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ABSTRACT

Single-cell technologies are emerging fast due to
their ability to unravel the heterogeneity of biologi-
cal systems. While scRNA-seq is a powerful tool that
measures whole-transcriptome expression of single
cells, it lacks their spatial localization. Novel spatial
transcriptomics methods do retain cells spatial in-
formation but some methods can only measure tens
to hundreds of transcripts. To resolve this discrep-
ancy, we developed SpaGE, a method that integrates
spatial and scRNA-seq datasets to predict whole-
transcriptome expressions in their spatial configura-
tion. Using five dataset-pairs, SpaGE outperformed
previously published methods and showed scala-
bility to large datasets. Moreover, SpaGE predicted
new spatial gene patterns that are confirmed inde-
pendently using in situ hybridization data from the
Allen Mouse Brain Atlas.

INTRODUCTION

Single cell technologies rapidly developed over the last
decade and have become valuable tools for enhancing
our understanding of biological systems. Single-cell RNA-
sequencing (scRNA-seq) allows unbiased measurement of
the entire gene expression profile of each individual cell
and has become the de facto technology used to character-
ize the cellular composition of complex tissues (1,2). How-
ever, single cells often have to be dissociated before per-
forming scRNA-seq and results in losing the spatial context
and hence limits our understanding of cell identities and re-
lationships. Recently, spatial transcriptomics technologies
have advanced and provide localizations of gene expressions
and cellular structure at the cellular level (3,4). Many cur-
rent protocols can be divided in two categories: (i) imaging-
based methods (e.g. osmFISH, MERFISH and seqFISH+)
(5–7), and (ii) sequencing-based methods (e.g. STARmap

and Slide-seq) (8,9). Imaging-based protocols have a high
gene detection sensitivity; capturing high proportion of the
mRNA molecules with relatively small dropout rate. While
seqFISH+ and the latest generation of MERFISH can mea-
sure up to ∼10 000 genes (7,10), many different imaging-
based protocols are often limited in the number of genes
that can be measured simultaneously. On the other hand,
sequencing-based protocols like STARmap can scale up to
thousands of genes, it has a relatively lower gene detection
sensitivity. Slide-seq is not limited in the number of mea-
sured genes and can be used to measure the whole tran-
scriptome. However, similar to STARmap, Slide-seq suf-
fers from a low gene detection sensitivity. In addition, osm-
FISH, MERFISH and STARmap can capture genes at the
single-molecule resolution, which can be averaged or aggre-
gated to the single-cell level. While Slide-seq has a resolu-
tion of 10�m, which is comparable to the average cell size,
but does not always represent a single-cell.

Given the complementary information provided by both
scRNA-seq and spatial transcriptomics data, integrating
both types would provide a more complete overview of cell
identities and interactions within complex tissues. This in-
tegration can be performed in two different ways (11): (i)
dissociated single-cells measured with scRNA-seq can be
mapped to their physical locations in the tissue (12–14),
or (ii) missing gene expression measurements in the spa-
tial data can be predicted from scRNA-seq. In this study,
we focus on the second challenge in which measured gene
expressions of spatial cells can be enhanced by predict-
ing the expression of unmeasured genes based on scRNA-
seq data of a matching tissue. Several methods have ad-
dressed this problem using various data integration ap-
proaches to account for the differences between the two data
types (15–18). All these methods rely on joint dimensional-
ity reduction methods to embed both spatial and scRNA-
seq data into a common latent space. For example, Seurat
uses canonical correlation analysis (CCA), Liger uses non-
negative matrix factorization (NMF), and Harmony uses
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principal component analysis (PCA). While Seurat, Liger
and Harmony rely on linear methods to embed the data,
gimVI uses a non-linear deep generative model. Despite re-
cent benchmarking efforts (19), a comprehensive evalua-
tion of these methods for the task of spatial gene predic-
tion from dissociated cells is currently lacking. For example,
Seurat, Liger and gimVI, have only been tested using rela-
tively small datasets (<2,000 cells) (15,16,18). It is thus not
clear whether a complex model, like gimVI, is really nec-
essary. Moreover, Seurat, Harmony and gimVI lack inter-
pretability of the integration procedure, so that it does not
become clear which genes contribute in the prediction task.

Here, we present SpaGE (Spatial Gene Enhancement), a
robust, scalable and interpretable machine-learning method
to predict unmeasured genes of each cell in spatial tran-
scriptomic data through integration with scRNA-seq data
from the same tissue. SpaGE relies on domain adaptation
using PRECISE (20) to correct for differences in sensitivity
of transcript detection between both single-cell technolo-
gies, followed by a k-nearest-neighbor (kNN) prediction of
new spatial gene expression. We demonstrate that SpaGE
outperforms state-of-the-art methods by accurately predict-
ing unmeasured gene expression profiles across a variety of
spatial and scRNA-seq dataset pairs of different regions in
the mouse brain. These datasets include a large spatial data
with >60,000 cells, used to illustrate the scalability and com-
putational efficiency of SpaGE compared to other methods.

MATERIALS AND METHODS

SpaGE algorithm

The SpaGE algorithm takes as input two gene expression
matrices corresponding to the scRNA-seq data (reference)
and the spatial transcriptomics data (query). Based on the
set of shared genes between the two datasets, SpaGE en-
riches the spatial transcriptomics data using the scRNA-seq
data, by predicting the expression of spatially unmeasured
genes. The SpaGE algorithm can be divided in two major
steps: (i) alignment of the two datasets using the domain
adaptation algorithm PRECISE (20), and (ii) gene expres-
sion prediction using k-nearest-neighbor regression.

First, PRECISE was used to project both datasets into
a common latent space. Let R(n × g) be the gene expression
matrix of the reference dataset having n cells and g genes,
and let Q(m × h) be the gene expression matrix of the query
dataset having m cells and h genes. Using the set of shared
genes p = g ∩ h, PRECISE applies independent Principal
Component Analysis (PCA) for each dataset to define two
independent sets of Principal Components (PCs), such that:

R(n×p) = R′
(n × d) PCr (d×p) with PCr PCT

r = Id (1)

and

Q(m×p) = Q′
(m × d) PCq(d×p) with PCq PCT

q = Id (2)

where d is the number of desired PCs, PCr and PCq
represents the principal components of the reference
and the query datasets, respectively. We choose d = 50
for the STARmap AllenVISp, MERFISH Moffit and seq-
FISH AllenVISp dataset pairs, and d = 30 for all the osm-
FISH dataset pairs. Next, PRECISE compares these inde-

pendent PCs by computing the cosine similarity matrix and
decomposing it by SVD (21):

PCr PCq
T = U�VT (3)

where U and V represent orthogonal (of size d) transforma-
tions on the reference and query PCs, respectively, and � is
a diagonal matrix. U and V are then used to align the PCs,
yielding the so-called Principal Vectors (PVs), such that:

PVr = UT PCr (4)

and

PVq = VT PCq (5)

PVr and PVq are the principal vectors of the reference
and the query datasets, respectively, retaining the same in-
formation as the principal components. However, these PVs
have now a one-to-one correspondence as their cosine sim-
ilarity matrix is diagonal (the matrix �). PVs are pairs of
vectors (PV1

r , PV1
q ), . . . , (PVd

r , PVd
q ) sorted in decreas-

ing order based on similarity. To remove noisy components,
we choose a limited number of PVs, d′, for further analysis,
where the cosine similarity is higher than a certain thresh-
old (0.3). The reference PVs, PVr, are then used to project
and align both the scRNA-seq (reference) and the spatial
transcriptomics (query) datasets:

