
1

Agile software development and IT-
architecture interactions in the public

sector

A multi-case study approach to identify whether these roles
are complementary or counterproductive.

Master thesis submitted to Delft University of Technology

in partial fulfilment of the requirements for the degree of

 MASTER OF SCIENCE

in Complex Systems Engineering & Management

Faculty of Technology, Policy and Management

by

Constantijn van der Vliet

Student number: 4468767

To be defended in public on 07-07-2022

Graduation committee

Chairperson : Prof.dr.ir. M.F.W.H.A. Janssen, Section ICT

First Supervisor : Prof.dr.ir. M.F.W.H.A. Janssen, Section ICT

Second Supervisor : Dr. H.G. van der Voort, Organisation & Governance

External Supervisor : Drs. W.G.P. Heijnen, Digital Enablement KPMG

2

Preface
I managed to gather very interesting case studies by I speaking to some very interesting individuals and
was able to compare different perspectives on software development due to that. Consequently, I would
like to thank my supervisors and colleagues for their sharing their insights and opening doors to these
people. I would like to thank all interviewees for participating and hope you will find use in this thesis
in current and future software development processes. Finally, I would like to express my thanks for the
support from family and friends.

3

Summary

The interaction between two software roles was investigated in the public sector: Agile software
development and IT-architecture. The objectives of this study were to explore and define a typology of
interaction models, provide a description of how these models are affected by various context factors,
provide descriptions of complementary added value and problems, as well as a set and explanation of
general governance strategies that can help to obtain complementary added value from agile software
development and software architecture. Another objective was to provide practitioners with a new
perspective on the relevance of other roles in software development and to use this new perspective in
software development processes to obtain higher quality software while using less resources. Finding
governance strategies that obtain complementary1 added value from architecture-agility interactions
could help organisations to improve the quality of their software products and to prevent negative
societal consequences of quality issues in public sector software. Second, it could also help to reduce
software development and maintenance costs. Moreover, timely delivery of quality software could
enable an organisation to execute its business2 processes faster and cheaper.
 In a software development process issues can arise with scope, resources and time. Either
resources and time are overrun or the product that has been developed does not meet the scope, meaning
the requirements of the client and end-users are not met. Issues often arose from a gap in understanding
between client, end-users and developers, but also from integration of the components later in a plan-
driven waterfall development approach. To cope with unsatisfactory results upon delivery to the client,
but also with integration phase issues and the pressure big deadlines in high uncertainty environments
the agile methodology was designed. The agile methodology reckons with the plan-based, phase gated3
waterfall approach and introduces a short-cyclical iterative approach. Developers work in sprints, slice
and timebox work expressed in user stories that have been refined, involve all relevant stakeholders,
prioritise these stories only a couple of sprints ahead, do a retrospective at the end of the sprint and daily
stand-ups to identify issues early and re-evaluate the sprint planning. As software that could be put into
production is delivered at the end of each sprint, this approach creates a predictable ‘heartbeat’ for the
client and allows developer and the customer to decide together what is most important and which work
should be committed to by the development team. Reducing issues that arise if business commits without
involving IT and providing relevant stakeholders with the opportunity to pose their criticism to what has
been built at the end of each sprint instead of at phase gates only.
 Still, not everyone is convinced that the agile methodology is ‘the way’ to develop software.
Critics state that oversight can be lost, inconsiderate attention is given to issues which are not directly
visible, and that this methodology is prone to losing long-term perspective. In order to reduce risk, big
upfront development is used to identify and plan for these risks. This latter role is filled by IT-architects,
which have an advisory role to design and safeguard the current and future business and IT landscape.
They do so by setting constraints for developers, focusing on quality attributes rather than new
functionality, making plans, designs and communicating those with all relevant stakeholders. In theory,
this creates misalignment or even conflict between the roles of architects and software developers, but
could they also foster co-creation from with the organisation can gain added value? How can managers
and leaders organise their organisation in such a way that both the long-term and short-term perspectives
are considered?
 In order to answer these questions multiple organisations have been investigated through a
multi-case study approach. Ten practitioners from six organisations have been interviewed to reflect on
a specific software development process in the public sector. Two practitioners from the private sector
were added as a validation case study. Interviews lasted 1,5-2 hours each and were transcribed by hand

1 The sum of the parts is greater than the sum of individual parts alone.
2 Business as in core business, so this term can also be used in a government context. For example, a business
process of a municipality could be to provide citizens with a new passport.
3 Start with a planning phase, then move on to the development phase, then testing and integration phase etc.

4

due to the sensitivity of the contents. Where possible one role from a software development perspective
and one role from an architectural perspective has been interviewed. Which resulted in interviews with:

• 2 development team leaders/solution architects4,
• 2 back-end developers,
• 3 enterprise architects,
• 1 domain architect,
• 1 Scrum master/functional designer,
• 1 product owner,
• 1 senior product manager, and
• 1 domain lead.

These perspectives were bundled together in case studies in order to identify similarities and
differences in statements from practitioners. Analysis has been done by colour coding transcripts and
organising statements into tabular displays. Then the case studies were analysed cross-case to identify
differences and similarities between interaction models and governance strategies in order to distil good
and bad practices.
 The importance of communication and knowledge as context factors of the interaction from
literature have been validated. Trust, stability and perceptions of both role were found to influence the
case studies as well across several case studies. Trust, stability and perceptions of both roles were new
contributions to literature. The influence of uncertainty and risk as context factors to determine a balance
point for agile-architecture interactions by Waterman (2018a & 2018b) has been validated. Risk and
uncertainty played a role on three different aspects: 1) Requirements, 2) Technology and 3) Staffing.
All context factors were able to influence the interaction of IT-architecture and agile software
development in both positive and negative ways. Based on the influences of the context factors that
were identified and the differences and similarities of balanced exchange interaction models, a first
iteration of a typology has been expanded. The balanced exchange interaction model has been split up
into four new exchange interaction models, resulting in a total of six possible interaction models:

1) It-Architecture dominant interaction model;
2) The carry over or ping-pong model;
3) The louse in pelt model;
4) The solution architect as cooperating foreman;
5) The co-development model; and
6) Agile dominant interaction model.

Contributing to academic literature and practitioners knowledge with two very extreme ends and
four reference points for balanced exchange models. Tensions and bottlenecks that have been identified
in case studies can shed a light on what problems were found in the interaction models that organisations
used. This information adds to academic literature, as it gives substance to the typology. This
information could be used by practitioners to identify the associated tensions and bottlenecks for their
own interaction model. Recurring bottlenecks across interaction models were:

• Hiring of staffing with the right knowledge.
• Scalability of agile dominant exchange models, coordination issues arose on larger scales.
• Lack of formalisation or recognition of roles.

Reoccurring tensions across interaction models were:

• Short- versus long-term perspectives in combination models.

4 Double role

5

• The IT-architecture should enable agile software development.
• Agile and the government context.

It was found that every interaction model provided added value, except for the IT-architecture
dominant model. For this model added value was not discussed by participants. The main
complementary added value of the combination was the ability to balance up-front design with the agile
process to address roadblocks or issues. The agile-architecture interactions complementary was found
in alleviating the problems that occurred when IT-architects and agile developers worked side-by-side
and did not communicate effectively. Which led to either problems with sustainability of the solution,
as quality attributes were not addressed or to problems with functionality, as the wrong thing had been
built, since it has never been shown to an end-user. Governance strategies could be used to obtain
complementary added value in agile-architecture software interactions by:

• Coping with coordination issues in scaling;
• Moving away from directionally composed IT-architectures towards iterative IT-architectures;
• Addressing agile in a government context;
• Coping with a lack of resources or knowledge;
• Addressing the importance of formalisation and recognition;
• Coping with the product owner role;
• Balancing up-front and agile architecture; and
• Coping with risk and uncertainty.

Practitioners need to invest in training of both roles in the processes and ideas of the roles they interact
with. This would help both roles to understand each other better and to alleviate tension. This could help
them to become more mature in both IT-architecture and agile software development as an organisation.
Since there is scarcity in knowledgeable IT-resources, especially for solution architects, there is an
opportunity for the government to fill this gap by investing in good IT education. Future research is
needed to see whether the typology holds in different types of organisations and to identify whether the
governance strategies can be replicated.

