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Multi-objective periodic railway timetabling on dense heterogeneous railway
corridors

Fei Yan∗, Nikola Bešinović, Rob M.P. Goverde

Department of Transport and Planning, Delft University of Technology, P.O.Box 5048, 2600GA Delft, The Netherlands

Abstract

This paper proposes a new multi-objective periodic railway timetabling (MOPRT) problem with four objectives to be
minimized: train journey time, timetable regularity deviation, timetable vulnerability and the number of overtakings.
The aim is to find an efficient, regular and robust timetable that utilizes the infrastructure capacity as good as possible.
Based on the Periodic Event Scheduling Problem, we formulate the MOPRT problem as a Mixed Integer Linear
Program (MILP). The ε-constraint method is applied to deal with the multi-objective property, and algorithms are
designed to efficiently create the Pareto frontier. By solving the problem for different values of ε, the four-dimensional
Pareto frontier is explored to uncover the trade-offs among the four objectives. The optimal solution is obtained from
the Pareto-optimal set by using standardized Euclidean distance, while capacity utilization is used as an additional
indicator to chose between close solutions. Computational experiments are performed on a theoretical instance and a
real instance in one direction of a Dutch railway corridor, demonstrating the efficiency of the model and approach.

Keywords: Periodic timetable, multi-objective optimization, timetable robustness, flexible overtaking, ε-constraint

1. Introduction

With the growth of passenger demand, the operation of a rail transport system becomes a complex problem and
highly challenging in busy and dense networks. In order to provide an attractive railway system, short travel times
from origins to destinations are desired by passengers, while the vulnerability of dense traffic to delays also requires
more emphasis on timetable robustness. Moreover, in busy corridors, passengers prefer having the possibility to
travel without the need of checking the timetable, but expect to find a train service at regular intervals. This asks for
more regular operations equally distributed in time. Meanwhile, heterogeneous traffic with different train types (with
different speed profiles) and different stop patterns to meet the demand in railway operation, make it more complex
than metro systems. In order to provide a high-performance service, railway train operations must be carefully planned
and consider all these aspects when designing timetables. However, these multiple objectives are sometimes opposite,
and difficult to be handled by planners simultaneously.

The periodic railway timetabling problem aims at optimizing departure and arrival times at each station of every
train from a given line plan (L) consisting of lines with their stop patterns (l) and the corresponding frequency ( fl)
for a timetable period length T . So far, different performance indicators have been introduced, generally including
timetable efficiency, feasibility, infrastructure (capacity) occupation, stability, robustness and energy consumption
(Goverde et al., 2016). Timetable efficiency is measured by the scheduled journey time including running times, dwell
times and transfer times between any two stations, while capacity occupation is the share of time required to operate
trains on a given railway infrastructure according to a given timetable pattern (Goverde and Hansen, 2013). Timetable
robustness has many different interpretations and definitions, but most measures are related to the distribution of buffer
times (Lusby et al., 2018). There are two types of methods that are typically used to assess the level of robustness.
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One is to measure the defined performance indicators for a fixed timetable (Peeters, 2003; Bešinović, 2017; Yan and
Goverde, 2017), and the other is to simulate the timetable with different (delay) scenarios and assess it with a proposed
objective (Kroon et al., 2008; Liebchen et al., 2009; Bešinović et al., 2016; Maróti, 2017). In the macroscopic planning
level, robustness can be interpreted as the ability of a timetable to resist delays. Increasing the buffer time between two
trains helps a timetable to absorb certain disturbances or reduce the propagation of delays to other trains.In addition,
service regularity means that trains from the same line depart at regular intervals at each station along the path, which
could help to attract more passengers. To address all relevant indicators, timetabling models (Kroon and Peeters,
2003; Peeters, 2003; Liebchen, 2007) with objectives of passenger travel time and train journey time only are not
sufficient anymore. Timetable robustness can be enhanced by allocating so-called buffer times between train paths
above the minimal headway times to absorb some disturbances and prevent the delay propagation to the following
trains, where a balanced buffer time distribution provides better timetable robustness. For a given infrastructure and
line plan, capacity utilization is usually computed as an ex-ante indicator and not part of timetable optimization. It can
be used to compare the quality of the timetables or evaluate the possibility to add more trains. Timetable efficiency,
robustness, and regularity are straightforwardly related to the level of service to passengers and can be enhanced
during the planning process. Therefore, multiple objectives need to be taken into account when designing timetables
to improve the overall quality of the railway transport system.

Train overtakings affect timetable robustness and capacity utilization and are in particular useful when different
train speeds exist on the same corridor, as illustrated in Figure 1. Here, we assume that the station capacity is enough
as overtakings require additional station track capacity. All sub-figures contain two lines l1 and l2 with frequency
two in one period pattern at four stations. Here the minimum cycle time (λa and λb) (Goverde, 2007) is applied to
represent timetable capacity utilization for the given line plan. Figure 1(a) depicts a compressed timetable pattern with
strict regularity constraints, minimum arrival/departure headway and the minimum cycle time (equals period length)
λa = T , when overtakings are not allowed. Figure 1(b) shows a compressed timetable with the minimum cycle time
λb with the minimum headway constraints when overtakings are allowed. It can be seen that the latter has a lower
capacity utilization by comparison of λa and λb (λa > λb). Figure 1(c) shows the same timetable pattern as Figure 1(b),
but includes buffer times to reach the same period length as Figure 1(a). Hence, the robustness is better than the one
in Figure 1(a) although with some travel time loss.

l1l1 l2l2

T

(robustness)

(c) Timetable with overtaking allowance 

l1l1 l2l2l1 l1l2 l2

λa=T λb

(original)
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(capacity)

(b) Timetable with overtaking allowance 
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Figure 1: Timetable layouts with and without overtakings: (a) original timetable when overtakings are not allowed (b) capacity utilization when
overtakings are allowed; (c) Timetable robustness when overtakings are allowed

In general, overtakings could help to improve timetable robustness and reduce capacity utilization, but too many
overtakings would lead to an increase of train journey time. Also the maximum number of overtakings due to the
station capacities must be considered. Therefore, it is important to keep track of the number of overtakings and control
them during timetable construction by balancing their effect on timetable journey times, robustness and capacity. To
this aim, we introduce the concept of flexible overtaking.

Flexible overtaking represent that a train can be overtaken (i) by more than one train at each station; (ii) multiple
times along its path; (iii) at any station along its path. In particular, flexible overtaking allow finding the best overtaking
locations for an existing rail network. For instance, local trains may be overtaken by Intercity or/and International
trains at several stations, and freight trains are overtaken by passenger trains multiple times at one station.

The Periodic Event Scheduling Problem (PESP) (Serafini and Ukovich, 1989) is a feasibility problem that has been
successfully applied to model the macroscopic scheduling of a periodic timetable in rail networks, usually including an
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additional objective function to turn the feasibility problem into an optimization problem (Nachtigall, 1996; Peeters,
2003; Liebchen and Möhring, 2007). Peeters (2003) presented several objectives from passenger and operator aspects,
and solved them by setting up a Mixed Integer Linear Programming (MILP). Illegal overtakings (conflicts) when two
trains occupy the same open track section at the same time may occur when variable trip times (constrained by a lower
and upper bound) are set in the model. To address this issue, extra dummy nodes are adopted to forbid the conflicts in
Kroon and Peeters (2003) and Sparing and Goverde (2017), while a relation of modulo parameters is presented to find a
conflict-free timetable in Zhang and Nie (2016). Both optimization models in Sparing and Goverde (2017) and Zhang
and Nie (2016) designed overtaking constraints with allowance of at most one overtaking at each dwell activity, while
multiple overtakings have not been modeled in the literature so far. Parbo et al. (2016) reviewed the train-oriented
and passenger-oriented timetabling models on different aspects, and put forward guidelines to narrow the gap between
operators’ railway planning and passengers’ perception of the railway performance, especially regarding robustness.

A lot of achievements have been obtained in robust timetable optimization to reduce delay propagation. A robust-
ness objective function is proposed in Peeters (2003) by pulling apart trains, that is, to push the headway to half the
cycle time to increase overall buffer times at all stations. This procedure is optimizing at the same time train orders
and event times, but it is quite difficult to achieve the optimal solution for real-life cases. For most other research, the
aim is to optimize an existing and feasible timetable to improve its robustness against delays or disturbances, such as
stochastic programming in Kroon et al. (2008), recoverable robustness in Liebchen et al. (2009) and a branch-and-
bound method in Maróti (2017). Bešinović et al. (2016) proposed an integrated approach combining the microscopic
and macroscopic level of timetable design to improve timetable robustness, and the objective for robustness cost is the
delay settling time using Monte Carlo simulation. Goverde et al. (2016) extended this approach to include a third level
to optimize energy efficient train operation. Based on the model in Sparing and Goverde (2017), Bešinović (2017,
Chapter 5) proposed a two-stage model to achieve a stable and robust timetable. The first stage finds the optimal stable
timetable structure by minimizing capacity utilization and journey times, while the second stage improves timetable
robustness by optimizing the allocation of time allowances. Sels et al. (2016) presented a MILP approach to find
robust timetables while minimizing the total expected passenger travel time, and applied it to the Belgium railway
network with all hourly passenger trains. Yan and Goverde (2017) compared several periodic timetable optimization
models, and gave a number of performance indicators to assess robustness. Two recent reviews on timetabling models
in different railway planning stages can be found in Caimi et al. (2017) and Lusby et al. (2018).

In this paper, we propose a multi-objective periodic railway timetabling (MOPRT) optimization model, which
aims to find an efficient, regular and robust timetable that utilizes the infrastructure capacity as good as possible.
Based on the Periodic Event Scheduling Problem, we formulate the MOPRT problem as a Mixed Integer Linear Pro-
gram (MILP). Train journey time is introduced to minimize travel time in order to improve transport system efficiency.
Timetable regularity provides regular train services for passengers, and the corresponding objective tries to minimize
the regularity deviation. To incorporate robustness, timetable vulnerability is proposed based on a new piecewise
linear headway penalty function. It is designed to step away from too small headways and too big headways due
to periodicity in the timetable, so minimization of timetable vulnerability leads to a balanced distribution of buffer
times at stations. Meanwhile, the number of overtakings may increase while enhancing the overall robustness of the
timetable, especially in a dense corridor. Thus, we minimize the number of overtakings using flexible overtaking con-
straints to obtain the best overtaking locations. To deal with the multi-objective property of our model, the ε-constraint
method is introduced to explore the Pareto frontier. Three algorithms are designed to speed up the computation by re-
ducing the search space to efficiently create the Pareto frontier. The trade-offs among the four objectives are analyzed
to uncover the correlations between each other. Standardized Euclidean distance is used to find the optimal solution
from the Pareto-optimal, while the minimum cycle time is used to evaluate the resulting capacity utilization for the
timetables.