Raligned (n × d ′) = R(n × p) PVT
r (p × d ′) (6)

and

Qaligned (m × d ′) = Q(m × p) PVT
r (p × d ′) (7)

After aligning the datasets, SpaGE predicts the expres-
sion of the spatially unmeasured genes, l = g − p, from
the scRNA-seq dataset. For each spatial cell i ∈ m, we de-
fine the k-nearest-neighbors (k = 50) from the n dissociated
scRNA-seq cells, using the cosine distance. Next, we calcu-
late an array of weights wi j between spatial cell i and its
nearest neighbors j ∈ NN(i ). Out of the 50 neighbors, we
only keep neighbors with positive cosine similarity with cell
i (i.e. cosine distance < 1), such that:

∀ j ∈ NN (i ) and dist (i, j ) < 1

wi j = 1 − dist (i, j )∑
j dist (i, j )

(8)

wi j = wi j

length
(
wi j

) − 1
(9)

The predicted expression Yil of the set of spatially unmea-
sured genes l for cell i is calculated as a weighted average of
the nearest neighbors dissociated cells:

Yil =
∑

j ∈ NN (i )
dist (i, j ) < 1

wi j ∗ Rjl (10)

Gene contribution to the integration

To evaluate the contribution of each gene in forming this
common latent space PVr , we calculated the gene contribu-
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tion Cg of gene g as follows:

Cg =
∑d ′

i = 1
β2

gi (11)

where βgi is the loading of gene g to the i-th principal vector
in PVr, and d′ is the final number of PVs in PVr. To obtain
the top contributing genes, the Cg values are sorted in de-
scending order across all genes. We used the same criteria to
calculate the contribution of each gene for dataset-specific
PCs or PVs.

Datasets

We used six dataset pairs (Table 1) composed of four
scRNA-seq datasets (AllenVISp (22), AllenSSp (23), Zeisel
(24) and Moffit (4)) and four spatial transcriptomics
datasets (STARmap (8), osmFISH (5), MERFISH (4)
and seqFISH+ (7)). The AllenVISp (GSE115746) and the
AllenSSp datasets were downloaded from https://portal.
brain-map.org/atlases-and-data/rnaseq. The AllenVISp is
obtained from the ‘Cell Diversity in the Mouse Cortex –
2018’ release. The AllenSSp is obtained from the ‘Cell Di-
versity in the Mouse Cortex and Hippocampus’ release
of October 2019. We downloaded the whole dataset and
used the metadata to only select cells from the SSp region.
The Zeisel dataset (GSE60361) was downloaded from http:
//linnarssonlab.org/cortex/, while the Moffit 10X dataset
(GSE113576) was downloaded from GEO.

The STARmap dataset was downloaded from
the STARmap resources website (https://www.
starmapresources.com/data). We obtained the gene
count matrix and the cell position information for the
largest 1020-gene replicate. Cell locations and morpholo-
gies were identified using Python code provided by the
original study (https://github.com/weallen/STARmap).
The osmFISH dataset was downloaded as loom
file from http://linnarssonlab.org/osmFISH/, we ob-
tained the gene count matrix and the metadata us-
ing the loompy Python package. The MERFISH
dataset was downloaded from Dryad repository (https:
//doi.org/10.5061/dryad.8t8s248), we used the first naı̈ve
female mouse (Animal ID = 1). The seqFISH+ dataset
was obtained from the seqFISH-PLUS GitHub repository
(https://github.com/CaiGroup/seqFISH-PLUS), we used
the gene count matrix of the mouse cortex dataset.

Data preprocessing

For all the scRNA-seq datasets, we filtered out genes ex-
pressed in less than 10 cells. No filtration was applied on
the cells, except for the AllenVISp dataset for which we fil-
tered low quality cells provided from the metadata (‘Low
Quality’ and ‘No Class’ cells). For the Zeisel dataset, we
only used the somatosensory cortex cells excluding the hip-
pocampus cells. Next, scRNA-seq datasets were normalized
by dividing the counts within each cell by the total num-
ber of transcripts within that cell, scaling by 106 and log1p
transformed. Further, we scaled the data by making each
gene centered and scaled (zero mean and unit variance) us-
ing the SciPy Python package (25).

For spatial transcriptomics datasets all gene were used,
except for the MERFISH dataset for which we removed
the blanks genes and the Fos gene (non-numerical values).
Additionally, we filtered out cells labeled as ‘Ambiguous’
from the MERFISH dataset. Similar to the Zeisel dataset,
we only kept cells from cortical regions for the osmFISH
dataset (‘Layer 2–3 lateral’, ‘Layer 2–3 medial’, ‘Layer 3–
4’, ‘Layer 4’, ’Layer 5’, ‘Layer 6’ and ‘Pia Layer 1’). For the
seqFISH+ dataset, we only used the cells from the ‘Cortex’
region. No cells were filtered from the STARmap dataset.
Further, each dataset was normalized by dividing the counts
within each cell by the total number of transcripts within
that cell, scaling by the median number of transcripts per
cell, and log1p transformed. Similar to the scRNA-seq data,
we scaled the spatial data using the SciPy Python package
(25).

It is important to note that in all experiments, the scaled
datasets are used as input for the alignment part, while the
prediction is applied using the normalized version of the
scRNA-seq dataset (Equation 10).

Cross validation

We evaluated the prediction performance of all methods
using a leave-one-gene-out cross validation. For a set of
N shared genes between the spatial and the scRNA-seq
datasets, one gene is left out and the remaining N-1 genes
are used for integration and prediction of the left-out gene.
The prediction is then evaluated by comparing the mea-
sured and predicted spatial profiles of the left-out-gene.

For the STARmap AllenVISp dataset pair, we applied
a more challenging cross validation setup. Similar to the
leave-one-gene-out setup, for a set of N shared genes, one
gene is left out to be predicted. From the remaining N − 1
genes, we excluded the 100 genes that are most correlated
(absolute Pearson correlation) with the left-out gene. The
remaining N − 101 genes are then used for the integration
and prediction of the left-out gene.

Benchmarked methods

We compared the performance of SpaGE versus three state-
of-the-art methods for data integration: Seurat, Liger, and
gimVI. Seurat and Liger are available as R packages, while
gimVI is available through the scVI Python package (26).
We were not able to include Harmony in the comparison, as
the code to predict unmeasured gene expression is not avail-
able. During the benchmark, all methods were applied us-
ing their default settings, or the settings provided in the ac-
companying examples or vignettes. Data normalization and
scaling were performed using the built-in functions in each
package, NormalizeData and ScaleData functions in Seu-
rat, normalize and scaleNotCenter functions in Liger, while
gimVI implicitly preprocess the data while computing.

