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Practical Threshold Multi-Factor Authentication
Wenting Li, Haibo Cheng, Ping Wang*, Senior Member, IEEE and Kaitai Liang, Member, IEEE

Abstract—Multi-factor authentication (MFA) has been widely used to safeguard high-value assets. Unlike single-factor authentication
(e.g., password-only login), t-factor authentication (tFA) requires a user always to carry and present t specified factors so as to
strengthen the security of login. Nevertheless, this may restrict user experience in limiting the flexibility of factor usage, e.g., the user may
prefer to choose any factors at hand for login authentication. To bring back usability and flexibility without loss of security, we introduce
a new notion of authentication, called (t, n) threshold MFA, that allows a user to actively choose t factors out of n based on preference.
We further define the “most-rigorous” multi-factor security model for the new notion, allowing attackers to control public channels, launch
active/passive attacks, and compromise/corrupt any subset of parties as well as factors. We state that the model can capture the most
practical security needs in the literature. We design a threshold MFA key exchange (T-MFAKE) protocol built on the top of a threshold
oblivious pseudorandom function and an authenticated key exchange protocol. Our protocol achieves the “highest-attainable” security
against all attacking attempts in the context of parties/factors being compromised/corrupted. As for efficiency, our design only requires
4+t exponentiations, 2 multi-exponentiations and 2 communication rounds. Compared with existing tFA schemes, even the degenerated
(t, t) version of our protocol achieves the strongest security (stronger than most schemes) and higher efficiency on computational and
communication. We instantiate our design on real-world platform to highlight its practicability and efficiency.

Index Terms—Threshold, Multi-Factor Authentication, Key Exchange, Password.

F

1 INTRODUCTION

MULTI-FACTOR authentication (MFA) has been de-
ployed in real-world applications to safeguard high-

value assets, e.g., online banking. A user is required to
make use of t factors, at the same time, to execute secure
authentication. This t-factor authentication (tFA) naturally
brings more challenges, than single-factor authentication, to
attackers since there are t factors that need to be compro-
mised for an impersonation. For instance, EMV [1], [2], a
widely adopted payment method, allows one to present his
smart card and the password/PIN to pay a bill on a POS
terminal. Attackers cannot steal the money by only being
given the smart card or the password.
Motivation. The current tFA schemes require users to
present t fixed factors for authentication. This “static”-factor
authentication mode could not provide flexibility for au-
thentication because users may not be able to always present
the t factors anywhere and anytime, for example, one of the
factors may be left at home and even be lost. Furthermore,
this mode also limits the preference of factor usage - which
factors should users choose to take. Users, in practice, prefer
to leverage those factors which are at hand. To this end,
the usage of factors should be more dynamic. Besides, the
number t becomes a bottleneck between the security and
usability in tFAs. It is clear that a higher security level
requires a larger t (e.g., t = 5) but this brings lower usability
for users.
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Fig. 1: Threshold multi-factor authentication

We propose the notion of (t, n) threshold MFA (T-MFA) to
address the issues. As shown in Fig. 1, T-MFA allows a user
to register n factors and adaptively choose arbitrary t out of
n for authentication, in which t and n can be flexibly set by
the user based on its preference (note that (t, n) T-MFA is
naturally degenerated to tFA, when n = t). Compared with
tFA, (t, n) T-MFA significantly improves usability with the
same security level (attackers need to compromise t factors
to impersonate users). More importantly, T-MFA allows a
user to autonomously increase t to achieve higher security
according to the number of always-at-hand factors. Since
the usage of multiple personal electronic devices at home
and workplace has become common [3], the user may hold
several devices, e.g., a smartphone, a smartwatch, and a
tablet, as multiple factors along with its password (or other
types of factor) and later, it just uses a subgroup of factors
(≥ t) in verification. T-MFA also allows the user to leverage
fixed-location (non-portable) devices as factors, e.g., a smart
speaker at home, or an intranet server in the workplace.
The user may now set a larger t without compromising
usability, e.g., t = 4: using the password, smartphone and
smartwatch as portable factors, and either smart speaker or
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server as the unportable one. Besides, if a device is lost,
the authentication can still be successfully executed with
another one. Naturally, the user can also use more devices,
e.g., an old smartphone as a factor, for backup.
Design Challenges. The concept of T-MFA seems natural,
but, to our best knowledge, none of the existing studies has
paid attention to it. We state that this is because of the signif-
icant challenges in designing a T-MFA scheme and further
analyzing its security. Note that we here mainly focus on
remote authentication rather than local authentication, since
the design for the former is more challenging and usually
can apply to the latter.

One may think that a trivial way to implement T-MFA
can be captured as follows. A user may send any t (may be
in challenge-response mode) out of n registered factors to a
server, so that the server can verify them one by one. This
design is quite similar to the multiple login authentication.
For instance, the user can log in to WeChat via either option
(1): phone number + password, or option (2): phone number
+ SMS. But this requires the server to store factors in a file
for (possessing knowledge of) verification, leading to potential
vulnerabilities against server compromise. Via compromising
the server, the attacker can access the file storing those fac-
tors, which yields the possibility of factor recovery. A classic
example could be that the attacker attempts to recover the
password (which is one of the factors) via offline password
guessing. Once the factors are retrieved, the attacker can
impersonate the valid user. It is also probable that all the
accounts that used the same revealed factors will be con-
trolled by the attacker. Beyond impersonation, the server
compromise may bring even worse consequences - harming
user long-term privacy - if the storage file includes personal
biometrics (e.g., gait [4], electroencephalogram [5]).

Another potential approach is to leverage threshold
cryptography. For multiple devices, a trivial T-MFA design
can request each device to share the user’s secret for au-
thentication via a threshold secret share scheme. This idea is
used in some server-side authentication scenarios, e.g., [6],
[7], [8], requesting multiple servers to store cryptographic
keys. However, this mechanism still cannot be perfectly
compatible with some types of factors, e.g., passwords and
biometrics, which are not natural cryptographic keys, and
require non-server-side storage.

One may also try to extend the current MFA schemes
to yield a T-MFA. However, even for MFA, it is difficult to
capture the “highest attainable security” with a precise and
well-defined security model and further satisfy the security
by a well-designed protocol. It is not trivial to handle
all different parties and their factors along with all the
combinations over compromise. A single MFA scheme will
perform different security levels according to the various
compromise cases. This brings a great challenge for researchers
to precisely capture the security of MFA, which also applies to
T-MFA. Due to the lack of a precise security model, most
MFA schemes fail to achieve “sound and practical security”.
The industrial MFA schemes (e.g., [9], [10]) cannot resist
server compromise, and most of the academic ones (e.g.,
[11], [12]) fail to provide forward security, key-compromise
impersonation (KCI) security, or suffer from other security
issues. To the best of our knowledge, only Jarecki et al. [13]
2FA protocol achieves the highest attainable security. But

their protocol requires expensive cost in communication (10
rounds) so it is not practical for real-world applications.
Note the detailed analysis for the existing MFA schemes will
be given in Section 2. Therefore, no current MFA design with
both the highest attainable security and efficiency can be used
to construct T-MFA. And again, the existing MFA schemes
suffer from the “pre-set” limit: the number and the type of
factors are fixed in the very beginning, e.g., the password-
and-device based 2FAs [9], [10], [13], [14], and biometrics-
based 3FAs [11], [12]. They cannot be trivially extended to offer
the dynamic and flexible usage of factors to T-MFA.
Our contribution. We here briefly describe the contribution.

Real-world Security. We introduce a game-based model
to precisely capture the security for (t, n) T-MFA key ex-
change (T-MFAKE). Our model allows attackers to control
communication on public channels and to compromise any
parties and factors, and considers the use of different types
of factors, including passwords, devices, and biometrics.
For each combination of party or factor compromise, we
give special security bound (i.e., advantage) to capture
the highest attainable security by only allowing inevitable
attacks. Specifically, our novel security notion considers the
inevitable attacks against password via: 1) if t − 1 factors
(excluding password) are compromised, online password
guessing attack is inevitable and allowed; 2) if t − 1 factors
(excluding password) are compromised and server is com-
promised or corrupted, offline password guessing attack is
also inevitable and allowed; 3) if t factors are compromised,
user impersonation is trivially inevitable; 4) if server is
compromised or corrupted, impersonating server is trivially
inevitable; 5) otherwise, no other inevitable attacks are
allowed. Note we consider the similar inevitable guessing
attacks for a biometric factor. If a protocol is secure in
our model, it can achieve practical real-world security (i.e.
resisting all the attacks except the “inevitable ones”).

