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STELLINGEN bij het proefschrift
UNCERTAINTY IN PREDICTIONS OF THERMAL COMFORT IN BUILDINGS

door M.S. de Wit

1.  Om rationele keuzen te kunnen maken tussen ontwerpvarianten van een gebouw
op basis van prestatievoorspellingen is het essentieel dat de onzekerheden in deze
voorspellingen expliciet worden geanalyseerd en meegenomen in het besluitvor-
mingsproces.

|
} 2. Prognoses van de thermische behaaglijkheid in gebouwen zouden sterk verbeteren
| indien de behaaglijkheidsmodellen naast perceptie ook gedrag zouden beschrijven.

3. Expertmeningstudies, waarin de uitspraken van de experts in het geheel niet wor-
den getoetst aan observaties, vormen een bedreiging voor het toch al precaire ima-
go van expertmeningonderzoek als meetmethode voor onzekerheid.

4. Voor de kwaliteit van predicties op basis van (complexe) modellen is de validiteit
van het model minder belangrijk dan de kennis die de gebruiker heeft over deze
validiteit. Benchmark-studies zouden zich derhalve expliciet moeten richten op de
combinatie van model en gebruiker in plaats van op de modellen sec.

5.  Onzekerheden worden in de regel onderschat.

6. Een bekeuring voor fietsen zonder licht wekt behalve ergernis ook de suggestie van
veiligheid op straat.

7. Tijdens het zingen is het inhouden van een (beginnend) buikje funest voor een
klinkend resultaat.

8. De stelling dat het gesprek vaak stilvalt bij een aantal van 10 mensen aan de kof-
fietafel is een dankbaar gespreksonderwerp bij een aantal van 10 mensen aan de

koffietafel.

9. Het promotiereglement zou ook moeten voorzien in een titel voor de partner van
de promovendus.

10. Onzekerheid dient gepropageerd te worden.
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Abstract

Building performances play an important role in choices between alternative building
designs. When expressed in suitable indicators, they provide the decision-maker with a
quantitative measure of the extent to which a building alternative satisfies the design
requirements and objectives. Predictions of building performances in the design stage
imply uncertainty. Quantitative appraisal of this uncertainty can contribute to more
rational design decisions.

In current design practice though, the uncertaintics in the majority of the performance
predictions are not explicitly quantified. This certainly holds for performances rclated to
the heat regulation of a building, such as thermal comfort performance or annual
energy consumption. In the literature on the simulation of these performance aspects,
uncertainties have received some attention, but several questions have been left open.
Firstly, it has been acknowledged that many of the uncertainties cannot be estimated by
straightforward statistical analysis of available data. This raises the question by which
method these uncertainties could be assessed and whether such a method would be
applicable in design practice. Secondly, although intuitive arguments have been put
forward to emphasize the relevance of quantitative uncertainty information for design
decisions, no attempts have been made to show how a decision maker could use this
information to improve his decision.

The research underlying this thesis aims to provide an answer to these two questions.
The questions are addressed in the context of a specific case, which concerns the
performance of a four story, naturally ventilated office building with respect to the
thermal comfort of its occupants. To quantify this performance aspect, two indicators
are sclected, which are commonly used in Dutch design practice. Prediction of these
indicators involves computer simulations on the basis of a thermal building model.

First, a crude assessment is made of the uncertainty that should be attributed to
predictions of the comfort indicators in the case at hand. In this analysis, the
uncertainties in all of the building model paramcters are estimated by the author on the
basis of the literature. A sensitivity analysis is carried out to identify the parameters,
which contribute most to the prediction uncertainty.

Subsequently, two sets of parameters of which the uncertaintics cannot be derived by
straightforward statistics, are selected for further analysis from the top 5 important
paramcters. For both parameter sets, structured expert judgment is used to assess the
uncertainties involved. The parameters in the first set concern physically observable
quantities and the experts are asked to state their uncertainties over these parameters
directly. Their assessments are combined by weighted averaging. The experts” weights
are derived from a statistical comparison of their assessments with measured data. The
uncertainties in the second set of parameters are calculated in a similar way, but an
extra step is involved. As these parameters are abstract and highly model-specific, the
experts’ assessments are elicited over a set of related variables, which are physically
observable. The uncertainties in the parameters of interest are obtained by probabilistic
inversion of the model relating the parameters to the elicitation variables. In both
analyses, the performance of the applied method and its practical applicability are
evaluated.

Finally, the uncertainty in the prediction of the two performance indicators is assessed.
A demonstration is given how this uncertainty can constructively be used in design
decisions through a Bayesian decision analysis.
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1 Introduction

A crucial element in building design and construction is decision-making. From the
initial exploration of objectives and requirements (o the final brush of paint, a
tremendous number of choices have to be made. These choices touch on a variety of
disciplines and involve a spectrum of specialists and consultants to advise the decision
maker(s) involved. Dependent on the context, a consultant’s advice may serve in e.g.
turther clarifying the decision-maker’s objectives and requirements, proposing new or
adapted design alternatives, surveying the possible consequences of certain design
decisions and/or quantifving these consequences.

In this thesis we focus on a particular type of consultant and on a particular aspect of
advice. The consultant, or rather the domain the consultant represents, is building
physics. The advice aspect is the quantification of the conscquences of one or more
design choices, which are considered by the responsible decision-maker.

The domain of expertise of the building physics consultant traditionally covers
phenomena related to heat, moisture, ventilation/wind, lighting and acoustics in the
built environment. This expertise gives him a part in a diversity of problem areas, such
as indoor climate in buildings, acoustics of concert halls, wind discomfort in built-up
areas, or lighting conditions in office spaces.

In quantifying the consequences of design actions, the first step is to identify in which
terms this should be done. A decision-maker, for instance the client or the future user of
the building, will generally have rather abstract (functional) requirements or objectives
in view. An cvaluation of the consequences of a design action should enable him to score
to which degree the action contributes o these objectives. Hence, before a quantitative
evaluation of consequences can be made, one or more quantities must be defined, on
which the decision-maker can mcasure the level of achievement on his objectives.

Thesc quantities, which form the link between the qualitative requirements on the onc
hand and the technical implications of a design decision on the other hand, are in the
building industry commonly referred to as performances or performance indicators.

An example of a performance indicator is one that measures the ventilation systems'
capacity to maintain a building space ncar optimum indoor air quality. It translates the
requirement to maintain healthy conditions in a given building zone into a quantitative
indicator, which can be calculated from air flow rates and resulting spatial contaminant
distributions obtained in standardized experiments.

Assessment of building physics related performance indicators in a design context has
two main characteristics. First, it commonly requires insight in the response of the
building to ‘external’ conditions such as the outdoor tempcrature, the wind velocity, and
the occupants. As the building is still under design, commonly of a unique nature, and in
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many respects a complex system, it is not surprising that computer simulation is often
deployed.

Second, there is always lack of information. This is inherent in the design context.
Indeed, only as the design process advances, more and more information becomes
available about the building as it will be delivered. But even a final design plan does not
completely determine the building, due to imprecision in the construction process and
natural variability in the properties of building components and materials. Moreover, in
addition to the lack of knowledge about the building itself, several external factors,
which affect the building performance, are not precisely known during the design
process. Finally, the complexity of the building makes it necessary to introduce
simplifications in the computer simulation models. Together with the lack of
information about the building and the external factors it will be exposed to, these
simplifications lead to uncertainty in the assessment of the building performance. This
uncertainty is the central issue in this thesis.

It is, however, a far from central issue in current building physics consultancy. Explicit
appraisal of uncertainty is the exception rather than the rule and most decisions are
based on single valued estimates for performance indicators.

From a conceptual point of view, this lack of concern for uncertainty is surprising. If we
consider advice as an exchange of information, which aims to contribute to a decision-
makers understanding and overview of the decision problem, it seems natural that
uncertainties in building performances are assessed and communicated.

Moreover, quantitative information about the uncertainties can be used in the
development of the building model. Specific attention can be given to those parts of the
model, which give a disproportionate contribution to the performance uncertainty. If a
model part causes too much uncertainty, measures can be considered such as more
refined modeling or collection of additional information by e.g. an experiment. On the
other hand, model components that prove to be overly sophisticated may be simplified
to reduce the time and effort involved in generating model input and running the
computer simulations.

From a practical perspective, though, the lack of focus on uncertainty is quite natural. In
current practice, building performance is commonly assessed with commercially
available building simulation tools. Such tools facilitates the modeling and simulation of
complex building systems within the limitations on time and money that apply in
practical design situations. However, the tools provide virtually no handles to explore
and quantify uncertainty in performance assessments.

First, no information is supplied about the magnitudes of the various uncertainties that
come into play. Libraries with data on e.g. material properties and model parameters,
which are included in almost all simulation tools, specify default or ‘best’ values, but lack
information on the spread in these values. Second, with the exception of one or two,
none of these tools offer methods to carry out a systematic sensitivity analysis or to
propagate uncertainty. Finally, the possibilities to selectively refine or simplify model
aspects are limited in most simulation environments.
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The above reflection on the deterministic approach in current practice specifically holds
for thermal building simulation. Thermal building simulation is used to quantify
performance aspects, which are related to the heat regulation of a building, such as the
maximum temperature in a building space over a given period, the thermal comfort in
the building, the annual energy consumption, the required peak power of a heating
plant, etc. In the rest of this thesis we will focus entirely on these building performance
aspects and the simulation tools that can be used to assess the associated performance
indicators.

In the research field from which these building simulation tools have emerged, several

studies have been dedicated to uncertainty in the output of building simulations and the

building performance derived from these outputs. Report of the rescarch that is most
relevant to the study in this thesis can be found in Lomas and Bowman (1988), Clarke et

al. (1990), Pinney et al. (1991), Lomas and Eppel (1992), Lomas (1993), Martin (1993),

Furbringer (1994), Jensen (1994), Wijsman (1994), Rahni et al. (1997), De Wit (1997¢),

MacDonald et al. (1999). As these studies will be cited at various points throughout this

thesis, a full discussion is omitted here. Instead we will give a concise overview of the

state-of-the-art:

¢ Opverall, the data and knowlcdge on the various uncertainties that may contribute to
the uncertainty in building performance is limited. Uncertainties related to natural
variability, which can sensibly be quantificd on the basis of statistical analysis such as
spread in e.g. material properties and building dimensions, are relatively well-
covered. Modeling uncertainties, though, and other uncertainties which cannot be
comprehensively derived from observed relative frequencies, received restricted
attention. If they were assessed, it was on an ad-hoc basis.

o Several of the studies focus on a comparison of techniques for model scnsitivity
analysis and propagation of uncertainty. When we combine the results of these
studies with the more gencral literature in this field, an overview of methods results,
which provides sufficient possibilitics for direct application. However, as mentioned
before, these techniques have hardly pervaded commercially available tools for
building simulation.

¢ All analyses restrict their focus to a given model structure, often suggested by a
particular simulation tool. The issue of how explicit information about uncertainty
can be used to selectively simplify or refine (part of) the model is not addressed.

¢ Virtually no attention is given to the question how quantitative uncertainty can be
dealt with in decision analysis, in such a way that it contributes to further insight into
the decision problem at hand, rather than to a growing vagueness. Some of the
studies attempt to deal with uncertainty within the paradigm of current practice:
‘best’” cstimates of performance as a basis for decisions. However, the value of the
information in this approach is judged by the consultant, who, from his perspective,
has only a partial view of the total decision problem. The person who can value the
information properly is the decision maker. Clearly, this requires not only the proper
attitude of the decision-maker, but also the knowledge and skill to deal with
uncertainty in decision making.
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e The majority of the uncertainty analyses focus on energy consumption and plant
power in winter situations. Although it is difficult to comparc the uncertainties
resulting from the various studies due to differences in approach (e.g. a comparison
of the outputs from different simulation tools versus a systematic uncertainty
analysis), assumptions (which uncertainties are taken into account and which arec
not) and context (e.g. building design versus model validation), it seems that
predictions of these performances have associated uncertainties in the order of 10 -
50%. Instantaneous, timc-averaged, and peak temperatures have also been
considered, especially in studies with a model validation context. Only Wijsman
(1994) explicitly addresses thermal comfort performance in a design context. In an
experiment, where different analysts were given the same case and the same
simulation tool, differences in building performance of up to 100% were observed.
When the analysts’ ‘errors’ were removed, this range was decreased well below 40%.

This overview has triggered the questions, which arc the focus of the research

underlying this thesis:

¢ The uncertainty in thermal comfort performance in summer is potentially much
larger than in performance indicators like annual energy use for heating in winter.
However, no systematic uncertainty analyses have been reported in literature. Is the
uncertainty in this aspect of building performance indeed significant in a design
context?

® Many of the relevant uncertainties cannot be derived from straightforward statistical
analysis of available data. By which method could these uncertainties be assessed? Is
such a technique applicable in consultancy practice?

¢ How can quantitative information on the uncertainties be used to selectively refine
or simplify the building model?

e  What is the relevance of the explicit and quantitative appraisal of uncertainty for
building physics advice in a decision context?

These questions have been addressed in a casc study, which focuses on a specific
performance aspect, i.e. thermal comfort in summer. The building in the case study is a
naturally ventilated low-rise office building.

An office building has been selected as thermal comfort is an important issue in this type
of building. The choice for thermal comfort was, apart from the relative lack of
attention this performance aspect has received in uncertainty analyses in the literature,
motivated by two considerations.

First, a demand regarding indoor climate performance is usually included in the design
requirements for (office) buildings. This concern for the indoor climate is not surprising
as the majority of complaints about working conditions in Dutch office buildings are
temperature-related (Voskamp, 1995).

Second, practically all buildings in The Netherlands are equipped with heating plant,
whereas cooling plant is much less common. In the absence of a cooling system,
uncomfortably high temperatures in summer have to be avoided by measures such as
solar shading, reduccd glazing areas, additional thermal mass, and (natural) ventilation.
Obviously, most of these measures may have side effects on other performance
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characteristics. Conversely, many design alterations, although not (primarily) targeted at
the indoor climate, may well affect performance with respect to this climate. Hence, to
be able to properly consider the effect of design choices, an evaluation of performance is
required at every step of the design evolution.,

"The outline of the thesis is as follows. L'irst, Chapter 2 describes the oftice building, the
approach towards thermal modeling and simulation of the building performance, and
the definition of and background to, the thermal comfort indicators that have been
considered. Chapter 3 discusses a crude uncertainty analysis. The uncertainties from
different sources are identified, quantificd and propagated through the model.
Sensitivity analysis points out which model paramcters (parameter sets) contribute most
to the uncertainty in the building performance indicators. T'wo of these important
paramcter sets are selected for turther analysis. These analyses, onc on wind pressure
coeflicients and another on the temperature distribution in the indoor air, are reported
in Chapters 4 and 5 respectively. The focus of these chapters is on a proper assessment
of the uncertainties, both methodologically and regarding content. Moreover, Ghapter 5
illustrates the issue of model development in tandem with the appraisal of uncertainty.
Chapter 6 starts with the propagation of the uncertainties, including those that have
been (re-)assessed in Chapters 4 and 5. Subsequently, on the basis of the results a
method by which quantitative information on uncertainty can be used in design
decisions is illustrated. Chapter 7 completes the thesis with conclusions and
recommendations.







2 Performance assessment

2.1  Introduction

The focus of this thesis is on building physics advice, clicited in the design phase of a
building to support design decisions. As explained in Chapter 1, a specific aspect of
advice is considered, ie. the quantification of the consequences of (design) actions.
These consequences are quantified in terms of performance indicators. A performance
indicator rates the degree to which the result of a design action satisfics the decision
maker’s objectives or demands. A more elaborate discussion on the role of performance
indicators in the decision process is deferred to Chapter 6.

Chapter 1 also indicates that a specific case is addressed in this study. The case considers
a naturally ventilated office building, which is evaluated with respect to its performance
on indoor climate. This performance is assessed by simulation.

The current chapter describes the selected case, discusses the definition of relevant
performance indicator(s) and explains the simulation process. These issucs arc addressed
separately in the following sections. However, before going into the details, we give a
brief outline of simulation based performance assessment.

thermal building ]
model

( A
. performance assessment

indoor /

climate

comfort model

thermal building simulation
——

occupant

ratings post processing

performance
indicator

. v

Figure 2.1 Schema for building performance evaluation with respect to thermal comfort.
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Loosely stated, the indictors that are used in The Netherlands to rate buildings with
respect to indoor climate are based on the fraction of time that occupants are
(dis)satisfied with the climatic conditions in the building. To quantify this fraction of
time in a design context, when measurements are infeasible for obvious reasons,
(computer) simulation is a frequently used technique. Graphically, the process of
performance simulation can be rendered as shown in Figure 2.1.

First, the indoor climate is simulated dynamically with a thermal building model. This
model is developed on the basis of the design specifications of the building. The inputs
to the model, collectively referred to as the scenario, specify the ‘external’ conditions as
a function of time. These conditions include among other things a time series of the
outdoor climatic conditions, heat gains from people, lighting and equipment in the
building and the control of sunblinds and windows. This component of the performance
simulation process is referred to as thermal building simulation.

Subscquently, the building performance is assessed. This process is divisible into two
parts. First, the occupants’ comfort ratings in response to the calculated climatic
conditions are estimated with a comfort model. Then, in the post-processing these
ratings are combined into the performance indicator.

The simulation approach, as outlined in the previous three paragraphs, has been
followed in the study underlying this thesis. In the implementation, however, two
important choices have been made. First, in accordance with mainstream building
simulation, the scope of the building models has been restricted to temperatures only.
Other aspects of the indoor climate such as humidity and air velocity have not been part
of the simulations. Details about the development of the building model, the
compilation of the scenario, and the simulation are discussed in Section 2.3.

Second, only global models for thermal comfort have been considered. These models
describe occupant ratings in terms of the global (or average) ambient climatic
conditions. Local effects of e.g. cold floors, asymmetric radiant fields or draught at head
level are not accounted for by the models. The performance assessment process is
discussed more elaborately in Section 2.4.

Before addressing the issues of modeling and simulation, though, we first describe the
subject of these efforts, i.c. the case of interest.

2.2 Case description

As mentioned earlier, this study focuses on a specific building. More adequately put, it
focuscs on a specific model of this building. Section 2.3 aims to describe the principles of
this model. That section will often refer to specific characteristics of the building, which
require or allow a certain modeling approach. It is the goal of the current section to
provide the necessary information on these characteristics.
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The case concerns the advanced design stage of a (hypothetical) four-story office
building in a sub-urban/urban environment in The Netherlands. Figure 2.2 shows a
tront view of the office building with its main dimensions.

14m
/

56 m

Figure 2.2 Schematic view of the office building with its main dimensions.
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Figure 2.3 Schematic layout of the building in ils environment.
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In Figure 2.3 the layout of the building environment is outlined within a radius of 300
m. The upper half of the arca shows a typical urban setting, which was modeled after a
part of the Dutch town Delft. The lower half is left void, with exception of the
embankment of the roadway. This mimics a large open space in an otherwise urban
environment.

r——-

ary

[ SN,

Figure 2.4 Plan of the top floor. A corridor separates the two rows of office spaces at the long fagades.
The crosses at both ends of the building indicate the stairwells, which are separated from the corridors by
airtight fire doors. The orientation of the building is indicated. The office space under study is grayed.
The dashed rectangle encloses the part of the building that will be modeled in detail (see Section 2.3.2).

The building relies on natural ventilation. Without cooling plant in the building it will
be especially difficult to maintain acceptabie climatic conditions in the spaces on the top
floor, especially those oriented to the east (see e.g. Wapenaar, 1992). Hence, as a first
step in the assessment of the performance of the building with respect to indoor climate,
the thermal conditions in one of these office spaces will be studied in detail. Figure 2.5
shows an impression of the selected space with its main dimensions.
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Figure 2.5 The office space under study with dimensions (| Xw X b} 5.4 m x 3.6 m x 2.7 m. Cross-
ventilation of the space lakes place through a cantilever window in the fagade and a rectangular venl in
the opposite wall. The furnishing to accommodate two people is not shown.
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The outline of the design specifications is:

Concrete floor with unspecificd floor-covering

Concrete roof slab, 120 mm insulation outside, false ceiling
Heavy interior walls (sand-lime brick)

Double-glazing, standard glass, 12 mm cavity

Parapct with 240 mm insulation

External sunblinds

A single ventilation opening in the separation wall with the corridor, just below the
ceiling.

An openable cantilever window in the fagade, just below the ceiling.
o Air-tightness of the fagade in accordance with the Dutch building code.

Throughout this study variations on a scenario with the following outline have been

used:

e Office hours are from 8.00 — 18.00, 7 days a week.

¢ The total internal heat production from people, lighting and cquipment amounts to
20 W/m? during office hours!.

¢ The (hourly) outdoor climate conditions are as specified in the Test Reference Year

for De Bilt, The Netherlands (see Section 2.3.1).

The internal office doors are assumed to be closed at all imes?.

The (fire-)doors to the staircases at both sides of the corridor are closed at all times.

No cooling plant is installed.

All offices are operated identically.

Further details can be found in Appendix A.

2.3 Thermal building simulation

2.3.1 Introduction

The term thermal building simulation covers a wide range of simulation and modeling
activities related to buildings. In the context of this thesis we reduce the scope to the
calculation of the temperature field in a building in response to given time-variant
external conditions. Assessment of this temperature ficld, starting from building (design)
specifications involves the following steps:

demarcation of the system to bec modeled

specification of the required model output

specification of the external conditions, i.e. the modecl inputs

1
2.
3. modecling of the system
4
5. simulation

We will briefly discuss these steps in the following paragraphs.

! Specified as heat load per m? floor area in the space.

2 This originates from the idea that the operation of internal doors should not be driven by thermal
comfort. In other words, it should be possible to maintain an acceptable indoor climate in the offices even
with closed internal doors.
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System demarcation

Although the term ‘building’ simulation suggests that the system to be modeled is the
building itself, the scope of the model may vary from case to case. Dependent on the
application the system may be smaller and represent only a part of the building, or
larger and encompass elements of the building environment. In this case we will extend
the system somewhat beyond the building boundaries to account for the influence of the
direct environment.

Model output

Obviously, the required model output is determined by the purpose of the simulation. In
this case we need a dynamic asscssment of the indoor climate in a single space. On the
basis of this information the occupants’ comfort ratings can be estimated. All comfort
models that can be used for this purpose require temperature information, i.e. air
temperature and wall surface temperatures. Some models take also humidity and air
velocity as input. In this study we confine ourselves to the simulation of temperatures;
humidity and air velocity are not calculated.

System modeling

In the modeling of the system the following procedure may be followed:

¢ subdivision of the system into subsystems or components

¢ modeling of each component

e connection and assembly of the component models

This modular approach toward building modeling is advantageous in various respects.
One of the most important benefits is that it paves the way for the deployment of
building modeling tools. We will come back to that later.

After subdivision of the system into components, the modeling of each component
involves the following aspects:

s conceptual modeling

e physical modeling

¢ numerical modeling

e quantification of model parameters

In the conceptual modeling stage, the model inputs and outputs arc defined. Moreover,
the required granularity of the model is chosen, i.e. the resolution of inputs, outputs, and
internal states. The physical modeling stage covers the formulation of the actual
expressions, which constitute the relationship between the inputs and the outputs. These
expressions arc subsequently implemented as numerical models. This modeling stage
often involves discretization of the model.

These three steps fix the structure of the model. The component model is completed by
the quantification of the parameters, which often have case-specific values.

In most practical situations, system models are developed in a building modeling and
simulation environment. In such an environment, component models can be developed
or picked from a library of standard models and assembled into a building model. The
functionality and architecture of these modeling environments varies significantly (see
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e.g. Sahlin, 1996). However, the conceptual and physical models for most of the
components that are of interest in this study are very similar among modeling platforms.
Hence, Section 2.3.2 through 2.3.5 address the mainstream physical modeling of these
components and the physical basis for their assembly into a building model.

Specifications of the external conditions (inputs)

The external conditions can be subdivided into two categorics:

1. outdoor climate

2. operation of the building (including occupant behavior)

An outline of the scenario has been presented in Section 2.2. More detailed information
can be found in Appendix A.

In comfort performance evaluations in the design stage of a building, historical time
series of (hourly) climate data, measured at a nearby meteorological station are used in
current practice in The Netherlands (see e.g. ISSO, 1994). Commonly these data are
either taken from 1964/19653 or from a Test Reference Year (Lund, 1985). As a result
of this de facto standardization of the climate component in the scenario a broad frame
of reference has been developed (o which simulation results for new buildings can be
comparcd.

In this thesis we will consider the measured climate data from the TRY for De Bilt.
Related quantities such as the sky radiant temperature or the sky radiance distribution,
which can be estimated on the basis of these data without knowledge of the building
under study or its direct environment, will also be considered as pertaining to the
scenario (see also Section 2.3.6).

The part of the scenario concerning the operation of the building specifies issues such as
internal heat gains from people, equipment and lighting in the spaces as a function of
time, and the control of e.g. solar shadings, windows and internal doors. It is one of the
main tasks in the preparation of the simulation to tunc the specification of this part of
the scenario to the intended use of the building (in close consultation with the client).
For standard buildings such as offices, guidelines can be found in e.g. ISSO (1994).
Another effort to assist the selection of appropriate scenario elements by means of
PAM’s (Performance Assessment Method) can be found in Wijsman (1994).

Simulation
Most environments for building modeling also offer simulation functionality. We will not
discuss the specifics of this process. For an exposé on this matter see c.g. Sahlin (1996).

In the following sections the physical models of the relevant subsystems are addressed.
First the subsystem ‘building space’ is covered, followed by the subsystem ‘external
sunblind’. Subsequently, Section 2.3.4 is dedicated to the modeling of ventilation flows
through the office spaces. In Section 2.3.5 physical considcrations arc given for the
assembly of the subsystems into a building model. Then, Scction 2.3.6 discusses the

4 The actual period is 27 April 1964 ~ 27 April 1965.
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quantification of model parameters and Section 2.3.7 concludes with a brief discussion
on the simulation tools that have been used to build and implement the models for this

study.

2.3.2 Building space

Figure 2.6 shows a schematic view of the office space under study. The position of the
external sunblind below the cantilever window is clearly marked.
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Figure 2.6 Schematic view of the office space with several of the variables acting in the model.

The subsystem ‘building space’ itself can further be subdivided into two (types of)
components, i.e. the walls* and the volume they enclose. These subsystems will be
discussed in the next subsections.

Volume enclosed by the walls
To assess the temperature in the enclosed volume, we assume that the air in the space is

perfectly mixed. Under that assumption the uniform air temperature 7, can be assessed
from the heat balance equation for the subsystem, which is given by (2.1).

d

Ca_tTair - pd)v CP (T;ﬂ - Tair )+
N
+ Z O (TW,m.j -T, )Aj + 2.1
j=1
+ Q:ol < + QJr(‘e.c

+ The term wall in this thesis refers to any part of the enclosure of the space including floor and ceiling.
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where

C total heat capacity of the air and (a part of) the furniture
T.r  indoor air temperature

P, ¢  density and specific heat of air

@y air volume flow rate through the space
T temperature of the incoming air
o . convective heat transfer coefficient at the internal surface of wall component ;

Ty, .; internal surface temperature of wall component ;

4; area of wall component j

N the number of wall components in the enclosure

Quie  convective part of solar gain

Qpec  convective part of internal heat production by people lighting and cquipment

The term on the lefi-hand side is the heat accumulation in the subsystem. As it is
generally much smaller than the individual terms at the right hand side, it is often
omitted in which case (2.1) becomes a stationary heat balance.

The first term on the right hand side (rhs) models the heat flow into the system by a
single input single output flow scheme as in the current case. The total heat flow into the
space by convective heat exchange with the space enclosure is represented by the second
term. This enclosure is considered as consisting of N wall components, cach with a
uniform temperature field in the planc of the component. Term 3 in (2.1) is the heat,
which is gained from absorption of solar radiation (by furniture) in the space, while the
rhs closes with the (convectively emitted) sensible heat from internal sources, such as
people, lighting and equipment.

Wall components

As mentioned in the previous subsection, the temperature field in each of the N wall
components is assumed to be uniform in the plane of the component. In the direction
normal to this plane the field T is described by the 1-dimensional Fourier-equation:

d d(, or
Lo T, =—=|a, .
=P, ax( . ax) 2.2)

where pu, ¢, and Ay, the density, specific heat and conductivity of the wall component
respectively, are commonly a function of x. If the wall component contains an air layer
(e.g. in a cavity wall or a multiple glazed window) the heat transport at either side of the
layer is in principle modeled by (2.2), while the air layer itsclf is simply modeled as a
heat resistance:

qair = arol AT (23)

where

Gair heat flux through the air layer

AT  temperature difference over the layer
Oltor total heat transfer coeflicient of the layer
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Equations (2.1) through (2.3) form the basis of the thermal model for the space. Solution
of these equations for T.(x) in each of the wall components and 7. (i.e. the state
variables) requires additional specification of the boundary conditions for (2.2) and
initial conditions for both (2.1) and (2.2).

For common buildings the effect of the initial conditions vanishes after a simulation
period of one to two weeks. Hence, arbitrary initial conditions can be used if the
simulated time span starts at least two weeks ahead of the period of interest.

The boundary conditions for (2.2) may differ from surface to surface. At the internal
surface of a wall component j, i.e. the surface facing the space under study, the
boundary condition for (2.2) is formulated as:

T,

S _

- A’w a - ac,-,,,‘j (T:u'r - Tw,-,,,.j )+ qxul.r.j + qxrre.r.j + qu.jlc (2’4)
n int kk#j

where

n outward surface normal

gwlrj  solar heat flux, absorbed at internal surface of wall component ;
gsmerj  radiant heat fluxes from heat sources absorbed at int. surface of component ;
Grjk net radiant heat flux from surface of component £ irradiating this surface 5

The first term on the rhs is the convective heat flux from the wall component to the air,
which also occurs in (2.1). The absorption of solar radiation entering the space,
absorption of radiant heat fluxes from internal sources and radiant heat exchange
between wall components are accounted for in the second, third and fourth term
respectively.

At the external surface of a wall component two possibilities are considered. The
surface is either a part of the building envelope or it borders another space in the
building.

In the first case, the boundary condition for the heat conduction in wall component j is
modeled analogously? to (2.4) as:

o,

1

- }‘n- a - arm.j (Ta - Twm.j )+ qml.r.i + qcnv.r.j (25)
n ext

where

o ,.; convective heat transfer coefficient at the external surface ;

T. outdoor air temperature

gslrj  solar heat flux absorbed at external surface of wall component ;
gewr; radiant heat exchange of surface j with the external environment.

5 Note that despite the similarity in their notation, the second terms in the rhs of (2.4} and (2.5) do not
relate to the same quantities.
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In the second case, the boundary condition connects the sub-model of the space to the
model of the rest of the building. Hence the choice for this boundary condition depends
on the way the rest of the building is modeled.

2.3.3 External sunblind

Although an external sunblind reduces the amount of solar irradiation on the window, it
also creates a sheltered climate in the space between the blind and the window. Due to
this shelter cffect the temperature of the cxternal windowpane will generally be higher
(and thus the effectiveness of the sunblind lower) than what would be expected on the
basis of the sunblind’s optical characteristics alone.

A common, but crude approach to account for this reduced efliciency is to apply a solar
Jactor instead of the optical transmittance as a reduction factor for the incident solar
irradiance. Estimates of this factor for several types of window systems (sunblind +
window) can be found in e.g. ISSO (1975, 1994). In this thesis, however, a more explicit
approach has been used, in which the sunblind and the cavity it forms in combination
with the window, are treated as a separate component. This approach connects well to
the modeling scheme presented in the previous sections.

The sunblind and the window form a ventilated cavity. Figure 2.7 shows a schematic
view of this cavity.

_O\_

indoor outdoor

qsol,r,win qsol,r,blind

Qwin,r,blind Qenv,r,blind

Oe,win,cav | Ole,blind,cav | | Olc,blind, ext

win,ext Tcav Tblind Ta

k— cDV,cav

Figure 2.7 Schematic view of the cavity between external window pane and sunblind. The main
parameters and variables in the thermal model are indicated. The horizontal dimensions of the cavity are
exaggerated for ilustrative purpose.
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As soon as the sunblind is in operation (for details on the operation of the sunblind see
the scenario specification in Appendix A.2), the external boundary condition for the
temperature field in the external windowpane becomes slightly different from (2.5):

daT,

win —
- lw a - ac,cav (va - Twln.e.tr ) + q:ol JTowin + qblind JLowin (2‘6)

n ext
where
Toi the temperature field in the windowpane

p wp

O, avincar the convective heat transfer coeflicient at the window surface in the cavity
Tea the air temperature in the cavity
solruin the (reduced) absorbed solar irradiance at the window

Qbindrain  the radiant heat flux from the sunblind to the window pane

To close the model, two additional expressions are used, i.e. simplified heat balances for
the air temperature in the cavity and the temperature of the sunblind. In these equations
the assumptions are used that the heat capacity of the sunblind is negligible, as is the
temperature difference between inside and outside of the blind.

0 = ac,win.cav (Twin ext Tcav win + ac,blind.mv (Tblind - Tcnv )Awin + pcq)V,cav (Ta - Tcav ) (2‘7)

0= ar,blind.mv (Tcav - Tblmd )+ ac,blind.exl (7:1 - Tblind )+ q.\'ol,r.blind + qenv.r,blind + szn,:.mmd (2‘8)

where

O pinde  the convective heat transfer coefficient at the blind in the cavity
O.sinded the convective heat transfer coefficient at extenior of the blind

T btina the temperature of the sunblind

Dvew ventilation rate of the cavity with ambient air

ol blind solar heat flux absorbed at the blind

Gen,r,blind the radiant heat flux from the building environment to the blind
quinrind  the radiant heat flux from the window pane to the sunblind

2.3.4 Ventilation modeling

Introduction

As discussed in section 2.3.1, the simulation approach is chosen such that the scenario
specifies the experimental conditions the building is considered to be exposed to,
whereas the model captures the response of the building® to these conditions. In
practice, this distinction is commonly not preserved in the quantification of the airflow
through the building. Indeed, airflow rates are often specified as model parameters with

5 Strictly speaking, the model covers a system, which is substantially larger than the building itself. To
connect the building to the (climate) data available in the scenario, part of the building environment is
included in the model. Despite this, we will continue to use the term building model.
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a more or less fixed value throughout the simulation (see e.g. ISSO, 1994, Wapenaar,
1992).

In a naturally ventilated building, however, airflows are either wind or buoyancy driven
and can possibly be controlled by the occupants via the operation of windows. A
consistent approach would require a separatc modeling of the physical mechanisms
driving the airflows on the one hand and the control of these flows by the occupants or
other control systems on the other.

Moreover, current practice to specify (almost) stationary values for the airflow rate is in
contrast with the dynamic character of the rest of the model. For evaluations of a
building with respect to thermal comfort a proper representation of the dynamics in the
temperature field is especially important (see Section 2.4). On these grounds it was
decided in this study to model the ventilation in morc detail.

In general, airflow through a building is driven by a combination of wind, thermal
buoyancy and mechanically induced pressures. In the casc under study we do not
consider mechanical ventilation. Thermally induced pressures (stack effects) only occur
when openings are located at different levels or if these openings have considerable
vertical dimensions. In this case the airflows at different floors are fully separated by the
airtight fire doors at both ends of the corridors. Within each floor all openings are
located at the same level when the internal doors are closed, which is indeed assumed in
the scenario. Moreover, the vertical dimensions of the openings are small. As a result, a
stack effect need not be considered. By exclusion of thermally driven flow and
mechanical ventilation, the only remaining driving force is wind.

Airflow model

To model the hourly averaged flow rate through the offices under study, a basic network
approach has been used (e.g. Feustcl, 1990, Liddament 1986). The network’ is shown in
Figure 2.8. The only driving mechanism is wind.

window vent vent window
- NN NN NNNP

west space 2 corridor  space 1 east
facade fagade

Figure 2.8 Network used lo assess the airflow rate through the office space under study.
The spaces (zones) are characterized by pressure ‘nodes’, whereas the orifices, i.e.

windows and vents, in the facades and partition walls are shown as flow ‘resistances’. In
addition to the zonal nodes two external nodes are indicated. The pressures in these

7 This network is based on the assumption in Section 2.3.2 that no airflow occurs through the margins of
the system, i.c. the building section in Figure 2.4. Even under identical operation of all offices, this will not
generally be the case as for several wind angles significant horizontal pressure gradients will occur over the
building facades. To keep the model transparent, the network as shown in Figure 2.8 will be used
nonetheless.
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nodes are the wind induced pressures on the west and cast fagades at the location of the
windows. Leakage flows through cracks and joints are ignored.

The air mass flow @; through an orifice j § = 1,...,4) is modeled as a function of the
pressure difference Ap; over the orifice by the semi-empirical relation (Liddament, 1986,
ASHRAE, 1993):

b, =C, A 2pAp; (2.9)
with p the density of air, 4; the area of the orifice, and Cy; the discharge coeflicient.

By requesting that the net mass flow into each space (node) equals zero and that the sum
of the pressure differences over all orifices (resistances) equals the total wind pressure
drop between the west and east fagade, the air mass flow through the spaces can be
assessed.

Wind induced pressure differences

As discussed in Section 2.3.1, the climatic data in the scenario are based on
measurements at a meteorological station. Commonly used climatic data sets contain
information on the hourly averaged values of wind direction and wind speed. These
data are measured at 10 m above ground level and converted to potential values by
correcting them for imperfections at the meteorological observation site (Wieringa and
Rijkoort, 1983).

The relation between the pressure p on a certain position x at the building envelope and
the potential wind speed at the meteorological station is modeled by:

px)=1pC, )0V, f 210)
where
p density of air
Upat potential wind speed, i.e. (hourly averaged) wind speed measured at an
ideal metcorological station at 10 m above ground level
Gx) wind pressure coeflicient or shape coefficient for position x at building
envelope
Y wind reduction (or amplification) factor

This equation expresses that the pressures at the building envelope are proportional to
the dynamic wind pressure at the meteorological observation site (at 10 m height), i.e.
Y2 p Upe. The wind reduction factor 7y captures the effect of the far field, whereas the
pressure coeflicient covers the effects of the near-field and the building geometry (see
Figure 2.9).
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Figure 2.9 Irom a potential wind speed, measured al the meteorological station to the pressure
distribution over the buwilding. The figure schematically shows the mean wind velocity profile at the
meteorological observation station with the potential wind speed and the local profile with the local wind
speed at building ridge height, a common reference height for wind pressure coefficients.

The near field is the area around the building where individual obstacles of the scale of a
building affect the pressure distribution. In wind tunnel experiments this arca is modeled
in detail and usually starts 300 — 1000 m upstream of the building (see e.g. ASCE, 1999).
Upstream of the near field the effect of obstacles is parameterized in terms of a surface
roughness (see e.g. Wieringa, 1993).

2.3.5 From component models to building model

In principle it is possible to describe the temperature field in all spaces in the building by
a set of equations of the type (2.1) through (2.8) with additional expressions for the
ventilation flow from Section 2.3.4. The boundary conditions at all interior wall surfaces
are then of the form of (2.4). In practical applications this approach requires much time
to build the model and to perform the simulations. The model can commonly be
reduced without much loss of accuracy by taking account of symmetry.

As, according to the scenario, the space under study and the spaces left and right of it
are operated identically, it is natural to assume that the temperature fields in those
spaces will be similar. Hence we only introduce a small error if we apply the internal
surface temperaturc of cach component in the left partition wall as the boundary
condition at the external surface of the corresponding component in the right partition
wall. This approach is used here.

The space under study 1s located at the top floor (see Section 2.2), which means that
even when identically operated, the temperature fields in the space under study and the
space directly below it will not be identical. Nevertheless, to keep the model transparent
we will assume that the temperature of the ceiling in the space under study is identical to
the temperature of the ceiling in the space underneath. Application of this approach to
the current case leads to a building section of three spaces that is modeled in detail with
equations of the type (2.1) through (2.8) as shown in Iigurc 2.4.
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Part of the system boundaries of the middle space, a part of the corridor, do not
coincide with physical walls. At these boundaries, adiabatic conditions are assumed, i.e.
both airflow and heat flow equal to zero.

The following sections elaborate the terms in (2.1) through (2.8) and discuss how they
can be fleshed out from the design specifications and the scenario.

2.3.6 Quantification of model parameters

In the previous section the outline of the thermal model for a building space was laid
out. The current section aims to clarify how this model can be given concrete form on
the basis of given design specifications and scenario. This explanation subsequently
addresses each of the terms in equations (2.1) through (2.10).

Space ventilation heat flow

Figure 2.5 shows that the space under study only has two vents in opposite walls of the
space. Both infiltration through cracks and joints and single sided ventilation are
considered to be insignificant. Hence, the first term in (2.1) fully covers the net heat flow
carried into the space by an airflow rate ®ythrough the space. Considering ¢ and p as
known constants, quantification of this term requires assessment of @y and Tin.

If the air flows in from outside the building, its temperature T is taken equal to the
outdoor ambient temperature, which is specified in the scenario. Otherwise Ti is
assigned the air temperature of another space in the system, which is a state variable in
the model.

The air flow rate ®y can be calculated from equations (2.9) and (2.10). The potential
wind speed is retrieved from the scenario. The areas of the window openings is found in
the design specifications. This leaves the discharge coefficients, the pressure coefficients
and the wind reduction factor to be quantified.

Drscharge coefficient
The discharge coefhicients Cyj mainly depend on the shape of the orifice, the direction of
the flow and the degree of wrbulence in the flow. For suitable values see e.g. Boulard
and Baille (1995).

Wind pressure coefficients

Pressure coeflicients relate the pressures on the building envelope to the dynamic (local)
wind pressure at a given reference level. A common reference level is ridge height of the
building of intcrest. In ventilation studies, mean (i.c. time-averaged) values of the
pressure cocfhicients are generally used. The value of these cocfficients depends on the
position on the building envelope, the building geometry, the wind angle, the near field
geometry and the shape of the wind profile.

Several tools have been developed to assist the assessment of mean wind pressure
coeflicients on the basis of existing experimental data from prior wind tunnel studies and
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full-scale measurements. Examples of such tools can be found in e.g. Allen (1984),
Liddament (1986), Swami and Chandra (1988), Grosso (1992, 1995), Walker and
Wilson (1996) and Knoll, Phaft and De Gids (1995, 1996).

Wind reduction_factor

The wind reduction factor is the ratio between the local mean wind speed (at a given
reference height) and the potential wind speed reported at the metcorological station.
The modeling of this factor belongs to the domain of boundary layer mcteorology.
Methods to assess it can be found in e.g. Wieringa and Rijkoort (1983), Bottema (1993),
Geurts (1997) and Liddament (1986).

Internal convective heat transfer

The second terms in both (2.1) and (2.4) model convective heat transfer from the surface
of the enclosure to the air in the space. All temperaturcs in these terms are state
variables. Reviews of literaturc on internal heat transfer coefficients can be found in e.g.

Halcrow (1987), Pernot (1989), Khalifa (1989, 1990) and Awbi and Hatton (1999).

Solar heat loads

Heat loads due to the absorption of solar radiation are represented by term 3 in (2.1),
term 2 in (2.4), term 2 in (2.5) and term 3 in (2.8). These three terms can be quantified
from information about the solar irradiation specified in the scenario. This information
usually consists of the hourly averaged values of the direct irradiation on a normal plane
and the diffuse irradiation on a horizontal plane. With models for the solar position, the
radiance distribution over the sky and the eflective reflection coefficient of the
surroundings (albedo), the total solar irradiation on each part of the building envelope
can be calculated from these data. Models for solar position and sky radiance
distribution can be found in e.g. Velds (1992) and Gongalves (1989).

Given the total irradiation distribution over the building envelope, the solar heat flux
that is absorbed only depends on the solar absorptance. Tables with solar absorptance
values for various materials (and surface conditions) can be found in e.g. ASHRAE
(1993).

The solar radiant flux entering the space can also be calculated from this total
irradiation for given geometry and optical characteristics of the window and sunblinds.
The issue how the absorption of this flux is distributed over the furniture (convective
fraction) and the wall surfaces (radiant fraction) is generally addressed pragmatically. A
fixed fraction is attributed to the furniture and the remaining part is evenly distributed
over an appropriate part of the space enclosure.

Loads from internal heat sources

Loads from heat sources in the space like occupants, lighting and equipment enter the
model as inputs through term 4 in (2.1) (convective part) and term 3 in (2.4) (radiant
part). The scenario commonly specifies the total internal heat load. 'T'o obtain separate




24 Performance assessment

values for the radiant and the convective parts, ASHRAE (1993) and ISSO (1994)
tabulate ratios between those parts for a range of heat sources.

Radiant heat exchange between internal wall surfaces

Term 4 in (2.4) represents the radiant heat exchange between internal wall surfaces.
Under the assumption that these surfaces are gray radiators, the net radiant heat
exchange between them is completely defined by the surface temperatures, emittances
and mutual view factors. The surface temperatures are state variables in the model.
Emittances for a variety of materials and surface conditions can be found in handbooks
(e.g. ASHRAE, 1993, Siegel and Howell, 1981). As the geometry of the space is known,
all necessary view factors in an empty space can be assessed by straightforward
calculation. The effect of furniture is neglected.

External convective heat transfer

In some approaches both convective and radiant heat transfer from the building
envelope are modeled by an expression similar to the first term in (2.5), but with an
overall heat transfer coeflicient. In this study, convective and radiant components are
modeled separately, consistent with the approach at internal surfaces.

Convective heat transfer from the building envelope to the ambient (outdoor) air is
expressed by the first term in (2.5). If the sunblinds are up, the convective heat transfer
at the window surface is also covered by (2.5). Otherwise this heat transfer takes place at
the sunblind as described by the second term in (2.8). The surface temperatures in these
equations are state variables in the model. The outdoor ambient temperature is either
taken from the scenario either directly or after correction for the effects of the building
environment (urban heat islands, see e.g. Plate (1995), Kimani (1998)). Reviews of the
literature on external heat transfer coefficients can be found in e.g. Allen (1987) and
Strachan and Martin (1989).

The convective heat transfer in the cavity between window and sunblind is governed by
the rate of ventilation with ambient air and the convective heat transfer coefficients at
the surfaces of window and blind. In ISSO (1991) guidelines for these values can be
found.

External radiant heat transfer

Term 3 in (2.5) and term 4 in (2.8) capture the net radiant heat exchange between the
building (envelope) and its environment. As in the building simulation tool ESP-r
(ESRU, 1995b), three different emitters are distinguished in this environment, i.e. the
sky, the surrounding buildings and the ground. Both the building envelope and the
environmental emitters arc considered as gray radiators. Hence, the radiant heat
exchange between an emitter and a wall component can be expressed in terms of their
temperatures, emittances and a mutual viewfactor. The viewfactor can be calculated
from the available geometrical (design) information, emittances are tabulated in
handbooks and the temperature of the wall component is the state variable of interest.
This leaves the temperatures of the environmental emitters to be specified.
Phenomenological models for the radiant sky temperature are reported in the literature
(e.g. Stanzel, 1989). These models relate the radiant sky temperature to the outdoor air
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temperature, the cloud cover factor and the humidity, which are available from the
scenario.