Moran’s I statistic

The Moran’s I statistic (27) is a measure of spatial autocor-
relation calculated for each spatial gene. The Moran’s I val-
ues can range from −1 to 1, where a value close to 1 indi-
cates a clear spatial pattern, and a value close to 0 indicates
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Table 1. Summary of the dataset pairs used in this study

Spatial data scRNA-seq data

Spatial scRNA-seq dataset pair # of cells # of genes Tissue # of cells # of genes Tissue

STARmap AllenVISp (8,22) 1,549 1,020 VISc 14,249 34,617 VISc
osmFISH Zeisel (5,24) 3,405 33 SMSc 1,691 15,075 SMSc
osmFISH AllenSSp (5,23) 3,405 33 SMSc 5,577 30,527 SMSc
osmFISH AllenVISp (5,22) 3,405 33 SMSc 14,249 34,617 VISc
MERFISH Moffit (4) 64,373 155 POR 31,299 18,646 POR
seqFISH AllenVISp (7,22) 524 10,000 Cortex 14,249 34,617 VISc

VISc: Visual cortex; SMSc: Somatosensory cortex; POR: Pre-optic region

random spatial expression, while a value close to −1 indi-
cated a chess board like pattern. We calculated the Moran’s
I using the following equation:

I = N
W

∑
i

∑
j wi j (xi − x̄)

(
xj − x̄

)
∑

i (xi − x̄)2 (12)

where x is the gene expression array, x̄ is the mean expres-
sion of gene x, N is the total number of spatial cells, wi j
is a matrix containing spatial weights with zeros on the di-
agonal, and W is the sum of wi j . We calculated the spatial
weights wi j using the XY coordinates of the spatial cells,
for each cell we calculated the kNN using the spatial coor-
dinates (k = 4). We assigned wi j = 1 if j is in the nearest
neighbors of i, otherwise wi j = 0.

Down-sampling

For the 994 shared genes in the STARmap AllenVISp
dataset pair, we first selected the top 50 spatial genes with
high Moran’s I statistic values to be used as test set. For
the remaining 944 genes, we calculated the pairwise Pear-
son correlation using the scRNA-seq dataset. If the abso-
lute value of the correlation of two genes is larger than 0.7,
we removed the gene with the lower variance. After remov-
ing highly correlated genes, we sorted the remaining genes
according to their expression variance in the scRNA-seq
dataset. We selected the top 10, 30, 50, 100, 200 and 500
genes with high variance, these genes were used for align-
ment of the two datasets and prediction of the expression
of the test genes. The prediction performance of these gene
sets was compared with using all 944 genes.

We applied the same down-sampling criteria on the 9,751
shared genes in the seqFISH AllenVISp dataset pair, except
for two differences: (i) the 50 spatial genes used as test set
were selected as the top predicted genes in the leave-one-
gene-out cross validation experiment, (ii) after removing
correlated genes, we selected sets of the top 10, 30, 50, 100,
200, 500, 1000, 2000, 5000 and 7000 most variable genes, as
well as all 9,701 genes.

Cell-type marker genes

To evaluate the performance of SpaGE per cell type, we
defined sets of marker genes for four major brain cell
types: Inhibitory neurons, Excitatory neurons, Astrocytes
and Oligodendrocytes. The marker genes of the osmFISH
dataset were directly obtained from the original paper (5).
For the STARmap and MERFISH datasets, we used the

FindMarkers function from the Seurat R package to define
the top 20 differentially expressed genes per cell type, com-
paring one cell type vs the rest using a two-sided Wilcoxon
rank sum test and the Bonferroni method for multiple test
correction, with min.pct = 0.25 and logfc.threshold = 0.25.

A model to predict trustworthiness of the SpaGE prediction

To determine whether we can trust a predicted spatial pat-
tern by SpaGE, we trained a logistic regression model that
predicts the trustworthiness of the predicted signal from
four characteristics of the data: (i) the Moran’s I statistic of
the predicted spatial gene expression (pMIi ), (ii) the mean
μi and (iii) variance σ i of the expression of that gene in the
scRNA-seq data and (iv) the percentage of cells express-
ing that gene in the scRNA-seq data (ei ). The trustworthi-
ness, Yi, used to train the model, is determined from the
Spearman correlation between the SpaGE-predicted spatial
pattern and the measured spatial pattern, i.e. correlations
above the median correlation are considered to be trustwor-
thy. This gives the following logistic regression model:

Yi ∼ pMIi + μi + σi + ei

Note that the inputs to the model can be determined
without the need to have access to the measured spatial ex-
pression of the gene, and consequently the model can be
used to evaluate whether the predicted spatial pattern of ex-
pression of an unmeasured spatial gene is to be trusted or
not.

RESULTS

SpaGE overview

We developed SpaGE, a platform that enhances the spatial
transcriptomics data by predicting the expression of unmea-
sured genes from a dissociated scRNA-seq data from the
same tissue (Figure 1). Based on the set of shared genes,
we align both datasets using the domain adaptation method
PRECISE (20), to account for technical differences as well
as gene detection sensitivity differences. PRECISE geomet-
rically aligns linear latent factors computed on each dataset
and finds gene combinations expressed in both datasets.
These gene combinations thus define a common latent space
and can be used to jointly project both datasets. Next, in this
common latent space, we use the kNN algorithm to define
the neighborhood of each cell in the spatial data from the
scRNA-seq cells. These neighboring scRNA-seq cells are
then used to predict the expression of spatially unmeasured
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Figure 1. SpaGE pipeline. SpaGE takes as input two datasets, a scRNA-seq dataset and a spatial transcriptomics dataset measured from the same tissue.
SpaGE uses gene combinations of equal significance in both datasets to predict spatial locations of unmeasured genes. Using PRECISE, SpaGE finds
directions that are important for both datasets, by making use of a geometrical alignment of the independent PCs to produce the PVs. SpaGE aligns
both datasets by projecting on the PVs of the reference dataset. Using the aligned datasets, SpaGE applies kNN prediction to define new gene expression
patterns for spatially unmeasured genes, predicted from the dissociated scRNA-seq data. Each spatial cell can be enhanced by having the expression of the
whole transcriptome.

genes. Finally, we end up with the full gene expression pro-
file of each cell in the spatial data.

The alignment step is the most crucial step in the pipeline
of SpaGE. For this purpose, we use PRECISE, a domain
adaptation method previously proposed to predict the drug
response of human tumors based on pre-clinical models
such as cell lines and mouse models. We adapted PRECISE
to the task of integrating the spatial data with the scRNA-
seq data by defining the common aligned subspace between
both datasets (Figure 1). PRECISE takes as input the ex-
pression matrix of both datasets, having the same set of
(overlapping) genes but measured differently and within dif-
ferent cells. As we are aiming to fit each spatial cell to the
most similar scRNA-seq cells, we may refer to the spatial
dataset as the ‘query’ and the scRNA-seq dataset as the
‘reference’. First, PRECISE obtains a lower dimensional
space for each dataset separately using a linear dimensional-
ity reduction method, such as Principal Component Analy-
sis (PCA). Next, the two independent sets of principal com-
ponents (PCs) are aligned by applying a singular value de-
composition. We align the two sets of principal components
using the singular vectors to obtain the aligned components,
named principal vectors (PVs). These PVs are sorted in de-
creasing order based on their similarity between the refer-
ence and the query datasets. This allows us to filter out dis-
similar or noisy signals, by discarding PVs with relatively
low similarity, thus keeping only the common latent space
(Methods). The principal vectors of the reference dataset
(PVr ) are considered as the aligned latent space. We project

both datasets on PVr to obtain the new aligned versions
used for the kNN prediction.