6

Contents
Preface ... 2

Summary ... 3

1. Introduction ... 9

1.1. Research problem .. 9

1.2. Research objective ... 10

1.3. Suitability for Complex Systems Engineering & Management programme 11

1.4. Structure of thesis .. 11

2. Background ... 12

2.1 Definition of core concepts ... 12

2.1.1 Agile and agility ... 12

2.1.2 Software and Enterprise architecture .. 14

2.1.3 Theoretical framework for governance and governance strategies 17

2.2 Literature review methodology ... 20

2.3 Literature review ... 22

2.3.1 Review articles ... 24

2.3.2 Agile practices that can help IT-architects ... 25

2.3.3 IT-architecture practices that can help agile developers... 26

2.3.4. Improvements to methodologies ... 27

2.4 Knowledge gaps & Research question .. 29

3. Materials and Methods .. 30

3.1. Research approach and data collection .. 30

3.2. Sub questions and approach per sub question ... 31

3.3. Data collection and processing .. 31

3.3.1. Limitations of data collection methods ... 32

3.3.2. Benefits of data collection methods .. 33

3.4. Data analysis methods ... 33

3.4.1. Analysis of within-case data .. 34

3.4.2. Searching for cross-case patterns .. 35

3.4.3. Shaping Hypotheses .. 35

3.5. Definition of a case study, selection criteria.. 36

3.5.1. Case study definition ... 36

3.5.2. Case study selection criteria .. 37

3.6. Strengths and weaknesses of research approach, data collection and analysis 39

3.6.1. Strengths .. 39

3.6.2. Weaknesses ... 40

4. Agile-architecture interactions according to grey and academic literature: a basic typology 41

7

4.2. What do frameworks prescribe? .. 43

4.3. An initial theoretical framework devised of three conceptual interaction models 44

4.4. Conclusion of chapter 4 ... 46

5. Empirical IT-architecture and agile software development interactions 47

5.1. Case study selection and characteristics .. 47

5.2. Selection of interviewees ... 50

5.3. Classifying the interaction model of each case study .. 51

5.3.1. Architecture dominant case studies ... 51

5.3.2. Agile dominant case studies .. 54

5.3.3. Balanced exchange model case studies ... 55

5.4. Conclusion of chapter 5 ... 57

6. The influence of context factors on empirical interaction models: an extended typology 58

6.1. Communication, trust, stability, knowledge and perceptions .. 58

6.2. Uncertainty and risk .. 59

6.3. Improving the typology ... 60

6.3.1. The carry over or ping-pong model ... 60

6.3.2. The louse in pelt model ... 61

6.3.3. The solution architect as cooperating foreman .. 61

6.3.4. The co-development model ... 62

6.4. Classifying case studies in the new typology .. 63

6.5. Conclusion of chapter 6 ... 66

7. Problems in empirical interaction models ... 67

7.1. Bottlenecks and tensions ... 67

7.1.1. Agile dominant .. 67

7.1.2. Ping-pong or carry over ... 67

7.1.3. Louse in pelt .. 68

7.1.4. Solution architect as cooperative foreman ... 70

7.1.5. Co-development .. 71

7.1.6. IT-architecture dominant ... 71

7.2. Reinforcing or balancing? ... 71

7.3. Conclusion of chapter 7 ... 71

8. Added value in empirical interaction models .. 73

8.1. Added value found in each interaction model. .. 73

8.2. Comparison across cases ... 74

8.3. Added value with complementary interactions ... 75

8.4. Conclusion of chapter 8 ... 76

9. Governance strategies and how they help to obtain complementary added value in empirical
interactions .. 77

8

9.1. Coping with coordination issues in scaling ... 77

9.2. Moving away from directionally composed architecture towards iterative architecture....... 77

9.3. Addressing agile in a government context .. 78

9.4. Coping with a lack of resources or knowledge.. 79

9.5. Addressing the importance of formalisation and recognition of roles 80

9.6. Coping with the product owner role .. 81

9.7. Balancing up-front and agile architecture ... 82

9.8. Coping with risk and uncertainty .. 82

9.9. Conclusion of chapter 9 ... 82

10. Conclusion and reflection .. 83

10.1. Main findings .. 83

10.1.1. Generalisability of results .. 83

10.2. Limitations ... 84

10.2.1. Multi-case study approach ... 84

10.2.2. Influence of perspectives ... 85

10.3. Research contributions .. 85

10.3.1. Scientific implications ... 85

10.3.2. Practical implications .. 86

10.4. Recommendations for future research ... 87

Literature ... 89

Glossary ... 92

Appendix A – Quality assessment of papers ... 93

Appendix B – Case study protocol .. 96

B.1 Case study procedures .. 96

B.2 Case study Instruments ... 102

B.2.1. Informed consent form .. 102

B.2.2 Interview questions .. 104

Appendix C – Case study report 0 ... 106

Appendix D – Case study report 1 .. 111

Appendix E – Case study report 2 ... 119

Appendix F – Case study report 3 ... 130

Appendix G – Case study report 4 .. 140

Appendix H – Case study report 5 .. 148

Appendix I – Case study report 6 .. 160

9

1. Introduction
1.1. Research problem

A study from 2012 by the University of Oxford and McKinsey stated that 66% of large software projects
overrun costs, 33% experiences schedule overruns and in 17% benefits fall short of expectations (Bloch
et al., 2012). A crucial element to deliver expected value was found to be effective teams and alignment
of their incentives with overall goals of the project.
 This research addresses the alignment of two different roles in software development that are
often combined in software development projects: Agile developers and IT-architects. “Agile
developers are building before the outcome of the product is fully understood, adjust plans and designs
as empirical knowledge is gained while building, trust the judgement of those closest to the problem and
encourage continuous collaboration with the customers” (Madison, 2010, p. 1). While IT-architects
create design patterns, enhance quality attributes,5 establish a technology stack6 and communicate with
all stakeholders (Madison, 2010). IT-architects use up-front planning and design to establish functional
and non-functional requirements to create a sustainable IT-landscape that matches with the business7
landscape and desired performance (in terms of security, scalability, interoperability etc.) (Bellomo et
al., 2015; Madison, 2010; Waterman, 2018a, 2018b; Woods, 2015). In contrast, agile software
developers use short iterations in consultation with the product owner8 and end-users to respond to
changes, capture feedback early and to create business value early in the development process. (Beck et
al., 2001a). The latter approach tends to bias allocation of development time and resources to functional
requirements, as these directly add value to the customer in terms of new or improved functionality
(Waterman, 2018a). Consequently, agile software development can result in problems like extra
development time and costs later in the design process, for example with security, maintainability, or
interoperability, as these quality attributes receive less attention than functional requirements that deliver
visible business value (Bellomo et al., 2015; Madison, 2010). Up-front architecting can reduce the
adaptability of the design, incur extra costs by having to change designs once customer requirements
are better understood and incur costs due to redundant work which will not be featured in the end-
product (Waterman, 2018a; Yang et al., 2016). In short, architecture specialists tend to live in a more
rigid, ‘paper-world,’ while agile software development is aimed at adaptability to deal with the
unruliness of practical implementation (Pers. Comm., Janssen, 2021). Both practices approach a similar
goal with best intentions, but in opposite ways which can result in clashes, as it is easy for both sides of
experts to blame the issues on the opposite party. Hence a shared understanding on issues in the software
development process is not evident, but identified problems hint at a need for cooperation and balance
of these long- and short-term perspectives. Researchers have already identified that successful
interaction, or even combination, of both roles does not reside in theoretical issues, but in practical
matters of adoption (Falessi et al., 2010; Poort, 2014; Woods, 2015). Thus, while the principles and
values of both roles and their practices can be interpreted as clashing, it would be interesting to identify
how they could be complementary in practice through an empirical study.

5 Often referred to as non-functional requirements.
6 Collection of programming languages, frameworks, database, front- and back-end tools, API’s etc. that form
the combination of technologies that an organisation uses to build and run applications.
7 The organisational processes that create revenue in the private sector or the public service provision in the
public sector.
8 Often the client or appointed by the client.

10

1.2. Research objective
The objectives of this study are to explore and define a typology of interaction models, provide a
description of how these models are affected by various context factors, provide descriptions of
complementary added value and problems, as well as a set and explanation of general governance
strategies that can help to obtain complementary added value from agile software development and
software architecture. Consequently, the aim of the research is to provide results that create a new
perspectives on the roles of IT-architecture and agile software developers in software development that
future research can expand upon.
 Another objective is to provide practitioners with a new perspective on the relevance of other
roles in software development and to use this new perspective in software development processes to
obtain higher quality software while using less resources. Finding governance strategies that obtain
complementary9 added value from architecture-agility interactions can help organisations to improve
the quality of their software products and to prevent negative societal consequences of quality issues in
public sector software. Second, it could also help to reduce software development and maintenance
costs. Moreover, timely delivery of quality software could enable an organisation to execute its
business10 processes faster and cheaper.
 Complementarity is an important concept to understand the objective of this research, as it
means that a combination of multiple things leads to an added value that is greater than the sum of the
individual things alone. For example, for many the combination of red wine and a steak is better enjoyed
in combination than the enjoyment of individual red wine and a piece of red meat summed up. This
phenomenon could also work in a negative way, by making things worse in combination than they would
have been individually, for example white wine and a piece of red meat in combination would provide
less joy to many, as it reduces the enjoyment of both the wine and the meat, while individually they
would have been more enjoyable. This is called counterproductivity in this thesis. Thus,
complementarity is important as this allows practitioners to reap benefits from the combination or
interactions that are greater than the benefits of side-by-side implementations agile software
development or IT-architecture. Consequently, the identification of complementary added value would
imply that the added value for practitioners can only be obtained by practising agile software
development and IT-architecture in a combination.

9 The sum of the parts is greater than the sum of individual parts alone.
10 Business as in core business, so this term can also be used in a government context. For example, a business
process of a municipality could be to provide citizens with a new passport.

11

1.3. Suitability for Complex Systems Engineering & Management programme
This thesis is part of obtaining a degree in the CoSEM master programme. The CoSEM master
programme focusses on the complexity of engineering in socio-technical systems. Software is a clear
example of a socio-technical system, as it is a technical system that is built to support or automate human
processes. These processes are often public service provision in the public sector. Consequently, how
these technical systems are designed, build and implemented have an effect on human lives and society
at large, especially in the public domain (ANP & Doorenbosch, 2019; Parlementaire
ondervragingscommissie Kinderopvangtoeslag, 2020, pp. 7-9 & 13-15).
 While an answer to how these distinct roles could be complementary is deceivingly
straightforward, determining how architecture and agility lead to added value or problems that affect an
organisation is complex in itself, without complementarity (Falessi et al., 2010; Poort, 2014; Woods,
2015). The object of study is the design and engineering processes of software development, there are
different perspectives on how to approach these processes. These perspectives can cause people in one
role to seek or avoid interaction with the other role. The research focusses on the governance of social
interactions, or process management, of engineering approaches for software technology and goes a step
further by identifying whether these interactions are of a complementary nature. Identifying this
complementary nature of social practices around a technical engineering approach with a large societal
impact seamlessly fit in the CoSEM programme.
 Moreover, software development processes in the public sector involves a myriad of
stakeholders from different organisations and with both distinct and overlapping roles and
responsibilities which affect software development processes. To further add to complexity, each
organisation will have assigned and defined roles and responsibilities differently. The same could be
said on what agile software development is and how it is employed in an organisation, or how to define
the role of any type of IT-architect11 and what their tasks and responsibilities are in an organisation.
Identification and analysis of these problems requires a systemic and creative approach, in this case a
multi-case study approach, to assess the impact interaction in these technical software development
processes on the organisations that are studied. Thus, the societal impact, the socio-technical nature,
myriad of stakeholders and perspectives involved and additional complexity added by complementary
outcomes make this research a suitable graduation thesis subject for the Complex Systems Engineering
and Management master programme.

1.4. Structure of thesis
Section 2 will provide knowledge gaps, a main research question and sub-questions by means of a
literature review. Section 3 will discuss the research approach and methods, followed by, explanation
on which data needs to be collected and tools used to conduct the research. Section 4 will present how
agile-architecture interactions work according to academic and grey literature. Section 5 will discuss
how the case studies and interviewees were selected and classify the case studies on a basic typology.
Section 6 will discuss how the case studies were influenced by context factors, devise an extension to
the basic typology and reclassify the case studies using this extended typology. Section 7 will describe
how interaction models of the extended typology were affected by bottleneck and tensions. Section 8
does the same for added value. Section 9 will discuss governance strategies that help to obtain
complementary added value. Section 10 will conclude these findings and discuss the limitations, as well
as scientific and practical implications of the study. This section will also provide recommendations for
further research.

11 There are multiple types of architects, some examples: chain, enterprise, domain, technical, business,
application, cloud, data, solution, system and software architect.

12

2. Background
In this section core concepts are defined, and the main findings of a literature review are discussed.
Moreover, multiple research gaps will be analysed in order to define a research question.

2.1 Definition of core concepts
2.1.1 Agile and agility
According to Cao et al. (2009) agile is an iterative software development process that uses frequent
consultation with the customer, small and frequent releases, and rigorously tested code. According to
them it is often implemented by organisations in order to become more competitive, improve processes
and reduce costs. It can therefore be stated that agile development is focused on achieving agility, which
is the ability to adapt to changes quickly (Gong, 2012). Agile is a more lightweight methodology
compared to traditional software development methods, such as waterfall, the V-model and RUP, which
are more plan-based sets of sequential steps like requirements elicitation, solution design, solution
development, testing and deployment12 (Loo et al., 2012). Thus, traditional methodologies require a
stable and documented set of requirements as based on this the architectural designs are made, software
is built and tested. Requiring large rework phases if requirements change or new requirements become
apparent after the requirements elicitation process in traditional methods. However, it does allow to
determine costs, schedule and allocate resources accordingly. Figure 1 shows how in agile, the agile
software development lifecycle is repeated iteratively to build a software product in small steps and
cumulatively build value through iterations of the software development lifecycle as opposed the
waterfall model with a large outcome at the end (Harris, 2021). The waterfall model is used is this
example, but the idea is the same with other traditional models such as the V-model: big value delivery
at the end versus cumulative value delivery through iterations.

Figure 1: Waterfall vs Agile from Harris (2021).

12 Different models use different steps and sequences of those steps.

13

The role of an agile software developer is to create a software product through code and to
communicate with the customer (end-user) and product owner on how they perceive the code-based
product through short-cyclical iterations. The product owner is (a representative of) the client who is
responsible for the outcome of the software development process. The product owner is the primary
contact for stakeholders, such as end-users. Agile is used to improve the communication between the
product owner, end-users, and the developers of software, as information asymmetry can be very large
between the (non-technical) product owner and software development team. For example, product
owners often have difficulty in explaining requirements, especially before the development process has
started. Likewise, it can be difficult to explain software related capabilities and constraints to product
owners. Consequently, this creates uncertainty in what the client wants and how the clients' needs should
be addressed resulting in changes to requirements and new requirements that become apparent after the
requirement elicitation process. Agile development is a way of coping with this uncertainty in the
realisation of software solutions by going through the software development lifecycle for a piece of the
software and presenting this to relevant stakeholders. Allowing to capture feedback earlier in the
development process.
 The agile manifesto presents four values that underline the agile working practices (Beck et al.,
2001a, p.1)13:

1) “Software that works over comprehensive documentation,
2) Customer collaboration over contract negotiation,
3) Individuals and interactions over processes and tools,
4) Response to change over following a plan.”