Furthermore, it is assumed that the fagades of surrounding buildings have the same
average surface temperature as the fagades of the building under study with the same
orientation.

Finally, the ground is modeled as a horizontal wall of 1.2 m thick. Temperatures at
1.2 m depth are assumed to be known from the scenario, as arc the material properties
of the various ground layers. Heat conduction in the ground is modeled according to
(2.2) with (2.5) as surface boundary condition.

If the sunblind is activated, there will be radiant heat exchange between the window
surface and the sunblind. In modeling this heat transport, these surfaces are considered
to be gray radiators with a mutual view factor of 1.

Heat transfer through air layer

The double-glazed window contains an air-filled cavity. Suitable values for the total heat
transfer coeflicient Ot (see equation (2.3) can be found in e.g. the built-in library with
window properties in ESP-r (ESRU, 1995b).

2.3.7 Implementation and verification

The previous sections outline the physical building model, which has been used in this
study. To carry out actual simulations with this model, it had to be implemented as a
computer model. As mentioned in Chapter 1 and in Section 2.3.1, several commercially
available tools exist that facilitate this implementation. In this study, two of these tools
for thermal building modeling and simulation have been used.

The first tool is BFEP (Augenbroe, 1986). BFEP is a toolbox rather than a program. Its
inherent flexibility and versatility enable the development and use of non-standard
model components, and the construction of a computer model that is suited for sample-
based sensitivity and uncertainty analyses. Hence, all uncertainty and sensitivity analyses
reported in this thesis were done with BFEP.,

The second tool is ESP-r (ESRU, 1995a). ESP-r is a closed building simulation
program. It has been involved in a substantal validation study (Jensen, 1990, 1994).
This simulation program has been used to verify the BFEP-models by comparing the
outputs (temperature traces) for a range of base-cases. It has not been deployed in the
sensitivity and uncertainty analyses.

2.4 Performance criteria for thermal comfort

2.4.1 Introduction

The previous sections focused on the simulation of the thermal conditions in the
building and more particularly on the indoor climate in the space under study. The
output of this simulation serves as input to assessment of building performance with
respect to the indoor climate.
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As Figure 2.1 shows, performance assessment requires two elements:

¢ acomfort model to estimate occupant comfort ratings

e a definition of the performance indicator to carry out the post-processing

Both issues are addressed in the following sections. Before going into detail, however, a
brief outline 1s given here.

Basically, two definitions of performance indicators for thermal comfort are encountered
in The Netherlands. They both start from the notion that an indoor climate, which is
causes dissatisfaction among 10% of the people or more, is unacceptable. The indicator
according to the first definition is simply the relative fraction of time that the indoor
climate is unacceptable. In the other definition the performance indicator also counts
the number of hours with an unacceptable climate, but in the summation each hour is
attributed a weight that is proportional to the percentage of people that would be
dissatisfied with the climate in that hour. This approach incorporates the idea that the
indoor climate deteriorates as more people would consider it unacceptable. Performance
indicators of this type arc commonly addressed as ‘weighed’ indicators. A more
comprehensive discussion on these performance indicators can be found in 2.4.3.

In the comfort models, used to relate occupant (dis)satisfaction to the actual indoor
climate, two main schools of thought can be identified. Loosely stated, the ‘static’ school
uses models in which the thermal preferences of the occupants are considered to be
fixed. In the ‘adaptive’ school, on the other hand, thermal preferences are modeled as a
function of contextual factors and recent thermal history. The two types of comfort
models are more elaborately discussed in 2.4.2.

Table 2.1 shows a classification of Dutch performance indicators along these two
dimensions, i.e. ‘weighed’ or not, and based on a static or an adaptive comfort model.

Table 2.1 Classification of performance indicators for thermal comfort.

weighed
no yes
static TO GTO
comfort model adaptive (TO*) -

Both the TO —indicator (Dutch abbreviation for temperature excess) and the GTO-
indicator (Dutch abbreviation for weighed temperature excess) are commonly used in
The Netherlands (see e.g. De Wit et al, 1999b). In accordance with current
international standards (ISO-7730, 1994, ASHRAE 55/55a, 1992) these indicators are
based on static comfort models. However, growing discomfort with static models among
practicing engineers, especially in connection with naturally ventilated buildings, has
caused an upturn of the interest in adaptive comfort models (De Wit et al., 1999b).
Hence an adaptive version of the TO-indicator, denoted here by TO¥*, is presented in
this thesis as a possible alternative to the TO. An adaptive alternative of the GTO

-

- e
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cannot be given, as the output of the current adaptive comfort models do not enable
calculation of the required weights.

In Dutch design practice, the TO and GTO are commonly assessed over a pcriod of
1 year on the basis of representative outdoor climate data (see Sections 2.2 and 2.3.1). In
that context, the TO (and TO*) performance indicator are simply expressed as the
number of hours that more than 10% of the pcople would be dissatisfied. A common
target value for the TO in offices (related to warm discomfort only) is 100 hours, based
on 2000 office hours per year (RGD, 1979).

The dimension of the GTO is commonly referred to as ‘weigh-hours’. A frequently used
target value is 150 weigh-hours (Brouwers en Van der Linden, 1989), again related to a
simulation period of 1 year with the representative outdoor climate data.

This thesis focuses on the TO and TO* indicators. The GTO-indicator is not
considered. First, the TO-indicator is more transparent in communication between
various actors in the design process. It's meaning can be understood without detailed
knowledge of how it is calculated. Moreover, the question of whether performance
control on the basis of GTO leads to better buildings than control on the basis of TO is
still a subject of debate (Schalkoort, 1994, De Wit ct al., 1999b).

The next two subsections address, respectively, the comfort models and the performance
indicators.

2.42 Thermal comfort models

Introduction

Various global comfort models can be found in the literature (e.g. Fanger, 1970, Gagge
et al., 1971, Humphreys, 1978, Auliciems, 1981, 1989, De Dear and Brager, 1998).
They model the responsc distribution, which would be obtained if a large sample of
people are exposed® to a certain thermal environment and asked to rate their sensations
on a given scale. An example of such a scale is shown in Figure 2.10.

cold cool  slightly neutral slightly warm hot
cool warm

I I | I | I I
| I | I I I I

-3 -2 -1 0 +1 +2 +3

Figure 2.10 The 7-point ASHRAE sensation scale.

# Several of these models relate to long exposure times and do not account for climatic transients.
Moreover, most of them are based on global climatic conditions and do not account for local cffects such
as e.g. draught at head level or cold feet.
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The model output commonly consists of only a few characteristics of the response
distribution, e.g. the mean response and/or the fraction of the responses that will exceed
a certain critical value.

Thermal comfort models can be subdivided in static and an adaptive types. The static
models, also referred to as “heat-balance models’, consider the occupants as passive
recipients with static preferences, which are entirely driven by autonomic physical and
physiological mechanisms. The adaptive models on the other hand, acknowledge the
fact that psychological factors such as expectation based on recent experience may affect
people’s preferences. This allows them to adapt to a certain extent to the ruling climatic
conditions.

Current international standards (ISO-7730, 1994, ASHRAE 55/55a, 1992) are based
on static comfort models. The RGD, a Dutch government building agency, has
developed models, which are compliant with ISO-7730. However, growing discomfort
with static models among practicing engineers, especially in connection with naturally
ventilated buildings, has caused an upturn of the interest in adaptive comfort models
(De Wit et al., 1999b). Hence, a representative of this class of models has been used in
this study. The next section give a brief exposé on static comfort models, whereas the
subsequent section is dedicated to adaptive models.

Static approach

The most commonly used comfort performance criterion in The Netherlands, which
has been proposed by a Dutch government building agency, the RGD (RGD, 1979,
Brouwers and Van der Linden, 1989) is based on ISO-7730. The ISO-standard
incorporates the comfort model developed by Fanger (1970), which is a representative of
the class of ‘static’ comfort models. This model requires 6 input variables, ie. air
temperature, (mean) radiant temperature®, (relative) humidity, air velocity, mean
thermal resistance of the clothing and metabolic rate. On the basis of this input, a
physical/physiological state variable is calculated, which Fanger refers to as the ‘thermal
load’. The response distribution is modeled in terms of this thermal load!.

Fanger’s relation between responses and thermal load is based on the results of climate
chamber experiments with approximately 1300 subjects. For the various (stationary)
thermal loads which these subjects were exposed to, they were asked to rate their
thermal sensation on the ASHRAE-scale, which distinguishes 7 levels from ‘cold’
through ‘neutral’ to ‘hot’ (see Figure 2.10).

On the basis of the response distributions from these experiments, Fanger derived a
relation between the thermal load and the mean response or mean ‘vote’. He called the
output of this relation the ‘Predicted Mean Vote’ or PMV.

9 The mean radiant temperature is the uniform temperature of an imaginary black enclosure in which the
radiant heat transfer from the human body equals the radiant heat transfer in the actual nonuniform
enclosure (ASHRAE, 1993).

10 In fact, the response distribution is also a function of the metabolism (see Fanger, 1970)
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Moreover, he deduced an cxpression for the [raction of the subjects stating a vote with 2
or more in absolute value on thc ASHRAE-scale. As he had concluded from earlier
research (Gagge et al.,, 1967) that these vote indicate dissatisfaction, he denoted the
result of this expression the ‘Predicted Percentage Dissatisfied’ or PPD.

In his experiments, Fanger found that the factors outdoor climate, sex, body build and
age did not significanty change the relation between thermal load and the PMV and
PPD. Hence, he concluded that thermal preference is a fixed, static function of the
thermal load.
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Figure 2.11 Relation between thermal load, PMV and PPD (at an office-level metabolism of
70 W/m?) according to the comfort model by Fanger (1970).

The two relations for PMV and PPD as a function of the thermal load and the
physical/physiological model for this load constitute the Fanger-model in its basic form.
Despite extensive criticism (see c.g. Schalkoort, 1994) it is one of the most widely used
thermal comfort models.

One of the problems with the application of this mode! in a building simulation context
is the input data it requircs. Building simulation only provides the requested
temperatures, which leaves air velocity, humidity, clothing level and metabolism to be
specificd from other sources. The latter two variables would most naturally be specified
in the scenario along with the other occupancy-related variables. The first two
environmental variables however, are part of the building’s response to the conditions in
the scenario and should, in a consistent approach, be simulated along with the
temperature field.

For lack of good models for these variables, the performance indicators proposed by the
RGD are based on default values for these variables, which are kept fixed throughout
the simulated period (see ‘Comparison of static and adaptive approaches’). The Fanger-
model together with these defaults constitutes the static thermal comfort model that we
will refer to as the RGD-model.
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Adaptive approach

Examples of adaptive comfort models can be found in e.g. Humphreys (1978),
Auliciems (1981) and De Dear and Brager (1998). Here we will focus on the most
recently developed adaptive model by De Dear and Brager.

Adaptive comfort models start from the notion that thermal preferences are not static,
but depend on contextual factors and recent thermal history. Research by Auliciems
(1981, 1989), De Dear (1994) and Nicol (1993) suggests that satisfaction with indoor
climate results from matching the actual thermal conditions in a given context with the
expectations of what the indoor climate should be like in that context. In other words,
satisfaction occurs through appropriate adaptation to the indoor climatic environment.

Three forms of adaptation may be distinguished (Folk, 1981, Prosser, 1958, Clark and
Edholm, 1985):

e behavioral

e physiological

e psychological

Behavioral adjustment refers to all modifications, which influence the heat and mass
fluxes governing the body’s heat balance. This form of adaptation falls outside the scope
of the static models, as it predominantly affects the inputs of these models.

Physiological adjustment is defined by De Dear and Brager as ‘all of the changes in the
physiological responses, which result from exposure to thermal environmental factors
and which lead to a gradual diminution in the strain induced by such exposure.’” A
review of the literature (Brager and De Dear, 1997) shows that this form of adaptation is
not likely to be a significant factor for the moderate range of conditions found in most
buildings.

Psychological adaptation refers to changes of thermal preferences in reaction to past
experience and expectation. De Dear and Brager carried out a meta-analysis of well-
documented ficld studies in more than 160 buildings. They concluded that a significant
correlation cxists between thermal preferences and the outdoor climatic conditions in
the preceding month. Apparently, thermal preferences are not static, but indeed depend
on recent experience. In buildings with a centralized HVAC system, with fairly constant
indoor climatic conditions and limited adaptive opportunities, this correlation can fully
be explained from behavioral adjustments. In naturally ventilated buildings, however,
behavioral adaptation only partially explains the observed changes in preferences, which
suggests a contribution of psychological adjustment. This is supported by the work of
Paciuk (1990) among others.

On the basis of a statistical meta-analysis of the field studies, De Dear and Brager
developed two different models; one for buildings with centralized HVAC and one for
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naturally ventilated buildings. As a function of the mean outdoor effective temperature!!

over the preceding month, they predict (see Figure 2.12):

¢ The optimum operative temperaturc. This is the opcrative temperature!2, which will
expectedly be accepted by the greatest possible number of people.

® Acceptability ranges. A first range captures the operative temperatures, which will
be acceptable to 80% of the people or more, whereas temperatures in a second
range will satisfy at least 90%.
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Figure 2.12 Acceptability ranges according to the adaptive model by De Dear and Brager (1998).

The information in Figure 2.12 provides a means of evaluating the acceptability of the
indoor climate in naturally ventilated buildings in terms of the indoor operative
temperature and the mean monthly outdoor effective temperature. The operative
temperatures can readily be obtained from a building simulation, whereas all the
information to calculate the outdoor effective temperature is available in the scenario.

Comparison of static and adaptive approaches

In the previous sections the main features of a static and an adaptive comfort model
were discussed. In this section we will illustrate how these features express themselves in
the context of building simulation. Figure 2.13 shows lincs of equal acceptability for
both the static RGD-model and the adaptive model for naturally ventilated buildings

! The effective temperature (ET*) is the (operative) temperature of an environment at 50% relative
humidity that results in the same total heat loss from the skin as in the actual environment (ASHRAE,
1992). People at the same ET* value would be expected to have the same thermal sensation (see Gonzalez
et al., 1978). The official ASHRAE algorithm for the ET*, which was used in the study by De Dear and
Brager, is implemented in the ASHRAE RP-781 software package (Fountain and Huizenga, 1996).

12 The operative temperature is the uniform temperature of an imaginary environment in which the heat
transfer from the human body, both by radiation and convection, equals the total heat transfer in the
actual nonuniform environment (NEN-ISO 7726, 1989). In this study, the operative temperature is
approximated as the arithmetic mean of the (dry bulb) air temperature and the mean radiant
temperature.
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from De Dear and Brager. These lines are plotted as a function of time in the Test
Reference Year (TRY, see Section 2.3.1) for De Bilt, The Netherlands.

To express the acceptability predicted by the static model in terms of operative
temperature, it was assumed that air temperature and radiant temperature do not differ
too much. Moreover, for the variables air velocity, relative humidity, clothing insulation
and metabolism the respective default values of 0.1 m/s, 50%, 0.7 clo (0.11 m2? K/W)
and 1.2 met (70 W/m?) were used (ISSO, 1994).

The neutral temperature (PMV = 0) according to the static model and the optimum
comfort temperature from the adaptive model may be compared without the risk of
overlooking semantic effects. Indeed, the research by De Dear and Brager (1998) shows
that in naturally ventilated buildings there is no systematic deviation between thermal
neutrality and optimum comfort or preferred temperature. Moreover, the margins of
the 90%-acceptability ranges from the adaptive model can be interpreted as the
analogon of those thermal conditions to which the static RGD-model attributes a PPD-
value of 10%.
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Figure 2.13 Iso-acceptability hines for the Test Reference Year in De Bilt according to the static RGD-
model and the adaptive model from De Dear and Brager.

By definition, the preferences from the static model do not change with time, while the
iso-acceptability lines according to the adaptive model show a preference for higher
temperatures in summer. It is interesting that the interval between the neutral/optimum
comfort temperature and the 90% acceptability line is almost identical for both models.
Besides, the 90%-acceptability lines indicate that according to the adaptive model
people will be slightly more tolerant to high temperatures in July, August and the first
half of September (in this Test Reference Year) than predicted by the RGD-model.
However, in the rest of the year the RGD-model conjectures significantly more
tolerance.
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2.4.3 Performance indicators

For office buildings, two types of performance indicators have been proposed by the
Dutch Rijksgebouwendienst. These are the TO-indicator and the GTO-indicator,
which are commonly used in The Netherlands (De Wit et al., 1999b). These indicators
are based on the idea that an indoor climate in which less than 10% of the pcople would
feel dissatisfied is acceptable. Conditions in which more people are uncomfortabic
should occur infrequently. Hence, the performance indicators are formulated as penalty
functions on the frequency (fraction of time) that these conditions occur!3. The threshold
level of 10% is not arbitrarily chosen, but rests on a reference in appendix D of ISO-
7730 (1994) that ‘it is recommended as acceptable that the PPD be lower than 10%’,

where the PPD is the percentage dissatisfied as predicted by Fanger’s comfort model.

As already discussed in Section 2.4.1, only the TO-indicator will be used in this study.
This indicator is simply the number of (office) hours per year that the critical PPD-level
is exceeded (RGD, 1979). With the RGD-defaults for clothing level, metabolism, air
humidity and air velocity, and the assumption that air temperature and mcan radiant
temperature do not differ too much, the critical PPD-value can be converted to a critical
opcerative temperature of 25.5 °C with Fanger’s comfort model. To this temperature
threshold the indicator owes its name: TO (Temperatuur Overschrijding, Dutch for
temperature exceeding). A common target value is 100 hours, related to a simulation
period of 1 year with the representative outdoor climate data mentioned in Section
2.3.1.

The TO-indicator is often used in combination with a sccond one of the same type, i.e.
the number of hours that the (operative) temperature exceeds the level of 28°C.

When we return to the original idea that was proposed in the RGD-guideline, but
quantify the percentage of dissatisfied on the basis of the adaptive model and not in
terms of Fanger’s PPD, we find an adaptive analogon for the TO-indicator. In this
analogon, the fixed threshold of 25.5 °C is replaced by a critical temperature, which is a
function of the outdoor effective tempcrature (see Figure 2.13). We will refer to this
indicator as the TO*.

2.5 Discussion

The current chapter describes an approach, in which the indoor climate in the building
is simulated under an a-priori fixed scenario. This scenario includes the specification of
occupant behavior. Subsequently, a comfort model is used to predict how people would
rate this indoor climate. Hence, the indoor climate in the building is assumed to be
unaffected by the sensations of the occupants. For a centrally conditioned building, this
may be a justifiable approach, but for a building with adaptive opportunities such as
operable windows and sunblinds, this seems unrealistic.

13 These indicators would more accurately be referred to as non-performance indicators, but this subtlety
is ignored in this thesis.
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The adaptive comfort model (De Dear and Brager, 1998) acknowledges behavioral
adjustments of e.g. clothing level and metabolism in response to the indoor climate, and
takes them into account. If the behavioral adjustments extend to operating windows and
sunblinds, though, these cannot be accounted for in the comfort model alone. Indeed,
these adjustments affect the indoor climate itself.

As none of the currently available comfort models provide insight into the behavioral
aspects of occupant response, the occupant control over the building in response to the
indoor climate cannot be modeled. Further research on this issue could contribute to
more adequate performance evaluations and enable an evaluation of the effects of
adaptive opportunities on occupant satisfaction. It is widely recognized that these
opportunities arc important, but with present day knowledge and in the present
modeling approach there 1s no room for these facets.

2.6 Summary

In this chapter, two issues have been addressed. Firstly, the specific building, which will
be used throughout this thesis, has been described. It is a four-story, naturally ventilated
office building in the Netherlands. The description concerns the building itself, its
environment and the occupancy scenario to be considered.

Secondly, an approach is described to evaluating the thermal comfort performance of
the building. The performance evaluation approach consists of three steps. Initially, a
building model is used to dynamically simulate the temperatures in the building in
response to a particular scenario (i.e. a time series of the outdoor climate conditions and
occupant behavior). Subsequently, a comfort performance indicator is calculated on the
basis of the predicted indoor temperature time series. This calculation involves a
thermal comfort model, which predicts how occupants will rate the indoor
temperatures.

The building simulation model, the thermal comfort model(s) and the performance
indicator(s) are described.
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3.1 Introduction

In the previous chapter, it has been described how, in a specific case, building
performance with respect to the indoor climate is assessed on the basis of a building
model and a model for thermal comfort. This chapter analyses which uncertainty should
be attributed to the resulting building performance.

Uncertainty may enter the assessment from various sources. The next paragraphs give a
brief discussion. Slightly different classifications of the sources of uncertainty can be
found in Pinney et al. (1991) and MacDonald et al. (1999).

Firstly, the design specifications do not completely specify all relevant properties of the
building and the relevant installations. Instcad of material properties, for instance,
material types will commonly be specificd, leaving uncertainty in the exact properties.
Morcover, during the construction of the building, deviations from the design
specifications may occur.

The uncertainty, arising from incomplete specification of the system to be modecled will
be referred to as specification uncertainty.

Secondly, the physical model development itself introduces uncertainty, which we will
refer to as modeling uncertainty. Indeed, even if a model is developed on the basis of a
complete description of all relevant building propertics, the introduction of assumptions
and the simplified modeling of (complex) physical processes introduces uncertainty in
the model.

Thirdly, numerical errors will be introduced in the discretization and simulation of the
model. We assume that this numerical uncertainty can be made arbitrarily small by
choosing appropriate discretizations and time steps. Hence, this uncertainty will not be
addressed here.

Finally, uncertainty may be present in the scenario, which specifies the external
conditions imposed on the building, including c.g. outdoor climate conditions and
occupant behavior. The scenario basically describes the experiment, in which we aim to
determinc the building performance.

In current practice, it has become customary to use standardized scenario elements in
comfort performance evaluations. The most striking example concerns the ‘reference’
time serics of outdoor climate data (see Section 2.3.1). From the experience with
performance evaluations, in which these standardized cxperimental conditions were
used, a broad frame of reference has developed to which performance calculations for
new buildings can be compared. If such comparisons are indeed meaningful to a
decision maker, who aims to use a performance evaluation to measure the level of
achievement on his objectives, there is no scenario uncertainty. If, however, a decision
maker is actually interested in a performance assessment, based on a prediction of the
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comfort sensations of the future occupants of the building, the scenario should be
considered as a reflection of the future external conditions, which are uncertain.

As a systematic exploration of a decision-maker’s objectives, and their translation into
building performances is commonly not undertaken in building design, it is difficult to
decide in general how to deal with scenario uncertainty. In this study, we will not
address scenario uncertainty and defer a qualitative discussion of the consequences to
Chapter 6.

To analyze these uncertainties and their impact on building performance, we start from
a process scheme of building performance assessment as shown in Figure 3.1.

building performance assesment {Vdeclslon making \
sensitivity
4 analysis y
parameter
4 quantification
building i
performance modgl >
modeling evualation |
scenario __—j i
compilation |
\ ) |

Figure 3.1 Process scheme of building performance assessment as input lo decision making.

All process elements have been discussed in the previous chapter, except the sensitivity
analysis. This is not a necessary ingredient for building performance assessment. It is a
very useful tool, though, to gain insight into the model. This insight can be used e.g. to
take specific measures to further devclop the model or to effectively improve the
building design with respect to the performance at hand.

The figure is also a process scheme for uncertainty analysis. The difference with the
deterministic case is that model parameters may now be uncertain variables. This
implies that the process elements are more complex. For instance, parameter
quantification now requires not (only) an assessment of a point estimate, but (also) an
assessment of the uncertainty. Morcover, in the presence of uncertainty, model
evaluation is a process, which propagates uncertainty in scenario and parameters
through the model into the model output. Furthermore, the scope of the sensitivity
analysis is extended. Besides the sensitivities, the importances of the variables can also be
assessed now. The term ‘importance’ is used here to express the relative contribution of
a variable (or set of variables) to the uncertainty in the model output.
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By accounting for uncertainty, richer information is generated, which can be used, not
only for improved decision support, but also for more cffective feedback to parameter
quantification and performance modeling. First, if the uncertainty in the model output,
i.e. the building performance, is found to be significant in some sense, the importance
information from the sensitivity analysis may be used to reassess thc most important
parameters to gain more confidence in their uncertainty estimates and/ or to reduce the
uncertainty in those parameters.

Moreover, the model developer (e.g. the building physics consultant) may use (prior)
information on the uncertainties to build modcls, in which the crudeness of simplifying
assumptions is balanced against the uncertainty, either in the process to be modeled or
in other parts of the model.

Especially in the presence of uncertainty, it is better to assess performance in a cyclic
rather than a lincar approach. Proper assessment of uncertainties in parameters and
inputs may be a formidable task. By starting with crude estimates, and deciding on
selective refinement to those variables that really matter, the problem becomes tractable.

To be studied quantitatively, uncertainty must be provided with a mathematical
representation. In this study, uncertainty is expressed in terms of probability. This
representation is adequate for the applications of concern in this work and it has been
studied, challenged and refined in all its aspects.

Morcover, in interpreting probability, we will follow the subjective school. In the
subjective view, probability expresses a degree of belief of a single person and can, in
principle, be measured by observing choicc bchavior. It is a philosophically sound
interpretation, which fulfills our needs in decision analysis.

It should be mentioned, however, that in the context of rational decision making, one
subjective probability is as good as another. There is no rational mechanism for
persuading individuals to adopt the same degree of belicf. Only when observations
become available, subjective probabilities will converge in the long run. However, the
aim of uncertainty analysis is not to obtain agreement on uncertainties. Rather, its
purpose is to explore the consequences of uncertainty in quantitative models.

For more information on uncertainty analysis the reader is referred to Benjamin and
Corncll (1970), Iman and Helton (1985), Janssen et al. (1990), and McKay (1995)
among others. Discussions and background on the interpretation of probability can be
found in e.g. Savage (1954), Cooke (1991), French (1993).

This chapter reports on a first cycle in the process of uncertainty analysis, i.e. crude
quantification of uncertainties (Section 3.2), propagation through the modecl to obtain
estimate of uncertainty in building performance (Section 3.3), and sensitivity analysis to
identify the important parameters (Scction 3.4). The chapter concludes in Section 3.5
with discussion and conclusions.
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3.2 Uncertainty in model parameters

3.2.1 Introduction

As a first step in this crude uncertainty analysis, we will assess plausible ranges for the
model parameters, globally expressing the uncertainty in their values. In future steps of
the analysis, these ranges will be interpreted as central 95% confidence intervals. As
mentioned in the introduction of the chapter, the parameter uncertainty may arise from
two sources, viz. specification uncertainty and modeling uncertainty.

The specification uncertainty relates to a lack of information on the exact properties of
the building. In the case at hand, this mainly concerns the building geometry and the
properties of the various materials and (prefabricated) components.

Modeling uncertainty arises from simplifications and assumptions that have been
introduced in the development of the model. As a result, the building model contains
several (semi-) empirical parameters, for which a range of values can be found in the
literature. Moreover, the model ignores certain physical phenomena.

Table 3.1 Uncertain model parameters

Description Range
(central 95% confidence interval)

Physical properties of materials and components  See Appendix B

Space dimensions!* [-0.02, 0.02] m
Wind reduction factor [0.65, 0.85]
Wind pressure coefficients See Figure 3.2
Discharge coeflicients [0.6, 0.75]
Internal convective heat transfer coeflicients See Figure 3.3, Figure 3.4
External convective heat transfer coefficients See Figure 3.5
Albedo [0.15, 0.30]
Convective heat transfer at sunblind and [0.3, 3.0]
window!s

Distribution of incident solar gain:

— fraction lost [0.08,0.12]

— fraction via furniture to air [0.05,0.15]

— fraction to floor [0.22, 1.0]
— fraction to remainder of enclosure rest

Air temperature stratification!® [0, 3] °C
Radiant temperature of surrounding buildings!’”  [-3, 5] °C
Local outdoor temperature!8 {0, 1] °C

4 The indicated range denotes the deviations from the nominal values

15 The indicated range refers to an additional model parameter. introduced in Section 3.2.10.

16 This is the air temperature difference over the height of the space.

17 More precisely. this is the deviation of the actual radiant temperature of the surrounding buildings from
the assumed temperature. The assumption entails that any fagade of the surrounding buildings has the
same average surface temperature as the facade of the building under study with corresponding
orientation.

18 The range in the column at the right relates to the difference between the local ambient temperature at
the building site and the value reported at the meteorological station.
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Table 3.1 shows the list of parameters, which have been considered as uncertain. Not all
sources of (modeling) uncertainty could straightforwardly be attributed to one or more
parameters in the existing model. In those cases additional parameters have becn
introduced in the model to make sure that in the uncertainty analysis only parameters
necd to be considered.

The uncertainties will be discussed in the following scctions.

3.2.2 Physical properties of materials and components

As the (long) list of the various material and (prefabricated) component properties would
blur the overview in Table 3.1, it has been referred to the Appendix (B). In the
quantification of the uncertainties in the various parameters, which mainly result from
specification uncertainty, extensive use has been made of the data collected for two
previous sensitivity analyses in the ficld of building thermal modeling (Pinney et al.
(1991), Jensen (1994)) and the underlying sources for these studies (CIBSE (1986),
Clarke et al. (1990), Lomas and Bowman (1988)). Additional data have been obtained
from ASHRAE (1997), ISSO (1994) and the Polytechnic Almanac (1995). For a few
parameters a range was assumed for lack of data.

To estimate the correlations between the properties of different components and
matcrials, each property x has been considered as the output of the hierarchical model:

.x=l.l_‘.+Axl+AX2 +AX3

where

Mx general mean over the whole population

Axi  variation between types, which satisfy the description in the design specifications
Axy  variation between production batches within a type

Axz  variation between individual components within a batch

It has becn assumed that the variation in the material and component properties
predominantly arises from the first variation component Ax). Hence, complete
correlation has been considered between properties of the same name, if they belong to
components and materials of the same name. Dependencics between different
properties or between unlike components or materials have not been considered.

3.2.3 Space dimensions

Due to irregularities in the construction process, the realized space geometry may
deviate slightly from the geometry given in the design specifications. In this study we
restrict the scope to deviations of the actual space dimensions (length, width and height)
from the nominal values. The range of possible deviations has been estimated at
[-0.02, 0.02] m.
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3.2.4 Wind reduction factor

The wind reduction factor enters the model in (2.7), Section 2.3.4.3. It is the ratio
between the wind speed, measured at 10 m above ground level at the meteorological
station, and the local wind speed at a given reference level, to which the pressure
coefficients are related. This reference level is usually chosen equal to the building roof
height, in this case 14 m.

Approaches to assess the wind reduction factor Y are commonly based on the following
scheme:

U, =£.U.,)
U,= g(U,.J)
U,=fU.,) o
y=U, U,

where 7 is the height above the ground, U, is a characteristic wind velocity and the
indices refer to the locations of interest, i.e. the meteorological observation site (1) and
the building site (2). For a known function fi and a given pair of values at the
meteorological observation site (21, U1) = (10 m, Up)'?, the characteristic value U1 can
be calculated. With function g the value of U, is assessed, which serves as input to
function £ to calculate the value of U: at the building site for a given height z2. The
wind amplification factor is the ratio of Us to Ul.

For neutral conditions, Wieringa and Rijkoort (1983) propose an implementation of this
scheme, in which fi and f are logarithmic wind velocity profiles at a (nearby)
meteorological observation site and the building site respectively. These profiles are a
function of the terrain parameters z, (characteristic roughness length) and 4
(displacement height). The characteristic velocity is the meso wind speed, defined as the
(mean) wind speed at 60 m height. Wieringa and Rijkoort assume the difference
between the meso wind speeds at both sites to be negligible. Application of this
technique with standard terrain parameters for the meteorological observation site (za1
= 0.03 m and di = 0 m, see Wieringa and Rijkoort, 1983) and terrain parameters for the
urban building environment 2,2 = 0.75 m and d2 = 2 m, yields a wind reduction factor
of 0.85.

The algorithm described in Biétry et al. (1978) also starts from logarithmic wind velocity
profiles. The friction velocities u= are used as characteristic wind speeds:

_ly ln(22 /zo.z)

Uy ln(zl /24, )

(3.2)

19 For the definition of L, see Section 2.3.4.
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Based on the analysis of a large number of measurcments, Biétry et al. propose the
following valucs for us/(usher, where ux is the friction velocity at a sitc with roughness
length 20 and (u9)wr is the friction velocity at a reference site with roughness length
(z0)ret = 0.07 m:

2o 0.005 0.07 0.30 1.00 2.50
us/(us)her  0.83 1.00 1.15 1.33 1.46

We write wse/us = (use/ (ushet) * (us1/ (u9res)!, and calculate us2/u» from interpolations of
the values in the above table for 202 = 0.75 m and zos = 0.03 m respectively.
Substitution of this ratio into equation (3.2) with z2 = 14 m and z; = 10 m yiclds a wind
reduction factor of 0.65.

Liddament (1986) describes a technique in which the logarithmic wind velocity profiles
are replaced by power laws. For wban terrain (this method does not use terrain
characterization in terms of z, and d) a value of approximately 0.65 is obtained.

The observed scatter between different model outcomes arises from lack of knowledge

about the value of the wind reduction factor, given that:

¢ neutral conditions apply, i.e. thermal buoyancy effects are insignificant

e the wind profile at the building site can be expressed in terms of terrain roughness
parameters only

¢ the terrain roughness upstream of the building site is uniform

In most practical situations these conditions will not apply (Bottema, 1993). For

instance, thermal buoyancy effects are commonly important for lower wind velocities

(e.g. Holtslag, 1984), which are likely to occur at the warm days that are of particular

interest to this study.

Moreover, the wind velocity profile can only be properly expressed in terms of terrain

roughness above a height zmin > 2020 + d (e.g. Wieringa and Rijkoort, 1983). Below this

height, individual obstacles mark the profile. With the current choice of z,2 = 0.75 m

and d2 = 2 m the minimal height Zw» = 17 m, which excceds the selected reference

height of 14 m.

Finally, uniform terrain conditions are the exception rather than the rule.

Nevecrtheless, in this first exploration of the effects of the various uncertainties, we will
stay close to the observed inter-model scatter and use the range [0.65, 0.85] for the wind
reduction factor in the uncertainty analysis.

3.2.5 Wind pressure coefficients

As explained in Section 2.3.4.3, pressure coefficients relate the pressurcs on the building
envelope to the dynamic local wind pressure at a given reference level. In this study the
local wind velocity is defined as the velocity directly upstream of the area shown in
Figure 2.3, whereas the ridge height of the building of intcrest (14 m) is chosen as the
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reference level. In ventilation studies, mean (i.e. time-averaged) values of the pressure
coeflicients are generally used.

Several tools have been developed to assist the assessment of mean wind pressure
coeflicients on the basis of existing experimental data from prior wind tunnel studies and
full-scale measurements. The tools from Allen (1984), Grosso (1992, 1995), and Knoll,
Phaff and De Gids (1995, 1996) have been applied to the current case (see Figure 2.3) to
assess the required wind pressure difference coeflicients?. The results are shown in
Figure 3.2. A more detailed analysis of the wind pressure difference coefficients can be
found in Chapter 4.
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Figure 3.2 Wind pressure difference coefficients from three different models as a function of wind angle
(for the definition of the wind angles see Figure 2.3 in chapter 2). The figure is symmetric with respect to
wind angle 1800, so only the values between (° and 180° are shown. The drawn lings indicale the upper

and lower bounds, whick have been used in the uncerlainty analysis.

As already mentioned in the previous section, intcr-model scatter does not commonly
give a good idea of the uncertainty. However, it provides a convenient first estimate for
a crude uncertainty analysis. Hence, lower and upper bounds have been used, which are
closely tied to the various model results as shown in Figure 3.2. In the analysis, the
absolute values of the mean pressure difference coeflicients for different wind angles
have been considered to be completely and positively correlated. Loosely stated, this
means that if the magnitude of the wind pressure difference coefficient for a given wind
angle has a high value (relative to its range in Figure 3.2), the pressure differences for all
other angles are also large, and vice versa.

20 The wind pressure difference coefficient is the difference between the pressure coefficient for the
window of modeled building section (see Section 2.2) in the west facade and the one for the window in the
east facade.



Uncertainty in model parameters 43

3.2.6 Discharge coefficients

Discharge cocfficients have been introduced in the model in (2.6), Section 2.3.4.2. Bot
(1983) reports on experimentally observed flow characteristics of window openings in
greenhouses. His results indicate that a discharge coeflicient of 0.65 would be an
appropriate value for both the windows and vents in the current case. In a review of
discharge coeflicients for vertical rectangular openings, Boulard and Baille (1995) report
values between 0.60 and 0.74. Straw ct al. (1999) refer to unpublished full-scalc
measurements of wind-induced discharges through rectangular openings in a cubic
structure. In these cxperiments values up to 0.75 were found for flows skimming along
the cube face containing the opening.

In this study we will use the range [0.6, 0.75] to reflect the uncertainty in the discharge
coeflicients. The coefficients for the four openings of interest will be considered as
uncorrelated.

3.2.7 Internal convective heat transfer coefficients

Internal heat transfer coeflicicnts act in (2.1) and (2.4) in Section 2.3.2. Reviews on
literature reporting scmi-empirical models for internal heat transfer coeflicients from
experiments can be found in e.g. Halcrow (1987), Khalifa (1989), Pernot (1989) and
Awbi and Hatton (1999). The majority of these models have been obtained under free
convection conditions at isolated flat plates, while only a few experiments in real-sized
spaces have been conducted. The studies generally report relations that can be written
in the form:

a(‘.im _—-C"'(A )" (33)
where AT is the temperature difference over the air boundary layer and € and n are
(semi-) empirical coefficients. Different values for (C, ) are found depending on the
direction of the heat flow (horizontal, upward or downward), the flow regime (laminar

or turbulent) and the dimension of the surfacc.

Figure 3.3 shows semi-empirical models as they were obtained for horizontal heat flow
(vertical surfaces) in six different studies. The studies by Li ct al. (1987), Khalifa and
Marshall (1990), Min et al. (1956) and Awbi and Hatton (1999) concern experiments on
surfaces in spaces with typical office dimcnsions. The widely used modecls found in
Alamdari and Hammond (1983) and ASHRAE (1997) are advocated for use in building
simulation models.

In agreement with the experimentally observed valucs, heat transfer coethicients
dependent on the temperature difference A7 have becn used in the uncertainty analysis.
For vertical walls, the minimum and maximum values at each temperaturc difference
are marked by the bold lines in Figure 3.3. These bounds correspond to the curves from
Alamdari and Hammond (1983) and Li et al. (1987) respectively.

Heat transfer cocfficients at horizontal surfaces are commonly found to be different
from those at vertical walls. For upward (buoyant) heat flow slightly higher valucs are
found, whereas for downward (stagnant) heat flow the values are much lower.
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The selected range for the heat transfer coefficients related to upward heat flow is shown
in Figure 3.4. The bounds correspond to those in Figure 3.3, multiplied by 1.2. Indeed,
analysis of coefficients found in a large number of studies (mostly isolated plate
experiments) shows that the values of heat transfer coefficients for upward flow are
commonly 0-30% higher than the coefficients for horizontal heat flow (at similar
temperature differences).
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Figure 3.3 Models for the intemal convective heat transfer coefficient at a vertical wall as a function of
the temperature difference over the air-wall boundary layer. Where necessary, characteristic wall
dimensions have been used in accordance with the dimensions of the space under study (see Figure 2.5).
The bold lines indicate the values that are used as lower and upper bounds in the uncertainty analysis.

The range for coefficients related to downward heat flow are also shown in Figure 3.4.
The upper bound corresponds to the ASHRAE (1997) model, whereas the lower bound ]
originates from the experiments by Min et al. (1956).

5 ; 1
4 _— 0.8
: S—
A % 0.6 S
o / : T 5;0.4 i
) | )
{ i
1 / : 0.2 (
oL o
0 1 2 3 4 s 0 2 3 4 s
AT (°C) AT (°C)

Figure 3.4 Lower and upper bounds for internal convective heat transfer coefficients. The graph at the left
shows the values for upward (buoyant) heat flow, whereas the one at the right is related to downward

(stagnant) heat flow.



Uncertainty in model parameters 45

In the analysis, the heat transfer coctlicients within a single space have been considered
as complctely correlated: positive correlation between the coefficients for horizontal and
upward heat flow, negative correlation between coeflicients corresponding to heat flows
with upward and downward directions. The analysis of coefficients from various studies
mentioned earlier strongly supports the positive correlation. The negative correlation is
present, but less pronounced.

Coeflicients in scparate spaces have been considered independent.

3.2.8 External convective heat transfer coefficients

Thesc coefficients enter the model in (2.5) in Section 2.3.2. Reviews of literature on
external heat transfer coeflicients can be found in e.g. Strachan and Martin (1989) and
Allen (1987). They report relations for the heat transfer coefficients, determined from
experiments, of the general form:

o, =A+Bu‘ (3.4)
where u is the surface-parallel flow velocity, and 4, B and C are semi-empirical
constants.
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Figure 3.5 Models for the external convective heat transfer cogfficient as a_function of the wind velocity
along the surface. The bold lines indicate the values that are used as lower and upper bounds in the
uncertainly analysts.

Uncertainty in the value of the external heat transfer coeflicients ariscs from two
sources. First, the valuc of the surface flow velocity has to be determined from the
available meteorological data. This process is hampered with similar uncertainty as
alrcady mentioned in relation to the assessment of the wind reduction factor and the
wind pressure coefficients.

Sccond, the value of (4, B, C) is uncertain. This is illustrated by the large scatter between
semi-empirical models reported in the literature (see Figure 3.5). Strachan and Martin
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hypothesize that this scatter is mainly due to different definitions of the surface wind
speed and to different measurement positions on the buildings.

The extreme curves from Ito (1972) and Sharples (1984) were obtained in
measurements on real buildings . The results quoted by Duffie and Beckman (1980) are
derived from older experiments in wind tunnels.

In the analysis, external heat transfer coefficients dependent on the wind speed have
been used. The uncertainty estimate for the external convective heat transfer coefficients
is based entirely on the uncertainty in (4, B, C) given the local surface wind speed. This
wind speed was calculated from the local wind speed (which is also uncertain as a result
of the wind reduction factor y) with the ESP-r algorithm (ESRU, 1995b). A range for the
heat transfer coefficient was used as shown in Figure 3.5 as a function of the local
surface wind speed. Heat transfer coeficients at the various external wall components
have been treated as fully dependent.

3.2.9 Albedo

The albedo is the overall reflection coefficient of the environment for short-wave
radiation. This variable was introduced in Section 2.3.3. Reflection coefficients for
various surfaces can be found in e.g. Igbal (1983), Frohlich and London (1986) and
Velds (1992). These sources show that reflection coeficients depend on the condition of
the surface (and the solar angle). For instance, the albedo of (dark) sand may vary from
0.10 to 0.20 dependent on the surface roughness and the water content. The reflectance
of concrete ranges from 0.22 to 0.37 dependent on age and specific composition. Based
on these relative variations, in the uncertainty analysis albedo values in the range
[0.15, 0.30] have been used. This range is comparable to the one used in the PASSYS-
sensitivity analysis ([0.2, 0.3], Jensen (1994)), but narrower than the interval that Lomas
and Bowman (1988) used in their analysis, i.e. [0.1, 0.4]. This latter interval was based
on extreme values for asphalt on the one hand to light sand on the other.

3.2.10 Convective heat transfer at sunblind and window

In section 2.3.3 the thermal modeling of the sunblinds has been addressed. As expressed
by equations (2.6) through (2.8) In case the sunblind is activated, the convective heat
transfer at sunblind and window is governed by four quantities:

Ol blind,ext convective heat transfer coefficient at external surface of blind

Qe blind.car convective heat transfer coefficient at surface of blind bordering the
cavity between window and blind

Olewin,ext convective heat transfer coeflicient at window surface bordering the

cavity between window and blind
v ventilation rate of the cavity with ambient air
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ISSO (1993, 1994) proposes guidelines from which the following tentative values can be
derived for the current case:

Ole.blind.ext 30W/m2K
Ol blind.can 12W/m2K
Ole.cinext 8W/m2K
Dy 0.5 m3/s

Consistent with the discussion in Section 3.2.8, we will use a wind velocity dependent
value for the external heat transfer coefficient here rather than a fixed value. Although
at a sunblind, which is commonly permeable to some degree, the value of this coefficient
may be different from the value at a regular building surface, it is questionable whether
this difference will be significant compared to the uncertainty we assume in the heat
transfer coefficients (see Figure 3.4). Hence we will also apply the ranges in Figure 3.4 to
Ole.blind,ext-

It is rational to assume that besides the external heat transfer coefficient, the ventilation
rate and the coeflicients at the surfaces in the cavity increase with the wind velocity too.
As a straightforward model for the variation of these quantities with wind velocity we
will assume that their values change proportionally to the cxternal heat transfer
coctlicient.

The proportionality constants in this model, though, are quite uncertain. The numbers
from ISSO (1993, 1994) provide some guidance, but certainly cannot be accepted
without further ado. Let us assume that the dominant uncertainty lics in the (forced)
ventilation rate with ambient air. This means that the uncertainty in the heat transfer
coeflicicnts in the cavity, given this ventilation rate, is considered to be (much) smaller
than the uncertainty in the ventilation rate itself. We now write:

Dy = B X (Oer /30) X 0.5 m3/s

Ole.blind,car = B X ((xc‘exl /30> x12 W/m2K

ac,win.uu‘ = B X (0«:‘1\1 /30) X 8 ‘r‘V/l’l’l2 K

Ole,blind.ext = Ole,ext

where Oev Is calculated as discussed in Section 3.2.8, the numbers in brackets are
adopted from ISSO (1993, 1994) and B is an uncertain parameter. For B = 1 and O =
30 W/m?K, the values suggested by ISSO are retrieved. In the uncertainty analysis we

will take values for B from the range [0.3, 3]. Values of B for different sunblinds are
considered to be completely and positively correlated.
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3.2.11 Distribution of absorption of the incident solar radiation

Solar radiation entering a space through the window may be subdivided into three
components:

e fraction lost

e fraction via furniture to air

e fraction absorbed at walls

The first component is light, which is reflected out of the space again without being
absorbed. Based on calculations for a space of similar geometry as the one under study,
Pinney et al. (1991) propose the range [0.03, 0.14] for this fraction. This range is based
on the extreme optical characteristics of a variety of materials. As in the current case the
materialization of the space is known, we will use the narrower range [0.08, 0.12].

The second component represents the heat, which is generated by the absorption of a
part of the incident solar radiation by furniture in the space and convectively transferred
to the indoor air. For this convective fraction of the total solar gain, ISSO (1994)
recommends the value 0.1. In their choice of uncertainty limits for a sensitivity analysis,
Pinney et al. (1991) use the range [0.05, 0.15]. This interval properly includes the value
proposed by ISSO and will be adopted in the current analysis.

The remaining part of the solar radiation is absorbed by the enclosure of the space. In
most current simulation tools the absorption of the solar gain is assumed to be evenly
distributed over an appropriate part of the space enclosure. In the uncertainty analysis
four ways to distribute this gain will be considered. One extreme assumption is that all
solar radiation is directly absorbed at the floor (fraction absorbed by floor is 1.0),
whereas in the other extreme it is considered to be evenly absorbed over the entire
enclosure as a result of internal reflections (fraction to floor is 0.22). In the two
intermediate schemes we will assume that 40% and 70% respectively is directly
absorbed at the floor and the rest is evenly distributed over the enclosure.

