemes de statique relatifs a l'architecture, Memoires de l'Academie Royale des Sciences 7, 
343-382. 

Cox, A. D., G. EASON and H. G. HOPKINS (1961), Axially symmetric plastic deformation in soils, 
Phil. Trans. Roy. Soc. 254, No.1, 1-47. 

CHRISTENSEN, J. and K. W ILLAM (1983), Finite element analysis of concrete in shear, Proc. Symp. 
on the Interaction of Non-nuclear Munitions with Structures, U.S. Air Force Academy, 
Colorado, 101-106. 

DAFALIAS, Y. F. and E. P. PoPov (1975), A model of nonlinearly hardening materials, Acta 
Mechanica 21,173-192. 

DAFALIAS, Y. F. and E. P. Popov (1976), Plastic internal variables formalism of cyclic plasticity, 
ASME J. Appl. Mech. 98, 645-650. 

DAFALIAS, Y. F. (1979), A model of soil behaviour under monotonic and cyclic loading con
ditions, Transactions 5th Int. Conf. on Structural Mech. in Reactor Technology, Berlin, K 1/8. 
North-Holland Publ. Co. 

DAFALIAS, Y. F. and L. R. HERRMANN (1982), Bounding surface formulation of soil plasticity. In: 
Soil Mechanics - Transient and Cyclic Loads, 10: 253-282. John Wiley and Sons, Chichester. 

DAVIS, E. H. (1968), Theories of plasticity and the failure of soil masses. In: Soil Mechanics, 
Selected Topics (Ed. I. K. Lee), 341-380, Butterworths, London. 

DIMAGGIO, F. L. and I. S. SANDLER (1971), Material models for granular soils, J. Eng. Mech. 
Division ASCE 97, No. EM3, 935-950. 

DOUGILL, J. W. (1976), On stable progressively fracturing solids, J. Applied Math. Physics 
(ZAMP) 27, 423-437. 

DRUCKER, D. C. and W. PRAGER (1952), Soil mechanics and plastic analysis or limit design, Q. 
Applied Math. 10, No.2, 157-165. 

DRUCKER, D. C. (1964), Concept of path independence and material stability for soils, Proc. 
IUTAM Symp. on Rheology and Soil Mech., Grenoble, pp. 24-45. Springer Verlag, Berlin, 
1966. 

FARDIS, M. N., B. ALIBE and J. L. TASSOULAS (1983), Monotonic and cyclic constitutive law for 
concrete, J. Eng. Mech. Div. ASCE 109, No.2, 516-536. 

62 



GERSTLE, K. H. et al. (1978), Strength of concrete under multiaxial stress states, Proc. Douglas
McHenry Inl. Symp. on Concrete and Concrete structures, ACI Specialty Publication SP-55, 
103-131. 

GOLDSCHEIDER, M. (1984), True triaxial tests on dense sands. In: Constitutive relations for Soils 
(Eds. G. Gudehus, F. Darve and I. Vardoulakis), Balkema, Rotterdam. 

GREEN, S. 1. and S. R. SWANSON (1973), Static constitutive relations for concrete, AFWL-TR-72-
244, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico. 

HANSEN, J. BRINCH (1965), Some stress-strain relationships for soils, Proc. 6th Int. Conf. Soil 
Mech. Found. Engng, Montreal, Vol. 1,231-234. 

HANSEN, C. E. BENT (1958), Line ruptures regarded as narrow rupture zones - Basic equations 
based on kinematic considerations, Proc. Brussels Conf. 58 on Earth Pressure Problems, Vol. I, 
39-48. 

HETTLER, A. and 1. VARDOULAKIS (1984), Behaviour of dry sand tested in a large triaxial apparatus, 
Geotechnique 34, No.2, 183-198. 

JOSSELIN DE JONG, G. DE (1971), The double sliding free rotating model for granular assemblies, 
Geotechnique 21,155-163. 

KOlTER, W. T. (1960), General theorems for elastic-plastic solids. In: Progress in Solid Mechanics, 
Vol. 1 (Eds. Sneddon and Hill), 165-221. North-Holland Publishing Co., Amsterdam. 

KOVARI, K. (1977), The elasto-plastic analysis in the design practice of underground openings. In: 
Finite Elements in Geomechanics (Ed. G. Gudehus), 413-478. Wiley, London. 