Practical Design. We propose a fast and secure (t, n) T-
MFAKE protocol. We allow a user to leverage a password,
multiple devices, and biometrics (optional) as authentica-
tion factors. Because of the advantages of passwords on us-
ability and deployability [15], we require the user to always
type his password for authentication (cannot use another
factor instead it) in order to provide the last defense for
the worst case where the other factors are all compromised.
Our construction is built on the top of a threshold oblivious
pseudorandom function (TOPRF) and an authenticated key
exchange (AKE) protocol. The core idea is to enhance the
password to a cryptographic key with any other t−1 factors
(via TOPRF) and further use the key for authentication (via
AKE). Each factor except the password corresponds to a
secret key in TOPRF: for a device factor, the key is stored in
the device locally; for a biometric factor, the key is converted
by fuzzy extractor [16], which prevents the biometrics from
leaking even if the storage file is compromised. By TOPRF,
our protocol provides factor invisibility, i.e., the server cannot
see which factors are registered and used for authentication.
This means that even if the server is compromised, the fac-
tors can stay safe. Besides, using the refreshment mechanism
of threshold schemes, our protocol can remotely revoke
the lost (or misfunctioned) devices. As for efficiency, our
protocol is extremely light-weight w.r.t. computation and
communication cost, requiring 4 + t exponentiations, 2 multi-
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exponentiations and only 2 rounds communication (by parallel
running TOPRF and AKE).

Security Analysis. We further analyze the security of our
T-MFAKE protocol. Our protocol holds against all practical
and real-world attacks (except the inevitable ones), and thus
achieves the highest attainable security w.r.t. arbitrary combi-
nation of party or factor compromise. The degenerated (2, 2)
version of our protocol holds the same security as the state-
of-the-art 2FAKE, OpTFA [13], while (t, t) version achieves
higher security as compared to other existing tFA schemes.

Efficient Implementation. We implement the (2, 2) version
of our protocol on a real-world system with a smartphone,
a PC, and a remote server, and further evaluate its run-
time performance. The experimental results show that the
new version is 138.25% and 148.49% faster than OpTFA on
communication and computation, respectively (note that
OpTFA costs 12 exponentiations, 2 multi-exponentiations,
and 10-round communication).

To summarize, our main contributions are as follows:
1) The notion of (t, n) threshold multi-factor authenti-

cation (T-MFA), for the first time in the literature, is
proposed to allow users to freely and actively choose t
factors out of n for authentication.

2) A security model is defined to capture the real-world
highest attainable security for T-MFA key exchange (T-
MFAKE) protocol.

3) An efficient T-MFAKE protocol is proposed, only re-
quiring 4 + t exponentiations, 2 multi-exponentiations
and only 2-round communication.

4) A formal security analysis for our protocol is given, pre-
senting that the protocol achieves the highest attainable
security.

5) An efficient implementation and the performance eval-
uation are demonstrated to highlight the efficiency of
our design in the real-world platform.

2 RELATED WORKS

We here briefly review some typical MFA protocols.

2.1 MFA Schemes in Industry
In industry, many 2FA schemes are widely implemented
in the web-based authentication, including Google Authen-
ticator [9], FIDO U2F [17], and Duo 2FA [10]. All these
schemes authenticate the factors separately. For example,
in password-and-device authentication mode, the user is
requested to send a password to the server via a server-
authenticated secure channel and meanwhile, the server
also needs a PIN generated from the smartphone. But the
verification of the password and PIN is separate, meaning
that these two factors are not “tightly” bound together as
one verification. This may bring several limits:

1) The server can access the password in plaintext, which
may be leaked accidentally or on purpose, for example,
Github recorded plaintext passwords in secure internal
logs because of some bug [18]. Similar issues have also
happened to Google, Twitter and Facebook [19].

2) The server stores the hash values of passwords (or other
verification values), increasing the leak risk. In practice,
billions of passwords have been leaked from hundreds

of websites [20]. With hash values, an attacker can
efficiently and offline recover the plaintext by exploiting
password guessing algorithms (e.g., [21], [22]). Since
users usually reuse passwords on different accounts
[21], the attacker probably compromises multiple ac-
counts with the same password.

3) The authentication requires a Public Key Infrastructure
(PKI) to establish the server-authenticated secure chan-
nel. This may not scale well and will leak password or
other factors if PKI is infiltrated.

2.2 Academic Studies on MFA

Many studies, e.g., [11], [12], [13], [14], focus on the security
analysis along with new designs for MFA. We first review
the methods of security analysis they use and then make
discussions over their constructions.
Security analysis methods. Some of the analyses are based
on heuristic attacks, BAN logic or automatic tools [23],
[24], [25], [26], which cannot provide a sound and solid
analysis. Others (e.g., [11], [12], [27]) are in game-based
security model (usually BPR or ROR model [28], [29]) to
provide a provable security analysis. However, most of the
game-based analyses (except for [13], [14]) fail to model
the highest attainable security of MFA. This is so because
they cannot precisely define the security requirements for
various combinations of party or factor compromise. Taking
an ideally secure 2FA (password-and-device mode) as an
example. 1) if the attacker does not compromise the device
(case I), she cannot impersonate the user except a negligible
probability; 2) if the attacker compromises the device (case
II), she inevitably can carry out online password guessing
attacks to impersonate the user with a non-negligible proba-
bility. The security requirements for the above cases should
be specified respectively. But the current security models
just define an upper-bound attacking advantage to define
the security requirements w.r.t. all the compromise cases.
This bound only captures the security in the worst case
(referring to the case where all factors except for password
are compromised), and thus cannot precisely model the
security for other cases (e.g., the device is not compromised).
Take a further example, if a 2FA protocol suffers from online
password guessing attacks in case I, it satisfies the security
requirement of the current models but is clearly insecure
in practice. Thus we state the limitation of the security models
incurs that a concrete protocol - proved secure by current research
works - cannot satisfy the highest security requirements in all
practical cases. In other words, what has been proved secure is
not always secure in practice.

To tackle the issue, Shirvanian et al. [14] first defined
different requirements for 2FA w.r.t. a few cases of compro-
mise combination, and provided specified security bound
for each of the cases. But their model does not consider the
case of server corruption. Later, Jarecki et al. [13] proposed
an improved model by taking more other cases into account,
capturing the highest attainable security for 2FA. Our secu-
rity notion is inspired by theirs but also provides the highest
attainable security for MFA and even T-MFA.
More academic MFA schemes. Due to the limitation of
the security models, current MFA schemes may suffer from
unexpected real-world attacks which are not considered
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TABLE 1: Summary and Comparison of existing multi-factor authentication schemes

Schemes Techniques Advantages Limitations

Industrial schemes [9], [10], [17] TLS + Separate
factor authentication Deployability. Suffer from PKI failures and server

compromise.
Shirvanian et al. [14] Salt reconstruction Resist server compromise. Suffer from server corruption.

Jarecki et al. [13] KE + SAS-MA +
PTR + aPAKE Highest attainable security. Hight computational and communication

costs.

Zhang et al. [11] PKE + MAC + Fuzzy
extractor Efficiency. Suffer from KCI attacks.

Wazid et al.’s scheme [12] Hash + XOR +
Encryption Efficiency. Suffer from KCI, ESL, offline password

guessing attacks.

Ours TOPRF + SaPAKE (+
fuzzy extractor)

Security (highest attainable),
efficiency, and usability. No above weaknesses.

and covered in the models, meaning they are insecure in
practical use. Here, we briefly present some examples.

3FA schemes. Zhang et al. [11] proposed a 3FA scheme
combining a password, a device, and biometrics. Although
proved secure in the BRP model (with one security bound),
the scheme still suffers from key-compromise impersonation
(KCI) attacks. Expressly, if all factors (α, β, γ) of a user
are compromised, attackers can impersonate the server to
interact with the user (by leveraging Z = H(α+β+γ)).
Similarly, we find Wazid et al.’s scheme [12] which is proved
in the ROR model but still suffers from KCI attacks and
ephemeral secret leakage (ESL) attacks. Besides, this scheme
cannot hold against offline password guessing, if device and
biometrics are compromised.

2FA schemes. Shirvanian et al. [14] proposed a 2FA
scheme twisting password and device, based on industrial
2FA design. The scheme is strengthened to resist server com-
promise (i.e., the leakage of server’s data). However, it heav-
ily relies on PKI and cannot prevent server from accessing
plaintext passwords, which leads to the aforementioned vul-
nerabilities identified from the industrial schemes. Jarecki et
al. [13] later proposed an improved 2FA, OpTFA, to address
all the aforementioned vulnerabilities. However, OpTFA is
too complex and inefficient. It requires 12 exponentiations, 2
multi-exponentiations on computation cost and 10 rounds
on communication. Besides, it is designed for 2FA context
only and thus is difficult to be extended to an MFA variant.

3 PRELIMINARIES

In this section, we review the building blocks we are go-
ing to use in our design, including a threshold oblivious
pseudorandom function (TOPRF) and an authenticated key
exchange (AKE) protocol, a password-based authenticated
key exchange (PAKE) protocol and the fuzzy extractor.