The factions ‘lost’ and ‘via furniture to air’ have been assumed to be independent from
each other and from the scheme, which regulates the distribution of the remaining solar
gain over the walls. Distributions in different spaces are also trcated as independent.

3.2.12 Air temperature stratification

As explained in Section 2.3.2, it has been assumed that the air temperature in building
spaces is uniform. However, this will generally not be the case. In naturally ventilated
buildings there is limited control over either ventilation rates or convective internal heat
loads. This results in flow regimes varying from predominantly forced convection to
fully buoyancy driven flow. In the case of buoyancy driven flow, plumes from both heat
sources and warm walls rise in the relatively cool ambient air, entraining air from their
environment in the process, and create a stratified temperature profile. Cold plumes
from heat sinks and cool walls may contribute to this stratification. Forced convection
flow elements, like jets, may either enhance the stratification effect or reduce it,
dependent on their location, direction, temperature, and momentum flow.
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If we consider the current approach as a zero-order approximation of the spatial
temperature distribution, then it is a logical step to refine the model by incorporating
first order terms. As vertical temperaturc gradients in a space are commonly dominant,
we will use the following modecl:

rtir(z) =Tar+ ‘5(2 _%H) (35)

where

T.r  air temperature

T.,  mean air temperature
height above the floor

ceiling height of the space

~

2t m &

stratification parameter

Dropping the assumption of uniform air temperature has the following consequences:

e the temperature of the outgoing air 1s no longer equal to the mean air temperature
as the ventilation openings in the spaces are close to the ceiling (see Figure 2.5)

¢ the (mean) temperature diffcrences over the air boundary layers at the ceiling and
floor, driving the convective heat exchange between the air and those wall
components, are no longer equal to the difference between the surface temperature
and the mean air temperature

e the occupants, which are assumed to be sitting while doing their office work, arc
residing in the lower half of the space and hence experience an air temperature,
which is different from the mean air temperature

With (3.5) we can quantify these changes. As the ventilation openings are near the
ceiling, we take that the temperature of the outgoing air is:

Tow = 7—111'1(1 1) (36)

Moreover, the convective heat fluxes from the floor and the ceiling to the air are
described by respectively:

Gfloor = m-,-,,,:,,,,,,,(Tmz,ﬂuw = Tur (O)) s Geeil = 0<~i“[~(.l,1-[(7~int. ceit = Tair (]1)) (37>
Finally, the (mean) air temperature experienced by the occupants, 7., is estimated with:
Toee = Tawr (V4 H) (3.8)

These changes modify the model presented in the previous chapter.

In the analysis we will assume that & in cquation (3.5) is a fixed, but unccrtain
paramecter. This means that we randomize over a wide variety of flow conditions in the
spacc that may occur over the simulated period.

In e.g. Loomans (1998, full-scale experiments and flow field calculations) and Chen et
al. (1992, flow ficld calculations) vertical temperature differences over the height of an
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office space are reported between 0 and 2 °C for mixing ventilation conditions and from
1 °C up to 6 °C for displacement ventilation configurations. These numbers suggest that
vertical temperature differences of several degrees may not be uncommon. Hence, we
will choose & in the range [0, 1] °C/m in this study.

The temperature stratification in separate spaces has been considered as independent.
No stratification has been assumed in the corridor between the office spaces in the case
at hand.

3.2.13 Radiant temperature of surrounding buildings

In modeling the radiant heat exchange with other buildings in the environment, it has
been assumed that any fagade of the surrounding buildings has the same average surface
temperature as the facade with corresponding orientation of the building under study
(see Section 2.3.3). In gencral however, these facade temperatures may not be exactly
identical e.g. as a result of dissimilar environmental conditions (shading, wind shelter).
The temperature difference is tentatively modeled as an uncertain parameter with a
range of [-5.0, 5.0] °C.

3.2.14 Outdoor ambient temperature

In chapter 2, the outdoor ambient temperature was introduced as an element of the
scenario, which is not considered in the uncertainty analysis in the current chapter.
However, this scenario temperature is assumed to be observed at a meteorological
station, whereas the local temperature at the building site would be a more suitable
input to the building model. In the local thermal field, generated by an urban area, the
temperature is usually higher than that of its surroundings. Plate (1995) reports heat
island temperatures in large cities, which in wintertime may differ up to 10 — 12 °C with
temperatures observed in suburban areas. A survey by Kimani (1998) of algorithms for
converting meteorological weather data to urban locations shows that there is a lack of
generally applicable engineering models due to the complexity of the processes involved.
Considering that the current case addresses summer conditions in a moderate climate,
we will attribute a modest, but again tentative range of values to the difference between
local and meteo ambient temperature: [0, 1] °C.

3.2.15 Discussion and summary

The approach laid out in the previous subsections results in a total number of 89
independent?! uncertain parameters. It is likely that this set of parameters is incomplete.
First, some sources of uncertainty may have been overlooked. This is always a risk when
uncertainty is investigated from the angle of a given modeling approach.

Moreover, several assumptions and simplifications have not been addressed
intentionally. For example, the symmetry assumptions, which were used to keep the
model transparent (Section 2.3.3), have not been considered. The one-dimensional
approximation of heat conduction in wall-components is another example. These

21 Actually, the number of uncertain parameters is greater than 89, but parameters which are treated as
completely dependent, such as the wind pressure coefficients, are counted as a single parameter.
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simplifications have been considcred as conscious choices, which arc deemed to be
justified in the case at hand. One of the ideas behind an uncertainty analysis is to obtain
a reference for this kind of modeling choices. If a deliberate simplification has an effect
on the model output, which turns out to be insignificant compared to the uncertainty in
that output, the choice is obviously justified. If not so, the justification of the choice
should be judged on the effect it may have on the decision that is to be made on the
basis of the model output.

Obviously there is no clear-cut boundary between necessary and freely chosen model
simplifications. This depends among other things upon the possibilitics of the modeling
tools at hand. Hence, the choice of such a boundary in this thesis is arbitrary to some
degree.

Finally, no uncertainty has been considered in either of the two comfort models. The
thermal simulation model does not specify all input variables of the static comiort
model. Hence, the remaining input variables have to be estimated hcuristically,
introducing uncertainty. This type of uncertainty is not introduced when the adaptive
comfort model is used. This model, based on field experiments, relates the observed
occupants’ responsc distributions only to the operative temperature in these
cxperiments, which can be assessed by thermal simulation. Hence, the cffects of the
variability in all other variables are automatically included. In this way, however,
uncertainty is introduced to which degree the variation of these variables (especially air
velocity and humidity) in the building under study will be similar to the variation that
occurred in the field studies.

3.3 Propagation of uncertainty

On the basis of the parameter uncertaintics identified in the previous section, the
uncertainty in the model output, ie. the building performance was calculated by
propagation of the parameter uncertainties through the model.

For lack of explicit information on the parameter distributions, normal distributions
were assumed for all parameters [rom which samples were drawn. The parameter
ranges, established in the previous sections, were interpreted as central 95% confidence
intervals. Where necessary, the normal distributions were truncated to avoid physically
infeasible values.

Technique

For the propagation, a Monte Carlo simulation technique was used, i.e. Latin
Hypercube Sampling. This is a form of stratified sampling. The domain of each
parameter is subdivided into N disjoint intervals (strata) with equal probability mass. In
cach interval a single sample is randomly drawn from the associated probability
distribution. If desired, the resulting samples for the individual parameters can be
combined to obtain a given dependency structure. Application of this technique
provides a good coverage of the parameter space with relatively few samples compared
to simple random sampling (crude Monte Carlo). It yields an unbiased and often more
efficient estimator of the mean, but the estimator of the variance is biased. The bias is
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unknown, but commonly small. More information can be found in e.g. McKay et al.
(1979), Iman and Conover (1980) and Iman and Helton (1985).

Implementation

In this study the algorithm for Latin Hypercube sampling from UNCSAM (Janssen et
al., 1992) was applied. A total of 250 samples were propagated, which is well above the
value of 4k/3 (k = 89 being the number of parameters) that Iman and Helton (1985)
recommend as a minimum.

For each sample of parameter values, a dynamic temperature simulation was carried out
with the BFEP-implementation of the building model (see Section 2.3.7). From the
resulting temperature time series, both the static (TO) and adaptive (TO*) performance
indicator were calculated.

In all simulations, a single, deterministic scenario was used as described in Appendix A2.
This scenario covers a period of 6 months from April through September.

Results
The results of the propagation of 250 samples are shown in Figure 3.6, both for the
static (T'O) and the adaptive (TO*) performance indicator.

50 50

0 100 200 300 400 500 0 100 200 300 400 500
static performance indicator TO (hour) adaptive performance indicator TO* (hour)

Figure 3.6 Histograms of the static (lefl) and adaptive (right) performance indicator, obtained from the
propagation of the Latin Hypercube sample of size 250. Note that uncertainty in the scenario has not
been taken into account. A common target value for TO is 100 hours (see Section 2.4.1).

The variability in the comfort performance, observed in the Monte Carlo exercise is
significant. For both the static and the adaptive performance indicator the coefficient of
variation, i.e. the standard deviation divided by the mean value, is about 0.5.

3.4  Sensitivity analysis

3.4.1 Introduction

The aim of the sensitivity analysis is to find a limited set of parameters, which accounts
for most of the unccrtainty in the model output. In this study an approach is used that
consists of two steps:
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1. Paramcter screening to rank parameters in the order of their importance, i.e. their
individual contribution to the uncertainty in the model output.

2. Validation to verify that the set of parameters identified as most important in the
screcning, do indeed jointly account for the majority of the uncertainty in the model
output.

These two components of the analysis arc subscquently discussed.

3.42 Technique

Screening technique

An investigation of methods for sensitivity analysis and parameter screening can be
found in e.g. Janssen (1990), Saltclli et al. (1993), McKay (1995) and Kleijnen {1997). In
the analysis in this study the factorial sampling technique as proposed by Morris (1991)
has been used.

In an earlier analysis (De Wit, 1997¢) this technique was found to be suitable for
application with building models. It is economical for models with a large number of
parameters, it does not depend on any assumptions about the relationship between
parameters and model output (such as lincarity) and the results are easily interpreted in
a lucid, graphical way. Morcover, it provides a global impression of parameter
importance instcad of a local value. Thus, the effect of a parameter on the model output
is asscssed in multiple regions of the parameter space rather than in a fixed (base case)
point in that space. This feature allows for cxploration of non-linearity and interaction
effects in the model.

A possible drawback of the method is that it does not consider dependencics between
parameters. In situations where a lot of information on the uncertainty or variability of
the parameters is available this might be restrictive, but in the current study this is
hardly the case.

In this method the sensitivity of the model output for a given parameter is related to the
elementary effects of that parameter. An elementary cffect of a parameter is the change in
the model output as a result of a change A in that parameter, while all other parameters
are kept at a fixed value. By choosing the variation A for each parameter as a fixed
fraction of its central 95% confidence interval, the elementary effects become a measure
of parameter importance.

Clearly, if the model is non-linear in the parameters or if parameters interact, the value
of the elementary effect of a parameter may vary with the point in the parameter space
where it is calculated. Hence, to obtain an impression of this variation, a number of
elementary cffects are calculated at randomly sampled points in the parameter space.

A large sample mean of the elementary effects for a given parameter indicates an
important “overall” influence on the output. A large standard deviation indicates an
input whose influence is highly dependent on the values of the parameters, ie. one
involved in intcractions or whose effect is nonlinear.

Hence, an overview of the output of the sensitivity analysis can be obtained from a
figure in which sample mean and standard deviation of the elementary effects are
plotted for each of the parameters.
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Technically, the procedure is implemented as follows. Each of the £ model parameters is
scaled to have a region of interest equal to [0,1]. The scaled 4-dimensional parameter
vector is denoted by x. For each parameter, the region of interest is discretized in a p-
level grid, where each x; may take on values from {0, 1/(p-1), 2/(p-1), ... ,1}.

The elementary effect d of the ¢-th input is then defined by:

_ () X, + Ay x, )= y(x)
4,(x)=2 )2y

where y is the model output, i.e. the performance indicator TO or TO¥, x; < /-A and A
is a predetermined multiple of 1/(p-1).

The estimates for the mean and standard deviation of the elementary effects are based
on independent random samples of the elementary effects. The samples arc obtained by
application of carefully constructed sampling plans.

The general procedure to assess one single sample for the elementary effect of each
parameter is as follows. Initially, the parameter vector is assigned a random base value
(on the discretized grid). An observation of the model output is made. Then a ‘path’ of £
orthogonal steps through the &-dimensional parameter space is followed. The order of
the steps is randomized. After each step an observation is made and the elementary
effect associated with that step is assessed.

With this procedure a set of 7 independent samples for the elementary effects can be
obtained by repeating this procedure r times. An illustration for a 3-dimensional
parameter space is presented in Figure 3.7.

./\ random base value 1
—_j

random path 1
with step size:
Y 2
A=Z
3

Figure 3.7 Hllustration of the procedure to assess two samples of the elementary effect of each parameter.
The illustration is for a 3-dimensional parameter space with a 4 level grid (k =3, p =4, r = 2).

Validation technique

The screening method enables a comparison of the importance of individual parameters
on the basis of their elementary effects. With this comparison, a limited set of
parameters can be identified, which probably accounts for the bulk of the uncertainty in
the model output. However, in case of strong interaction effects in the model, individual
parameter importance may not provide reliable guidance. Although the selected
screening technique is designed to incorporate paramcter interactions into the
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individual paramcter effects to some degree, it is sensible to validate that the allegedly
important set of parameters is indeed the set that was aimed for.

The validation is implemented as a Monte Carlo simulation study. Three sample
matrices were used. The first sample matrix contained the Latin Hypercube sample that
was used in the propagation (see Scction 3.3). The sccond sample matrix was identical
to the first one for the allegedly important parameters, but contained base casc values
(mean values) for the other parameters. The last sample matrix was a ‘mirror’ of the
sccond one: mean values for the candidate important parameters, while identical to the
first sample matrix for the other parameters.

By comparison of the variances in the model output resulting from the three sample
matrices, the fraction of the total variance explained by the important parameters can
be asscssed as well as the fraction that is explained by the remaining parameters.

3.4.3 Results

Screening results

In this study, the 89 parameters (k = 89) were discretized on a 4-level grid (p = 4). The
elementary step A was chosen to be 2/3, as shown in Figure 3.7. For each parameter 5
independent samples (r = 5) of the elementary effects on both the static comfort
performance indicator TO and the adaptive indicator TO* were assessed in 450
simulation runs with the BFEP-implementation of the building model (see Section
2.3.7). The mean values of TO and TO* over these runs were 170 hours and 140 hours
respectively. Figure 3.8 shows for each parameter the sample mean mq and the standard
deviation Sy of the observed elementary effects on the static performance TO. Similarly,
Figure 3.9 shows these statistics of the elementary effects on the adaptive indicator TO*.

80 2y T T T T T T T i
\‘ \\ ,
W y
60 . -
5 .
[=} ) :
< 401 \ s .
& e
R ’ *19
L o1 o . - v 4
20 16 10 '§‘ K
2 og 35 y "1-20'78
0 1 1 1 ﬁM i 1 1
-80 -60 -40 -20 0 20 40 60 80
mgy (hour)

Figure 3.8 Sample mean ma and standard deviation Sq of the elementary effects on the static comfort
performance indicator TO obtained in the parameter screening. The numbers in the plot are the parameter
indices (see Table 3.2). The dotted lines constituting the wedge are described by ma =+ 2 So/ Vr. Points
above this wedge indicate significant non-linear effects or parameler inleractions.
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Figure 3.9 Sample mean mq and standard deviation S of the elementary effects on the adaptive comfort
performance indicator TO* obtained in the parameter screeming. The numbers in the plot are the
parameter indices (see Table 3.2). The dotted lines constituting the wedge are described by
ma= % 2 Sa/Vr. Points above this wedge indicate significant non-linear effects or parameter interactions.

The dotted lines, constituting a wedge, are described by ms= £ 2 Ss/ r, where Su/Nr is
the standard deviation of the mean elementary effect. If a parameter has coordinates
(ma, SJ) below the wedge, i.e. |ma| > 2 Ss/\r, this is a strong indication that the mean
elementary effect of the parameter is non-zero. A location of the parameter coordinates
above the wedge indicates that interaction effects with other parameters or non-linear
effects are dominant.

Table 3.2 shows the 13 most important parameters found in the screening process in
decreasing order of importance. The importance ranking for static and adaptive
performance indicators is similar.

Table 3.2 Parameters, which emerge from the parameter screening as most important. The ranking s in
decreasing order of importance. The importance ranking for static and adaptive performance indicators is
simlar.

index description

Pal
3,4,5,6  discharge coefficients of windows and vents
8 internal heat transfer coeflicients in space under study
11 albedo
78 solar transmission of windows
20 solar transmission of sunblinds
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Validation results

With all parameters in Table 3.2 included in the set of important parameters, this set
explains about 94% of the total variance. The remaining parameters account for 3%,
which leaves 3% of the variance unexplained. This 3% of the variance that cannot be
attributed to the separatc parameter sets apparently originates from interactions
between parameters in the individual sets.

When only the top 5 parameters in Table 3.2 are included in the important set, this set
still explains 85% of the total variance, leaving 10% for the remaining parameters and
another 5% for interactions.

These numbers were found for the static and the adaptive comfort performance alike.
They confirm that the parameters in Table 3.2 are the parameters of interest, of which
the first five deserve primary focus.

3.5 Discussion and conclusions

Three immediate conclusions can be drawn from the results in the previous sections.
First, top 5 parameters in Table 3.2, i.e. the wind pressure difference coefficients, the
wind reduction factor, temperaturc stratification, local outdoor temperature and the
model for the external heat transfer coeflicients are the parameters which account for
the majority of the uncertainty in the model output.

Second, although several parameters of secondary importance line up along the wedges
in Figure 3.8 and Figure 3.9, indicating the presence of parameter interactions or non-
linearity of the model output in the parameters, these cffects do not seem to play a
significant role. Lomas and Eppel (1992) report similar findings in their sensitivity
studics on thermal building models. These studies concerned different model outputs
(air temperature and plant power) though, and considered a slighly different set of
uncertain parameters.

Finally, the variability in the comfort performance assessments, obtained in the Monte
Carlo propagation exercise is significant. This is expressed by the cocfficient of variation
of 0.5 and the histogram in Figure 3.6. In current practice the simulated value of the
performance indicator is commonly compared with a maximum value between 100 -
200 hours (see Section 2.4.4) to evaluate if the design is satisfactory or not under the
selected scenario. Figure 3.6 shows that a simulated point value of the performance does
not give much basis for such an evaluation. Indeed, simulation results may depict the
design as highly satisfactory or as quite the contrary by just changing the values of the
mode] parameters over plausible ranges.

However, the observed spread in the comfort performance values is based on crudely
assessed 95% confidence intervals for the model parameters. An improved
quantification of the uncertainty in the building performance could be obtained via a
more thorough assessment of the parameter uncertainties. Clearly, those parameters,
which have been ranked as the most important ones, deserve primary focus.

The ranges for the most important set of parameters, i.c. the wind pressure diffcrence
coefficients, have been based on the scatter between various models. Proper usc of these
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models, though, requires wind-engineering expertise, both to provide reliable inputs to
the models and to assess the impact of features in the case under study, which are not
covered in the models (see also Chapter 4).

The uncertainty in parameter number | in Table 3.2, the wind reduction factor, has
been addressed in a similar way. Only two models have been considered here, which
both assume neutral stability conditions among other things. For strong winds this
assumption is commonly justified, but as the wind velocity decreases, the effect of
thermal buoyancy on the wind velocity profile becomes more important. Hence, the
range that was selected for this parameter in the sensitivity analysis may be considered
as modest. Despite this fact the parameter turns out to be important.

The uncertainty estimate for the thermal stratification in a space has been based on
hardly more than the notion that a temperature difference between ceiling and floor of a
couple of degrees is not unusual. A fairly crude parameterization of the stratification has
been used with an equally crude assumption about the uncertainty in the parameter. As
this parameter turns out to be important, the phenomenon deserves further attention,
but more merit cannot be attributed to the current uncertainty range or to its
contribution to the uncertainty in the building performance.

A similar argument holds for the difference between the local outdoor temperature and
the air temperature measured at the meteorological station. The range assumed in this
study seems modest when compared to the ranges of values that are reported from
measurements. However, due to the complexity of the underlying processes it is difficult
to straightforwardly extrapolate the findings in these experiments to the current case.
Again, more study is required.

The last of the top 5 important parameters relates to the external heat transfer
coefficients. Here, we quantified the ranges on the basis of inter-model scatter,
conditional on the surface-parallel wind velocity, which was calculated with the ESP-r
algorithm. The assessment of this velocity is however hampered by similar problems to
the assessment of wind pressure coefficients, which give reason to believe that an
additional contribution to the uncertainty in heat transfer coefficients may be expected
from this source.

Summarizing, it is desirable to further investigate the uncertainty in the model
parameters, especially the ones identified as most important. The next chapter addresses
the uncertainty in the wind pressure difference coefficients. Chapter 5 deals with
quantification of the uncertainty in the air temperature distribution in a space. The
internal heat transter coefficients arc also addressed in this chapter.




4 Uncertainty in wind pressure
coefficients

4.1 Introduction

To simulate natural ventilation flows in buildings, the wind pressure distribution over
the building envelope is required. In the design of low-rise buildings, wind tunnel
cxperiments are scarcely employed to measurc these wind pressures. Instead, techniques
are used which predominantly rely on inter- or extrapolation of generic knowledge and
data, e.g. wind pressure coeflicients, previously measured in wind tunnel studies and
full-scale experiments. Due to the complexity of the underlying physics, this is a process,
which may introduce considerable uncertainty. None of the existing techniques,
however, accounts for this uncertainty.

In the scnsitivity analysis reported in Chapter 3, the effect of the uncertainty in wind
pressure coefficients on the output of a building simulation model was compared to the
effect of other uncertainties. The output in this study was the building performance with
respect to thermal comfort. It was found that the contribution of the wind pressure
(difference) coefficients to the overall uncertainty was potentially significant.

The quantification of the uncertainty in the sensitivity analysis, however, did not go
beyond the appraisal of the analyst performing the study. The main aim of this chapter
is to evaluate the uncertainty in wind pressure coeflicients, asscssed on the basis of
existing data, in a more rigorous way.

To quantify uncertainty, structurcd elicitation of expert judgment was used. A method
to acquire and process thc experts’ assessments was selected, which has a solid
methodological and mathematical foundation. It has been developed in the framework
of the joint CEC/USNRC Consequence Code Uncertainty Analysis (Cooke and
Goossens, 2000).

As in the previous chapters, this study was carricd out in the context of a specific casc.
The case was designed to tentatively explore the effect of the immediate surroundings of
the building on the uncertainty as well as the effect of the pressure tap positions on the
building fagade. A description of the case has been presented Section 4.2.

Section 4.3 evaluates the option to assess the requested uncertainty from the spread in
the output of various models, which have been developed to assess wind pressure
coefficients on the basis of a parametric analysis of existing data. The assessment of this
uncertainty by means of expert judgment is the subject of Section 4.4. To obtain
empirical reference material for the experts’ judgments, two wind tunnel cxperiments
were carried out to obtain cmpirical reference material for the experts’ judgments. The
set-up of these experiments is briefly addressed in Section 4.4.7. Section 4.5 presents the
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results of both wind tunnel and expert judgment studies, followed by the analysis of the
acquired data in Section 4.6. The sections with discussion and conclusions conclude the
chapter.

4.2 Case definition

4.2.1 Introduction

A widely accepted method to assess wind pressure coefficients in the design stage of a
building, is a wind tunnel study. In a wind tunnel, a scale model of the building and its
surroundings is immersed in a simulated boundary layer flow. From measurements of
both surface pressures and wind velocities or dynamic pressures, pressure coefficients
can be assessed.

These wind tunnel values do not fix the required full-scale values without uncertainty.
Due to scaling effects and simplifications in both the simulated boundary layer and the
wind tunnel model, the acquired pressure coefficients only approximately capture the
relation between wind velocities and surface pressures on the full scale building in an
actual wind field. For instance, buoyancy effects, which may significantly affect the
boundary layer flow at low wind speeds, are absent in a typical wind tunnel flow.

Although potentially important, uncertainties resulting from these effects are not
addressed in this chapter. We consider a wind tunnel study as a first step in the
assessment of wind pressure coefficients. As mentioned earlier, even this step is not
frequently made in the design stage of low-rise buildings. Therefore we aim to answer
the question: ‘Given the specification of a wind tunnel experiment on a building under
design, what is the uncertainty in the requested wind pressure coefficients if these
coefficients are assessed on the basis of existing data and generic knowledge, rather than
in a specific wind tunnel experiment?’ Consequently, the case in this study is defined as
a scale model of a building and its surroundings, immersed in a simulated boundary
layer in a wind tunnel.

4.2.2 Building and its surroundings

A description of the building and its surroundings has already been given in Section 2.2.
The essential elements are recalled here for the sake of convenience.

The case concerns a scale 1:250 wind tunnel model of a four-story office building
situated at the outskirts of a town. Figure 4.1 shows the turntable layout with the office
building (framed building in the center) and a schematic representation of the obstacles
within a radius of 300 m around it. The upper half of the area shows a typical urban
setting, which was modecled after a part of the Dutch town Delft to ensure realistic
conditions. The lower half is left void, with exception of the embankment of the
roadway. This mimics a large open space in an otherwise urban environment.
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Figure 4.1 Schematic layout of the turntable model. The dimensions refer to full-scale. The model scale
15 1:250. The building in the center is the office building under study. Side a and side b are indicated.

423 Simulated boundary layer

The building group in Figure 4.1 is immersed in a simulated ‘urban’ boundary layer. In
this study we characterize the boundary layer by the profile of the mean horizontal wind
speed only. This profile, representing the situation at the center of the empty turntable is
shown in Figure 4.2 (scale 1:250). The upper part of the profile approximately matches
a log-law profilc with roughness length z, = 3.10-* m. This corresponds to a full-scale z,
valuc of 0.75 m, which reflects urban upstrcam conditions (c.g. Wicringa, 1993).

"This velocity profile corresponds to the ‘urban’ profile that can be routincly generated in
the low speed German-Dutch wind wunnel (DNW-LST). This wind tunnel is located at
the facility of the Dutch Aerospace Laboratory (NLR) in the Noordoostpolder in The
Netherlands (NLR, 1993).
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Figure 4.2 Mean velocity profile in the wind tunnel at the center of the empty turntable with ‘urban’
roughness upstream of the turntable. The reference wind speed Unyis the mean value at 14 m heght (full
scale, i.e. the roof height of the office building under study) on the empty turntable.

4.2.4 Wind pressure difference coefficients

Figure 4.3 shows the full-scale dimensions of the office building together with the
locations of two pairs of pressure taps. The position of the pair of taps at level 1
coincides with the location of two windows at the top-level floor of the building. The
other pressure taps 2a and 2b have positions corresponding to the location of windows
at the second floor.

56 m

14m 14.0m

‘b

Figure 4.3 Top view of the central building (lefi) and vertical cross-section (right). Side a is directed to
the built-up half of the turntable, whereas side b is directed to the void half- At the center of each side a
set of 2 pressure sensors is placed in a vertical line. The positions of the 4 pressure sensors (1a, 1b, 2a,

2b) are marked (®).

The floors are cross-ventilated, so the pressure differences between positions la and 1b,
and between 2a and 2b are of particular interest as they drive ventilation flows through
the offices. These pressure differences are related to the mean reference wind speed Urr
by the pressure difference coeflicients AGy; and ACyz, where AG,i is defined as:
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_ Pu=Ps
AC, =T _Tib 4.1)
b 3PU,,

where U, is the mcan horizontal wind speed at building roof height on the empty
turntable (see Figurc 4.2) and p is the density of air.

The ventilation models considered in this thesis take timc-averaged pressures as their
input. Consequently, (4.1) relates to time-averaged values of both the pressures and the
pressure difference coefficients.

4.3 Calculation models for wind pressure coefficients

4.3.1 Introduction

Several models are reported in the literature to assist the assessment of wind pressure
coctlicients on the basis of existing experimental data. These models are based on
parametric analyses of selected data from both wind tunnel and full-scale experiments.
As a first step in the exploration of the requested uncertainty, four of these modecls were
used to estimate the wind pressure (difference) coefficients in the case at hand and the
spread in their outcomes was analyzed.

A detailed description of these four models can be found in Allen (1984), Swami and
Chandra (1988), Grosso (1992, 1995) and Knoll, Phaff and De Gids (1995). A brief
summary of the main features of these models is prescnted in the next section.
Subsequently, the model outputs are compared for the current casc.

43.2 Summary of model features
Allen (1984)

Allen presents a model to assess surface averaged pressure coeflicients on rectangular
buildings for ventilation purposes. For specific building configurations, and a limited
number of locations on the fagades, expressions for local pressure coefficients are given.
The expressions are based on data from Bowen (1976), Akins, Peterka and Cermak
(1975) and Tieleman and Gold (1976).
"To assess the local wind pressure coefficients for a specific fagade, related to the dynamic
pressure at roof height, the model requires the following input:
e wind field:
- wind angle relative to the outward normal on the building fagade
— wind velocity profile, €.g. parameterized by o, the wind velocity profile exponent
® measuring location:
— horizontal and vertical position on the fagade
¢ building geometry:
— aspect ratio of building plan, i.c. ratio of the depth of the building to the width of
the facade under study
¢ ncar ficld geometry:
— shelter factor, ie. ratio of building height to the height of the surrounding
buildings
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The range of application is restricted to rectangular buildings, i.e. buildings with a
rectangular floor plan and a flat roof.

Swami and Chandra (1988)
Swami and Chandra developed a model to assess surface averaged pressure coefficients
on low-rise buildings for application in ventilation calculations. The values are related to
the dynamic pressure at roof level.
Eight different data sets were used in the parametric analysis underlying the model, i.e.
Akins, Peterka and Cermak (1979), Ashley (1984), Cermak et al. (1981), Hamilton
(1962), Jensen and Franck (1965), Lusch and Truckenbrodt (1964), Vickery, Baddour
and Karakatsanis (1983) and Wircen (1985). The data were aggregated to obtain surface-
averaged pressure coefficients, if necessary.
The expressions to calculate the pressure coefficient for a specific facade contain the
following variables:
e wind field:

— wind angle, relative to the outward normal of the facade
¢ building geometry:

— aspect ratio of building plan, i.e. ratio of the depth of the building to the width of

the facade under study

The building geometry is parameterized by the side ratio only in this model, whereas
the influence of the velocity profile on the pressure coefficients is ignored in absence of
systematic data. Effects of near field are not accounted for in the value of the pressure
coefficient, but in a shielding factor on the wind induced ventilation flows. These
shielding factors are based on the 5 shielding classes of Sherman and Grimsrud (1982).
As in the current case the (purely wind driven) cross ventilation flows are approximately
proportional to the square root of the wind pressure differences (see Chapter 2), the
squared shielding factors are assimilated in the pressure difference coefficients in this
study.

The range of application is restricted to a building geometry, compliant with:
e aspect ratio of building plan between 1/8 and 1

e caves height to short wall ratio betwcen 0.1 and 0.4

¢ ratio of overhang to eaves height between 0 and 0.2

e roof slope between (¢ and 60¢

Grosso et al. (1992, 1995)

The package CPCALC (Grosso, 1992) was developed at the Lawrence Berkeley
Laboratory, University of California, as a component of the multizone air-flow model
COMIS (Feustcl, 1990). In the framework of the CEC-DGXII PASCOOL. programme
(Santamouris et Argiriou, 1995) the model was reviewed and the underlying data set
enhanced, which resulted in CPCALC* (Grosso ct al., 1995). CPCALC* models local
pressure coefficients on the envelope of buildings with rectangular floor plans. The
reference height for these coefficients is building roof height.

It is based on 3 sources of wind tunnel data, 1.e. Hussain and Lee (1980), Akins and
Cermak (1976) and Da Silva and Saraiva (1993, 1994).
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The expressions to calculate the pressure coefficients take the following variables as
input:
e wind field:
- wind velocity profile exponent o
— wind angle relative to outward normal of fagade
® measuring location:
— horizontal and vertical position on the fagade
¢ building gcometry:
— [rontal aspcct ratio, viz. ratio of building length to building height
— side aspect ratio, viz. ratio of building width to building height
¢ near field geometry:
— plan area density of upstream terrain
— relative building height, viz. ratio of building height to height of surroundings

Valid output of the modcl is not warranted in conditions with:
e wind field:
- a>0.33
¢ building geometry:
— irregular shape or overhangs
— aspect ratios (side or frontal) less than 0.5 or greater than 4
® near field geometry:
— plan area density > 50%
— plan area density > 12.5% if building of interest has a different height from its
surroundings or a different shape from a cube
— staggered or irregular pattern layout
— height of building under study more than 4 dmes height of surrounding
buildings or less than half their height.

Knoll, Phaff and De Gids (1995)

The Cp-gencrator, a computer tool, was developed at TNO, Delft, to predict local
pressure coeflicients on building surfaces as input to ventilation simulations (Knoll,
Phaff, De Gids, 1995, Knoll and Phaft, 1996). The default reference height for these
coeflicients is building roof height.

The Cp-generator is based on both wind tunnel measurcments (Phaft, 1977, 1979) and
tull scale cxperimental data (Lugtenburg, Den Ouden and De Gids, 1972, Eaton,
Mayne and Cook, 1975, Wells and Hoxey, 1980).

The basis of the model is a formula, describing the general relation of wind pressure and
wind direction for an unshielded object. This relation, presented in Phaff (1977) and
Walker and Wilson (1994), is fitted to data from wind tunnel experiments (Phaff, 1977,
1979). With a set of additional formulas, in terms of the building dimensions and
azimuth, the locations of the pressure taps and the terrain roughness, the wind pressures
on different locations on the roof and each fagade can be predicted.

The expressions for the pressures on sloped roofs arc derived from an analysis of full
scale data (Lugtenburg, Den Ouden and De Gids, 1972, Wells and Hoxey, 1980). The
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effect of repeating roof slopes (e.g. greenhouses) was modeled on the basis of
experimental results from Eaton, Mayne and Cook (1975).

Shielding by nearby obstacles is taken into account as a correction on the unshielded
pressures, based on both the distance and angle between the building and the obstacle
and the pressure at the leeward surface of the obstacle. This leeward pressure is
calculated analogously to the leeward pressures on the building under study.

The output of the program should be handled with caution for:

¢ buildings with non-rectangular floor plans

¢ complex surroundings (non-block shaped obstacles, strong flow-interaction effects
between obstacles and/or obstacles and building under study)

4.3.3 Comparison of model outputs

To obtain a first impression of the uncertainties in pressure difference coeficients
derived from existing data, these models were used to estimate the pressure difference
coefficients in the current case for 7 equidistant wind angles between 0° and 180° as
indicated in Figure 4.1. The models by Allen, Knoll et al. and Grosso allow for the
assessment of the local coefficients ACy; and AGyz. Their output is shown in Figure 4.4
and Figure 4.5. Swami & Chandra developed a model, which calculates fagade
averaged pressure coefficients. Figure 4.6 shows the results of Swami & Chandra’s
model together with those of Allen and Grosso, which also allow for the assessment of
fagade averaged coefficients.

The figures show that whereas the spread in the outputs from the different models for
AGy; is considerable, they agree rather well on AGy: except for 0°. The degree of
consensus on the fagade-averaged coefficients strongly depends on the wind angle.
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Figure 4.4 Wind pressure difference coefficients ACyi, assessed on the basis of existing data according to
three different models. The data points are identical to those shown in Figure 3.2.
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Figure 4.5 Wind pressure difference coefficients ACps, assessed on the basts of existing data according to
three different models.
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Figure 4.6 Fagade averaged wind pressure difference coefficients, assessed on the basis of existing dala
according to three different models.

If we would consider adopting the scatter in the model outcomes as a measure of the
uncertainty, it is important to contemplate which factors contribute to that scatter and,

more importantly, which do not.
First, the model outcomes depend on the choices of the analyst:

Several models require a characterization of the velocity profile in terms of o or z.
Which values most adequately represent the profile in Figure 4.2?

The case at hand is out of the range of application of some of the models. Are the
outcomes still appropriate?

If the surroundings of the central building have to be classified in a ‘shielding’ class,
which class description best fits the current case?

Morcover, not all uncertainty is captured in the variation of the model outcomes:
e The scatter in the experimental data on which the models are based is eliminated by

regression or averaging. Part of this scatter may be measurement crror, but part of it
results from effects unexplained by the model. Models sharing the same parameters
most likely ignore the same effects.
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¢ There is overlap in the data sets underpinning the different models. This overlap
introduces a dependency between the model predictions.

o The majority of the data underlying the models that assess the effect of the near field
were obtained in (wind tunnel) experiments with regularly arranged near field
layouts. The near field in this case is irregular and consists of buildings of different
heights.

Although the results of this exercise support the assumption that significant uncertainty

exists in wind pressure coeflicients, predicted on the basis of existing data, they do not

provide a proper basis to assess this uncertainty. Wind-engineering expertise is required,
both to provide reliable inputs to the models and to assess the impact of features in the
case under study, which are not covered in the existing models.

Hence, the uncertainty in these pressure coefficient assessments can best be quantified
by experts in the field. These experts are acquainted with the complexity of the
underlying physics and hence best suited to interpolate and extrapolate the data they
have available on the subject and assess the uncertainties involved. The next section
reports on an experiment in which expert judgment was used to quanufy the
uncertainties in the wind pressure difference coefficients in the case at hand.

4.4 Expert judgment study

4.4.1 Introduction

In an expert judgment study, uncertainty in a variable is considered as an observable
quantity. Measurement of this quantity is carried out through the elicitation of experts,
viz. people with expertise in the field and context to which the variable belongs. These
experts are best suited to filter and synthesize the body of existing knowledge and to
appreciate the effects of incomplete or even contradictory experimental data.

The uncertain variables are presented to the experts as outcomes of (hypothetical??)
experiments, preferably of a type the experts are familiar with. They are asked to give
their assessments for the variables in terms of subjective probability distributions,
expressing their uncertainty with respect to the outcome of the experiment.
Combination of the experts’ assessments aims to obtain a joint probability distribution
over the variables for a (hypothetical) decision-maker (DM), who could use the result in
his/her decision problem. This resulting distribution, which is referred to as the DM,
can be intcrpreted as a ‘snapshot’ of the state-of-the-knowledge, expressing both what is
known and what is not known.

To mect possible objections of a rational decision maker to adopt the conclusions of an
expert judgment study, which are based on subjective assessments, it is important that a
number of basic principles arc observed. These include:

2 The hypothetical experiments are physically meaningful, though possibly infeasible for practical
reasons.
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¢ Scrutability/accountability: all data, including cxperts’ names and assessments, and
all processing tools arc open o peer review.

* Fairness: the experts have no interest in a specific outcome of the study.

¢ Neutrality: the methods of elicitation and processing must not bias the results.

¢ Empirical control: quantitative assessments are subjected to empirical quality
controls.

Cooke and Goossens (2000) present a procedure for structured clicitation and processing

of expert judgment, which takes proper account of these principles. The main features

of this procedure are:

o The experts are elicited on experimentally observable quantities only.

¢ The experts’ rationales, underpinning their assessments, are documented.

¢ The combination of the experts” assessments is bascd on their performance, which is
obtained from a statistical comparison of their assessments on so-called seed variables
with measured realizations of these variables.

This procedure was closely followed here. The case described in section 4.2 was
presented to six experts, renowned for their cxpertise in the field of wind pressure
measurements on low-rise buildings. For each of the twelve wind angles in Figure 4.1
they were individually asked to assess the values of AGy; and AGz, which would be
found if this modecl would be examined in a wind tunnel with the velocity profile shown
in Figure 4.2. Each expert’s assessment of a coeflicient did not consist in a ‘best
estimate’, but in a median value plus a central 90% confidence interval expressing his
uncertainty. Probability distributions were constructed for each expert from his
assessments on the basis of the principle of minimal information (sec Appendix C.1,
Cooke, 1991).

The values of AGy; and AG: for the 12 wind angles werc also mcasured in two separate
wind tunnel cxperiments. On the basis of a statistical comparison of the experts’
assessments with the measured data, the experts’ performances could be scored.

For each pressurc difference coeflicient and each wind angle a single (marginal)
probability distribution (DM) was constructed by taking a weighted average of the
individual experts’ probability distributions. The experts’ weights were determined on
from their performances.

It is an unusual situation that the variables on which the experts are elicited can also be
measured. Indced, in a regular setting expert judgment is used to quantify (thc
uncertainty in) variables, which cannot be measured. In that case, separate seed variables
arc added to the questionnaire. These variables can be measured and are used to
determine the performances of the experts.

In this study, it is possiblc to measure the variables of interest, but in a practical building
design context this is never done. Hence, the question is what the uncertainties in the
wind pressure difference cocfficients are, when only generic knowledge and data are
uscd to assess these coefficients. This creates a comfortable situation, in which no
separate seed variables have to be included in the questionnaire. Instcad, the variables of
interest can be measured and used to score the experts’ performances.
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The next sections discuss the implementation of the procedure in this study. If
necessary, concise background information is provided. The most important notions
involved in the combination of the experts’ judgments are briefly clarified in Appendix
C.1. For further reading see Cooke (1991) and Cooke and Goossens (2000). Similar
approaches in civil engineering applications can be found in Elst (1997) and Haar et al.
(1998).

4.42 Questionnaire

In the approach according to Cooke and Goossens, each question is posed to the experts
in the context of a case. The case describes a hypothetical experiment and requests the
experts to assess the outcome of this experiment in a specific format.

In this study, all cases referred to the same hypothetical wind tunnel test as described in
Section 4.2. The only difference between the cases was the wind angle, which took
values from 0°, 30, ..., 330° (see Figure 4.1). In each case, the experts were asked to
state three quantile values of their subjective distributions over the wind pressure
differences ACy,; and AGp2. Moreover, they were requested to quantify the statistical
dependencies between a number of the wind pressure difference coefficients in different
cases.

Quantile assessments
For each of the twelve wind angles shown in Figure 4.1, the experts were asked to fill out
a table similar to Table 4.1.

Table 4.1 Quantile values of the wind pressure difference coefficients to be assessed by the experts for
each of the twelve wind angles.

wind angle variable quantile values
5% 50% 93%
00 ACp;
AGy2

In making their assessments, the experts were requested to assume all information,
presented in the context of the case definition, without uncertainty. All information not
specified in the case definition should be considered as uncertain. This uncertainty
should be accounted for in their assessments if deemed significant.

The choice between direct elicitation of the difference coefficients and the obvious
alternative to calculate the differences from expert assessments of the individual pressure
coefficients for both fagades was made deliberately. The latter approach would require
that the experts not only assess the quantile values for the pressure coefficients, but also
the statistical dependency between these coefficients. This would burden the elicitation
and draw heavily on the ability of the experts to assess their subjective dependencies. Of
course, the experts were free to use this approach if they preferred to, but it was not
imposed by the structure of the questionnaire.
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Dependencies

The AGy/’s and AGy2's, assessed by the experts, are considered to pertain to two different
building simulation models. The AC,/’s are parameters in a thermal simulation model
for spaces at the top floor, whereas the AGy»’s act in a similar model for spaces at the
second floor. Due to the building layout, these simulations can be carried out
independently and statistical dependencics between AG,/s and AC)»’s need not be
considered.

However, as pressure difference coefficients for different wind angles are parameters of
the same model, dependencics between these variables are potentially important.
Hence, it was decided to elicit these dependencies from the experts.

A common way to represent dependencies between variables is in the form of a (rank)
correlation matrix. Clearly, it would have been impossible to elicit all elements of the
correlation matrices for both the AG,,’s and AG.»’s. The cxperts should have
constructed 2 positive definite matrices by assessing a total of 132 off-diagonal terms.

As an alternative, a technique for representing dependence called ‘dependence trees’
was used (Mccuwissen and Cooke, 1994). Between the variables, a tree (an acyclic
undirected graph) of dependence relations is defined. This tree counts n-1 arcs, n being
the number of variables, and each arc is assigned a rank correlation value. On the basis
of these n-1 values a rank correlation matrix can be constructed, which together with
the marginal distributions represents a distribution that has minimal information relative
to the independent joint distribution (the product of the marginals).
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Figure 4.7 Dependence tree presented to the experts in the final questionnaire. The numbers in the boxes
are the wind angles. The connecting lines are the arcs of the tree, which are numbered for reference.

A further reduction of the number of dependencies to be elicited was suggested in
discussions with the experts, mainly in the dry-run stage. They indicated that the
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dependencies between AG,1’s and AG,2’s would be very similar. Hence, it was decided
to ask the experts to assess the dependency values between the AG)»’s only and use the
result for the AG,,/’s as well (see Figure 4.7). In this approach, the experts would have to
elicit 11 dependencies only, which was deemed viable.

The 11 rank correlations were not elicited directly. Even trained statisticians have
difficulty assessing rank correlations (Gokhale and Press, 1982). Therefore an alternative
approach was used, which has been successfully deployed in the joint CEC/USNRC
accident consequence uncertainty analysis (Harper et al., 1994). For each couple of wind
angles (arc) in Figure 4.7, the experts were asked to state the following conditional
probability:

Suppose one of the two pressure difference cogfficients in the couple is observed in an experiment and its
value 1s_found to exceed your median assessment. What is your (subjective) probability that, in the same
experiment, the other pressure difference coefficient in the couple wnll also fall above your median value?

Under suitable assumptions (among which minimal information), this conditional
probability can be uniquely transformed to a rank correlation (Cooke and Kraan, 1996).

4.4.3 Selection of the experts

A pool of candidates for the expert panel was established by screening the literature on
relevant issues like wind-induced pressures on low-rise buildings in complex
environments and wind-induced ventilation of buildings. Main sources were the Journal
of Wind Engineering and Industrial Aerodynamics and AIRBASE, the Bibliographic
Database of the International Energy Agency's Air Infiltration and Ventilation Centre.
A selection of internal reports from several Dutch institutes was also included in the
screening process.

Table 4.2 List of experts in the experiment

Willem de Gids, The Netherlands Organization for Applied Scientific Research
Bas Knoll, (TNO), Delft, The Netherlands

Hans Phaff

Jacques-André Hertig Laboratoire de Systémes Energétiques EPFL, Lausanne, Switzerland
Brian Lee University of Portsmouth, Portsmouth, UK

David Surry The University of Western Ontario, London, Canada

Ton Vrouwenvelder  Technische Universiteit Delft, Delft, The Netherlands

Eddy Willemsen Duits-Nederlandse Windtunnel, Noordoostpolder, The Netherlands

Seven experts were selected on the basis of the following criteria:
access to relevant knowledge

recognition in the field

impartiality with respect to the outcome of the experiment
familiarity with the concepts of uncertainty

diversity of background among multiple experts

willingness to participate
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One of the experts withdrew in the training stage, as he did not appreciate the concept
of subjective probability. The final panel consisted of the experts listed in Table 4.2 (in
alphabetical order). The team of Willem de Gids, Bas Knoll and Hans Phaff from TNO
worked together and produced one single sct of assessments. They will be referred to as
a single expert. Ton Vrouwenvelder and Eddy Willemsen also acted as experts in the
dry run (sec scction 4.4.5).