These values and principles are currently put into practice in various ways. For example, by
collaborating with customers to create user stories, which are semi-structured ways of phrasing
(functional) requirements in an informal, descriptive way from the perception of the customer. This
helps to address the communication gap between developers and customers. User stories are refined
with relevant stakeholders to ensure that developers have enough information to time box and implement
them correctly. A Definition of Ready (DoR) can be used to define when a user story is ready. These
user stories are then time boxed by the team to estimate how much work the implementation of this user
story is and put on the backlog. The backlog makes transparent which user stories still must be done,
similarly, there is an overview of which stories are under development, review, being tested and which
stories are finished. Sprints are used to deliver a potentially shippable product increment, usually in a
short and set time. This sprint increment could be an improvement or change to a piece of running
software, as well as wholly new release. During sprint planning events user stories are prioritised by the
product owner (PO) and development team. Since the user stories are time boxed and the amount of
time the developers have available in the next sprint is known, the work can be committed to and planned
by the developers. This means that the deliverable at the end of a sprint is a piece of software that is
coded, tested, integrated and usable at the end of the sprint to deliver business value.14 This deliverable
is often called a MVP, minimum viable product, as this is the minimum product is needed to attract early
end-users and capture feedback on the product early in the development life cycle. This deliverable is
assessed based on a Definition of Done (DoD). Since work is time-boxed and available time and
resources are known, work can be prioritised through the backlog. Thus, the scope of the project is
flexible and the team is more able to cope with new or changing requirements.

13 These values have been applied in several frameworks such as LeSS, SAFe, Scrum and Spotify.

14 I.e. increased process efficiency, full process automation, enabling a new business process.

14

Scrum is a framework to encourage the self-organisation of agile development teams and
describes how to perform the previously described processes and others. It uses a backlog and sprint
planning’s to divide work into sizable chunks and prioritise this work for small development teams on
a small scale.15 Other frameworks, all with a distinct flavour or context in which they are useful are
Spotify, LeSS and SAFe. These frameworks are based on Scrum but focus integration of agile on a
larger part of the organisation and scaling of agile teams for example. These frameworks create a shared
understanding and language as well as governance strategies that define roles, tasks, responsibilities,
monitoring and control elements in the organisation and software development process. Agile fanatics
criticise the idea of steering or managing through processes, documentation and planning in agile
software development based on the values of the agile manifesto, as agile can be seen as bottom-up
approach to software development, driven by decentralised, multi-disciplinary and self-organising
teams.
 According to Gong (2012) agility includes the ability to respond to unpredictable changes and
the ability to rapidly reconfigure to a new parameter set from an operations management perspective. A
way of implementing Business Process Management (BPM) is IT-architecture. From a BPM
perspective, agility can be expressed as flexibility and the amount of speed in modifying or reconfiguring
business processes. Flexibility can then be defined as the ability to respond to predictable changes based
on the existing configuration of parameters that were pre-established from an operations management
perspective. From a BPM perspective flexibility can be defined as the ability to deal with both
unforeseen and foreseen changes, maintaining effectiveness, and limiting the impact of changes (in other
parts).

2.1.2 Software and Enterprise architecture
There are various architecture roles in IT. According to The Open Group Architecture Framework
(TOGAF), the enterprise architect is a role that translates the enterprise16 vision and strategy into
requirements and principles. These could be business, information, application or hardware related and
for each of these elements of the enterprise separate architecture roles can exist. The requirements and
principles could also cut across various of these abstractions of organisational layers compartments.17
The enterprise architect then coordinates these other IT-architecture roles, such as business architects or
application architects, as it the responsibility of the enterprise architect to create a sustainable IT-
landscape that fits with the business landscape. Thus, the enterprise architect can be said to be closest to
the most recognisable governance processes and decisions from organisational management. The
enterprise architect does not define answers to how questions or what these requirements or principles
mean for the solution(s).18 Different IT-architecture roles do so, commonly referred to by the related
role, i.e. a software architect translates the work of the enterprise architect into a technical and
sustainable piece of software, which is then developed by engineers/developers. In another example, the
business architect/analyst will seek for alignment with the business processes and so on. All architecture
roles design an IT-architecture and document this IT-architecture, which can be done in various ways
from word-documents to wikis. Moreover, they design tests in order to assess whether the system is
built as it was designed. Thus, they define monitoring and control mechanisms, which is a form of
governance to ensure compliance to the IT-architecture designs. This design process is done up-front,
so before developers start developing and follows a traditional waterfall approach.

15 Up to 3-5 teams.
16 organisation
17 Often recognised in compartments, silos or layers such as in TOGAF.
18 A software application and it’s supporting processes and hardware are often referred to as a solution.

15

Similar added value to that of agile software development (among other types of added value)
is found for enterprise architecting in research by Gong and Janssen (2019). Enterprise architecture is
defined by Lankhorst (2009 , p. 3) as “a coherent whole of principles, methods and models that are used
in the design and realisation of an enterprise’s organisational structure, business processes,
information systems, and infrastructure.”19 This thus concerns enterprise-wide systems and can be
hardware and software related, which need to be aligned with business values. The enterprise architect
both looks at the current IT-architecture, while also gathering requirements for the future IT-architecture
of the organisation (Hanschke et al., 2015). Research by both Lankhorst (2009) and Gong & Janssen
(2019, p. 4;2020, p. 1) claim that enterprise architecture can help to achieve agility.
 Yang et al. (2016) did a systematic mapping study of Software Architecture (SA) and agile
software development. The definition of software architecture differs from the definition of enterprise
architecture: “the fundamental concepts or properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design and evolution” (ISO, 2011, as cited in Yang
et al., 2016, p.1). One can see here that the focus has shifted from the entire enterprise and business to a
single software system. However, the environment and relationships with this environment are
mentioned as well. Therefore, I argue that there is overlap between the two definitions, as a software
system is never really a standalone element and is part of or functioning in at least one enterprise
environment. The software architecture or information systems architecture20 builds on components of
the technology architecture (The Open Group, 2018). In turn business services run on the applications
from software architecture. All these (Enterprise) architecture components are influenced by
architectural governance.21 Moreover, two or more software systems (within the same layer) might need
to be able to interact as well (Bellomo et al., 2015). Thus, in this study I will treat both enterprise and
software architecture as IT-architecture practices, but with a different scope: the former on enterprise
system level, the latter on software system level. Thus, the designs of the software architect are more
granular and based on the less granular designs of the enterprise architect.
 IT-architecture is a more top-down approach to software development, where the enterprise
architects define the enterprise architecture, and other IT-architects have to fill in their own IT-
architecture in such a way that it adheres to the enterprise architecture. So software architecture is mainly
concerned with the interactions of the software system that is designed to the enterprise environment22,
which explains the emphasis of the software architecture role on non-functional requirements, design
principles, design decisions, components and documentation. Consequently, software architecture
involvement is most prominent after the requirements are well understood and designs of the software
architecture are needed in the waterfall software development lifecycle, as depicted in figure 2
(Mihaylov, 2015c & 2015d).

19 Note this is one of many definitions, as there are hundreds to be found.
20 Information systems architecture is what comes closest to software architecture in TOGAF.
21 Architectural realisation in TOGAF, consisting of: Implementation Governance, Opportunities, Solutions &
Migration planning.
22 Other elements in the information systems/application layer, but also elements in other layers, i.e. technology
and business layers.

16

Figure 2: Software architecture in traditional waterfall development (Mihaylov, 2015d)

A traditional software architect is usually is a person with strong technical knowledge and
experience, often a promoted developer (Mihaylov, 2015c). The traditional software architect usually
has four features:

1) Focus on the big picture, as there is a need to consider the current and future landscape.
2) Produces blueprints, documents and diagrams describing the software architecture from

different perspectives that enable developers to develop a system.
3) Not much hands-on experience, as they are rarely hands-on involved in the development

process and generally moves on to another project when the designs are finished,
leaving the developers with the designs.

4) Compliance-oriented, such as legislative norms, standards, licences etc.

Both enterprise and software architecture roles need strong communication skills to convey their
designs and to be successful in reaching agreement on requirements with various stakeholders. However,
it is said that architects fail to communicate in these regards, fail to see operational issues and stick to
their paper tigers instead of designing for reality. Both enterprise and software architects are involved
in constraint setting, for example a software architect could make a choice to use a specific programming
language for a software application. Likewise, an enterprise architect might make a decision to use a
(specific) package or decide which components will be used for software that is developed in-house.
Because of this, they can be seen as burdensome by both agile and traditional software development
teams.
 Interestingly, Madison (2010) has found that incremental use of enterprise architecture can help
to integrate software architecture and agile software development. IT-architects employ up-front design
and documentation to define architecture, principles, vision, requirements, components and standards.
These provide a frame and guidelines for the developers which determines priorities and possible
solutions. There are various frameworks23 for IT-architects to do so, for this research, the most
interesting are TOGAF and NORA. NORA is a reference architecture for the Dutch government and is
aimed at creating a shared understanding and language, defining core concepts (ICTU, 2021a).
Moreover, the NORA defines binding standards to assure interoperability and quality service provision

23 Note that currently, we are talking about IT-architecture frameworks that help to deliver frames for software
developers.

17

by government organisations and thus is used by many, if not all, government organisations (ICTU,
2022). TOGAF mainly concerns enterprise architecture, software architecture can be identified as part
of the application24 or information systems architecture (The Open Group, n.d., 2018,) within the
enterprise context.

2.1.3 Theoretical framework for governance and governance strategies
Governance is a concept that is hard to define due to the plurality of definitions in literature (Fukuyama,
2016). The term stems from political science, but has spread to almost every thinkable domain, including
software development. Since many scientific papers focus on employing a specific part (i.e., requirement
elicitation) or type of added value (i.e., security) of software development, a more general definition is
needed for this study.
 An example of such a more general definition is Software Development Governance (SDG) as
defined by Chulani et al. (2008, p.3) as: “Establishing chains of responsibility, authority and
communication to empower people within a software development organization” and “Establishing
measurement and control mechanisms to enable software developers, project managers and others
within a software development organization to carry out their roles and responsibilities.” They state
that the objective of software development governance is to make sure that the results of a software
organisations business processes meet the strategic requirements of the organisation.25 Chulani et al.
(2008) their definitions of software development governance can be operationalised using three
constructs governance, management structure and processes. These constructs are used as a theoretical
framework to structure statements by participants on governance.

Governance
The governance construct is aimed at steering and determines responsibilities, authority and tasks.
Governance determines management structure which entails who has ownership over what and who sets
priorities. This includes assignment of the time and resources that are spent on the development of the
software product under development. Moreover, governance affects communication through the
organisational structure, as it also includes who reports to who and how people report to each other (i.e.,
hierarchy or network structure), which is important, as poor governance or misalignment of reporting
lines can hamper the cooperation in a software development project through conflicting interests (Bloch
et al., 2012). Consequently, this can lead to increased costs, development time or reduced customer
satisfaction upon delivery of a software product. Thus, being able to identify and address these issues
can provide added value.
 To operationalise governance further, it is useful to identify that governance has influences on
various elements of the organisation. Organisational governance is focused on the whole enterprise, such
as who is responsible for which department. While operational governance affects the development
process of software directly, for example through a decision on which agile framework is used to assign
roles in software development. According to Chulani et al. (2008) software development governance
has 3 main concerns: 1) Managing value, aligning software and business on organisational and project
levels, balance risk and return and provide clarity and accountability; 2) Develop flexibility, leverage
global resources by enabling agile development choices and the use of iterative processes to reduce risk
and; 3) Control risk and change, continuously measure to reduce risk, enable lifecycle change
management and meet internal and external compliance needs. From this notion, it seems that these
authors are more on the agile side of the combination. Governance can steer an organisation to be more
suitable or dominant for either agile software development or software architecture (i.e., based on their
organisational priorities or authorities) (Waterman, 2018a). We will discuss the concepts of flexible
development, risk and change management later in the literature review, as they are identified by other

24 Modelling languages like ArchiMate and frameworks for architecture use layers to structure thinking about
and discussing architecture concepts, the application layer is the most associated to software development. These
layers are not ‘empirical realities’ but conceptual notions.
25 Or enterprise

18

authors as well (i.e., Waterman (2018a, 2018b)). Interestingly, the paper by Chulani et al. (2008)
identifies that defining an information architecture is important to develop flexibly as a software
development governance concern, confirming that the architecture-agility combination is a concern in
software development governance, as IT-architecture is needed to develop flexibility in software
development.
 All development organisations make decisions and have some form of governance, implicit or
explicit. Moreover, governance styles vary in different organisations, depending on the fundamental
goal of the organisation. While innovative software businesses working on cutting edge solutions might
want to be risk-seeking, very agile and only have a few holistic or light weight (governance) processes,
business where the software needs to meet high security or quality standards26 (i.e., hospitals,
municipalities etc.) employ more stringent processes (Chulani et al., 2008). Public organisations are
more likely to be the latter, as they often hold sensitive personal data and provide critical public
infrastructure services. Large organisations are typically more concerned with security, scalability and
interoperability as well, since they are more likely to attract regulatory attention. Therefore, large public
organisations require more governance to determine what is allowed and what is not to safeguard these
requirements.