We performed SpaGE on six dataset pairs from different
regions in the mouse brain, varying in the number of cells
and the number of spatially measured genes, summarized
in Table 1. To show the alignment performance, we calcu-
lated the cosine similarity between the PCs and the PVs,
i.e. before and after the alignment. Across all six dataset
pairs, we observed that indeed the relation between the PCs
is not one-to-one, as these PCs are obtained from two dif-
ferent datasets (Supplementary Figure S1 and S2). How-
ever, after alignment using PRECISE, the diagonal cosine
similarity between the PVs is maximized showing a one-
to-one relationship between the PVs of both datasets. Sup-
plementary Figure S1A shows the diagonal cosine similar-
ity before and after PRECISE (i.e. between PCs and PVs)
across all dataset pairs, showing a relatively large increase in
similarity after the alignment using PRECISE. As we used
only the informative PVs, the final number of PVs varied
across datasets (Supplementary Table S1) and, as a result,
the amount of explained variance for each dataset varied,
from ∼6% for the seqFISH+ dataset to ∼94% for the osm-
FISH dataset.

Another interesting feature of SpaGE is the ability to in-
terpret the most contributing genes defining the latent inte-
gration space (Methods). In general, these genes are highly
variable and in most cases are related to cell type differences.
A good example is the integration of the osmFISH Zeisel
dataset pair, in which the top six contributing genes are
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Tmem2, Mrc1, Kcnip2, Foxj1, Apln and Syt6. These genes
are related to six different cell categories previously defined
in the osmFISH paper (5): Oligodendrocytes, Immune cells,
Inhibitory neurons, Ventricle, Vasculature and Excitatory
neurons, respectively.

We further illustrate the quality of the alignment by ex-
amining the overlap in the top contributing genes for the
PCs (before PRECISE) and the PVs (after PRECISE). Us-
ing the STARmap AllenVISp dataset pair, we obtained the
top 50 contributing genes for the PCs of the STARmap
data and the PCs of the AllenVISp data. These two sets
shared only 2 genes out of 50. After alignment, the shared
genes, between the top 50 contributing genes for the PVs
of the STARmap data and the PVs of the AllenVISp data,
increased to 12 genes. Also, we applied GO enrichment on
these top contributing gene sets in each case using PAN-
THER (http://pantherdb.org/, Fisher exact test with Bon-
ferroni multiple test correction). The STARmap PCs and
the AllenVISp PCs had 9 enriched biological processes
each, sharing 3 processes in common (Supplementary Table
S2). While the STARmap PVs and the AllenVISp PVs had
27 and 41 enriched biological processes, respectively, shar-
ing 12 processes in common. Interestingly many of them
related are to regulation processes, such as regulation of
biological process, cell population proliferation, metabolic
processes, cell motility, locomotion and cellular component
movement.

SpaGE outperforms state-of-the-art methods on the
STARmap dataset

Using the first dataset pair STARmap AllenVISp, we ap-
plied SpaGE to integrate both datasets and predict unmea-
sured spatial gene expression patterns. In order to evalu-
ate the prediction, we performed a leave-one-gene-out cross
validation (Methods). The STARmap AllenVISp dataset
pair shares 994 genes. In each cross-validation fold, one
gene is left out and the remaining 993 genes are used as
input for SpaGE to predict the spatial expression pattern
of the left-out gene. We evaluated the prediction perfor-
mance by calculating the Spearman correlation between the
original measured spatially distributed values and the pre-
dicted values of the left-out gene. We performed the same
leave-one-gene-out cross validation using Seurat, Liger and
gimVI, to benchmark the performance of SpaGE. Results
show a significant improvement in performance for SpaGE
compared to all three methods (P-value < 0.05, two-sided
paired Wilcoxon rank sum test), with a median Spearman
correlation of 0.125 compared to 0.083, 0.067 and 0.035 for
Seurat, Liger and gimVI, respectively (Figure 2A).

Further, we compared the Spearman correlation of
SpaGE versus the state-of-the-art methods per gene, to ob-
tain a detailed evaluation. Results show better performance
of SpaGE across the majority of genes, but not all (Figure
2B−D). Next, we visually compared a few genes that had
high correlations for each method. For the top three pre-
dicted genes of SpaGE (Pcsk2, Pgm2l1 and Egr1), Seurat
obtained a good prediction as well, as these three genes are
in the top 10 predicted genes of Seurat. Liger failed to pre-
dict Egr1, while gimVI failed to predict Pgm2l1 and Egr1
(Supplementary Figure S3A). We further looked for exam-

ples where other methods obtained higher correlations than
SpaGE, excluding the top 10 predicted genes by SpaGE.
Compared to Seurat, SpaGE similarly predicted the expres-
sion of Arpp19, but predicted relatively higher contrast pat-
terns for Pcp4 and Arc (Supplementary Figure S3B). Com-
pared to Liger, SpaGE similarly predicted the expression of
Mobp, higher contrast pattern for Hpcal4, and better pre-
dicted the spatial pattern of Tsnax (Supplementary Figure
S3C). Compared to gimVI, SpaGE predicted a lower con-
trast pattern for Arx, a higher contrast pattern for Snurf,
but failed to reproduce the measured spatial pattern for Bcl6
(Supplementary Figure S3D). Remarkably, the predicted
spatial patterns of SpaGE, for all three genes, are more in
agreement with the data from the Allen Brain Atlas, sug-
gesting that these genes were not accurately measured in the
STARmap dataset.

Although the correlation values are in general low,
SpaGE is capable of accurately reconstructing genes with
clear spatial pattern in the brain. Figure 2E shows a set of
genes known to have spatial patterns (previously reported
by Seurat, Liger and gimVI). In this set of genes, Seu-
rat and Liger are performing well, except that Liger pro-
duced a lower contrast expression pattern in some cases
(e.g. Lamp5 and Bsg). gimVI produced good prediction for
Lamp5, however, gimVI was not able to predict the correct
gene patterns for the other genes.

To obtain a better understanding and interpretation of
these correlation values, we evaluated the effect of the kNN
algorithm on the prediction performance. To do so, we di-
vided the AllenVISp dataset into two stratified folds en-
suring an equal composition of cell types. We used one-
fold to predict genes in the other fold using the shared
genes. Note that this does not require an alignment (PRE-
CISE), so we can test the influence of the kNN regression.
We applied a leave-one-gene-out cross validation using the
same set of 994 shared genes of the STARmap AllenVISp
dataset pair, which resulted in a median Spearman correla-
tion of 0.551 (Supplementary Figure S4A). While the per-
formance is clearly better compared to that of SpaGE using
the STARmap AllenVISp dataset pair (median Spearman
correlation = 0.125), it shows that the kNN regression is
partially responsible for reduced correlation values.

