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Abstract

With the recent increase in computational power, deep learning is being applied
in many different fields. Deep learning has produced promising results in the field of
side-channel analysis. However, the algorithms used to construct deep neural networks
remain black boxes, which makes it hard to fully employ the capabilities of attacks
performed with these techniques.

This study explores methods to systematize the deep learning techniques used in
profiled side-channel analysis. We do so by conducting a literature review of the state-
of-the-art. Our observations show that while the process of choosing an architecture and
hyperparameters have a great influence on the performance of an attack, not all authors
thoroughly document this process. In lights of further improvement of the state-of-the-
art, we also propose several promising techniques for hyperparameter optimization in
side-channel analysis.
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1 Introduction

Side-channel attacks exploit leakages in physical channels to extract secret information from devices
[15]. They pose a threat to even the most robust cryptographic systems, as they are often easy to
implement, have a low cost per device, and may be difficult to detect given their non-invasiveness
[10].

With the recent growth in computational power, deep learning became more accessible. Nowa-
days, many fields benefit from these powerful techniques. Side-channel analysis benefits from deep
learning too, as deep learning techniques have broken protected implementations where other, non
deep learning based side-channel attack methods are much less effective [14].

Side-channel analysis profits from the implementation of deep learning techniques. However,
the black-box nature of deep learning algorithms makes it hard to understand how they solve
classification problems, and why the results are accurate. This makes it hard to decide exactly
which model architecture and hyperparameters are necessary for optimal performance. System-
atization of these techniques would take away the need to reveal the exact workings of black-box
deep learning algorithms, and make these techniques more accessible for researchers who do not



have extensive knowledge about the algorithms they intend to use. This makes systematization
interesting especially in the field of side-channel analysis, as the design of attacks - and thus, design
of countermeasures - is a combined effort between both software and hardware experts.

Because the usage of deep learning in profiled side-channel attacks is relatively new, there has
been little research done into the systematization of such attacks. This study explores methods
to systematize deep learning techniques used in profiled side-channel analysis. To achieve this, we
introduce deep learning and explain why systematization is challenging. Deep learning techniques
used in side-channel analysis are summarized and investigated. We explore recent efforts in deep
learning systematization, most notably hyperparameter optimization. We relate these works to the
field of side-channel analysis, and discuss them.

In Section 2, we explain our methodology. Section 3 shows the basics of deep learning, why the
hyperparameter search problem is challenging, and some common approaches to solve it. Section
4 describes profiled side-channel attacks in both their traditional and deep learning-based variants.
Section 5 shows more advanced hyperparameter optimization techniques, and explains why these
would be interesting to see in a side-channel analysis context. When applicable this section also
shows known attempts of their implementations in side-channel analysis.

2 Methodology

In this study we explore the state-of-the-art and formulate new hypotheses regarding the system-
atization potential of deep learning techniques used to perform side channel analysis. For this, a
large quantity of experiments is needed. To gather the appropriate amount of data needed to form
insights on the topic, we will conduct a literature review of state-of-the-art research. “Breaking
Cryptographic Implementations Using Deep Learning Techniques” by Maghrebi et al. [14] was the
starting point of our research. We thoroughly analyzed it, and used it to gather keywords and to
create a concept map. This concept map was based on the main topics covered in the study, such as
side-channel analysis, machine learning, and deep learning. Smaller subtopics, such as the different
architectures that were covered, were then connected to these main topics. Then, we looked into all
subtopics, and decided whether to investigate them more or not, possibly expanding the concept
map from there. The concept map can be found in Appendix [A]

The initial data collection was performed by querying academic databases with the keywords
we formulated, and searching for papers that cite the aforementioned study. This provided us with
137 records. It was important that we found works that provide insights into the automation of
deep learning, deep learning in profiled side channel attacks, or a combination of the two. To query
this, we read the abstracts of all the gathered papers, discarding papers that headed into different
directions than what was useful for our literature study. After this selection was made, we read the
introductions and conclusions of all remaining papers, and ended up with 55 papers that were to
be read in-depth. The PRISMA analysis of this process can be found in Appendix

It became apparent that many deep learning related side-channel analysis works built on each
other. However, little attention was paid in most works to explain the details of the used architecture
and configuration, and the reasoning behind why these were chosen. To the best of our knowledge,
there existed no well-documented system for selecting the right architecture configuration for the
side-channel analysis problem. Therefore, the scope of our research branched out to hyperparameter
optimization in deep learning, in hopes to find techniques that are also applicable in a side-channel
analysis context.