LADE, P. V. and J. M. DUNCAN (1975), Elastoplastic stress-strain theory for cohesionless soil, J. 
Geot. Engng Div. ASCE 101, 1034-1053. 

LADE, P. V. (1983), Three-parameter failure criterion for concrete, J. Eng. Mech. Div. ASCE 108, 
No.5, 850-863. 

MANDEL, J. (1964), Conditions de stabilite et postulat de Drucker, Proc. IUTAM Symp. on Rheo
logy and Soil Mechanics, Grenoble, 331-341. Springer Verlag, Berlin, 1966. 

MANDEL J. (1965), Generalisation de la theorie de plasticite de W. T. Koiter, Int. J. Solids Struc
tures 1, 273-295. 

MANDL, G. (1984), Private Communication. 
MATSUOKA, H. and T. NAKAI (1982), A new failure criterion for soils in three-dimensional stresses, 

Proc. IUTAM Conf. on Deformation and Failure of Granular Materials, Delft, 253-263. 
Balkema, Rotterdam. 

MIER, 1. G. M. VAN (1984), Complete stress-strain behaviour and damaging status of concrete 
under multiaxial conditions, Proc. RILEM/CEB Symp. on Concrete under Multiaxial Con
ditions, Toulouse, 75-85. 

MICHELIS, P. N. (1981), Work-softening and hardening behaviour of granular rocks, Rock Mech
anics 14, 187-200. 

MOLENKAMP, F. (1982), Kinematic model for alternating loading - AL TERNAT, Report CO-
21859617, Delft Soil Mechanics Laboratory, Delft, The Netherlands. 

MROZ, Z. (1967), On the description of anisotropic workhardening, J. Mech. Phys. Solids 15, 163-
175. 

MROZ, Z., V. A. NORRIS and O. C. ZIENKIEWICZ, (1978), An anisotropic hardening model for soils 
and its application to cyclic loading, Int. J. Numer. Anal. Meth. Geom. 2, No.3, 203-221. 

MROZ, Z., V. A. NORRIS and O. C. ZIENKIEWICZ (1979), Application of an anisotropic hardening 
model in the analysis of elasto-plastic deformation of soil, Geotechnique 29, No.1, 1-34. 

NAYAK, G. C. and O. C. ZIENKIEWICZ (1972), Elasto-plastic stress analysis. A generalisation for 
various constitutive relations including strain softening, Int. J. NUffi. Meth. Engng 5,113-135. 

NEWMAN, J. B. (1979), Concrete under complex stress. In: Developments in Concrete Technology 
(Ed. F. T. Lyon). Butterworth, London. 

RADENKOVIC, D. (1961), Theoremes limites pour un materiau de Coulomb it dilatation non stan
dardisee, C.R.Ac.Sc. 252, Paris, 4103-4104. 

REYNOLDS, O. (1885), On the dilatancy of media composed of rigid particles in contact, Phil. Mag. 
5th Ser. 20, pp. 469. 

ROBINET, J. C. and M. MOHKAM (1982). A non-linear constitutive law for sands. Proc. IUTAM 
Conf. on Deformation and Failure of granular Materials, Delft, 313-322. Balkema, Rotterdam. 

63 



ROSCOE, K. H. (1953), An apparatus for the application of simple shear to soil samples, Proc. 3rd 
Int. Conf. Soil Mech., Zurich, Vol. 1, 129-170. 

ROSCOE, K. H. (1970), Tenth Rankine Lecture: The influence of strains in soil mechanics, Geo
technique 20, No.2, 129-170. 

ROSCOE, K. N., A. N. SCHOFIELD and A. THURAIRAJAH (1963), Yielding of clays in states wetter 
than critical, Geotechnique 13, No.3, 211-240. 

ROWE, P. W. (1971), Theoretical meaning and observed values of deformation parameters for soil, 
Proc. Roscoe Memorial Symp. on Stress-Strain Behaviour of Soils, Cambridge, 143-194. 
Foulis, Henley-on-Thames, 1972. 

RUDNICKI, 1. W. and 1. R. RICE (1975), Conditions of the localization of the deformation in pres
sure-sensitive materials, J. Mech. Phys. Solids 23, 371-394. 