To investigate the influence of the correlation metric,
we tested also the Pearson and Kendall correlation mea-
sures, which showed that the highest correlation values are
obtained when using the Spearman correlation (Supple-
mentary Figure S4B). Next, we were interested how well
SpaGE could predict when there was no difference be-
tween measurement modalities (here, spatial and scRNA-
seq). Therefore, we used SpaGE to integrate the Zeisel and
AllenSSp datasets, representing two scRNA-seq measured
datasets from the same brain region. Using the leave-one-
gene-out cross validation and the same shared genes of the
STARmap AllenVISp dataset pair, we obtained a median
Spearman correlation of 0.303 (query: Zeisel, reference: Al-
lenSSp) and 0.331 (query: AllenSSp, reference: Zeisel) (Sup-
plementary Figure S4B). These correlation values suggest
that the observed correlation values obtained when apply-
ing SpaGE on spatial and scRNA-seq datasets are not as
low as they appear.
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Figure 2. Prediction performance comparison for the STARmap AllenVISp dataset pair. (A) Boxplots showing the Spearman correlations for the leave-one-
gene-out cross validation experiment for each method. The blue lines show the median correlation across all genes with a better performance for SpaGE.
The green dots show the correlation values for individual genes. The P-values show the significant difference between all correlation values of SpaGE
and each other method, using a paired Wilcoxon rank-sum test. (B−D) Detailed performance comparison between SpaGE and (B) Seurat, (C) Liger,
(D) gimVI. These scatter plots show the correlation value of each gene across two methods. The solid black line is the y = x line, the dashed lines show
the zero correlation. Points are colored according to the Moran’s I statistic of each gene. All scatter plots show that the majority of the genes are skewed
above the y = x line, showing an overall better performance of SpaGE over other methods. (E) Predicted expression of known spatially patterned genes in
the STARmap dataset. Each row corresponds to a single gene having a clear spatial pattern. First column from the left shows the measured spatial gene
expression in the STARmap dataset, while other columns show the corresponding predicted expression pattern by SpaGE, Seurat, Liger and gimVI, using
the leave-one-gene-out cross validation experiment. Prediction is performed using the AllenVISp dataset.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/48/18/e107/5909530 by TU

 D
elft user on 02 N

ovem
ber 2020



e107 Nucleic Acids Research, 2020, Vol. 48, No. 18 PAGE 8 OF 16

Additionally, although it is important to accurately pre-
dict the expression of all genes, genes with distinct spa-
tial patterns are more important to accurately predict com-
pared to non- or randomly expressed genes. To quantify
the existence of spatial patterns, we calculate the Moran’s
I statistic of each gene using the original STARmap spatial
data (Methods). We compared the prediction performance
of each gene with the corresponding Moran’s I value. For
SpaGE, Seurat and Liger, we observed a positive relation-
ship between the prediction performance and the Moran’s
I values, i.e. genes with spatial patterns are better pre-
dicted (Supplementary Figure S5A−C). On the other hand,
gimVI performed worse on genes with high Moran’s I statis-
tic (Supplementary Figure S5D).

Further, we evaluated the prediction performance of all
methods using a more challenging cross validation setup.
Compared to the (traditional) leave-one-gene-out setup, the
left-out gene is predicted using less shared genes in this set
up, i.e. we removed the (100) most correlated genes with the
left-out gene from the training set (Methods). This more
challenging evaluation did result in comparable prediction
performance to the leave-one-gene-out setup, with roughly
the same differences and ranking across all methods (Sup-
plementary Figure S6A). In addition, we evaluated how well
a gene can be predicted when using less shared genes in gen-
eral. First, we selected a fixed test set of 50 genes, next we
down-sampled the remaining set of 944 shared genes in a
guided manner (Methods). For down-sampled shared genes
sets of 10, 30, 50, 100, 200, 500 and all 944 genes, SpaGE
performance always increases with the number of shared
genes as expected (Supplementary Figure S6B).

SpaGE predicts unmeasured spatial gene patterns that are in-
dependently validated

After validating SpaGE to accurately predict the spatially
measured genes, we applied SpaGE to predict new unmea-
sured genes for the spatial data, with the aim to define
novel spatial gene patterns. We illustrate SpaGE’s capa-
bility of such task using the STARmap AllenVISp dataset
pair. First, during the leave-one-gene-out cross validation,
SpaGE was able to produce the correct spatial pattern for
Rorb, Syt6 and Tbr1 (Figure 3). These three genes were orig-
inally under-expressed, possibly due technical noise or low
gene detection sensitivity in the STARmap dataset. Our pre-
dictions using SpaGE are in agreement with the highly sen-
sitive cyclic smFISH dataset (osmFISH (5)) measured from
the mouse somatosensory cortex, a similar brain region in
terms of layering structure to the visual cortex measured by
the STARmap dataset. Further, using SpaGE, we were able
to obtain novel spatial gene patterns for five genes not origi-
nally measured by the STARmap dataset, showing clear pat-
terns through the cortical layers (Figure 4). These predicted
patterns are supported by the Allen Brain Atlas in-situ hy-
bridization (ISH).

To quantitatively evaluate the predicted spatial patterns
for non-measured genes, we trained a logistic regression
model to estimate whether a predicted spatial gene expres-
sion can be trusted or not (Methods). We used three sta-
tistical features from the scRNA-seq data, in addition to
the Moran’s I statistic of the predicted spatial pattern. When

Figure 3. SpaGE accurately predicted the expression of Rorb, Syt6 and Tbr1
in agreement with the osmFISH data. These three genes (shown in rows)
were wrongly measured in the original STARmap data (shown in the left
column). Using the STARmap AllenVISp dataset pair, SpaGE was able to
reconstruct the correct spatial gene expression patterns (middle column).
These predicted patterns are in agreement with the measured gene expres-
sion patterns measure by the osmFISH dataset (right column), a highly
sensitive single-molecule technology.

training this model, we used the Spearman correlation be-
tween the SpaGE-predicted spatial pattern and the mea-
sured spatial pattern to determine whether a gene can be
trusted or not, i.e. we assumed that correlations above the
median correlation are trustworthy. Using the 994 shared
genes of the STARmap AllenVISp dataset pair, we obtained
an average accuracy of 0.71 for a stratified 2-fold cross val-
idation. Next, we trained the model using all genes and ap-
plied it to the estimated gene patterns in Figures 3 and 4.
This model judged the predicted patterns of Rorb, Tbr1,
Tesc, Pvlr3 and Rora, trustworthy, and the patterns for Syt6,
Chst8 and Cdh24 were not. Interestingly, when inspecting
the model’s coefficients we found that the Moran’s I statistic
of the predicted spatial pattern had the largest contribution.

SpaGE predictions improve with deeply sequenced reference
dataset

We wanted to test the effect of changing the reference
scRNA-seq data on the spatial gene expression prediction.
Here, we used the osmFISH dataset which represents a dif-
ferent challenge compared to the STARmap dataset. On
one hand, the osmFISH dataset has a relatively higher gene
detection sensitivity, but on the other hand, the osmFISH
dataset includes only 33 genes. First, we evaluated the osm-
FISH Zeisel dataset pair, in which we integrated the osm-
FISH dataset with a reference scRNA-seq dataset from the
same lab (24). We performed leave-one-gene-out cross vali-
dation similar to the STARmap dataset. Compared to other
methods, SpaGE has significantly better performance (P-
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Figure 4. Novel gene expression patterns for five genes not originally mea-
sured by the STARmap dataset, validated using the Allen Brain Atlas in-situ
hybridization ISH. The left column shows the predicted spatial patterns us-
ing SpaGE for these five genes (shown in rows). The middle column shows
the Allen Brain Atlas ISH data for each gene, stating the image ID on
top of each tissue section. The red rectangle highlights the corresponding
brain region measured by the STARmap dataset. The right column shows a
zoomed-in view of the region highlighted using this red rectangle, showing
an agreement with the expression patterns predicted by SpaGE.

value <0.05, two-sided paired Wilcoxon rank sum test),
with a median Spearman correlation of 0.203 compared to
0.007, 0.090 and 0.133 for Seurat, Liger and gimVI, respec-
tively (Figure 5A, Supplementary Figure S7A). For a more
detailed comparison per gene: SpaGE is performing bet-
ter on the majority of genes compared to Liger and gimVI,

while compared to Seurat, SpaGE has better performance
across all genes (Supplementary Figure S7B−D). We fur-
ther investigated the relation between the prediction perfor-
mance and the Moran’s I statistic of the originally measured
genes. Similar to the STARmap data, for SpaGE and Seu-
rat, we found a positive relationship, i.e. the performance
is higher for genes with distinct spatial patterns. However,
Liger and gimVI have a negative relationship (Supplemen-
tary Figure S8).