After collecting potentially interesting studies, we assessed the quality of the works. We required
the works to be peer reviewed. By consulting the Journal Quality List we gauged if the journals
publishing these works are reputable. Special attention was paid to influential works in the field
with a high citation count.

We made the decision against using statistical analysis since our sources perform experiments
with different algorithms, datasets and hyperparameters. A qualitative synthesis is more appro-
priate in this case, as this allows us to gain a better insight in how the studies are related to one



another.

In our synthesis, the discussion, we present the most interesting finds in our sources. We point
out where studies differ and where they overlap. We pay attention to the setup and reproducibility
of experiments, and criticize them when needed. Experimental results are analyzed. We explicitly
mention when snowballing was used to find related works, as this relationship might be important
for the origins of ideas and conclusions of experiments.

To avoid confusion, it will be explicitly mentioned when conclusions and interpretations are
provided by the authors of original papers, or if it is a conclusion based on research done in this
study.

Some difficulties were encountered when synthesizing our findings, most of them stemming from
the fact that part of the listed techniques have yet to be tried in a side-channel analysis context.
This made it harder to gauge if these techniques would benefit the performance of side-channel
analysis models.

3 Deep Learning

In this section, we will go over the basic concepts found in deep learning. We explain the importance
of good hyperparameter selection and how this plays a role in the generalization of a model.

3.1 Basics

Deep learning is a subclass of machine learning. It utilizes artificial neural networks, which are
loosely modeled after the structures in a biological brain. Like a brain, these neural networks
consist of a collection of connected nodes, called neurons. Each neuron typically performs an
operation on the input it receives, after which it forwards its output to the next neuron [22].

Neurons are organized in layers. The data samples are delivered in the first layer, also known
as the input layer. Each interesting variable, referred to as feature, is represented by its own
neuron in the input layer. The last layer is called the output layer. In a network trained to perform
classification tasks, each class has its own neuron in the output layer. The output layer can therefore
be used to provide the probability for each class that the input is labeled with [I7]. The layers in
between are hidden. Depending on the type of layer used, these layers perform various operations
on the data that gets forwarded through them.

The function that a neuron computes on its input is called an activation function. We can
describe such an activation function as o(wiz1 + ... + wqzq + b), where o is used to denote the
function, x; the i*" input, w; the weight of that input, ¢ the number of inputs that neuron receives,
and b the bias of the neuron [22]. The weight and bias are parameters of the neuron. In each
training iteration, or epoch, these parameters are adjusted to optimize the network’s performance.
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Figure 1: Visualization of a neuron, adapted from [22].



The learning algorithm used in deep learning is backpropagation. In each epoch, the backprop-
agation algorithm calculates the gradient of the loss function of the model. An optimizer algorithm
then takes this as input and adjusts the parameters of the neurons in the network to minimize the
loss function. In other words, when training a neural network, it learns by trying to minimize the
error rate of the model.

3.2 Architectures and Hyperparameters

There are a number of deep learning architectures, with each of them having its own set of layer
types and hyperparameters. Before training can begin, the architecture and hyperparameters have
to be selected.

It is important to realize that hyperparameters are different from the model parameters. Hy-
perparameters can be seen as tuning options for the learning algorithm that are external to the
training process, whereas the model parameters are the parameters that are being altered during
the training process.

Hyperparameter tuning is an important problem, because the hyperparameter values used in-
fluence the performance of the resulting predictive model [20]. Using the most favorable hyperpa-
rameters ensures that the learning process performs optimally, which will result in a model of good
quality. However, finding optimal hyperparameters for deep learning algorithms is challenging for
a number of reasons.

e The deep learning algorithm is a black box, which makes it hard to try and verify hyperpa-
rameter combinations [21].

e The ideal hyperparameter configuration for a model depends on the dataset. For example,
architectures and configurations that work well on image datasets are not guaranteed to
perform well on non-image datasets [9].

e Hyperparameter search space grows exponentially relative to the number of hyperparameters
[16].

e Hyperparameters can have values in different domains, for example real-valued (e.g. learning
rate), integer-valued (number of layers), binary (use early stopping or not), or categorical
(choice of optimizer algorithm). When the search space is discontinuous, objective evaluation
may fail. The space may be noisy and non-deterministic, or flat, where many configurations
have similar performance [9]. See Figure

e Hyperparameters may also be conditional: a hyperparameter may only be relevant if another
(combination of) hyperparameter(s) takes on a certain value [6].

e As there is no way to exhaustively try all possible hyperparameter configurations, there is no
guarantee that the best hyperparameter values are obtained [22].
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Figure 2: Challenges in hyperparameter tuning, from [9].