The main contributions of this paper are as follows:

• A multi-objective periodic timetable model is developed that optimizes train journey time, regularity deviation,
timetable vulnerability and the number of overtakings.

• A new timetable vulnerability objective with related constraints is formulated based on a piecewise headway
penalty to improve timetable robustness.

• Flexible overtaking objective and constraints are designed to find the best overtaking locations and number of
overtakings.
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• An ε-constraint method is introduced to explore the Pareto frontier for the multi-objective model, and analyze
the trade-offs between all objectives.

• The approach is demonstrated in a theoretical instance and a real-world Dutch railway corridor.

The paper is organized as follows: Section 2 presents the model formulations of the four objectives and corre-
sponding constraints for periodic railway timetabling optimization. Section 3 introduces the approach to deal with
multiple objectives and describes the indicator of capacity utilization. Section 4 illustrates the approach with ex-
periments and computational results both in the theoretical instance and the real world case, and finally Section 5
summaries the paper with main findings and conclusions.

2. Model Description

2.1. Periodic event activity network

The PESP formulation is represented by a direct graph G = (E,A,T ), which represents a periodic event-activity
network, as shown in Figure 2. A given line plan is defined with a set of lines L and stations S. Each line l ∈ L
defines a stopping pattern (s1, .., sk, .., sNl ), sk ∈ S and a frequency fl within a given time period length T .

The set E contains departure events E(s1) at start station s1, arrival and departure events (for a stop station) or
arrival-through and departure-through events (for a non-stop station) E(sk) at sk, and arrival events E(sN) at sN for all
train lines. Note that we use two events generating a through activity for a non-stop station instead of one through
event, as this simplifies the model formulation of flexible overtaking. The set of activitiesA represents dependencies
between pairs of events. For each event i, we determine the scheduled time πi ∈ [0,T ) in a basic period while satisfying
the set of activities A. Due to periodicity, one event would occur at times πi + z · T , where z = ... − 2,−1, 0, 1, 2, ....
Each activity time ai j corresponds to an activity (i, j) ∈ A, where i and j are two consecutive events, which can be
distinguished as running time, dwell time, headway time, and regularity interval, and each of them has a lower bound
li j and an upper bound ui j.

Running activitiesArun and dwell activitiesAdwell are generated from the consecutive events of the same train. To
allow flexible overtakings, dwell time is taken as a variable. In the PESP literature running times are mostly assumed
to be fixed, i.e., having equal lower and upper bounds. But for a dense and heterogeneours corrisor, keeping the
running time fixed leads easily to infeasibility. By relaxing the running times to intervals solutions become possible
that are not available when considering intervals to dwell times only. Moreover, running time supplements can actually
be used in a positive way to recover from delays or energy-efficient driving, while increasing dwell times also leads
to increased capacity occupation of platform tracks. The lower bound for running time is the minimum running time,
which equals the technical running time plus a minimal time supplement that covers various train behaviors. The
upper bound is the maximum running time that can be accepted by passengers and operator. The minimum time for
boarding and alighting of passengers, and the maximum time for passengers waiting at stations or the minimal time
needed for overtakings represent the lower bound and upper bound of the dwell time. Through activities Athru are
similar to dwell activities which are also from the same train at the same station, but without time consumption at
stations. It represents trains pass through the stations with zero as fixed activity times.

We generate set Athru in order to simplify the model design of flexible overtaking. Headway activities Ahead are
generated between different train events at the same station. The lower bound li j for headway time is the minimum
(default) time required to avoid conflicting train movements, whilst T−l ji is the upper bound to avoid conflicts between
trains in the reverse order. If the frequency fl of line l is greater than one, regularity activitiesAreg are needed to ensure
a regular service. Since all trains from the same train line have the same stop pattern and train type, we predefine a
departure sequence of these trains in our model which does not influence the results. Without loss of generality,Al

reg
represents the regularity activities between trains of line l. The lower and upper bounds are set to be T/ fl to line l
when strict regularity is needed. Note that this needs some relaxation if T/ fl is not an integer, which will be discussed
later. This ensures regular schedules of line l. Transfer connections and rolling stock connections are not considered
in this paper. All activities are represented byA = Arun ∪Adwell ∪Athru ∪Ahead ∪Areg.

PESP aims at finding event times πi for all events i ∈ E, where all activities

ai j = π j − πi + zi j · T (1)
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Ahead Ahead
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l2-1

l1-2

l1-1

Figure 2: Illustration of a periodic event-activity network for three trains of two lines in a station. Train line l1 consists of two trains l1−1 and l1−2,
and train l2−1 has a through event at this station. Solid line represents running activities; dotted represents dwell activities; dash-dotted represents
through activities; dashed represents headway activities; and dash-double-dotted represents regularity activities. The notation [li j, ui j]T is used for
the intervals [li j, ui j] modulo T .

satisfy the lower bound li j and upper bound ui j. The modulo parameter zi j determines the order of events i and j within
a defined time period T , and we assume that 0 ≤ li j ≤ ui j ≤ T − 1 and 0 ≤ ui j − li j ≤ T − 1 If necessary, dummy nodes
are introduced to split arcs with ui j ≥ T into smaller segments to satisfy these assumptions (Kroon and Peeters, 2003;
Sparing and Goverde, 2017). Then zi j = 1 if πi > π j, and it is 0 otherwise.

2.2. Model formulation

To model a MOPRT problem, we introduce four separate single-objective timetabling optimization models based
on the basic PESP. The most common model with the objective of train journey time is presented in Section 2.2.1. To
tackle infeasibility or saturated capacity problem by strict regularity, the timetable regularity model is introduced to
allow certain regularity deviation within some bound in Section 2.2.2. To improve timetable robustness by increasing
buffer times, the timetable vulnerability model is formulated with a specific penalty function in Section 2.2.3. The
flexible overtaking model with consideration of multiple overtaking constraints and station capacity while minimizing
the number of overtakings is proposed in Section 2.2.4. All of these models will be combined in Section 2.2.5 into a
MOPRT model.

2.2.1. Train journey time model (PESP-TJT)
First, we introduce the periodic timetable optimization model PESP-TJT with the objective of train journey time,

defined as:

Minimize
∑

(i, j)∈Arun∪Adwell

αi j · (π j − πi + zi j · T ) (2)

subject to

li j ≤ π j − πi + zi j · T ≤ ui j ∀(i, j) ∈ A (3)
0 ≤ πi < T ∀i ∈ E (4)
zi j ∈ {0, 1} ∀(i, j) ∈ A (5)
zi j + zi′ j′ + zii′ + z j j′ = 2 · cii′ j j′ ∀(i, j), (i′, j′) ∈ Arun, (i, i′), ( j, j′) ∈ Ahead (6)
0 ≤ cii′ j j′ ≤ 2 ∀(i, j), (i′, j′) ∈ Arun, (i, i′), ( j, j′) ∈ Ahead (7)
cii′ j j′ ∈ N0 ∀(i, j), (i′, j′) ∈ Arun, (i, i′), ( j, j′) ∈ Ahead (8)
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Objective function (2) includes train running times and dwell times, and αi j represents the weight of the different
activities. Constraint (3) ensures that all activities are within the given bounds. Constraint (4) requires periodicity
of events by bounding to [0,T ). Constraint (5) restricts the modulo parameters to be binary. The notation cii′ j j′ is
introduced as an auxiliary integer variable from 0 to 2, and is used to prevent illegal overtaking between running
activities (i, j) and (i′, j′). Here, activities (i, i′) and ( j, j′) are the corresponding headway activities of two trains at
two stations. Constraints (6)-(7) guarantee that no illegal overtaking can arise, when the sum of the four modulo
parameters of related running and headway activities equals 0, 2 or 4. This is proposed by Zhang and Nie (2016).
Figure 3 illustrates three combinations of modulo parameters between two trains when no illegal overtaking occurs.
Variable cii′ j j′ is 0 in Figure 3(a) and 1 in Figure 3(b). It becomes 2 in Figure 3(c) when event i′ is scheduled earlier
than i, and all modulo parameters became 1. In total, there are ten types of timetable situations for two trains without
illegal overtaking, and eight types with illegal overtakings, see for details in Zhang and Nie (2016). N0 in constraint
(8) represents the nonnegative integers.

Station B

Station A

T

i

j j' 

i' 

zij=0

zjj'=0

zii' =0

zi'j'=0

T

i

j j' 

i' 

zii' =1

zjj'=0

zi'j'=0zij=1

(a)  cii'jj'=0

i

jj' 

i' 

T T

(b) cii'jj'=1

zij=1

zjj'=1

zii' =1

zi'j'=1

(c) cii'jj'=2

Figure 3: Three combinations of modulo parameters between two trains when no illegal overtaking occurs

2.2.2. Timetable regularity model (PESP-Reg)
A strict periodic pattern means that successive trains from the same train line have a regular interval at all stations

along their path (only if fl is a divisor of T ), described by T/ fl. However, strict regularity could lead to unnecessary
dwell time loss if overtaking occurs. For instance, Figure 4(a) shows two train lines operate in the same corridor
from station A to C within period length T . The line l1 has frequency of two and an all-stop pattern, and line l2
has frequency one with a non-stop pattern. At station B, activities (i, i′) and ( j, j′) represent dwell activities of trains
l1−1 and l1−2 from the same line l1, and activity (k, k′) is used to represent the dwell activity (i, i′) in the following
period. Activities (i, j) and ( j, k) are the arrival headways of line l1 at station B, and activities (i′, j′) and ( j′, k′) are
the corresponding departure headways. Under the constraints of strict regularity, both ai j = a jk and ai′ j′ = a j′k′ need
to be satisfied. However, this would result to equal dwell times at station B for each train of line l1, even though there
is no overtaking for train l1−2. Figure 4(b) has a smaller dwell time of train l1−2 at station B, but the departure interval
between trains are not always the same, which gives more flexibility for timetable optimization. This paper proposes
a regularity model which can generate timetables like in Figure 4(b).

A variable θi j is introduced to provide a certain deviation in case T/ fl is not an integer or to express the tolerance
from strict regularity, defined as follows (with the notation

[
T
fl

]
representing rounding to the nearest integer to T

fl
).