Management structure
Managers make decisions about other individuals, such as hiring, firing and salary decisions. Managers
also make decisions about human (priorities, time, budget and staffing) and other resources like tools,
servers etc. Decision rights of managers are determined by a governance process. Similarly, other
individuals might have decision rights assigned to them in order to achieve a designated goal and are
monitored by managers. So, where governance assigns decision rights to roles in an organisation
(establishing a measurement and control strategy), management is concerned with actually making
decisions (execution of decision rights) or monitoring the decisions made by others. Management is also
held accountable for decision making and monitoring of others.

Processes
Managers use or implement processes that developers follow to get work done in order to achieve
results. Chulani et al. (2008, p.4) define a process as “A process is a naturally occurring or designed
sequence of operations or events that produces some outcome, possibly taking up time, space, expertise
or other resource. In addition, a business process has the rights for certain people to take actions and
arrive at decision points to advance the process to the next step. Processes may be characterized by
specifying their control points: artifact control point and lifecycle control point. Moving through these
control points requires a set of decisions (such as ‘phase complete?’) which again require associated
rights.” The control points in life cycle and artifact may or may not align. For example, the phase gates
in a project management approach are lifecycle control points, while artifact control points might be a
check whether certain specs or requirements have been implemented. The interactions between
governance, processes and management are summarised in Figure 3, this figure is from Chulani et al.
(2008, Figure 3, p.5). Be mindful that strategy in this picture concerns enterprise strategy and not
governance strategy. Enterprise strategy is presented as a driver for governance. Moreover,
communication is missing as this is discussed later, it is worth noting that communication can also be
formalised into a process, for example through a verbal progress update, reviews and refinement
sessions, presentations etc., but also through documents, such as policy notes, designs, code
documentation, or be computer/application mediated, by updating a backlog or Kanban board, updating
communication tools such as Slack, Jira, GitHub etc.

26 Often referred to as compliance requirements, non-functional requirements or quality attributes.

19

Figure 3: Governance, Management and Processes from Chulani et al. (2008, Figure 3)

Governance strategy
A strategy is a plan of action to achieve a long-term or overall aim. Thus, a governance strategy within
the scope of this research is a plan of action to achieve a governance related aim. For example, a
governance strategy can be the implementation of a new framework, determining new roles and
responsibilities within the development team. Or a change in governance policy that invokes changes in
management structure which changes who reports to who and what to report on, (mis)aligning the
priorities of the IT-architect with members of the development team. Within governance there is a
distinction between formal and informal governance. Where informal are unwritten rules, special
favours and reaching understanding outside of the formal system based on rules. Since this is hard to
identify, the focus will be on formal governance strategies, which are coded in a rules-based system,
governance, policy or process. It is important to note that governance can occur not only in recognised
management boards but also on more operational levels that also set out priorities, monitoring, control
measures and provide input for the context that management implements strategies on. So a decision on
whether to follow a specific framework or not is also a governance strategy if there is an overall aim or
long-term goal driving this (set of) decisions.

20

2.2 Literature review methodology
The methodology of Kable et al. (2012) was used to conduct the literature review. The purpose of this
literature review was to identify if there exists a relationship between architecture and agility.
Additionally, it was conducted to identify knowledge gaps, which can be used to formulate a research
question. With this purpose a literature search was carried out in Web of Science, according to Table 1.
Papers were selected using inclusion and exclusion criteria (Figure 4), the selection process is added for
transparency and reproducibility in Appendix A in Table 15.

Figure 4: Inclusion and exclusion criteria

Due to the very large number of hits for the first two search terms, the papers were filtered on
their type and journal type to reflect the inclusion and exclusion criteria: review article and journal
article; business, multidisciplinary and computer science related journals. Search by hand was then
performed on the papers that were indicated as highly cited by Web of Science. Search term three was
fully searched by hand. The papers that were selected by hand were then conducted to quality appraisal.
The quality assessment was done by reading the abstract of all remaining papers and scanning the text
and citations for keywords to identify whether the paper discussed a relationship between architecture
and agility. During this quality assessment the focus narrowed from enterprise architecture to software
architecture, as this was identified to be more relevant in combination with agile development and most
papers that were found discussed this combination. Replacing, “Enterprise” for “Software” in the most
important search term (3) yielded the same results, most likely because of the connection with AND
between search query 1 and 2, as search term 2 contains the word software. An overview of the selection
process is given in Figure 5.

21

Table 1: Search overview

Search query Database and hits # met
inclusion
criteria

Article ID in other tables

(TS=((“Architecture” OR “Enterprise architecture”
OR “architecting” OR ”*architecture” OR
”Enterprise?architecture”)) AND
TI=((“Architecture” OR “Enterprise architecture”
OR “architecting” OR ”*architecture” OR
”Enterprise?architecture”)))

Web of Science,

81,348

3,329 Not applicable, highly
cited papers were all
architectural designs
focused on a specific
application. I.e. for a new
technology.

(TS=((“Agility” OR “agile” OR “agile*” OR
“*agility” OR “agile?working” OR
“agile?software” OR “agile?development”)) AND
TI=((“Agility” OR “agile” OR “agile*” OR
“*agility” OR “agile?working” OR
“agile?software” OR “agile?development”)))

Web of Science, 13,352 937 4 papers selected from 9
highly cited papers, 5-8.

[search query 1] AND [search query 2] Web of Science, 32 10 11, 12, 14-18, 23-25

Figure 5: Literature selection process

22

2.3 Literature review
Table 3 provides an overview of the papers that were selected. It can be used as a shortcut to identify
which information came from which study and as a reference for how the study under review was
conducted. Table 3 can be found at the end of this section. The reviewed papers are classified into four
categories: review articles, agile practices that can help architects, architecture practices that can help
agile developers and improvements of methodologies for the combination. Table 2 shows the
distribution of papers under review for each category. Interesting to note is that three papers fall into
two categories, these are all papers that introduce or improve a method for the architecture-agility
combination. The papers will be discussed based on the classification in Table 2.

Table 2: Categorisation of themes addressed by papers

Authors Review of
architecture-

agility
combination

Agile practices
that can help IT-

architects

IT-architecture
practices that
can help agile

developers

New (step in) or
improvement of

approach for
architecture-

agility
combination

Waterman
(2018a)

 x x

(Waterman,
2018b)

 x

Alsahli et al.
(2016)

 x

Yang et al.
(2016)

x

Bellomo et al.
(2015)

x

Woods (2015) x
Poort (2014) x x
Falessi et al.

(2010)
 x

Madison (2010) x x
Gong (2012) x
Cumulative 3/10 4/10 2/10 4/10

Figure 6 shows the result of an analysis of the papers considered in the literature review. The
green circles on the left side of the figure represent papers included in the review, while blue circles on
the right represent papers not included, but similar to the reviewed papers. The analysis was performed
using the web-tool researchrabbit.ai. The tool showed that there is a large amount of similar work; 1047
papers. However, most of that predates 2010, which was one of the exclusion criteria. The analysis leads
to two conclusions: a) the literature review has a good coverage of the relevant literature of the past 10
years, 16 papers, mostly published around 2010 have not been found using Web of Science or were not
selected by hand and; b) research on the combination was peaking from 2000-2010 and receded after
this period, as only 10 papers were considered, which covered almost the whole literature that was
published in the last 10 years. This begs the question, why has research on the combination receded? As
explorative discussions with practitioners did not indicate that problems with the combination are
resolved.

23

Figure 6: Timeline of research on the combination

24

2.3.1 Review articles
A very extensive systematic mapping study for Software Architecture and agile software development
has been done by (Yang et al., 2016). It included 54 studies published between 2001 and 2014. The
study identified costs, benefits, lessons learned, challenges, approaches, tools and methods. One
important finding was that costs and challenges were discussed less in the articles under study.
Moreover, all costs were architecture related, which can shed light on why architecture practices are not
always seen as added value by agile developers.
 It was interesting that there was no recurring architecture approach that was used in the
combination. A lack of guidance on how to use practices from the combination has also been identified.
Specific tools to support the combination were also absent. The success factors that impact the
combination mentioned from high to low frequency were communication, architectural documentation,
team, software architect, architectural quality, project size, time, system quality, business and customer.
These findings can be interpreted as a lack of governance mechanisms for the architecture-agility
combination. Governance could steer on the success factors of the combination.
 Moreover, Yang et al. (2016) identified that architectural description, architectural evaluation
and architectural analysis are suitable for combination with agile development. Vice versa, the backlog,
Incremental Development, Scrum, “Just Enough Work”, Sprint, Agile architecting, Continuous
Integration and user stories from agile development can be combined with architecture practices.
Knowledge of, and action on, these touchpoints can be enhanced by governance.
 Unsurprisingly agile architecting is also discussed in Madison (2010), as this paper is also under
study in (Yang et al., 2016). The recurring mention of Agile Architecting and work by Falessi et al.
(2010) in other studies gives the impression that these ideas caught traction with practitioners and
researchers (Poort, 2014; Waterman, 2018a, 2018b; Woods, 2015; Yang et al., 2016).
 Another review paper is by Bellomo et al. (2015), their paper analyses which attributes are
identified as greatest concern to agile practitioners that used the Architecture Trade-off Analysis. Since
a specific method is used in all the studies under review, the results are less generalizable than those in
Yang et al. (2016). However, it does show that agile teams struggle with non-functional requirements
and that this a good interaction point for the agile-architecture combination, which is in line with the
findings of Madison (2010). Another interesting finding is a tension that other articles mentioned as
well, that of the short-term functional requirements, which in practice often compete with medium- and
long-term quality goals (the non-functional requirements, i.e., scalability, security etc.).
 Gong (2012) designed a reference architecture that is focused on agility and flexibility. In order
to do so, they defined the concepts of IT-architecture and agility as well as their relations. Moreover,
they created a method to measure agility and flexibility, using the surrogates operational performance,
time, cost and quality. Their surrogates could be used to identify added value and problems. Their
combination of literature review and case-study approach could be taken as an example for this research.
They also state that architecture governance is needed to address a long-term perspective of their
reference architecture. This statement underlines the importance of governance in the agility-
architecture combination.

25

2.3.2 Agile practices that can help IT-architects
Four studies under review help IT-architects to add value in agile development teams and/or
environments. Madison (2010) proposes Agile Architecting, a way of working where IT-architects
leverage four critical interaction points with agile development teams: Up-front planning, Storyboarding
and Backlogs, Sprint participation and Working Software delivery. He combines these interaction points
with four architectural skills that he finds most relevant: Decomposition into Sprintable Form, Advocacy
with the product owner, IT-architecture backlog and incremental enterprise architecting. Interestingly,
most of the advice focuses on involvement of the IT-architect in the agile development team(s) and
communication with the teams and product owner. Yang et al. (2016) identified communication, the
team and software architect, customer and business as important factors that impact the agility-
architecture combination. Thus, it can be concluded that the proposals by Madison (2010) are confirmed
by Yang et al. (2016) in this extent.
 Waterman (2018a & 2018b) were written like a diptych. The first part discussed a dilemma that
software architects face when operating in an agile environment: How much up-front architecture design
needs to be done (Waterman, 2018a). He pointed out that the balance point is determined by contextual
factors, such as the friendliness of the organisation for agile development as discussed in section 2.1.2.
He defines two dimensions of an agile architecture:

1) The (software) architecture has been designed using an agile process.
2) The (software) architecture is modifiable and tolerant of change.