3.3 Generalization

When training a neural network, the goal is to achieve generalization in the resulting predictive
model. This means that the model can perform correct classification on inputs it has not seen
before: the neuron weights are tuned in such a way that it works on unseen input too.

Neural networks, especially ones with a large number of hyperparameters, are prone to overfit-
ting, also known as memorization. In this case the neuron weights are tuned to the training data in
such a precise way that it cannot correctly classify unseen input. There are several regularization
techniques that combat overfitting. Some examples of this are adding or removing information, such
as noise, penalizing complexity in a model, or stopping the training when overfitting is suspected
to happen [22]. On the other hand, underfitting might happen when the model is trained too little.
In this case, the model has not learned enough, resulting in an inability to capture the trend in the
training data, which also results in not being able to make accurate predictions in unseen data.

It is useful to detect when underfitting becomes generalization, when generalization becomes
overfitting, and if underfitting becomes overfitting while skipping the generalization part, since this
can relax the search of some hyperparameters. Finding the end of the generalization phase and
the start of the overfitting phase can be used as a guideline to decide when to stop training, in
other words, the maximum number of epochs [I7], whereas finding where underfitting goes over
into generalization is useful to decide the minimum amount of epochs. Detecting if underfitting
directly goes into overfitting, skipping generalization phase, can help determine the aggressiveness
of the learning rate.

The learning rate influences the speed of the learning phase. A learning rate that is too low
will take very long to converge to a local minimum, while a learning rate that is too high means
that the weights are updated too heavily, resulting in an oscillating loss rate of the output [22], or
the solution diverging completely from the optimal solution [9]. The aforementioned phenomena
illustrate just how intertwined the performance of a deep neural network and its hyperparameters
are.

3.4 Simple approaches for hyperparameter optimization

Common approaches to find suitable hyperparameters include grid search and random search. In
a grid search, a set of values to be studied is selected for each hyperparameter of interest. These
values are spaced out evenly. The model is then trained and assessed for the Cartesian products of
the sets of values. It is a simple technique, however, a grid search is quite computationally intensive.



This is because the amount of possible combinations, and thus the amount of function evaluations,
grows exponentially with regards to the number of hyperparameters in the model [9].

A random search also selects a set of values to study for each hyperparameter, but does so
randomly, so these values are not spaced out evenly. Not all hyperparameters are equal in influence,
as they may have little to no effect on a model for certain datasets. A random search is therefore less
costly, as it does not evaluate all possible combinations of hyperparameter values [9]. Initializing
hyperparameters through a random search is a useful method for beginning the search process, as
it explores the entire configuration space and thus often finds settings with reasonable performance.
However, it usually takes longer than guided search methods [6].
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Figure 3: To the left, a grid search, to the right a random search. From [9].

A way to verify a hyperparameter configuration is to train the model with that configuration
and then performing a validation phase. To do so, the training data is split into a training set and
a validation set. Performances of the (partially) trained model are evaluated over the validation
set, computing a validation error, after which the hyperparameters are updated accordingly. Once
the model has been validated, and the hyperparameters are definitely set, the real test error is
evaluated over the test set [2].

Recently, efforts have been made to automate the process of training machine learning models.
These techniques are known as AutoML. Such techniques open doors for those who are interested
in applying machine learning, but do not have the resources to study the technologies behind it
in order to make decisions about the architecture and hyperparameters [6]. In Section 5, we will
go deeper into automated hyperparameter optimization, and discuss a variety of methods that are
used in this field.

4 Components of a Profiled Side-Channel Attack

A side-channel attack is an attack that makes use of leakages in physical channels of a system
in order to uncover secret information. These leakages are also called traces, and include power
consumption, electromagnetic radiation, and timing [21].

Side-channel attacks come in two different classes. In a non-profiled side-channel attack, the
attacker only has access to the traces leaked from the target device. On the other hand, an attacker
performing a profiled side-channel attack has access to an additional device, a clone of the target
device. This clone device is used to discover dependencies between the obtained data and the target
device behavior. A profile is then constructed based on these findings, which the attacker uses to
perform key-recovery attacks on the target device. Profiled side-channel attacks are considered to
be the most powerful type of side-channel attack [22].