4.4.4 Expert training

It would have been unwise to confront the experts with the questionnaire without giving
them some training on beforehand. Nonc of the experts but one had ever participated in
an experiment involving structured elicitation of expert judgment, so they were
unacquainted with the motions and underlying concepts of such an experiment.
Moreover, acting as an expert cntails the assessment subjective quantile values and
subjective probabilitics, a task the experts are not familiar with. Extensive psychological
research (Kahneman et al, 1982, Cooke, 1991) has revealed that untrained assessors of
subjective probabilities often display severe systematic errors or biases in their
assessments.

Hence, a concise training program for the experts was developed (Wit, 1997a) to:
® provide an overview of the process

develop confidence

introduce the experts to the task they must perform

instill awareness and control of biases

practice making probabilistic judgments

The training consisted of two parts:

® Self-study by the experts before making their assessments (3 hours).

¢ Consolidation during the meeting with each cxpert individually, prior to the actual
elicitation (1 hour).

The training included two miniature expert judgment experiments, one with ‘almanac

questions’ and one similar to the actual experiment. In both experiments, the experts

received quantitative feedback on their performance and biases, if any.

4.45 Dry-run

The aim of the dry-run was to obtain feedback on the issues:

e are the questions clear and unambiguous?

¢ can the training material be studied in the allocated time and are the training goals
achieved?

e can the clicitation be completed within the allocated time?

The dry-run meetings proceeded exactly as the actual elicitation meetings were planned:
a brief consolidation of the expert training followed by the elicitation, in which the
expert explicated his assessments to the analyst. However, some extra time was reserved
to discuss the issues mentioned above.



74 Uncertainty in wind pressure coefficients

The dry run revealed that the required time to complete the training and the elicitation
was estimated reasonably well. Furthermore, the design of the dependence tree was
completed in this stage (see Section 4.4.2).

4.4.6 Elicitation

The experts were contracted to spend 2 days on their assessments, of which about 1.5
days were allotted to the elicitation. In this stage, the core of the experiment, the experts
make their judgments available to the analyst. Individual meetings with each expert
were arranged. Moreover, the experts were specifically asked not to discuss the
experiment among each other. In this way, the diversity of viewpoints would be
minimally suppressed.

The elicitation took place in three parts. Prior to the elicitation meeting, each expert
prepared his assessments e.g. by looking up relevant literature and making calculations.
During the meeting, these assessments were discussed with the analyst, who avoided
giving any comments regarding content, but merely pursued clarity, consistency and
probabilistic soundness in the expert’s reasoning. On the basis of the discussion, the
expert revised and completed his assessments if necessary.

Completion of the elicitation coincided with the writing of the rationale, a report
documenting the reasoning underlying the assessments of the expert. During the writing
of this rationale, which was done by the analyst to limit the time expenditure of the
expert to a minimum, issues that had not been identified in the meeting were discussed
with the expert by correspondence.

Several of the experts chose to separately assess the wind pressure coefficients on side a
and side b plus their dependency and calculated the assessments for the pressure
difference coefficients from those numbers. These calculations were generally carried
out with rather crude statistical techniques. In those cases, the analyst proposed to carry
out the calculations on behalf of the expert in concordance with the mathematical
framework underlying the selected procedure for elicitation and processing of expert
judgment. All experts in question agreed, but did no longer take the responsibility for
the resulting pressure difference coefficients?3.

The experts’ rationales can be found in Wit (1999a).

4.47 Wind tunnel experiments

Introduction

A single probability distribution (DM) for each wind pressure difference coefficient is
calculated as a weighted average of the individual experts’ distributions. An expert’s
weight is basically his performance, which is determined by comparing his assessments

23 This introduces an interesting conceptual problem. Technically speaking, the assessment of the pressure
coefficients and their dependencies is the domain of the expert, whereas the calculation of the resulting
pressure differences is a statistical manipulation, which is the expertise of the analyst. Therefore, the
pursued course of action is a natural one. But on the other hand, the expert will now be scored on the
basis of assessments for which he does not take full responsibility.
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on so-called sced variables with measured realizations of these variables (see Section
4.6). In this way empirical control is implemented.

Commonly, the seed variables form a separate set of variables in the questionnaire, of
which (measurcd) realizations arc known or become available to the analyst (not to the
experts). It is assumed that the performance of the experts on these seed variables is
represcntative for their performance on the actual variables of interest, for which no
observations can be made. To make this assumption plausible, the seed variables must
pertain to the experts’ domain.

In this particular research situation it was possible to actually measure the variables of
interest in a wind tunnel study. Hence, no additional sced variables had to be selected
and the performance of the experts could directly be scored on the variables of interest.

To obtain the realizations on the variables, two wind tunnel experiments were carried
out once the experts’ assessments had been compiled. The first experiment took place in
the DNW-LST, the wind tunnel the case was tailored to. The other experiment was
conducted in the boundary layer wind tunnel BLWTI1 of the University of Western
Ontario, London, Canada. In both tests, the same model elements were used.

The turntable model is shown in Figure 4.1. In addition to the 4 taps presented to the
experts, pressures werc also measured on neighboring positions as shown in Figure 4.8.
The purpose of the extra taps was to gather more information on the pressure
distribution around the primary taps for possible diagnostic use.
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Figure 4.8 Positions of the taps on both long facades (full-scale values). The taps under study in the
expert judgment experiment are marked with a circle.

The experimental conditions in both wind tunnels are briefly discussed here. For more
details see Willemsen (1998) for the experiment in the DNW-LST, Soecrensen (1998) for
the UWO test.

Low speed wind tunnel DNW-LST

The DNW-LST has a closed return circuit at atmospheric pressure. The test section has
a length of 8.75 m and a cross-section at the position of the turntable of 3.0 m x 2.25 m
(width x height).
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To generate the requested urban boundary layer, 3 spires and a trip were installed at the
entrance of the test section. The floor of the test-section was covered with a staggered
array of cubical roughness elements with an edge of 50 mm. The roughness elements
extended up to the edge of the turntable. The resulting profiles of both mean velocity
and turbulence intensity are shown in Figure 4.9.

From a number of pre-runs, it became clear that pressure coefficients, obtained from
10 s averaged observations with a stationary turntable, agreed well with those, measured
in a continuous mode. In this mode, the turntable rotates at an angular velocity of
approximately 1°/s and the pressures are sampled at a frequency of 2 Hz. As the
continuous mode is faster, this mode was used in the actual tests.

A free stream velocity of 20 m/s was used in the experiments.

The wind tunnel study was carried out by DNW-LST-staff. Further details of the
experiment can be found in Willemsen (1998).

Boundary layer wind tunnel UWO-BLWT1

The BLWT 1 at the University of Western Ontario is an open-return tunnel. The test
section has a length of 28.7 m and a cross-section at the position of the turntable of
2.4 m x 2.1 m (width x height).

To obtain pressure difference coefficients, which could be used as realizations of the
seed variables in the expert judgment experiment, the mean velocity profile had to
match the ‘urban’ DNW-LST profile as closely as possible. Indeed, experts had made
their assessments on the basis of the DNW-LST profile (see Section 4.4.1).

The best match was acquired with 3 spires and a 0.35 m trip at the entrance of the test
section, approximately 19 m upstream of the center of the turntable. The floor of the
test-section was covered with roughly square, soft foam blocks about 20 to 25 mm high.
They were mounted on 3 to 4 mm thick masonite boards with 2 or 3 block heights
between in a random array. The roughness elements extended up to the edge of the
turntable. An additional trip of 0.1 m height was mounted 2.5 m upstream of the
turntable center to get a better match with the lower part of the DNW-LST profile.
Pressure data on the building were collected as 30 s averages for 40 wind angles at a free
stream wind speed of 13 m/s.

The wind tunnel study was carried out by Lars Soerensen in cooperation with UWO-

staff. Further dctails of the experiment can be found in Soerensen (1998).

Velocity profiles
The profiles, used in the tests are shown in Figure 4.9.
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Figure 4.9 Mean horizontal velocity profile (lefi) and turbulence intensity profile (right) of the boundary
layers in the two wind tunnels. The profiles were measured al the cenler of a void turntable. The reference
velocity Uryis the mean horizontal wind velocily al building roof height.

4.5 Results

4.5.1 Wind tunnel results

Figure 4.10 shows thc results from both wind tunnel tests. As the purpose of the wind
tunnel tests was primarily to obtain empirical reference material for the expert judgment
study, only the wind pressure difference coefficients are shown here. The wind tunnel

results are covered in more detail in appendix C.3.
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Figure 4.10 Wind tunnel results_from both DNW-LST and UWO-BLWT1 tunnels. The symbols are
the 30s averages, measured in the UWO tunnel. The drawn lines show moving averages of the DNW-
results. The realizations, used to score the experts were taken_from these moving average curves.

The results from both wind tunnels are in good agreement, except for the ‘isolated” wind
angles, where the pressure differences are most sensitive to the characteristics of the

stmulated boundary layer.
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4.5.2 Experts’ assessments

Figure 4.11 and Figure 4.12 give an itemwise presentation of the results of both the
experts’ assessments and the wind tunnel results.
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Figure 4.11 Assessments of the 6 experts for the ACy,1’s. The dots are their median values, the error bars

their central 90%

confidence intervals. The drawn horizontal lines show the realizations from the two

wind tunnel tests. For each wind angle, the results of experts 1 through 6 are shown from left to right.
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Figure 4.12 Assessments of the 6 experts for the AC),2’s. The dots are their median values, the error bars
their central 90% confidence intervals. The drawn horizontal lines show the realizations from the two
wind tunnel tests. For each wind angle, the resulls of experts 1 through 6 are shown_from lefl to right.

Figure 4.11 and Figure 4.12 refer to the experts by number. These numbers were
randomly attributed to the experts in Table 4.2 and will be used throughout this

chapter.




Results

79

In Figure 4.13 and Figurc 4.14 the assessments are shown cxpertwise.
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Figure 4.13 Expertwise presentation of the assessments of experts 1 through 4. The graphs show all data
relative to the realizations of the UWO-BLWT1 experiment. The dots are the median estimates of the
experts, the error bars represent their 90% confidence intervals. The drawn lines show the moving
averages of the DNW-LST results relative to the UWO- BLWT] data.
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Figure 4.14 Expertwise presentation of the assessments of experts 5 and 6. The graphs show all data
relative to the realizations of the UWO-BLWT] experiment. The dots are the median estimates of the
experts, the error bars represent their 90% confidence intervals. The drawn lines show the moving
averages of the DNW-LST resulls relative to the UWO- BLWT1 data.

Tables with all results can be found in Appendix C.2. The experts’ dependency
assessments are also listed in this appendix.

4.6 Analysis of the expert data

4.6.1 Introduction

To obtain a single (joint) distribution for the decision-maker (DM) over all variables, the

experts’ assessments must be combined. This involves three issues:

1. Construction of a (marginal) probability distribution from the three elicited quantile
values for each variable and each expert.

2. Combination of the resulting marginal distributions for each variable.

3. Combination of the experts’ dependency assessments.

The first issue is briefly addressed in Section 4.6.2. To deal with steps 2 and 3 the
classical model (Cooke, 1991) is adopted in this study. The classical model uses weighted
averaging of the experts’ marginal distributions and dependency assessments to obtain
the distribution for the decision-maker (DM). This reduces the combination problem to
determining the weights. The experts’ weights are based on their performances, which
are scored on the basis of a statistical comparison between their assessments and the
measured realizations on the seed variables.
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Section 4.6.3 gives a brief introduction to performance, a central notion in the classical
model, and reviews the performance scores of the experts in this study. The subsequent
section addresses the performance-based combinaton of the experts’ marginal
distributions, whereas Section 4.6.5 discusses the combination of their dependencics.
Finally, Section 4.6.6 is dedicated to a robustness analysis of the resulting DM.
Additional information on the classical model can be found in Cooke (1991) or (in
summary) in Appendix C.1.

4.6.2 From quantile values to a marginal distribution

For each variable, three values are elicited from the experts. These values correspond to
the 5%, 50% and 95% quantiles of their subjective probability distribution. Many
probability distributions can be constructed, which satisfy these quantiles. In this study
we use the distribution, which has minimum information relative to the uniform
distribution on a suitably chosen intrinsic range. A discussion on the choice of the
intrinsic range and the distribution of probability mass between the given quantile
values can be found in Appendix C.1.

4.6.3 Performance

Introduction

An expert’s performance can be scored per variable (or item), or globally. The item
performance w.; of expert ¢ on variable ¢ is defined as the product of two measures,
calibration C, and information score ,; (Cooke, 1991):

Wei = Ce Ie.i
Analogously, the global performance w. of expert e is calculated from:
we=C I

where his global informativeness £ is his average information scorc over all variables.

Roughly, calibration mcasures the degree to which the observed realizations support the
expert’s assessments. In scoring calibration, an expert is regarded as a statistical
hypothesis: ‘the realizations are samples, drawn independently from distributions
corresponding to the expert’s quantile assessments’. The calibration scorc can be
interpreted as the minimum significance Ievel at which this hypothesis would not be
rejected. Ergo, a calibration score has a value between 0 and 1 and higher scores are
better.

The information score indicates how ‘tight’ the cxpert’s distributions are. It is calculated
per variable as the information of the expert’s distribution relative to the uniform
distribution on the intrinsic range for that variable. It expresses what we learn from the
expert’s assessments if we initially believe that the variable is uniformly distributed on
the intrinsic range. Information scores are always positive and higher scores are
preferred.



82 Uncertainty in wind pressure coefficients

The fact that an expert’s performance is the product of two scores, calibration and
information, suggests that he could compensate a low calibraton by being highly
informative. This is only possible to a limited extent. An expert’s performance is
dominated by his calibration, as this score may range over five orders of magnitude,
whereas the information score rarely varies more than a factor five between experts.
Hence, the information score serves to modulate between more or less equally calibrated
experts.

It can be shown that this method of scoring experts is ‘asymptotically strictly proper’,
which means that experts on the long run receive the highest weights if they state
assessments according to their true beliefs (Cooke, 1991).

Application in this study

Commonly, the experts’ performances are calculated on the basis of seed variables, a
separate set of variables in the questionnaire, for which observations become available
to the analyst in within the duration of the study. In this specific research setting, no
separate seed variables were needed, as the variables of interest, on which the experts
were elicited, could also be measured. Hence, the experts’ performance scores could be
calculated on the basis of the actual variables of interest.

For each of the 24 elicited pressure difference coefficients, 2 realizations were obtained
in 2 independent wind tunnel experiments. Global calibration and information scores
were calculated on the basis of all realizations on all 24 variables?*. The results are
shown in Table 4.3.

Table 4.3 Experts’ performance scores, calculated with the classical model on the basis of all 24 ACy’s
and scaled to an effective number of 10 variables by adjusting the power of the test to 10/24 = 0.42.
Details on the calculation of the performance scores can be found in Appendix C.1.

Expert Calibration Information Performance
Ce L W,

1 3.0 102 0.65 2.0 102

2 7.6 10! 0.55 4.2 10!

3 2.9 10! 0.46 1.310!

4 4.9 10! 0.17 8.3 102

5 7.0 102 0.81 5.7 10~

6 7.8 10! 0.73 5.7 101

The first column lists the experts by number. These are the same randomly attributed
numbers, which were used in Figure 4.11 through Figure 4.14. In the remainder of this
document, the experts will be addressed by their number only. The second column
shows the calibration scores for each expert. The global information scores, based on

2+ The sample distribution (see Appendix B.I1) was calculated as the average of the two sample
distributions for each set of realizations.



Analysis of the expert data 83

the default intrinsic ranges (scc Appendix C.1), are in column 3. Finally, the
performance, product of calibration and information, is displayed in the last column.

Calibration scores can only be interpreted in relation to the number of seed variables
from which they were calculated. The expert scores in Table 4.3 are based on 24 seed
variables. However, they have been scaled to an cifective number of 10 seed variables, a
common number in expert judgment studies, by adjusting the power of the test to
10/24=0.42 (see Appendix C.1).

The high calibration scores in Table 4.3 suggest that the results of the wind tunnel
studies are credible as realizations, which are independently drawn from the experts’
distributions. However, a closcr inspection of the assessments of e.g. expert 4, who has a
fair calibration score of 0.49, shows that the realizations are clearly not randomly
distributed around his median assessments. Instead, there appears to be a pattern: items
with negative realizations tend to be under-estimated, whereas items with positive
realizations are over-estimated. This pattern might be the result of a bias, which is
accidentally not filtered out as the same number of positively valued and ncgatively
valued quantities arc used in the scoring.

To investigate this hypothesis, the rationales of all experts were consulted to find out
which approach they had used to assess the requested pressure differences ACpa
between face a and face b of the building. It turned out that, for each wind angle, the
experts first assessed the pressure difference coeflicients AGy between windward and
leeward side. Subsequently they adjusted the signs to obtain the requested pressure
differences between side a and side b. Hence, it was considered more appropriate to
score the experts on their initial assessments of the pressure difference coeflicients
between windward and leeward side. In this way, possible systematic tendencies of any
of the experts to over- or underestimate would not be masked. This resulted in the
performance scores in Table 4.4%.

Comparcd to the calibration scores in Table 4.3, Table 4.4 shows a deterioration of the
calibration scores of scveral of the experts. These experts apparently show a systematic
bias in their assessments of the pressure differences between windward and leeward
faces. This supported by Table 4.5. This table lists, for each of the experts, whether he
shows a tendency to overestimate (median valucs to high) or underestimate (median

2 The classical model assumes that the variables on which the experts are scored are statistically
independent. Under this assumption, the calibration score can be interpreted as the likelihood of the
realizations under the hypothesis that the variables are distributed concordant with the expert’s
assessments. Clearly it is difficult to uphold this assumption here. Indeed, the experts explicitly state their
subjective dependencies between the AC)’s for various wind angles. Their assessments reveal notable
dependencies.

Dependency decreases the effective number of independent variables. This is most clear when complete
dependency exists between the variables. In that case, the experts basically assess one single variable. As
the cxperts were scored on 24 variables in this study, some reduction does not immediately pose a
problem as long as the scores only serve to compare experts in the same experiment. However, in a
comparison with other expert judgment studies, the effective number of independent variables would be
required. No method exists to assess this number though.
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values to low). Moreover, each expert’s tendency for overconfidence (90% confidence
intervals too narrow) or underconfidence (90% confidence intervals too wide) is shown.
A tendency is observed if a comparison of the expert’s assessments with the measured
data shows that the null-hypothesis ‘the expert does not show the bias’ is rejected at a
significance level of 0.05. It turns out that all experts show a tendency to overestimate.
Moreover, 4 of the 6 are apparently overconfident.

Table 4.4 Experts’ performance scores, based on their assessments of the pressure difference coefficients
ACp.cot between windward and leeward faces, instead between face a and face b.

Expert Calibration Information Performance
Ce 1 e

1 3.010? 0.65 2.0 102

2 3.6 10! 0.55 2.0 10!

3 1.0 102 0.46 4.6 103

4 1.0 103 0.17 1.7 10+

5 1.0 10+ 0.81 8.110?

6 3.0 10! 0.73 2.2 10!

The scores in Table 4.4 show an almost equal calibration score for experts 2 and 6. The
calibration scores of the other experts are lower by an order of magnitude or more,
which is significant.

Table 4.5 Overview of the systematic biases the experts display in thetr quantile assessments of the
pressure difference cogfficients between windward and leeward faces. A “+ refers to ‘over’ in the column
heading, - relates to ‘under’ and a ‘0’ means that the tendency is not observed.

Expert Tendency to Tendency for
over/under- over/under-
estimate confidence
1 + +
2 + 0
3 + +
4 + 0/-
5 + +
6 + +

4.6.4 Combination of the experts’ marginal distributions

Introduction

For each variable, the experts’ asscssments must be combined to obtain the DM for that
variable. Combination of the cxperts’ assessments according to the classical model uses
linear pooling, which mecans that the DM is a weighted average of the experts’
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distributions. Two types of weights are considcred, equal weights and performance-
based weights.

The decision-maker based on cqual weights, or the ‘equal weight DM, is simply the
arithmetic average of the experts’ probability distributions. In the assessment of the
performance-based decision-makers on the other hand, each expert receives a weight
that is basically his normalized performance. The normalization scrves to ascertain that
the sum of weights for each variable cquals 1.

However, if an expert’s calibration scorc is below a suitably chosen value of the
significance level Olpr, the expert, considered as a hypothesis, is ‘rejected’ and his weight
is set to zero. The significance level receives the value that optimizes the performance of
the DM, which is calculated in the same way as the performance of individual experts.

Two performance-based decision-makers can be distinguished, viz. the global weight
DM and the item weight DM. In assembling the item weight DM, the experts’ weights
arc calculated per variable as their (normalized) item performances. Analogously, the
global weight DM uses each expert’s global performance as a single weight for all
variables.

Application in this study
Table 4.6 shows the performance scores for four different decision-makers.

Table 4.6 Companison of performances of different decision-makers. The ‘best’ expert is the expert with
the hughest overall performance.

DM Significance  Calibration Information  Performance Contributing

level o Ciat Iom Wor experts
Equal weight - 2.0.102 0.14 2.8.103 I,....6
Global weight 0.36 3.6.107 0.55 2.0 10! 2
Itemn weight 0.30 4.2.10- 0.47 2.0.10! 2,6
‘Best’ expert - 3.0.10" 0.73 2.0 10~ 6

It is clear that all DM’s outperform the equal weight decision-maker. The only expert
contributing to the optimized DM on the basis of global weights is expert 2. The
optimized DM’s do not outperform the ‘best” expert in the study. This might be due to
the fact that all experts show the same bias, i.e. overestimation. Indeed, in that case any
combination of experts shows this tendency.

The differences in performance scores of the best expert, the item weight DM and the
global weight DM are negligible. Either of them is equally eligible as the ‘optimal’
combination of the experts’ assessments. In this study we will use the global weight DM.
The 5%, 50% and 95% quantile assessments of this DM are shown in Figure 4.15.
These values are tabulated in Appendix C.2.
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Figure 4.15 Quantile values of the global weight DM. The dots are the median values, the error bars
represent the 90% confidence intervals. For reference the wind tunnel results are also shown as horizontal
bars.

4.6.5 Combination of the experts’ dependencies

Introduction

Each of the experts assessed the dependencies associated with the 11 arcs in the

dependence tree in Figure 4.7. Their assessments are tabulated in Appendix C.2 in the

form they were elicited, viz. as conditional probabilities (see section 4.4.2). In principle,

the combined conditional probabilities for the DM can be calculated by linear pooling,

using the expert weights as discussed in the previous section. A discussion on the

mathematical subtleties involved can be found in Cooke and Kraan (1996).

However, as only one expert (no. 2) participates in the global weight DM, which will be

used in the remainder of this study, the combination of dependencies is trivial. The rank

correlation matrix for the pressure difference coefficients can directly be determined

from the 11 conditional probabilities, which were elicited from expert 2. This involves

two steps:

1. Calculation of the rank correlation corresponding to the elicited conditional
probability for each arc of the dependence tree.

2. Assessment of the full correlation matrix from these rank correlations for the 11 arcs.

Step 1

Cooke and Kraan (1996) argue that given arbitrary continuous marginal distributions
for two variables, the rank correlation between these variables is uniquely determined by
the elicited conditional probability under the assumption that the joint distribution over
the variables is minimally informative relative to the joint distribution with independent
marginals (the product of the marginals). They also provide numerically computed
values of the rank correlations as a function of the conditional probability in question for
the case of multiple experts.

Step 2

Meeuwissen and Cooke (1994) show that for every rank correlation dependence tree
there exists a unique joint distribution having minimal information relative to the
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product distribution with the specified univariate marginals. With the uncertainty
analysis tool UNICORN (Cooke, 1995) the rank corrclation matrix of this joint
distribution can be simulated from the specified rank correlations for the dependence
tree on a random sampling basis.

Application in this study

Table 4.7 shows the rank correlation matrix for the pressure difference coefficients,
simulated with UNICORN on the basis of 10 000 samples. The boxed values show the
rank correclation valucs corresponding to the conditional probabilities that were clicited
from the experts.

Table 4.7 Rank correlation matrix for the pressure difference coefficients. The mairix quantifies the
dependencies between both the ACy1’s and the ACy»’s. Dependencies beticeen ACy; and the ACy» were
nol elicited. The boxed cells show the rank correlations corresponding to the conditional probabilities that
were directly elicited from the experts.

wind angle 00 30v 600 900 1200 150° 180° 210v 240> 270> 300° 330

o 1052 043 -0.07 -0.56 -0.58{ -0.93] -0.91 -089 -0.13 0.69 0.68
3001 0.52 I 026 -0.05 -0.314 -0.37 -0.55 -0.56 -0.55 -0.09 0.41f 0.7¢4
600 0.43 0.26 1 -003 -029 -03 -045 -046 -0.47 -0.08{ 0.62} 0.36

900 -0.07 -0.05 -0.03 1 00+ 004 007 0.07 007 0.38 -0.0+ -0.06
1200} -0.56 -0.34 -0.29 0.04 1 04 06 061} 0.62[ 009 -047 -0.46
150°f -0.58 -0.37 -0.3 0.04 0.4 1 062 0.63] 062 008 -047 -048
180“@ -0.55 -0.45 0.07 0.6  0.62 1l 098] 096 0.13 -0.73 -0.73
210°¢ -0.91 -0.56 -0.46 0.07 0.61] 0.63] 0.98 1 0.98] 0.14 -0.74] -0.75
2400p -0.89 -0.55 -0.47 0.07] 0.62] 0.62 0.96{ 0.98 1] 0.14] -0.75; -0.73
270°f -0.13 -0.09 -0.08; 0.38; 0.09 0.08 0.13 0.14] 0.14 1 -0.1 -0.11
3000F 0.69 0.411 0.62] -0.04 -047 -0.47 -0.73 -0.74] -0.75} -0.1 1 0.55
330¢ 0.68[ 0.74f 036 -0.06 -0.46 -0.48 -0.73] -0.75| -0.73 -0.i1 0.

“
&
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4.6.6 Robustness analysis

Introduction

Confidence in the conclusions of the study benefits by robust results, i.e. a DM that is
relatively insensitive to the exclusion of one single expert or one single realization in the
analysis. In a robustness study, the sensitivity of the DM to a certain perturbation is
related to the information score of the perturbed DM relative to the original DM. As an
anchoring value for this information discrepancy, the relative information of the experts’
distributions to the equal weight DM (average expert) is used, which is in the order of
0.5 on averagc.

Robustness for experts
Not surprisingly, the DM only changes if expert 2 is removed from the expert panel.
Recalculation in that case yields a DM with an information score of 0.63 relative to the
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original DM. This is comparable to the anchoring value, which indicates a moderate
sensitivity.

Robustness for items

If the measured realizations are removed one at a time and the global DM recalculated,
the maximum information relative to the original DM is 0.2. Comparison with the
anchoring value indicates that the DM is fairly robust for items.

4.7 Discussion

4.7.1 Introduction

Basically, Figure 4.15 and Table 4.7 together with the assumption of minimal
information (see Cooke, 1991, Appendix C.1) specify the joint probability distributions
over both AGs’s and AGye’s for the decision-maker. Considering the fair calibration
score of the DM, this information provides an answer to the principal question in this
chapter, i.e. ‘what is the uncertainty that should be considered in wind pressure
difference coefficients assessed from existing data and generic knowledge?”.

However, two other issues deserve notice. First, the case structure was designed in such
a way that a distinction can be made between:

* measuring location near the center of the fagade versus close to the roof edge.

o approach flow over open terrain versus over built-up terrain

It is interesting to investigate to what extent the experts distinguish between these
situations in their uncertainty assessments and how this affects their performance scores.
These issues are discussed in section 4.7.2.

Moreover, in section 4.7.3 we discuss the question under what provisions expert
judgment could develop as an alternative for a wind tunnel study.

4.7.2 Disaggregation

The case structure enables distinction between:

® measuring location near the center of the facade versus close to the roof edge.

e approach flow over open terrain versus over built-up terrain

In this section the experts’ assessments are disaggregated to study whether they
distinguish between these situations and how this affects their performance scores.

First, the experts’ assessments on AGy,; and AG2, the pressure difference coefficients at
measuring positions 1 (close to the roof edge) and 2 (near the center of the fagade)
respectively, will be compared. Subsequently, separate evaluations of the subsets
ACp.exposed (Wind angles 1200, 1500, 1800, 2100 and 240, approach flow over open terrain)
and AGymirup (wWind angles 3000, 3300, 0v, 30v and 60°, approach flow over built-up
terrain) will be carried out.
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Measuring position 1 versus 2

Table 4.8 and Table 4.9 list the experts’ performance scores for the AG), /s and AG,.»’s
respectively. In each of these tables, the second column shows the calibration scores,
which are scaled to 10 items to allow comparison with the other calibration scores
presented in this chapter. The third column presents the mean relative information
scores of the cxperts on the items the tables refer to. The information scores relate to
intrinsic ranges, which are identical for AC,; and AC,» for each wind angle. These
ranges are the smallest intervals, comprising the default intrinsic ranges for both the
AGy,; and the AG,» involved (sce Appendix C.1). Equation of the intrinsic ranges enables
comparison of these information and performance scores between Table 4.8 and Table
4.9. The fourth column shows the overall expert performance, i.e. the product of the
calibration score and the information score. The last column shows the normalized
weights of the experts.

Table 4.8 ACy.1, 12 ilems, calibration power 0.83 (10 effective items), Oup=8.1 107

Expert Calibration Information  Performance  weight
C. Lecomman w,

1 9.6 103 0.66 6.3 103 0

2 7.5 102 0.49 3.7 102 0

3 2.1103 0.52 1.1103 0

4 1.2 103 0.19 2310+ 0

5 1.0 104 0.87 8.7 10 0

6 8.1 102 0.76 6.2 102 1.0
DM (global) 8.1 102 0.76 6.2 10-2

Table 4.9 AG),2, 12 items, calibration power 0.83 (10 effective items), Clop=6.9 101,

Expert Calibration Information Performance  weight
C. L, common We

1 4.7 102 0.68 3.2102 0

2 6.9 10! 0.67 4.6 10! 1.0

3 6.6 102 0.46 3.0 102 0

4 1.2 103 0.19 2.3 10+ 0

5 2.0103 0.80 1.6 103 0

6 5.7 10! 0.76 4.3 10! 0
DM (global) 6.9 101 0.67 4.6 10!

The information scores on common intrinsic ranges do not differ much between AG,;
and AGp2, which indicates that the experts were about equally informative, i.e.
uncertain, in their assessments of AG; and AC,2. However, most experts perform
significantly less on AGj,; than on AG,». The difference between the performance scores
for the optimized DM is approximately a factor 7. Further analysis shows that the DM
for the AG,,1’s has both a significant tendency to overestimate and a significant tendency
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for overconfidence, whereas both tendencies are absent in the DM for the AGy2’s. This
is valuable feedback information, which may help to improve expert performance in
future expert judgment studies in this field.

Exposed versus built-up

To study the effect of the buildings and trees on the experts’ assessments, the set of
assessments on the ACpqpsd’s for approach flow over the ‘southern’, void half (wind
angles 0 € {120°, 1500, 180°, 210v and 240°}) are compared to their mirror set on the
AC,min-up’s for approach flow over the ‘northern’, built-up half (approach flow angles
180°-0).

The numbers in columns 2, 4 and 5 were calculated analogously to their counterparts in
the previous sub-section. To obtain the information scores in the third column, the
intrinsic range for each variable in the exposed set and its ‘mirror’ in the built-up set was
set to the smallest interval comprising the default intrinsic ranges for each of the two
variables.

Table 4.10 ACy sposea, 10 items, calibration power 1.0, (10 effective items), Oop=7.3 102,

Expert Calibration Information  Performance  weight
Ce 1. common We

1 1.0 10 0.91 9.110% 0

2 5.8 102 0.87 5.0 102 0

3 2,710 0.79 2.1 104 0

4 1.2 103 0.37 4.4 105 0

5 1.0 104 0.85 8.5 10° 0

6 7.3102 1.41 1.0 10! 1.0
DM (global) 7.3 102 1.41 1.0 10-!

Table 4.11 ACp puinup, 10 items, calibration power 1.0, (10 effective items), 0p=7.9 101,

Expert Calibration Information Performance  weight
C. L common We

1 7.9 101 0.84 6.6 10! 1.0

2 4.6 10! 0.71 3.3 10" 0

3 3.1103 0.45 1.4 103 0

4 1.2 107 0.35 4.2 10+ 0

5 1.0 10~ 1.06 1.1 10 0

6 2.510! 0.50 1.3 10! 0
DM (global) 7.9 101 0.84 6.6 10!

Lcaving aside expert 5, the information scores of the experts and the DM for the
southern, ‘exposed’ wind angles are higher (less uncertainty) than for the northern
angles. This is in accordance with expectations as a relative abundance of experimental
data is available on pressure coeflicients for exposed buildings.

-
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However, all experts and the DM receive a lower performance score for the ‘cxposed’
wind angles. Further analysis shows that the DM for the AGj.pued’s is significantly
overconfident and has a significant tendency to overestimate. Both biases are absent in
the DM for the AGCysiny’s. Apparently, the relatively high informativeness (reduced
uncertainty) in the assessments for the exposed wind angles is unjustified.

As in the previous sub-section, this information may be valuable to improve expert
performance in future expert judgment studies in this ficld.

4.7.3 Expert judgment compared to wind tunnel

It is intercsting to compare the uncertainty in the DM’s asscssments, shown in Figure
4.15, with the uncertainties in pressurc difference coeflicients, obtained from a wind
tunnel experiment. This reveals the extra information we gain by doing a specific wind
tunnel experiment instead of an assessment on the basis of existing data.

As each sound wind tunnel test, compliant with the case description in section 4.2 yields
valid realizations of the wind pressure diffcrence coeflicients, the spread in the outcomes
of such tests would be a suitable estimator for the uncertainty. In a recently completed
study (Hoelscher, 1997), twelve wind tunnel laboratories measured the surface pressures
at a floor-mounted cube, corresponding to 50m height in full-scale. They were asked to
perform the measurements in a simulated boundary layer flow at neutral stratification
corresponding to urban terrain with a profile exponent of o = 0.22 +/- 0.02. Apart
from a few basic constraints, the participants were free to perform the tasks according to
their own judgment and standards.
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Figure 4.16 Spread in wind pressure difference coefficients, measured in lwelve different wind tunnels on
an isolated cube (Hoelscher, 1997). The error bars represent the 90% confidence intervals. The upper
ervor bars are oblained the fagade centerline al a level of 0.5 of the cube height, the lower bars were found
at 0.93 of the cube height also at the fagade centerline.

Figure 4.16 shows the 90% confidence intervals for pressure difference coefficients
between front and back of the cube, measured at the fagade centerline at 0.93H and
0.5H respectively, where H is the obstacle height. These measuring locations are
comparable to those of AGy; (0.93H) and AGy: (0.43H) respectively. Figure 4.16 shows
that the width of the confidence intcrvals is on average 0.2 and docs not significantly
depend on the wind angle.
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To explore if these results obtained for an isolated cube of 50m full-scale height make
sense in the current case, a virtual expert was created. His median values were chosen
equal to the outcomes of the UWO wind tunnel test. The 95% and 5% quantile values
were set to the median value +/- 0.1 to obtain 90% confidence intervals of width 0.2.
Subsequently, the performance of this virtual expert was scored on the results of the test
in the DNW tunnel along with the other experts. Table 4.12 lists the performance score
of this virtual expert. For comparison, the scores of the DM based on the experts’
assessments is also shown.

Table 4.12 Performance of a virtual expert, created on the basts of the data from the UWO-test and
scored on the results of the experiment in the DNW-tunnel, calibration power 0.42 (10 effective items).
For comparison, the scores of the DM based on the experts’ assessments are recalled from Table 4.6.

C; Ir We
Virtual expert 3.8 10! 1.65 5.2 10!
DM (global) 3.6.10- 0.55 2.0 10!

Comparison of both sets of scores in Table 4.12 shows that the virtual expert, created on
the basis of wind tunnel data, has a calibration score, which is similar to that of the DM,
calculated from the expert judgments. However, the information score of the virtual
expert is 3 times higher than the information score of the DM. Or, alternatively, the
confidence intervals of the virtual expert are 3-6 times narrower than the confidence
intervals of the DM. This can be interpreted as the extra information, which is gained
by doing a wind tunnel experiment in this case.

Wind pressure coefficients, assessed on the basis of existing data in this study have an
uncertainty, which is large compared to both their median values, and to the (estimated)
uncertainty in wind tunnel results. This suggests that the output of models and tools,
based on a parametric analysis of prior wind tunnel and full-scale data, have little
meaning unless the uncertainty in this output is quantified. This study shows that an
expert judgment study is an adequate method to perform this quantification. In the form
it was implemented here though, it is also a very expensive approach, far more
expensive than a wind tunnel study.

The most obvious measure to cut back the costs, i.e. by reducing the number of experts
in the panel to e.g. 1 or 2, is not an attractive one at this stage. Indeed, the experts in
this study show little agreement in their assessments. This is expressed in their rationales,
which underpin their assessments with different and sometimes even conflicting
arguments. Moreover, the experts’ calibration scores show a large scatter and only two
out of six experts receive a fair calibration score.

Thus, at this stage it should be concluded that an expert judgment study is not an
attractive alternative for a wind tunncl cxperiment. However, this tentative conclusion is
moderated by the following consideration. If expert judgment studies would be as
common as wind tunncl studies are today, experts would be better trained to make
subjective probability assessments, which might allow for a reduction of the number of
experts in the study (see e.g. Cooke, 1991). Moreover, experts would probably be better
equipped to estimate wind pressure coefficients on the basis of available data, which
might lead to a reduction of their uncertainty without a loss of calibration.
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Hence, it seems worthwhile to dedicate further research efforts to the exploration of the
perspectives of expert judgment in this ficld.

4.8 Conclusions and recommendations

Expert judgment was successtully employed to quantify the uncertainty in wind pressurce
difference coeflicients for a flat-roofed low-rise building (I x w x h: 56 m x 14 m x 14 m)
in an urban cnvironment. The uncertainty was mcasured in the situation that the
coeflicients are assessed on the basis of existing experimental data and knowledge rather
than with a specific (wind tunnel) experiment. The observed uncertainty is large, both
compared to the median values of the coefficients, and compared to the (cstimated)
uncertainty in wind tunnel results. This suggests that point estimates on the basis of
existing data do not give usctul information. Instead, probability distributions for the
cocfficients as obtained from an expert judgment study, might be valuable for certain
applications.

Moreover, valuable feedback information was obtained to assist cxperts in improving
their assessments in possible expert judgment studies in the future. Firstly, it was
observed that the cxperts showed a significant tendency to overestimate and a significant
tendency for overconfidence in their assessments of the pressure difference coeflicients
near the roof edge (pressure taps located at the centerlines of the long facades and Im
below the roof edge). These tendencies were absent in their assessments of the
cocflicients at approximately half the building height.

Secondly, the experts were found to display similar biases for wind angles with flow
approaching the building over an cxposed near field, whereas these biases were absent
for situations with flow approaching over irregularly built-up, urban terrain.

In the form it was implemented in this study, elicitaion and processing of expert
judgments is much more expensive than a wind tunnel experiment. Further study is
required to investigate to which extent the costs (and possibly the uncertainties) would
be reduced if experts would become more familiar with and skilled in the assessment of
subjective probabilitics.






5 Uncertainty in the indoor air
temperature distribution

5.1 Introduction

A central component of simulation models which assess thermal comfort in a building
space is the energy balance for the indoor air. In current simulation tools, the air volume
is lumped into one single node, to which a singlc temperature, ie. the mean air
temperature is assigned. Under the assumption that the air temperature is uniform, this
air nodc tcmperature can be used in the calculation of the ventilation heat flows and the
heat flows from the air to the room enclosure on the basis of (semi-) empirical models for
the convective heat transfer coeflicients. Moreover, the uniform temperature assumption
is adopted in the assessment of the average thermal sensation of an occupant in the
room. This approach was used in Chapter 3.

However, the temperature distribution in the air will generally not be uniform. Indeed,
in naturally ventilated buildings, which are used as an example throughout this thesis,
there is limited control over either ventilation rates or convective internal heat loads.
This results in flow regimes varying from predominantly forced convection to fully
buoyancy driven flow. In the case of buoyancy driven flow, plumes from both heat
sources and warm walls rise in the relatively cool ambient air, entraining air from their
environment in the process, and create a stratified temperature profile. Cold plumes
from hcat sinks and cool walls may contribute to this stratification. Forced convection
flow elements, like jets, may either enhance the stratification effect or reduce it,
dependent on their location, direction, tempcrature, and momentum flow.

Non-uniformity of the temperature profile distribution affects the energy balance for the
air volume. Moreover, it may cause the local air temperature, experienced by an
occupant, to deviate from the mean air temperature. These effects may result in a bias
of the simulation output, i.e. the building performance with respect to thermal comfort.
In the sensitivity analysis, rcported in Chapter 3, the eftect of an alternative assumption
for the air temperature distribution in building spaces was explored. The analysis
revealed that the effect ranks among the more important modeling uncertainties
investigated in that same study. Consequently, it was felt that additional study would be
appropriate to investigate how air temperature distributions can be more thoroughly
assessed 1n building simulation.

In theory, the flow field in a space is fully determined by the Navier-Stokes equations
plus the cquation for energy conservation with their boundary and initial conditions.
When these equations for the flow are solved simultancously with the other equations in
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the building simulation model, the two sets of equations supply each other’s boundary

conditions and the temperature field is dynamically calculated. Unfortunately this

process is hampered by two problems:

1. Straightforward solution of the flow equations is not possible in cases of practical
interest.

2. As a result of approximations in the structure and incompleteness of the input of
building simulation models, the boundary conditions for the flow are not uniquely
specified. This results in uncertainty in the flow field.

Substantial research efforts have been dedicated to the first problem, which has
common features in all areas of flow modeling. The second problem, which is building
simulation specific, has received negligible attention. It is interesting to address both
problems in tandem though. Indeed, it seems pointless to use a sophisticated model for
the air temperature distribution in a building simulation if the input to this model is
highly uncertain. Hence this study explores a way to model the relevant aspects of the
air temperature distribution with their inherent uncertainties rather than to focus on a
method to produce the ‘best’ values for given boundary conditions without uncertainty.

The study is tailored to a specific space, which is similar to the one in the crude
uncertainty analysis in Chapter 3. It is described in section 5.2. Section 5.3 gives a brief
overview of existing approaches to model temperature distributions in building spaces.
The subsequent section elaborates on the uncertainties in the boundary conditions for
the flow in a typical building simulation context. A strategy to come to a model for the
relevant features of the air temperature distribution with their uncertainty, which can be
implemented in a building simulation model to assess the effects on building
performance, is proposed in section 5.5. This strategy is explored step by step in the
subsequent sections.

In Section 5.6 a heuristic model for the air temperature distribution is formulated.
Section 5.7 reports on the assessment of the uncertainty in this temperature distribution
in a number of carefully selected cases. As in Chapter 4, expert judgment is used in this
stage. Then, in Section 5.8, the uncertainties in the temperature distributions from
Section 5.7 are mapped to the parameters in the heuristic model from Section 5.6.
When this mapping process, which is referred to as ‘probabilistic inversion’, is
successful, it results in a (joint) probability distribution over the model parameters,
expressing their uncertainty, which can be used in combination with the heuristic model
in building simulation.

The aim of the study is to assess the feasibility of the approach, to identify problem
areas, and, if possible, to come up with a workable model for the space to be used in an
uncertainty analysis. The final section is used for discussion and conclusions. In addition
to an evaluation of the case study, generalization to other spaces will be discussed as a
step in the development towards a general tool for engineering practice.
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5.2 Description of the space

The space addressed in this chapter closely resembles the spaces which were considered
in the crude uncertainty analysis in Chapter 3. A sketch of the space is given in Figure
5.1, It is part of a low-risc office building.

A Jo30m
10.20 m
% 10.20 m
1.00 m
27m *
36m 1.00 m
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54m

Figure 5.1 The office space under study with internal dimensions (I X w X h) 5.4 m x3.6 m x 2.7 m.
The height of the fixed window 15 1.0 m. Cross-ventilation of the space takes place through a cantilever
window in the facade and a rectangular vent in the opposite wall. The furnishing to accommodate two
people is not shown.

cantilever
window

45°

indoor outdoor

Figure 5.2 Layout of the facade (a), the cantilever window (b) and a side view of the opened cantilever
window (c).
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The building is situated in a moderate climate, like in The Netherlands. The period of
interest is the spring/summer (April-September), during which the indoor climate in the
building depends on natural ventilation supported by mechanical ventiation if required.
The space 1s cross-ventilated through a cantilever window in the fagade (see Figure 5.2)
and a vent at the same level in the opposite wall. The door in this facade is closed.

The space has a concrete floor. The interior walls between the spaces are constructed of
sand-lime bricks and the ceiling is false. The facade is well-insulated and the windows in
the facade consist of double-glazing. A moveable external solar shading device is
mounted.

The space is furnished to accommodate 2 office workers. The bordering spaces are
similar in design and operation.

5.3 Modeling of the air temperature distribution

5.3.1 Introduction

This section starts with a recapitulation of the way the air temperature distribution in
spaces is modeled in the current building simulation models. Subsequently, a brief
overview is presented of alternative modeling approaches.

5.3.2 Current modeling approach

Current building simulation models start from the energy balance for the indoor air
volume of the entire space (see also Figure 5.3 and Section 2.3.2.

dT,
p CP 4 dta'f = Qvenl + ZQwall,i + Qc (5 1)
Q(‘ = an‘r,(‘ + Q.tol.r (52)
Qrent = p C(DV (Tin - T’au{ ) (5'3)
where
P, e, V density and specific heat of air, air volume
Qyreee convective part of internal heat production
Qgole convective part of solar gain
T temperature of the incoming air
0% air volume flow through the space?

% In general, multiple flows may enter and leave the space and the volume flows will be state variables in
a coupled mass and heat transport problem (see Chapter 2). The space, specified in section 5.2, however,
has only two openings and the prevailing ventilation mechanism will be cross-ventilation. As both
openings are located at the same height, the temperature field in the space will have a negligible effect on
the volume flows through the openings. Hence. these volume flows can be assessed separately and
imposed as boundary conditions on the airflow in the space.
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Qyealli heat flows from wall component?? i to the air
Toir mean air temperature
Tou temperature of the air leaving the space

An illustration of the main variables in these equations is shown in Figure 5.3. As Qi
T.ir and T,y arc unknown, (5.1) and (5.3) do not form a closed set. To setde this, the
following additional equations arc used in current building simulation practice (see also
Chapter 2):

Tow =T (5-4)
Q,u'n[l.i = ar.i(frzmll.i - 7~rlir)‘/élwal/.i L55>
where
Heeatti the surfacc area of wall component i
Teeatti the surface temperature of wall component ¢, a boundary condition
provided by the rest of the building simulation model
O convective hcat transfer coeflicient for wall component i, a (semi)

empirical parameter

Equation (5.4) is satisfied by the assumption of uniform air temperature. Moreover,
under this assumption, the temperature difference over each wall boundary layer is
adequately modeled by Twuwi = Ter. This means that literature values for the heat
transfer coefficients, which are commonly related to the temperature difference over the
wall boundary layer, can be used to quantify o (see e.g. Khalifa, 1989). Finally no
separate evaluaton of the local air temperature, experienced by an occupant of the
space, is required as this occupant is immersed in a uniform temperature field.
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Figure 5.3 Illustration of the variables acting in the heat balance of the space.