3.1 Threshold Oblivious Pseudorandom Function
Threshold oblivious pseudorandom function (TOPRF) is
introduced by Jarecki et al. [8]. It is a threshold variant of
the client-server oblivious pseudorandom function (OPRF).
The client-server OPRF consists of a PRF F and a client-
server protocol. In the protocol, the server holds a secret
key s, and the client inputs x to get Fs(x) without knowing
s. Meanwhile, the server knows nothing about the input x.
This is an appropriate method to enhance the low-entropy
password pw to a cryptographic key Fs(pw). TOPRF lever-
ages multiple servers to collectively control the key to resist
server compromise. For a (t, n) TOPRF, the client needs to

run the TOPRF protocol with t servers. If no more than t
servers are compromised or corrupted, the attacker cannot
offline calculate F and has to interact with some servers. The
formal security of TOPRF is defined in Universally Com-
posable (UC) Framework [30]. Specifically, the executions
of a real TOPRF protocol Π and the ideal TOPRF function
FTOPRF are indistinguishable.

We will use a TOPRF scheme, 2HashTDH [8], in our pro-
tocol. 2HashTDH is a threshold variant of 2HashDH [31], an
OPRF scheme. We detail 2HashTDH in Fig. 2. In 2HashTDH,
the secret key s is shared by Shamir’s secret sharing scheme.
During the execution of 2HashTDH, s is used to calculate
the PRF but not reconstructed on any party, which can
avoid the leakage of s (unless t servers are compromised). In
addition, the randomness of r guarantees the servers (and
attackers) cannot get any information about x. Formally,
2HashTDH is secure under the One-More Diffie-Hellman
assumption and in the random-oracle model.

Shamir’s secret sharing used in TOPRF is a typical
threshold method. In (t, n) Shamir’s secret sharing, a
(randomly-generated) secret key s is divided into n shares
{s}ni=1. Arbitrary t shares {sDi

}i∈I (where I is the index
set of the t shares) can reconstruct s. This construction is
leveraged by a polynomial of degree t,

f(x) = a0 + a1x+ a2x
2 + · · ·+ atx

t,

where a0 = s, a1, a2, . . . , at are randomly generated. The i-
th share of s is f(i). With t shares {si}i∈I , s is reconstructed
as

s =
∑
i∈I

siλi,

where λi is the Lagrange interpolation coefficient for i in I ,

λi =
∏

j∈I,j 6=i

−j
i− j

.

Note that we made a slight modification on the original
2HashTDH [8]. In the original version, Si calculates λi; in
our version (Fig. 2), C does the calculation. In our way, C
does not need to send I to Si, which saves communication
costs (note the length of I is proportional to t).

3.2 Authenticated Key Exchange

Authenticated key exchange (AKE) has been studied for
decades and there are many protocols have been proposed,
e.g., [32], [33]. In contrast to 2FAKE and MFAKE, AKE
requires each party to hold a long-lived cryptographic key.
Two parties can establish a temporary session key with
the long-lived keys and encrypting further communications
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Parameter

• G is a cyclic group with a generator g and prime
order m.

• H,H ′ are two hash functions with ranges {0, 1}l
and G, respectively. The PRF Fs(x) is defined as
H(x,H ′(x)s).

Initialization

• n servers initialize a (t, n) Shamir’s secret sharing to
generate each secret share {si}ni=1 of s.

Calculation

• With an input x, U picks r←$Zm, calculates α ←
H ′(x)r , and sends α to t servers {Si}i∈I , where I is
the index set.

• With a message α, Si calculates βi ← αsi , and sends
βi to U .

• With messages {βi}i∈I , U calculates
H(x,

∏
i∈I β

λi/r
i ) and outputs it. Here, λi is the

Lagrange interpolation coefficient for i in I .

Fig. 2: 2HashTDH

using the session key without the long-lived keys. The
security definition [32] for AKE protocols is similar to that
for MFAKE (see Section 4), which is also defined by dis-
tinguishing the real session key and a random one. We use
Advake

Π (A) to denote the advantage of the attackerA against
an AKE protocol Π. We do not detail the security game for
AKE protocols, and readers can refer to [32], [33].

To construct our protocol, we require the AKE protocol
to be secure as defined in [32] and additionally resist KCI
attacks. This means if the long-lived key of a party P is com-
promised, the attacker cannot impersonate another party
Q to interact with P by P ’s key. To capture the security,
the security game defined in [32] should be modified by
including more fresh instances whose internal states and its
partner’s states are not compromised.

HMQV [33] is a well-known protocol with KCI resis-
tance. We will use it in our protocol, due to its security
and efficiency. Fig. 3 details HMQV (with implicit authen-
tication). It only needs one exponentiation and one multi-
exponentiation for each party and two communication
rounds. Its message flows are similar to those of Diffie-
Hellman key exchange, but it additionally uses public key
cryptography (kA,KA for participant A) for authentication.
Although HMQV does not provide explicit authentication,
it is trivial to achieve explicit authentication by adding
one round as in [28]. Krawczyk proves the AKE security
of HMQV as well as KCI security/resistance. Formally,
in the aforementioned (modified) game with KCI security,
the advantage Advake

HMQV is negligible under Computational
Diffie-Hellman assumption in the random-oracle model.

3.3 Password-based Authenticated Key Exchange

Password-based Authenticated Key Exchange (PAKE) also
has been studied for decades. Some important studies are
[34], [35], [36]. In symmetric PAKE, two parties share a long-
lived password with low entropy for authentication and key
exchange. In asymmetric PAKE, one party (the user) holds

Parameter

• G is a cyclic group with a generator g and prime
order m.

• H,H ′ are two hash functions with ranges Zm and
{0, 1}l. l is the length of the session key. Note that
these parameters may not be the same as those in
Fig. 2.

Initialization

• Each participant A generates the private and public
keys kA,KA by kA←$Zm,KA ← gkA . We assume
that each participant securely gets the others’ public
key (in our MFAKE, the public key is sent on a secure
channel in initialization phase).

Authentication

• A picks x←$Zm, calculates X ← gx, sends (A,X)
to B.

• With a message (A,X), B picks y←$Zm, calculates
Y ← gy and sends Y to A and outputs it. Then B

calculates SK ← H((XK
H′(X,KB)
A )y+H′(Y,KA)kB ).

• With message Y , A calculates SK ←
H((Y K

H′(Y,KA)
B )x+H′(X,KB)kA) and outputs it.

Fig. 3: HMQV with implicit authentication. Adding one
round as in [28] can achieve explicit authentication (i.e.,
adding the message H ′′(SK, 1) and H ′′(SK, 2) to the last
two rounds respectively, where H ′′ is a hash function with
the range {0, 1}l).

C S
pw s

OPRF

rw ⊥

kU ,KS ← Decrw(c) kS ,KU

AKE

SK SK

c

Fig. 4: Schematic diagram of OPAQUE

a password and the other party (the server) holds a non-
password-equivalent verifier of the password.

Informally, a 2FAKE protocol can be seen as a PAKE pro-
tocol if the device is corrupted. So the former may leverage
the latter as a component, e.g., OpTFA [13], to protect the
password for the case of device corruption. However, this
usually leads to complexity and inefficiency. Instead, we are
inspired by the design of a PAKE protocol, OPAQUE [35],
and further use it for our T-MFAKE.

As shown in Fig. 4, OPAQUE leverages an OPRF, an AKE
and an encryption scheme. Its core roadmap is as follows:

1) The client enhances the password pw to a cryptographic
key rw (also called random password) by running
OPRF with the server.

2) The secret keys (kU ,KU ) of the user in AKE is en-
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Parameter

• All parameters in 2HashDH (i.e., (1, 1) 2HashTDH)
and HMQV. To distinguish these parameters, we add
the subscript 1 and 2 to parameters in 2HashTDH
and HMQV, respectively, if necessary.

• An encryption scheme (Enc,Dec).

Initialization

• C generates the secret key s of S in the 2HashDH
and sends s to D; calculates rw ← H1(pw,H ′1(pw)s)
(note running 2HashDH with S and input pw will
get rw). s can be generated by S. If so, rw is got by
C running 2HashDH.

• C generates the private and public keys (kU ,KU )
by kU ←$Zm2

and KU ← gkU2 for HMQV; gets S’s
public key KS and encrypts (kU ,KS) to c with the
key rw (c ← Encrw(kU ,Ks)); sends KU to S and
sends c to D.

• S generates the private and public keys (kS ,KS) by
kS ←$Zm2

and KS ← gkS2 for HMQV; sends KS to
C; stores KU and the share sS for 2HashDH.

Authentication

• C picks r←$Zm1
and calculates α← H ′1(pw)r ; picks

x←$Zm2
and calculates X ← gx2 ; sends (U,X, α) to

S.
• Getting (U,X, α) from C , S picks y←$Zm2

and
calculates Y ← gy2 , β ← αsS ; sends (Y, β) to C;
calculates SK ← H2((XK

H′2(X,KS)
U )y+H′2(Y,KU )kS )

and outputs it.
• Getting (Y, β) from S, C calculates rw ←
H1(pw, β1/r), kU ,KS ← Decrw(c); calculates SK ←
H2((Y K

H′2(Y,KU )
S )x+H′2(X,KS)kU ) and outputs it.