Profiled side-channel analysis consists of two phases: the profiling phase and the attack phase.
During the profiling phase, a profile of the targeted device is created. This is done with help of



the clone device, which has similar or identical characteristics to the targeted device. The attacker
gathers a set of profiling traces from the clone device. Because they have access to this clone
device, they know the exact in-and-outputs of the operations, including the sensitive values [21].
From there, the attacker can calculate the leakage model [22]. The leakage model describes the
relationship between the leaked samples and the sensitive data [I8]. It is necessary to know this
relationship, because usually the traces that are leaked do not directly contain the sensitive value
itself, and some processing is needed before the desired value can be discovered.

During the attack phase, the adversary collects traces from the target device, and classifies these
using the build profile. The success of such an attack relies on the quality of the profile, which is
based on the amount of profiling traces, the quality of those traces, and the similarity of the clone
device and the target device [21].

A common method to evaluate the performance of an attack is to use the guessing entropy, the
average number of key guesses required to recover the key. Given the total number of traces in an
attack phase, Tiot, and the total amount of keys in the keyspace, N, we can calculate a key guessing
vector g = [go, g1, --., gjnv—1))- This vector is sorted in decreasing order of probability. g; denotes the
probability that that key candidate is the true key. To calculate each element g; over a number of

samples, we use this formula:
Ttot

gi =) log(py,)
Jj=1

where p;; is the estimated probability for key candidate ¢, given sample j. The guessing entropy is
then the index of the true key’s rank.

4.1 Deep Learning-based Side Channel Analysis

In a deep learning-based side-channel attack, the attacker trains a model that is able to classify
the traces of sensitive values [2I]. Deep-learning based side-channel attacks have been successful
on protected implementations where other attack techniques are much less effective |22, 21]. These
attacks are more streamlined as the pre-processing of data is no longer mandatory [I3]. Maghrebi
notes in multiple works that deep-learning based point-of-interest selection is at least as good as
state of the art leakage assessment methods [13] [12].

In a deep learning-based side-channel attack, traces are used as input data. The output values
that the attacker aims to extract from the trace are used as labels [§]. A variety of deep learning
architectures have been used in deep learning-based side-channel analysis. Fully connected net-
works such as multi-layer perceptrons, or MLP, feature extraction networks such as convolutional
neural networks, or CNN, sum up the architectures that have been experimented with the most.
Time dependency networks like recurrent neural networks, or RNN, and long-short term memory
networks, or LSTM, have been tried too, although on a lesser scale than the former two archi-
tectures. But even though these experiments have produced promising results, introducing deep
learning to side-channel analysis comes with a new set of problems. Explanations on model gen-
eralization and how to improve this in a side-channel analysis context are lacking, leading to little
understanding on how to confirm whether a trained model has achieved generalization for a given
side-channel analysis problem [17]. A large factor in this is the hyperparameter search problem
that we discussed in 3.2 and 3.4. When performing a deep learning-based side-channel attack, the
design of the network architecture has a substantial influence on the attack’s success. However,
there is only limited knowledge about which architecture configurations are most appropriate for
the side-channel analysis problem [21].

5 Optimization Methods

The hyperparameter search problem plays a role in any neural network. Solving the problem
through automated hyperparameter optimization removes the need to uncover the effects that



each hyperparameter has on model performance. However, this approach introduces a new set of
challenges. The hyperparameter configuration space is often complex and high-dimensional, with
a mix of continuous, categorical and conditional hyperparameters. It is not always clear which of
an algorithm’s hyperparameters need to be optimized, and in which ranges. There usually is no
access to the gradients of the loss functions with respect to the hyperparameters, and one cannot
directly optimize for generalization performance as training datasets are of limited size [6]. In this
chapter, we go over some promising methods for automated hyperparameter search, and when data
is available we show how they perform in a side-channel analysis context.

5.1 Learning Curve Extrapolation

Rather than being a hyperparameter optimizer, a learning curve extrapolation algorithm may be
used along hyperparameter optimizers in order to converge to the desired values faster. In learning
curve extrapolation, the hyperparameter configuration on a certain algorithm is tested before the
training process has completed. This can be done by only training the model for a few iterations
before testing and deciding whether or not to stop the training process, by running it on a subset
of features, or by only using few of the cross-validation folds [6]. Since the guessing entropy method
is preferred over cross-validation in side-channel analysis, we will not focus on this concept.