In other words, the software architecture and the decisions that the software architecture is based
upon should not be static. The software architecture should be adaptable, able to evolve over time and
various iterations. This seems logical in a small business environment or a green field situation, however,
it is questionable if this is achievable brown field situations or in a large or regulated organisation with
more stringent architectural requirements. Still, Waterman proposes five tactics to design agile
architectures:

1) Keep designs simple: reduces the up-front effort, increases modifiability.
2) Prove the software architecture with code iteratively: reduces up-front effort, increases

modifiability.
3) Use good design practices: can increase up-front effort, increases modifiability.
4) Delay decision making: reduces up-front design effort, increases tolerance to change.
5) Plan for options: can increase up-front effort, increases tolerance to change.

In his second work Waterman (2018b) addressed how risk affects the amount of architecting
that developers must perform up-front. Architectural work up-front is a way to reduce this risk, however
it is context dependent how much up-front work is necessary to reduce risk and the underlying
uncertainties to manageable levels. High failure probabilities were identified by participants to be often
caused by complexity in terms of:

1) Scale, the number of things considered,
2) Diversity, the number of different things,
3) Connectivity, the number of relationships between things.

26

The research showed that reducing risk negatively impacts a team’s ability to design an agile
architecture. As the team needs to reduce risk, more up-front design is done and decisions are made
early. Therefore, tactics that aim to postpone decisions and keep designs simple are less effective. Thus
the balance point of up-front design of architecture is a balance between agility and risk. Teams need to
reduce the risk to a level that is satisfactory to the team and stakeholders. That amount will determine
the ability to design an agile architecture and in turn the ability to deal with unstable requirements. This
is interesting, as governance strategies can be used to identify and control risk (Chulani et al., 2008).
Moreover, governance and management are often determinant for the risk tolerance of an organisation.
However, Waterman does not discuss which roles and responsibilities are involved at various stages of
this agile architecture or which monitoring, and control systems could be used to identify, assess and
mitigate these risks.
 Poort (2014) identified five ideas to work effectively as an IT-architect in an agile environment.
Recurring elements from other studies were the architectural backlog, keep it small and just enough
anticipation (Madison, 2010; Waterman, 2018a; Woods, 2015; Yang et al., 2016). New was the idea
that decisions are the main deliverable of an architect, not documentation, and that economic impact
should determine the focus of the architect. This can be expressed in risk and costs, in line with the work
by Waterman (2018b) and Chulani et al, (2008).

2.3.3 IT-architecture practices that can help agile developers
Two studies (apart from the reviews) discussed architecture practices that can help agile developers.
Falessi et al. (2010) stated that the main problems in combining agile and architecture-centric models
are not theoretical but reside in practical matters of adoption. Unsurprisingly this has been found by
Yang et al. (2016) as well, as Falessi et al. (2010) was under study in Yang et al. (2016). Moreover, they
found a willingness of agile developers to use architectural design patterns for integration of
architectural practice into agile methods. This is interesting as it has been found that non-agile
developers overstated the contrasts between architectural and agile approaches.
 Woods (2015) proposed to link five responsibilities of an architect to the four values of the agile
manifesto. These five responsibilities are:

1) Focus on design work,
2) Meet the needs of a wide stakeholder community (beyond users and acquirers),
3) Address system wide concerns (often non-functional),
4) Balance competing concerns to find acceptable solutions to design problems, and
5) Provide the leadership required to ensure that the system’s architecture is well understood and

supports its successful implementation.

The proposals by Woods (2015) can be recognized in Yang et al. (2016) as well, even though
this study was not part of the systematic mapping study. For example, the importance of communication
for success is identified by both studies. Moreover, it underlines the importance of non-functional
requirements or system qualities in the agile-architecture combination identified in other studies under
review (Bellomo et al., 2015; Madison, 2010; Poort, 2014; Waterman, 2018a, 2018b).

27

2.3.4. Improvements to methodologies
The Twin-Peaks model aims to integrate requirements engineering27 and change management of
requirements28 with software architecture (Cleland-Huang et al., 2013). Alsahli et al. (2016) further
developed the Twin Peaks model by combining agile case-based reasoning (CBR) and the Twin-Peaks
model. Case based reasoning is a practice from AI which stores cases in order to reuse them later in
similar situation. The goal is to create and update a knowledge base repository which can be referred to
in new situations. They found that doing so can lead to better synchronisation of requirements and
software architecture during global software development. However, with the way the questions are
posed, a critical reader might ask how an expert should assign a percentage to things like increased
complexity or how much agile practice lacks synchronization between requirements and software
architecture during global software development. Making the generalisability of the findings
questionable. Nevertheless, the idea of implementing the idea of CBR with the idea of Poort (2014),
where software architecture decisions are deliverables of software architects in order to achieve agility,
would be interesting. Especially, since Yang et al. (2016) identified experience and personal knowledge
as important factors for the application of agile practices in the architecture-agility combination.
Similarly, (Waterman, 2018a) identified the team’s architectural and technical experience as contextual
factors that determine the balance point in the amount of up-front architecture that is needed. These
findings establish a theoretical basis for the idea that CBR could be implemented for architectural
decisions in order to improve the access to architectural knowledge, which can enhance the team’s
application of the architecture-agility combination. More importantly, these findings show that a multi-
case study approach can contribute to science and practitioners as these cases are an update of the
publicly available, scientific knowledge repository.

27 Agile software development addresses the gaps in interactions between developers and the customer, one of
which is requirements engineering.
28 Speed in adoption of changing requirements and corresponding changes in architecture is an issue in the
combination.

28

Table 3: Overview of selected studies

ID29 Author Purpose Data sample Design Key findings

11. Waterman
(2018a)

Address the “how much
architecture up-front”

dilemma agile development
teams face.

44 agile practitioners Propose 5 principles to develop
agile architectures.

Five principles to develop agile
architectures and to address the “how

much architecture upfront” trade-off in
agile development teams.

12. (Waterman,
2018b)

Examine how risk affects
the amount of architecture

that developers must
perform up-front.

44 agile practitioners Identification of an issue. There is a trade-off between risk
reduction and agility within the up-
front architecture design trade-off.

14. Alsahli et
al. (2016)

Introduce an innovative
approach to handle
requirements and

architecture changes
simultaneously (Twin
Peaks) during global

software development. As
current tools or approaches

are lacking.

Literature review
and 20 domain

expert interviews

Approaches uses Case-Base
Reasoning and agile practices.

Grounded theory, statistical
analysis for data analysis

Agile case-based reasoning, when
merged with the Twin Peaks model,
results in better synchronization and
change management of requirements

and architecture during global
software development.

15. Yang et al.
(2016)

Identifying evidence on
various aspects of – and

finding gaps in the
application of architecture in
agile development and the

other way around

Literature study on
using software

architecture in agile
development as well

as using agile
methods in

architecture-centric
development. Large
portion of studies are

conducted in an
industrial context.

SMS aims to map evidence at a
high level for a specific, but

broad topic.

There are many architecture-agility
combinations possible. Challenges and

costs of architecture-agility
combination are less present in

literature than benefits and lessons
learned. Communication is the most
important factor that influences the
success of the combination. Several
challenges are identified that can be

used as research gap.

16. Bellomo et
al. (2015)

Gain insight in the quality
attributes of greatest concern

to agile practitioners.

Agile practitioners
working with the

Architecture Trade-
off Analysis Method

from the past 15
years over 31

projects.

Data analysis of two studies
that analysed ATAM scenario

data.

Major concerns are: inclusion of
modifiability, performance,

availability, interoperability and
deployability.

17. Woods
(2015)

Provide some general advise
to help architects align their

work with agile teams.

Own experience Link values from agile
manifesto to architecture

practices that support agile
development.

Architectural practices can support
agile development.

18. Poort
(2014)

Offering five pieces of
advice to help architects

become more effective in an
agile environment without
having to implement new
methods or frameworks.

Own experience Present ideas instead of fully
worked out practices or

principles.

Five ideas themselves.

23. Falessi et al.
(2010)

Explore theoretical
compatibilities between

agile values and software
architecture

72 IBM (agile)
software developers

working in Rom,
average of 18 years

of experience

Quantitative data captured by
conducting focus groups and
synthesizing comments into a
survey to capture quantitative

data.

Agile software developers have a the
perception that software architecture
can contribute in a positive way to

their own practices. Either always or
in complex situations.

24. Madison
(2010)

Proposal of an approach that
uses agile techniques to

drive towards good
architecture.

Own experience of
working as an

architect in agile
teams.

Set of interactions and critical
skills.

The approach requires an architect
who understands agile development,

interacts with the team at well-defined
points influences them using critical

skills easily adapted from architectural
experience with other approaches and
applies architectural functions that are
independent of project methodology.

25. Gong
(2012)

Design of a conceptual
architecture that provides

agility and flexibility

Interviews and
document analysis,

IND (case study
subject) employees

Literature review, single case
study, design science and

prototyping

Example of a case study related to the
architecture-agility combination.
Measure to expresses agility and

flexibility.

29 Reference to the selection process in Appendix A.

29

2.4 Knowledge gaps & Research question
This section summarises the main complexities and research gaps found in the literature review.
Software architects deliver documentation of the design and quality attributes of the projects (Woods,
2015). Preferably up-front to reduce risk (Waterman, 2018a, 2018b). Therefore, software architecture
iterations tend to be longer than those of agile software development teams. Agile software developers
tend to give priority to requirements directly functional to the customer and working code delivered in
short iterations (Beck et al., 2001b). Therefore, good touch points for the architecture-agility approach
are the iteration length and non-functional requirements (Bellomo et al., 2015; Madison, 2010; Poort,
2014; Waterman, 2018a, 2018b). Interesting factors to collect data on are mitigation of uncertainty or
risk, communication, team and the software architect’s characteristics, perceptions and knowledge.
 The literature review shows that how and when IT-architecture and agility can complement each
other is perceived as interesting by researchers and practitioners. However, the amount of research done
on the subject is limited and not every possible combination has been discussed yet (Yang et al., 2016).
Moreover, a lack of tools, frameworks and methodologies has been described, hence various authors
have tried to design their own or improve those of others, as shown in Table 2. This table also shows
that the majority of advice was focused on how architects or agile development teams can obtain added
value through the architecture-agility combination. Interaction points, ideas, principles and approaches
have been identified in the literature review. However, these are often theoretical and abstract. It is
unclear how these ideas can be correctly used in practice. There was mention of success factors that
could be influenced by governance mechanisms, however often not explicitly named in this context
(Gong, 2012; Madison, 2010; Poort, 2014; Waterman, 2018a; Woods, 2015; Yang et al., 2016).
Nevertheless, the reoccurrence of factors like communication, participation, people, resources and
project size impacting the success of the architecture combination asks for a governance approach that
addresses these success factors.
 Another interesting gap in knowledge are the problems that can occur in the combination, as the
focus of most studies under review was on the added value. However, focussing on the benefits only
does not do justice to practice (Waterman, 2018a; Yang et al., 2016). Therefore, more research that
addresses problems for the combination would add to theory. Another interesting gap is how roles and
responsibilities are defined, which interaction models they create or break and whether they lead to
added value or problems. The same can be said for monitoring, control and communication. Therefore,
the following research question is central to this thesis: How do governance strategies help to obtain
complementary added value from the interaction of IT-architecture and agile software development?
Or more simply put, how do governance strategies relieve the tensions between agile software
development and IT-architecture? This thesis will address this research question through a theoretical
perspective, as well as an empirical perspective. A framework on how the interactions can work from a
theoretical perspective will be compared to how the interactions work in practice. Chapter 3 will discuss
how the research question will split up into sub questions and how these sub questions will be addressed.

30

3. Materials and Methods
This section starts with the chosen research approach, sub-questions and approach per sub-question.
Then, case definition and case section will be presented. After which data analysis methods are
discussed. Benefits as well as limitations of the materials and methods are considered. Procedures and
instruments are discussed in detail in Appendix B.