Next, we tested the performance of all methods us-
ing the AllenVISp dataset as reference for the osmFISH
dataset, similar to the STARmap dataset. For the osm-
FISH AllenVISp dataset pair, we observed similar conclu-
sions where SpaGE has significantly better performance
compared to other methods, with a median Spearman cor-
relation of 0.203 compared to 0.014, 0.082 and 0.162 for
Seurat, Liger and gimVI, respectively (Figure 5A, Sup-
plementary Figure S9A). SpaGE has better performance
across all genes compared to Seurat and Liger, while gimVI
is performing better on a few genes (Supplementary Fig-
ure S9B−D). All four methods have a positive relation-
ship between their prediction performance and the Moran’s
I statistic of the measured genes (Supplementary Figure
S10). These results show how the reference dataset can af-
fect the prediction. Compared to the Zeisel dataset, the Al-
lenVISp is more deeply sequenced data, with the average
number of detected transcripts per cell being ∼140× more
than the Zeisel dataset (Supplementary Figure S11A, B).
However, not all methods benefit from this, as for Seurat
and Liger, the prediction performance using the AllenVISp
or the Zeisel datasets is quite similar (Figure 5A). On the
other hand, SpaGE and gimVI get an increase in perfor-
mance across all genes, although the median correlation for
SpaGE remains the same. Similar to the STARmap dataset,
we tested the performance of the kNN regression within
the AllenVISp dataset only (excluding the alignment proce-
dure), when using only the 33 genes of the osmFISH dataset.
In this case, we obtained a median correlation of 0.289 (Sup-
plementary Figure S4A), when predicting the expression of
genes in the scRNA-seq data from one-fold to the other,
which is slightly higher than SpaGE (0.203) predicting osm-
FISH patterns. This result shows that the alignment of the
spatial and scRNA-seq data using SpaGE is performing
well, as the overall performance is comparable with predic-
tions within the same dataset.

While the AllenVISp is a deeply sequenced reference
dataset, it has been measured from a different brain re-
gion than the osmFISH dataset (Table 1). Therefore, we de-
cided to use a third reference dataset, AllenSSp, which has
roughly the same sequencing depth as the AllenVISp (Sup-
plementary Figure S11B, C) but is measured from the so-
matosensory cortex, similar to the osmFISH dataset. We
evaluated the prediction performance of all four tools for
the new dataset pair osmFISH AllenSSp. SpaGE obtained
a better performance with a median Spearman correla-
tion of 0.199 compared to 0.006 and 0.077 for Seurat and
Liger, respectively, while gimVI has similar performance to
SpaGE with a median Spearman correlation of 0.199 (Fig-
ure 5A, Supplementary Figure S12A). SpaGE has a bet-
ter performance across almost all genes compared to Seu-
rat and Liger, while gimVI performed better than SpaGE
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Figure 5. Prediction performance comparison for the osmFISH dataset using different reference scRNA-seq datasets. (A) Boxplots showing the Spearman
correlations for the leave-one-gene-out cross validation experiment for each method using four different scRNA-seq datasets, Zeisel, AllenVISp, AllenSSp
and AllenSSp Downsampled. The median correlations shows a better performance for SpaGE in all dataset pairs. The black dots show the correlation
values for individual genes. The P-values are obtained using a paired Wilcoxon rank-sum test. SpaGE showed a performance improvement when using the
AllenVISp over the Zeisel data. Although the median correlation is the same, the overall correlation range did improve. Also, gimVI clearly benefits from
using the AllenVISp and the AllenSSp datasets over the Zeisel dataset. All methods have decreased performance when using the AllenSSp Downsampled
data compared to the original AllenSSp data. (B) Predicted expression of known spatially patterned genes in the osmFISH dataset using different reference
scRNA-seq datasets. Each row corresponds to a single gene having a clear spatial pattern. First column from the left shows the measured spatial gene
expression in the osmFISH dataset, while the second, third and fourth columns show the corresponding predicted expression pattern by SpaGE using
Zeisel, AllenVISp and AllenSSp datasets, respectively. Changing from Zeisel to AllenVISp (deeply sequenced data) improved the prediction, while matching
the brain region using the AllenSSp improved the prediction further.
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for nearly half the genes (Supplementary Figure S12B–D).
SpaGE, Liger and gimVI have positive relationship between
the prediction performance and Moran’s I statistic. How-
ever, Seurat has a negative relationship (Supplementary Fig-
ure S13).

Several sources of variation do exist between the Allen
datasets and the Zeisel dataset; besides the sequencing
depth, these datasets are, for example, generated in differ-
ent labs and using different sequencing protocols. To sepa-
rately test the effect of the sequencing depth of the reference
scRNA-seq data on the prediction performance, we down-
sampled the AllenSSp dataset to a comparable number of
transcripts per cell as the Zeisel dataset, using the scuttle
R package. Compared to the original AllenSSp dataset, we
obtained lower prediction performance across all methods
when using the downsampled dataset (Figure 5A), clearly
showing that a deeply sequenced reference dataset produces
a better prediction. Interestingly, compared to the Zeisel
dataset, the median performance using the downsampled
AllenSSp dataset was lower for SpaGE, Seurat and Liger,
but higher for gimVI.

Changing the brain region did not affect the overall per-
formance of SpaGE (Figure 5A), however, the prediction of
genes with known patterns did improve (Figure 5B). When
we visually inspect these genes, we can clearly observe that
the predicted spatial pattern improved when the reference
dataset had a higher sequencing depth, or was obtained
from a similar tissue. Rorb and Tbr1 are clear examples,
where the prediction using Zeisel was almost missing the
correct pattern, this became clearer using the AllenVISp
having a greater sequencing depth. Changing to a matching
tissue adds further improves the predicted patterns of these
genes (AllenSSp). Eventually, all five genes (Lamp5, Kcnip2,
Rorb, Tbr1 and Syt6) are more accurately predicted using
the AllenSSp dataset. Moreover, we used the AllenSSp ref-
erence dataset to predict the spatial expression of 10 genes
not originally measured by the osmFISH dataset, with clear
patterns through the cortical layers (Figure 6). These pre-
dicted patterns are in agreement with the Allen Brain Atlas
in-situ hybridization (ISH).