5.1.1 Predictive Termination

When a human expert evaluates a poor hyperparameter configuration, this expert is able to quickly
estimate whether the resulting network will perform poorly. They are then able to terminate the
training process, saving time compared to completing the training process and only evaluating
then [4]. Efforts have been made to automate this process. When using predictive termination,
a learning curve model is used to extrapolate the learning curve of a partially trained model for
a given hyperparameter configuration. The training process is then terminated if the predicted
learning curve is not estimated to perform better than a certain threshold [6].

A possible predictive termination method was given in by the authors in [4]. For each hyper-
parameter configuration, a deep neural network is partially trained. Their algorithm keeps track of
the best performance found so far. This best performance is initialized as —oo, and is updated with
the new best performance each run. The algorithm then predicts the probability that the neural
network, after training for m intervals, will exceed the best performance. If this probability is above
a certain threshold, the training will continue. Otherwise, training is terminated and the expected
validation error is returned. Figure [] shows the effects of this predictive termination algorithm on
the learning curve of fully connected networks trained on the CIFAR-10 dataset. The figure shows
how poor runs are terminated fairly early in the training process.

When looking into predictive termination in side-channel analysis, we were not able to find
whether such a technique has been tried or not. This implies that either it has been tried and the
effects have not been documented, or it has not been tried as of yet.
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Figure 4: Learning curves of fully connected networks trained on CIFAR-10. The plots
contain all learning curves from 10 runs with the SMAC hyperparameter optimizer, as well
as 10 runs with the TPE hyperparameter optimizer. From [4].

5.2 Bayesian Optimization

Because of their efficiency in objective function evaluations, Bayesian optimization and related
techniques are currently a topic of interest |3]. Bayesian optimization has been proven to perform
well in deep neural network tuning for image classification, speech recognition, and neural language
modeling [6]. It is an iterative algorithm that uses a probabilistic surrogate model together with an
acquisition function to decide which target function configuration to evaluate next. The surrogate
model is used to predict the learning curve of the resulting model. The acquisition function then
uses this model to acquire new candidate configurations. Bayesian optimization usually initializes
the target function’s parameters with a random search. Then, in each iteration, the surrogate model
is fitted to all the observations made so far by the target function. The acquisition then uses the
surrogate model to predict the performance of the candidate configurations to study next. Figure
[] shows Bayesian optimization on a one-dimensional function.
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Figure 5: Bayesian optimization on a one-dimensional function. The black line shows the
Gaussian process surrogate function, with the blue shape around it representing the uncer-
tainty. The dashed line shows the actual objective function, which should be minimized.
This is done by maximizing the acquisition function, which is represented by the orange
curve. The acquisition function selects new values at points where the the predicted func-
tion value is relatively low and the uncertainty is relatively high. Eventually, this converges
to a function minimum, as can be seen on the bottom image. From [6].

Compared to training and evaluating the target function, the acquisition function is cheap to
compute. Bayesian optimization has also been shown to outperform manual search by human
experts and random search on its own. However, to maximize its optimization performance, it is
important to select an appropriate acquisition function. This makes it difficult for non-experts to
utilize the potential of this method [16].

Traditionally, Bayesian optimization use Gaussian processes as acquisition function to model
the target function. One downside of the standard Gaussian processes is their poor scalability, given
that they scale cubically with the number of data points.

Again, there is a lack of information on if Bayesian optimization has been tried in a side-channel
analysis context.
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5.2.1 Freeze-Thaw Bayesian Optimization

Freeze-Thaw Bayesian optimization is a Bayesian optimization algorithm that maintains a set of
frozen models throughout the process of optimization [20]. The algorithm uses information-theoretic
criteria to determine which models to thaw and train further. It relies on the assumption that the
training loss during when the model is being fitted roughly follows an exponential decay towards
a final value that is unknown. This method is interesting because it is able to dynamically stop
and restart experiments, reducing the amount of operations the acquisition function has to per-
form, which is beneficial in cases when computationally expensive algorithms are used, like the
aforementioned Gaussian process.

5.3 Transfer Learning

In transfer learning, trained models are used as starting points for models with similar functions.
The authors of [25] explain that neural networks perform exceptionally well in transfer learning.
The source model can be used as a starting point for both the architecture and hyperparameters
of the target model. This yields a fully initialized, pre-trained model which can then be fine-tuned
on the data of the new training set. There have been experiments with RNNs modifying their own
weights, and LSTMs being used as meta-learners to train MLPs. Unfortunately it appears that
these methods have not been tried yet in the field of side-channel analysis.