Fig. 5: OPAQUE with implicit authentication.

crypted by rw and the ciphertext is stored on the server.
3) During the authentication phase, the client reconstructs
rw by running OPRF with the server, gets the keys in
AKE by decrying c, and then runs AKE to establish the
session key. Note that c is sent to the client by the server
along with the messages of OPRF and AKE.

The details of OPAQUE are given in Fig. 5.
Jarecki et al. [35] prove the security of OPAQUE in the

Universally Composable (UC) Framework. This means that
the execution of OPAQUE is indistinguishable from that
of the ideal functionality FSaPAKE, i.e., the distinguishing
advantage Advdis

HMQV,FSaPAKE
is negligible. FSaPAKE only allows

two inevitable attacks: 1) the online password guessing
attack; 2) the offline password guessing attack in the case of
server compromise. Therefore in the gameGPAKE for PAKE,
we have:

1) If S is corrupted,

Advpake
OPAQUE ≤

1

n
q + Advdis

OPAQUE,FSaPAKE
,

where q is the number of online password guessing
attacks.

2) Otherwise,

Advpake
OPAQUE ≤

1

n
q′ + Advdis

OPAQUE,FSaPAKE
,

where q′ is the number of offline password guessing
attacks.

The security of OPAQUE requires the security of OPRF
and AKE (with KCI resistance) as well as a random-key robust
and equivocable authenticated encryption scheme. We briefly
explain the properties required for the encryption:

1) Authentication. Authenticated encryption provides secu-
rity against chosen ciphertext attacks as well as message
integrity and confidentiality. It can be constructed on
the top of an encryption scheme and a message authen-
tication code (MAC).

2) Random-key robustness. This property means that it is
difficult to construct a ciphertext c for two randomly-
generated keys k1, k2 such that decrypting c using
both k1, k2 will not fail. Formally, for an arbitrary PPT
attacker A,

Pr
k1,k2 ←$ {0,1}l

[c← A(k1, k2) s.t. Decki(c) 6=⊥, i = 1, 2]

is negligible.
3) Equivocability. This property means that the encryption

of a message can be simulated by 1) first creating the
ciphertext without knowing the plaintext and 2) then
creating the key for the given plaintext. Formally, an
arbitrary attackerA, there exists a simulator S such that
the following two games are indistinguishable:

a) The real game:A gives a messagem, generates (k,m)
by k←$ {0, 1}l and c← Enck(m).

b) The simulated game:A gives a message m, generates
(k,m) by c← S(|m|) and k ← S(m).

3.4 Fuzzy Extractor
To generate cryptographic key from biometric characteristic
with information protection, several methods have been
proposed, e.g., fuzzy vault [37], fuzzy extractor [16]. We
choose the latter for our scheme since it provides stronger
security. Fuzzy extractor generates a uniformly random key
R and transforms the key to a helper string P based on a
biometric input w as

(R,P )← Gen(w)

at initialization. A biometric input w′ which is close to w can
extract the key R from P . Formally, if dis(w′, w) ≤ t (t is a
parameter), then

Rep(w′, P ) = R.

Fuzzy extractor guarantees that the helper string P does not
leak information of the random key R as well as the biomet-
ric input w, maintaining data security and user privacy. In
our scenario, the initialization and extraction can be done
on the smartphone equipped with the biometric recognition
sensor and storing the helper string P . In this paper, we do
not review specific constructions of the fuzzy extractor, and
the reader can refer to [16] for more details.

4 SECURITY MODEL FOR THRESHOLD MFAKE
Inspired by the CK-adversary model for AKE [38], [39],
[40] and Jarecki et al.’s security model [13] for 2FA with
a password and an auxiliary device, we propose a model
for threshold MFAKE (T-MFAKE) supporting various types
and various numbers of factors.
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Protocol participants. There are several participants in T-
MFAKE: a user U , a client C, one or multiple device(s)
{Di}i∈I (where I is the index set), and a server S. The
user U leverages a password pw, and the device(s) {Di}i∈I
(maybe with biometrics) as factors for authentication.
Protocol execution and communication model. In the
registration phase of a (t, n) T-MFAKE protocol Π, the user
U registers the combination of the n authentication factors
on the server S. This registration is assumed to be securely
done. Take opening a bank account as an example, the
registration can be done physically in the bank, which is
regarded as secure execution. Note the user U does not
register the client C, which means U does not leverage
a fixed client and further may use different clients (e.g.,
public computers in libraries) in the authentication phase.
This brings advantages to usability.

In the authentication phase of Π, the user U leverages
t factors (usually containing the password and device(s)
{Di}i∈I′ , where |I ′| = t−1) to run Π with the server S. The
communication between C and S is via a public channel.
After successful authentication, both the server S and the
clientC accept each other, and meanwhile, a session key SK
is securely established between them (note SK is unknown
to the device(s) and the attacker). This session key usually is
further used to build a secure channel between C and S. For
this authentication, the server S and the device(s) Di (i ∈ I)
need to generate and store long-lived secrets on themselves
during the registration phase. But the client C is not allowed
to store any long-lived secrets, since the user is allowed to
leverage arbitrary clients for login (which may be different
from the one used in the registration).

Besides, we assume there is an authenticated and secure
channel between the client C and the device Di. For a
smartphone as the device, the channel can be established by
Bluetooth or other means (e.g., QR + Wi-Fi) proposed in [14].
Unlike our model, Jarecki et al. assume the communication
between C and D is on a public channel but require a t-
bit Short Authenticated String (SAS) channel from C to D,
where the message transmitted cannot be tampered by the
attacker. This t-bit SAS channel assumption is suitable for
some special devices embedded with a small LCD screen
(e.g., RSA SecurID). But for smart devices (e.g., smartphones
and smartwatches), we can directly assume an authenticated
and secure channel between C and Di.

Our model enables the parties to parallel run different
instances (also called sessions) of the protocol Π. This is
important to capture the security of Π in the context of
parallel running. We use P i to denote the i-th instance of
a party P .
Partnering instances. We use the session id (SID) to define
the partnering of the instances. More specifically, each in-
stance of C or S outputs a SID sid, a partner id (PID) pid
with the session key SK when it accepts.

Definition 1 (Partnering). Ci and Sj are partners, if both
of them accept with SID sid, sid′ and PID pid, pid′, respec-
tively and the following requirements hold:

1) Ci and Sj output the same SID sid = sid′. This
means their interaction transcripts are matching and the
attacker does not launch active attacks.

2) Ci outputs the PID pid = S and Sj outputs the SID
pid′ = C . This means they accept each other after a
successful authentication.

Attacker ability. Since the channel between the client and
the server is public, the attacker is allowed to fully control
it. This means that the attacker can overhear, intercept, and
synthesize any message on this channel (as being characterized
in Dolev–Yao model).

Besides, the attacker is also allowed to corrupt any partic-
ipants (except the user) of the protocol and fully control
the participants. We here consider the strong corruption, i.e.,
when corrupting a participant, the attacker gets its long-
lived secrets and internal states (e.g., the random numbers
if they are not be erased at the moment). Some studies only
consider the weak corruption, where the attacker can only
get the long-lived secrets without the internal states. We, in
this paper, also cover this corruption. To distinguish these
two types of corruptions, we use “Corrupt” to denote
the strong corruption operator and “Compromise” for the
weak one.

For the authentication factors, we also allow the attacker
to compromise them. This modeling is to capture the cases
where the attacker steals the factors, e.g., getting the pass-
word via shoulder surfing attacks.
Security definition. Our security model is game-based,
defining the security by a game within the attacker. The
attacker’s ability is formally modeled by means of queries
and responses. The attacker tries to win the game by these
queries, where the winning is defined to break the protocol.
The protocol is (defined to be) secure, if arbitrary attackers cannot
win the game with an advantage (or a probability) larger than a
given bound.

For a T-MFAKE protocol Π, the attacker’s goal is to
compromise the established session keys, more specifically,
obtaining any partial information about the session keys.
Therefore, our game requires the attacker to distinguish
the (real) session key and a random number (of the same
length). If failing to tell the difference, then she knows
nothing about the real session key, and otherwise, we say
that she breaks Π.

In the following, we formally describe the game with
the attacker’s queries for the T-MFAKE protocol Π. In the
game, the registration process of Π is executed first, then
the attacker can make the queries:

1) Send(P, i,Q,M): Execute Π as the instance P i of the
party P getting the message M from Q, and respond
the response message of P i to the attacker. Note that M
can be a special message Init with Q =⊥. If M = Init,
initialize P i and respond the first message(s) of P i to
the attacker.

2) Reveal(P, i): If P i has accepted, then respond its ses-
sion key. Otherwise, respond ⊥.

3) ESReveal(P, i): Respond the ephemeral secret of P i.
4) Corrupt(P ): Allow the attacker to fully control P .

Note that as mentioned before, the internal states and
the long-lived secrets are given to the attacker.

5) Compromise(P,U) (where P = S, Di, PW or Bio):
Allow the attacker to get the long-lived secrets on P
about U or directly steal U ’s factors.