θi j = |ai j −

[
T
fl

]
| ∀(i, j) ∈ Al

reg, l ∈ L (9)

In addition, in order to control the deviation range, a new parameter βl is set as the tolerance upper bound of a line
l. Hence, the periodic timetabling model with flexible regularity constraints PESP-Reg to minimize the regularity
deviation can be modeled as:

Minimize
∑

(i, j)∈Areg

θi j (10)
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Figure 4: Timetable layouts with (a) strict regularity constraints and (b) relaxed regularity constraints

subject to (3)-(8) and

− θi j ≤ ai j −

[
T
fl

]
≤ θi j ∀(i, j) ∈ Al

reg, l ∈ L (11)

0 ≤ θi j ≤ βl ∀(i, j) ∈ Al
reg, l ∈ L (12)

Constraint (11) is the linearized version of equation (9), while strict regularity can also be predefined in this model
by setting the corresponding θi j as 0 if T/ fl is an integer. Constraint (12) ensures that regularity of line l could only
deviate within the given tolerance range βl.

2.2.3. Timetable vulnerability model (PESP-Vnb)
In order to reduce timetable vulnerability, we introduce a penalty function to step away from small headways

and big headways. Note that due to the periodicity, big headways are also small headways to the same train in the
following period. This is inspired by the idea that pulling apart trains using the same track to enlarge headway times
could improve timetable robustness, see Peeters (2003). Apart from the fixed minimum headway time, buffer time in
the headway time could mitigate disturbances or delays propagated by other trains. Hence, a robust timetable could
be attained with a reasonable distribution of buffer times. A piecewise linear function is designed consisting of three
parts: a linear decreasing function to penalize small headways, a constant zero part as no penalty is considered to
moderate headways, and a linear increasing function to penalize big headways, see Figure 5. To improve robustness
we aim at allocating the buffer times as equal as possible between the events to avoid small buffer times. This reference
headway hp could be generated by:

hp =

⌈
T
Nt

⌉
(13)

Here, parameter Nt represents the number of trains in the corridor. In addition, we define Pmax as the maximum
penalty value applied to the critical minimum headway times:

Pmax = φ · (hp − lmin) (14)

Here, lmin represent the minimum headway and parameter φ is the slope of the penalty function. The larger the value
of φ, the more penalty for small or big headways. For example, if Nt = 6, φ = 10 and lmin = 3 min in the timetable,
then hp = 60/6 = 10 min and Pmax = 10 · (10 − 3) = 70. In practice (more generally), various minimum headway
times could be used in the timetable design. We therefore determine the minimal headway between all train pairs as
lmin = min(i, j)∈Ahead min(li j,T −ui j), which is used in equation (14). Then we introduce a new variable δi j as the penalty
value of activity (i, j) calculated by:

δi j =


Pmax − φ · (ai j − li j) ai j ≤ hp lower

i j

0 hp lower
i j < ai j ≤ hp upper

i j
Pmax − φ · (ui j − ai j) ai j > hp upper

i j ,

∀(i, j) ∈ Ahead (15)
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Parameters hp lower
i j and hp upper

i j represent the reference headway value of the lower side and upper side of activity (i, j)
due to periodicity. To ensure that the penalty values are the same for two activities with different minimum headways
but the same buffer time hp − lmin, the lower and upper reference headways are determined for each activity as:

hp lower
i j = li j + (hp − lmin) ∀(i, j) ∈ Ahead (16)

hp upper
i j = ui j − (hp − lmin) ∀(i, j) ∈ Ahead (17)

hp_lower

Pmax

Pmax-f × (aij-lij)

lij uijhp_upper

Pmax

aij

 
Pmax-f × (uij-aij)

Figure 5: The designed penalty function curve

As an example, let us assume two headway activities with lower and upper bounds (li j, ui j) equal to (2, 58) and (3,
57) respectively. For the first activity, we have hp lower

i j = 2 + (10− 2) = 10 min and hp upper
i j = 58− (10− 2) = 50 min.

For the second activity, we have hp lower
i j = 3 + (10 − 2) = 11 min and hp upper

i j = 57 − (10 − 2) = 49 min. Therefore,
if the scheduled headway ai j = 4, then the penalty becomes δi j = 80 − 10 · (4 − 2) = 60 in the first activity and
δi j = 80 − 10 · (4 − 3) = 70 in the second activity. It could be found that the penalty value δi j is calculated according
to the buffer times instead of the headway times, which is more reasonable in the railway timetable design.

Then the periodic timetabling model with timetable vulnerability PESP-Vnb is defined as:

Minimize
∑

(i, j)∈Ahead

δi j (18)

subject to (3)-(8) and

δi j = w′i j · (Pmax − φ · (ai j − li j)) + w′′′i j · (Pmax − φ · (ui j − ai j)) ∀(i, j) ∈ Ahead (19)

w′i j + w′′i j + w′′′i j = 1 ∀(i, j) ∈ Ahead (20)

w′i j,w
′′
i j,w

′′′
i j ∈ {0, 1} ∀(i, j) ∈ Ahead (21)

li j ≤ ai j ≤ hp lower
i j + M1 · (1 − w′i j) ∀(i, j) ∈ Ahead (22)

w′′i j · h
p lower
i j < ai j ≤ hp upper

i j + M2 · (1 − w′′i j) ∀(i, j) ∈ Ahead (23)

w′′′i j · h
p upper
i j < ai j ≤ ui j ∀(i, j) ∈ Ahead (24)

The penalty δi j for a headway activity is expressed as (19), which is a linearized version of (15). To model the
piecewise function, three binary variables w′i j, w′′i j and w′′′i j corresponding to each piece in (15) are introduced, and the
big M method is used to construct the constraints. To be specific, the penalty δ contains three pieces of penalty value
for each headway activity: (i) w′i j(Pmax − φ · (ai j − li j)); (ii) w′′i j · 0; (iii) w′′′i j (Pmax − φ · (ui j − ai j)). The sum of binary
variables is restricted to one in constraint (20), such that only one piece from the piecewise function could be counted
in. Constraint (21) describes that w′i j, w′′i j and w′′′i j are all binary variables. Constraints (22)-(24) guarantee that the

value of ai j is in the corresponding range if any of w′i j, w′′i j and w′′′i j is 1. Big M1 and M2 can be selected as ui j−hp lower
i j

and ui j − hp upper
i j respectively. The formulation of (19)-(24) is a general method to address a piecewise continuous

function. For the special case of this minimization problem, the piecewise linear convex function (15) could also be
expressed by three inequality constraints without binary variables which improves the computational efficiency. For
the computational results in this paper, we used the general formulation.
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2.2.4. Flexible overtaking model (PESP-Ovt)
We design our flexible overtaking to allow multiple overtakings of a stopped train based on Zhang and Nie (2016),

and cover all different overtaking types as shown in Figure 6. Zhang and Nie (2016) introduced constraints for one
passing train overtaking a stopped train (Figure 6 (a)), and proved that the overtaking occurs only if the sum of four
modulo parameters of related dwell and headway activity equals 1 or 3, while 0 or 2 means no overtaking occurs
(explanations are similar to the illegal overtaking in Section 2.2.1). For railway lines with mixed traffic of passenger
and freight trains, multiple overtakings could be more useful as freight trains have a lower speed and little stops, and
are less sensitive to dwell time loss. Hence, we extend the constraints to multiple overtakings in our flexible overtaking
model. Section 4.3 compares the new model with multiple overtakings and the single overtaking constraints in Zhang
and Nie (2016), which shows the benefit of this extension. Not only robustness and capacity, but also train journey
time and regularity benefit from our flexible overtaking model.

Station C

Station A

Station B
i j i' i j i' j' j' i j i' j' 

Time

D
is

ta
n

ce

i j i' j' k k' k k' 

(a) (b) (c) (e)

i j i' j' k k' 

(d)

Figure 6: Five representatives of overtakings

A new binary variable pii′ j j′ is proposed to indicate the existence of overtaking between activities (i, i′) and ( j, j′).
If yes, it equals 1, and 0 otherwise. We restrict here (i, i′) to be a dwell activity, so ( j, j′) can be either a dwell or
through activity. In addition, binary variable yii′ j j′ is introduced to represent the overtaking train order. It is 1 if
activity ( j, j′) overtakes (i, i′), and 0 otherwise. For instance, in Figure 6 (a), overtaking occurs between activity (i, i′)
and ( j, j′), so pii′ j j′ = 1 and p j j′ii′ = 1; activity (i, i′) is overtaken by activity ( j, j′), so yii′ j j′ = 1 and y j j′ii′ = 0.
Variable oii′ j j′ is an auxiliary binary variable, ensuring that the sum of modulo parameters is between 0 and 3 together
with pii′ j j′ . Figure 7 illustrates the relationships of modulo parameters zi j, zi′ j′ , zii′ and z j j′ , and corresponding values
of binary variable pii′ j j′ , yii′ j j′ and y j j′ii′ when the overtaking occurs at station B with overtaking type of Figure 6 (b).
Note that all these related activities should be from the same station. Hence we also defineAsk

dwell,A
sk
thru, andAsk

head to
represent dwell activities, through activities and headway activities at station sk respectively.

i
j

i' 
j' 

T

zij=0 zjj'=0

zii' =0

zi'j'=1

(a)  oii'jj'=0, pii'jj'=1, yii'jj'=1,  yjj'ii'=0 

i

j
i' 

j' 

T

zij=1 zjj'=0

zii' =1

zi'j'=1

(b)  oii'jj'=1, pii'jj'=1, yii'jj'=1,  yjj'ii'=0 

i i

j
i' 

j' 

T

zij=0 zjj'=1

zii' =1

zi'j'=1

(b)  oii'jj'=1, pii'jj'=1, yii'jj'=1,  yjj'ii'=0 (πj' =0)

i

j

T

i' 
j' 

S
ta

ti
o
n

 B

Figure 7: Three relationships between modulo parameters, and the corresponding values of binary variables oii′ j j′ , pii′ j j′ , yii′ j j′ and y j j′ii′ when an
overtaking occurs at station B. Note: the red line represents the dwell activity, and the blue line for the headway activity

During the optimization process, in order to control the train with the minimum dwell time when no overtaking
occurs, and limit the dwell time extension, a parameter hsk is designed as the maximum headway time at station sk:

hsk = max
(i, j)∈Ask

head

{li j,T − ui j}

In addition, a parameter d j j′ is defined as the maximal (dwell) time supplements for activity ( j, j′),

d j j′ = u j j′ − l j j′
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If ( j, j′) is a through activity, u j j′ = l j j′ = 0 and thus also d j j′ = 0. We assume that the minimum dwell time at one
station for all train lines are the same. If overtaking is allowed at the corresponding station, the dwell time supplement
d j j′ should become larger than li j + li′ j′ . In order to incorporate station capacity, a parameter Omax

sk
is introduced as

the maximum overtaking capacity at station sk, i.e., the maximum number of siding tracks in station sk. Finally, a
binary variable xii′ is introduced to present whether dwell activity (i, i′) is overtaken by through activities. If a passing
overtaking exists at dwell activity (i, i′), it is 1, and 0 otherwise.