27 As cxplained in chapter 2. in a building simulation model, the enclosure of a space is sub-divided in
enclosure- or wall-components with different materials and/or orientation.
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However, as discussed in the introduction, uniform air temperature is actually the
exception rather than the rule. This implies that (5.4) no longer holds, straightforward
application of the literature values for the heat transfer coeflicients is questionable, and
an occupant may sense an air temperature different from the mean value. To assess
these effects, more detailed modeling of the air temperature distribution is required. The
next section gives an overview of approaches to model the flow field in building spaces.
The section mainly focuses on their applicability to naturally ventilated spaces in the
context of a building simulation.

5.3.3 Alternative modeling approaches

This section presents a concise overview of existing methods to assess the flow field in
building spaces. The methods range from universal approaches to problem specific
solutions. The methods are addressed in descending order of universality. More detailed
overviews can be found in e.g. Loomans (1998) and Heiselberg et al. (1998).

Computational fluid dynamics (CFD)

Computational fluid dynamics is a generic term for a rapidly developing collective of
models and numerical techniques to simulate flow fields in a variety of applications. All
CFD-approaches are based on the equations for energy, momentum and mass
conservation. A recent investigation on the application of CFD to simulate the airflow in
building spaces can be found in Loomans (1998). Loomans demonstrates that
calculation of these flow fields involves a delicate balance between computational load
and accuracy. Several approximate methods have been developed to allow coarser
discretization of the equations, both in space and in time. However, the universality of
several of these methods is limited and calibration against measurements is
recommended. Morcover, there are no general rules to determine the structure and
resolution of a spatial discretization grid, which produce sufficiently accurate solutions.
Finally, convergence of the numerical solution is often controlled by a number of
relaxation factors, which have to be set on the basis of experience.

These complications cause the necessity to validate CFD-models against measurements
(Chen, 1997, Baker et al., 1997). Of special concern is the assessment of the heat
transfer at the walls. Niu (1994) concludes that an accurate simulation of this heat
transfer in building spaces is very difficult to obtain.

Moreover, application of CFD in a building simulation context requires simultaneous
solution of the flow equations and the other equations in the building simulation model.
Negrao (1995) reports on an attempt to integrate a dynamic CFD-model into a building
simulation modecl. Although extremely computationally intensive, the approach was
successful for relatively uncomplicated cases, but in cases of practical interest it appeared
difficult or even impossible to achieve convergence.
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Zonal models

To alleviate the computational loads inherent in CFD-calculations, the zonal modecl
approach was developed (see e.g. Inard et al., 1996, Rodrigucz ct al., 1993, Peng, 1996).
As CFD, this approach spatially partitions the space, but the resulting cells (or zones) are
much larger. For each zone, cquations of energy and mass conservation are formulated.
However, as conscrvation of momentum is not explicitly considered, the resulting set of
equations is not closed.

To close the problem, additional information about the flow pattern has to be added.
Two methods to obtain this information can be found in literature. First, the flow
pattern can be obtained from a dedicated cxperiment (measurements or CFD-
calculations). The resulting zonal-model can then be applied to situations, where the
flow pattern is cxpected to be similar to that in the experiment. Examples of this
approach can be found in Howarth (1985), Chen (1988) and Peng (1996).

Alternatively, the additional information can be based on assumptions about the flow
pattern, e.g. based on scmi-empirical behavioral laws for individual flow componcnts
(Inard ct al., 1996). Reliable application of both types of zonal models requires a
profound knowledge of fluid dynamics.

Gagneau et al. (1997) propose a method to overcome this problem, but their approach is
still in its infancy and its merits cannot be assessed yet.

Semi-empirical approaches

For various controlled ventilation strategies, semi-empirical ‘engineering’ models have
been developed to assess the temperature distribution. Examples can be found in e.g.
Kriithne (1995) and Mundt (1996) for displacement ventilation. Another example is
reported in Chen et al. (1992). They prescnt a database with pre-computed (stationary)
flow fields (temperature, velocity and contaminant concentration) for various air
conditioning strategies, as a function of space geometry, heat load, ventilation rate etc.
All these approaches concern spaces with controlled ventilation or air conditioning. This
implies that supply air temperature, supply flow rate and space heat gain are fully
coupled. In naturally ventilatcd spaces, these variables may vary almost independently
of each other, constituting a much larger set of conditions to be covered by a model.

Conclusion

The more universal approaches (CFD and zonal models) to calculate flow fields in
building spaccs require expert knowledge, i.e. a thorough understanding of fluid
dynamics and the subtleties involved in numerical flow simulation. Moreover, reliable
and flexible integration of either of thesc approaches in a dynamic building simulation
model is still subject of rescarch. Application of the semi-empirical models requires
much less expert judgment. However, for a naturally ventilated space, as described in
section 5.2, no models are available to date.
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5.4 Uncertainty

The typical building simulation context, addressed throughout in this thesis, is the
design context, in which building performance is to be assessed on the basis of the design
and specifications and a scenario, specifying the conditions during operation of the
building (see Chapter 2). In this context, not all boundary conditions for the airflow are
available. In the current building simulation models, the air temperature is calculated
from (5.1) through (5.5) with the following information on the boundary conditions:

Table 5.1 Information on the boundary conditions for the aurflow, available in the given building
simulation context.

Twai  the area averaged surface temperatures of all wall components
Dy the air volume flow rate
Tin the supply air temperature

Qe the sum of the convective heat gains from all internal heat sources
Qs the convective part of the solar gain entering the space

These variables are quantified either directly from the scenario or by the other
equations in the simulation model. However, a dynamical assessment of the flow field in
a building space requires more detailed information, e.g. the spatial distribution of Qg
i.e. specification of the heat sources and their position in the space, and the degree of
furnishing and the location of the furniture. Moreover, the outdoor climate is usually
represented (in the scenario) as a time series of hourly averaged data. However, the
indoor air flow field is likely to be sensitive to sub-hourly fluctuations in e.g. the air flow
rate and the solar gain, which are highly variable processes. Finally, determination of air
temperature experienced by an occupant requires knowledge of the location of the
occupant in the space, which is not available.

5.5 Modeling under uncertainty

As discussed in the previous section, we start from the assumption that, apart from the
geometry of the space, the information in Table 5.1 is available on the boundary
conditions of the flow field. We will address these variables as the vector x:

X= (_Z_-wall, q)I", T;'n, Qgrcz,(:, Q;nl,r)

As discussed in section 5.3, we drop the common assumption that the air temperature is
uniform. Hence, we replace (5.4) with:

Tom‘ = Tm'r + Arml (56>
and add an equation for the air temperature 7., experienced by an occupant:
T.=T,+AT 0.7)
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Under the uniform air temperature assumption, no separate definition of the occupant
air temperature 7T, was required. Here, we define 7. as the mean air temperature of
an air volume, located at an unknown position on the floor, with a horizontal cross
scction of 1 m?, extending from the floor up to 1.35 m (the top level of a sitting person).

With (5.6) and (5.7), the air temperature in the spacc is no longer modeled in terms of
T.ir only, but with the triplet Ty, AT and AT.... These three variables are combined in
the vector y:

1= (Tuin, ATow, AT o)

Uncertainty in y results from the sources discussed in the previous section. We seek to
find a model in terms of x, which can be implemented in a building simulation model to
quantify y with its uncertainty for the space in section 5.2.

First, we assumc that a (quasi-) stationary model of the flow field in terms of x sufficcs. In
a typical building simulation context, the boundary conditions and inputs of the model
are hourly averaged climate data. Hence, processes with a characteristic time scale that
is significantly smaller than one hour may be considered to respond instantaneously to a
change in the boundary conditions and/or inputs. Loomans (1998) reports on
measurements of the time required by the air in an office space to adapt from a fully
mixed flow to a stationary displacement flow at 0.75 air changes per hour. This process
takes only a couple of minutes, which corroborates that quasi-stationary modeling of the
flow field in a building simulation context is a sensible approach.

Under this assumption, we can write y as a function of x:
y=Myx, d (5.8)

where M is the requested model and d is a vector with model parameters.

To find a combination of M and 4, which quantifies the uncertainty in y, the following

strategy was explored in this study:

1. Postulate a heuristic modcl M

2. For each xiin a suitably chosen set X of values for x, measure the uncertainty in .

3. Find a joint probability distribution over ¢ such that for each x in X the model
outcome M(x;, d) reproduces the observed uncertainty in y; (probabilistic inversion).

The three steps of the strategy arc subsequently addressed in the following sections.

5.6 Heuristic model

5.6.1 Introduction

As alrcady discussed in section 5.3, no general models for y of the form (5.8) are
available from literature to implement in a building simulation model. Hence it was
decided to postulate such a model, based on heuristics on the one hand and results from
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several experimental and computational experiments, documented in the literature, on
the other hand.

As mentioned in the introduction, the flow regime in naturally ventilated spaces may
vary from buoyancy dominated flow, through mixed convection to fully forced
convection. Hence, the model should describe y as a function of x throughout this range
of flow regimes.

The required level of adequacy depends on the uncertainty in y. As long as the errors in
» due to inadequacies in the model structure M are small compared to the observed
uncertainty in y, the model satisfies the need. As at this stage the uncertainty in y is yet to
be investigated, the level of model sophistication is determined intuitively.

The modeling of each of the three elements of ¥ will be discussed separately.

5.6.2 Modeling of the difference between exhaust air
temperature and mean air temperature

The difference between the mean air temperature and the exhaust air temperature is
AT.. Under the assumption that vertical temperature differences in spaces are generally
dominant, we will consider a one-dimensional air temperature profile T{z) where z is the
height above the floor. In this approximation, AT.: can be interpreted as the
temperature difference between two different levels above the floor.

First, several systematic studies are reviewed, which concern predominantly buoyancy
driven flows in spaces. Subsequently the influence of forced ventilation flows is studied.

Buoyancy driven flow regime (natural convection)

In situations without forced ventilation flow (in the space under study this means that
the supply air flow rate ®v is small and does not significantly affect the flow pattern), we
seek to find a model for AT in terms of Qpuec, Qpic, and Ty

Two types of configurations are frequently used to study the effect of convective heat
sources on the temperature profile in buoyancy driven flows:

1. Spaces with displacement ventilation

2. Radiator heated spaces

A concise literature review of studies on these configurations suggests that the air
temperature difference AT between two vertically separated locations in the space varies
with the convective heat load Q; as:

AT ~ Q" (5.9)

for given type and location of the heat source(s). The heat sources addressed in the
studies include window surfaces, heated by solar irradiation. Reported values of the
exponent 7 are between 0.5 and 2. A more detailed report on the literature sources and
their analysis can be found in appendix D.
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Equation (5.9) does not explicitly take account of the information in Z...sr about the
surface temperature distribution over the walls, Differences in surface temperature
between parts of the enclosurc can drive thermal stratification. Those differences may
e.g. result from an uncven distribution of incident solar irradiation over the enclosure
and/or persistent thermal stratification in the preceding period. In the case under study
however, which concerns a well-insulated building with heavy internal walls, double
glazing with external solar shading, operated in the summer season, deviations of the
surfacc temperatures from the mean value T will be strongly reduced by radiant heat
exchange. It is assumed that the contribution of a possible non-uniform temperature
distribution over the space enclosure to differences in air temperature will be small.
Hence, this contribution will be added to the model for AT, as an error term.

On the basis of these considerations, the following model is proposed for AT, in a
buoyancy driven flow regime in the space:

AT;m/ = aO + al Q: <5 10)
where ao is the error term, a1 is a constant of proportionality, Q; is the sum of the
convective parts of the internal and solar heat gains, and #z is an exponent between 0.5

and 2.

Mixed and forced convection

As the forced ventilation flow rate grows, the influence of the supply jet on the flow
pattern and thermal stratification will increase accordingly. The available information to
characterize the jet consists of the flow rate ®v and the supply air temperature 7g. It is
attempted to extend the model for A7, formulated for a buoyancy-driven regime in
the space, to take account of ®v and T.

In the literature, a considerable amount of studies can be found on how to obtain
certain desired flow field characteristics by controlling the velocity and temperature of
the supply jet in air conditioned spaces. However, systematic investigations on the effect
of an uncontrolled supply jet on the flow field arc few and far between. Hence, it was
decided to postulate a heuristic model and verify it against the few data available from
the literature. This is discussed in the following subsections.

Warm jet

At moderate flow rates, a relatively warm jet (7i, 2 Tu) will rise in the ambient air and
transport warm air to the upper regions of the space, thus sustaining a stratified
temperature profile in the air. The warmer the supply air at a given flow rate, the
stronger this effect will be.

If, at a given supply air temperature, the flow rate reduces to zero, the flow regime will
become fully buoyancy driven. On the other hand, if the flow rate increases beyond a
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certain point, the mixing effect of the jet grows dominant and thermal stratification will
be suppressed.

A basic model for AT., which complies with these notions, is given in the following
equation:

AT,

= T,
o 1+a,®;

in 2Tuir) (5‘11)

_a0+al Qr+a2 pcp q>V (T:'n “T:)ir) (

where (ao, a1, a, a3) is a vector with model parameters. If the flow rate ®y = 0, (5.10) is
recovered, except for the exponent n. Considering the heuristic nature of the rest of the
model and the fact that experimentally observed values for » are in the order of 1, a
linear approximation of (5.10) is deemed satisfactory.

The amount of experimental data in literature to validate the model is scarce. A
systematic study in which the vertical temperature profile in an office space is measured
as a function of ventilation flow rate and supply air temperature for locations of supply
and exhaust comparable to those the case study, was found in Sandberg (1986). A
primary validation of the heuristic model in (5.11) was carried out on the basis these
data. Three experiments in the study by Sandberg concern configurations comparable
to the space described in section 5.2. The room dimensions in his study were 4.2 m x 3.6
m x 2.5 m (1 X w X h), diffusers supplied the air horizontally just below the ceiling and
exhausts were located near the ceiling.

In each configuration, stationary measurements were carried out for three ventilation
rates, 1 air change per hour (ACH), 2 ACH and 4 ACH, corresponding to 0.011, 0.021
and 0.042 m3/s respectively. At each of these ventilation rates, the vertical temperature
profile was determined for two or three values of the supply air temperature, which we
will refer to as a ‘low’, ‘moderate’ and ‘high’ value. These supply air temperatures were
consequently higher than the exhaust temperature.

The symbols in Figure 5.4 show the experimental data for 7Tou-7m (difference between
the extract air temperature and the air temperature at | m above the floor) as a function
of the airflow rate and the supply air temperature. The drawn lines show the best fits of
(5.11) to the data. As Sandberg does not rcport the mean air temperature, Tar was
estimated with the measured value of 7m.

As the internal heat load was kept at a fixed value in all three configurations, only one
single value for a0 + a1Q; was uscd in all model fits (0.15 °C). The values of a2 and a3
were optimized for each configuration separately.

Although model predictions and experimentally observed values do not perfectly
coincide, the relevant trends are present and the model rarely deviates more than 0.5 °C
from the measured data. Considering the fact that the model is to be used under
uncertainty in the parameter vector d, it is deemed useful.
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Figure 5.4 Comparison between measured values (symbols) and fitted model values (lines) for Tour T im
(difference between the extract air temperature and the air lemperature at Im above the floor). At each
Slow rate @y, this temperature difference was measured for two or three values of Tin. The symbols [}
O and A represent data associated with the lower, moderate and higher values of Ty respectively. The
three lines in each graph accordingly connect model predictions associated with the lower, moderate and
higher values of Tin. In configurations 14 and 1B the supply is a circular diffuser, located in the center
of the ceiling, and the extract is positioned in a wall just below the ceiling. The diffuser types differ
between these configurations. Configuration 5 has the supply in the short wall and the extract in a long
wall. Both are located just below the ceiling.

Cool jet

For a cool jet, the situation is different. If the temperature difference between the supply
air and the air in the space is large and the flow rate sufficiently small, the cool air in the
jet will drop and predominantly mix up with air in the lower recgions of the space,
thereby sustaining thermal stratification. This is typically a winter situation and we
assume herc that in summer conditions this situation will not occur too often.

If the cool jet mixes up with air in the upper regions of the space, it will reduce or even
inverse thermal stratification. At a fixed flow rate, this effect increases for a growing
difference between supply air temperature and ambient room temperature. The
dependence on the flow rate is expected to be qualitatively similar to that for warm jets.

Sandberg reports the effects of cool jets on the vertical temperature profile in three
configurations with supply and cxhaust located just below thc ceiling. These
measurements show small, positive vertical temperature gradients. However, as only one
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observation with a cool jet is performed in each configuration, no information is
available about the temperature profile as a function of the supply air temperature or
the airflow rate.

In absence of information to suggest otherwise, the model structure in (3.11) is also
adopted for supply air temperatures below room air temperature. Under that model,
Sandberg’s data indicate that the coefficient a2 will not have the same value for warm
and cool jets.

Resulting model
Hence the model is formulated as:

aO +al Qc +a2 pcp q>V (T;n _Tuir)

1 2 (T,,, ZTM)

+a,®,

- @2 5.12

our a,+a, @, +a,pc,®@, (T'""_T‘"") (T <T, ) | |
l+a3 (b‘z/ in air

In the expression for Tin < Tar, the coefficient a4 appears in stead of a2.

5.6.3 Modeling of the difference between temperature
experienced by an occupant and mean air temperature

The difference between the temperature experienced by an occupant and the mean air
temperature is AZ.. In the development of its model, AT, has been considered as a
temperature difference between two vertically separated positions in the air. As this
consideration also applies for AT.., an analogous line of reasoning can be followed to
come to an expression in terms of x. Hence, the proposed model for AT, is:

bO +bl Qc +b2 pcp QV (Tln —Tair)

" bq)Z (TinZTl"")

+

. @2 5.13

“ by +b Q. +b,pc,®, (T, -T,,) (T, <T,.) o
1+b3q):é in air

The structure of the model for A7, is identical to that for AT, but a different set of
coefficients is used.

5.6.4 Modeling of the mean air temperature

A model for the mean air temperature 74 is already used in the current building
simulation models in the form of the heat balance for the air volume:

0 = p cp q)V (T:n - Tair - AT:ml )+ 2 a('.i (Twall,i - Tair )Awall,i + Q:: (5 14)
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This cquation follows after combining (5.1), (5.3), (5.5), and (5.6), omitting the dynamic
term in the left hand side of (5.1) (assumption of quasi-stationarity). The model
parameters are the convective heat transfer coefficients 0.

In this study, we will usc an average heat transfer coeflicient o, which modifics (5.14) to:

O = pCp q)\" (T;'n - Tair - AT:)ur )+ ar z (Twall.i - 7:ur )Au;all,i + Q(- (5 15)

The values of heat transfer coeflicients in the literature depend on the direction of the
heat flow they modulate (horizontal, upward or downward) and hence on the
orientation of the wall component they relate to. Especially the valuc for downward
(stagnant) heat flow, which may occur at either a relatively cold floor or a warm ceiling,
is much lower than the values for horizontal and upward flows (see Figure 3.3 and
Figure 3.4). Hence, by the assumption of a single value for the heat transfer coeflicient at
all walls, the stagnant heat flows will be relatively overestimated. Considering the
radiant heat exchange between wall components and the uncertainty in the value of the

heat transfer coeflicient, this is not deemed to be a significant obstacle.

Equations (5.12), (5.13) and (5.15) together form a closed set, forming a model for y as a
function of x of the form (5.8) with parameter vector d = (ao, ..., a4, O, b, ..., b).

5.6.5 Discussion

The model for p, postulated in the previous scctions, has a highly tentative character. It
is predominantly based on heuristics and qualitative reasoning. It has no solid basis in
first principles, nor is it sufficiently validated against measurements. The question arises
what merit can be attributed to the model.

First, it is important to realize that the current approach in building simulation is a
special case of the model in (5.12), (5.13) and (5.15), except for the use of a single value
for the convective heat transfer coeflicient instead of a separate value for cach wall
component.

Second, the aim of the study is to model the uncertainty in p rather than to produce
accurate point estimates of ». This makes the required accuracy of the model dependent
of the (yet unknown) uncertainty in y. Hence, it is worthwhile to complete the study with
this model to investigate to what extent it succeeds to represent the observed
unccrtainty. Based on the results of this investigation, cfficient steps can be planned to
either improve the model if it is found inadequate, or to give it a more solid basis if it
proves to meet the purpose.
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5.7 Expert judgment study

5.7.1 Introduction

In section 5.4, the uncertainty in the relevant characteristics of the air temperature field,
summarized in the three-element vector », was discussed in qualitative terms. This
section addresses the assessment of this uncertainty.

Ideally, assessment of the uncertainties would be based on a statistical analysis of
experimental data, obtained in a space matching the description in section 5.2, The
design of experiment underlying such a data set should sufficiently cover the values of x
that may occur in the (naturally ventilated) space under study. Moreover, it should
display sufficient variation over those aspects of the boundary conditions, which are
uncertain in a building simulation context. Such a data set is not available. A specific
experiment to obtain such results would be a complicated, expensive and time-
consuming exercise.

Besides, it is not evident that an experiment is the only way to obtain the required
uncertainties. Indeed, advanced simulation tools are available, such as CFD and zonal
model techniques (see section 5.3.3), as well as experimental results, obtained in different
configurations. Before embarking on a sophisticated experimental study, it would be
interesting to investigate to what extent the uncertainties can be quantified on the basis
of these existing sources of information.

As mentioned in section 5.3.3, reliable flow field simulation requires expertise in both
fluid dynamics and the numerical techniques to solve the governing equations.
Interpretation of existing experimental results, often obtained under dissimilar
conditions, to the case at hand, also requires knowledge of fluid dynamics as well as
experience with measurements on flow fields. Hence it was decided to use expert
judgment to quantify the requested uncertainties.

5.7.2 Main features of the expert judgment study

Expert judgment was also used in Chapter 4 to quantify uncertainties. The approach
that was followed in that study, is also adopted here. For the sake of convenience, the
main features of the method are recalled in this section.

More information can be found in Chapter 4 and Appendix C.1 in this thesis, or in
Cooke (1991) and Cooke and Goossens (2000). Issues that are specific for the current
study are addressed in the subsequent sections.

In an expert judgment study, uncertainty in a variable is considered as an observable
quantity. Measurement of this quantity is carried out through the elicitation of experts,
viz. people with expertise in the field and context to which the variable belongs. These
experts are best suited to filter and synthesize the body of existing knowledge and to
appreciate the effects of incomplete or even contradictory experimental data.
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The uncertain variables of interest, also referred to as elicitation variables (in this study
AT, Tur and AT.), are presented to the experts as outcomes of (hypothetical23)
experiments, preferably of a type the experts arc familiar with. They are asked to give
their assessments for the variables in terms of subjective probability distributions,
cxpressing their uncertainty with respect to the outcome of the experiment.
Combination of the cxperts’ assessments aims to obtain a joint probability distribution
over the variables for a (hypothetical) decision-maker (DM), who could use the result in
his/her decision problem. This resulting distribution, which is referred to as the DM,
can be interpreted as a ‘snapshot’ of the state-of-the-knowledge.

To meet possible objections of a rational decision maker to adopt the conclusions of an
expert judgment study, which are based on subjective assessments, it is important that a
number of basic principles are observed. First, the results should be verifiable and
accountable. In other words, all data including the experts’ names and assessments, and
all processing tools should be open to peer review. Second, the experts should have no
interest in a specific outcome of the study (fairness). Third, the method should warrant
neutrality, i.c. the methods of clicitation and processing must not bias the results.
Finally, it is important that the experts’ assessments are subjected to empirical control.

Cooke and Goossens (2000) present a procedure for structured elicitation and processing
of expert judgment, which takes proper account of these principles. We mention the
main features of this procedure here. First, the experts are elicited on experimentally
observable quantities only. Besides, the experts are trained in the assessment of
subjective probabilities prior to the elicitation (De Wit, 1998). Moreover, the experts’
rationales, underpinning their assessments, are documented. Finally, the combination of
the experts’ assessments is based on their performance, which is obtained from a
comparison of their assessments on so-called seed variables with measured realizations of
these variables.

This procedure was closely followed here. In this study 5 experts were selected on the
basis of their expertise in simulation or measurement of flow fields in building spaces.
They were asked to assess the elicitation variables AT, Tor and AT., in the space
described in section 5.2 for a number of specified values of the case variables Toar, ®v,
Tin, Q;m.c and Qyol,a

The sced variables were related to similar characteristics of the air temperature
distribution in another space for specified stationary boundary conditions. Realizations
of these characteristics were available to the analyst (i.e. the author) from unpublished
prior climate chamber measurements.

5.7.3 Questionnaire

The questions presented to the experts are referred to as cases. All cases together form
the case structure. The case structure consisted of two parts. One part concerned the

2 The hypothetical experiments are physically meaningful, though possibly infeasible for practical
reasons.



112 Uncertainty in the indoor air temperature distribution

elicitation variables AT, T and AT, which had to be assessed in the context of the
space in section 5.2. The other part addressed the seed variables.

5.7.3.1 Elicitation variables

First, we will address the constitution of one single case. Subsequently, the
considerations on the number of cases will be addressed. Finally, the composition of the
total case structure for the elicitation variables is discussed.

Single case

Strictly speaking, assessment of the uncertainty in the elicitation variables on the basis of
the available information in a building simulation context would require that the experts
are given the value of x in each case (see Section 5.5). However, the model that will be
used in the probabilistic inversion, only takes a selection of x as input. First, x contains
the surface temperatures of all wall components, whereas the model uses only the area-
averaged surface temperature. Moreover, the individual contributions of convective
internal and solar gains are combined in a single model variable representing the sum of
both gains.

In this situation it would be most efficient to specify the case structure in terms of the
model variables only. However, the experts may not agree with the assumptions
underlying the model and omission of information from x could lead to spurious
uncertainty in the experts’ assessments. On the other hand, a systematic investigation
into the effects of the surface temperature distribution would be beyond the scope of this
work. Hence, a middle course was taken.

It was decided to include extra information on the surface temperature distribution in
the case definitions in addition to the area-averaged value. If this information would
bear significantly upon their rationales, the assumption that the information is
superfluous would be disputed. As one of the more important mechanisms causing
surface temperature differences between wall components is the uneven absorption of
solar radiation, the additional information the experts received consisted of the total
solar gain Qy entering the space. They were also given the part of this gain that is
convectively emitted to the air to enable the evaluation of the total convective heat gain
in the space. The vector of case variables x* thus consisted of.

&* = (Tw“”: (DV: Ti’b Qflll-t‘; Qul, ngl,r)

where T is the area averaged surface temperature, Qu is the total incident solar gain
and Qui. the part of Qy that is emitted convectively to the air.

Each case requested the experts to assess y as the outcome of the following hypothetical
experiment. From a large population of spaces matching the description in section 5.2,
one space is randomly selected. At some arbitrary moment in the spring/summer period
(April-September), measuring equipment is installed in the space. The variables Twu,
D@y, T, Qinte, Quut and Quic arc monitored for a period of 1 hour. Given the observed
hourly averaged values of these variables, what would have been the hourly averaged
values of ATw, Tuir and AT, if they had been measured in the same experiment?




Expert judgment study 113

The information on the experimental conditions did not include the initial conditions.
This is consistent with the assumption, discussed in section 3.6 that a quasi-stationary
approach suffices. However, the experts may not share this point of view and attribute
uncertainty to y due to a lack of knowledge on the initial conditions. A large
contribution of this uncertainty to the overall acquired uncertainty is undesirable, as
information on the time history is actually available in a building simulation, but was
assumed to be insignificant. In the discussion in Section 5.9, the experts’ rationales are
scrutinized to reveal the composition of their uncertainty at this point.

Number of cases

The costs of probabilistic inversion (computational cffort) and, to a lesser extent, of
expert elicitation impose constraints on the maximum number of cases. Whereas the
experts develop skills to deal with each next question more efficiently, the computational
demands of the probabilistic inversion grow more or less exponentially with the number
of cases (see section 5.8). To keep computation times at an acceptable level, a maximum
ol 9 cases, i.e. 27 elicited variables, was used in this study.

Within this limitation on the number of cases, it was deemed infeasible to study the
temperature field in the space for two directions of the airflow. For a given flow rate, the
effect of the supply jet on the flow field strongly depends on the geometry of the supply
aperture. As shown in Figure 5.2, the orifices in the opposite walls are differently
shaped. Hence, a ventilation flow entering the space through the window in the fagade
will have a different impact on the flow field than a flow at the same rate in the opposite
direction. In the context of this pilot study it was decided to only consider cases with
ventilation flows entering through the window.

Resulting case structure

To design the 9 cases, values of x* were selected to optimally cover the space, spanned
by these variables. The selected values and ranges for the individual elements of x* are
discussed in appendix D. They were combined to form the case structure in Table 5.2.
For values of Awa, p, and ¢, sec Appendix A.

Table 5.2 Case structure for the elicitation variables.

Case] Case?2 Case3 Cased Case5 Case6 Case7 Case8 Case9
@y m?/s 2.8.102 2.8.102 28102 7.0102 7.0102 7.0102 2.110' 2.110' 2.1 10!

Qu. W 0 62 0 0 620 620 620 620 0

ot W 0 0 490 510 500 470 0 480 0
Que. W 0 0 49 51 50 47 0 13 0
Tn  °C 230 267 235 1501 308 203 172 281 145

Twar  °C 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
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Questions
For each case, the experts were asked to fill out the following two tables:

Table 5.3 Quantile values of the elicitation variables to be assessed by the experts for each case.

variable quantiles

5% 50% 95%
L oC
Tow - Tai °C
o °C

Table 5.4 Dependencies to be assessed by the experts for each case.

variable | variable 2 dependency
Toir Tou- Ty
Toﬂ" 7:!_:" Eul - T;xr

Table 5.3 requests the experts to specify their median estimate, or 50% quantile value,
and their central 90% confidence intervals, bounded by the 5% and 95% quantile
values, for each of the elicitation variables ATo, T and AT These data provide
information about the experts’ marginal distributions, but they do not reveal
information about the dependencies between the variables. Hence, Table 5.4 asks for a
separate specification of the dependencies between the elicitation variables within a
single case.

A common way to represent dependencies between variables is in the form of rank
correlations. However, these rank correlations cannot be elicited directly. Therefore an
alternative approach was used, as already illustrated in Chapter 4. The experts, having
assessed their marginal distributions over variables | and 2, were asked to answer the
following question: ‘Imagine that variable 1 has been measured in the case (experiment)
at hand. Its value is found to exceed your median (50% quantile) value. What is your
subjective probability that a measurement of variable 2 would also have exceeded your
median assessment, if it had been measured in the same experiment?’

Under suitable assumptions (among which minimal information), this conditional
probability can be uniquely transformed to a rank correlation (Cooke and Kraan, 1996).

5.7.3.2 Seed variables

To implement empirical control, the experts were also asked to assess a number of
variables of which experimental realizations were available to the analyst, but not to the
experts. The realizations were taken from an internal CSTB-report, which describes
experiments in a climate chamber carried out by Frangois et al. (1993). These
experiments were described to the experts in the questionnaire and the experts were
asked to assess the outcomes, again in the form of three quantile values. The seed
variables were chosen to resemble the elicitation variables as closely as possible. A
description of these experiments as they were presented to the experts, is given below.
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Description of the hypothetical experiments

The experiments arc carried out in another office space (office space 2) with dimensions
as shown in Figure 5.5. The space is mechanically ventilated with outdoor air. The
interior surface temperatures of the enclosure of the space are monitored. A hot water
radiator is mounted below the window. During the experiments the space is empty.
Airflow into the space can be mechanically induced through a horizontal slit in the
facade just below the ceiling as shown in Figure 5.5. The geometry of the slit is
unknown. The air flows out through cracks and joints, mainly in the wall opposite to the
facade. The door in this wall is closed during the experiments.

A 70.25m
1.25m
25m *
36m 1om
\/

A

\

3.6m

Figure 5.5 Qffice space 2. Internal dimensions (I x w x h) 3.6 m x 3.6 m x 2.5 m. Height of the
window 1.25 m. Ventilation inlet is located above the window, 18 cm below the ceiling. The space is
not fumnished (empty). A hot water radiator is located below the window.

The seed variables to be assessed by the experts were:

1. To4m - Tosm, the air temperature difference between 0.1 m below the ceiling and
0.1 m above floor level in the center of the space

2. T1.5m, the air temperature at 1.5 m above floor level in the center of the space

In each case, these variables were considered to be the outcomes of the following

experiment:

Prior to the experiment, a stationary situation is created. No solar radiation enters the

space and no internal heat sources are in operation, except for the hot water radiator.

The following variables are measured, while maintaining the stationary conditions:

@y air volume flow through the space

T; temperature of the incoming air

Twin  interior surface temperaturc of the window

Thr average surface temperature of the floor

Twa  average surface temperature of the ceiling

Twar area-averaged interior surface temperature of the walls (floor, ceiling and window
surface excluded)
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Oy convective heat production by hot water radiator
1y surface temperature of the parapet just behind the radiator

For each case, what would have been the values of the seed variables, had they been
measured in the same experiment? All unspecified experimental conditions should be

considered uncertain,

Five of these experiments were presented to the experts. The conditions in these
experiments are shown in Table 5.5.

Table 5.5 Case structure for the seed variables.

Case A Case B Case C Case D Case E
o, m3/s 4.7.10% 4.7.108 0 47,103 0
T oG 4.0 4.0 - 45 -
Toin °C 15.0 6.0 6.0 5.8 9.0
Tjoor °C 20.1 20.2 19.9 27.2 21.2
T °C 20.3 91.1 91.3 20.6 31.0
Tyt oC 19.8 20.2 20.2 19.5 20.6
Qs \ 220 440 330 0 0
T, oC 34.5 45.9 39.2 17.3 18.0

Questions
For each case, the experts were asked to fill out the following table:

Table 5.6 Quantile values of the seed variables to be assessed by the experts for each case.

variable quantiles

5% 50% 95%
Togm = Torm °C
Tism °C

5.7.4 Selection of the experts

A pool of candidates for the expert panel was established by screening recent literature
on relevant issues. Additional sources were the membership lists of IEA Annex 20
(Lemaire, 1993) and Annex 26 (Heiselberg ct al., 1998). From the many candidates
resulting from the screening, 5 were selected. Table 5.7 shows the names of the
participating experts in alphabetical order. To select the experts, the same critcria as in
Chapter 4 were applied.
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Table 5.7 List of experts in the experiment in alphabetical order.

Qingyan Chen  Massachusetts Institute of Technology (MIT), Boston, USA

Tony Lemaire ~ The Netherlands Organization for Applied Scientific Research
(TNO), Delft, The Netherlands

Alfred Moser Eidgendssische  Technische  Hochschule (ETH),  Zirich,
Switzerland

Peter Nielsen Aalborg University, Aalborg, Denmark

Mats Sandberg  Royal Institute of Technology (KTH), Givle, Sweden

Peter Nielsen and Tony Lemaire also acted as experts in the dry-run.

One of the experts initially misunderstood the questions in the questionnaire. When this
came to light, there was insufficient time left to revisc his asscssments and he withdrew
from the expert panel.

5.7.5 Dry-run

The aim of the dry-run was to obtain feedback on the issues:

e are the questions clcar and well-posed?

e can the training matcrial be studied in the allocated time and are the training goals
achieved?

e can the elicitation be completed within the allocated time?

The dry-run meetings proceeded in a similar way as the actual elicitation mectings were
planned: a brief consolidation of the expert training followed by the elicitation, in which
the expert explicated his assecssments to the analyst. However, only two cases were
presented to the experts and considerable time was reserved to discuss the issues
mentioned above.

On the basis of the dry-run, the case-structure was adjusted and the questionnaire was
improved on a few points.

5.7.6 Elicitation

The experts were contracted to spend 3 days on their assessments, of which about 2.5
days were allotted to the elicitation. In the elicitation stage, the core of the experiment,
the experts made their judgments, both quantile values and dependency assessments,
available to the analyst. Each expert was elicited individually. They were specifically
asked not to discuss the experiment with cach other. In this way, the diversity of
viewpoints would be minimally suppressed. Moreover, any ovcrconfidence resulting
from the (partial) consensus that is often reached among experts in a group elicitation
session would be avoided (Cooke, 1991).
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The elicitation stage took place in three parts. Prior to the elicitation meeting, each
expert prepared his assessments e.g. by looking up relevant literature and making
calculations. During the meeting, these assessments were discussed with the analyst, who
avoided giving any comments regarding content, but merely pursued clarity, consistency
and probabilistic soundness in the expert’s reasoning. On the basis of the discussion, the
expert revised and completed his assessments if necessary. The experts were not
informed which of the elicited variables were the seed variables.

Completion of the elicitation coincided with the writing of the rationale, a report
documenting the reasoning underlying the assessments of the expert. During the writing
of this rationale, which was done by the analyst to limit the time expenditure of the
expert to a minimum, issues that had not been identified in the meeting were discussed
with the expert by correspondence.

The rationales of the experts can be found in De Wit (2001).

5.7.7 Results

This section presents the experts’ quantile assessments in a graphical form. Table with
both the quantile and dependency assessments can be found in Appendix D.

Each expert is referred to by a number. These numbers were randomly attributed to the
experts in Table 5.7 and will be used throughout the study. No results are shown for
expert number 5 for reasons discussed in section 0.

Figure 5.6 shows an itemwise comparison of the quantile assessments of the four experts
on the seed variables with the measured realizations (Frangois et al., 1993). The
assessments of the item weight decision-maker (see section 5.7.8) are also shown.
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Figure 5.6 Itemwise presentation of the experts’ assessment on the seed variables. The dots are their
median values, the error bars show their central 90% confidence intervals. The drawn lines indicate the
realizations, which were measured in a study by Frangois et al. (1993). For each case, the results of
experts 1 through 4 are shown from lefl to right. The rightmost, gray resulls show the quantile values of
the item weight DM (see section 5.7.8).

The experts’ assessments on the elicitation variables are shown in Figure 5.7 through
Figure 5.9.
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Figure 5.7 The experts’ assessment on Tow-Tar. The dots are their median values, the error bars show
their central 90% confidence intervals. For each case, the resulls of experts 1 through 4 are shown_from
lefi to right. The nightmost, gray results show the quantile values of the item weight DM (see section
2.7.8).
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Figure 5.8 The experts’ assessment on Tair. The dots are their median values, the error bars show their
central 90% confidence intervals. For each case, the results of experts 1 through 4 are shown_from lefl to
night. The rightmost, gray results show the quantile values of the item weight DM (see section 5.7.8).
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Figure 5.9 The experts’ assessment on Toow~Tair. The dots are their median values, the error bars show
their central 90% confidence intervals. For each case, the results of experts 1 through 4 are shown from
left to night. The rightmost, gray results show the quantile values of the item weight DM (see section
5.7.8).
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5.7.8 Analysis and combination of the experts’ assessments

The experts’ assessments were scored and combined according to the classical model, as
developed by Cooke (1991). An outline of this model is given in Chapter 4 and
Appendix C.1.

Table 5.8 shows the experts’ performance scores, calculated from a comparison of their
assessments on the 10 seed variables with the observed realizations. Experts 1 and 2
receive a fair calibration score, comparable to the calibration scores of the best
calibrated experts in the study in Chapter 4. The other experts are significantly less
calibrated. Expert 1, however, is on average a factor 4-5 less informative than expert 2.

Table 5.8 Experts’ performance scores as calculated with the classical model.

Expert no. Calibration G, Global information score I, Performance w.
allitems  seed items

1 2.2 101 0.24 0.17 3.6 102

2 2.4 10! 0.91 0.92 2.2 10

3 1.0 10 0.88 1.00 1.0 10+

4 1.0 102 0.48 0.92 9.2 10+

The first column lists the experts by number. These are the same randomly attributed
numbers, which were used in Figure 5.6 through Figure 5.9. In the remainder of this
document, the experts will be addressed by their number only. The second column
shows the calibration scores for each expert. The global information scores, based on
the default intrinsic ranges (see appendix C.1), are in column 3. Finally, the
performance, product of calibration and information, is displayed in the last column.

From the experts’ assessments, four different decision-makers were calculated. Their
scores are shown in Table 5.9.

Table 5.9 Performance scores of four different decision-makers.

Decision maker C. A A w, Significance Participating

all items  seed items level experts
Equal weight 2.2 101 0.12 0.12 27102 - 1,2,3,4
Global weight 2.4 10 0.91 092 2.210! 2.4 10 2
Item weight 6.8 10! 0.47 041 2810 2.2 10! 1,2
‘Best” expert 2.4 101 0.91 0.92 22107 - 2

The first 4 columns in this table are similar to those in Table 5.8. The significance levels
in column 5 refer to the interpretation of each expert as a hypothesis. If an expert’s
calibration score is below this significance level, he is ‘rejected’ and hence does not
participate in the DM (column 6). More information can be found in Appendix C.1.

The equal weight DM has a fair calibration score, but its performance is low as a result
of a low information score. The global weight DM has an optimal performance for a
significance level, at which all experts but expert 2 are rejected. Hence this DM and the




Probabilistic inversion 121

‘best” expert have equal scores. The item weight DM is less informative than the global
weight DM, but due to a better calibration score, it outperforms all other decision-
makers.

Hence, the item weight DM will be used in the remainder of this chapter as the optimal
combination of the experts’ asscssments. The quantile values of this decision-maker are
shown in Figurc 5.6 through Figure 5.9 in a graphical form and tabulated in
Appendix D.

In the elicitation sessions, highest priority was given to the quantile assessments. It
turned out that these assessments demanded the bulk of the available time and
concentration. Having completed their assignment on the quantile values, most experts
were reluctant to embark upon the assessment of the dependencics, which required
familiarizing with the concept of conditional probability and developing a strategy to
quantify these probabilities.

It was felt that the acquired dependency values have insufficient basis to be analyzed on
equal terms with the quantile asscssments. Hence, it was decided not to use the experts’
dependency assessments in the probabilistic inversion.

5.8 Probabilistic inversion

5.8.1 Introduction

The aim of probabilistic inversion is to map the uncertainties that were assessed in the
expert judgment study to the parameters in the heuristic model from Section 5.6. When
successful, this mapping process results in a (joint) probability distribution over the
model parameters, expressing their uncertainty, which can be used in combination with
the heuristic model in building simulation.

The success of the probabilistic inversion is measured by the degree to which the expert
assessments (DM) in the 9 cases can be reproduced on the basis of the resulting
probability distribution over the model parameters.

Technically, the expert judgment study in section 5.7 resulted in probability
distributions over » = (AT, Tar, ATu) for 9 cascs, specified?® by the value of x = (Liu,
@y, Tin, Qeec; Quot)- We will refer to x and y in each of these cases as xjand p;, 7 = 1,...,9.

In section 5.6, a model M for y as a function of x was proposed:
2=My d) (5-8)
Equations (5.12), (5.13) and (5.15) define the model A with parameter vector

d=(ao, ..., a+ O, bo, ..., bs). For a given value of d, M can be used in each casc to obtain
an cstimate 5’,— for Y

2 In fact. only partial information on x was used to specify the cases, but this is immaterial to the
discussion in this section.
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3,=Mx;.d) .j=1...9 (5.16)
The aim of the probabilistic inversion is to find a probability distribution over d such
that

Y, =, J=1,...9 (5.17)

where ~ means ¢ has the same distribution as’. As already mentioned in section 5.7.7,
the experts’ assessments on the dependencies between the elements of y will not be used
in the probabilistic inversion, which implies that (5.17) is equivalent to:

5, i=1(ATow),2(Tu)or3(ATwd and j=1,...,9

In the jargon of probabilistic inversion, the elicitation variables y; assessed by the experts
are called ‘observables’ and the space they span is analogously referred to as the
‘observable space’. The elements of the parameter vector are the ‘target variables’ or
‘targets’ forming the ‘target variable space’. In this study, the dimensions of observable
space and target variable space are 27 and 11 respectively.

Methods for probabilistic inversion problems with more than onec target variable were
developed by Cooke (1994), Hora and Young (see Harper et al., 1994), and Kraan and
Cooke (Kraan and Cooke, 1996, 1997, 1999 and Kraan, 1999). The PARFUM-method
by Cooke (PARameter Fitting for Uncertain Models) was designed for small problems
with e.g. two target variables, and is unfit for the problem in this study. The
PREJUDICE-method by Kraan and Cooke (PRocessing Expert JUDgment Into Code
paramEters) is based on the technique by Hora and Young. As it can deal with large
problems (more than 2 or 3 targets), it is used in this study.

5.8.2 Solution scheme

The PREJUDICE-method for probabilistic inversion is based on the following solution

scheme:

1. Sampling from the target variable space (model parameter space).

2. Propagation of the samples through the model to obtain corresponding samples in
the observable space.

3. Distribution of the probability mass over the samples in the observable space to
match the given quantile values for each observable. As each sample in the
observable space uniquely corresponds to a sample in the target variable space, this
step also yiclds a distribution of the probability mass over the target variable space.

4. Representation of this joint probability distribution over the target variables in terms
of marginal distributions and (rank-) correlations.

Each of the steps in the scheme will be briefly discussed here.
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Figure 5.10 Hlustration of the steps in the heuristic algorithm to wentify a region of the target variable
space from which samples will be drawn. To enable a graphical representation, both the observable space
and the target variable space are chosen 2-dimensional. The lefi figure shows the scenarios as points in
the observable space with an indication of the method that has been used to generate them. From an
optimal model fit to each scenario in the sense of (5.18), corresponding points are generated in the target
variable space, as shown in the right figure. Around each of these points a cell is defined from which
samples are taken.

Sampling from the target variable space and propagation (Step 1, 2)

In most practical applications, the target variable space is so large that sampling has to
be heuristically guided to obtain good results with a tractable number of samples and
hence an acceptable amount of computational effort. These heuristic algorithms
basically seek a suitable region in the target variable space, over which the probability
mass will be distributed. An illustration is shown in Figure 5.10.

First, a set of K ‘scenarios’, l.e. combinations of realizations for the observables, is

defined. Two methods to generate scenarios were applied here:

I. For a given value of ¢ € [0%, 100%], this method generates a scenario by
combining the DM’s ¢ quantile values of all clicitation variables. Common choices
for ¢ are 5%, 25%, 50%, 75% and 95%.

2. For each elicitation variable, one of the DM’s 5%, 25%, 50%, 75% or 95%
quantile values is randomly selected. These independently selected quantile values
are combined to form a scenario.

For the scenario with index £, £ = 1,...,K, ‘best’ estimates for the target variables in dx
arc calculated as the solution of:

. ~ 2
mmn}z}x(yij(gk)—y,j,k) (5.18)
where yjix is the value of y; in scenario 4.