SpaGE is scalable to large spatial datasets

So far, SpaGE showed good prediction performance in the
leave-one-gene-out predictions, and was also able to pre-
dict correct spatial patterns of unmeasured genes within
the spatial transcriptomic datasets. All these results were,
however, obtained using a relatively small spatial datasets
including only a few thousand cells (STARmap and osm-
FISH). This opens the question of how does SpaGE scale
to large spatial datasets, comparable to the datasets mea-
sured nowadays. To assess the scalability of SpaGE, we
used a large MERFISH dataset with >60,000 cells mea-
sured from the mouse brain pre-optic region, and integrated
it with the corresponding scRNA-seq dataset published in
the same study by Moffit et al. (4). The MERFISH Moffit
dataset pair shares 153 genes on which we applied the same
leave-one-gene-out cross validation using all four methods.
Similar to the previous results, SpaGE significantly outper-
formed all other methods (P-value < 0.05, two-sided paired
Wilcoxon rank sum test) with a median Spearman correla-

Figure 6. Novel gene expression patterns for 10 genes not originally mea-
sured by the osmFISH dataset, validated using the Allen Brain Atlas in-situ
hybridization ISH. The left column shows the predicted spatial patterns
using SpaGE for these 10 genes (shown in rows). The right column shows
the Allen Brain Atlas ISH expression for each gene, stating the image ID
next to the tissue section, showing an agreement with the expression pat-
terns predicted by SpaGE. These genes show clear expression to specific
cortical layers (Pvrl3 and Wfs1: layer 2/3; Cux2, Tmem215 and Adam33:
layer 2/3 and layer 4; Rspo1: layer 4; Tesc: layer 2/3 and layer 6; Tox: layer
5; Foxp2 and Tle4: layer 6).
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tion of 0.275 compared to 0.258, 0.027 and 0.140 for Seurat,
Liger and gimVI, respectively (Figure 7A). Per gene com-
parisons shows a clear advantage of SpaGE versus Liger
and gimVI, but more comparable performance with Seurat
(Figure 7B–D). The reported P-values are quite significant,
however, it is important to note that the P-values are in-
flated due to the large sample size, which is also the case for
the STARmap dataset.

Next to the overall performance across all genes, we eval-
uated the performance of SpaGE to predict marker genes
of four major brain cell types: inhibitory neurons, excita-
tory neurons, astrocytes and oligodendrocytes (Methods).
We observed that SpaGE had higher prediction perfor-
mance for cell type marker genes compared to the over-
all performance across all genes (Figure 7E). Similar con-
clusion can be observed for the STARmap dataset (Sup-
plementary Figure S14A), however, this is not the case for
the osmFISH dataset because almost all 33 genes were cell
type marker genes (Supplementary Figure S14B). Addition-
ally, the ranking of the prediction performance across cell
types is related to the cell type proportions observed in
the data. For instance, the MERFISH dataset has approx-
imately 38% inhibitory neurons, 18% excitatory neurons,
15% oligodendrocytes and 13% astrocytes, for which the
median correlation per cell type is 0.587, 0.551, 0.402 and
0.398, respectively (Figure 7E). Compared to the pre-optic
region, the cortex contains more excitatory neurons than
inhibitory. This is directly reflected in the prediction per-
formance of inhibitory and excitatory marker genes, where
the latter have higher performance for the cortical datasets
STARmap and osmFISH (Supplementary Figure S14).

Further, we compared the computation times of all four
methods across all five dataset pairs. All experiments were
run on a Linux HPC server but limited to a single CPU core,
with 256GB of memory, to be able to compare runtimes.
For all methods, the calculated computation time includes
the integration and the prediction time. Overall SpaGE has
the lowest average computation time per gene, across all five
dataset pairs (Figure 7F). For the large MERFISH dataset,
SpaGE has a clear advantage compared to the other meth-
ods as the average computation time of SpaGE is ∼30×,
63× and 45× faster than Seurat, Liger and gimVI, respec-
tively. In terms of memory, SpaGE has the lowest memory
usage across all five dataset pairs, while Seurat and Liger
consumed memory the most (Figure 7F). Combined, these
results show an overall advantage of SpaGE over other
methods for larger datasets with higher prediction perfor-
mance, lower computation time and less memory require-
ment.

Increasing the number of shared genes does not always im-
prove the prediction

To investigate whether the performance improves when hav-
ing many more spatially measured genes, we tested SpaGE
when applying it to the seqFISH+ spatial dataset that mea-
sures up to 10,000 genes simultaneously. Using the seq-
FISH AllenVISp dataset pair, we applied SpaGE using the
leave-one-gene-out cross validation setup to predict the spa-
tial expression of 9,751 shared genes. SpaGE produced a
median Spearman correlation of 0.154, a minimum corre-

lation of -0.170 and a maximum correlation of 0.716. This
result is comparable to the other tested dataset pairs, show-
ing robust performance of SpaGE.

However, with ∼10,000 spatial genes, we expected a bet-
ter performance as there are many more shared genes
with which matching cells can be found in the scRNA-seq
data. To further substantiate this, we compared the pre-
diction performance of 494 overlapping genes between the
seqFISH AllenVISp and the STARmap AllenVISp dataset
pairs, both having the same scRNA-seq reference data. The
performance when using the seqFISH+ data, having ∼10x
more shared genes, was significantly higher than when us-
ing the STARmap data (P-value < 0.05, two-sided paired
Wilcoxon rank sum test) (Figure 8A). A detailed compari-
son per gene shows that the majority of the genes are indeed
better predicted in the seqFISH+ dataset (Figure 8B). How-
ever, when comparing the 21 overlapping genes between the
seqFISH AllenVISp and the osmFISH AllenVISp dataset
pairs, we obtained a contradicting result. The performance
when using the osmFISH data (only 33 shared genes) was
higher than when we used the seqFISH+ data, for almost
all 21 genes for which we could make this comparison (Fig-
ure 8C, D).

This opens the question whether having more measured
spatial genes (and thus shared genes) is always beneficial to
predict the spatial patterns of non-measured genes. To an-
swer that, we performed a downsampling experiment simi-
lar to what we did with the STARmap data (Methods). We
fixed 50 genes as test set and downsampled the remaining
genes to sets of the top 10, 30, 50, 100, 200, 500, 1000,
2000, 5000, 7000 and 9,701 (all) highly varying genes as
shared genes. The best prediction performance of SpaGE
was obtained using 5000 genes, after which the performance
decreased (Figure 8E). Apparently, having more genes in-
cludes more and more lowly varying, and thus noisy, genes
into the matching process, which turns out to confuse the
matching process and consequently lower the prediction
performance.

DISCUSSION

We demonstrated the ability of SpaGE to enhance spatial
transcriptomics data by predicting the expression of un-
measured genes based on scRNA-seq data collected from
the same tissue. The ability of SpaGE to produce accurate
gene expression prediction highly depends on the alignment
part performed using PRECISE, which rotates the princi-
pal components of each dataset to produce principal vec-
tors with high one-to-one similarity. Projecting the datasets
to the latent space spanned by these principal vectors pro-
duces a proper alignment, making a simple kNN prediction
sufficient to achieve accurate gene expression estimation.