In general, an overtaking implies a longer dwell time, thus it is a disadvantage to the passengers in the train
that waits to be overtaken by another train. Moreover, the tight headways between two overtaking trains also make
the timetable more vulnerable. On the other side, overtakings could help to decrease capacity utilization when a
faster train can overtake a slow train, which can then be used to run more trains, have more buffer between trains
(elsewhere), or even enable to schedule the total number of trains in the first place. So the total number of overtakings
are introduced to be optimized, and the trade-offs between overtakings and robustness/capacity are main timetabling
design decisions. Hence, the periodic timetabling model with flexible overtaking PESP-Ovt is expressed as:

Minimize
∑
sk∈S

∑
(i,i′)∈Ask

dwell

∑
( j, j′)∈Ask

dwell∪A
sk
thru

yii′ j j′ (25)

subject to (3)-(8) and

zi j + zi′ j′ + zii′ + z j j′ = 2 · oii′ j j′ + pii′ j j′ ∀(i, i′) ∈ Ask
dwell, ( j, j′) ∈ Ask

dwell ∪A
sk
thru, (i, j), (i′, j′) ∈ Ask

head, sk ∈ S (26)
yii′ j j′ + y j j′ii′ = pii′ j j′ ∀(i, i′) ∈ Ask

dwell, ( j, j′) ∈ Ask
dwell ∪A

sk
thru, (i, j), (i′, j′) ∈ Ask

head, sk ∈ S (27)
oii′ j j′ , pii′ j j′ , yii′ j j′ , y j j′ii′ ∈ {0, 1} ∀(i, i′) ∈ Ask

dwell, ( j, j′) ∈ Ask
dwell ∪A

sk
thru, (i, j), (i′, j′) ∈ Ask

head, sk ∈ S (28)

−y j j′ii′ · d j j′ − (1 − pii′ j j′ ) · (u j j′ − lii′ ) ≤ aii′ − a j j′ ≤ yii′ j j′ · dii′ + (1 − pii′ j j′ ) · (uii′ − l j j′ )
∀(i, i′) ∈ Ask

dwell, ( j, j′) ∈ Ask
dwell ∪A

sk
thru, sk ∈ S

(29)

xii′ ∈ {0, 1} ∀(i, i′) ∈ Adwell (30)
1
M

∑
( j, j′)∈Ask

thru

yii′ j j′ ≤ xii′ ≤
∑

( j, j′)∈Ask
thru

yii′ j j′ ∀(i, i′) ∈ Ask
dwell, sk ∈ S (31)

aii′ ≤ lii′ + 2 · hsk ·

 ∑
( j, j′)∈Ask

dwell

yii′ j j′

 + hsk ·

 ∑
( j, j′)∈Ask

thru

yii′ j j′

 + xii′ · (hsk − lii′ ) ∀(i, i′) ∈ Ask
dwell, sk ∈ S (32)

∑
(i,i′)∈Ask

dwell

pii′ j j′ ≤ Omax
sk

∀( j, j′) ∈ Ask
dwell ∪A

sk
thru, sk ∈ S (33)

Constraints (26)-(29) formulate the relationships of activities from two different trains for flexible overtaking at a
station. Constraint (26) describes that the sum of four modulo parameters is between 0 and 3. Variable pii′ j j′ is
1 if an overtaking occurs, and 0 otherwise. The value of auxiliary variable oii′ j j′ does not affect the occurrence of
overtakings. Constraint (27) guarantees that at most one overtaking occurs between activity (i, i′) and ( j, j′). If pii′ j j′

is 0, no overtaking exists. If pii′ j j′ is 1, the overtaking could only occur once even if both are dwell activities, i.e., yii′ j j′

or yii′ j j′ equals 1. Moreover, constraint (29) is applied to obtain the values of variables yii′ j j′ and yii′ j j′ by restricting
the relationship between both activities. In addition, certain overtakings can be fixed if needed by predefining the
related variables and relationships between modulo parameters. Constraints (30)-(33) represent the restrictions of
activity time and station capacity for multiple overtakings at one stop. Constraint (30) describes the binary variable
for the existence of passing overtakings, and constraint (31) linearizes it by the total number of passing overtakings.
Big M is a large number, which can be set as the maximal number of overtakings of all stations maxsk∈SOmax

sk
. If the

number of passing overtakings equals 0, then the upper bound ensures xii′ to be 0. Otherwise, if the number of passing
overtakings is bigger than 0, the lower bound guarantees it to be 1. Constraint (32) allows extending dwell time only
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when the overtaking happens and limits it depending on the number of passing overtakings and stopping overtakings.
Constraint (33) guarantees that the number of overtakings at each station is no more than the overtaking capacity,
which also can be used for dealing with platform capacity.

Dwell time extensions for different overtaking types are considered in constraint (32). To be specific, take over-
taking examples from Figure 6. We assume 2 overtaking tracks available at station B with a minimum dwell time
1 min, and the minimum headway time is 3 min except for arrival-through and through-departure with 2 min. Ta-
ble 1 shows the total number of overtakings between two dwell activities, the total number of overtakings between
dwell and through activities, the existence of through overtaking, the minimal dwell time extension, and the com-
puted maximal dwell time extension. For example, the maximal dwell time extension of Figure 6 (a) is computed as
lii′ + 2 · hsk · 0 + hsk · 1 + 1 · (hsk − lii′ ) = 2 · hsk = 6. This is the input constraint to restrict the dwell time extension to
be 0 when no overtaking occur, and to vary in a limited range when overtaking occurs.

Table 1: Values of parameters and variables for different overtaking types
Instance

∑
( j, j′)∈Adwell

yii′ j j′
∑

( j, j′)∈Athru

yii′ j j′ xii′ amin
ii′ amax

ii′

Figure 6 (a) 0 1 1 4 6
Figure 6 (b) 1 0 0 7 7
Figure 6 (c) 1 1 1 10 12
Figure 6 (d) 0 2 1 9 9
Figure 6 (e) 2 0 0 13 13
No overtaking 0 0 0 1 1

2.2.5. MOPRT
In section 2.2, four timetabling models with a single-objective were formulated. In order to find an optimal

solution with consideration of all objectives above, a multi-objective periodic railway timetabling model including
train journey time ZT JT , timetable regularity deviation ZReg, timetable vulnerability ZVnb and the number of overtakings
ZOvt as objectives to be minimized is proposed as follows:

ZT JT =
∑

(i, j)∈Arun∪Adwell

αi j · (π j − πi + zi j · T ) (34)

ZReg =
∑

(i, j)∈Areg

θi j (35)

ZVnb =
∑

(i, j)∈Ahead

δi j (36)

ZOvt =
∑

(i, j)∈Adwell

yii′ j j′ (37)

subject to (3)-(8), (11)-(12), (19)-(21), (26)-(33).

3. Pareto frontier

Multi-objective optimization aims to explore the Pareto (non-dominated) optimal solution set or quantify the trade-
offs in fulfilling the different objectives. Marler and Arora (2004) investigated many approaches for multi-objective
optimization for engineering, including the weighted sum method, ε-constraint method, normal boundary intersection
method, and genetic (evolutionary) algorithms. Mavrotas (2009) mentioned that the ε-constraint method has four
main advantages over the weighted sum, and Mavrotas and Florios (2013) developed an effective implementation of
the ε-constraint method for generating the Pareto-optimal solutions with multi-objectives by comparing it with some
meta-heuristic methods. Recently, the ε-constraint method was applied to solve railway multi-objective optimization
problems for rescheduling with three objectives and capacity analysis with two objectives in Binder et al. (2017) and
Burdett (2015), respectively. It was proved to be efficient for trade-off analysis, as well as yielding the Pareto optimal
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solutions. Hence, the ε-constraint method is adopted to address our MOPRT problem. In the ε-constraint method,
the multi-objective problem is optimized with one chosen objective function using the other objective functions as
constraints. Different values of ε are used as the bound on the other functions. Solving the model by varying ε-
constraint bounds, the Pareto frontier can be obtained.

To construct the Pareto frontier for the MOPRT from Section 2.2.5, four objectives (train journey times, timetable
regularity, timetable vulnerability and the number of overtakings) need to be optimized in a priority order. Both
passengers and train operators give the highest priority to total train journey time, as it is the fundamental factor for
passengers travel choice and transport efficiency. So we put it in the first place to optimize. Regularity is the main idea
of periodic timetabling, and vulnerability is used to improve timetable robustness by reducing the impact of delays.
More overtakings could increase the train journey times, but at the same time decrease network capacity utilization
and add more buffer times especially for a dense corridor. A regular scheduled timetable is convenient and attracts
more passengers (Wardman et al., 2004), whereas robustness is useful when delays occur and overtakings could have
a significant effect on both robustness and regularity when the railway capacity is tight at the cost of increased travel
times. Thus at the planning level, we optimize regularity secondly, to preserve it as much as possible, followed by the
vulnerability, and last overtaking.

Therefore, the following order is formulated to explore the Pareto frontier. Firstly, ZT JT is computed, secondly
ZReg with an upper bound on ZT JT , thirdly ZVnb with upper bounds on both ZReg and ZT JT , and finally ZOvt with upper
bounds on all the other objectives. The upper bounds ε corresponding to each objective are denoted as εT JT , εReg, εVnb

and εOvt.
Moreover, the range of each objective function needs to be identified for providing effective values of ε-constraints.

Traditionally, a payoff table, including ranges of objective values, could be obtained by solving each optimization
problem with the corresponding single objective individually. When doing so, values of upper bounds tend to be
arbitrary, and they could not ensure that the optimized solutions are Pareto optimal (Mavrotas, 2009), as an alternative
optimal solution sometimes exists outside the given. Alternatively, too big values of upper bounds make the problem
inefficient to solve. Therefore, we introduce Algorithm 1 with an adaptive payoff method to narrow the objective
ranges in Section 3.1, especially to get effective computations with limited grids for the following steps. Moreover,
with the given ε-constraints, infeasibility could occur in our minimization models (PESP-Vnb and PESP-Ovt) due
to conflicts between constraints. To this end, Algorithm 2 is designed for a feasibility exploration in Section 3.2, to
reduce the unnecessary computations for calculating solutions of Pareto-optimal set. Finally, Section 3.3 presents the
Algorithm 3 for generating the Pareto frontier.