6) Test(P, i): If P i has accepted, flip a coin b.
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a) If b = 1, respond the (real) session key of P i;
b) If b = 0, randomly generate a number with the same

length of the session key and respond the number.
This query does not capture the attacker’s ability. In-
stead, it is used to challenge the attacker to know the
partial information about the real session key. Note that
this Test(·, ·) query can only be made once.

At the end of the game, the attacker A needs to output
a guess b′ for the coin b. If and only if b′ = b, the attacker
wins the game. The advantage of A is defined as

Advt-mfake
Π (A) = |2 Pr[b′ = b]− 1|,

and max advantage is denoted as

Advt-mfake
Π = max

A
Advt-mfake

Π (A).

Note that the attacker can trivially get the session keys
of some instances, e.g., by making Reveal or Corrupt
queries to the instances. Therefore, we only allow the at-
tacker to Test a fresh instance, which is expected to be secure
in our model. The freshness is formally defined as follows.

Definition 2 (Freshness). An instance P i is fresh, if
Reveal(P, i) and Reveal(Q, j) were not made, where Qj

is the partner instance of P i (if it exists), and one of the
following conditions holds:

1) None of the queries Corrupt(C), Corrupt(S),
Compromise(S,U) was made, and meanwhile at
least one factor of the user is honest (not corrupted and
not compromised).

2) The internal states of P i and Qj (if exists) are not
compromised, and no rogue Send(P, i,Q, ·) queries
were made.

The attacker can passively deliver the messages among
the instances by the Send queries. She also can actively
intercept and synthesize the messages. We say the Send
queries in the second case are rogue.

Definition 3 (T-MFAKE). A (t, n) T-MFAKE Π is secure, if
for a uniform password distribution on a dictionary of size
n, an arbitrary probabilistic polynomial time (PPT) attacker
A, and the security parameter κ, the advantage of A is
bounded as follows:

1) If t− 1 factors without the password are compromised
(or corrupted):

a) If S is not compromised,

Advt-mfake
Π (A) ≤ 1

n
(qC + qS) + negl(κ),

where, qC (resp. qS) denotes the number of rogue
Send(C, ·, S, ·) (resp. Send(D, ·, C, ·)) queries that
the attacker made, negl(κ) denotes a negligible
amount in κ.

b) If S is compromised or corrupted,

Advt-mfake
Π (A) ≤ 1

n
q′S + negl(κ).

Here q′S denotes the number of (offline) operators
that the attacker made on S’s long-lived secrets.

2) Otherwise,

Advt-mfake
Π (A) ≤ negl(κ).

In the definition, we assume the password follows the
uniform distribution for simplification. This can be naturally

extended to an arbitrary password distribution. For a distri-
bution with the cumulative probability function f , the terms
1
n (qC + qS) and 1

nq
′
S in the bounds should be f(qC + qS)

and f(q′S), respectively.
Explanations of the bounds. In Case 2, a secure T-MFAKE
protocol achieves the same security as a secure AKE proto-
col. Therefore, the bound is negligible as AKE security. In
Case 1, the T-MFAKE protocol achieves the same security as
a secure PAKE protocol. Specially, in Case 1a, the attacker
can carry out an unavoidable online password guessing
attack. If the attacker successfully guesses the password,
then she gets the session key (to win the game). For each
guess, the attacker needs to make a rough Send queries and
has 1

n probability to guess the right password, which defines
the security bound. In Case 1b, the attacker can launch an
unavoidable offline password guessing attack. Similarly, for
each offline guess, the attacker should do the corresponding
offline operators, which gives the bound.
2FA security. To facilitate understanding the definition of
T-MFAKE security, we here present the 2FAKE security
degenerated from Definition 3. Note that in 2FAKE, there
only exists one device denoted as D.

Definition 4 (2FA security). A 2FAKE protocol Π is secure,
if for a uniform password distribution on a dictionary of size
n, an arbitrary probabilistic polynomial time (PPT) attacker
A, and the security parameter κ, the advantage of A is
bounded as follows:

1) If D is not corrupted,

Adv2fa
Π (A) ≤ negl(κ).

2) If only D is corrupted (or compromised),

Adv2fa
Π (A) ≤ 1

n
(qC + qS) + negl(κ).

3) If only D and S are corrupted (or compromised),

Adv2fa
Π (A) ≤ 1

n
q′S + negl(κ).

Here, qC , qS , q′S are the same as in Definition 3.

This definition for 2FA security is similar to that given
in [13]. If the attacker does not compromise D, then she
cannot impersonate the user or the server except a negligible
probability; otherwise, she inevitably can carry out online
password guessing attacks (only one time per session) to
perform impersonation with a non-negligible probability.
Further, if D and S are compromised at the same time,
the attacker inevitably can launch offline password guessing
(as many times as she prefers to) to obtain the password
plaintext with a non-negligible probability, so that she can
impersonate the user with the password and D’s long-term
secret. Note she is also able to impersonate the server via
the S’s long-term secret.
Support for fuzzy factors. In the above T-MFA security, we
require each factor except the password can provide to a
high-entropy cryptographic key, e.g., a smartphone (storing
a cryptographic key). However, this does not work for fuzzy
factors. The factors, in practice, may not have sufficient
entropy and can be easily cracked like a simple password.
More importantly, their readings may have some noise,
which leads to false acceptances and false rejections (also called
false positives and false negatives) with a small probability.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 11,2021 at 10:00:52 UTC from IEEE Xplore.  Restrictions apply. 



1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3081263, IEEE
Transactions on Information Forensics and Security

9

Therefore, the security definition (more specifically, the
security bound) must be revised to adapt fuzzy factors. Here
we only consider one fuzzy factor. If there are multiple fuzzy
factors, we will combine them into one factor with a smaller
probability of false acceptances and false rejections (e.g.,
by multimodal machine learning for biometrics [41], [42]),
instead of using them separately.

Definition 5 (T-MFAKE with a fuzzy factor). This definition
is the same as Definition 3, except the modified security
bounds. For a uniform password distribution on a dictio-
nary of size n, a fuzzy factor with the min-entropy Hmin

and the probability pfalse of false acceptances, an arbitrary
PPT attackerA, and the security parameter κ, the advantage
of A is bounded as follows:

1) If S is not compromised,
Advt-mfake

Π (A) ≤ pc(qC + qS) + negl(κ).

2) If S is compromised or corrupted,
Advt-mfake

Π (A) ≤ pcq
′
S + negl(κ).

Here, qC , qS , q′S are the same as in Definition 3, and pc is
defined as follows:

1) If t − 2 factors without the password and the fuzzy
factor are compromised (or corrupted):

pc =
1

n
(

1

2Hmin
+ pfalse).

2) If t−1 factors without the password or the fuzzy factor
or both are compromised (or corrupted):

a) If the password is compromised but not the fuzzy
factor:

pc =
1

2Hmin
+ pfalse.

b) If the fuzzy factor is compromised but not the pass-
word:

pc =
1

n
.

c) If none of the fuzzy factor and the password are
compromised:

pc = max{ 1

n
,

1

2Hmin
+ pfalse}.

3) Otherwise,
pc = 0.

Note that the fuzzy factor can be guessed as the pass-
word. We use the min-entropy Hmin to bound the proba-
bility of one guess for the fuzzy factor. Recall that the min-
entropy Hmin(X) of a random variable X is defined as

Hmin(X) = − log2 max
x∈Range(X)

Pr[x].

Therefore, Pr[x] ≤ 1
2Hmin(X) , for x ∈ Range(X). For the

fuzzy factor, the probability that a guess is correct is not
more than 1

2Hmin
. Besides, there is a small probability pfalse

of false acceptances. Therefore, the cracked probability of
each guess is not more than 1

2Hmin
+ pfalse.

If compromising sufficient factors, the attacker can make
online guessing for the password or the fuzzy factor or
both to compromise the session keys. If the server is also
corrupted, offline guessing becomes possible. We use pc to
denote the cracked probability of one guess (for the pass-
word, the fuzzy factor or both if necessary). For guessing
the password and the fuzzy factor,

pc =
1

n
(

1

2Hmin
+ pfalse).

For guessing the password,

pc =
1

n
.

For guessing the fuzzy factor,

pc =
1

2Hmin
+ pfalse.

For guessing the password or fuzzy factor (since the attacker
can choose one of them for guessing),

pc = max{ 1

n
,

1

2Hmin
+ pfalse}.

If there are not enough factors that are compromised, the
guessing attack cannot be carried out. In this case, we let

pc = 0.

With the above definition of pc, we complete all the security
bounds for T-MFAKE with a fuzzy factor.

5 OUR THRESHOLD MFAKE PROTOCOL

In this section, we first propose an efficient T-MFAKE pro-
tocol and formally prove its security in our model.

5.1 A Variant of TOPRF

The main component of our T-MFAKE protocol is the
TOPRF. We do not perform a direct use of the TOPRF but
require its specific variant. Specifically, in the variant with n
parties, running PRF needs a fixed party and arbitrary t− 1
parties from the rest (not arbitrary t parties).