The idea is that in step 1 of the scheme samples arc only drawn from sections of the
target variable space in the vicinity of the values di, obtained from the fits of the model



124 Uncertainty in the indoor air temperature distribution

to the selected scenarios. To enable this, PREJUDICE defines hypercubes or cells in the
target variable space around the di’s. Sampling only takes place from those cells.

There are no rules for an optimal size or configuration of the cells in the target variable
space. Hence, this configuration is determined by trial and error. Further research is
ongoing in this area (Kraan, 2000).

From each of the cells in the target variable space, a suitable number of samples is
drawn to generatc a feasible optimization problem (see step 3) and ascertain a
sufficiently smooth distribution of the probability mass over the target variable space at
acceptable computational loads. As samples may be generated in physically inadmissible
areas of the observable space, each sample has to be checked after being propagated
and rejected if physically unrealistic.

Distribution of the probability mass over the samples (Step 3)

The aim of this step is to distribute the probability mass over the samples in the
observable space to match the DM’s quantile assessments. Figure 5.11 shows a two-
dimensional observable space. The DM’s quantile assessments define a grid in the space,
which is shown by the dotted lines. The crosses represent the propagated samples. The
total probability mass of all samples in the consecutive columns of cells in the grid
should equal 0.05, 0.45, 0.45 and 0.05 respectively. For variable 2, the probability
masses should be likewise distributed over the consecutive rows in the grid.
Generalization to observable spaces of larger dimension is straightforward.
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Figure 5.11 Illustration how samples are drawn from cells in the target variable space and subsequently
propagated to the observable space. In this example, 5 samples are taken from each cell. The grid in the
observable space is defined by the DM’s quantile assessments.

In general, there may be many distributions matching the DM’s quantile assessments. If
more than one solution exists, the distribution is chosen, which has minimum
information (Appendix C.1) with respect to a uniform background measure. This
distribution can be interpreted as the solution of a constrained Non-Linear
Programming (NLP) problem (see Kraan and Cooke, 1999).
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If no solution is found, this may have two causes.

1. The samples do not provide sufficient coverage of the observable space. This may be
resolved by either drawing more samples from each cell, generated by the heuristic
algorithm, or by enhancing thc number of scenarios to enlarge the region in the
target variable space from which samples can be drawn.

2. No solution cxists (problem is infeasible). In this case, reduction of the dimension of
the observable spacc may be an option. If the original observable spacc has
dimension 7, n sub-spaces of dimension #n-1 can be defined. If a solution is found in
cach of these n spaces of lower dimension, an approximation to the requested
distribution over the target variables can be obtained by averaging the n»
distributions™, found from the solutions in the sub-spaces. If the problem is still
infeasible in one or more of the sub-spaccs, further dimension reduction can be
applied.

Joint probability distribution over the target variables (step 4)

Step 3 assigns a probability mass to the samples in the observable space. As each sample
in the obscrvable space corresponds to a sample in the target variable space, step 3
implicitly provides a joint sample distribution over the target variables. To make the
distribution practicable as input to further analyses, it is necessary (o represent it in a
more amenable format. A common represcntation of joint distributions is in the form of
marginal distributions and a (rank-) correlation matrix.

5.8.3 Implementation in the study

The implementation of the solution scheme in the current study is step-wise discussed in
this section.

Sampling from the target variable space

By means of the methods, described in the previous section, 230 scenarios were
generated. For each scenario a corresponding point di, £ = 1,...230, in the target
variable spacc was found as a solution of (5.18). Around each of these points a scparate
hypercube was constructed, with extreme corner points 0.5 dk and 1.5 d. From each of
these 230 hypercubes, 1000 samples were drawn and propagated through the model.

Propagation of the samples

The observable space in this study has 27 dimensions. This is too large to enable
sufficient coverage with a tractable number of samples. A computational compromise
was found by dividing the observable space in three separate observable spaces of
dimension 9 each. This division was performed along natural boundaries: one
observable spacc of dimension 9 was created for the AT,,/’s in all 9 cascs, onc for the
Tr’s and one for the AT..’s. The 230 000 samples, drawn from the target variable space
were propagated to each of these observable spaces.

3 Averaging yields a combined distribution with respect to which the # distributions are minimally
informative (see Kraan and Cooke, 1997).
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To filter out physically inadmissible samples, intrinsic ranges were defined for each
observable on a heuristic basis. Samples with a value outside the intrinsic range for one
or more of the observables were rejected. No restrictions were imposed on combinations
of values for the various observables. About 112 000 of the 230 000 samples were
rejected.

Actually, about 5 106 different observable spaces of dimension 9 can be created from an
original observable space with 27 dimensions. Strict application of the solution scheme
would have required solution of the NLP-problem in each of these observable spaces
and subsequent averaging of the acquired probability distributions over the target
variable space. Theoretically, this is possible, but to keep the problem computationally
tractable, only three 9-dimensional observable spaces were considered here.

Distribution of the probability mass over the samples

In two of the observable spaces, i.e. for the ATo/’s and the ATy.’s, the NLP-problem was
feasible and a distribution of the probability mass over the samples was established,
which matched the experts’ assessments. In the observable space, spanned by the Ta’s,
no solution could be found. As attempts to augment the number and selection of
scenarios and the number of samples did not alleviate the problem, it was decided to
consider the problem infeasible. Consequently, a probability distribution over the target
variables was calculated as the average of the distributions obtained from the NLP-
solutions obtained in the two other observable spaces.

5.8.4 Results
Figure 5.12 through Figure 5.16 and Table 5.10 show the results of the probabilistic

inversion.

Elicitation variables

When the joint probability distribution over the model parameters, obtained in the
probabilistic inversion, is propagated through the model in the 9 cases that were
presented to the experts, distributions over the elicitation variables (observables) are
obtained as shown in the following three sets of figures. As a reference, the 5%, 50%
and 95% quantiles from the DM are also shown.
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Figure 5.12 The marginal distributions for AT o, resulting from the probabilistic tnversion (bold, drawn
lines) compared with the 5%, 50% and 95% quantile values from the item weight DM (circles). The
thin, dotted lines result from the propagation of 10° samples, drawn from the reduced joint distribution
over the target variables, i.e. the distribution represented by marginals and rank correlations only.
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Figure 5.13 The marginal distributions for Tar, resulting from the probabilistic inversion (drawn lines)
compared with the 5%, 50% and 95% quantile values from the item weight DM (circles). The thin,
dotted lines resull from the propagation of 10° samples, drawn from the reduced joint distribution over the
target variables, i.e. the distribution represented by marginals and rank correlations only.




Probabilistic inversion 129

g ' case 1 ! case 2 T
'-S 0.8 r/- 08 P
[<3
s 06 . 0.6
£ 04 0.4
s
g 02 0.2
p=1
o ) S W — st W LY ) Y STETEIEES
03 -2 -1 0 1 03 1
Aece (°C) BTece (°C)
g 1 case 3 ?“f
5 08
K]
5 06
2 04
8
2
2 0.2
(=] -
%3 -2 -1 0 1 1
AT (°C)
E 1 case 5 [P esane
:5 -
8
&
[
2
8
=3
g
3
1 1
ATeee (°C) AT, (°C)
g 1 case 7 1 case 8
3 o8 08
[+]
g 06 0.6
£ o4 0.4
B
g 02 0.2
° 0-3 -2 0—3 -2 1
Ao () BTeee (°C)
Z l[ese9 ]
g 0.8
2 06
[}
2 04
i}
=
2 02
3 ;
3 2 E] 0 1

AT (°C)

Figure 5.14 The marginal distributions for Al resulting from the probabilistic inversion (drawn
lines) compared with the 5%, 50% and 95% quantile values from the item weight DM (circles). The
thin, dotted lines result from the propagation of 107 samples, drawn from the reduced joint distribution
over the target variables, i.e. the distribution represented by marginals and rank correlations only.




130 Uncertainty in the indoor air temperature distribution

To use the joint sample distribution over the target variables, resulting from the
probabilistic inversion, in further analyses, it must be cast in a more amenable, yet
approximate representation. A common representation in terms of marginal
distributions and rank correlation matrix is shown in Figure 5.15, Figure 5.16, and
Table 5.10.

The information that is lost in this representation is estimated by a comparison of the
marginal distributions over the elicitation variables, calculated from the approximate
distribution over the targets, with the original marginals from the probabilistic inversion.
For each case and each elicitation variable, both marginals are shown in Figure 5.12
through Figure 5.14. The approximated marginals are based on the propagation of 10°
samples, drawn from a minimally informative joint distribution over the targets
satistying the specified marginals and rank correlation matrix.
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Figure 5.15 The marginal distributions for the coefficients of (5.12) and (5.15), resulting from the
probabilistic inversion.
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inversion.

Table 5.10 Rank correlation matrix of the target variables.

ao ar az as a4 O bo by b2 bs by
ao 1 -0.12 0.54 000 -0.57 0.09 020 -0.11 0.25 -0.08 0.00
aj -0.12 1 -0.36 0.02 0.16 030 -0.21 0.04 -0.16 0.00 0.20
az 0.54 -0.36 1 007 -059 -0.15 0.17 -035 029 -0.14 -0.31
as 0.00 0.02 0.07 1 0.04 0.03 0.03 -007 -008 -0.01 -0.02
a: -0.57 0.16 -0.59 0.04 1 -001 -0.13 0.07 -020 0.04 0.12
o 0.09 030 -0.15 003 -0.01 1 -0.33 0.07 -030 0.00 0.08
bo 0.20 -0.21 0.17 0.03 -0.13 -0.33 1 -0.28 0.60 -0.05 -0.35
bi -0.11 0.04 -035 -0.07 0.07 007 -0.28 1 -031 0.14 0.36
b 025 -0.16 0.29 -0.08 -0.20 -0.30 0.60 -0.31 1 -0.05 -0.48
bz -0.08 0.00 -0.14 -0.01 0.04 0.00 -0.05 0.14 -0.05 1 0.06
b4 0.00 020 -031 -0.02 0.12 008 -035 036 -048 0.06 1
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5.9 Discussion and conclusions

"The study reported in this chapter consists of three main elements, i.e. the postulation of
a (heuristic) model, assessment of the uncertainty by means of expert judgment, and
probabilistic inversion. In section 5.6.5 a brief discussion was devoted to the modeling.
We will come back to this subject at the end of this section. First, the expert judgment
study and the probabilistic inversion will be addressed.

Expert judgment study

As mentioned in section 5.7.3.1, some potentally relevant information, which is
available in a building simulation context, was omitted in the specification of cases 1-9
for practical reasons. This information concerns:

¢ the initial conditions

® the surface temperature distribution over the enclosure of the space

"The rationales of the experts, participating in the item weight DM, show that this lack of
knowledge causes only a small contribution to their uncertainty. Exceptions are cases |
and 3, in which other sources of uncertainty are virtually absent. This corroborates the
assumption that this information was not essential for the assessment of .

The fair calibration score of the optimal decision-maker indicates that his uncertainty is
a suitable measure of the uncertainty, which has to be considered in values of y assessed
on the basis of existing/generic data in the available time (about 2.5 days for all cases).
However for the cases 1-9, the experts’ rationales show that results from experiments
directly comparable to the cases at hand could hardly be found. Moreover, the experts
had difficulty in finding suitable quantitative data and models to guide or back up their
intuition on the impact of several unknown factors. This forced them to increase the
uncertainty in their assessments.

Most of them felt more familiar with the assessment of the seed variables (cases A-E),
which they could back up with a relative abundance of available experimental data
and/or models.

Hence, it is likely that the observed uncertainty in cases 1-9 would have been smaller if
more experimental data would have been available on similar configurations. Whether
extension of the available time would have had a similar effect is unclear. One of the
experts claimed that if he had had the time and resources to carry out a set of systematic
CFD-experiments, this would have significantly reduced his uncertainty. It would
require another expert judgment study, though, to establish the size of this reduction
and investigate its effect on the calibration score. Such a study would cost a multiple of
the resources that were disposable in this experiment.

Probabilistic inversion

For several of the cases Figure 5.12 and Figure 5.14 show deviations between the DM’s
quantile assessments on the one hand and the marginal distributions over the elicitation
variables resulting from the probabilistic inversion on the other hand. These deviations
occur despite the fact that in the observable spaces both for the AT.’s and the AT..’s
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probability distributions were found, which exactly match the DM’s quantile
assessments. However, these distributions were obtained in two separate NLP-problems
and hence correspond with two different probability distributions over the target
variables. The final probability distribution over the target variables was calculated as
the average of those two distributions. Apparently, the probability distributions over the
elicitation variables, calculated with the averaged distribution over the targets, do not
cxactly match the DM’s quantles, although the agreement is fair.

In establishing the probability distribution over the samples, the DM’s assessments on
T.ir were not used, as the NLP-problem appeared infeasible in the observable space for
the T.i’s. Nevertheless, for most cases the match between the marginals resulting from
the probabilistic inversion and the DM’s assessments on 7, are acceptable. The two
salient exceptions are cases | and 3, where the model completely fails to explain the
uncertainty of the DM. This can (partly) be explained from a combination of two effects.
First, in situations as in cascs | and 3, where both the ventilation heat flow and the
convective heat gain is insignificant, the model structure results in an air temperature
Tuir, which is highly insensitive for any of the parameters. Hence it is hardly possible to
model the uncertainty in 7, in those cases in terms of parameter uncertainties.

Sccond, the rationales show that cxpert 2, participating in the item weight DM,
explicitly included measuring uncertainty in his assessments (see Wit, 2001). This is a
logical step in view of the fact that the experts were not informed which of the variables
were the seed variables. Consequently, expert 2 considered each of the variables in the
qucstionnairc as a possible seed variable, which might be used to scorc him on the basis
of a measured value. As this measured value would most likely be affected by
measurement uncertainty, he included this uncertainty in his assessments.
Consequently, the uncertainties in the elicitation variables were augmented as a result of
an artifact in the elicitation. For most cascs, this ‘parasitic’ contribution to the
uncertainties could be folded into the parameter uncertainty to a fair degree, but, as a
result of the model structure, this did not work for cases 1 and 3.

Figure 5.12 through Figurc 5.14 cnable a comparison of the original marginals for the
obscrvables and the marginals obtained from propagation of the approximate joint
distribution over the target variables, i.e. the distribution represented by the marginals
and rank correlations only. The latter marginal distributions are generally less
informative (broader) than the original ones. The main deviations occur for cases 2, 5
and 6. These deviations are the price for the (inevitable) data reduction in the joint
distribution over the target variables.

For most of the model parameters no valucs from the literature are available, which can
be used as a reference for the values obtained from the probabilistic inversion. An
exception is the heat transfer coeflicient o. For o, the 5%, 50% and 95% quantile
values are 1.1, 4.1 and 7.6 W/m?K respectively. The median value is quite realistic in
view of the available experimental data (see e.g. Section 3.2.7). Howcver, the central
90% confidence interval, i.c. the difference between 95% quantile and 5% quantile is
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quite large, compared to the range that was estimated in the crude uncertainty analysis
in Chapter 3 on the basis of the literature.

For future application of probabilistic inversion with the PREJUDICE-method in
similar problems, it is recommended that a better method is developed to filter out
physically unrealistic samples. In this study, the uncertainty/consequence analyst
created this filter. However, the design of such a filter actually belongs to the domain of
the experts. A first step could be to ask the experts to give additional 0% and 100%
quantile values for the elicitation variables. Experience in other expert judgment studies
however shows that experts are often reluctant to state these values. This is
understandable as a single realization outside their [0%, 100%)] range for only one of
the elicited variables implies a calibration score of 0. Moreover, these intervals would
not enable detection of physically unrealistic combinations of values for the observables.
Giving more attention to the dependencies between the variables in the elicitation stage
could reduce the likelihood that such combinations are taken along in the probabilistic
inversion. These dependencies could be used in the heuristic algorithm to generate
scenarios, which are physically more meaningful than the random combinations of
quantile values, which were used in this study.

Finally, with the exception of Tu in cases 1 and 3, the DM’s uncertainty has been
captured in the model parameters quite fairly. Although improvements can be made
(see comments mentioned above), the PREJUDICE-method proved to be a practicable
approach to the probabilistic inversion of the uncertainty in the observables to
parameter uncertainty in this study.

Conclusions

The study has resulted in a model with an associated joint probability distribution over

the model parameters, which sufficiently captures the uncertainty in the relevant aspects

of the air temperature distribution, which was elicited from a panel of experts. This

leads to the following conclusions:

e The selected approach, outlined in section 5.5, has proven to be feasible, although
improvements can be made in various aspects as discussed above.

¢ The model can be used to account for the uncertainty in the air temperature
distribution in the uncertainty analysis of building performance. The model has been
specifically developed for the building space described in Section 5.2.

¢ In the study, a prior appraisal of the uncertainty in the phenomena to be modeled
was used to estimate the required level of sophistication and detail in the modeling.
The expert judgement study, in which the uncertainty in the model output was
established in carefully selected cases, combined with the probabilistic inversion
showed that the resulting model was sufficiently detailed. Indeed, the uncertainty in
the model output could acceptably be represented by uncertainty in the model
paramcters.

However, two things should not be overlooked. Firstly, the only solid empirical control
on the model resulting from this study, apart from the fragmentary experimental data
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that were used in the development of the heuristic model, was obtained through the seed
variables in the expert judgment study. The fact that the model to a fair degree
reproduces the experts’ assessments, which were given without prior knowledge of the
model structure, is encouraging. However, an underlying model structure with more
empirical (or theoretical) underpinning would increase the confidence that the model
also adequately captures the uncertainty in cases over which the experts were not
elicited. Morcover, the concomitant experimental data would give experts more grip in
possible future expert judgment studies.

Secondly, this study provides us with a model to assess the uncertainty in y for a given x.
This is the uncertainty in ¥ without knowledge of previous values of y. However, in a
simulation we are actually interested in the uncertainty in y conditional on the history of
2. In fact, y can be considered a stochastic process, driven by the uncertain boundary
conditions, which are also stochastic processes. As a result of the (unknown) statistical
dependencics between the boundary conditions in consecutive time-points, the
successive y’s are also dependent.

For example, the experts included uncertainty in their assessments due to the unknown
configuration of the furniture in the building spacc. However, if this configuration
becomes known at a certain time-point in the simulation, it is not likely to be much
different at the next time-point. This introduces statistical dependency between the
time-points.

The results of this study do not provide any information about this dependency. In
sampling terms this implies that no information is available whether a single sample
should be drawn from the distribution over the model parameters once and used
throughout the simulation, or that the distribution should be re-sampled cach hour, or
anything in-between. For practical reasons, however, we will use fixed parameter values
in the uncertainty propagation in the next chapter.






6 Propagation and implications
of uncertainty

6.1 Introduction

The previous chapters in this thesis report on subsequent stages in an uncertainty
analysis. The focus of the analysis is a specific aspect of the performance of office
buildings, i.c. their performance with respect to thermal comfort in the office spaces.
The assessment of this performance aspect in the design stage of a building, e.g. to
support design decisions, is commonly based on (computer) simulations of the indoor
climate in the building. As a result of incomplete information, both about the building
and relevant external factors, these performance assessments are uncertain. The
uncertainty analysis aims to quantify this uncertainty in the building performance and to
identify those factors that contribute most importantly to this uncertainty.

The setting of the uncertainty analysis in this thesis is a single case study. The case,
concerning a low-rise, naturally ventilated office building in the Netherlands, is
described in detail in Chapter 2. This chapter also addresses the approach used to build
the simulation model, and the definition of thermal comfort performance. In Chapter 3,
a crude assessment has been made of the uncertainties in the model parameters. These
uncertainties have bcen propagated through the model to obtain a first estimate of the
uncertainty in the building performance. In a subsequent sensitivity analysis, the
parameters have been ranked in the order of decreasing importance, viz. contribution to
the overall uncertainty.

Two sets of parameters have been selected for further analysis from the top of the
ordered parameter list resulting from Chapter 3. The uncertainty in the first set,
consisting of the wind pressure (difference) coefficients, has been thoroughly quantified
in Chapter 4. The assessment of the uncertainty in the other set of parameters, acting in
the submodel for the temperature distribution in the indoor air, has been carried out in

Chapter 5.

In the current chapter, Section 6.2, the unccrtainties that have been identified and
analyzed in the previous chapters, are propagated through the model to assess the
resulting uncertainty in the building performance aspect of interest.

An evaluation of this uncertainty on its own merits may give an intuitive idea of its
significance and the relevance to account for it in design decisions. The only way,
however, to fully appreciate these issues is by evaluation of the impact of uncertainty
information on, or rather its contribution to, a design decision analysis. Hence, in
Section 6.3, the uncertainty in the building performance is introduced as input to a
fictitious decision problem, in which a decision maker is facing the choice of whether or
not to implement a cooling system into the design. The decision problem is analyzed
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according to the principles of Bayesian decision theory and illustrates the role and
significance of uncertainty in the decision problem.

In Section 6.4, particulars of both the propagation and the decision analysis are
discussed. Furthermore, a discussion is included on the total uncertainty analysis, which
has been used as a vehicle throughout this thesis. The chapter closes with a brief
summary. Conclusions and recommendations are presented in the next chapter.

6.2 Propagation of the uncertainty

6.2.1 Introduction

The uncertainty in the model output, ie. the thermal comfort performance, is
investigated in three stages. Firstly, in Section 6.2.2 the uncertainty in the building
performance resulting from only the wind pressure difference coefficients is studied. The
uncertainty in the wind pressure coeflicients has been studied thoroughly in Chapter 4
and it is worthwhile to study its effect on the building performance. Secondly, the effect
of the uncertainty in the indoor air temperature distribution, which was explored in
depth in Chapter 5, is addressed separately in Section 6.2.3. Finally, in Section 6.2.4,
the uncertainty in all model parameters is propagated through the model.

In propagating the uncertainties through the model in order to assess the uncertainty in
the model output, Monte Carlo simulation was used, based on simple random sampling.
The parameters from the parameter sets, which were studied in Chapter 4 and 5,
required specific attention, as these parameters are dependent. Their dependencies were
modeled in terms of dependence trees of rank correlations. Sampling of these
parameters was done with UNICORN (Cooke, 1995), an uncertainty analysis tool,
which is particularly suitable for dealing with this type of dependency modeling.

6.2.2 Wind pressure difference coefficients

The uncertainty in the wind pressure coeflicients was assessed by means of expert
judgment in Chapter 4. It is quantified in terms of marginal distributions for 12 wind
directions, each 300 apart, and their dcpendencies. The marginal distributions arc
shown in Figure 4.15. The dependencies are represented either in terms of a
dependence tree with rank correlations (Appendix C) or a rank correlation matrix
(Table 4.7). These marginal distributions, together with the dependencies, form the joint
distribution over the wind pressure coefficients, which we will refer to as the distribution
for the decision-maker or simply the DM.

In Chapter 4, two sets of wind pressure difference coeflicients were assessed. The first set
(coefficients AC;) is related to two openings in opposite facades at 1 m below roof level
(see Figure 4.3). The second set pertains to two similar openings at a height of 6 m,
which is about half the building height. In the propagation of the uncertainties through
the model, we will use the data from the first set, which are relevant for an otlice spacc
at the top floor of the building.
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Figure 6.1 and Figure 6.2 show the propagation results. These figures are based on 500
random samples from the joint distribution over the AC;-coefficients. This is a
sufficiently large number to obtain an accurate estimate of mean and standard
deviation. All paramecters other than the wind pressure difference cocfficients were kept
at fixed basc values. For most of these parameters, the basc value was set to the mean
value. For the dependent parameters in the model for the air temperature distribution
(see equations 5.11, 3.12 and 5.14), base case values were selected differently. For these
parameters a sct of values was assessed, which reproduced the DM's median values (see
Yigure 5.7 through Figure 5.9, or Appendix C.2) as closcly as possible in the sense of
equation 5.17. The uncertainty propagation was carried out with the BFEP-
implementation of the building model (see Section 2.3.7), conditional on the scenario

(weather data and occupant behavior) that was also used in Chapter 3 (see Appendix
A2).
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Figure 6.1 Frequency distributions of the static comfori performance indicator TO on the basts of 500
samples. Only the uncertainty in the wind pressure difference coefficients was propagated, while the other
parameters were kept at their base values. The left figure shows a histogram of the propagation results,
whereas the right figure shows the cumulative relative frequency.
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Figure 6.2 Frequency distributions of the adaptive comfort performance indicator TO* on the basis of
500 samples. Only the uncertainty in the wind pressure difference coefficients was propagated, while the
other parameters were kept at their base values. The lefl figure shows a histogram of the propagation
results, whereas the right figure shows the cumulative relative frequency.
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A comparison of the figures shows that the results for the static and the adaptive comfort
performance indicators are similar both in location of the distribution and in spread. For
both indicators the coefficient of variation is about 0.4, indicating that the uncertainty
resulting from only the wind pressure difference coefficients is already significant.

To get an idea of the dependencies between the wind pressure difference coefficients
mutually and between these coefficients and the performance indicators, Cobweb-plots
(Cooke and Kraan, 1996) were made. Two cobweb-plots for the model yielding the
static TO-indicator as output are shown in Figure 6.3. Plots for the adaptive TO* are
similar.

Each line in these Cobweb-plots connects the realizations of all wind pressure
coeflicients and the resulting TO-indicator within a single sample. All variables are
scaled on the same interval [0, 1] by plotting their quantile-ranks rather than their
actual values. By selecting only those lines, which pass through a narrow interval of
quantile values for a single variable, a visual impression of the dependency between this
variable and the other variables is obtained. In contrast to global dependency measures
like (rank) correlation, this dependency has a local character as the Cobweb only focuses
on a narrow range of values for a single variable. If values in another range are selected,
a different dependency structure may show. For an illustration of this effect see the
Cobweb-plots in the next subsection.
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Fagure 6.3 Cobweb-plots of the results from the propagation through the model for the static performance
indicator TO. The lgft Cobweb only shows samples, which yield TO-values in excess of its 0.9
quantile, whereas the right Cobweb is conditional on TO-values below its 0.1 quantile.

The Cobwebs in Figure 6.3 show that low values for TO correspond to pressure
difference coefficients that are high in absolute value and vice versa. This makes good
sensc as increasing (absolute) pressure coefficients correspond to increasing ventilation
rates. Furthermore, the plots do not indicate an increased dependency between the
performance indicator TO and the wind pressure coefficients for the prevailing wind
directions in The Netherlands (southwest, corresponding to 300°-330¢ in Figure 6.3).
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6.2.3 Indoor air temperature distribution

The uncertainty in the paramcters of the model for both indoor air temperature
distribution and the heat exchange between indoor air and the enclosing walls was
assessed by means of expert judgment in Chapter 5. It is quantified in terms of marginal
distributions for the 11 parameters and their dependencics. 'I'he marginal distributions
arc shown in Figure 5.15 through 5.17 and tabulated in Appendix D. The dependencies
are represented in terms of a rank correlation matrix (Table 5.11).
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Figure 6.4 Frequency distributions of the static comfort performance indicator TO on the basis of 500
samples. Only the uncertainty in the 11 paramelers in the model for the indoor air lemperature
distribution was propagated, while all the other parameters were kept at their base values. The lefl figure
shows a histogram of the propagation results, whereas the right figure shows the cumulative relative

Jrequency.
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Figure 6.5 Frequency distributions of the static comfort performance indicator TO on the basis of 500
samples. Only the uncertainty in the 11 paramelers in the model for the indoor air lemperature
distribution was propagated, while all the other paramelers were kept at their base values. The lefl figure
shows a histogram of the propagation results, whereas the right figure shows the cumulative relative

Jrequency.
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Figure 6.4 and Figure 6.5 show the results of the propagation of only the uncertainty in
the parameters of the model for the air temperature distribution (see equations 5.11,
5.12 and 5.14). The figure is based on 500 random samples, which were drawn from the
joint distribution over these parameters as identified in the probabilistic inversion in
Chapter 5 (see Figure 5.15 and 5.16 or Appendix D for the marginal distributions and
Table 5.11 for the rank correlation matrix). This is a sufficiently large number to obtain
an accurate estimate of mean and standard deviation. All other parameters than these
parameters in the model for the air temperature distribution were kept at base values.
For the wind pressure difference coefficients, these were set to the median values of the
distributions for the decision-maker (see Figure 4.15 or Appendix C). For the other
parameters the mean value was chosen. Again, the scenario defined in Chapter 3 (see
Appendix A2) was used. The simulations were carried out with the BFEP-
implementation of the building model (see Section 2.3.7).

As in the previous subsection, the resulting distributions for the static TO-indicator and
the adaptive TO*-indicator are quite similar, although the TO*-values are somewhat
lower over the whole range. Figure 6.4 and Figure 6.5 show that most of samples yield
indicator values in a relatively small range, but a limited number of outliers is found
with very high values. To analyze the origin of this ‘heavy tail’ of the distributions, a
cobweb plot was made to see if the high values for TO and TO* would show a
pronounced dependency with one of the individual parameters in the model for the air
temperature distribution. The result for the TO-indicator is shown in Figure 6.6 (left). It
is clear that high values for TO (above 0.95 quantile) correspond exclusively with values
of the heat transfer coefficient ¢ below its 0.05-quantile value, while other parameters
do not show a pronounced dependence. A similar result is found for the adaptive TO*.
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Figure 6.6 Cobweb-plots of the results from the propagation through the model for the static performance
indicator TO. The left Cobweb only shows samples which yield TO-values in excess of its 0.95
quantile, whereas the right Cobweb is conditional on TO-values below its 0.05 quantile.

TO and . are not as closely tied up for all values of TO. Figure 6.6 (right) shows that
for the lower end of the distribution of TO the dependency is much less pronounced.
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This nature of the dependency between TO and the heat transter coefficient also clearly
shows from a scatter plot (see Figure 6.7).

It has already been mentioned and discussed in Chapter 5, that the range for the heat
transter coefficient resulting from the probabilistic inversion is quite large, compared to
values that have been found from experimental observations. Figure 6.7 shows that
especially values of o < 1.1 W/m?3K (its 5% quantile value) do have a large effect on the
model output TO.
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Figure 6.7 Scatter plot of the static TO-indicator against the value of the intemal convective heat transfer
coefficient (04).

6.2.4 All parameters

For the parameters, other than those addressed in the previous sections, we interpret the
ranges identified in Chapter 3 as central 95% confidence intervals and assume that all
parameters are normally distributed. Where necessary, these normal distributions are
truncated to avoid physically infeasible values.

An exception is made for two parameters, i.e. the wind reduction coeflicient and the
correction of the meteo-valuc for the ambient temperature to the local ambient
temperature. In the discussion of Chapter 3 it was mentioned that the ranges applied to
these parameters, probably do not cover the uncertainty in their values to the same
extent as for the other parameters. Hence it was decided to consider the ranges for these
parameters as only central 70% confidence intervals.

Figure 6.8 and Figure 6.9 show the results of the propagation of the uncertainty in all
paramecters. The figures are based on 500 random samples and the scenario as specified
in Chapter 3 (see Appendix A2).

It is clear from both figures that the uncertainty in the indicators for thermal comfort
performance is quite pronounced. This finds expression in e.g. the coefficient of
variation (standard deviation divided by the sample mean), which is 0.6 for both TO
and TO*. This is a moderate increase compared to the value of 0.5 that was obtained
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in the crude uncertainty analysis in Chapter 3. The implications of this uncertainty are
the subject of the next section.
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Figure 6.8 Frequency distributions of the static comfort performance indicator TO on the basis of 500
samples. The uncertainty in all parameters is propagated. The left figure shows a histogram of the
propagation results, whereas the right figure shows the cumulative relative frequency.
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Figure 6.9 Frequency distributions of the adaptive comfort performance indicator TO on the basis of
500 samples. The uncertainty in all parameters is propagated. The left figure shows a histogram of the
propagation results, whereas the right figure shows the cumulative relative frequency.

6.3 Implications for design decisions

6.3.1 Introduction

The previous section shows that significant uncertainty exists in the values of the
performance indicators TO and TO*, which are assessed on the basis of information
typically available in a design context. An important question is what the implications of
this uncertainty are for design, or rather for building physics advice in design.

In Chapter 1 we stated that the building physics expert participates in the analysis of
those decisions in the design process, which concern measures or consequences of a
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building physics nature. His advice aims to improve the decision-maker’s’!
understanding of the decision problem facing him. How could information on
uncertainty contributc to this understanding? This question is addressed in the next two
sections.

6.3.2 Advice on the basis of ‘best’ estimates

Within the paradigm of current advice practice ‘best’ point estimates of performance are
delivered as basis for decisions. From our viewpoint about the aim of a decision analysis
and the role of performance in such an analysis these approaches are questionable.
Indeed, imagine a decision-maker, who is faced with the choice whether or not to
integrate a cooling system in the design of the building that we have been studying
throughout this thesis. In the particular context, he prefers to implement the cooling-
system if the TO-performance value of the building (without cooling) will exceed, say,
150 hours. To assess the performance, he has a simulation study done. The building
physics consultant performing the study uses one of the defaulting approaches discussed
before, which happens to be successful in the sense that the simulation result is close to
the most likely value according to Figure 6.8, i.c. 100 hours. This value is well below the
threshold value of 150 hours and the decision-maker comfortably decides not to
implement the cooling system.

Suppose now that the consultant had not just provided a point estimate, but the full
information in Figure 6.8 or Figure 6.9. Then the decision-maker should have
concluded that the performance is not at all well below the threshold of 150 hours. In
fact, the probability of getting a building with TO in excess of 150 hours is about 1 in 3.
In other words, his perception of the decision problem would have been quite different
in the light of the extra information. This in itself is a clear indication that the
uncertainty information is relevant for the decision analysis. Hence, the advice should
convey this uncertainty in some form.

However, it may not be clear to the decision-maker how to decide in the presence of this
extra information. It is no longer sufficient to simply compare the outcome of the
performance assessment with a threshold value. To use the information constructively in
his decision analysis, the decision maker needs to weigh his preferences over the possible
outcomes (performance values) against the probability of their occurrence. This requircs
a more sophisticated approach.

A suitable framework is offered by Bayesian decision theory that we will discuss in the
next section.

6.3.3 Bayesian decision analysis

This section aims to illustrate, in a simplified cxample related to the case that has been
used throughout this thesis, how a greater and more explicit knowledge of uncertainty

31 Note that the terms ‘DM’ and ‘decision-maker’ in Chapters 4 and 5 are often used in the sense of
‘probability distribution for the decision-maker’, i.e. the combination of the experts” assessments. In this
chapter ‘decision-maker’ consequently refers to a (hypothetical) person.



146 Propagation and implications of uncertainty

could be sensibly incorporated in decision making. It will do so on the basis of Bayesian
decision theory. Pioneering work underpinning this theory was done by De Finetti
(1937), Ramsay (1931), Von Neumann and Morgenstern (1943) and Savage (1954)
among others. A comprehensive introduction and bibliography can be found in e.g.
French (1993).

In concordance with the point of view we adopted in Chapter 1 on the purpose of a
decision analysis and the role of advice in such a process, Bayesian decision theory is a
normative theory. It describes how a decision-maker should decide if he wishes to be
consistent with certain axioms encoding rationalism. It is not a prescriptive tool, but
rather an instrument to analyze and model the decision problem.

The theory embeds rationality in a set of axioms, ensuring consistency. We will assume
that the decision-makers considered here in principle wish their choice behavior to
display the rationality embodied in these axioms. If not, a decision analysis on Bayesian
grounds is not useful: it will not bring more understanding. Moreover, we assume (as we
have done implicitly throughout the thesis) that the decisions are made by a single
decision-maker. Choice behavior by groups with members of multiform beliefs and or
preferences can not be rational in a sense similar to that embedded in the axioms
mentioned before.

First, in the next subsection, we will address the basic steps in a Bayesian analysis of a
decision problem and briefly introduce the notions that come into play in such an
analysis. Subsequently, the approach will be illustrated in a simple example of a decision
problem involving thermal comfort performance. Qualifications and generalizations of
the example to decision problems that may be encountered in real design contexts are
discussed in Section 6.4 in broad terms. Section 6.5 closes the chapter with conclusions
and recommendations.

Problem formulation

Suppose a decision-maker is concerned with the quality of the working environment in
the office building under design. He may consider several alternative actions: leave the
design as it is (say, as described in section 2.2), integrate a cooling system in the design,
reduce the glass-area in the fagade, improve the lighting system, etc. We shall not dwell
on the process in which such a list of alternative actions is gencratcd, we just assume that
it exists.

Once the list of possible actions has been established, the central question in the decision
problem is how to choose between these actions. In order to make this choice, the
decision-maker evaluates the actions in terms of their achievements on his objectives.
For a certain decision-maker, the list of resulting objectives might look like: minimize
investment costs, maximize the occupants’ content, maximize the building’s
architectural allure, minimize environmental impact, etceteras.
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Now, for each of these objectives, it would be convenient to identify an attribute or
performance with a quantitative scale to directly indicate the degree to which the
corresponding objective is achieved. Let us attempt to do this for the objectives of our
example decision-maker. A direct attribute for the first objective, i.e. ‘minimize
investment cost’, would obviously be the investment cost itself, with a scale in units of
e.g. onc thousand Dutch guilders. For the second objective ‘maximize occupants’
content’, however, there is no obvious scale on which to mecasure the degrec of
achievement. Two problems are evident. First, there are many factors that may affect
the occupants’ content, such as thermal aspects, visual aspects, ergonomic aspects etc.
How can these factors be jointly captured in a single attribute? Second, for cach factor
there is still no self-evident scale. We shall address these problems subsequently.

The first problem, i.e. the selection of a single attribute or scale, which captures several
factors underlying a single objective, is discussed in Keeney (1981). Basically, he
describes two types of solutions. The first solution is a further decomposition of the
objectives until all relations between objectives and attributes are one-to-one. An
alternative solution is the construction of a scale, which combines all effects in some
balanced way. An example of such a constructed scale to measure an occupant’s
satisfaction with the indoor environment®? is presented in Cox and Rolloos (1995). We
will adopt the first approach here and consider a sub-objective “maximize occupants’
content with thermal aspects of indoor climate”; for a discussion on the implications and
problems associated with both approaches sce Keeney (1981).

The sccond problem concerns the absence of an obvious attribute with associated scale
for a given objective. This is a difficulty encountered in many decision problems. In
these circumstances it is common to use proxy or indirect attributes (see also Keeney,
1981). Examples of proxy attributes for the thermal aspects of the occupants’ content
with the building are the TO and TO* performance indicators, which were introduced
in scction 2.4.3 and have been used throughout this thesis. The validity of proxy
attributes in a decision analysis rests on the dccision-maker’s assumption that such an
attribute is highly correlated with the effect that is actually to be measured. We will
come back to this in the discussion.

Along the same lines of reasoning, (proxy) attributes can be associated with the other
(sub-) objectives that have been identified. The attribute scale related to the building’s
architectural allure could c.g. depend on the proportion of glazing in the fagade, the
energy consumption by HVAC-systems in the building might add to the attribute level
for environmental impact, etceteras.

Assessment of the consequences

In this stage of the decision analysis, an assessment of the consequences of each action
under consideration is carried out. These consequences are expressed as attribute levels
(or performance values in the terminology we have been using in the previous chapters).
The assessment of performances including their uncertainty has been the main topic of
this thesis so we will not dwell on this subject here. It is important to note, though, that
our earlier choice to represent of uncertainty in terms of subjective probability has been

32 Note that this is not a scale to measure the occupant’s satisfaction with a building.
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based on the fact that this representation is one of the cornerstones of Bayesian decision
theory (see e.g. Savage, 1954).

Modeling of preferences

Especially in complex decision problems involving multiple attributes with uncertainty
in their value, it is commonly a difficult task to rank the various actions in order of
preference without a systematic approach to deal with the problem bit by bit. Bayesian
decision theory offers such an approach.

The crux of this theory is that if a decision maker adopts the rationality encoded in its
axioms, it can be proven that the preferences of the decision maker can be numerically
represented in terms of a function over the attribute levels, the u#lity function. In a case
that each action leads to a set of attribute levels without uncertainty, the actions can be
associated with a single value of the utility function, and the action with the highest
utility is preferred. Moreover, if the attribute levels resulting from the actions are
uncertain, an action with higher expected utility is preferred over one with a lower
expected utility. Hence, the oplimal action is the one with the highest expected utility.

Let us illustrate this with actions that can be expressed in terms of a single attribute X.
Consider two actions a1 and a2. Action a) gives rise to attribute level x1, whereas action
a2 leads to attribute level x2. The consequences or attribute levels x1 and x2 are
uncertain. The decision-maker associates probability distributions to these
consequences, expressing his degrees of belief in their occurrences. The utility function
represents the decision-makers preferences over the (uncertain) outcomes of the two
actions and hence over the actions themselves:

ar 2 a2 ifandonlyif E{Ux)} 2 E{Ux2)}

where > means is at least as preferable as’, U(.) is the decision maker’s utility function
and F{.} denotes ‘the expected value of’.

The utility function is unique up to positive affine transformations. This basically means
that we are free to choose the origin and the scale of the utility function without

changing the preferences it reflects.

The practical importance of the utility function as a quantitative model for the decision-
maker’s preference is that the function can be assessed by observing the decision-
maker’s choice behavior in a number of simple reference decision problems. After this
assessment, he can use the function to rank the actions in the actual decision problem in
the order of expected utility. He may directly use this ranking as the basis for his
decision or explore the problem further e.g. by doing a sensitivity analysis for
assumptions made in the elicitation of either uncertainty or utility, or by a comparison
of the expected utility ranking with an intuitive ranking he had made on beforehand.
Moreover, a systematic assessment of the utility functions helps the decision maker to
clarify and straighten out his own preferences, including the elimination of possible
inconsistencies.
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The next section illustrates the usc of the utility function in an example.

6.3.4 Example

Introduction

In this example we consider the situation that only two actions are of concern to the
decision-maker, i.e. he either leaves the design as it is or he integrates a modest cooling
system in the design:

Table 6.1 Overview of possible actions considered in the example dectsion problem.

action symbol
leave design as it is (see description case in Section 2.2) ai
integrate cooling system in design as

Furthermore, he has only two (conflicting) objectives, i.e. “minimize investment cost”
and “maximizc occupants’ content with thermal aspects of indoor climate”. To measure
the achicvement on the first objective he uses the investment cost itsclf, which, we
assume, can be assessed with negligible uncertainty. The scale of the investment cost is
in thousands of Dutch guilders. As proxy attribute for the second objective the TO is
selected, the building performance indicator for thermal comfort as defined in Section
2.4.3. The TO is the number of office hours per year that the operative temperature in
a carefully selected space exceeds 25.5 °C under a specific scenario. We will denote the
attribute ‘investment cost’ by X and its level by x, whereas the symbol for the TO-
indicator is ¥ with y as its value. So, summarizing:

Table 6.2 Objectives and attributes (performances) used by the decision maker.

objective attribute symbol units
minimize investment cost investment cost X 103 DAl
maximize occupant content  TO-indicator '4 hours

Table 6.3 shows the consequences of the two actions:

Table 6.3 Consequences of the two possible actions in terms of the attributes.

action x Yy
ai 0 see Figure 6.8
as 400 0

According to the table, the TO-indicator will have value » = 0 in case the cooling is
installed as this system will be dimensioned to achicve this. The possibility of failure of
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this system is not considered here. The investment cost of the system is set to 400 103
Dutch guilders (Dfl), based on the reasonable amount of 130 Dfl per m? floor area.

The question in this example is which of these actions the decision-maker should
choose. According to the expected utility rule, the optimal choice for the decision-maker
is the action with maximum expected utility. Assessment of the expected utility requires
assessment of the subjective probabilities over the attribute levels and his utility function
over these levels.

Assessment of subjective probability

The example decision-maker only considers uncertainty in ¥ under action ai. The
previous chapters and the preceding section have addressed the asscssment of this
uncertainty in a way that a rational decision-maker would have minimum objections to
adopt these assessments as his own. So we will assume here that the sample distribution
in Figure 6.8 reflects the decision-maker’s subjective probability density function over ¥
under action ai.

Elicitation of utility function

A first step in the actual elicitation of the utility function is the assessment of the
(in)dependence structure of this function. The dependence structure indicates in which
way the decision-maker’s preferences on one attribute depend on the levels of the other
attributes. Here we will assume that the decision-maker holds the attributes additively
independent, which implies that his utility function can be written as:

Ulx, y) = ba Ux(x) + b1 Urly) + bo (6.1)

Ux and Ur are called marginal utilities over X and 7. French (1993) briefly addresses the
elicitation of (in)dependency structures and gives references. We will not go into that
subject here: less strong assumptions about independence lead to similar lines of
reasoning as we will follow here although more elaborate.

The next step is to assess the marginal utilities over X and 7. Like the elicitation of
subjective probabilities discussed in Chapters 4 and 5, proper elicitation of (marginal)
utilities requires some sophistication. It is however not the aim of this example to go into
details and possible pitfalls of the elicitation; we only indicate its basics to illustrate the
use of utility in decision analysis.

Let’s start with attribute ¥. As a first step, the decision-maker considers a choice between
the two actions sketched in the decision tree in Figure 6.10. Action | yields a building
with a TO-value y = 100 hours for sure. Action 2 results in a building with either
= 300 hours if the pointer of the wheel in Figure 6.10 ends up in the shaded area after
a single spin, and in a building with y = 0 hours otherwise.

Both actions only differ in attribute ¥ and are identical on all other attributes. Which
action would he prefer? The decision-maker considers the situation and concludes, say,
that he would choose action 2. Subsequently he estimates how big the shaded area on
the wheel should be to make him indifferent between action 1 and action 2. Let’s say
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that he would require the expected ‘cost’ of both actions to be approximately the same:
the shaded area should cover about 1/3™ of the wheel.

y = 100 hours
action 1

v =300 hours

action 2

1-P v =0 hours

Figure 6.10 Simple decision tree (lefl) and probabilily wheel (right), both used in the elicitation of a
decision maker’s utility function.

With this information the decision-maker’s utility for = 100 hours can be calculated.
As mentioned in the previous section we are free to choose both origin and scale of the
utility function. We take:

Uy0) = 0 6.2)

Ux(300) = -1 (6.3)

From his indifference between actions 1 and 2 when the shaded proportion of the
probability wheel is 1/3' we can calculate with the cxpected utility rule that:

Ur100) = 2/3 x Uy{0) + 1/3 X Ux300) = 2/3x0 + 1/3x-1=-1/3 (6.4
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Figure 6.11 Marginal utility function of the example decision-maker over the level of attribute ¥ (value
of TO — indicator in hours).
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The utilities for a number of other values of ¥ can be assessed along a similar line of
working. The result of the elicitation for the example decision-maker is a linear marginal
utility function as sketched in Figure 6.11. A proper elicitation procedure could include
cross-checking to incur and/or verify consistency in his preferences and the absence of
various biases but we will not go into these issues here.

Elicitation of the decision-maker’s marginal utility function over the investment costs
could take a similar form. We assume in this example that this function is also linear.