3.1. Compute adaptive payoff table
We propose an adaptive method to generate the payoff table and the Pareto frontier. An example of a payoff

table is displayed in Table 2. The values in this table are obtained by solving each single-objective models inde-
pendently, with1, 2, 3 and 4 representing each single-objective optimization model by the proposed priority order.
To be more concrete, we use Table 4 from the later case study as an example. The values in each row are com-
puted from the optimal solution of the corresponding single-objective model in the first column. For example, the
values (27006, 12132, 64460, and 7) in the second row of Table 4 are computed from the PESP-TJT. The diago-
nal values (27006, 4692, 3912 and 7) are the optimal values from the models of PESP-TJT, PESP-Reg, PESP-Vnb
and PESP-Ovt respectively, indicated as Zmin

T JT , Zmin
Reg, Zmin

Vnb and Zmin
Ovt . The initial maximal value for each objective is

Zmax
T JT = max(ZT JT (1),ZT JT (2),ZT JT (3),ZT JT (4)) = max(27006, 38112, 37634, 30654) = 38112, and likewise for Zmax

Reg
and Zmax

Vnb . Zmax
Ovt is not necessary to compute as PESP-Ovt is the last model to optimize. The process of updating upper

bounds needs to be done one by one, and following the priority order: ZT JT , ZReg, and ZVnb. It is the same for all ob-
jectives, except for the different numbers of iterations. Algorithm 1 presents this process for ZT JT , while the other two
objectives are treated in the same way. First, we find row i such that ZT JT (i) = Zmax

T JT and solve PESP-TJT by adding
constraints ZReg ≤ ZReg(i), ZVnb ≤ ZVnb(i), and ZOvt ≤ ZOvt(i), i.e., ZT JT (2) = 38112 and added constraints ZReg ≤ 4692,
ZVnb ≤ 58820, and ZOvt ≤ 12. Then the new optimized value ZT JT is updated in row i of the payoff table, as well as
ZReg, ZVnb, and ZOvt, which are calculated from the solution of this optimization. Moreover, we recompute the max-
imal objective value Zmax

T JT = max(ZT JT (1),ZT JT (2),ZT JT (3),ZT JT (4)) in this updated payoff table. If Zmax
T JT = ZT JT (i),

the objective value could no longer be improved under the constraints of the other objectives. This value would be
selected as the upper bound of ZT JT . If Zmax

T JT > ZT JT (i), we repeat all previous steps until ZT JT (i) = Zmax
T JT , with the

generated upper bound.
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Table 2: Payoff table obtained by solving single-objective models
Models ZT JT ZReg ZVnb ZOvt

PESP-TJT ZT JT (1) ZReg(1) ZVnb(1) ZOvt(1)
PESP-Reg ZT JT (2) ZReg(2) ZVnb(2) ZOvt(2)
PESP-Vnb ZT JT (3) ZReg(3) ZVnb(3) ZOvt(3)
PESP-Ovt ZT JT (4) ZReg(4) ZVnb(4) ZOvt(4)

Algorithm 1: Updating payoff table for objective ZT JT

Input: Line plan, timetable related parameters, payoff table
Output: Updated payoff table

1 Generate the event-activity network
2 repeat
3 Find row i with ZT JT (i) = max(ZT JT (1),ZT JT (2),ZT JT (3),ZT JT (4)) in the payoff table
4 Solve PESP-TJT with extra constraints ZReg ≤ ZReg(i), ZVnb ≤ ZVnb(i), and ZOvt ≤ ZOvt(i)
5 Update new optimized values of ZT JT , ZReg, ZVnb and ZOvt in row i of the payoff table
6 Set Zmax

T JT = max(ZT JT (1),ZT JT (2),ZT JT (3),ZT JT (4)) from this updated payoff table
7 until ZT JT (i) = Zmax

T JT

With the updated upper bound values in the payoff table, the ranges of ZT JT , ZReg, and ZVnb are known. We then
divide each range into equal intervals by a proposed number of grid points for computing Pareto solutions. Here,
NT JT , NReg and NVnb represent the number of grid points of each objective. The more points, the finer the found
Pareto frontier but at the same time more iterations are needed for solving the problem. The value set of ε-constraints
for the TJT objective function is

Cn
T JT = Zmin

T JT + (n − 1) ·
Zmax

T JT − Zmin
T JT

NT JT
n = 1, ...,NT JT .

Set CT JT represents the constraint value set, defined as CT JT = {C1
T JT , ...,C

NT JT
T JT }. Sets CReg and CVnb are defined in the

same way.

3.2. Explore the model feasibility

When the value sets for the ε-constraints have been determined, the computation to explore the Pareto frontier
for the MOPRT model can be conducted. However, we observed that PESP-Ovt could be infeasible with some
combinations of constraints εT JT , εReg and εVnb. The reason may be that at least two objective values have comparable
small upper bounds of ε-constraints, which are not possible to achieve in one solution. This issue could already exist
in three dimensions for the multi-objective model: PESP-TJT, PESP-Reg, and PESP-Vnb. Hence, we introduce a
feasibility check in the three-dimension variant to remove the combinations of infeasible ε-constraints, which could
help to improve the computation efficiency in our MOPRT model.

Algorithm 2 explains the process to check the feasibility of PESP-Vnb with two extra ε-constraints: CT JT and
CReg. With the given input of line plan and timetable related data (running times, dwell time, headway times, etc.),
the event-activity network is generated first.

We initializeΩ and R as two empty sets. The former is to store n and r combinations of ε-constraints from feasible
solutions, and the latter is to save the obtained solutions indexed by m. We set the ε-constraint values of CT JT and
CReg varying from the most relaxed to the most restrictive ones. For each n, we vary r from NReg to 0, and repeat
solving PESP-Vnb with new extra constraints of ZT JT ≤ Cn

T JT and ZReg ≤ Cr
Reg, save the pair (n, r) in Ω and the

current objective results in R until the solution is infeasible or r = 0. If it is infeasible or r = 0, then n is reduced by
1 and we repeat the previous steps until n = 0. In this way, for a certain n, if PESP-Vnb is infeasible for εReg = Cr

Reg,
the following iterations r − 1, ..., 1 could be skipped because these iterations will also lead to infeasibility.
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Algorithm 2: Explore the feasibility space of model PESP-Vnb with ε-constraints εT JT and εReg

Input: Line plan, timetable related parameters, CT JT , and CReg

Output: Feasbile constraint index set Ω
1 Initialization Ω← ∅, feasible solution set R ← ∅, feasible solution index m← 1
2 Generate the event-activity network
3 for n = NT JT to 1 do
4 εT JT ← Cn

T JT
5 r ← NReg

6 repeat
7 εReg ← Cr

Reg

8 Solve PESP-Vnb with extra constraints ZT JT ≤ εT JT and ZReg ≤ εReg

9 Ω← {n, r}
10 Calculate objective values of Zm

T JT and Zm
Reg

11 Save current solution in R
12 m← m + 1
13 r ← r − 1
14 until r = 0 or Model PESP-Vnb is infeasible

Only pairs of n and r in Ω need to be calculated when solving MOPRT with four objectives as feasibility cannot
be restored. If a model could not be solved, then it is also infeasible when more restrictive constraints and/or different
objectives are added.

3.3. Generate Pareto-optimal solutions

In multi-objective optimization, when the different objectives are contradictory, an optimal solution is considered
as the Pareto optimal when it is not possible to improve one objective without degrading the others. The set of all
Pareto optimal solutions is called the Pareto frontier as it usually graphically forms a distinct front of points. Solutions
which do not lay on the Pareto front are called Pareto dominated solutions. Hence, Algorithm 3 is designed to explore
the Pareto frontier of the four-objective timetabling model under ε-constraints. We initialize Ψ and X as two empty
sets. The former is to store all feasible solutions indexed by k, and the latter is to store the index of dominated
solutions. For each pair (n, r) in Ω, the corresponding constraints ZT JT ≤ Cn

T JT , ZReg ≤ Cr
Reg are generated. Then the

model PESP-Ovt is solved for each b with constraints εVnb = Cb
Vnb (b is varying from NVnb to 1) iteratively until an

infeasible solution occurs or b = 0. If the model is feasible, each objective value Zk
T JT , Zk

Reg and Zk
Vnb (k the index of

the current solution) is also calculated, and saved in Ψ together with Zk
Ovt. When all computations are done, we check

the dominance of solutions in set Ψ to obtain the Pareto-optimal set. For a solution Ψ (k), we check whether a better
solution Ψ (q) with smaller Zq

T JT , Zq
Reg, Zq

Vnb, and Zq
Ovt exists. If satisfying Zq

T JT ≤ Zk
T JT , Zq

Reg ≤ Zk
Reg, Zq

Vnb ≤ Zk
Vnb, and

Zq
Ovt ≤ Zk

Ovt (at least including one strict inequality of all four inequalities), this solution is removed from Ψ . Finally,
a Pareto optimal solution set is achieved.

3.4. Normalization of objective values

When the Pareto optimal set is generated, rail operators could select the timetable according to their preference.
However, it is still difficult to choose, and an overall optimal solution is still necessary to be discussed. To compare
the difference between solutions, standardized Euclidean distance (distance to zero) is proposed. First, the values of
each objective are normalized. For ZT JT , a normalized objective function is:

Z̃k
T JT =

Zk
T JT − Zmin

T JT

Zmax
T JT − Zmin

T JT

, (38)
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Algorithm 3: Explore the Pareto frontier of the MOPRT model under ε-constraints
Input: Line plan, timetable related parameters, CT JT , CReg, CVnb, Ω
Output: Pareto frontier of the MOPRT model

1 Initialization: solution set Ψ ← ∅, solution index k ← 1, set of dominated solution index X ← ∅
2 for (n, r) ∈ Ω do
3 εT JT ← Cn

T JT
4 εReg ← Cr

Reg

5 b← NVnb

6 repeat
7 εVnb ← Cb

Vnb
8 Solve PESP-Ovt with extra constraints ZT JT ≤ εT JT , ZReg ≤ εReg and ZVnb ≤ εVnb

9 Calculate objective values of Zk
T JT , Zk

Reg and Zk
Vnb

10 Save current solution in Ψ
11 k ← k + 1
12 b← b − 1
13 until b = 0 or Model PESP-Ovt is infeasible

14 N(Ψ )←the number of solutions in Ψ
15 for k = 1 to N(Ψ ) do
16 for q = 1 to N(Ψ ) do
17 if Zq

T JT ≤ Zk
T JT , Zq

Reg ≤ Zk
Reg, Zq

Vnb ≤ Zk
Vnb, and Zq

Ovt ≤ Zk
Ovt including one strict inequality then

18 X ← X + {k}

19 Update Ψ = Ψ\Ψ (X) by removing results of iteration numbers in set X.

and Z̃k
Reg, Z̃k

Vnb, and Z̃k
Ovt are normalized in the same way. Then the standardized Euclidean distance of the k − th

solution ρk can be calculated:

ρk =

√
(Z̃k

T JT )2 + (Z̃k
Reg)2 + (Z̃k

Vnb)2 + (Z̃k
Ovt)

2 (39)

The best solution is adopted such that ρ∗ = mink∈[1,N((Ψ )]ρk. With a predefined ∆ that ρ∗ + ∆ ∈ [mink∈[1,N((Ψ )]ρk, 1], the
best solution set Υ can also be achieved such that Υ =k∈[1,N((Ψ )] {ρk < ρ

∗ + ∆}.