3.1. Research approach and data collection
Since the main research question focuses on interactions between approaches employed by people, a
more qualitative research approach is suited (Creswell, 2009). Moreover, the data collected on added
value is based on human understanding that is ascribed to the architecture-agility interaction this human
understanding is, according to Creswell (2009), at the core of qualitative research. In the previous section
it was identified that the amount of (recent) research done on the subject is limited and that there is a
lack of knowledge on frameworks, tools and methods to structure working with the architecture-agility
combination or interactions in scientific literature. Additionally, it was discovered that research
specifically on governance strategies that help to obtain complementary added value in the architecture-
agility interactions is novel. Moreover, little advice on how to apply these frameworks or tools that were
designed for the combination has been identified. Breivold et al. (2010) and Yang et al. (2016) stated
that research that has been done on the interaction is often of small size, scattered and of limited
generalisability as there are no agreed upon metrics by researchers of the interaction. They argue that
further research based on defined metrics on in an empirical setting is necessary to understand the
interrelations of architecture and agile development. Thus, combining a theoretical and empirical
perspective to determine if, how, where, when and why agile software development and architecture are
complementary or not would add to scientific knowledge.
 Explanatory and exploratory research is well suited for a situation where little theory is available
and where the goal is not to conclude a study but to develop ideas for further study. Additionally,
qualitative research allows for rich descriptions, needed to formulate theory (Mintzberg, 1979). A multi-
case study method inspired by Eisenhardt’s (1989) approach to build theory from case studies was used.
Eisenhardt (1989) identified situations where little empirical substantiation is present for theory (i.e.
frameworks) as suitable for her approach. Case studies were chosen over interviews as interviews leave
the expert to describe the questions only, while case studies allow for a more complete picture and
validation by means of triangulation (Yin, n.d.; Yin, 2018). Even though, conducting multiple case
studies is more demanding, usage of multiple case studies allows for new insights to be tested and
increases validity and generalisability. The method draws from other theory building approaches that
use case studies, such as ‘grounded theory’ from Glaser and Strauss (1967), Yin (1981, 1984) and Miles
and Huberman (1984). The used research approach was of an inductive, explanatory nature as the
research tried to formulate theory based on empirical findings (Creswell, 2009; Eisenhardt, 1989). As
opposed to deductive, experimental research that looks at facts in order to confirm or reject a hypothesis
(Bourgeois & Eisenhardt, 1988). The approach is suited to be used in order to examine various facets,
the how and why, of a causal argument (Eisenhardt, 1989; Yin, n.d., 2018). The main research question
was a ‘how’ question, aimed at discovering ways of achieving added value through governance from
the interaction of two software development roles. Hence, a combination of exploratory and theory
building focused multi-case study approach was considered suitable and chosen to address the research
question.
 An initial theory, based on the literature review, is that governance strategies affect the
interaction of IT-architecture and software development roles and that complementary added value or
problems can be obtained from these agile-architecture interactions. As the empirical interactions,
governance strategies, added value and problems were not yet known and needed to be identified, the
research was also of an exploratory nature, defining a typology of interaction models. Then these
explored factors can be connected through one or more theories on why and how these interactions
models add complementary value or not.

31

3.2. Sub questions and approach per sub question
The main research question is split into four sub-questions:

1. How are IT-architecture and agile software development interactions described in academic
and grey literature?

2. How can empirical, public sector IT-architecture and agile software development interactions
be classified according to interactions from academic and grey literature?

3. How do context factors impact these empirical agile-architecture interactions?
4. What are reinforcing and balancing problems for the empirical interactions of IT-architecture

and agile software development?
5. What complementary added value was experienced in empirical interactions of IT-architecture

and agile software development?

The first research questions aims to identify possible interaction models from academic and
grey literature. While some articles discussed the interactions of IT-architecture and agile software
development as a combination, there could also be more separate IT-architecture and agile roles and
approaches involved in software development. For this it is interesting to first look at grey literature,
such as frameworks, for theoretical interaction models, as these ideas guide practitioners and are likely
to influence the empirical interactions that take place in practice. Based on this an initial theoretical
framework, devised of several conceptual interaction models can be created. Then for the second
research question, empirical interaction models can be distilled from the case studies. After which, the
empirical interaction models can be classified according to the conceptual models, the conceptual
interaction models can be validated in this way and improved if necessary. The interaction models are
no longer conceptual, but empirical after this step, as they stem from the case study data. The third
research questions uses factors found by literature to investigate how context factors affect the case
studies. These factors are risk management, communication, knowledge. The fourth research question
helps to identify problems in the form of bottlenecks and tensions. Bottlenecks are limitations to a
desired outcome. While tensions are differences in perspectives of different roles that complicate the
software development process. These differences in perspectives could stem from the responsibilities
and tasks a role is given by governance strategies, but could also stem from other phenomena. It would
be interesting to know whether these tensions or bottlenecks are reinforcing other problems or providing
a balancing effect with another problem, for example as a trade-off with a less desirable problem. The
fifth research question aims to identify added value and whether there is a complementary nature in the
added value that is found; for example by one benefit reinforcing another, but only when two phenomena
are present together. This complementary added value can then be linked to interaction models and
governance strategies to answer the main research question.

3.3. Data collection and processing
Data was collected by using semi-structured interviews and document analysis. In this study data
collection was practiced by setting up separate interviews with individual roles, inquiring the
interviewees on their own role, as well as the roles they interact with and then comparing an interview
with one role with another. Thus, allowing for triangulation of statements made by participants. This
data collection setup allows the researcher to compare multiple perspective on governance strategies,
the software development process and their outcomes.
 Data has been collected by interviewing twelve participants over seven different organisations.
Microsoft Teams has been used as a tool to conduct and record the interviews. Transcription and analysis
has been performed by hand. Coding of the interview transcripts as well as organising data in tabular
displays were means to process and analyse the data in a systematic way (Yin, n.d.). Google has been
used for document analysis and to identify grey literature. Google Scholar and Scopus have been used
to find academic literature outside of the literature review.

32

3.3.1. Limitations of data collection methods
Documents analysis and semi-structured interviews were the chosen data collection methods and their
benefits and limitations have been considered. Data collection field procedures are discussed in
Appendix B.1. Interviews are prone to response bias and bias due to poorly articulated questions (Yin,
2018). Inaccuracies can arise as respondents have trouble recalling events and participants might say
what the interviewer wants to hear, this phenomenon is called reflexivity. Thus, the way the questions
have been posed and the interviewer’s behaviour during the interview could have caused bias.

Pilot
To cope with the limitations of interviews as a data collection procedure, a pilot interview was
performed. This helped to assess and sharpen the interview questions and interviewers behaviour, for
example by asking more explicitly for roles in the software development process. The pilot interview
led to the deletion of one question that was irrelevant. This question took away time from other questions
as the participant had trouble understanding the question and started to question the researcher what he
meant; hence the question was ill-formulated. The next question was better formulated and covered the
same subject of the deleted question. Most importantly, the pilot interview (and later interviews) showed
that participants have trouble to answer questions on the interaction of agile software development and
architecture. Participants responded by giving advantages and disadvantages of the other role, so for
example, an agile development team member gave benefits of how their IT-architect did things at first.
However, this problem was circumvented by interviewing both IT-architecture roles and agile
development team roles that worked on the same project and by asking the participant why the added
value could not be attributed to IT-architecture and agile alone. This way the case studies were still able
to form a description of the interaction based on the perspectives of both parties in the interaction.
Interestingly, interviewees with more experience in their role were able to give advantages and
disadvantages specific to the interaction of software architects and agile software developers.
 Another finding of the pilot interview was that participants struggle with defining a governance
strategy and that examples helped the participant to think of governance strategies that influenced their
own projects. To limit the chance that the respondent responded with an answer similar to the example30,
multiple examples are given. However, this bias cannot be fully eliminated. Moreover, respondents31
doubted whether they gave satisfactory answers when asked to describe how governance strategies
affected their work. Even though, their answers did describe governance strategies and how they affected
their work. Finally, the pilot showed that 1,5 hour of interview time was sufficient and that the questions
that were formulated provided the researcher with useful data for the research questions.

Other coping mechanisms
Control questions have been asked, inquiring on benefits as well as disadvantages, how the project was
delivered in terms of budget, time and quality. Documents are biased as they are drafted with a specific
purpose or audience in mind (Yin, 2018). This is especially the case for governance related (i.e. policy)
documents, as these are likely to highlight the envisioned positive effects, while ‘downplaying’ the
(possible) negative consequences. Supporting32 documentation has been difficult to access due to the
confidential nature of the topics that were discussed in the interviews. In analysing documentation, the
(unknown) bias of the author and biased selectivity have been considered. Rival explanations have been
sought out deliberately. Since most organisations were public, governance related documents were
publicly accessible in some cases. However, due to the confidentiality that was promised to the
organisations these could not be cited in this thesis. Thus, being of limited use.

30 A type of bias identified as anchoring and the availability heuristic by Kahneman.
31 This also happened in interviews after the pilot.
32 Or conflicting

33

3.3.2. Benefits of data collection methods
On the contrary there were also advantages to consider. Document analysis is repeatable, unobtrusive,
specific (i.e. on event) and can cover a long-time span or consider many events or settings. In many
cases document analysis did allow the researcher to place responses by interviewees in context or to
falsify or validate doubts on claims made by participants. Agile and IT-architecture frameworks and
ideas have been analysed through document analysis, which also helped to assess claims made by
participants.
 The interviews also had benefits, this data collection methodology allowed the researcher to be
flexible in data collection, and to explore new insights and rival explanations needed for theory building.
The first interviews were more explorative towards software development practises and roles in general.
In later interviews more attention was given towards insights and theories based on earlier interviews.
This prolonged these interviews, with the longest interview almost reaching 2 hours. Moreover, the
interviews were held with an individual participant, this meant that the participant could be critical on
their own and the other role in the interaction. Interviewing both roles individually allowed the
researcher to pose statements by one participant of the organisation to the other participant, which
represented another role in software development. This helped to establish perspectives and seek
conflicting explanations. Finally, the interviewees allowed to 'deep-dive' into certain aspects with
different roles in software development. For example, interviews with enterprise architects tended to be
more focused on the organisational impacts and governance aspects, while interviews with developers
or solution architects focused more on operational aspects of software development.

3.4. Data analysis methods
Four general data analysis strategies are identified by Yin (2018): 1) relying on theoretical propositions;
2) working data from the ‘ground up’; 3) developing a case description; and 4) examining plausible rival
explanations. This research is best identified with the second strategy: working data from the ‘ground
up’ as this strategy is most in line with Eisenhardt’s (1989) methodology for theory-building through
case studies. While a theory building case study may seem linked to the first: relying on theoretical
propositions it is important to note that these propositions are currently underdeveloped,33 and therefore,
cannot be tested, which is at the core of this general strategy. However, for future research, if a theory
has emerged from the data, this strategy becomes more relevant to test the robustness and validity of the
emergent theory. Similarly, developing description of software development interactions, governance
strategies and added value that impacted them helps, but is not the main goal. These descriptions are
extracted to facilitate the theory building process. The same can be said of examining rival explanations,
which is another important method in theory-building. Thus, the general analytic strategy of working
data from the ground is most in line with the chosen approach by Eisenhardt (1989).
 Moreover, Yin (2018) identifies five analytical techniques: 1) pattern matching, which can be
done for a) processes and outcomes; and b) rival explanations; 2) explanation building; 3) time series
analysis; 4) logic models on a) an individual level; b) organisational level; and c) program-level; 5)
cross-case synthesis. Logic models were not considered fit for this research, as they require a specific
theory, intervention or change to analyse. This data analysis method is more suited requires a specific
theory to be tested and described in a logic model. The fifth data analysis method, cross-case analysis,
will be discussed in a later, separate, section. Pattern matching and explanation building seemed to be
most relevant in respect to Eisenhardt’s (1989) theory building methodology and thus were used in the
research. How these analysis methods were used is explained in more detail below. Note that pattern
matching is discussed as it is similar to explanation building and some elements of pattern matching
were also used in explanation building, but that the main data analysis method was explanation building.
The within and across case analyses are discussed separately.

33 There are some ideas, identified in the literature review. However, these are high-level and practical guidelines
on how this can be implemented are lacking or limited. Moreover, the link with governance strategies is often
implicit, based on the researchers own deductions.