This variant can be achieved by leveraging access struc-
ture schemes [43]. Access structure is generalized from the
notion of threshold secret sharing. In the access structure,
the party combinations for secret reconstruction can be
freely specified. The only requirement is monotonicity, i.e., if
a combination A can construct the secret, then any combina-
tion B including A can construct the secret. With an access
structure scheme (e.g., [43]), setting our required party
combinations can naturally construct a variant of TOPRF
we need. However, this construction usually is inefficient.
Instead, we use another method to achieve the required
TOPRF variant. Informally, the fixed party holds half of
the secret and each of the rest holds 1

t−1 of the other half
secret. From this, we can use a (2, 2) secret sharing and
a (t − 1, n − 1) secret sharing to construct the variant.
Specifically, the secret key s of OPRF is divided to s1, s2 by
a (2, 2) secret sharing, and further s2 is divided to {s2i}n−1

i=1

by a (t−1, n−1) secret sharing; the fixed party holds s1, and
each of the rest holds s2i. To construct s for running PRF, s1

is needed along with t−1 shares in {s2i}n−1
i=1 . Therefore, the

constructed variant of TOPRF satisfies our requirement.

5.2 Our T-MFAKE

As shown in Fig. 6, our T-MFAKE protocol is built on the
top of TOPRF and AKE. It works as follows.

1) The user/client first leverages the above variant of
TOPRF to enhance the password pw to a cryptographic
key rw (also called random password), with the server
(as the fixed party) and arbitrary t − 1 devices. Note
that the commutation between the client and the device
is on a mutual-authenticated and secure channel.
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C S
pw sS

TOPRF

⊥ rw ⊥

kU ,KS ← Decrw(c) kS ,KU

AKE

SK SK

Di1 Di2
. . . Dit−1

si1 si2 . . . sit−1

c

Fig. 6: Schematic diagram of our threshold MFAKE protocol

2) The user uses rw to decrypt the ciphertext c to get the
keys kU ,KS for AKE, where the ciphertext is stored on
the devices and sent to the client.

3) The user runs AKE with the keys kU ,KS with the
server and outputs the session key of AKE, where kU is
the private key of the user and KS is the public key of
the server.

We use the 2HashTDH and HMQV to instantiate the
TOPRF and AKE components. The details of our protocol
are given in Fig. 7. With the instantiation, our T-MFAKE
protocol only needs two commutation rounds by parallel
running the TOPRF and AKE protocols. To make this point
clear, we give the communication flows in Fig. 8.

Discussions on our design. The main challenge to achieve
T-MFAKE security is to prohibit the password guessing
attack as much as possible. A natural and potential way to
achieve security is to leverage the technique of well-studied
PAKEs (e.g., [34], [35], [36], [44]). In many PAKE protocols,
we find the construction of OPAQUE [35], i.e., OPRF+AKE,
is easily extended to T-MFAKE. In OPAQUE, the password
is enhanced to a cryptographic key rw (in the OPRF part)
and used for further authentication (in the AKE part). In our
T-MFAKE protocol, we can further extend this enhancement
by leveraging multiple devices to provide stronger security.

Informally, if less than t − 1 devices are corrupted or
compromised, the cryptographic key rw cannot be recon-
structed even with the password, and therefore the attacker
cannot do further authentication. In this case, our T-MFAKE
protocol is secure as the AKE protocol. If t − 1 devices are
corrupted or compromised, our T-MFAKE protocol down-
grades to OPAQUE (not precisely but closely). Therefore,
in this case, our T-MFAKE protocol is secure as OPAQUE.
More specifically, our T-MFAKE protocol only suffers from:
1) inevitable online password guessing attacks in the case
where t−1 devices are corrupted or compromised; 2) offline
password guessing attacks in the case where t − 1 devices
are corrupted or compromised and meanwhile the server is
corrupted or compromised.

Note that if we use original TORPF instead of our
variant, then the attacker compromising t devices can offline
run the PRF without the help of the server, and further can
carry out offline password guessing. In contrast, using our
TOPRF variant prohibits offline password guessing except
the server is also corrupted or compromised.

Parameter

• All parameters in 2HashTDH (our variant) and
HMQV. To distinguish these parameters, we add the
subscript 1 and 2 to parameters in 2HashTDH and
HMQV, respectively, if necessary.

• An encryption scheme (Enc,Dec).

Initialization

• C generates the secret key s for 2HashTDH, gen-
erates the two shares sD, sS of s (s = sD + sS),
send sS to S; then generates shares sDi of sD by the
(t−1, n−1) Shamir’s secret sharing, and sends sDi to
Di, respectively; calculates rw ← H1(pw,H ′1(pw)s).

• C generates the private and public keys (kU ,KU )
by kU ←$Zm2

and KU ← gkU2 for HMQV; gets S’s
public key KS and encrypts (kU ,KS) to c with the
key rw (c ← Encrw(kU ,Ks)); sends KU to S and
sends c to Di (1 ≤ i ≤ n− 1).

• Di stores c and the share sDi
for 2HashTDH.

• S generates the private and public keys (kS ,KS) by
kS ←$Zm2

and KS ← gkS2 for HMQV; sends KS to
C; stores KU and the share sS for 2HashTDH.

Authentication

• C picks r←$Zm1
and calculates α← H ′1(pw)r; picks

t − 1 devices with index set I ; picks x←$Zm2
and

calculates X ← gx2 ; sends (U,X, α) to S and sends
(U, S, α) to Di (i ∈ I).

• Getting (U, S, α) from C, Di calculates βDi
← αsDi

and sends (βDi
, c) to C.

• Getting (U,X, α) from C , S picks y←$Zm2
and

calculates Y ← gy2 , βS ← αsS , SK ←
H2((XK

H′2(X,KS)
U )y+H′2(Y,KU )kS ); sends (Y, βS) to

C; outputs SK.
• Getting (Y, βS) from S and (βDi , c) from
Di (i ∈ I), C calculates rw ← H1(pw,

β
1/r
S

∏
i∈I β

λi/r
Di

), kU ,KS ← Decrw(c), SK ←
H2((Y K

H′2(Y,KU )
S )x+H′2(X,KS)kU ); outputs SK.

Here, λi is the Lagrange interpolation coefficient for
i in I .

Fig. 7: Our threshold MFAKE protocol.

Support for fuzzy factors. Our T-MFAKE in Fig. 7 requires
the password and n − 1 devices as the n authentication
factors. It is not suitable for users who only have smart-
phones without other devices. A practical way to provide
strong security is to leverage biometric characteristics as
authentication factors.

To support fuzzy factors (including biometric factors),
we leverage fuzzy extractor to convert the fuzzy factor to
a cryptographic key R, and use R as one share in TOPRF.
Therefore, the fuzzy factor can replace one device in the
authentication phase.

Note that the reconstruction of R needs the helper string
P and fuzzy input. Therefore, P should be stored on the
devices. If one device is corrupted or compromised, the
attacker can get the helper string, and try to reconstruct the
key by guessing fuzzy input. Excepts that, our T-MFAKE
with a fuzzy factor achieves the same security as the original
version.
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Di C S
1: U, S, α 1: U,X, α

2: βDi
, c 2: Y, βS

Fig. 8: The message flows of our 2FAKE within only two
rounds

5.3 The Security of Our T-MFAKE Protocol
Since the security requirements of T-MFAKE are relatively
complex, we will analyze the security step by step. Recall
that 2FAKE and MFAKE are the special cases of T-MFAKE.
Based on this, we first prove the security of our 2FAKE
((2, 2) T-MFAKE) protocol, then extend it for MFAKE and
finally T-MFAKE.

Theorem 1. Our 2FAKE ((2, 2) T-MFAKE) protocol (with a
password pw and a device D as factors) is secure as in Definition
3. Specifically:

1) If D is not corrupted,

Advt-mfake
Our2FAKE(A) ≤ Advake

HMQV + qC(
1

2κ
+ Advauth

Enc ).

2) If D is corrupted,

Advt-mfake
Our2FAKE(A) ≤ Advpake

OPAQUE :

a) If S is not corrupted,

Advpake
OPAQUE ≤

1

n
(qC + qS) + Advdis

OPAQUE,FSaPAKE
.

b) Otherwise,

Advpake
OPAQUE ≤

1

n
min{q′S , q′D}+ Advdis

OPAQUE,FSaPAKE
.

Proof. In the analysis, our 2FAKE protocol achieves different
security bounds. We present the bound for each case, as we
need to construct different games and reductions.

Case I (D is not corrupted). As discussed above, if D is
not corrupted, the attacker does not know extra information
about the key in the AKE protocol. Following this intuition,
we reduce the security of our 2FAKE to the security of the
AKE protocol. The main process of proof is to 1) slightly
modify the real attack game G0 (for 2FAKE) to G1, and 2)
reduce the game GAKE for AKE to G1.