During the alignment, SpaGE ignores principal vectors
with low similarity which excludes uncommon and/or noisy
signals. Despite the clear differences in the amount of ex-
plained variance for each dataset pair by the final set of
principal vectors, SpaGE was able to capture the common
sources of variation and produce good predictions of the
spatial gene expressions across all dataset pairs. SpaGE cap-
tured ∼6% of the variance for the seqFISH+ dataset that
measures ∼10,000 genes spatially, but the majority of which
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Figure 7. Prediction performance comparison for the MERFISH Moffit dataset pair. (A) Boxplots showing the Spearman correlations for the leave-one-
gene-out cross validation experiment for each method. The blue lines show the median correlation across all genes with a better performance for SpaGE.
The green dots show the correlation values for individual genes. The P-values show the significant difference between all correlation values of SpaGE
and each other method, using a paired Wilcoxon rank-sum test. (B–D) Detailed performance comparison between SpaGE and (B) Seurat, (C) Liger, (D)
gimVI. These scatter plots show the correlation value of each gene across two methods. The solid black line is the y = x line, the dashed lines show the
zero correlation. All scatter plots show that the majority of the genes are skewed above the y = x line, showing an overall better performance of SpaGE
over other methods. (E) Boxplots showing the prediction performance of SpaGE for cell type marker genes compared to the overall performance across all
genes. (F) scatter plot showing the average computation time (log-scaled) per gene versus the peak memory usage. Methods are represented with different
colors and dataset pairs are represented with different symbols. Points of the same method are highlighted for clarity.
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Figure 8. Prediction performance of SpaGE for the seqFISH AllenVISp dataset pair. (A,C) Boxplots comparing the prediction performance of SpaGE for
the shared genes between the seqFISH and the (A) STARmap, (C) osmFISH datasets, using the same AllenVISp dataset as reference during prediction.
The blue lines show the median correlation across all genes. The green dots show the correlation values for individual genes. The P-value is obtained using
a paired Wilcoxon rank-sum test. (B, D) Detailed performance comparison between seqFISH and (B) STARmap, (D) osmFISH. These scatter plots show
the correlation value of each gene across two datasets. The solid black line is the y = x line, the dashed lines show the zero correlation. (E) Boxplots showing
the prediction performance of a test set of 50 genes, in terms of Spearman Rank correlations, using downsampled sets of 10, 30, 50, 100, 200, 500, 1000,
2000, 5000 and 7000 shared genes compared to using all 9,701 genes in the seqFISH AllenVISp dataset pair.
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are lowly variable in the mouse cortex, thus not contain
enough information to contribute to the integration. On
the contrary, SpaGE captured ∼94% of the variance for the
osmFISH dataset, which contains 33 known marker genes
for various cell types in the mouse somatosensory cortex.
Almost all these genes are highly variable and contain use-
ful information for the integration.

We benchmarked SpaGE against three state-of-the-art
methods for multi-omics data integration, using five dif-
ferent dataset pairs. These dataset pairs represent different
challenges to the integration and prediction task, as they
differ in gene detection sensitivity level and the number of
spatially measured genes, which are the basis for the align-
ment. Increasing the number of shared genes should, in
principle, eases the integration task and produces better pre-
dictions of spatial patterns of unmeasured genes. However,
this is not always the case, as shown by the seqFISH+ data,
where adding more genes eventually also adds genes that
have a relatively low variance, and thus are more proba-
bly noisy genes. This turns out to negatively influence the
matching process and consequently decrease the prediction
performance. Apparently, there is an optimum on the num-
ber of genes that need to be spatially measured when we
want to predict spatial patterns of unmeasured genes. On
the other hand, when measuring the spatial patterns mea-
sured for ∼10,000 genes, it might not be necessary to predict
spatial patterns of unmeasured genes as the initially spa-
tially measured genes already cover most of the transcrip-
tome of interest. Further, imaging-based spatial transcrip-
tomic methods, with high gene detection sensitivity, may
also improve the integration and prediction, as they are able
to capture the majority of the genes even the ones with rel-
atively low expression. On the other hand, integrating this
high sensitivity data with scRNA-seq, which has lower sen-
sitivity, can be more challenging. That is because the differ-
ences in gene expression are higher compared to integrating
a sequencing-based spatial data with scRNA-seq data, both
having comparable sensitivity.

Across all tested dataset pairs, SpaGE outperformed all
methods producing better predictions for the majority of
the genes. However, for few genes, SpaGE had lower pre-
diction performance than other methods. Seurat produced
good gene predictions for the STARmap and the MER-
FISH datasets, with similar predictions to SpaGE. How-
ever, Seurat had overall the lowest performance for the osm-
FISH dataset, with correlation close to 0, which shows that
the performance of Seurat heavily decreased when there are
very few shared genes, such as in the osmFISH dataset (33
genes). This problem is even more pronounced for Liger,
as it performed relatively well for the STARmap dataset
producing good gene predictions, but has a decreased per-
formance for both the osmFISH (33 genes) and the MER-
FISH (155 genes) datasets. On the other hand, gimVI per-
formed relatively well for the osmFISH and the MERFISH
datasets. However, gimVI had overall the lowest perfor-
mance for the STARmap dataset, with inaccurate predic-
tions for genes with spatial patterns such as Cux2 and Plp1.
This suggests that gimVI works well with imaging-based
technologies having high gene detection sensitivity, but not
with the sequencing-based technologies.

Next to the overall best performance, SpaGE is an in-
terpretable algorithm as it allows to find the genes driving
the correspondence between the datasets. The principal vec-
tors, used to align the datasets to a latent space, show the
contribution of each gene in defining this new latent space.
Further, SpaGE is scalable to large spatial data with signif-
icantly lower computation time and memory requirement
compared to the other methods, as shown on the MER-
FISH dataset having more than 60,000 cells measured spa-
tially. Moreover, SpaGE is a flexible pipeline. Here we used
PCA as the initial independent dimensionality reduction al-
gorithm. However, this step can be replaced by any linear
dimensionality reduction method.

SpaGE showed high prediction performance for cell type
marker genes compared to the overall performance across
all genes. These marker genes are often highly variable genes
with clear spatial expression patterns. For example, Cux2
and Lamp5 represent two excitatory neurons marker genes
with clear spatial patterns in the mouse cortex, which were
well predicted by SpaGE. We also showed that the cell type
proportions directly affect the prediction of the correspond-
ing marker genes. However, the prediction of a marker gene
is, in the first place, directly related to the existence of the
corresponding cell type across both spatial and scRNA-seq
datasets. For example, it is not possible to correctly predict
the spatial expression of an astrocyte marker gene, if one
or both datasets do not contain any astrocytes. In other
words, it is better to measure both spatial and scRNA-seq
datasets from the same sample, as we have seen in the MER-
FISH Moffit dataset pair. However, datasets emerging from
different samples but from matching tissue can still produce
good spatial gene expression predictions if their cell type
compositions are preserved.

We used the Spearman Rank correlation to quantitatively
evaluate the predicted gene expressions. The overall eval-
uation showed relatively low correlations across all meth-
ods and all dataset pairs. These low correlations express the
difficulty of the problem, as the predicted gene expressions
are obtained from a different type of data. Given the low
observed correlations, we developed a model that expresses
whether we can trust a SpaGE-predicted spatial expression
or not, which helps a user of SpaGE to interpret the corre-
lations, improving the practicality of SpaGE. However, the
Spearman correlation is not the optimal evaluation metric,
as it does not always reflect the spatially predicted patterns,
i.e. visual inspection showed good predictions for genes with
known spatial pattern in the mouse cortex, while the corre-
lation values were less than 0.2.

CONCLUSION

SpaGE presents a robust, scalable, interpretable and flexi-
ble method for predicting spatial gene expression patterns.
SpaGE uses domain adaptation to align the spatial tran-
scriptomics and the scRNA-seq datasets to a common
space, in which unmeasured spatial gene expressions can
be predicted. SpaGE is less complex and much faster when
compared to other approaches and generalizes better across
datasets and technologies.
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DATA AVAILABILITY

The implementation code of SpaGE, as well as the bench-
marking code, is available in the GitHub repository, at
https://github.com/tabdelaal/SpaGE. The code is released
under MIT license. All datasets used are publicly available
data, for convenience datasets can be downloaded from
Zenodo (https://doi.org/10.5281/zenodo.3967291).
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Supplementary Data are available at NAR Online.
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