5.3.1 Ensemble Learning

Only choosing a single hyperparameter configuration can be wasteful when an optimization algo-
rithm yields multiple usable configurations [6]. Ensemble learning is a type of transfer learning that
combines multiple configurations into one. Configurations may be homogeneous, where hyperpa-
rameters are the same for the base models, or heterogeneous, where they are different. Combining
models can be done in multiple ways. Wang et al. introduces three popular methods, namely
Bagging, Boosting and Stacking [23]. Bagging is short for bootstrap aggregating. It uses different
training data subsets (with replacement) from the entire training data to train different models on.
These models are called base learners. To create the final ensemble, the base learners are combined
by a majority vote. The Boosting method creates different base learners by repeatedly training a
base learner to modified versions of the training dataset, resulting in a set of different base learners.
These base learners are weighted according to their error. The final ensemble is then made using a
linear combination of the base learners. Finally, Stacking uses a meta-learner to combine different
base learners that were produced by differing algorithms.

Ensemble models are expected to perform better classification compared to the performance of
a single model. This stems from the idea that in statistics, combined measurements can lead to
more reliable estimations, because the influence of outliers and random fluctuations in the single
measurements is reduced. Ideally, ensembles are performed on systems with a large and diverse
configuration space [6], with every model having a different set of hyperparameters in order to learn
different features from the same training set [17].

Guilherme Perin conducted a study on ensemble learning in side-channel analysis and obtained
promising results [17]. In this study, ensembles created with the bagging method produced more
stable results for differing training set sizes, and tend to have a success rate that is at least as good
as the best single model, as can be seen in Figures [6] and [7]

Although the use of ensembles relaxes the need to carefully select hyperparameters, it cannot
replace hyperparameter search methods. Perin recommended that future works also look into the
boosting and stacking methods to create ensembles.
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Figure 6: Perin’s succes rates when averaging ensembles on the ASCAD database of masked
AES traces. These experimental results are of the ensemble of 10 single homogeneous models.
We can observe that often, the ensembles perform equally or better than the best single
model. From [I7].
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Figure 7: Perin’s succes rates when averaging ensembles on the ASCAD database of masked
AES traces. These experimental results are of the ensemble of 10 single heterogeneous
models. Although the ensemble from all models performs poorly compared to the best single
model, an ensemble constructed from the three best models performs equally or better than

the best single model. From [17].
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6 Discussion

One might wonder about the ethics of conducting research into simplification of the design process of
malicious attacks. However, if the scientific community is not aware of how an attack is constructed,
it becomes impossible to design appropriate countermeasures. We acknowledge the risks this type
of research brings, but we encourage researchers to use this information responsibly.

The design of the used network architecture has a great influence on the performance of a
deep learning-based side-channel attack. However, there is a surprising lack of information and
documentation on which architectures are most appropriate for the side-channel analysis problem,
and the reasoning behind this. This problem is not only present in side-channel analysis, but it
is a reoccurring theme within the scientific community. Therefore we recommend authors in both
side-channel analysis and other fields to take the time to document and clarify their architectural
decisions. This will help researchers working on new works that are based on these studies decide
which settings to use, and will create a better overall understanding of the influences these decisions
have on the resulting models.

The hyperparameter search problem is a significant problem in deciding how to configure a
deep neural network architecture. We emphasized the importance of doing research into automated
hyperparameter optimization, as this removes the need to uncover the effects that each hyperpa-
rameter has on model performance. For this reason, automated hyperparameter configuration will
also positively affect researchers who are interesting in using certain deep neural network algo-
rithms, but do not have the extensive knowledge required to select appropriate hyperparameters
for optimal model performance. This is especially useful in the field of side-channel analysis, as
this field requires a combined effort of software and hardware experts to construct attacks and
countermeasures. In this study, we discussed various techniques for automated hyperparameter
optimization, and when the information was available, showed how they perform in a side-channel
analysis context.