3.5. Evaluation criterion of capacity utilization
When the standardized Euclidean distance of each solution is calculated, the values from the best solution set are

sometimes quite close to each other. Therefore, capacity utilization is implemented as an extra evaluation criterion to
help to make a decision.

The minimum cycle time λ (Goverde, 2007) is used to represent the timetable capacity utilization. When train
orders, and running times have been determined, λ can easily be computed by compressing the headways between
successive trains towards their default values as much as possible. Then the capacity utilization of the obtained
timetable with period length T can be calculated by

C =
λ

T
(40)

Note that this capacity utilization indicator mainly focuses on the buffer times at stations, and is generated for macro-
scopic timetables with default minimum headways, which differs from the capacity occupation in UIC (2013) that
uses microscopically computed blocking times to derive the minimum headway times exactly.

4. Experiments and computational results

To demonstrate the applicability of our MOPRT model and the Pareto frontier approach we use two cases. First,
a theoretical case is used in Section 4.1 to demonstrate the feasibility and validity of each single-objective model and
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the designed algorithms for exploring the Pareto-optimal solutions. The final adopted payoff table is generated by
using Algorithm 1. The trade-off between objectives is analyzed with the computational results from exploration of
the Pareto frontier (Algorithm 2 and Algorithm 3). Second, a real-world case of a Dutch railway corridor is applied
in Section 4.2. We test the efficiency of our model by comparing the obtained optimal solution with the existing
timetable. The optimization models and algorithms are implemented using Matlab R2017b, and the Yalmip toolbox
(Löfberg, 2004) with Gurobi version 8.0.0.

4.1. Theoretical case

The first case is a double-track corridor with five stations and dense heterogeneous traffic. It is served by three train
lines with different stopping patterns and frequencies of 4, 2 and 3 respectively. Figure 8 displays the given network
layout and line plan. We only consider trains from A to E. Overtakings are allowed for all trains and the maximal
overtaking capacities for the stations B, C and D are set to 2. A certain amount of dwell time supplement is allowed
in the optimization process to allow the occurrence of overtakings. Table 3 depicts the parameter values applied in
our model. The period length is set to one hour (3600 s). For train journey time, the weights of running and dwell
activities are 1 and 3 respectively. The maximum dwell time supplement is 600 s to allow at most two overtakings of
a train at one stop. A maximum regularity deviation of 420s is used to control that train lines from the same line still
follow a certain regular pattern. Without loss of generality, only the traffic in the direction from A to E is considered.

A C EB D

𝑓1 = 4 

𝑓2 = 2 

𝑓3 = 3 

Figure 8: Line plan

Table 3: Input parameters of the MOPRT model
Parameter Value
Period length T 3600 s
Weight of activity αi j 1 if (i, j) ∈ Arun, and 3 if (i, j) ∈ Adwell
Minimum dwell time li j 120 s (i, j) ∈ Adwell
Minimum headway time hi j 180 s (i, j) ∈ Ahead
Maximum dwell time supplement di j 600 s (i, j) ∈ Adwell
Maximum regularity deviations βl 420 s

4.1.1. Payoff table generation (using Algorithm 1)
By solving each single-objective optimization model independently, an initial payoff table including values of each

objective is obtained, as shown in Table 4. Figure 9 illustrates the time-distance diagrams of the computed timetables
from each single-objective model.

From Table 4, both timetables from PESP-TJT and PESP-Ovt (see Figure 9 (a) and Figure 9 (d)) have the the
least number of overtakings (7 in total). However, it can be observed that the former has least dwell time supplement.
Due to minimizing the deviations between departure and arrival intervals in PESP-Reg, it can be seen in Figure 9 (b)
a strong regularity of trains from the same line, as well as similar dwell times at stations. Figure 9 (c) shows that
headways between trains are always larger than the minimum headway except at stops compared with others, which
demonstrates that PESP-Vnb could help to improve robustness. However, in order to achieve the optimal value
of the corresponding objective, timetables from each of single-objective model have some drawbacks. Timetable
from model PESP-TJT (Figure 9 (a)) has plenty of minimum headways and no regularity of trains. Both timetables
from PESP-Reg (Figure 9 (b)) and PESP-Vnb (Figure 9 (c)) have lots of running time supplements and dwell time
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Table 4: Initial payoff table obtained by each single-objective models

Model/objectives ZT JT ZReg ZVnb ZOvt

[s] [s] [s] [-]
PESP-TJT 27006 12132 64460 7
PESP-Reg 38112 4692 58820 12
PESP-Vnb 37634 17972 39120 12
PESP-Ovt 30654 13092 65500 7
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Figure 9: Time-distance diagrams of optimized timetable from (a) PESP-TJT, (b) PESP-Reg, (c) PESP-Vnb and (d) PESP-Ovt

supplements. Timetable from PESP-Ovt (Figure 9 (d)) has all the above-mentioned drawbacks. This also indicates
that a single-objective is not enough to satisfy multiple requirements from rail operations and needs to be extended.

We update values in Table 4 to a more effective upper bound for each objective by Algorithm 1. Table 5 displays
the updated payoff table, the explored range (including underlined minimal and maximal values of each objective). It
can be found that the upper bound of ZT JT and ZVnb decrease by 902 from 38112 to 37210, and 4190 from 65500 to
61310 respectively. To illustrate the exploration of the Pareto frontier without too much involved computations, 8 grid
points are proposed for each of the three objectives ZT JT , ZReg, and ZVnb.

Table 5: Updated payoff table (unit: s for objective ZT JT , ZReg, and ZVnb)

Models/Objectives ZT JT ZReg ZVnb ZOvt

PESP-TJT 27006 12132 61310 7
PESP-Reg 36930 4692 58820 12
PESP-Vnb 37210 17972 39120 12
PESP-Ovt 30654 13092 46860 7
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4.1.2. Feasibility exploration (using Algorithm 2)
This feasibility exploration could help to reduce the search space for the Pareto frontier of the MOPRT model.

By conducting Algorithm 2, set Ω with combinations of feasible constraints is attained, giving 53 feasible solutions
out of 64 possible solutions. As this algorithm is implemented at a three-dimension level with PESP-TJT, PESP-Reg,
and PESP-Vnb, the trade-offs between these objectives could be analyzed in a clear way, especially to show how train
journey time and timetable regularity impact the timetable vulnerability.

Figure 10 (a) shows the variation of train journey time (ZT JT ) and timetable vulnerability (ZVnb) for different
regularity deviations (εReg). It can be observed that the overall tendency is that smaller train journey times have a
negative effect on timetable vulnerability, as expected. In detail, ZVnb becomes stable around 4.25 × 104 for ZT JT

varying between 3.28× 104 and 3.58× 104, and εReg varying between 8486 and 16075 (data of the legend). Moreover,
ZT JT and ZVnb become quite insensitive when εReg changes from 10383 to 17972. This reveals that εReg has no
noticeable impact on solutions when it becomes larger. Only when εReg changes to the maximal value (17972), ZVnb

could achieve its optimal value (39120) while ZT JT is at its maximal value (37210). This indicates that the optimal
solution with balanced objective values must occur above ZReg = 10383. Figure 10 (b) displays the relation between
ZReg and ZVnb with different εT JT , showing that ZVnb decreases with increasing ZReg in general. However, the variation
becomes quite small when ZReg raises to 10383, which agrees with Figure 10 (a). Meanwhile, the relation between ZReg

and ZVnb is not much different for εT JT from 32837 to 37210, which is similar to the conclusion from Figure 10 (a).
Most ZT JT are around 32837 for this solution set. Therefore, if only the balanced optimal solution is needed, the
constraint set Ω could be reduced by removing constraints of the captured values of εT JT > 32873 and εReg > 10383.
Nevertheless, in this paper, the whole set of Ω is required to generate different results to study the trade-offs between
the objectives in the MOPRT model.
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Figure 10: Trade-off between different objectives: (a) train journey time and timetable vulnerability for varying regularity deviation εReg; (b)
regularity devation and timetable vulnerability for varying train journey time εT JT

4.1.3. Pareto-optimal solutions generation (using Algorithm 3)
Algorithm 3 is designed for solving MOPRT model combining PESP-TJT, PESP-Reg, PESP-Vnb and PESP-Ovt

and creating Pareto-optimal solutions. In total, 274 solutions are found while varying εT JT , εReg and εVnb within the
given set Ω. Of that number, 83 non-dominated solutions are found generating the Pareto-optimal set. Figure 11
depicts these solutions by a 3D scatter plot with the color-bar representing the fourth objective of the number of
overtakings. The top five solutions are quite nearby each other (∆ = 0.02), see the red circle on the bottom (the best
solution is shown with edge color red). In addition, the next three solutions 6-8 are also pointed out as comparable
different objective values with the best solution (∆ = 0.1).

According to the standardized Euclidean distance, Table 6 shows the best solution set Υ with ∆ = 0.16. For
each solution, it includes the upper bounds of constraints (εT JT , εReg and εVnb), obtained objective values (ZT JT , ZReg,
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Figure 11: Pareto-optimal set

ZVnb and ZOvt), normalized objective values (Z̃T JT , Z̃Reg, Z̃Vnb and Z̃Ovt), standardized Euclidean distance ρ, capacity
utilization C, optimization gap and time. It can be observed that each ZVnb almost reaches its upper bound εVnb, and so
do most εT JT and εReg with effective restrictions for the model. The objective values of timetable vulnerability have a
bigger variation range than the other objectives observed from value range of Z̃T JT , Z̃Reg, Z̃Vnb, and Z̃Ovt. This means
that timetable vulnerability has quite a remarkable impact to the final obtained solution. The number 0.0000 of Z̃Ovt

means that the optimized value of ZOvt has zero distance to the overall minimal value from Table 5.
Moreover, it can be observed that solutions with nine overtakings have lower capacity utilization than the others.