Let G1 simulate the messages of 2HashTDH without
executing it. Specifically, G1 is the same as G0 except the
following:

1) When Ci is initializing (getting Send(C, i,⊥, Init)),
pick α←$G and send it to the attacker as aimed at
S. Meanwhile run HMQV.

2) When getting Send(C, i, S, β), check if β = αsS . If not,
abort Ci, otherwise, run HMQV.

G0 andG1 are indistinguishable except β 6= αsS butCi does
not abort. This only happens in G0 when (the incorrect) β
yields to the correct rw (a hash collision) or a successful
decryption of c (breaking the authentication). Therefore,

|Pr[A wins in G0]−Pr[A wins in G1]| ≤ qC(
1

2κ
+Advauth

Enc ).

Then we extend the game GAKE for AKE to G1 by
simulating 2HashTDH (as above) and do the reduction to
the AKE security. Leveraging the attacker A for G1, we can
naturally construct an attacker A′ for GAKE. A is the same
as A′ except the 2HashTDH part:

1) If A makes Send(C, i, S, (U,X, α)) query, then A′
makes Send(C, i, S, (U,X)) query.

2) IfAmakes Send(S, j, C, (Y, βS)) query, thenA′ makes
Send(S, j, C, (U, Y )) query.

If A wins in G1, then A′ will win in GAKE. Therefore,
Pr[A wins in G1] ≤ Pr[A′ wins in GAKE] ≤ Advake

HMQV.

Finally,

Advt-mfake
Our2FAKE(A) ≤ Advake

HMQV + qC(
1

2κ
+ Advauth

Enc ).

Case II (D is corrupted). If D is corrupted, our 2FAKE
protocol is downgraded to OPAQUE. Based on this idea, we
reduce the security of our 2FAKE to the security of the PAKE
protocol. The main process of proof is to 1) modify the real
attack game G0 (for 2FAKE) to G1, and 2) slightly reduce
the game GPAKE for PAKE to G1. The process is similar to
that of the first case, but the constructed game G1 and the
reduction are totally different.

We modify G0 to G1 by slightly changing the query to
H . G0 and G1 are the same except:

1) If (x, y) is queried for H (by A or participants), return
H(x, y/H ′(x)sD ).

Since both H and H ′ are random oracles, G0 and G1

are totally indistinguishable. Therefore, Pr[A wins in G0] =
Pr[A wins in G1].

Then we extend the game GPAKE for PAKE to G1 and
do the reduction to the PAKE security. Specifically, GPAKE is
extended to G1 by simulating the interaction of C and D as
follows:

1) If (U,X, α) aimed at S is responded to the attacker
in GPAKE, then respond the same message as well as
(U, S, α) aimed at D in G1.

Leveraging the attacker A for G1, we construct an attacker
A′ for GPAKE which is the same as A except the following
case:

1) If A makes Send(S, j, C, (Y, βS)) query and sends
(βD, c) to C as the corrupted D, then A′ makes
Send(S, j, C, (Y, βSβD/α

sD , c)) query.
Note that Ci does the same calculation in G0 with A as in
GPAKE with A′. More specifically,

rw ← H(pw, (βDβS)1/r/H ′(pw)sD )

in G0 is equal to
rw ← H(pw, (βDβS/α

sD )1/r)

in GPAKE, since α = H ′(pw)r and (βDβS)1/r/H ′(pw)sD =
(βDβS/α

sD )1/r. Therefore, if A wins in G1, then A′ wins in
GPAKE. Consequently,

Pr[A wins in G1] ≤ Pr[A′ wins in GPAKE] ≤ Advpake
OPAQUE.

Further,
Advt-mfake

Our2FAKE(A) ≤ Advpake
OPAQUE.

Due to the PAKE security of OPAQUE, Advpake
OPAQUE is

bounded as explained in Section 3.3 (in the cases where S
is corrupted or not). This gives the corresponding bounds
for our 2FAKE protocol in these two cases. Note that for an
online password guess, the attacker needs to make a rough
Send(C, ·, S, ·) or Send(D, ·, C, ·) query, therefore, q ≤
qC + qS ; for an offline password guess, the attacker needs to
make an offline operator on S’s long-lived key as well as an
operator on D’s key, therefore, q′ ≤ min{q′C , q′S}.

Theorem 2. Our MFAKE ((n, n) T-MFAKE) protocol (without
fuzzy factors) is secure as in Definition 3.
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Our MFAKE protocol is the same as our 2FAKE variant,
except a single device is expanded to multiple. If at least one
device in MFAKE is honest, then the attacker cannot carry
out effective attacks. Informally, the corruption of the device
in 2FAKE corresponds to the corruption of all devices here.
The proof for Theorem 2 can easily make use of the analysis
result from Theorem 1, we thus omit it.

Theorem 3. Our MFAKE ((n, n) T-MFAKE) protocol (with a
fuzzy factor) is secure as in Definition 5.

Proof. Due to the security of the fuzzy extractor, the crypto-
graphic key can only be reproduced from the fuzzy input.
Therefore, without the (right or close) fuzzy input, the
attacker cannot get the random password and fail to distin-
guish the real session key with a random number. Besides,
the attacker only has as most 1

2Hmin
+ pfalse probability to

reproduce the key ( 1
2Hmin

for guessing the correct input,
pfalse for the false acceptance). Consequently, we can achieve
the corresponding bound in Definition 3.

In the following, we give a formal analysis. In the cases
where one device factor is not compromised or corrupted,
the proof is trivial. In the cases where the biometric factor
is compromised or corrupted, the proof is similar to that for
Theorem 2. We only consider other cases.

Let G0 be the real attack game. G1 is the same as G0

except that the helper string P ′ generated by a randomly-
generated key R′ (not the right one R used in TOPRF)
is given to the attacker instead of the real helper string
P . Therefore, G0 and G1 are indistinguishable, except the
attacker reproduces the right key R, reconstructs rw and
further uses rw to decrypt c. If the password is compro-
mised, then the probability of reconstruction is not more
than

pc =
1

2Hmin
+ pfalse

for each guess. Otherwise, the attacker has to guess the pass-
word as well as the fuzzy input, therefore the probability of
reconstruction is not more than

pc =
1

n
(

1

2Hmin
+ pfalse)

for each guess.
In the case where S is not corrupted, each guess re-

quires at least one (usually several) Send(C, ·, S, ·) or
Send(C, ·, S, ·) query. Therefore, we have
|Pr[A wins in G0]− Pr[A wins in G1] ≤ pc(qC + qS).

Further, since Pr[A wins in G1] is negligible (without know-
ing R),
Advt-mfake

OurMFAKE2(A) = Pr[A wins in G0] ≤ pc(qC+qS)+negl(κ).

In the case where S is corrupted, each guess requires at
least one (usually several) offline operation on S’s and on
D’s long-lived secrets. Similar to the above reasoning, we
have

Advt-mfake
OurMFAKE2(A) ≤ pcq

′
S + negl(κ).

Therefore, our MFAKE is secure as in Definition 5.

Theorem 4. Our T-MFAKE without (or with) a fuzzy factor
meets the requirements in Definition 3 (or 5).

The analysis for our (t, n) T-MFAKE is also similar to
that for our (t, t) T-MFAKE (with or without a fuzzy factor).
We omit it here.

5.4 Extensions for Refreshment and Anonymity
Refreshment. Besides the advantages of usability, our T-
MFAKE also brings benefits to security by the refreshment.
Refreshment is a mechanism that periodically refreshes the
shares in the threshold context to avoid massive (t) shares
being compromised over time. If the attacker does not
compromise t shares in the current period, then it needs
to re-compromise them in the next period.

In our T-MFAKE, we refresh the secret keys in TOPRF
without the password and updates the ciphertext c without
changing the private key kU . Specifically, the refreshment is
designed as follows:

1) The clientC generates a new secret key s′ in TOPRF and
each shares s′i of s′, sends the shares to the correspond-
ing parties; calculates rw′ ← H1(pw,H ′1(pw)s

′
), and

encrypts kU ,KS with rw′ to c′; sends c′ to the device(s).
2) The server S updates its share with the new one s′n.
3) The device Di updates its share and the ciphertext with

the new ones s′i and c′.
As well as to resist (factor) compromise by periodic ex-

ecutions, this refreshment can be used to revoke lost devices
by active executions. The user only needs to refresh the keys
without the lost devices like the above process.

Note that we do not require the user to change the
password, which will bring an extra burden on memory
and cannot achieve expected security (for instance, a new
password is just slightly modified from the old one [21]).
Anonymity. In some scenarios (e.g., secret ballot), parties
may choose to hide their usernames to protect privacy. We
should provide user anonymity so that:

1) the attacker cannot identify the user ID in a session.
2) the attacker cannot tell if two sessions correspond to the

same user.
Our 2FAKE and MFAKE do not provide anonymity

like OpTFA [13], since our protocols directly send the
username on the public channel. A trivial way to achieve
user anonymity is to establish a server-authenticated secure
channel first and then run our protocol on the channel. This
requires a public key of the server to establish this channel,
which can be stored on the device(s). However, this method
requires two extra communication rounds.