One of the discussed techniques is learning curve extrapolation. The hyperparameter config-
uration on a certain algorithm is tested before the training process has completed, after which a
decision is made on whether to terminate training or not. This saves time compared to completing
the training process and only evaluating then. To mimic the human capability of quickly determin-
ing whether a model is going to perform well or not with a certain hyperparameter configuration, an
predictive termination algorithm may be used [4]. Since knowledge is still limited about which ar-
chitecture configurations are most appropriate for the side-channel analysis problem [21], this makes
it possible to quickly test and gauge the quality many configurations. Therefore we recommend
future work in the side-channel analysis field to look into these techniques.

We also discussed Bayesian optimization, an iterative algorithm that uses a probabilistic model
together with an acquisition function to decide which hyperparameter configurations to evaluate
next. It comes with its own set of challenges to maximize the optimization performance, which
makes it difficult for non-experts to utilize the potential of this method. To the best of our knowl-
edge, no data has been documented on the performance of Bayesian optimization in a side-channel
analysis context. However, we think it is a very promising method, as results show that the method
performs well in deep neural network tuning for image classification, speech recognition, and neural
language modeling. These fields all deal with wildly different datatypes, and therefore we think that
it is worth it to spend effort into finding out if Bayesian optimization performs well in side-channel
analysis too.

If this is the case, we recommend looking into Freeze-Thaw Bayesian optimization as well. It is
an interesting method because it is able to dynamically stop and restart experiments, reducing the
amount of operations that need to be performed, which is beneficial in cases where computationally
expensive algorithms are used. If Bayesian optimization performs well in side-channel analysis, we
definitely recommend exploring Freeze-Thaw Bayesian optimization as well.

When multiple different deep learning models with the same purpose exist, transfer learning
might be interesting to look into. In transfer learning, trained models are used as starting points
for models with similar functions. We think that using these techniques in a side-channel analysis
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context is interesting, as there exists a number of trained machine learning models in this field
already. We found one study that tried a type of transfer learning in side-channel analysis, ensemble
learning, a type of transfer learning that combines multiple configurations into one. They perform
better on average. This is based on the idea that in statistics, combined measurements can lead to
more reliable estimations, because the influence of outliers and random fluctuations in the single
measurements is reduced. These techniques are also interesting because they allow researchers to
build upon already established knowledge, possibly discovering patterns in hyperparameter values
when multiple models are combined into one. The Bagging ensembling method has already been
tried in side-channel analysis, and produced promising results [I7]. The author recommended future
work to also try the Boosting and Stacking methods. Based on these results, we agree that it is
interesting to also try the Boosting and Stacking methods in future works.

7 Conclusions

Although the performance of a deep learning-based side-channel attack stands or falls with the
quality of its neural network, there is a lack of documentation on how to create a qualitative
model. Appropriate hyperparameter selection contributes to good performance. For this reason we
recommend researchers to include the reasoning and methods behind their hyperparameter selection
in their works. When this becomes standard in the field, it will be easier to build upon each other’s
works, as it will be known which methods and techniques work well in the field, and which ones
don’t.

In this literature review we discussed several techniques that are worth looking into when we
consider the side-channel analysis problem. One of the discussed techniques is learning curve
extrapolation. Methods like early termination make it possible to quickly test and gauge many
hyperparameter configurations, which is beneficial since knowledge is still limited about which
architecture configurations are most appropriate for applying to side-channel analysis.

Bayesian optimization performs well in deep neural network tuning for image classification,
speech recognition, and neural language modeling. Because it has been so widely applied, it is
interesting to apply this to side-channel analysis too. Unfortunately, it comes with its own set of
challenges, making it difficult for non-experts to utilize the potential of this method. We consider
it beneficial to keep looking into Bayesian optimization and try to find a relationship between
good optimization performance and the effect its hyperparameters has on the resulting side-channel
analysis model. For future work we recommend to explore this technique in the field of side-channel
analysis.

The transfer learning technique uses already established models to create new ones. Ensemble
learning is a type of transfer learning that combines multiple configurations into one. The Bagging
ensembling method has already been tried in side-channel analysis, and produced promising results
[I7]. It will be interesting to see if this is also the case with the Boosting and Stacking methods.

During the literature study we encountered many other hyperparameter optimization tech-
niques, such as Bayesian Optimization Hyperband (BOHB) [25] [5] [I], Bayesian and multi-armed
bandit optimization [19], Gradient based optimization through Reversible Learning [11], Multi-node
Evolutionary Neural Networks for Deep Learning (MENNDL) [24], Nelder-Mead [16] and HORD
[7]. While the time constraints on our work prevented us from exploring all these different options,
we would like to mention that these works exist and are worth investigating in the future.
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