34

3.4.1. Analysis of within-case data
For the case-study data, it is up to the researcher to define the codes or procedures that are used to
logically piece together the coded evidence into broader themes (Yin, n.d.). One way to do so was by
systematically organising words and narratives into tables. Then the researcher performed different
types of analysis like explanation building, pattern matching. In the multi-case study, these analyses
were conducted within each single case first, after that the replication logic technique has been applied
to generalise findings analytically34 (Yin, n.d).
 A first step in data analysis was to play with the data. This was done by juxtaposing the data
from two different interviewees, putting information into different tables reflecting different themes and
by writing memos on observations in the data to oneself (i.e. through comments in word, notepad and a
separate analysis document for each interview). Coding was be used with colours, allowing to easily
identify related concepts35 in the case study database. This was done by hand.

Pattern matching
Pattern matching was be used to compare a predicted pattern with an empirical one (Yin, n.d.). Thus,
this was a useful tool to compare the theoretical findings of the literature review with the findings from
the empirical data. Pattern matching is a powerful tool in explanatory case studies, as the patterns might
relate to ‘how’s’ and ‘why’s’ within the cases studies (Yin, 2018). It is important to avoid address very
subtle patterns, as these could easily be challenged based on interpretation. These patterns can also be
identified within single cases first and then across cases to increase validity of the process-outcome
relationship. Similar to Yin’s (2018) description of this method, not all patterns were be predicted
through literature, but have resulted from earlier case studies.
 Pattern matching of rival explanations is an important tool to satisfy validity of theory. However,
it required the researcher first to identify conflicting propositions and then to set up different case studies
in such a way that they predict conflicting or matching outcomes in order to test and match these
outcomes with the conflicting explanations. This was certainly important in theory-building, however,
since it required defined contrasting propositions, this method for pattern matching was difficult to
establish in a field where theory is lacking. On the other hand pattern matching of rival explanations
was interesting for conflicting explanations that emerged from individual case studies.36 Then a case
study was set up, especially to test a rival hypothesis.

Explanation building
Explanation building is suited for explanatory studies and especially of great interest for case studies
whose explanations reflect some theoretically significant propositions (Yin, 2018). Explanation building
was used to analyse the findings of the main research question, as the objective of this question is to
build and falsify theory about the influence of governance strategies (i.e. policy) on complementary
added value derived from combining IT-architecture and agile software development.
 The process of explanation (theory)-building can be operationalised as follows: 1) making an
initial but provisional statement or explanatory proposition (theory/explanation); 2) comparing the data
from your case study against such statement or proposition; 3) revising the earlier statement or
proposition; 4) comparing other details of the case against the revision; 5) if doing a multiple-case study,
comparing the revision from the first case with data from other cases, leading to further revisions; and
6) repeating this process with other cases as many times as needed (Eisenhardt, 1989; Yin, 2018). This
procedure has been followed. Note that this is an iterative process and that comparison with relevant

34 Not statistically
35 Agile, architecture, interaction, governance, project specific context, advantages or added value and problems
or disadvantages.
36 A nice example is the proposition that agile is not suited for a government context. For which the private
sector case study was set up.

35

literature37 played a constant role in this process.
 The key difference with pattern matching is that the final explanation may alter from the starting
theory that is developed at the beginning of the study. Yin (2018, p. 231) stated that: “The clearest result
would be if your case study data do not support these rival explanations.” Consequently, entertaining
rival or plausible explanations or theory was very important in this case study analysis method as well.

3.4.2. Searching for cross-case patterns
An important method for analysing data in this research was comparison of data (explanations) across
cases, either rival, as well as similar explanations. In the chosen approach the case study descriptions
and data were used to build (and test) theories38 in an emergent way. Yin (2018) stated that cross-case
synthesis allows the researcher to elevate cross-case patterns to a higher conceptual plane, the ‘how’ and
‘why’ mechanisms behind phenomena, rather than downward reduction to individual variables.
Eisenhardt (1989) seemed to imply the same with the underlying dynamics of the relationships to be
studied with his method and stated that case studies can make these observable, which is essential to
understand why the relationship exists.

Cross-case analysis helped to cope with humans limited ability to process data. Humans
(unknowingly) employ several biases which can lead the investigator to premature or even false
conclusions if they base their theory building research on human testimonials (Eisenhardt, 1989).
Therefore, good case-cross comparison can counteract these tendencies by looking at the data in
divergent ways. Yin (2018) adds to this perspective by stating that in cross-case synthesis it is very
important to discuss potentially contaminating differences between individual cases in the multi-case
study (i.e. cultural or institutional settings). Thus, literature seems to find consensus on this point and
additional questions in the case study protocol were added to inform on the institutional and cultural
context of the interviewees and the organisations where the development process took place.

Replication logic
Replication logic is an analytical generalisation that requires to first construct a conceptual claim, which
can then be applied in another case study39 where similar concepts are relevant. Replication theory can
be used to increase confidence in the validity of relationships with cases that conform emerging theory
(Eisenhardt, 1989). Likewise, it was used to refine and extend emergent theory if cases disconfirm
relationships. Thus, it helped to understand why an emergent relationship did (not) hold. The essence of
replication logic or cross-case synthesis is that cross-case patterns rely on argumentative interpretation
not numeric tallies (Yin, 2018).

3.4.3. Shaping Hypotheses
Hypotheses were shaped iteratively by comparing the emergent frame with the evidence from each case
in order to determine how well it fitted with case data. By constantly comparing theory and data, the
result of this process should be a theory that closely fits the data (Eisenhardt, 1989). This is important
as this way one takes advantage of new insights based on the data and yields an empirically valid theory.
This can be done by: 1) Sharpening constructs; and 2) verifying that the emergent relationships between
constructs fit with the evidence in each case.
 In order to sharpen constructs two parts of the same process were essential: a) refining the
definition of the construct and; b) building evidence which measured the construct in each case. This
happened through constant comparison of data and constructs from diverse sources that converged on a
single, well-defined construct. In essence, the researcher was establishing construct validity through
multiple sources of evidence, in this case literature, documents and interviews. The difference with a
traditional experiment or hypothesis testing case study was that the constructs are not specified a priori
and thus definition and measurement occurred in an emergent way during the analysis process. Another
difference was due to the nature of qualitative evidence, which made it difficult to collapse multiple

37 In this case this was grey literature on interaction models, frameworks and best practices.
38 Or propositions made by participants and the researcher.
39 Or interview, in some cases.

36

indicators into a single construct, as not all cases had all indicators or indicators differed. A substitute
to factor analysis was therefore evidence that was summarised in tables or text.
 The second step in hypothesis shaping was verification of the emergent relationships between
constructs fit with individual case data. Sometimes relationships could be confirmed by the case
evidence, while other times it was revised, disconfirmed or dropped out for insufficient evidence. This
happened similarly to traditional hypothesis testing research. Each case served as an experiment in that
sense. The difference was that each hypothesis was examined for each case, not for aggregate cases.
Consequently, the underlying logic was replication, the logic of treating a series of cases as a series of
experiments with each case serving to conform or disconfirm the hypothesis (Yin, 2018).

Enfolding literature
Literature has a very prominent place in theory building case studies. It is important to consider a broad
range of literature. Since academic literature has already been covered in the literature review, new
literature analysis was performed on grey literature, such as frameworks, discussions by practitioners
on the interaction, best practices etc. Comparing emergent concepts, theory or hypotheses with literature
was an essential part of theory building because: 1) if literature that conflicted with emergent findings
was found, then confidence in the findings is reduced. Readers may assume the results are incorrect
(challenge to internal validity), or are related to specific circumstances (challenge to generalisability);
and 2) conflicting literature presented an opportunity. Putting conflicting literature side by side the
emergent theory forced the researcher to think in to a more creative, frame breaking mode of thinking,
otherwise difficult to achieve. Insights in both conflicting literature and emergent theory were be deeper,
while also sharpening of the limits of generalisability of the focal research.40 Literature that discussed
similar findings was also important as this helps to tie together underlying similarities in phenomena
normally not associated with each other. This resulted in theory with stronger internal validity, wider
generalisability and higher conceptual level. Which was important, as this theory building case study
research rested on a limited number of cases.

3.5. Definition of a case study, selection criteria
This section will explain how a case study is defined in this thesis and which selection criteria are used.

3.5.1. Case study definition
Each case is the interaction of IT-architecture and agile software development in a specific software
development process. Thus, not the software development project itself. Information about the project
is therefore contextual. Discussing the interaction in only one development process at a time helped to
structure the interview and data analysis processes, as this eliminated cross-project contextualities within
each transcript. On the other hand, in some cases interviewees could refer to more processes within their
current or past organisations, which was helpful to draw comparisons. For example, one domain
architect explained how domain architecture was practiced across various organisations he had worked
in, which helped to illustrate the interaction model with agile software development in his current
organisation. This did not only help with this comparison, it also helped to identify empirical
alternatives.
 Most importantly, this case definition posed the requirement that at least one IT-architecture
role and one agile development role had to be interviewed to get a complete picture of the interaction.
This allowed the researcher to compare perspectives on both working practices, added value, problems
and governance strategies. Which were of interest as these perspectives have been identified as
important factors that influenced the success of the combination in the literature review. In conclusion,
the case study concerned a relationship of two roles in software development and its governance and
consequences rather than the specifics of the software development project itself, these were context
factors that influence the interaction.

40 This happened for example with the claim that agile cannot work with fixed deadlines.

37

3.5.2. Case study selection criteria
Due to contextualities, the selection of the cases was very important as cases were bounded by time and
activity (Creswell, 2009). Selection was not random but informed. Case study selection focused on
contrasting cases: at least one success case and an unsuccessful case. The selection criteria could be
considered a mix of extreme and critical cases in the typology of Flyvbjerg (2006). A case was selected
that was thought to be most likely architecture dominant (due to complexities, i.e. scale or compliance)
and a case that was most likely agile dominant (due to high uncertainty and desire to deliver fast or
innovate). From these cases I distilled why agility and architecture did (not) complement each other,
which complementary added value or problems have been experienced and which governance strategies
helped to obtain this added value. Then these cases were compared to more nuanced cases or cases
deemed relevant due to new insights.
 Especially for a multi-case study where cases were subjected to a cross-case analysis it was
important to be mindful of contextual factors that affected the cross-case analysis such as the point in
time the case took place, methods, tools, methodologies and approaches used by the actors in the cases
(Yin, n.d.). This limitation deserved special attention in selection, as the literature review in this proposal
showed that the variety of approaches, tools and methodologies is large. However, keeping contextual
factors constant was less important and feasible in multi-case study research than in experimental
research. As theoretical insights often stemmed from contradictions, critical or extreme cases. Similarly,
both the case study method and theory building from case study method allowed the researcher to alter
their data collection and analysis procedures based on new insights, albeit in a scientific rigorous way
(Eisnhardt, 1989; Yin, 2018). However, some factors were held constant to structure the data collection
and analysis process. The selection criteria from Table 4 were a guiding the case study selection in order
increase the generalisability and relevance of the findings. The selection criteria from Table 4 will now
be discussed.

Time
To ensure the relevance of the results in a fast-changing field of research, the focus was on cases that
took place in the past five years. This choice was made as software development practices and
approaches are prone to continuous improvement. For example, Extreme Programming (XP) was
extensively used in the past, but has been replaced by Scrum (Yang et al., 2016). Software development
is a fast phased and innovative topic and practice.

Access to expertise and Organisation type
Public organisations were selected, as they are likely more willing to disclose their experiences than
private firms trying to gain a competitive advantage through a new software product, which increased
accessibility, availability and put less stress on the time schedule of the research. Moreover, many Dutch
government organisations are currently transitioning from waterfall software development to agile
software development, thus presenting interesting mixed-form interactions patterns.
 Organisations needed to employ an agile development team and at least one software41 or
enterprise architect in order to research the interaction between both software development approaches.
This was often the case in public organisations as their projects are usually of a large scale. Moreover,
the Dutch government is relatively automated or supported by software applications in their public
service provision. A limitation of this choice was that organisations have trouble practicing agile
development and IT-architecture as standalone practices, thus possibly reducing the validity of
explanations on the combination if unrecognised (Gong & Janssen, 2019, 2020). This was also true for
public organisations, for example public organisations were sometimes struggling with the adoption of
agile working practices. However, if recognised these cases served as extreme or critical cases.
Consequently, it was important to identify how agile practises were adopted in a case study and
participants were inquired on their agile and IT-architecture practices. This helped to investigate whether

41 Or solution.

38

organisations were balanced or more agile or IT-architecture dominant. Moreover, the dominance of
either one might have affected the adoption of the other and affected the interaction model.