Now that the marginal utility functions have been elicited, the joint ulity function over
X and ¥ can be assessed. Given the linearity of the two marginal utilities, equation (6.1)
can be rewritten as:

Ux,p)=ccx+cry+eo (6.5)

Again we use the fact that we can arbitrarily set the origin and scale of the function and
take:

U0, 0)= 1 (6.6)

U400, 300) = 0 6.7)

To fix all three constants in equation (6.5) the decision-maker has to make a trade-off
between X and 7. We assume here that he prefers to implement the cooling-system if
and only if the TO-performance value of the building (without cooling) will exceed 150
hours. Hence, he holds:

U400, 0) = U[0, 150) (6.8)

expressing his indifference between an investment of 400 103 Dfl and a TO-indicator
value of zero on the one hand, and a zero investment in combination with a TO value
of 150 hours on the other. Note that this is a preference statement over a trade-off
between attributes i the absence of uncertainty. It is exactly the type of statement the
decision-maker will have to make in most current design situations, where each
alternative action (design) is labeled with a single TO-value as if this value were known
without uncertainty.

Equations (6.6), (6.7) and (6.8) enable the calculation of the constants in equation (6.5)
and we obtain

Uxy)=-8310% x -2.2103 y+ 1 (6.9)
as the utility function of the decision maker.

Calculation of expected utilities
His expected utility is then:
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E{Uxy)} = -8.3 10 x -2.2 103 E{y} + | (6.10)

as the investment cost x is considered to be known without uncertainty. As a result of the
linearity of the utility function of this specific decision-maker, we need only limited
information on the probability distribution over y, i.e. only the expected value, to
calculate the decision-maker’s expected utility.

On the basis of cquation (6.10) we can calculate the expected udilities for both actions a)
and aa:

Expected utility of action 11 -8.3 10t x0-2.2103%x 137 +1=0.70
Expected utility of action 2: -8.3 10+ x400-2.2 103 x0+ 1 =0.67

where we used the information from Table 6.3 and the mean of the values in Figure 6.8.
Thesc results suggest that action 1 is the most preferred action of this decision-maker,
barring the result of any further analysis the decision-maker might consider.

A risk-averse decision maker

Before we go over to a discussion of several issues that were deferred in the previous
sections, it is intcresting to investigate the result of the analysis for another (imaginary)
decision-maker. He not only has an identical perception of the decision problem, but
also shares his preferences with the first decision-maker in the example, except for his
marginal utility for attribute ¥ (TO-indicator).

0.5
> 0 .......... —
5 decision-makeri 2
= »
§-0.5
gl 7
g decision-makey 2
1S
-1.5 <
2 100 200 300 400 500

y (value of TO-indicator in hours)

Figure 6.12 Marginal utility function of the second example decision-maker over the level of atiribute ¥
(value of TO — indicator in hours). This decision-maker is risk averse. As a reference, the marginal
utility function of the first decision maker is also shown. The lines cross at the coordinates (0,0) and
(300,-1) as the marginal utility function is fixed at these points by equations (6.2) and (6.3).

To clicit his marginal utility over 1, he is also asked to consider the choice between the
actions in Figure 6.10. Unlike his colleague, he prefers action 1. His line of reasoning
might be that buildings with a value of the TO-indicator of 100 hours or less are
reputedly good buildings with respect to thermal comfort and he is not willing to take
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much risk that he would end up with a building with y = 300 hours. This decision-
maker is risk averse.
Further elicitation of his marginal utilities yields the function shown in Figure 6.12.

Following the same approach as for the first decision maker we arrive at the utility
function:

-1.25107 x+1.0 0< y <100 hours
Ulx,y)= (6.11)

-1.2510° x-1.0107y+2.0  y>100hours
Calculating the expected utilities we get:

Expected utility of action 1:  0.47
Expected utility of action 2:  0.50

Hence, with a reservation for the output of a sensitivity analysis, this decision-maker
would prefer action 1, whereas his colleague tends to action 2. In itself it is not surprising
that two decision-makers with different preferences make different choices in the same
situation. However, the two decision-makers in this example would have preferred the
same decision in the absence of uncertainty. It is solely as a result of the introduction of
uncertainty into the problem that they tend to different choices.

6.4 Discussion

Figure 6.8 and Figure 6.9 show the results of the propagation of the uncertainty in all
parameters. As these results are subsequently used as input to a decision analysis, the
suggestion might arise that this thesis satisfactorily covers all aspects of the uncertainty
analysis that was initiated in Chapter 3. Many issues have not been addressed, though,
or deserve further qualifications. We will discuss several of them in this section.

Assessment of parameter uncertainties

Firstly, in Chapter 3, five paramecters (or rather parameter sets) were identified as
important, i.e. their joint share in the overall uncertainty was estimated to be about
85%. The uncertainty in only two of these parameter sets has been thoroughly assessed
in Chapters 4 and 5 by means of expert judgment. Through the same mcthod as in
Section 3.4.2 it can be estimated that the uncertainty in these two scts accounts for
about 50% of the variances that can be calculated from Figure 6.8 and Figure 6.9. This
implies that the author’s crude assessment of the paramecter uncertainties in Chapter 3
form an important, but non-calibrated contribution to the uncertainties displayed in
these figures.

Moreover, the results from the expert judgment studies, reported in Chapters 4 and 5,
descrve some qualifications. As these issues are discussed at length in the discussion
sections of these chapters, we will not go into them here.
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Uncertainty resulting from proxy attributes

In Dutch design practice, the performance indicator for thermal comfort TO and
related indicators have developed as more or less standard attributes. In the section on
problem formulation in Section 6.3.3, these performance indicators have been
introduced as proxy or indirect attributes. Proxy attributes, in contrast to direct
attributes, do not directly measurc the achicvement on the decision-maker’'s objectives,
but are assumed to be strongly correlated with this achievement. They are used in cases
where no direct attributes can be found.

The statement that the performance indicators and objectives are corelated implies
uncertainty. As this uncertainty is not explicitly assessed or analyzed in a decision
analysis, it clouds the decision-maker’s preference assessments, which is at odds with the
goal of a decision analysis. Hence, it is desirable to keep the attributes as direct as
possible. T'o increase the ‘directness’ of the T'O-indicator, the following three sources of
uncertainty need to be reduced.

The first source of uncertainty is related to the choice of a scenario. Up until now we
considered the performance indicators as a function of the occupant thermal sensation
that will occur under a given scenario (specifying e.g. a time series ol outdoor climate
conditions and characteristics of occupant behavior). It is reasonable to assume though,
that performance indicators observed under the acfual outdoor climatc and occupant
behavior will correlate better to a decision maker’s objcctives than indicators calculated
under a fictitious scenario. Hence, although the uncertainty in e.g. future climatic
conditions and occupant behavior does not emerge as uncertainty in the value of the
performance indicator (attribute) in the current approach, it adds to the uncertainty in
the preferences of the decision-maker. It would contribute to the clarity of the decision
problem, and thus further the goal of the decision analysis as a whole, if uncertainty in
the variables and processcs in the scenarioc would be explicitly addressed in the
uncertainty analysis of the attribute levels.

A similar line of reasoning can be upheld for uncertainty in the thermal comfort models.
Both the TO and the TO* pcrformance indicators, quantifying the number of hours
that the (operative) temperature exceeds some critical value, actually aim to model the
time that more than 10% of the people will be dissatisfied as they conceive the indoor
climate as ‘too warm’. The relation between the indoor climate and the occupants’
sensation is incorporated in the thermal comfort models underlying the indicators.
Uncertainty in these models has not been considered in the uncertainty analysis (see
discussion in section 3.2.4) and hence does not contribute to Figure 6.8 and Figure 6.9.
Again, explicit account for this uncertainty in the decision analysis would contribute to
clarity.

The last source of uncertainty arises from the relation between the actual achievement
on the decision maker’s (sub-Jobjective and the number of hours that ‘more than 10% of
the occupants will be dissatisfied’ as a result of a too warm indoor climate. If; e.g. the
decision-maker would also be the future user of the building, he might actually be
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interested in maximizing the productivity of the futurc office workers. In that case, the
(uncertainty in) loss of productivity given ‘dissatisfaction’ would be of special interest to
him (for a recent review on the relation between indoor climate and productivity see e.g.
Sensharma et al., 1998).

Another decision-maker, in another context, might be planning to let the building. His
objective could be to maximize the rental income over a reference period. In his utility
assessments, he experiences uncertainty in the relation between the degree to which the
future users of the building can deduct rent and their dissatisfaction (for an example
along this line of thinking in case of dissatisfaction with building vibrations see
Vrouwenvelder and Van Oosterhout, 1996).

As a final example, consider a situation in which the decision-maker is under
contractual obligation to surrender a building with a certain target performance. In that
case, target performance, performance indicator, scenario and probably the method to
measure the performance would be specified in the contract. Hence, the decision-maker
would only have to consider modeling and specification uncertainties as mentioned in
chapter 3, and possibly measurement uncertainty in the assessment of the actual
performance of the building after completion.

Practical relevance

It has not been part of this thesis to study the decision making process in current
building design. It is postulated that design evolution proceeds along iterative cycles of
creative design generation, separated by instances of distinct design decision making,
such as choosing between two design alternatives.

Although the previous sections only scratch the surface of (Bayesian) decision theory and
its opportunities for decision analysis, many may already wonder whether an approach,
which requires so much fuss for such a relatively simple decision problem, does have any
practical relevance. Indeed, real-world decision problems will commonly be much more
complex, while time and resources to do a decision analysis are limited. Yet, even in
those situations, or rather especially in those situations, the principles of Bayesian decision
making are valuable. Obviously more assumptions will have to be introduced and the
assessments of e.g. uncertainties and utilities will be more crude. However, once a
decision maker (or his consultants) gets acquainted with the notions and motions of a
Bayesian decision analysis, he will be able to better prioritize those elements of the
analysis, which resolve his most pressing vaguenesses in the decision problem and which
check his most notorious intuitive biases and inconsistencies, in short: which most
efficiently improve his confidence that he can make a well-considered, rational decision.

6.5 Summary

The current chapter concludes the uncertainty analysis that was initiated in Chapter 3.
The propagation of all uncertainties through the model to obtain the uncertainty in the
comfort performance indicators is reported and discussed. Subsequently, it is illustrated
how the uncertainty in a comfort performance indicator can constructively be used in a
design decision analysis. An example is elaborated, in which a decision-maker is
confronted with a choice between two design alternatives.
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7.1 Summary and conclusions

Evaluations of thermal building performance at a time that the building is still under
design, implicate uncertainty. Quantitative appraisal of this uncertainty can contribute
to more rational design decisions. Morcover, it gives guidance in the development and
sclection of methods to assess building performance.

In current design practice, uncertainties in performance assessments are not explicitly
quantified. In the literature on building performance simulation these uncertainties have
received some attention, but several questions have been left open. Firstly, it has been
acknowledged that many of the uncertainties cannot be estimated by straightforward
statistical analysis of available data. This raises the question by which method these
uncertainties could be assessed and whether such a method would be applicable in
design practice. Secondly, although intuitive arguments have been put forward to
cmphasize the relevance of quantitative uncertainty information for design decisions, no
attempts have been made to show Aow a decision maker could use this information to
improve his decision.

In this thesis, an uncertainty analysis is presented for a specific performance aspect of a
specific building under design. Expert judgment is used to quantify uncertainty that
cannot be estimated on a statistical basis. The integration of quantitative uncertainty
assessments in a design decision analysis is illustrated in the context of Bayesian decision
theory.

The building, which was selected for the analysis, is a low-rise, naturally ventilated office
building in The Netherlands. Thermal comfort in the building in summer is the
performance aspect that was investigated. To quantify this aspect of performance, two
indicators, TO and TO¥*, were used. Both indicators aim to reflect the number of hours
per year that more than 10% of the people would consider the indoor climatc as
uncomfortably warm. The two indicators differ in the underlying comfort models,
though. The TO-indicator is based on the static comfort model by Fanger (1970) with
default values for air velocity, humidity, clothing level and metabolism as recommended
in ISSO (1994). The TO*-indicator starts from the adaptive comfort model by De Dcar
and Brager (1998).

The indicators were calculated on the basis of numerically simulated temperatures in
the building. In the development of the building simulation model, a mainstream
approach was applied with an extension for the air flow modeling.

In this thesis, uncertainty is represented in terms of subjective probabilities.
Uncertainties from four sources are distinguished, i.e. specification uncertainty, scenario
uncertainty, modeling uncertainty, and numerical uncertainty. Specification uncertainty
arises from the lack of information in the design specifications about the building as it
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will be delivered. Scenario uncertainty implies that the external factors, to which the
building is exposed during the performance assessment, are not precisely known.
Modeling uncertainty stems from assumptions and simplifications in the development of
the physical building model. Numerical uncertainty may be introduced in the
translation of the (physical) building model into a (numerical) computer model and in
the simulations with this model.

Scenario uncertainty was not addressed in this thesis, nor was numerical uncertainty.
The uncertainties from the other two sources were assessed by the author on the basis of
data in the literature, and propagated through the building simulation model. The
resulting uncertainty in the indicators for comfort performance were found to be
significant, as expressed by a coefficient of variation (ratio of standard deviation and
mean) of 0.5. Both means and standard deviations of the two indicators TO and TO*
were similar.

The research presented in the first part of this thesis concentrated on a crude
uncertainty analysis. The uncertainties were assessed by the author on the basis of data
from the literature. The uncertainty analysis revealed various model parameters for
which the uncertainty had to be quantified on an ad-hoc basis. For these parameters
insufficient data could be found, the available data were conflicting, or the validity and
relevance of these data could not be established. The uncertainty in two sets of these
parameters was further analyzed. These parameter sets were identified as significantly
contributing to the uncertainty in building performance.

The first parameter set contains the wind pressure difference coefficients, relating the
local wind velocity to pressures differences over the building fagade. These pressure
differences drive the ventilation flows through the building. The uncertainty in these
coefficients was quantified in an expert judgment study with a method from Cooke and
Goossens (2000). In this study, six experts assessed the uncertainty in 24 wind pressure
difference coeflicients on the basis of generic knowledge and data. For each coefficient, a
weighted average of their assessments was calculated for use in the uncertainty analysis.
Each expert’s weight was determined from a statistical comparison of their assessments
with measured values of the pressure difference coeflicients, which had been obtained in
two separatc wind tunnel experiments.

The expert judgment study proved to be successful. The statistical comparison showed
that the experts’ combined assessments arc well-calibrated, ie. they are suitable
measures of the uncertainty in predictions of the wind pressure difference coefficients.
Moreover, the expert judgment study pointed out to the participating experts that the
amount of data in the literature, which can readily be used as a basis for the prediction
of wind pressure coefficients, is limited. This was taken up as an incentive to improve
this situation (Surry, 1999).

Finally, the expert judgment study turned out to be more expensive than a wind tunnel
study, while the resulting uncertainties were larger. An obvious measure to cut back the
costs through the reduction of the number of participating experts, is unattractive.
Indeed, only two of the six experts turned out to be well-calibrated in the comparison of
their assessments with the measured data.
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Expert judgment was also applied to quantify the uncertainty in the indoor air
temperature distribution in Chapter 5. An important difference with the expert
Judgment study on wind pressures was the lack of a suitable model for the indoor air
temperature distribution. This created the opportunity to address the model
development in tandem with the uncertainty analysis. Anticipating significant
uncertainty in the air temperature distribution, given the information on boundary
conditions in a building simulation context, a coarse heuristic model was proposed with
a limited number of cmpirical parameters. The uncertaintics in the relevant
characteristics of the air temperature distribution were assessed for 9 different sets of
boundary conditions, by means of expert judgment. The same method was used as for
the wind pressure coefficients. Subsequently, probabilistic inversion was applied with the
PREJUDICE technique developed by Kraan (2000). Probabilistic inversion attempts to
find a joint probability distribution over the model parameters, such that the model
produces uncertainty estimates, which comply with the experts’ combined assessments.

The conclusions from this expert judgment study were very similar to those obtained
from the previous one. Again the experts’ combined assessments showed a good
calibration score, when compared with measured data. Moreover, both the assessments
and the calibration scores varied significantly between the experts. Furthermore, the
experts experienced a lack of relevant data in the literature to underpin their
assessments.

The results of the probabilistic inversion showed that a distribution over the 11 model
parameters could be found, which reproduced the experts’ assessments for 25 out of the
27 elicited variables with sufficient accuracy. The failure of the model to properly reflect
the experts’ uncertainties on the remaining 2 variables might, on the basis of the experts’
rationales, be attributed to a flaw in the elicitation of the experts. This indicates that the
level of detail of the proposed model for the air temperature distribution is well-chosen,
or more preciscly put: not too crude. It is possible that a simpler model would have
performed equally well. This could be verified on the basis of the same expert data, as
these were collected independently of the model.

Probabilistic inversion has been found to be a powerful tool to quantitatively verify
whether the selected level of model refinement is adequate in view of uncertainty in the
process, which the model aims to describe. However, it is costly in terms of computation
time and in its current form it requires a skilled operator. Hence, the technique is not
suitable in the context of design practice.

In the first part of Chapter 6, the uncertainties in all model parameters, including those
obtained from the expert judgment studies, were propagated to find the resulting
uncertainty in the thermal comfort performance. Both for the TO and the TO*
indicator a coefficient of variation of 0.6 was obtained. This is a moderate increase
compared to the value of 0.5, which was obtained in the initial uncertainty analysis in
Chapter 3.

Finally, it is illustrated how Bayesian decision theory can be applied to constructively use
the quantitative information about the uncertainty in a design decision analysis. An
example is described, in which two (fictitious) decision makers face the same choice
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whether or not to integrate a cooling system in the building design. The example shows
how the decision makers, who would take the same action in the absence of uncertainty,
tend to different actions in the presence of uncertainty as a result of their different
attitudes toward risk. This underlines the importance of explicit uncertainty information
to rational design decisions.

In conclusion, the work underlying this thesis analyzes how performance predictions can
be deployed in design decision analyses in a rational way. The focus is on the
uncertainties which are inherent in these predictions: which part should they play in a
decision analysis, how can they be assessed, and are they significant enough to be
considered at all? These questions are addressed in the context of a specific case, which
concerns the performance of a four story, naturally ventilated office building with
respect to the thermal comfort of its occupants. The study indicates that the uncertainty
in the thermal comfort performance, assessed in the design stage of a building, can be
significant. Furthermore, expert judgment, in combination with probabilistic inversion if
necessary, has proven to be a sound instrument to quantify uncertainties in building
model parameters, which cannot be assessed on the basis of a straightforward statistical
analysis. The method is expensive though and, in its current form, requires users who
are skilled in the elicitation and processing of subjective probabilities. Hence, it does not
yet seem a useful tool for routine application in building design practice. Finally, it has
been demonstrated how uncertainty in building performance assessments can be used
in, and is essential to, rational design decisions.

7.2 Recommendations

The work in this thesis shows that uncertainties in building model parameters, which
cannot be assessed by statistical analysis of generic data, can suitably be quantified by
means of expert judgment. However, this method is too costly for frequent application
in design practice. It may be a useful tool in specific, non-standard design-situations, but
the question arises how regular building physics consultancy could profit from the results
of this thesis.

Firstly, the bottom line of this work is that uncertainty in building performance should
be taken into account. Hence, if ‘crude’ uncertainty analyses, in which the building
physics consultant assesses all uncertainties, would become more common in building
design practice, this would be a significant step forward. In this approach, a consultant
may directly profit from the material that was collected on building model parameters in
this study, both from the literature and the two expert judgment studies. A necessary
requirement for the adoption of uncertainty analysis in practice would be the
enhancement of the functionality of most building simulaton tools to facilitate
uncertainty and sensitivity analyses.

Secondly, a consultant’s uncertainty assessments could gradually improve if he was
occasionally scored in a similar way to the experts in this study: by statistical comparison
of his assessments of seed variables with measured data. Hence it would be useful if
libraries with suitable seed vanables could be developed, e.g. by branch-organizations.
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Thirdly, if in future research more expert judgment studics would be carried out on
building model components, experts in the associated domains would become more
skilled in the asscssment of uncertainties and more involved in building simulation.
Hence, their domain expertise would become more readily available to the building
simulation community. Moreover, the information about the uncertainties that result
could be used to review whether the level of refinement in the current mainstream
modeling approach, which is implemented in most building simulation tools, is in
accordance with the level of uncertainty.

Chapter 6 explained how an individual decision maker can use uncertainty information
in a Bayesian decision analysis to make an optimal decision. This approach, however,
requires a drastic change in design decision making. It would be desirable to find an
intermediate way in which the cssence of decision making under uncertainty is
prescerved, but with minimal changes to the current process of design decision making.
The essence of decision making under uncertainty, is balancing consequences against
the probability of their occurrence. Current design decisions are based on comparisons
of single valued assessments against deterministic criteria. The limit state approach, as it
is commonly applied in structural mechanics, combines these two worlds and might be
an option to investigate.

In this thesis it has been assumed that the thermal comfort performance indicator TO
(or TO¥), possibly calculated on the basis of a standardized scenario, is one of the
yardsticks for the decision makers objectives. Indeed, this indicator is commonly used in
current design analyses. However, litde research has been done to investigatc how this
comfort performance indicator or other indicators corrclate with the actual objectives a
decision maker might have. Rescarch in this field could significantly contribute to the
rationality in design decisions concerning issues of thermal comfort.
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Appendix A

A.1. Model data

Figure A.1 shows the plan of the top floor of the building under study. The dashed line
encloses the modeled building section.
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Figure A.1. Plan of the top floor. A corridor separates the two rows of office spaces at the long fagades.
The crosses at both ends of the building indicate the stairwells, which are separated from the corridors by
airtight fire doors. The orientation of the building is indicated. The dashed rectangle encloses the part of
the building that 1s modeled in detail.

Space | (east office space)
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Figure A.2. Office space I with dimensions (I X w X b} 5.4m x 3.6m x 2.7 m. Cross-ventilation of the
space takes place through a cantilever window in the fagade and a rectangular vent in the opposite wall.
The wall components are numbered. Wall component 6 is the missing separation wall.
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Properties wall components

Table A. 1. Wall components space 1

nr. description wall type
(see Figure A.2) (see Table A.8)

1 window 1

2 parapet 2

3 separation wall left 3

4 separation wall back 3

5 door 4

6 separation wall right 3

7 floor 5

8 ceiling/roof 6

Table A.2. Wall components space I, continued. The values between brackets apply when the sunblind
is down.

nr. Ole,int Ceex3® a3 (33 g3 viewfactors3?
W/m?K] [W/m?K] [ [-] [-]  ground buildings sky

1 2.5 258 0.15% 07 09 040 0200 0.4(0)
2 2.5 25 065 00 09 0.4 0.2 0.4
3 2.5 - - - - - - -
4 2.5 R - . . R ; ;
5 25 - - - - - - -
6 2.5 - - - - - - -
7 3.0 ; - - R ; ;
8 2.0 25 065 0.0 0.9 0.0 0.0 1.0
where

Ocine  internal convective heat transfer coefficient
Ocext  external convective heat transfer coeflicient

as solar absorption factor

ts solar transmission factor

€ emittance of external surface (=absorptance, gray radiator).
Ventilation

Table A.3. Ventilation openings space I

Location Type Cross-sectional area  Discharge coefficient
facade cantilever window (.18 m? 0.7
separation wall  vent 0.18 m? 0.7

33 Values are only specified for wall components, which are part of the building envelope.
3 Absorption of solar radiation is assumed to be equally divided over the two windowpanes.
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Solar radiation

Table A.4. Properties of the external sunblind. For detals on the operation see ‘Scenario data’.

Ole.jnt Ceex®®  a® 13 B viewfactors
W/m2K] [W/m?K] [-] [-] []  ground buildings sky
sunblind 12 30 0.5 0.18 09 0.4 0.2 0.4

The cavity between the sunblind and the window pane is ventilated with outdoor air at
a ratc of 0.5 m3/s.

Table A.5. Distribution of solar radiation in the space

Description Value Reference

Solar radiation entering the space:
¢ division of absorption over furniture/enclosure  10% / 90%
¢ distribution of absorption over cnclosure 100% at floor  ISSO, 1994

Space |l (corridor)

@ A
NS =
® @ 2 ® 27m
3.6m @
Y
- 32m >

Figure A.3. Space 1l with dimensions (I X w X k) 3.2 m X 3.6 m x 2.7 m. Cross-ventilation of the
space takes place through two rectangular vents in the separation walls with office spaces I and 111. The
wall components are numbered.

Ventilation

Table A.6. Ventilation openings space IT

Location Type Cross-sectional area Discharge cocthicient
separation wall cast  vent 0.18 m? 0.7
scparation wall west  vent 0.18 m? 0.7

# Values are only specified for wall components, which are part of the building envelope.
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Properties wall components
Table A.7. Wall components space II

nr. description wall type number Ol jint
(see Figure A.1) (see Table A.8) [W/m2K]

1 separation wall east 3 2.5

2 door east 4 2.5

3 separation wall west 3 2.5

4 door west 4 2.5

5 floor 5 3.0

6 ceiling 6 2.0

Space lll (west office space)

Identical to east office space (space I).

Wall types
Table A.8. Properties of wall types, atiributed to wall-components in Table A.1 en Table A.7.
Wall type Layer® description A pc d
[W/mK] [J/m3 K] [m]
| 1 glass pane 0.8 2.1 106 0.004
2 air layer®’ 1.0 0 0.17
3 glass pane 0.8 2.1 108 0.005
2 1 rabat 0.17 1.2 106 0.02
2 msulation 0.04 2.9 104 0.12
3 underlayment 0.23 1.3 106 0.01
4 insulation 0.04 2.9 10¢ 0.12
5 plaster 0.70 8.4 105 0.015
3 1 sand-lime 1.0 1.7 108 0.10
4 1 internal door 0.17 1.2 108 0.04
5 1 concrete 2.0 2.0 108 0.22
2 carpet 0.07 5.910° 0.004
6 1 roofing 0.2 1.8 106 0.004
2 insulation 0.04 2.9 104 0.12
3 concrete 2.0 2.0 106 0.22
4 cavity3® 1.0 0 0.20
5 ceiling 0.2 1.0 106 0.02

% Layers are numbered from the outside of the space towards the inside. Layers in separation walls
between an office space and the corridor are numbered from the outside of the office space.

37 This combination of values represents a thermal resistance R, = 0.17 m2 K/W.

38 "T'his combination of values represents a thermal resistance R, = 0.20 m2 K/W.
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where

A conductivity
o] density

c specific heat
d thickness

General data

Table A.9. General data

Description Value Reference
location building site The Netherlands

albedo 0.2

density of air 1.2 kg/m?3

specific heat of air 1000 J/kg K

wind reduction factor

0.7 (urban terrain)

Liddament, 1986

pressure cocflicients set

sheltered, flat roof, aspect
ratio of floor plan 2:1

Liddament, 1986

model for sky radiant

Unsworth and Monterth,

temperature 1971
ground parameters

conductivity 1.3 W/mK

heat capacity 1.3106 J/m3K

thickness 1.2 m
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A.2. Scenario data

The scenario contains the external conditions under which the responses of the building
(model) are observed.

Climate data

e April through September in the Test Reference Year for De Bilt, The Netherlands
(Lund, 1985)

e Isotropic sky radiance distribution

¢ Ground temperature at 1.2 m depth: as default in ESP-r (ESRU, 1995b)

Operation of the building

¢ Office hours from 8.00 — 18.00, 7 days per week

¢ Internal heat load® in spaces I and HI (see Figure A.1): 20 W/m? during office
hours

¢ Internal heat load in space II equal to 0

Control

¢ Internal office doors closed at all times
Automatic control of the solar shading (threshold level at 250 W/m? at the fagade
(ISSO, 1994)).

®  When (dry bulb) air temperature in either space I or space III tends to drop below
20°C, an (idealized) heating system is activated, which keeps the air temperature at
exactly 20°C until it rises again.

¢ Empirical control law for window opening according to Gids (1995):
window opening R in percentage of the maximum opening:

R = Ruind * Rienp
with
Ruia=1-0.10U

Rmﬁ =02+ T.,/25

where
U local mean wind speed at roof height (m/s)
T. outdoor ambient temperature (°C)

Additional data for static Rgd-comfort model (see section 2.4.2)

metabolism: 70 W/m?

clothing resistance: 0.11 m?2 K/W
relative humidity: 50%

air velocity: 0.10 m/s

39 Specified as load per m? floor area in the space. It is assumed that all heat is emitted convectively to the
ambient indoor air.
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Tables with ranges, quantifying the specification uncertainties. In the uncertainty
analysis, ‘Low’, ‘Base’ and ‘High’ have been interpreted as 2.5%, 50% and 97.5%
quantile valucs respectively. The symbols and the numbers in the column ‘Reference’
are explained below the table.

Variable [ Low | Base | High [ Unit _|Reference
Spaces
height 268 | 2.70 | 2.72 m 10
width 358 | 3.60 | 3.62 m 10
length 5.38 540 | 542 m 10
Wall component | (window)
Layer 1 (float glass)
d 4.8 5.0 5.2 mm |1
A 0.760 | 0.955 | 1.15 | W/mK |2

c 1.85 | 2.10 | 2.35 | J/m3K |Calculated from 2
ay 0.12 0.13 0.14 - Base: 4, range: 10
1 0.79 | 0.8l 0.83 - Calculated from 5
{3 0.81 0.83 | 0.85 - 6
Layer 2 (air)
R | 016 | 0.18 | 0.20 | mK/W |
Laycr 3 (float glass)
d 3.8 4.0 4.2 mm |l
A 0.760 { 0955 | 1.15 | W/mK |2

c 1.85 | 2.10 | 2.35 {108 J/m®K|Calculated from 2
as 0.08 | 0.09 | 0.10 - Base:4, ranges: 10
1 0.83 | 0.845 | 0.86 - Calculated from 5
Wall component 2 (parapet)
Layer | (rabat)
d 18 20 22 mm  |Relative variation as plywood in 6
A 0.11 0.13 | 0.15 | W/mK 6,7

c 0.5 1.0 1.4 [106J/m3KCalculated from 7
as 0.60 | 0.65 | 0.70 - 6
€ 082 | 088 | 0.94 - 5,6
Layer 2 (insulation)
d 10.5 12 13.5 mm __ |Relative variation as in 5
A 0.024 | 0.040 | 0.056 | W/mK 16,7
pc 0.8 2.4 4.0 |10* J/m3K|Calculated from 6, 7
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Layer 3 (underlayment)

d 9 10 11 mm__ |Relative variation as plywood in 6

A 0.21 023 | 025 | W/mK |10

pc 1.0 1.3 1.6 [108]/m3K|10

Layer 4 (insulation): See layer 2

Layer 5 (plasterboard)

d 14 15 16 mm  |Absolute variation as in 5

A 0.14 | 030 | 046 | W/mK [4,7

c 0.70 1.05 1.40 1108 J/m3K|Calculated from 4, 7

Wall component 3 (separation wall left)

Layer 1 (sand-lime brick)

d 98 100 102 mm  |Absolute variation as for brick
(inner) in 5

A 0.92 1.00 1.08 W/mK (Base: 4, relative variation as for
brick (inner) in 2

pc 1.5 1.7 1.9 |105]/m3K|Base: 4, relative variation
calculated from 2

Wall component 4 (separation wall left): see wall component 3

Wall component 5 (internal door)

d 38 40 42 mm |10
A 0.11 0.13 | 0.15 | W/mK [Based on plywood data in 6, 7
c 0.5 1.0 1.4 1108 J/m3K|Calculated from plywood data in 7

Wall component 6 (separation wall right): see wall component 3

Wall component 7 (floor)

Layer | (concrete slab)

d 200 220 240 mm __ |Relative variation asin 5
A 1.40 1.65 1.90 | W/mK |4 (reinforced concrete)
pc 1.7 1.9 2.1 |108J/m3K|Calculated from 2, 4
Layer 2 (carpet)

d 3.0 4.5 6.0 mm___ |5

A 0.045 | 0.075 | 0.100 | W/mK |8

pc 1.8 3.3 4.8 {10%J/m3K|Calculated from 5
Wall component 8 (ceiling/ roof)

Layer 1 (roofing)

d 3.6 4.0 4.4 mm |10

A 0.18 | 0.20 | 0.22 | W/mK (10

pc 1.6 1.8 2.0 |108J/m3K|10

as 080 | 0.85 | 0.90 - 10

£ 082 | 0.88 | 094 - 5,6
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Layer 2 (insulation) : layer 2 in wall component 2

Layer 3 (concrete slab): sce layer | in wall component 7

Layer 4 (air cavity)

R, 0.15 | 0.18 | 0.21 | mK/W |8
Layer 5 (plastcrboard)

d 18 20 22 mm 10

A 0.14 | 030 | 046 | W/mK |4,7
pc 0.70 1.05 1.40 |105]/m3K|4, 7
Ground

d 1.20 1.20 1.20 m Fixed
A 0.8 1.3 1.8 W/mK |range dry-wetin 4
pc 1.3 1.5 1.7 |105]/m3K|9
Sunblinds

Ay 0.45 0.5 0.55 - Estimated from 3
ts 0.16 | 0.18 | 0.20 - Estimated from 3
€ 0.81 0.83 | 0.85 - 10
Windows

At max [0024 J0.138 0152 ] m2 10
Vents

A [017 Joi8 ] 019 [ m2 [io
Explanation references:

NEN 3265

Clarke et al. (1990)

ISSO (1975)

ISSO (1994)

Pinney et al. (1991)

Jensen (1994)

Lomas and Bowman (1988)

CIBSE (1986)

Polytechnic Almanac (1995)

Assumed

Explanation symbols:

A conductivity

p density

c specific heat

d thickness

as solar absorption factor

ts solar transmission factor

€ emittance (=absorptance, gray radiator)

R. heat resistance

A opening area
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C.1. Combination of expert assessments

Introduction

In an expert judgment study, quantile values are elicited from the experts for each
variable. The aim is to obtain a single (marginal) probability distribution over each
variable. This marginal probability distribution is referred to as the ‘distribution for the
decision-maker’, or the ‘DM’,

The calculation of the DM from the elicited quantile values takes two steps:

1. Construction of a probability distribution for cach expert from his quantile values

2. Combination of the experts’ distributions

For both steps Cooke (1991) proposes an approach, which is embedded in a solid
mathematical framework. An outline is given in the following sections.

Construction of a distribution from quantile values

Introduction

The construction of a probability distribution from given quantle values involves two
issues:

a) intrinsic ranges

b) minimally informative distributions

Intrinsic ranges

In this study experts assess 5%, 50% and 95% quantile values for each variable. Their
5% and 95% quantile assessments bound 90% of the probability mass. About the
location or distribution of the probability mass below the 5% or above the 95% quantile
point however, no information is provided by the experts.

To cope with this, we assume that all probability mass is distributed over a finite
interval, the ‘intrinsic range’. A common choice for this intrinsic range is the interval
with 10% overshoot below and above the interval that is bounded by the smallest and
the greatest of all the cxperts’ quantile assessments for the variable at hand (Cooke,
1991). In this study we adhere to this practice if no other constraints on the intrinsic
range are suggested or imposed by the context of the variable.

Minimally informative distributions

Defining an intrinsic range for a variable is equivalent with assigning values to the 0%
and 100% quantiles. For all experts the same 0% and 100% quantile values are used.
Hence, together with the elicited quantile values, a set of 5 quantile points is obtained
for each variable and cach expert. This set does not uniquely define a probability
distribution: many distributions can be constructed, which satisfy these quantile values.
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In this study we select from all these distributions that distribution, which has minimum
information relative to the uniform distribution on the intrinsic range.

In practice this means that we distribute the probability mass uniformly between each
pair of successive quantile points. An illustration is given in Figure C.1.

100%
95%
Fx (x)
? 50%
0,
5/:) =
Xow Xs% X50% Xo5%  X100%

—» X

Figure C.1. An expert’s cumulative probability distribution over variable X, corresponding to the given
quantile values x , (r = 0%, 5%, 50%, 95% and 100%) and minimally informative relative to the
uniform distribution on the intrinsic range [x0% , x100%].

It can be shown (Kullback, 1959) that this distribution minimizes:

l(f,u)=Jf(x)%dx (C.1)

where f is the probability density function over the variable X, u is the uniform
probability density function on the intrinsic range, and [ is the relative information of f
relative to u. Loosely stated, I expresses what we learn from fif we initially believe u.

Combination of the experts’ distributions

Introduction

In this study, a single probability distribution for the decision-maker (DM) is calculated
as a weighted average of the experts’ distributions. In determining the weights, two
methods can be distinguished. In the first strategy, each expert receives the same weight.
The resulting equal weight DM is the arithmetic average of the experts’ distributions.

The second method uses performance-based weights. An expert’s performance is
obtained from a comparison of his assessments and measured realizations on the seed
variables. Seed variables are those variables for which a realization is available to the
analyst but not to the experts, e.g. from unpublished measurements. This method is
applied in this study.
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The scoring of the experts to obtain their performances and the performance-based
combination of their distributions are carried out according to the classical model,
developed by Cooke (1991). An outline is given in the following sections.

Scoring experts

In the classical model, an expert’s performance is calculated from a comparison of his
assessments with measured realizations of the seed variables. Performance can be scored
per variable (item), or globally. An cxpert’s item performance w; on variable 7 is the
product of two measures, calibration € and information score ;:

wi =G I (C.2)

Roughly, calibration measures ‘agreement with observations’, whereas the information
score indicates how closcly an expert’s quantile assessments determine a variable.

Analogously, the global performance w of an expert is calculated from:
w=CI (C.3)
where his global informativeness [ is his average information score over all variables.

Calibration
For each variable, an expert assigns 3 quantile values, i.c. the 5%, 50% and 95%
quantile values. These quantile values define 4 probability ‘bins’ (see Figure C.2).

Bin 1 Bin 2 Bin 3 Bin 4
5% 50% 95%

Figure C.2. Illustration of the 4 probability bins defined by the expert’s quantile assessments. Note that
no ‘intrinsic range’ is used in scoring the experts.

The probability mass function p over these bins is shown in Figure C.3. As an expert
asscsses the same quantiles for each variable, all variables arec assigned the same
distribution p over their associated bins.

When realizations become available, it is tallied in which bin they fall. In this way, a
sample mass function s is constructed. An example is shown in Figure C.3. Obviously,
the more the sample mass function s resembles the probability mass function p, the
better the observed data support expert’s assessments. As a measurc of discrepancy
between the mass functions p and s, the relative information s, p) of s rclative to p is
used, which is defined analogously to (C.1). I(s, p) = 0 only if s = p and higher values
correspond to a greater discrepancy.
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example of s
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Figure C.3. llustration of the probability mass function p over the 4 bins (lefl) and an example of a
sample disinbution for an expert (right). This expert is significantly overconfident (45% of the
realizations fall outside bin 2+3, which constitute lns 90%-confidence intervals) and has a tendency to
underestimate (80% of the realizations end up abave his median values (the boundary between bins 2
and 3).

In scoring calibration, an expert is now regarded as the hypothesis:
H: 5 results from independent sampling from p.

To test this hypothesis, the conditional probability is calculated that a sample mass
function s’ would be observed which differs more from p than the actually observed s,
the difference between two mass functions being expressed in terms of relative

information:
P{I(s',p)=I(s,p)H} (C.4)

This probability is the expert’s calibration score. Clearly, the value of the calibration
score is between 0 and 1 and higher scores are better.

To calculate this probability, the statistic 2 N I(s’, p) is used in stead of I(s’, p) as it can be
shown that this quantity, which statisticians may recognize as a log likelihood ratio,
becomes x2-distributed with 3 degrees of freedom (the number of bins — 1) for a large
number of variables V. Hence the calibration score C equals:

C=1-2(@NI(s, p)) (€.5)

where 2 N I(s, p) can be calculated with a discrete version of (C.1):

4 -
2NI(s, p)=2NY 5, In—L (C.6)
=1 Pj

In practice, a minimum value of 1.10-* is used for the calibration score. This prevents
that a badly calibrated expert (with a score say 1.10) would dominate an very badly
calibrated expert with a score of e.g. 1.10-6,
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A calibration score is related to the power of the calibration test, i.e. the effective number
of variables from which it is calculated (cf. classical hypothesis testing). If calibration
scores from two experiments with a different number of seed variables are to be
compared, it is important to reduce the power of the test with the highest number of
variables to the samec level as the power of the other test. This can be achicved by
introducing an extra factor B in expression (C.5):

C=1-x3(2BN,1(s. p)) @)

where the factor B = N2/ V7 (V2 £.V)), the ratio between the numbers of seed variables in
the two cxperiments.

Information

"The information score {or informativeness) is the degree to which an expert’s probability
distribution defines the value of a variable or item. It is scored per item { as the relative
information of the probability mass function p to the uniform distribution on the
Intrinsic range:

4 p .
I, =Inlx, —x, )+ In . C.8
i (,44 ,.0) ;P, m ( )

In this equation, x5, 7 = 0,...,4 are the expert’s 0%, 5%, 50%, 95% and 100% quantilc
assessments respectively on variable 7. I; expresses what we lcarn from the assessments of
the cxpert if we initially believe that variable 1 is uniformly distributed on the intrinsic
range [Xeio, Xei] -
Information scores are always positive and all other thing being equal, higher scores are
preferred.

Combination of the experis’ distributions

The experts’ distributions are combined to obtain, for each variable, a singlc (marginal)
distribution. This distribution is referred to as the distribution for the decision maker, or
simply DM.

Combination of the experts’ distributions according to the classical model uses linear
pooling, which means that the resulting distributions are weighted averages of the
experts' distributions. This reduces the problem of combining expert judgments to the
problem of determining the expert weights.

Two types of performance based weights can be used, global or item weights. When
global weights arc used, each expert is assigned a single weight, which is applicd in the
construction of the DM’s marginal distributions for all variables. In case of combination
on the basis of item weights, an expert receives a separatc weight for each variable. Both
techniques are brielly discussed here.
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Global weights
For each expert ¢, the non-normalized global weight G, is equal to his global
performance score, modified by an indicator function:

G, =C1,1,(C,) (C.9)

In this expression, C, and , are the expert’s calibration and information score
respectively and the indicator function

1 C,2o
1,(C,)= (C.10)
0 otherwise

is used to express whether an expert (who is regarded as a statistical hypothesis) is
rejected at the significance level & or not. In other words, if an expert’s calibration score
is below the significance level, to be set by the analyst, he receives a zero weight. The
analyst can adjust the value of the significance level to optimize the performance of the
DM.

In combining the experts’ assessments, their weights must add up to 1, so the
normalized weight g for each expert is given by:

G
8. =5 (C.11)

2.G.

e=l

where E is the number of experts.

Item weights
Item weights are also calculated analogously to (C.9):
G.. =Cd.1,(C.) (C.12)

where the weights are item-specific. For each variable, the weights have to sum to I, so
the normalized weights are calculated analogously to (C.11).

Although the performance score is composed of two elements, calibration and
information, it is the calibration score, which predominantly differentiates between
experts. Calibration is a fairly fast function, i.e. on the basis of say 10 realizations we can
distinguish four or more orders of magnitude in calibration. Informativeness, on the
other hand, is comparatively slow. A variation in information score of more than a
factor 5 is rarely found. Therefore, the information score mainly serves to discriminate
between experts, who are more or less equally well calibrated.

It can be shown (Cooke, 1991) that both the global and the item weights or scores are
asymptotically strictly proper, which means that experts on the long run receive the
highest weights if they state assessments according to their true beliefs.
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C.2. Results expert elicitation

This appendix lists the experts’ assessments. The full rationales of the experts can be
found in Wit (1999).