This also can be verified by Figure 12, which depicts that the number of overtakings has an opposite effect on capacity
utilization in the solutions from the Pareto-optimal set. However, there is no obvious difference between solutions with
seven and eight overtakings. We select three best solutions with different number of overtakings to see the difference.
The time-distance diagrams are plotted in Figure 13 for (a) the best solution No.1 with 8 overtakings per hour; (b)
solution No.8 with 9 overtakings per hour; and (c) solution No.9 with 7 overtakings per hour. It can be observed
that solution No.1 and solution No.9 almost have the same train orders except the existence of an overtaking between
the train with the red line and blue line at station C. Instead of the overtaking in Figure 13(a), successive arrival and
departure activities exist between two trains in Figure 13(c), which have the same strict infrastructure constraints as
an overtaking. Therefore, the capacity utilization is similar in both solutions. In addition, it can be straightforwardly
recognized that the timetables in Figure 13 are better than the ones in Figure 9 with a more reasonable allocation of
time supplements and fewer overtakings. To contrast with the optimal objective values of the single-objective model,
the best solution has 11.96%, 107.00%, 16.21% and 14.28% increase of ZT JT , ZReg, ZVnb and ZOvt, respectively.

The 4D plot in Figure 11 is not adequate to analyze the trade-offs for all objectives as it is difficult to figure out
the variation tendency. Therefore, we designed Figure 14 and Figure 15 with four subplots to illustrate the relations
between all four objectives. Each subplot represents two dimensions directly and the third one roughly depicted by
the face color of the circles. The darker the color, the higher the value (color-bar on the right side). From both figures,
we can determine that train journey time ZT JT has a positive effect on the number of overtakings ZOvt, and a negative
effect on vulnerability ZVnb and regularity deviation ZReg. It can be clarified that overtakings lead to increasing the
total dwell times, and more running time supplements are needed to pull trains as far as possible and keep trains
operate regular. Overall, an increment of ZVnb could lead to a decrement of ZOvt, like more overtakings could help to
improve robustness. No clear relations are derived between ZReg and ZVnb, ZReg and ZOvt, as the data in both subplots
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Table 6: Partial Pareto-optimal solutions from the MOPRT model (sorted according to ρ)

No. εT JT εReg εVnb ZT JT ZReg ZVnb ZOvt Z̃T JT Z̃Reg Z̃Vnb Z̃Ovt ρ C gap Opt time
[s] [s] [s] [s] [s] [s] [-] [-] [-] [-] [-] [-] [%] [%] [s]

1 35752 16075 45460 30236 9712 45460 8 0.3165 0.3780 0.2857 0.1667 0.5937 94.58 0.00 110.83
2 29921 12281 45460 29919 10032 45460 8 0.2855 0.4021 0.2857 0.1667 0.5938 95.19 0.00 121.35
3 37210 17972 45460 30225 9822 45440 8 0.3155 0.3863 0.2848 0.1667 0.5980 94.19 0.00 97.79
4 37210 10383 45460 30451 9612 45460 8 0.3376 0.3705 0.2857 0.1667 0.6005 94.17 0.00 68.30
5 29921 16075 45460 29888 10334 45460 8 0.2824 0.4248 0.2857 0.1667 0.6080 96.14 0.00 77.71
6 29921 10383 48630 29881 9846 48630 8 0.2818 0.3881 0.4286 0.1667 0.6644 95.61 0.00 115.76
7 29921 8486 51800 29642 8486 51110 8 0.2583 0.2857 0.5403 0.1667 0.6842 96.83 0.00 75.97
8 35752 8486 48630 30609 7862 48630 9 0.3531 0.2387 0.4286 0.3333 0.6902 92.69 0.00 1443.48
9 31379 10383 48630 31025 10144 48630 7 0.3939 0.4105 0.4286 0.0000 0.7123 95.06 0.00 47.57
10 37210 10383 48630 31023 10264 48630 7 0.3937 0.4196 0.4286 0.0000 0.7174 94.58 0.00 50.61
11 32837 10383 48630 31378 10118 48630 7 0.4285 0.4086 0.4286 0.0000 0.7309 94.56 0.00 44.36
12 32837 14178 48630 30972 10648 48620 7 0.3887 0.4485 0.4281 0.0000 0.7318 95.42 0.00 55.47
13 35752 8486 51800 30254 8446 51800 8 0.3183 0.2827 0.5714 0.1667 0.7318 95.50 0.00 87.40
14 32837 8486 48630 31396 7830 48630 9 0.4302 0.2363 0.4286 0.3333 0.7319 91.36 11.11 1814.24
15 35752 16075 48630 30779 10906 48630 7 0.3698 0.4679 0.4286 0.0000 0.7344 96.00 0.00 68.53
16 35752 10383 48630 31680 10038 48630 7 0.4581 0.4026 0.4286 0.0000 0.7453 94.00 0.00 60.97
17 32837 12281 48630 31120 11252 47860 7 0.4032 0.4940 0.3939 0.0000 0.7495 95.17 0.00 86.04
18 35752 12281 48630 30614 11422 48630 7 0.3536 0.5068 0.4286 0.0000 0.7520 94.89 0.00 60.61
19 34295 14178 48630 30693 11354 48630 7 0.3613 0.5017 0.4286 0.0000 0.7523 95.67 0.00 63.06
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Figure 12: The relationship between the number of overtakings and capacity utilization

are scattered quite randomly. The circles connected by red dashed lines are the top five solutions, of which the one
with the red edges is the best solution in both figures. In addition, the separated ones with the dark red edge are the
top 6-8. Figure 15 also indicates some extreme results in the blue and purple dashed box. Solutions in the blue box
are in the opposite direction of the variation tendency in the ZReg related subplots, and have quite large values for all
ZT JT , ZReg and ZOvt. The reason is that to reach the minimum timetable vulnerability, we need to have plenty of train
journey time and regularity loss, and the number of overtakings increases to compensate for obtaining the best robust
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Figure 13: Time-distance diagrams of two periods: (a) The best solution No.1 with 8 overtakings per hour; (b) Solution No.8 with 9 overtakings
per hour; (c) Solution No.9 with 7 overtakings per hour

timetable. Similarly, solutions in the purple box mean that to get the best regular timetable, we need to sacrifice train
journey time and robustness with a quite large number of overtakings.
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4.2. Real world instance of a Dutch railway corridor

The Dutch rail network corridor from Utrecht Central (Ut) to Arnhem Central (Ah) is used to test the MO-
PRT model and solution approach. Figure 16 shows the corridor layout including 10 stations: Utrecht Central,
Utrecht Vaartsche Rijn (Utvr), Bunnik (Bnk), Driebergen-Zeist (Db), Maarn (Mrn), Veenendaal-De Klomp (Klp),
Ede-Wageningen (Ed), Wolfheze (Wf), Oosterbeek (Otb) and Arnhem Central. The existing line plan and scheduled
timetable are shown in Figure 17 and Figure 18, respectively. Basically, ten trains of five lines in each direction follow
an hourly train pattern. But IC3000 and S7500 deviate a bit from the basic scheduled train path due to the bi-hourly
operation of International train ICE120 when it operates. To set up the model in an hourly pattern, we select the period
when all related trains are operating, and use the corresponding line plan as input including the ICE train.

Ut

Utvr

Bnk Db Mrn Klp Ed Wf Otb
Ah

Figure 16: Railway corridor layout from Utrecht Central to Arnhem Central (Source:http://www.sporenplan.nl)

Utvr Bnk MrnDb OtbKlp WfEd

S7400—2/h

S7300—2/h S7500—2/h

ICE120--1/2h

IC3100--2/h

IC3000—2/h

Ut Ah

Figure 17: Existing line plan (ICE120 runs once per two hours)

In practice, regularity is always considered between different lines with the same type in a corridor in the Nether-
lands. Thus, similar to constraint (11), regularity constraints for different lines are also added in our model. To this
purpose, Regsl and Regdl are defined as the objective values of regularity deviation of the same line and different
lines, respectively. To distinguish the importance of regularity deviation from the same line, weights νi j are proposed
for Regsl and Regdl. The input parameters for the MOPRT model are listed in Table 7, and the minimum headway
between two train activities are depicted in Table 8. Moreover, we applied additional time window constraints to the
international ICE train at both boundary stations.

We apply the MOPRT model to find a high-quality timetable for this existing network. First, Table 9 with the
initial and updated payoff tables are obtained from the four single-objective models by using Algorithm 1. Both ZT JT

and ZVnb have significant improvements of upper bound. With the achieved minimal and maximal values of ZT JT ,
ZReg, and ZVnb, five grid points are chosen to explore the Pareto frontier. Then, we run Algorithm 2 and Algorithm 3,
and 13 Pareto-optimal solutions are found of total 70 feasible solutions, see Table 10. It can be derived that the εT JT

constraint plays the most important role to find the optimal solution as the value of ZT JT is almost the same as εT JT

for most of the solutions. Compared with the regularity deviation, εVnb is also restricted better as the objective values
ZVnb are quite close to εVnb. Both can be explained by the analysis of Figure 14 and Figure 15 in 4.1.2, there are
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Figure 18: Time-distance diagram of existing scheduled timetable in two hours (Timetable in the second hour is the basic pattern, and the dashed
line of S7500 in the first hour indicates that the scheduled train path do not follow the basic pattern due to bi-hourly international train ICE120)

Table 7: Input parameters of MOPRT model
Parameter Value
Period length T 3600 s
Weight of activity αi j 1 if (i, j) ∈ Arun, and 3 if (i, j) ∈ Adwell
Minimum dwell time 42 s (Sprinter station), 54 s (Intercity station)
Running time supplement 5% (minimum); 20%(maximum)
Maximum dwell time supplement 360 s for stations with one overtaking facility, and 540 s for two
Maximum regularity deviations βl 300 s
Weight of regularity deviations νi j 1 (trains from different lines); 2 (trains from the same line)

Table 8: Minimum headways between two train activities (unit: min) (Source: 2018 Network statement from ProRail)

Activity Activity 2nd train
A P S D

Activity 1st train

Arrival(A) 3 2 3 n/a
Passing(P) 3 3 3 2
Short stop(S) 3 3 3 3
Departure(D) 4* 4 3 3

* In case of platform interval.

correlations between overtakings and the train journey time, and overtakings and timetable vulnerability. Even though
no overtaking occurs in this solution set, the constraints still work. Meanwhile, the MOPRT model could find the
Pareto-optimal solution set in a short time (maximal 5 min but mostly in only a few seconds).

To compare the solutions from the Pareto-optimal set with the existing timetable, we selected six solutions from
Table 10: the best obtained timetable (No.1), the best capacity utilization (No.3), the minimal train journey time
(No.5), the minimal timetable vulnerability (No.10 and No.12), and the minimal regularity deviation (No.13). These
solutions are illustrated in Table 11 together with the existing timetable in the hourly pattern when ICE is running,
including values of ZT JT , ZReg, ZVnb, ZOvt, regularity deviation between the same line Regsl, regularity deviation
between different lines Regdl, minimum cycle time λ, capacity utilization C, and standardized Euclidean distance ρ.