For our design, there is a faster and simpler way to
achieve anonymity - encrypting the username by a prob-
ability public encryption scheme (e.g., ElGamal). With the
encryption, the username is only known by the server
and two ciphertexts of the same username are different.
Therefore, the attacker cannot extract any information about
the username from that. Besides, the attacker cannot extract
any information about or linked to the username from the
other transmitted messages (as they are all random num-
bers). This method will only slightly require the encryption
and decryption operations of the public encryption scheme
without an extra round for communication.

5.5 Discussions on Security
Since our T-MFAKE protocol is secure as in Definition 3 or
5, it can resist ephemeral secret leakage, replay, man-in-the-
middle, impersonation and privileged-insider attacks. Here
we briefly present some discussions on these attacks and
our design.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 11,2021 at 10:00:52 UTC from IEEE Xplore.  Restrictions apply. 



1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2021.3081263, IEEE
Transactions on Information Forensics and Security

13

SUMMARY
SAFE

DETAILS
BOUNDED_NUMBER_OF_SESSIONS
TYPED_MODEL

PROTOCOL
/home/span/span/testsuite/results/tmfake.if

GOAL
As Specified

BACKEND
CL-AtSe

STATISTICS
Analysed : 64 states
Reachable : 64 states
Translation: 0.01 seconds
Computation: 0.00 seconds

SUMMARY
SAFE

DETAILS
BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL
/home/span/span/testsuite/results/tmfake.if

GOAL
as_specified

BACKEND
OFMC

COMMENTS
STATISTICS

parseTime: 0.00s
searchTime: 0.53s
visitedNodes: 512 nodes
depth: 9 plies

Fig. 9: Analysis results for our T-MFAKE using AVISPA with the CL-AtSe and OFMC back-ends

Ephemeral secret leakage attacks. The main component of
our design, HMQV [33], can resist the attacks, and the pro-
tocol benefits from this security feature. More specifically,
for the session key SK = H2((Y K

H′2(Y,KU )
S )x+H′2(X,KS)kU )

(calculated by the client) in HMQV, if the attacker gets the
ephemeral secret x, she cannot calculate SK without the
private key kU . So the session key SK is safe. Even if captur-
ing both x and SK, the attacker cannot calculate the private
key kU except breaking the hash function and solving the
discrete logarithm problem. Thus, the keys of other sessions
are kept safe. Further, if the attacker compromises the long-
term secret kU , these sessions without leaking the ephemeral
secrets are still safe.
Replay attacks. For each session, the client is able to ran-
domly choose an ephemeral exponent as well as the server,
so that the attacks cannot be carried.
Impersonation attacks. As we proved previously, our pro-
tocol can resist impersonation attacks in arbitrary cases ex-
cept the two trivial ones: 1) impersonating the user by com-
promising the user’s t − 1 factor and the password (where
the password may be captured by online/offline guessing
attacks); and 2) impersonating the server by compromising
the server’s long-term secret. In normal (but not exceptional)
cases, without at least t − 1 factor and the password, the
attacker cannot impersonate the user to run TOPRF and
therefore cannot execute SaPAKE to calculate the session
key. Similarly, without compromising the server’s long-term
secret, the attacker also cannot obtain the session key by
executing SaPAKE (as the server does).
Man-in-the-middle attacks. Based on our analysis on the
impersonation attacks, the attacker can only launch man-in-
the-middle attacks by compromising the credentials of both
the user and the server.
Privileged-insider attacks. In the registration phrase, the
user generates the shares of TOPRF and the private key on
the client, but the server does not know the devices’ shares
of TOPRF and the user’s private key. Thus, our protocol can
resist privileged-insider attacks.

5.6 Automated Security Analysis with AVISPA
We leverage an automated validation tool, AVISPA (Auto-
mated Validation of Internet Security Protocols and Appli-
cations), to evaluate the security of our protocol. AVISPA
can automatically check if a given protocol achieves the
target security goals via running the protocol. It also can

investigate potential security risks and further provide the
attacking paths to help improve the protocol. Due to the
advantages, it has been widely used in the study on authen-
tication protocols [45], [46], [47].

We first describe our protocol and the security goals in
High Level Protocol Specification Language (HLPSL), and
then run AVISPA with two back-ends, namely CL-AtSe and
OFMC. The analysis results, shown in Fig. 9, confirm that
our protocol meets the security requirements.

6 IMPLEMENTATION AND PERFORMANCE

We implement our protocol and evaluate its performance on
computation and communication. Here, we only implement
a (2, 2) variant of our protocol. We note the (t, n) protocol
only requires extra computation and communication cost
(among extra devices), but does not increase the total run-
ning time of the protocol due to the parallel running.

6.1 Implementation Details

Participant. We need the following three parties in the
implementation.

1) The server S in a Docker container running on a re-
mote server in Alibaba Cloud. The Docker container is
assigned with 2 CPUs (Intel Core i5-7300HQ CPU @
2.50Hz 2.50Hz) and 2.0GB memory. In the container,
Ubuntu 18.04 with Apache 2.0, PHP 7.4 and MySQL
7.4.8 is deployed.

2) The client C is a web browser, Chrome 85.0.4183.102
on a PC with Windows 10. The PC is equipped with
an Intel Core i5-7300HQ CPU, 16.0GB memory and
Bluetooth 5.0 adapter. To support our protocol on the
client, we implement a Chrome Application to perform
the calculation and communication.

3) The deviceD is a smartphone, Huawei P30 (ELE-AL00),
with Huawei Kirin 980, 8.0GB memory, Bluetooth 5.0
adapter and Android 10. We also implement an APP on
the device for the protocol.

Communication. The communication between the server
and the client is on the Internet. The round trip time between
them is approximately 80 ms. The client and the device are
connected via the Bluetooth channel and meanwhile, their
physical distance is less than half a meter when running
the experiments. The round trip time of this channel takes
around 1 ms.
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Fig. 10: Performance comparison

TABLE 2: Performance comparison

Protocol Computation cost Storage cost Communication cost
Server Client Device Server Client Device Cline-Server Client-Device

OpTFA 4 exp + 1 mexp 9 exp + 1 mexp 3 exp 1280 bit 0 bit 512 bit 5 rounds 5 rounds
5.98 ms 155.16 ms 34.65 ms 222.36 ms 2.36 ms

Ours 2 exp + 1 mexp 3 exp + 1 mexp 1 exp 768 bit 0 bit 768 bit 2 rounds 2 rounds
3.67 ms 63.58 ms 11.55 ms 93.38 ms 0.94 ms

1 exp: number of exponentiation; mexp: number of multi-exponentiation.
2 The communication on the two channels is run parallel in our protocol, but not in OpTFA.
3 The client stores nothing, but the user needs to memorize the password.

Computation. The client, server, and device leverage SJCL,
OpenSSL 1.1.1g, and javax.crypto to support the cryptog-
raphy algorithms, respectively. To instantiate cryptogra-
phy algorithms, we use SHA-256 for the hash operator,
HMAC-SHA256 for HMAC, AES for symmetric encryption,
Encrypt-then-MAC with AES and HMAC-SHA256 for au-
thentication encryption, and NIST P-256 for exponentiation.
Storage. The user needs to remember the password, while
the client does not store anything. Each device stores its
shares of TOPRF and the ciphertext (of the user’s private
key and the server’s public key). The server stores the shares
of TOPRF, its private key and the user’s public key. Note
that we use the compressed form to represent an ECC point
without the first 8 bits (0x04) indicating the compressed
form [48].
User operations. A user first enters the username and the
password on a PC - more specifically, on the web page of
the server shown in the browser. Then he clicks the login
button on the page, and gets a notice from the smartphone.
After approving the login via a click on the APP installed
on the smartphone, the user can log in the server.

6.2 Performance Evaluation
To present a fair and comprehensive performance evalua-
tion, we run our protocol 1,000 times along with OpTFA for
comparison (although there are some other MFA protocols,
none of them achieve the strong security defined in this
paper). Note that we here directly simulating the compu-
tation cost and ignore the cost a user spends in information
entering and button clicking.

Fig. 10 shows the time cost for each experiment while
Table 2 gives us a general picture of the average values.
The experimental results show that our protocol achieves
a significant improvement in efficiency as compared to
OpTFA - 138.25% and 148.49% faster on communication and
computation, respectively. Besides, our storage cost is quite
close to that of OpTFA - 512 bits less cost on the server, and
just 128 bits more on the device. From the experimental re-
sults, we conclude that our protocol is efficient and practical
enough for real-world applications.

7 CONCLUSION

We propose a new notion of (t, n) threshold multiple-factor
authentication (T-MFA), allowing users to autonomously
choose t at-hand factors out of n for authentication. It brings
advantages to usability and security. We also construct a T-
MFA key exchange protocol and prove that it achieves the
highest attainable security. Our protocol only requires 4 + t
exponentiations, 2 multi-exponentiations and 2 communi-
cation rounds. Via the implementations and experiments,
we show that our design is fast, secure and practical in the
real-world applications.
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