Expert 1

Quantile assessments

orientation | variable quantiles
5% 50% 95%
0 AG): 0.24 0.44 0.64
AGy? 0.04 0.24 0.44
300 ACr 0.13 0.53 0.93
AGy: 0.01 0.41 0.81
600 AGy 0.04 0.44 0.84
AG? -0.07 0.33 0.73
900 Ay -0.30 0.10 0.50
A -0.30 0.10 0.50
1200 ACy; -1.21 -0.81 -0.41
ACp2 -1.32 -0.92 -0.52
1500 AGy -1.58 -1.18 -0.78
AGy2 -1.74 -1.34 -0.94
180 AGyr -1.48 -1.28 -1.08
AGy -1.66 -1.46 -1.26
2100 AGy -1.48 -1.18 -0.88
AGys -1.64 -1.34 -1.04
240 AGy 111 -0.81 -0.51
AGy: -1.22 -0.92 -0.62
2700 AGy: -0.20 0.10 0.40
AGy2 -0.20 0.10 0.40
3000 AGy 0.07 0.37 0.67
AGy -0.10 0.20 0.50
3300 AGy 0.0 0.40 0.80
ACy? -0.18 0.22 0.62

Dependency assessments (conditional probabilities)

Arc Dependency Arc Dependency
1 0.25 7 0.95
2 0.60 8 0.95
3 0.85 9 0.50
4 0.85 10 0.25
5 0.85 11 0.30
6 0.85
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Expert 2
Quantile assessments
orientation | variable quantiles
5% 50% 95%
0° AGy 0.40 1.00 1.20
AGy 0.40 1.00 1.30
300 AGy: 0.30 1.00 1.40
AGy: 0.30 1.00 1.30
600 AGy; 0.10 0.70 0.80
AGy: 0.20 0.30 0.50
90° ACy -0.60 0.00 0.60
AGy; -0.30 0.00 0.30
1200 AG -0.80 -0.40 -0.20
AGy2 -0.70 -0.40 -0.30
1500 AGyi -1.35 -1.10 -0.30
AGy? -1.45 -1.20 -0.50
1800 AGy -1.35 -1.10 -0.75
AGy: -1.45 -1.20 -0.85
2100 AGy -1.20 -0.90 -0.55
AGy? -1.20 -0.90 -0.60
2400 AGy -1.00 -0.60 -0.20
AGy; -0.90 -0.60 -0.30
270° AGy: -0.60 0.00 0.60
AGy? -0.40 0.00 0.40
3000 AGy1 0.10 0.40 1.10
AGy 0.05 0.30 1.00
3300 AGy 0.20 0.60 1.40
ACy? 0.10 0.60 1.10
Dependency assessments (conditional probabilities)
Arc Dependency Arc Dependency
1 0.10 7 0.95
2 0.80 8 0.95
3 0.75 9 0.55
4 0.65 10 0.20
5 0.75 11 0.20
6 0.75
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Expert 3
antile assessments
orientation | variable quantiles
5% 50% 95%
0 AC), 0.4 1.0 1.4
ACy 0.0 0.9 1.4
30¢ AC) 0.4 1.0 1.4
N AG: 0.0 0.9 1.4
60° ACy, 0.3 0.7 1.1
A 0.0 0.5 1.0
900 ACy, 0.3 0.0 0.3
AGy -0.3 0.0 0.3
1200 AGyr -1.3 -0.9 -0.5
AG -1.3 -0.9 -0.5
1500 AGy -1.5 -1.2 -0.8
ACy -1.3 -1.0 -0.7
1800 AGy, -15 1.2 -0.8
AGy» -1.3 -1.0 -0.7
2100 AGy, -1.5 -1.2 -0.8
ACy2 -1.3 -1.0 -0.7
92400 AG: 1.3 -0.9 0.5
AG,: -13 -0.9 -0.5
2700 AGy, -0.3 0.0 0.3
AGy2 -0.3 0.0 0.3
3000 ACy; 0.3 0.7 1.1
AG: 0.0 0.5 1.0
3300 AGy; 0.4 1.0 1.4
ACy: 0.0 0.9 1.4
Dependency assessments (conditional probabililies)
Arc Dependency Arc Dependency
1 0.5 7 0.9
2 0.8 8 0.9
3 0.75 9 0.6
4 0.8 10 0.5
) 0.75 11 0.5
6 0.75
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Expert 4
Quantile assessments
orientation { variable quantiles
5% 50% 95%
0 AGy, 0.3 0.7 1.3
ACp2 0.3 0.6 0.9
300 AGy; 0.3 0.8 1.4
AGy2 0.3 0.8 1.4
60° ACpi -0.5 0.5 1.2
AGy2 -0.5 0.5 1.2
900 AGy -0.6 0.1 0.7
AGy2 -0.6 0.1 0.7
1200 ACy -1.2 -0.5 0.3
AGy2 -1.2 -0.5 0.3
1500 AGy) -1.5 -1.1 -0.6
AG -1.7 -1.2 -0.6
180° AGy -1.5 -1.1 -0.6
AGy2 -1.7 -1.2 -0.6
2100 AGy -1.5 -1.1 -0.6
AGy2 -1.7 -1.2 -0.6
2400 AGy, -1.2 -0.5 0.3
AGy: -1.2 -0.5 0.3
2700 AGy -0.6 0.1 0.7
AGys -0.6 0.1 0.7
3000 AGy -0.5 0.5 1.2
ACy -0.5 0.5 1.2
3300 AGy) 0.3 0.8 14
AG» 0.3 0.8 1.4
Dependency assessments (conditional probabilities)
Arc Dependency Arc Dependency
1 0.4 7 0.8
2 0.7 8 0.7
3 0.9 9 0.6
4 0.9 10 0.4
5 0.9 11 0.4
6 0.9
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Expert 5
Quantile assessments
orientation | variable quantiles
5% 50% 95%
00 ACy 0.55 0.80 1.05
AGp2 0.40 0.70 1.00
300 AGy: 0.55 0.75 0.95
ACy» 0.35 0.65 0.85
600 ACy 0.35 0.60 0.85
ACy2 0.25 0.55 0.85
90 AG -0.15 0.05 0.25
AG:2 -0.15 0.05 0.25
1200 ACy -1.20 -0.85 -0.50
AGy2 -1.20 -0.85 -0.50
1500 AGy: -1.50 -1.10 -0.70
AGy2 -1.55 -1.15 -0.75
1800 ACyi -1.35 -1.10 -0.85
AGy2 -1.45 -1.20 -0.95
210 AGy: -1.45 -1.10 -0.75
AGp2 -1.50 -1.15 -0.80
2400 ACy: -1.15 -0.85 -0.55
AG: -1.15 -0.85 -0.55
270 AGy: -0.10 0.05 0.20
AGp2 -0.10 0.05 0.20
3000 AGy) 0.35 0.60 0.85
AGy2 0.20 0.50 0.80
3300 AGy: 0.45 0.65 0.85
AC2 0.30 0.55 0.80
Dependency assessments (conditional probabilities)
Arc Dependency Arc Dependency
1 0.20 7 0.60
2 0.80 8 0.70
3 0.80 9 0.55
4 0.80 10 0.30
5 0.90 11 0.40
6 0.95
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Expert 6
antile assessments
orientation | variable quantiles
5% 50% 95%
0o AGy 0.69 1.59 2.49
AGy» 0.69 1.59 2.49
300 ACy; -0.41 0.49 1.39
ACy2 -0.41 0.49 1.39
600 ACp; 0.02 0.37 0.72
Alps2 0.02 0.37 0.72
90 AGy; -0.30 0.0 0.30
ACy» -0.30 0.0 0.30
1200 ACy; -0.67 -0.47 -0.27
Ay -0.67 -0.47 -0.27
1500 AGy; -1.09 -0.94 -0.79
ACp -1.09 -0.94 -0.79
180 ACy; -1.30 -1.15 -1.00
ACy» -1.30 -1.15 -1.00
210e AGy) -1.09 -0.94 -0.79
AGy? -1.09 -0.94 -0.79
2400 ACy; -0.67 -0.47 -0.27
ACp -0.67 -0.47 -0.27
2700 AGy; -0.31 -0.01 0.29
ACy? -0.31 -0.01 0.29
3000 AGy; 0.12 0.42 0.72
AGp2 0.12 0.42 0.72
33Q° ACy; 0.11 0.46 0.81
ACy2 0.11 0.46 0.81
Dependency assessments (conditional probabilities)
Arc Dependency Arc Dependency
1 0.40 7 1.00
2 0.50 8 0.60
3 0.90 9 0.60
4 0.90 10 0.25
5 1.00 11 0.40
6 1.00
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Global weight DM

Quantile assessments

oricntation | variable quantiles
5% 50% 95%
Qe ACy 0.40 1.00 1.20
AG: 0.40 1.00 1.30
300 ACy 0.30 1.00 1.40
AG:> 0.30 1.00 1.30
600 ACy 0.10 0.70 0.80
AGy» 0.20 0.30 0.50
90 ACy; -0.60 0.00 0.60
AG: -0.30 0.00 0.30
1200 ACy -0.80 -0.40 -0.20
AG: -0.70 -0.40 -0.30
1500 AGy, -1.35 -1.10 -0.30
AGy:2 -1.45 -1.20 -0.50
180 ACy -1.35 -1.10 -0.75
ACy» -1.45 -1.20 -0.85
2100 ACy -1.20 -0.90 -0.55
AG: -1.20 -0.90 -0.60
2400 ACyr -1.00 -0.60 -0.20
ACy: -0.90 -0.60 -0.30
2700 ACyr -0.60 0.00 0.60
AGy -0.40 0.00 0.40
3000 AGy 0.10 0.40 1.10
AGy» 0.05 0.30 1.00
3300 AGy 0.20 0.60 1.40
ACp2 0.10 0.60 1.10
Dependency assessments (conditional probabilities)
Arc Dependency Arc Dependency
1 0.10 7 0.95
B 2 0.80 8 0.95
3 0.75 9 0.55
4 0.65 10 0.20
5 0.75 11 0.20
6 0.75
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C.3. Wind tunnel results

This section presents the results of the wind tunnel tests in more detail than in
Chapter 4. For more information on the set-up of the experiments see Wit (1999) or
Willemsen (1998) for the test in the DNW-LST or Soerensen (1998) for the experiment

in UWO-BLWT.

Low speed German-Dutch wind tunnel (DNW-LST)

Figure C.4 shows the pressure coefficients, measured at the taps la, 1b, 2a and 2b and
the corresponding pressure difference coefficients as a function of the wind angle.
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Figure C.4. Results of the pressure measurements in the DNW-LST. The drawn lines show moving
averages, oblained by convolution of the measured signals with a gaussian profile with a standard
deviation of 4 (corvesponding to 4 seconds at the angular velocity of the turniable of 1°/5). The

realizations, used to score the experts, were taken _from these moving average curves.
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For pressure data from the other taps see Willemsen (1998).

Boundary layer wind tunnel UWO-BLWT1

Figure C.5 shows the pressure coefficients, measured at the taps la, 1b, 2a and 2b and
the corresponding pressure difference coefficients as a function of the wind angle. For
comparison, the moving average curves of the DNW-results are also shown.
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Figure C.5. Wind tunnel results from both DNW-LST and UWO-BLWT1 tunnels. The symbols are
the 30s averages, measured in the UWO tunnel. The drawn lines show moving averages of the DNW-
result (see Figure C.4).

For pressurc data from the other taps see Soerensen (1998).
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Discussion and conclusion

The pressure coefficients measured at UWO seem negatively biased compared to the
DNW.-values for all 4 taps under study, whereas the pressure difference coefficients
agree fairly well. This suggests that there may be a bias in the static pressure
measurements between both experiments. This is supported by the observation that in
the DNW experiment the pitot-static tube was used to measure the background
pressure, whereas the UWO-experiment obtained this pressure from a floor tap.

The main deviations in the wind pressure difference coeflicients between the tests occur
for the ‘isolated’ wind angles. At these angles the pressure differences are most sensitive

to the characteristics of the simulated boundary layer.

The following realizations were extracted from the data as reference material for the
expert judgment study.

Realizations used in the expert judgment experiment.

Wind angle DNW-LST UWO-BLWT]1
(degrees) AGy; ACy2 AGy; AGp2
0 0.39 0.31 0.46 0.36

30 0.44 0.35 0.41 0.36

60 0.32 0.47 0.34 0.38

90 0.03 0.01 0.00 -0.03

120 -0.36 -0.40 -0.39 -0.47

150 -0.88 -1.07 -0.80 -0.94

180 -0.95 -0.99 -0.91 -0.95

210 -0.87 -1.10 -0.73 -0.95

240 -0.35 -0.49 -0.34 -0.45

270 -0.01 -0.02 -0.03 -0.02

300 0.30 0.31 0.34 0.36

330 0.77 0.64 0.63 0.54
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D.1. Air temperature profile in natural convection regime

In the literature, data on the effect of convective heat sources on the temperature profile
are mainly available from studies on two types of configurations:

® Spaces with displacement ventilation

¢ Radiator heated spaces

Displacement ventilation

Linden, Lane-Serff, Smeed (1990), quoted in Cooper and Linden (1996), performed a
theoretical study on a displacement ventilation system, driven by one single point source
of heat. They show that the vertical temperature difference AT between the upper and
lower regions of the space depends on the convective internal heat gain, i.e. the
convective heat flow from the heat source Q as:

AT ~Q%? D.1)

Cooper, Linden (1996) and Linden, Cooper (1996) generalize this result for multiple
point sources (non-interfering plumes). In that case Q in (D.1) represents the sum of the
convective heat flows from the sources.

In another study (Chen, 1992), the temperature field, the velocity field and the
contaminant concentration distribution are studied numerically as a function of various
parameters. One element in the study concerns the vertical temperature profile as a
function of the total convective heat gain, while all other parameters are kept at a fixed
value.

o CFD- data
- —0.065 Q¥°

! 1 | 1 ! 1
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Total convective heat gain Q (W)

T20m — Tosm (°C)
o - N w D [V, ] [,

Figure D.1. The air temperature difference between 2.0 m and 0.5 m above the floor as a function of the
total heat gain _from both internal heat sources and (solar) heat gain from the window as reported in the
Chen (1992). The circles show the Computational Fluid Dynamics results. The drawn line is the best
Sitof (D.1) to the data.
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Figure D.1 shows the temperature difference between 2.0 m and 0.5 m above the floor
as a function of the total convective heat gain in the space. With (D.1) a close fit through
the data points can be obtained as shown by the drawn line. This suggests that (D.1)
might also be applied in situations with heat sources of finite dimensions.

Radiator heated spaces

Maalej (1994) presents a comprehensive experimental study of vertical air temperature
differences in spaces heated with radiators. He varies the location of the radiator in
reference to the (cold) window, the type of radiator and most importantly for this study,
the convective heat flow from the radiator. He concludes that for a given configuration
(type and location of the radiator) a the vertical temperature difference AT between
2.4m and 0.1m above the floor can be well modeled by a power law function of the
convective heat load Q from the radiator’:

AT =aQ* D.2)
where @ and b are empirical constants, which depend on the configuration.

The results of these studies suggest that the effect of convective heat sources on the air

temperature difference between two vertically separated locations in a space can be

modeled by a power law in @, where Q denotes the total convective heat gain. In each of

the studies the form of the vertical temperature profile does not significantly depend on

Q, which implies that:

e the vertical temperature difference between any two points with arbitrary but fixed
height within the space will closely follow a power law in Q.

®  Zma, the level above the floor at which the temperature is equal to the mean air
temperature, will be fairly independent of Q

Hence, in the one-dimensional approach of the temperature profile, the power law

model can be applied to ATw =T{zw) — T{zmeam) and ATow =T(Z,.) — T{zZmew), where

Zoee = 0.7 m, half the height of a sitting person.

D.2. Case structure

The values and ranges of the case-structure variables are discussed per variable.

Air flow rate @,

The ventilation flow through the spaces are mainly driven by wind-induced pressure
differences between windward and leeward facades. Under suitable assumptions for
wind reduction factor and wind pressure coefficients, the 90% quantile value for the
pressure difference between two opposite facades was estimated at 8 Pa in the reference
year 1964. This pressure difference induces a volume flow rate of approximately 2.1 10-!
m3/s, if the flow crosses two identical spaces with specification as in given in
Appendix A, one at the windward fagade and one at the leeward facade with an

40 A similar result was found for the difference between air temperatures at 1.8m and 0.1lm.
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corridor in-between. This value was adopted as the maximum value considered for @y
in this study.

Two other values were used for @y, i.e. 2.8 102 and 7.0 10-2 m3/s, corresponding to air
change rates of 2 and 5 hr! respectively. These are commonly used values in building
simulations (ISSO, 1994).

Internal heat gain Q
NOVEM (1992) reports on a study, which investigates the influence of various design
parameters on summer comfort conditions in office buildings in The Netherlands. One
of these parameters is the internal heat gain. The report indicates that it is quite a
challenge to maintain comfortable conditions in a naturally ventilated space with an
internal heat gain of 30 W/m2. This corresponds to a gain of approximately 600 W in
the case at hand, which is chosen as the maximum value considered for the internal heat

srce

gain in this study. It is assumed that all heat is emitted convectively.
The minimum value of the internal heat gain is sct to 0, representing the situation that
the space is unoccupied.

Solar heat gain Q,,; and convective fraction Q.

With a maximum total solar gain of 900 W/m? on the facade (Van der Linden, 1996),
the solar gain entering the space through an external solar shading is 500 W or less. This
value is adopted as the maximum value of the solar gain Q. The minimum value is set
to 0 for obvious reasons.

The fraction Quu., which is absorbed by the furniture and convectively emitted to the
air, is set to the 10% of Qu in all cases. This is a commonly used value in building
simulations (ISSO, 1994).

The temperature of the incoming air, T;,

This variable is a balancing item in the case structure design. In the model, Ti only
occurs in the temperature differences Ti-7air or Tin-Tow. From a range of simulations of
the temperature in the space for different scenarios, it appears that in about 90% of the
cases, Ti-Tor falls in the range [-7 °C, +4°C]. These simulations were performed with
the default assumptions of uniform air temperature, a convective heat transfer
coeflicient of 3 W/m? °C and for a range of possible internal heat gains.

Hence it was decided to assign values to Ti», which yield values of Ti-Ter in this interval
under the same default assumptions in each of the cases.

Due to the structure of the models for AT and AT, equally many cases were selected
with Tip-Twr 2 0 as with Ti-Tair < 0.

Mean surface temperature of the enclosure T,

The physical processes determining the airflow are highly insensitive to the absolute
temperature level in the space. Therefore Twar was set at a fixed value of 23°C in all
cases.
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D.3. Results expert elicitation

Expert 1

Quantile assessments on seed variables

T2.4m-To.1 m(°C) Ti5m (°C)

Case 5% 50% 95% 5% 50% 95%
A -1.0 0.4 2.0 17.0 19.6 23.0
B -1.0 0.8 3.0 18.0 19.6 22.0
C -2.0 0.8 4.0 17.0 19.7 23.0
D

E

-2.0 0.4 4.0 17.0 19.9 23.0
2.0 5.1 9.0 18.0 20.8 24.0

Quantile assessments on elicitation variables

Tou-Tair (OC) Tair (OC) Tocc'Talir (0C>

Case 5% 50% 95% 5% 50% 95% 5% 50% 95%
1 -1.0 0.0 1.0 21.0 23.0 25.0 -1.0 0.0 1.0
2 0.0 1.6 4.0 23.0 24.6 26.0 -2.0 0.0 2.0
3 -1.0 0.2 1.0 21.0 23.1 25.0 -1.0 0.0 1.0
4 -1.0 1.5 4.0 18.0 20.0 22.0 -3.0 0.0 2.0
5 0.0 2.5 5.0 23.0 25.3 28.0 -2.0 0.0 2.0
6 0.0 1.7 3.0 22.0 23.4 25.0 -2.0 0.0 2.0
7 -0.3 0.2 0.7 20.0 21.5 23.0 -1.0 0.0 1.0
8 -1.0 0.2 1.0 25.0 26.4 28.0 -1.0 0.0 1.0
9 -1.0 0.4 3.0 15.0 19.3 21.0 -2.0 0.0 2.0

Dependency assessments on elicitation variables
Variable 1 | Variable 2 | Variable 1 | Variable 2

Case Tair Toue=Tair Toce-Tuir Tou-Tair
1 0.5 0.75
2 0.3 0.75
3 0.3 0.75
4 0.4 0.65
5 0.35 0.6
6 0.35 0.55
7 0.45 0.55
8 0.45 0.60
9 0.45 0.55
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Expert 2
Quantile assessments on seed variables
T‘).ni m-T0.1 m(oC) TI.5 m (')C)
Case 5% 50% 95% 5% 50% 95%
A 0.7 1.3 2.0 19.5 20.5 21.5
B 1.3 2.6 4.0 20.6 21.0 23.5
Cc 1.0 2.0 3.0 20.4 21.4 23.2
D 0.0 0.5 1.5 18.9 19.9 20.9
E 2.0 3.6 5.0 19.0 20.0 21.0
Quantile assessments on elicitation variables
Tour-Tair (°C) T (°C) Toce-Taic (°C)
Case 5% 50%  95% 5% 50%  95% 5% 30%  95%
1 0.0 0.5 1.0 22.0 23.0 24.0 -0.5 -0.3 0.0
2 0.9 1.6 2.9 24.1 25.5 27.5 -1.5 -0.8 -0.4
3 0.2 0.4 1.2 22.2 23.2 24.2 -0.6 -0.2 -0.1
4 0.2 0.7 2.1 19.1 21.2 224 -1.0 -0.4 -0.1
5 1.2 2.1 3.6 24.3 26.2 28.1 -1.8 -1.0 -0.6
6 0.2 0.6 2.0 23.1 24.1 25.1 -1.0 -0.3 -0.1
7 0.1 0.4 1.1 20.0 21.6 22.6 -0.6 -0.2 -0.1
8 0.5 0.9 1.7 23.9 25.7 27.0 -0.9 -0.4 -0.3
9 0.1 0.3 0.9 16.8 19.6 22.0 -0.5 -0.2 -0.1
Dependency assessments on elicitation variables
Variable 1 | Variable 2 | Variable 1 | Variable 2
Case Tair Tou-Tair Toce-Tair Tou-Tair
1 0.6 0.25
2 0.6 0.25
3 0.6 0.25
4 0.6 0.25
3 0.6 0.25
6 0.6 0.25
7 0.6 0.25
8 0.6 0.25
9 0.6 0.25
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Expert 3

Quantile assessments on seed variables

To2.4m-To.1 m(°C) T15m (°C)

Case 5% 50% 95% 5% 50% 95%
A 0.20 1.10 2.00 | 20,60 21.00 21.50
B 0.60 2.30 400 | 21.40 2250 23.70
C 0.50 1.50 2.60 | 21.20 2240 23.50
D

E

0.10 0.70 125 | 20.00 20.50 21.00
5.60 9.80 14.00 | 23.40 2390 24.40

Quantile assessments on elicitation variables

Touw=Tuir (OC) Tnir (OC) Toce=Thair (OC)

Case 5% 50% 95% 5% 50% 95% 5% 50% 95%
1 0.10 0.60 1.25 22.00 23.00 2400 | -060 -0.30 -0.05
2 0.05 0.53 1.00 | 24.00 25.25 26,50 | -1.50 -090 -0.30
3 0.10 0.60 1.25 22,50 23,50 2450 | -0.60 -0.30 -0.05
4 0.10 0.60 1.25 21.00 22.00 2300 ] -190 -1.20 -0.50
5 0.10 1.00 1.90 | 2450 2630 28.10 | -1.50 -0.80 -0.10
6 0.10 0.60 1.25 23.10 24.10 25.10 | -1.00 -0.75 -0.50
7 0.10 0.60 1.25 20.75 21.75 2275 | -1.40 -0.80 -0.30
8 0.10 0.60 1.25 2490 26.30 2760 | -060 -030 -0.05
9 0.10 0.60 1.25 18.00 1935 20.70 | -060 -0.30 -0.05

Dependency assessments on elicitation variables

Varnable 1 | Vanable 2 | Variable 1 | Vanable 2

Case Tair TouTair Toce-Tair Touw=Tair
1 0.5 0.5
2 0.25 0.25
3 0.25 0.25
4 0.4 0.4
5 0.3 0.3
6 0.4 0.4
7 0.4 0.4
8 0.25 0.25
9 0.25 0.25
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Expert 4
Quantile assessments on seed variables
Trsm-To. m(“c) Tism (00)
Case 5% 50%  95% 5% 50%  95%
A 1.50  2.00 250 | 20.30 2080 21.60
B 3.00  4.00 5.00 | 20.20 21.00 2240
Cc 1.80  3.00 420 | 18.90 20.00 21.00
D 1.50  2.00 250 | 14.70  17.30 19.20
E 4.00 550 7.00 | 17.50 19.80 21.40
Quantile asscssments on elicitation variables
Touw-Tair (°C) Tair (°C) Toce-Tair (°C)
Casc 5% 50%  95% 5% 50%  95% 5% 50%  95%
1 -0.70  0.00 0.47 | 22,20 23.00 2360 | -0.22 0.00 030
2 2,11 -0.27 095 | 24.20 2590 28.10 | -0.56  0.05 1.01
3 -1.22 -0.07 048 | 22.10 2330 2410 | -0.30  0.01 0.54
4 0.00 1.96 591 | 18.20 2040 22,10 | -271 -0.20 1.51
5 -491  -1.33  0.07 | 25.10 27.20 29.70 | -1.27 0.14  2.16
6 -0.19  1.28 3.66 | 22.60 24.10 26.10 | -1.93 -0.18 1.03
7 0.00 1.17 3.3¢ | 19.10 20,50 2190 | -163 -0.12 0.97
8 -1.76 ~ -0.38  0.10 | 25,50 27.00 2830 | -0.54 0.04 0.88
9 0.00 1.29 416 | 16,20 18.10 20.20 | -1.98 -0.13 1.18

Dependency assessments on elicitation variables

Variable 1 | Variable 2 | Variable 1 | Variable 2
Case Taic Tou-Tair Toce-Tair ToueTair
1 0.8 0.3
2 0.8 0.3
3 0.8 0.3
4 0.4 0.3
5 0.5 0.3
6 0.4 0.3
7 0.2 0.3
8 0.6 0.3
9 0.4 0.3
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ltem weight DM

Quantile assessments on seed variables

T24m-To1 m(°C) Ti5m (°C)
Case 5% 50% 95% 5% 50% 95%
A -0.39 1.26 2.00 18.92 20.49 21.70
B -0.71 2.21 3.97 18.40 20.93 2345
C -0.27 1.98 3,27 18.57 21.36 23.20
D -0.44 0.50 1.96 17.47 19.90 2221
E 2.00 3.80 8.55 18.61 20.02 2252

Quantile assessments on elicitation variables

Toul'Tair (OC) T:Iir (nc) Tocc‘Tair (GC)

Case 5% 50% 95% 5% 50% 95% 5% 50% 95%
1 -0.58 0.47 1.00 21.83 23.00 24.17 | -054 -0.30 0.14
2 0.11 1.60 3.65 23.09 2500 2735 | -1.53 -0.80 -0.01
3 -0.60 0.39 1.19 2197 23.20 2433 | -0.63 -0.20 0.04
4 -0.48 0.78 3.54 18.26 20.81 2238 | -1.30 -0.40 0.35
5 0.10 2.18 4,70 23.27 2597 28.10 | -1.82 -0.99 0.21
6 0.10 0.77 2.76 22.22 2396 25.10 | -1.07 -0.30 0.15
7 -0.27 0.33 1.09 20.00 21.56 2289 | -0.83 -0.20 0.56
8 -0.83 0.78 1.68 24.02 2602 2790 | -090 -040 -0.10
9 -0.53 0.31 2.21 1533 1943 2188 | -060 -0.20 0.08

Readlizations on seed variables

Realizations on the seed variables were obtained from measurements by Francois et al.
(1993). The values are listed below.

Case Toam Toirm (°C) T15m (°C)
A 0.9 20.5

B 3.0 20.9

C 4.5 20.9
D

E

0.8 19.8
3.7 20.5
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D.4. Marginal distributions target variables
quantile  a a ay a3 a O bo by by bz by
x10° x 103 x10% x10?2 x10% x1Qv x10 x10% x 103 x10¢ x 103
oCi °C/W oC/W  s2/mb oC/W W/m2K  oC oC/W CG/W  s2/mb oC/W
0.0025 -3.75 -13.8 -948 1.01 -264 0.31 -1.13  -5.13 -20.05 1.01 -9.00
_ 0.01 -2.59 -9.81 -50.2 1.03  -21.8 0.19 -1.03  -4.44 -1451 1.03 -850
0.02 -1.80 -9.62 -375 1.03 -18.3 0.49 -0.80 -3.96 -12.78 1.06 -4.39
0.03 -1.39 -6.99 -234 1.04 -179 0.66 -0.76  -3.59 -11.61 1.08 -1.03
0.0+ -0.77 -6.35 -593 105 -17.3 0.79 -0.68 -3.16 -1060 1.11 -3.62
0.05 -0.53 564 -465 1.06 -164 1.12 -0.66 -2.95 -1051 1.13 -3.21
0.06 -0.52 -5.57 -t65 1.09 -149 1.31 -0.63 -2.62 -10.18 1.15 -2.98
0.07 -047 -496 -356 1.11 -13.8 1.47 -0.61 -2.36 -10.18 1.17 -2.67
0.08 -0.16 -+.27 -3.18 1.13 -13.¢4 1.51 -0.61 -230 -9.75 1.19 -2.38
0.09 -0.44 -3.51 -3.18 1.14 -13.0 1.67 -0.59 -2.19 -929 121 -2.14
0.10 -0.41 -3.06 -3.18 116 -123 1.81 -0.57 -2.11 -9.01 1.22  -1.94
0.11 -0.41 -2.74  -3.04 .18  -11.6 1.97 -0.57 -1.94 -893 1.23 -1.74
0.12 -0.41 -2.74 2268 1.19 -11.0 2.07 -0.57 -1.83 -8.79 1.25 -1.41
0.13 -0.37 -2.52 -239 1.20 -10.6 2.16 -0.56 -1.76 -8.37 126 -1.18
0.14 -0.32 -1.89 -1.59 1.24 -104 2.27 -0.54 -1.63 -8.20 1.29 -1.06
0.15 -0.30 -1.43  -1.23  1.24  -10.1 2.36 -0.53 -1.56 -8.20 1.31 -0.87
0.16 -0.27 -1.08 -1.07 1.25 -9.77 2.42 -0.52 -1.47 -820 133 -0.71
0.17 -0.23 -0.75 -1.07 1.27 954 2.49 -0.51 -1.39 -8.14 1.36 -0.60
0.18 -0.22 -0.61 -0.73 129 .927 2.52 -0.51 -1.33 .7.76 138 -0.54
0.19 -0.22 -0.47  0.30 1.30 -8.70 2.58 -0.50 -1.24 -7.55 139 -046
0.20 -0.18 -0.40 0.83 1.31 -8.36 2,62 -0.49 -1.20 -7.25 140 -0.46
0.21 -0.16 -040 1.21 1.34 -8.14 2.68 048 -1.12 -7.17 142 -0.39
0.22 -0.15 -0.33 149 1.36 -7.66 2.74 -047 -1.06 -7.04 144 -0.32
0.23 -0.01 -0.27 1.81 140 -7.42 2.81 046 -1.00 -6.94 145 -0.24
0.24 -0.01 024  2.01 142 -7.32 2.88 044 -099 -6.61 1.45 -0.07
0.25 -0.01 -0.21 2.18 144 -6.99 2.94 -0.43 -095 -6.36 1.47 -0.04
0.26 0.00 -0.18 235 1.48 -6.77 3.01 -0.42 -0.91 -6.13 1.50 0.01
0.27 0.00 -0.14 247 1.50 -6.55 3.08 <040 -090 -597 153 0.02
0.28 0.00 -0.04 275 1.53 -6.42 3.10 -0.39 .-0.87 -5.81 1.54 0.04
0.29 0.00 0.09 2.95 1.54 -6.24 3.13 -0.39 -085 -5,57 157 0.05
0.30 0.03 0.15 3.01 1.58 -5.98 3.17 -0.38 -0.83 -5,51 1.6l 0.07
031 0.04 0.20 3.27 1.60  -5.63 3,22 -0.37 -0.81 -542 164 0.10
0.32 0.05 0.24 3.40 1.61 -5.27 3.25 036 -0.78 -526 1.65 0.16
0.33 0.06 0.28 3.40 1.62 -5.04 3.30 -0.36 -0.76 -520 166 0.19
0.3¢ 0.06 0.31 3.88 1.65 -1.78 3.30 -0.35 -0.74 -5.04 1.68 0.21
0.35 0.07 034  4.20 1.67 -4.65 3.33 -0.32 -0.74 -1.95 1.70 0.23
0.36  0.08 0.39 4.49 1.68 -4.48 3.36 -0.28 -0.71 -4.80 1.72 0.27
0.37 0.08 0.42 4.74 1.72  -4.22 3.41 -0.26 -0.69 -4.62 175 0.31
0.38 0.09 0.44 489 1.74 -4.18 3.46 -0.23 -0.69 -454 1.77 034
039 0.10 0.45 5.17 1.75 -3.85 3.51 -0.20 -0.67 -450 1.79 036
0.40 0.10 0.48 5.37 1.78  -3.58 3.55 -0.19 -063 -4.38 1.81 0.39
0.41 0.11 0.53 5.69 1.78 -3.33 3.63 -0.18 -0.61 -4+30 1.83 040
0.42 0.13 0.58 5.95 1.78  -2.95 3.70 -0.17 -059 -4.28 1.87 050
0.43 0.13 0.63 6.22 1.78 -2.71 3.75 -0.16 -0.56 -4.18 190 0.65
041 0.14 0.68 6.57 1.80 -2.63 3.84 -0.15 -0.53 -396 1.92 0.69
0.45 0.15 0.74 6.81 1.82 -244 3.89 -0.14 -0.53 -3.82 1.94 0.87
046 0.16 0.74 7.15 1.83 -2.36 3.92 -0.13 .0.51 -368 1.95 1.00
047 0.19 0.76 7.69 1.86 -2.23 4.00 -0.13 -049 -353 198 1.25
0.48 0.20 0.78 7.87 1.88  -2.12 4.04 -0.12 047 -346 198 1.38
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quantile 2 al a a3 ay o bo by by bs by
(continued) x10° x10% x10% x102 x10% xI10 x10° x10% x10% x107 x10%
oC  °C/W °C/W s2/mb °C/W W/m¥K °C  C/W *C/W s/mb °C/W
049 022 083 838 190 -205 4.08 -0.11 -045 -3.36 2.00 142
050 024 088 863 194 -197 412 -0.11 -043 -3.31 2.0l 146
051 025 090 910 198 -1.88 4.18 -0.10 -041 -3.13 2.03 148
052 028 091 935 201 -180 423 -0.09 -038 -2.81 205 1.50
0.53 032 094 957 202 -171 427 -0.09 -035 -2.61 206 155
0.54 034 098 979 204 -161 431 -0.08 -033 -2.54 208 1.6]
0.55 035 1.03 1006 207 -155 437 -0.07 -0.26 -235 211 1.69
056 036 1.08 1032 209 -149 441 -0.06 -0.22 -2.17 214 180
0.57 040 1.11 1036 2.12 -149 446 -0.05 -0.12 -2.03 2.15 1.87
058 043 1.15 1048 215 -142 453 -0.04 -0.09 -1.84 218 1.91
0.59 046 1,19 1073 2.19 -1.30 4,53 -0.03 -0.03 -1.69 220 1.93
0.60 0.51 1.25 1099 221 -1.24 453 -0.02 000 -1.55 2.22 1.99
0.61 052 126 11.27 225 -1.13 453 -0.01 0.01 -148 224 208
0.62 054 128 1152 226 -1.04 456 -001 0.01 -140 224 210
063 054 130 11.8]1 228 -096 459 -00% 0.02 -1.29 225 210
064 055 131 11.83 231 -082 459 0.00 0.02 -1.14 229 219
0.65 0.57 135 1220 232 -068 462 0.00 0.02 -1.06 233 219
066 058 1.38 1256 233 -068 465 0.00 0.03 -095 237 219
0.67 060 1.38 1280 234 -068 472 000 004 -0.82 240 219
0.68 060 1.38 13.12 235 066 477 000 006 -072 243 224
069 062 138 1335 235 -065 477 000 011 -0.65 245 228
0.70 063 142 1375 238 058 482 000 0.16 -0.60 248 233
0.71 065 146 14.08 239 -052 485 0.00 021 -0.52 251 241
0.72 067 151 1451 242 -039 489 000 025 -042 253 244
0.73 067 152 1471 244 -030 496 000 028 -0.29 255 251
0.74 068 159 15.03 245 -0.22 5.01 0.00 030 -0.22 257 2.62
0.75 0.69 160 1539 247 -002 512 0.00 034 -0.16 257 276
0.76 0.70 1.64 1565 248 0.00 520 0.00 039 -0.12 258 277
0.77 0.71 1.67 15.79 252 0.10 526 0.00 042 -006 258 290
0.78 0.73 1.70 1584 254 031 535 000 045 0.17 260 298
0.79 074 1.77 16,10 254 043 542 000 047 029 263 3.13
0.80 076 1.85 1666 256 0.57 546 000 052 041 263 3.20
0.81 0.78 192 1676 260 0.68 547 000 062 051 263 3.21
0.82 080 1.95 1735 261 0.76 5.51 0.00 0.68 061 267 3.36
0.83 083 198 1784 263 0.82 555 00! 076 073 269 3.57
0.8+ 0.85 2.03 18.62 265 090 559 001 086 0.79 270 3.69
0.85 0.89 2.08 19.17 267 0.96 565 001 1.00 086 273 3.83
0.86 093 209 1982 269 1.00 580 001 1.00 1.02 274 4.03
0.87 095 2.13 21.33 270 1.05 604 006 100 1.15 274 4.24
0.88 0.96 223 2222 273 1.12 623 002 1.12 122 274 444
0.89 1.00 228 23.90 275 121 6.31 003 112 134 276 4.69
090 1.02 232 2572 277 134 6.51 004 139 144 278 4.89
091 1.03 248 27.85 279 140 674 005 139 168 282 5.13
092 1.03 2.64 2939 281 146 685 0.06 139 266 285 5733
0.93 1.09 297 3089 285 148 7.06  0.07 139 435 287 5.64
094 1.15 330 31.76 286 1.55 742 0.07 151 595 290 5.90
0.95 1.22 395 3224 288 1.66 760 0.09 200 941 293 6.35
0.96 1.24 556 3587 289 256 8.03 0.11 2.03 1165 294 7.53
097 149 733 3922 291 3.69 849 0.15 219 1571 295 9.58
0.98 1.83 979 41.09 294 5.22 8.75 0.22 2.19 1967 295 15.79
099 283 194 4415 297 736 884 030 247 2228 297 15.79
0.9975 3.27 23.7 5199 299 1864 9.19 054 395 41.29 299 20.32




Symbols and abbreviations

Lower casc

a absorption factor

cp specific heat of air

d displacement height

d clementary effect

d thickness

d vector with model parameters
g non-normalized expert weight
k number of parameters

m sample mean

n general exponent

p pressure

p probability mass function
P number of grid levels

q heat flux

r number of replicates

s sample distribution

t time

t transmission factor

w expert performance score
z height

Zo roughness length

Upper casc

A area

C expert calibration score
c general constant

C heat capacity

Ca discharge coefficient

Cp pressure coeflicient

DM probability distribution for the decision maker
E expected value

G normalized expert weight
GTO Dutch performance indicator for thermal comfort
H ceiling height

H obstacle height

I expert information score
M model

P probability

Q heat gain

R heat resistance

R window opening



212 Symbols and abbreviations
S standard deviation
T temperature
TO Dutch performance indicator for thermal comfort, (static model)
TO* Dutch performance indicator for thermal comfort (adaptive model)
U mean wind velocity
U utility
Greek
o heat transfer coeflicient
o significance level
Y wind reduction factor
€ emittance
A conductivity
o] density
£ stratification parameter
x? chi-square distribution
0] air mass flow rate
Dy air volume flow rate
Subscripts
.m at . m height above floor
ambient (outdoor)
convective
expert
env environment
ext external
n incoming (supply) air
int internal
occ occupant
out outgoing (exhaust) air
pot potential
r radiant
sol solar
srce heat source
w wall
Abbreviations
TRY test reference year
PMV predicted mean vote
PPD predicted percentage dissatisfied
HVAC  heating, ventilation and air conditioning
ET effective temperature
DM decision maker
ACH air changes per hour
NLP non-linear programming
CFD computational fluid dynamics




Samenvatting

In keuzes tussen ontwerpvarianten van een gebouw spelen gebouwprestaties een
belangrijke rol. Deze grootheden vormen een kwantitatieve schaal waarop de beslisser
kan afmeten in hoeverre een gebouwvariant voldoct aan de eisen en doelstellingen. Bij
de bepaling van de gebouwprestatics in de ontwerpfase moet rekening worden
gehouden met onzckerheden. Kwantificering van deze onzekerheden kan bijdragen tot
rationelerc ontwerpbeslissingen en kan sturing geven aan de ontwikkeling c¢n keuze van
methoden om de gebouwprestatie te berekenen.

In de huidige ontwerppraktijk worden bij het berekenen van gebouwprestaties in de
meeste gevallen die onzekerheden niet gekwantificeerd. Dit geldt ook voor prestaties die
zijn gerelateerd aan de warmtchuishouding van een gebouw. In de literatuur over
simulatie van deze prestaties wordt wel enige aandacht besteed aan onzekerheden, maar
verschillende vragen blijven liggen.

Op de eerste plaats wordt in een aantal studies onderkend, dat veel van de
onzekerheden niet zonder meer kunnen worden bepaald op basis van een statistische
analyse van beschikbare gegevens. Dit roept de vraag op welke methode dan wel
geschikt zou zijn om deze onzekerheden te kwantificeren en of een dergelijke methode
ook in de ontwerppraktijk zou kunnen worden toegepast.

Daarnaast zijn op diverse plaatsen in de literatuur intuitieve argumenten te vinden, die
onderstrepen dat kwantitatieve informatic over onzekerheden van belang is voor
ontwerpbeslissingen. Nergens wordt echter uitgewerkt hoe een beslisser deze informatie
zou kunnen gebruiken om zijn beslissing te verbeteren.

In dit proefschrift is een onzekerheidsanalyse uitgewerkt voor een specifieke
gebouwprestatie, en voor een specifick gebouw. Expertmeningen zijn gebruikt om
onzekerheden te bepalen die niet via statistische weg kunnen worden afgeleid. Hoe
kwantitatieve onzekerhcden geintegreerd kunnen worden in (de analyse wvan)
ontwerpbeslissingen is geillustreerd in de context van de Bayesiaanse beslissingstheoric.

Het prestatieaspect dat voor de studie is gckozen betreft thermische behaaglijkheid in de
zomer. Het gebouw waarvan de prestatie is bestudeerd, is een kantoorgebouw van vier
verdiepingen zonder koelinginstallatie of mechanisch ventlatiesysteem. Om  de
gebouwprestatie te bepalen zijn twee indicatoren gehanteerd, namelijk TO en TO*.
Beide indicatoren voorspellen het aantal uren per jaar, waarin in het gebouw een
klimaat heerst dat door meer dan 10% van de mensen zou worden beoordeeld als
‘oncomfortabel warm’. De indicatoren verschillen echter in de onderliggende
comfortmodellen. De TO-indicator is gebaseerd op het statische comfortmodel volgens
Fanger (1970), terwijl het adaptieve comfortmodel van De Dcar cn Brager (1998) ten
grondslag ligt aan de TO*-indicator. De indicatoren zijn bereckend op basis van
numeriek gesimuleerde temperaturcn in het gebouw. Voor de ontwikkeling van het
gebouwsimulaticmodel is een standaardaanpak gevolgd met een aanvulling voor de
modellering van de luchtstromingen.
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Onzekerheid wordt in dit proefschrift gerepresenteerd in termen van subjectieve kansen.
Er wordt onderscheid gemaakt tussen onzekerheden uit vier bronnen. Deze worden
aangeduid als specificatie-onzekerheid, scenario-onzekerheid, modellerings-onzekerheid
en numericke onzekerheid.  Specificatie-onzekerheid ontstaat doordat de
ontwerpspecificaties het op te leveren gebouw niet volledig vastleggen. Scenario-
onzekerheid vloeit voort uit het feit dat de externe factoren waaraan het gebouw wordt
blootgesteld, gedurende de prestatiebepaling niet volledig vastliggen. Modellerings-
onzekerheid komt voort uit aannamen en vereenvoudigingen die worden
geintroduceerd in de ontwikkeling van het fysische gebouwmodel. Numerieke
onzekerheid, tenslotte, kan ontstaan bij de vertaling van het fysische gebouwmodel in
een numeriek computermodel en bij de simulaties met dit computermodel. Scenario-
onzekerheid en numerieke onzekerheid zijn in dit proefschrift niet verder onderzocht.

Het onderzoek dat in het eerste deel van het proefschrift wordt beschreven, concentreert
zich op een ruwe onzekerheidsanalyse. De onzekerheden zijn door de auteur bepaald op
basis van gegevens uit de literatuur en gepropageerd door het gebouwsimulatiemodel.
De resulterende onzekerheden in de prestatieindicatoren waren significant blijkens een
variatiecoéfficiént (standaarddeviatie gedeeld door gemiddelde) van 0.5. De waarden
voor zowel gemiddelden als standaarddeviaties van de beide indicatoren TO en TO*
lagen dicht bij elkaar.

De onzekerheidsanalyse legde verschillende modelparameters bloot, waarvoor de
onzekerheid op ad-hoc basis moest worden bepaald. Van deze parameters kon hetzij
onvoldoende informatie worden gevonden, of waren de beschikbare gegevens
tegenstrijdig, dan wel onbetrouwbaar. De onzekerheid in twee sets van deze parameters
is verder geanalyseerd. Deze parameters waren geidentificeerd als belangrijk bijdragend
aan de onzekerheid in de gebouwprestatie.

De eerste set parameters betrof de winddrukverschilcoéfficiénten, die de lokale
windsnelheid relateren aan de drukverschillen over het gebouw. Deze drukverschillen
vormen de drjvende factor achter de ventilatiestromen door het gebouw. De
onzekerheid in deze coéfficiénten is gekwantificeerd in een expertmeningonderzoek met
een methode volgens Cooke en Goossens (2000). In dit onderzoek hebben zes experts de
onzekerheid in 24 winddrukverschilcoéfficiénten bepaald op basis van generieke kennis
en gegevens. Voor elke coéfficiént is een gewogen gemiddelde van hun schattingen
berekend voor toepassing in de onzekerhcidsanalyse. De gewichten van de experts zijn
bepaald uit een statistische vergelijking van hun schattingen met gemeten waarden die
waren verkregen in twee onafhankelijke windtunnelonderzoeken.

De expertmeningstudie bleek succesvol. De statistische vergelijkingen toonden aan, dat
de gecombineerde schattingen van de experts goed gekalibreerd zijn. Dit betekent dat
deze schattingen geloofwaardig zijn als weerspiegelingen van de onzekerheden in de
winddrukverschilcoéfficiénten. Wel bleek het expertmeningonderzoek veel duurder te
zijn dan een windtunnelstudie, terwijl de resulterende onzekerheden groter waren. Een
voor de hand liggende maatregel om de kosten te drukken door het aantal deelnemende
experts te verkleinen is niet aantrekkelijk. Slechts twee van de zes experts in de huidige
studie bleken namelijk goed gekalibreerd bij vergelijking van hun schattingen met de
gemeten data.
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Expertmeningen zijn ook gebruikt om de onzekerheden te bepalen in de
luchttemperatuurverdeling in de kantoorvertrekken (hoofdstuk 5). Een belangrijk
verschil met de expertmeningstudie aan de winddrukken was het ontbreken van een
geschikt model voor de luchttemperatuurverdeling. Dit bood de mogelijkheid om de
modelontwikkeling parallel tc laten lopen met de onzekerheidsanalyse. Anticiperend op
cen significante onzekerheid in de luchttemperatuurverdeling, gegeven de beperkte
informatie over de randvoorwaarden in de context van een gebouwsimulatie, is een
grof, heuristisch model geponeerd met een beperkt aantal empirische parameters. De
onzekerheden in de relevante aspecten van de temperatuurverdeling zijn via
expertmeningonderzoek bepaald voor negen verschillende sets van randvoorwaarden.
Hiervoor werd dezelfde methode gchanteerd als voor de winddrukken, maar deze keer
met 5 experts. Daarna is probabilistische inversie toegepast volgens de PREJUDICE-
methode van Kraan (2000). Bij probabilistische inversie wordt geprobeerd om een
zodanige kansverdeling over de modelparameters te vinden, dat de onzekerheden in de
modeloutput in overeenstemming zijn met de gecombineerde schattingen van de
experts.

De conclusies uit deze expertmeningstudic zijn sterk vergelijkbaar met die uit de vorige.
De gecombineerde schattingen bleken weer goed gekalibreerd en de schattingen en
kalibratiescores wisselden sterk van expert tot expert. De probabilistische inversie was
succesvol: over de 11 modelparameters kon een verdeling worden gevonden, waarmee
de expertmeningen met voldoende nauwkeurigheid konden worden gereproduceerd.
Dit geeft aan, dat het voorgestelde model voor de luchttemperatuurverdeling niet te grof
is gekozen.

Probabilistische inversie is een krachtig hulpmiddel gebleken om te toetsen of de mate
van modelverfijning in overeensternming is met de onzekerheid in het proces dat door
het model beschreven moet worden. De methode is echter kostbaar in termen van
rekentijd en vereist in zijn huidige vorm veel specifieke kennis van de gebruiker. De
techniek is dan ook niet geschikt voor frequent gebruik in de ontwerppraktijk.

In het eerste deel van hoofdstuk 6 zijn alle onzekerheden in modelparameters door het
gebouwmodel gepropageerd om de onzekerheid in de thermische behaaglijkheids-
prestatie te bepalen. Voor zowel de TO- als dec TO*-indicator is cen variatiecoéfficiént
gevonden van 0.6. Dit is een gematigde toename in vergelijking met de waarde van 0.5,
die in de initiéle onzekerheidsanalyse in hoofdstuk 3 was gevonden.

Het tweede deel van het hoofdstuk illustreert hoe Bayesiaanse beslissingstheorie kan
worden gebruikt om kwantitatieve informatie over de onzekerheden constructief in te
zetten bij cen ontwerpbeslissing. Een voorbeeld wordt beschreven, waarin twee (fictieve)
beslissers onder dezelfde omstandigheden de keuze moeten maken om wel of geen
koelinginstallatie in het gebouwontwerp op te nemen. Het voorbeeld laat zien hoe de
twee beslissers, die in afwezigheid van onzekerheid dezelfde keuze zouden maken, tot
verschillende beslissingen komen als gevolg van hun verschillende risico-attitude. Dit
onderstrecpt het belang van  explicicte  onzekerhcidsinformatie  voor  rationele
ontwerpkeuzes.

M.S. de Wit, Uncertainty in predictions of thermal comfort in buildings, Proefschrift
TUDeclft, 2001.
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