The existing timetable has a quite small regularity deviation between the same line (Regsl=1584), even smaller
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Table 9: Initial (left) and updated (right) payoff table from Algorithm 1

Model/objectives
Initial payoff table Updated payoff table

ZT JT ZReg ZVnb ZOvt ZT JT ZReg ZVnb ZOvt

[s] [s] [s] [-] [s] [s] [s] [-]
PESP-TJT 16902 47360 60930 0 16902 47360 32190 0
PESP-Reg 22667 1036 61900 400 17394 1036 47110 0
PESP-Vnb 19459 64558 13800 0 18486 64552 13800 0
PESP-Ovt 17319 41916 63580 0 17319 41890 21960 0

Table 10: Pareto-optimal solutions for the MOPRT model (sorted according to ρ)

No. εT JT εReg εVnb ZT JT ZReg ZVnb ZOvt Z̃T JT Z̃Reg Z̃Vnb Z̃Ovt ρ C Opt time
[s] [s] [s] [s] [s] [s] [-] [-] [-] [-] [-] [-] [%] [s]

1 17694 16915 22128 17694 16904 22120 0 0.5000 0.2498 0.2498 0 0.6122 68.97 55.45
2 17298 16915 30455 17298 16910 30450 0 0.2500 0.2499 0.4998 0 0.6122 73.00 37.99
3 17694 48673 22128 17693 31300 22120 0 0.4994 0.4765 0.2498 0 0.7340 67.69 3.10
4 17298 16915 38783 17298 16158 37410 0 0.2500 0.2381 0.7088 0 0.7884 74.19 3.12
5 16902 16915 38783 16902 16582 38780 0 0.0000 0.2448 0.7499 0 0.7889 81.17 3.62
6 17694 48673 30455 17693 27120 29540 0 0.4994 0.4107 0.4725 0 0.8008 68.11 2.61
7 18090 16915 22128 18090 15690 22120 0 0.7500 0.2307 0.2498 0 0.8235 68.58 114.97
8 17298 48673 22128 17298 48370 22120 0 0.2500 0.7452 0.2498 0 0.8248 72.64 260.96
9 18486 16915 30455 17878 16060 30450 0 0.6162 0.2365 0.4998 0 0.8279 72.83 2.64
10 18090 32794 22128 18090 32792 22110 0 0.7500 0.5000 0.2495 0 0.9353 67.92 10.93
11 17298 48673 38783 17297 38608 38770 0 0.2494 0.5915 0.7496 0 0.9869 77.53 3.34
12 18090 48673 22128 18012 48660 22110 0 0.7008 0.7498 0.2495 0 1.0562 69.69 2.43
13 18090 16915 47110 18090 11524 44890 0 0.7500 0.1651 0.9334 0 1.2087 70.25 1.67

than the best regularity solution No.13 with 2924. Whereas it has a larger regularity deviation between different lines
(Regdl=8664) comparing with solutions No.1 (7376), No.5 (8398) and No.13 (5676). More importantly, the existing
timetable also has the largest timetable vulnerability (65380) and capacity utilization (84.67%), both of which are
larger than the worst solution in our Pareto-optimal set. The minimal and maximal timetable vulnerability is 22110
and 44890 respectively, which are much smaller than the existing one (existing one is around three times larger than
our best timetable vulnerability solutions No.10 and No.12). This indicates that this timetable could be easily affected
by delays and it is difficult to schedule more trains. Moreover, the existing timetable also has a larger train journey
time ZT JT =18564 than all obtained timetables. One reason that the existing timetable has longer train journey times
is that an overtaking occurs in the timetable, while no overtaking occurs in any of our solutions. Meanwhile, the
capacity utilization of our solutions are all better than the existing timetable that actually violates the UIC capacity
norm. Therefore we found timetables that scored better on all criteria and used the capacity much better. Also note that
the overtaking in the existing timetable is not designed very well as it disturbs an existing train service when the ICE is
running while the overall capacity utilization did not improve. Hence, our solution could provide timetables with less
travel time and better capacity utilization, attracting more passengers. It can be observed that our solution No.13 is
better than the existing timetable for all four objectives. The best calculated solution No.1 has 4.69% decrease of train
journey time, 66.17% decrease of timetable vulnerability, 18.54% reduction of capacity utilization, but a regularity
deviation with an increase of 42.87%. The time-distance diagram is displayed in Figure 19. Note also that train orders
are significantly different compared to the existing timetable from Figure 17. Above all, these results demonstrate that
our MOPRT model and algorithms could effectively provide high-quality timetables for railway corridors. In practice,
different timetables are necessary in different situations for a network. Our multi-objective approach supports the
planners to choose from the Pareto optimal solutions .
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Table 11: Comparison between existing timetable with timetables from the Pareto-optimal set

Timetables ZT JT ZReg ZVnb ZOvt Regsl Regdl λ C ρ
[s] [s] [s] [-] [s] [s] [s] [%] [-]

Existing timetable 18564 11832 65380 1 1584 8664 3048 84.67 -*
No.1 (best ρ) 17694 16904 22120 0 4764 7376 2483 68.97 0.6122
No.3 (capacity utilization) 17693 31300 22120 0 9218 12864 2437 67.69 0.7340
No.5 (train journey time) 16902 16582 38780 0 4092 8398 2922 81.17 0.7889
No.10 (timetable vulnerability) 18090 32792 22110 0 9766 13260 2445 67.92 0.9353
No.12 (timetable vulnerability) 18012 48660 22110 0 18790 11080 2509 69.69 1.0562
No.13 (timetable regularity) 18090 11524 44890 0 2924 5676 2529 70.25 1.2087

* Value of ZVnb from the existing timetable exceed the range from the case.
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Figure 19: Time-distance diagram of the optimal timetable from the Pareto-optimal set

4.3. Comparison of the flexible overtaking models in this paper and in the literature

To demonstrate the efficiency of our designed flexible overtaking model with multiple overtakings in Section 2.2.4,
we compare the solution with the original single flexible overtaking constraints from Zhang and Nie (2016). The
theoretical instance in Section 4.1 is chosen as a prototype of a dense heterogeneous corridor. Modified with two types
of flexible overtaking constraints, the four single-objective timetabling models (PESP-TJT, PESP-Reg, PESP-Vnb and
PESP-Ovt) are applied. To be specific, single flexible overtaking constraints and multiple overtakings constraints are
added respectively to each model to compute the solutions, shown in Table 12. It can be observed that all optimal
values of each single-objective model with our multiple overtakings constraints are better than the original single
one, with 5.28% decreased train journey time, 62.90% decreased timetable regularity deviation, 29.13% decreased
timetable vulnerability, and 2 reduced overtakings. Furthermore, the capacity utilization in the four scenarios with our
flexible overtakings constraints are still lower, even for the one with fewer overtakings in the timetable from PESP-
Ovt. This demonstrates that our designed multiple overtaking constraints in the flexible overtaking model are more
efficient than the original single overtaking constraints.

5. Conclusions

The rail system becomes more and more complex, and different performance indicators need to be taken into
account during the timetabling process. Accordingly, the single-objective optimization models become difficult to
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Table 12: Optimization results of the four modified single-objective models with two different types of flexible overtaking constraints

Models Single flexible overtaking constraints Multiple overtakings constraints
Optimal value Capacity utilization Optimal value Capacity utilization

PESP-TJT 28512 93.33% 27006 90.67%
PESP-Reg 12684 93.33% 4692 83.00%
PESP-Vnb 55200 93.33% 39120 83.56%
PESP-Ovt 9 93.33% 7 92.64%

find high-quality timetables considering multiple indicators. Therefore, this paper proposed a new multi-objective
periodic railway timetabling (MOPRT) model and solution approach.

The MOPRT model consists of the four objectives train journey time, timetable regularity deviation, timetable
vulnerability, and the number of overtakings, and four corresponding single-objective models PESP-TJT, PESP-Reg,
PESP-Vnb, and PESP-Ovt are introduced. To deal with the multiple objectives, the ε-constraint method is applied
and three algorithms are designed to efficiently create the Pareto frontier. Algorithm 1 computes tight lower and upper
bounds for each objective to narrow down the range. Algorithm 2 explores the model feasibility space with given
ε-constraints. Algorithm 3 generates the Pareto-optimal solution set. Both Algorithm 1 and Algorithm 2 are designed
to reduce the number of computations in Algorithm 3.

We tested the proposed MOPRT model and solution approach in two instances, a theoretical instance and a real-
world instance. The theoretical instance demonstrated that each single-objective model is effective in finding the
optimal solution of the corresponding objective and three designed algorithms perform well to generate the Pareto
Frontier. Algorithm 1 and Algorithm 2 effectively reduced the number of unnecessary solutions and thus significantly
reduced the computation times. From the trade-off analysis of the computation results, it was observed that the
number of overtakings has a negative impact on timetable vulnerability and a positive effect on timetable capacity. To
be specific, more overtakings could help to improve timetable robustness and reduce capacity utilization for a dense
railway traffic system. The experiments on the real-world case of the Dutch railway corridor showed that our model
can find better solutions than the existing timetable for the objectives of train journey time, timetable robustness
(according to timetable vulnerability values) and capacity utilization, at the cost of timetable regularity. The best
achieved solution from the Pareto-optimal set has 4.69% decrease of train journey time, 66.17% increase of timetable
robustness, and 18.54% reduction of capacity utilization.

The computed solutions in the Pareto-optimal set have different objective preferences, which provides more op-
tions for the railway planners to choose from when designing a timetable. When the demand increases, a timetable
with the best capacity utilization could also be found. If trains adhere well to their scheduled paths then robustness
is less an issue and the MOPRT model can prioritize short train journey times, while keeping the other objectives as
good as possible. If delays often occur in the corridor, this model could provide the timetable with the best allocation
of buffer times at stations, while maintaining the requirements of train journey time and regularity. This way, the
MOPRT model provides flexible decision support to timetable planners. This work assumed a given line plan. The
integration between line planning and timetabling is another interesting topic with consideration of passenger demand,
see e.g. Yan and Goverde (2019).

The nearly saturated capacity utilization of existing railway networks is an urgent issue to be solved. We showed
that the number of overtakings has a positive impact on timetable capacity. A direction of future research is to optimize
the location and number of new overtaking facilities when the infrastructure does not allow high quality timetables
for further increasing frequencies. Hence, our future research will extend the model to finding optimal stations for
new overtaking facilities with consideration of train journey time, timetable regularity, investment cost and capacity
utilization.
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