SALEN<;:ON, J. (1977), Applications of the Theory of Plasticity in Soil Mechanics. John Wiley & 
Sons, Chichester. 

SCHOFIELD, A. N. and C. P. WROTH (1968), Critical State Soil Mechanics. McGraw-Hill, London. 
SCHREYER, H. L. (1983), A third-invariant plasticity theory for frictional materials J. Struct. Mech. 

11, No.2, 177-196. 
SCHREYER, H. L. and S. M. BABCOCK (1984), A third-invariant plasticity theory for low-strength 

concrete, submitted for publication. 
SMITH,1. M. (1982), Programming the Finite Element Method with application to geomechanics. 

John Wiley & Sons, Chichester. 
STROUD, M. A. (1971), The behaviour of sand at low stress levels in the simple-shear apparatus. 

Ph.D. Thesis, Cambridge University. 
STURE, S. (1983), Experimental modeling of strength and deformation behavior of concrete in 

direct shear, Proc. Symp. on the Interaction ofN on-nuclear Munitions with Structures, U.S. Air 
Force Academy, Colorado, 95-100. 

TATSUOKA, F. and K. ISHIHARA (1975), Undrained deformation and liquefaction of sand under 
cylic stresses, Soils and Foundations 15, No.1, 29-44. 

TRAINA, L. A. (1983), Experimental stress-strain behaviour of a low strength concrete under 
multiaxial states of stress, AFWL-TR-82-92, Air Force Weapons Laboratory, Kirtland Air Force 
Base, New Mexico. 

TRESCA, H. (1868), Memoire sur l'ecoulement des corps soli des, Mem. pres. par div. Savants 18, 
733-799. 

V ALANIS, K. C. (1971), A theory of visco plasticity without a yield surface, Arch. ofMech. 23, 517-
535. 

VARDOULAKIS, I. (1980), Shear band inclination and shear modulus of sand in biaxial tests, Int. J. 
Numer. Anal. Meth. Geomech. 4, No.2, 103-119. 

VERMEER, P. A. (1978), A double hardening model for sand, Geotechnique 28, No.4, 413-433. 
VERMEER, P. A. (1980), Formulation and analysis of sand deformation problems, Dissertation, 

Delft Univ. of Technology, Delft. 
VERMEER, P. A. (1981), A formulation and analysis of granular flow, Proc. Int. Symp. Mech. 

Behavior of Structured Media, Ottawa, Part B, 325-339. Elsevier, Amsterdam. 
VERMEER, P. A. (1982), A simple shear-band analysis using compliances, Proc. IUTAM Conf. on 

Deformation and Failure of Granular Materials, Delft, 493-499. Balkema, Rotterdam. 
VERMEER, P. A. (1984), A five-constant model unifying well-established concepts. In: Consti

tutive Relations for Soils (Eds. G. Gudehus et aI., 175-197, Balkema, Rotterdam. 
VERMEER, P. A. and W. SUTJIADI (1985), The uplift resistance of shallow embedded anchors, Proc. 

11 th Int. Conf. Soil Mech. Engng, San Francisco. In press by Balkema, Rotterdam. 
WILLAM, K. J. and E. P. WARNKE (1974), Constitutive model for the triaxial behaviour of concrete, 

Colloquium on "Concrete structures subjected to triaxial stresses", ISMES Bergamo, IABSE 
Report Vol. 19. 

WOOD, D. M. and M. BUDHU (1980), The behaviour of Leighton Buzzard Sand in cyclic simple 
shear tests, Proc. Int. Symp. on Soils under Cyclic and Transient Loading, Swansea, Vol. 1,9-21. 
Balkema, Rotterdam. 

ZAADNOORDIJK, W. J. (1983), Cone resistance at the surface ofa sand bed, Graduation study at the 
Geotechnical Laboratory, Delft University of Technology, Delft, The Netherlands. 

ZIEGLER, H. A. (1959), A modification of Prager's hardening rule, Quart. Appl. Mech. 17,55-65. 
ZIENKIEWICZ, O. C., C. HUMPHESON and R. W. LEWIS (1975), Associated and non-associated 

visco-plasticity and plasticity in soil mechanics, Geotechnique 25, No.4, 671-689. 