Table 4: Overview of selection criteria

Criteria Rationale Limitation

Case took place between 2016 and 2021 A timeframe that is too large may reduce
generalisability as materials and methods
are likely to differ. Similarly, a timeframe
that is too small limits the number of cases
that can be considered.

Findings outside scope are not considered.

Project should involve an agile
development team and at least one IT-
architecture role.

The interaction of both practices can only
be investigated if both are present in the
development process.

Employing both practices requires vast
resources. Adopting each individual
practice can be problematic in itself (Gong
& Janssen, 2019, 2020)

Public organisation as product owner Availability, more willingness to disclose
information than private sector product
owners and interesting cases. This
definition of the criteria allows to interview
experts that were contracted to work on a
project with a public product owner.

Public organisations tend to be bureaucratic
hence the environment can be considered
as non-agile friendly. Public organisations
tend to struggle with the adoption of agile
working practices.

No particular geographical scope Software is often created by a
geographically distributed team.

There might be differences in how the
combination or separate approaches are
employed across geographical regions.
Geographically distributed software
development is more complex than more
centralised development, hence they might
be difficult to compare across cases.

Development process up to a specific
release or development process up to
transfer to operational phase

Finished projects are easier to reflect upon.
However, software projects are never really
finished. Another good point in time is the
transition from the development and
operation phase.

Agile projects are never finished. Not
possible to keep releases constant across
cases.

Specific agile framework Keeping the framework consistent
increases validity. SAFe is often used
within governmental organisations. SAFe
has a section dedicated to architecture.

Keeping the framework constant reduces
generalisability for organisations that
employ other frameworks. Organisations
might be working agile in ‘name-only’ or
might be working with mini-waterfalls
within sprints.

Access to expertise Comparing the viewpoints of the roles
within cases first and then across cases
improves generalisability over the
viewpoints across cases only as in the latter
case there are more (un)known contextual
factors that might impact the findings.

Might not be available.

Geographical scope
There was no geographical scope considered as software is often created by geographically distributed
team (Smite et al., 2020), however focus was on the Dutch public sector. Moreover, development
practices might differ over geographical regions which could reduce generalisability. Next to that,
geographically distributed software development imposes additional requirements on the development
process (i.e. improved communication standards or stable interfaces) as opposed to more centralised
software development (Yang et al., 2016). Thus, comparing cases where the geographical scope differed
a lot was difficult (i.e. central versus internationally outsourced development).

39

Project status
To be able to identify if governance strategies led to complementary added value, it was also important
to look at projects that have been under development for a while, or more preferably were already in
operational phase. This allowed to participants to reflect and evaluate in hindsight which added value
was achieved, as the fruits, added value or problems, often become observable after the project has been
finished. Moreover, focusing on development processes that were finished or far underway allowed the
researcher to assess whether a certain governance strategy had affected the problems or added value that
was observed. On the other hand software is never really finished.

Agile framework
Keeping frameworks constant increases validity of the findings. However, looking at only one
framework reduced generalisability to organisations that employ other frameworks. Therefore, cases
with other frameworks were also considered. The SAFe framework is widely used in large software
development. SAFe is used by Dutch public organisations to scale agile working and was therefore
considered to be a selection criterium at the start. An additional benefit of SAFe is that it includes
software and enterprise architecture within its framework. It is important to note that each organisation
implemented a framework such as SAFe in a distinct way. However, these variations were seen as
welcome since they helped the theory building process.
 Since IT-architecture frameworks are not as intensely practiced as agile frameworks, no specific
IT-architecture framework was held constant across cases. However, TOGAF and NORA were used as
references to identify and discuss architectural working practices and tools that had impact on the
combination, in a similar way to the literature review. While these frameworks are focused on enterprise
architecture, architecture on a software level is also included as discussed in chapter 2.

3.6. Strengths and weaknesses of research approach, data collection and analysis
This section will discuss the strengths as well as the weaknesses of multi-case study research.

3.6.1. Strengths
Eisenhardt’s (1989) method has a high likelihood of generating novel theory; creative insights often
come from putting together contradictory or paradoxical evidence. This can be done across cases, types
of data, investigators, and between cases and literature. This research aimed to exploit this strength by
using cross-case synthesis and a literature review. Constant conflicting of realities lead to less researcher
bias in theory built than incremental studies or armchair, axiomatic deduction. However, Eisenhardt´s
(1989) paper was written in a very positivistic way. Which is made clear as a high likelihood of
generating novel theory is advertised, while on the other hand overly complex, as well as narrow theory
and replication of already existing theory are mentioned as limitations. Thus, the research did not purely
focus on explanatory results, but collected data in such a way that exploratory results would be present
as a foundation on which theory might be built in order to ensure findings that would contribute to
scientific literature. Moreover, case specific knowledge on governance strategies that led to added value
or problems can also be useful, as an expert (practitioner) level knowledge is obtained not from general
rules, but from many individual cases and nuances (Flyvbjerg, 2006). Thus, even one well-worked out
case can be an interesting reference point for similar cases for researchers and practitioners.
 For future research, emergent theory is likely to be testable with constructs that can be proven
false by future research. Thus, advancing the state of knowledge in the field of software development.
Measurable constructs are likely because they have already been measured during the theory-building
process. Thus, the resulting hypotheses are likely to be verifiable for the same reason, as verification is
constant in the theory building process, while theory generated apart from direct evidence may have
testability problems. Finally, resulting theory is likely to be empirically valid, because the theory-
building process is tied with evidence so that the resulting theory will be very likely consistent with
empirical observation. Comparing data across cases allowed to distil good and bad governance practices
which could formulate a basis for governance mechanisms, while keeping the flexibility to discuss the
influence of contextual factors and unexpected findings (Eisenhardt, 1989). This and the flexibility to
explore new insights that arose during data collection were great benefits of the multi-case study. The

40

research approach allowed to collect data on actual human behavior and events as well as to capture the
distinctive perspective of the participants in the case study. Thus, the chosen research approach allowed
to investigate both realist42 and relativist43 perspectives. This was interesting as the literature review
hints that both perspectives can influence the complementary added value that can be achieved.

3.6.2. Weaknesses
Overly complex theory due to the intensive use of empirical evidence might emerge. Good theory has
parsimony (Pfeffer, 1982). Since data was large in volume and rich, there was the temptation to build a
theory that captures everything. However, such a theory lacks simplicity and overall perspective. It is
easy to lose a sense of proportion when a researcher is confronted with vivid, voluminous data. Since
qualitative statistical means are often not used, it can be difficult to identify the most important
relationships and which relationships are tied to very specific contextual factors. Cross-case analysis
can help here, as reoccurrence of patterns that have strong argumentative basis can be an indicator of
their importance.
 Narrow and idiosyncratic44 theory can also emerge. Case study theory building is a bottom-up
approach, the specifics of the data produce the generalisations of theory. Thus, generalisability might be
lacking. Again, the multi-case study approach can help to address this issue. As idiosyncratic theory is
unlikely to hold across cases with different contextual factors (i.e. communication and knowledge).
However, generalisability might be limited to the public domain, as the private domain has only been
limitedly investigated.
 Weaknesses can also be found in data collection and have been discussed. A last
counterargument is that, during the interview process, both the researcher and interviewee are engaged
in a learning process, trying to identify relationships and important factors that affected the object under
study in order to get an advanced understanding of the world (Flyvbjerg, 2006). Thus, the understanding
of the researcher evolved over the case study process based on new insights and preconceptions were
falsified if wrong.

42 The way power (roles and responsibilities) influences decision making.
43 If I think something is wrong, then it is wrong.
44 contextual, fitting one or a small number of instances.

41

4. Agile-architecture interactions according to grey and academic
literature: a basic typology
This chapter will start by discussing the clashes and differences of agile software development and IT-
architecture that have been found in literature. In this discussion, perspectives from grey literature are
also included. Then a first conceptual framework will be introduced. This framework will help to analyse
and classify interaction models found in the public sector. Then the perspectives of the TOGAF, NORA
and SAFe framework will be discussed.

4.1. How are IT-architecture and agile software development interactions described
in academic and grey literature?
Table 5 shows aspects of architecture and agile software development that can be interpreted as clashing.
The preference for up-front design and documentation of architecture to reduce risk clashes with
principle 11 of the agile manifesto, which states that “the best architectures, requirements and designs
emerge from self-organising teams.” (Beck et al., 2001b, p.1). The second clash is the focus on
requirements type, functional for agile developers and non-functional for architects. Iteration length is
the third clash, as architectural iterations tend to be long as they deliver extensive designs and
documentation. Which creates a large amount of rework if requirements change. While agile developers
celebrate short iterations to capture feedback early and elicit new requirements early in the process,
before too much work has been invested. The final clash is the focal communication method, as agile
developers consider face-to-face conversations the most efficient method of communication (Beck et
al., 2001b). While IT-architects tend to focus on documentation, as face-to-face meetings are not always
the best communication vehicle, as people leave the team for example.

Table 5: Parts of architecture and agile software development that can be interpreted as clashing

IT-Architecture Associated problem Agile software development Associated problem
Up-front, large scale IT-
architecture design,
planning and
documentation by architect
in order to reduce risk

Resources invested in
irrelevant designs and
documentation, can’t address
all risks up-front

Principle #11 of agile manifesto: “The
best architectures, requirements and
designs emerge from self-organising
teams.”(Beck et al., 2001b, p.1)

Problems that should have been
addressed from the start arise
later in the development
process

Focus on system and
organisational wide
concerns such as quality
attributes or non-functional
requirements

Non-functional requirements
should support the functional
requirements, not limit them

Customer satisfaction tends to focus
resources on functional requirements

Functional requirements might
not work satisfactory for the
product owner as supporting
non-functional requirements
are underdeveloped / lacking

Long, plan driven
iterations (phases) that
address system as a whole
(waterfall)

Can cause large amounts of
architectural rework if
requirements change

Short iterations focused on individual
features driven by stories in order to
capture feedback early and to
welcome changing requirements
(short-cyclical)

Products of short iterations
might underwhelm customer /
product owner expectations and
decrease stakeholder
confidence

Focus on documentation to
communicate design and
rationale to accommodate
independence if the one
that build an aspect is not
available

Documentation might not be
findable or might not be read,
especially if there is a lot of
documentation, ivory tower
or command and control
decision making

Principle #6: “Most efficient method
of conveying information to and
within a development team is face-to-
face conversation.” (Beck et al.,
2001b, p.1)

Face-to-face conversations are
not always possible due to
schedules, geographical
locations, sickness, employee
turnover etc.

42

However, the very aspects that can lead to an interpretation of architecture and agile
development as counterparts can also be the theoretical foundation as of why IT-architecture and agile
software development have potential to be complementary. As the aspects identified in Table 5 can also
be interpreted as how the focus of one approach can address an associated problem of the other, as I will
illustrate below at the hand of Table 6, which shows that the similarities of agile and IT-architecture are
not present in the approach, but in the deliverables. This conclusion makes sense as both IT-architects
and agile software developers want to create working software that adds value to the organisation.
However, agile developers tend to focus more on the business value, while IT-architects tend to focus
more on the sustainability of the future IT and business landscape, which includes and is affected by
working software. The amount of similarities in deliverables is greater than the amount of problems
associated with clashing of IT-architecture and agility, is the first hint of complementarity.

Table 6: Similarities of architecture and agile in deliverables

IT-architecture Agile Rationale
Needs IT-architecture work Needs IT-architecture work All system need non-functional

requirements to support
functional requirements

Needs to deliver customer /
business value

Needs to deliver customer /
business value

All system need functional
requirement to deliver business
or customer value

Needs to decide on solutions:
i.e. languages, components and
principles

Needs to decide on solutions:
i.e. languages, components and
principles

Choices need to be made either
according to a plan or
emergently in order to deliver a
software product

Needs to cope with known and
unknown requirements

Needs to cope with known and
unknown requirements

All software development
processes will have to cope
with requirements that are
known beforehand and with
new and changing requirements

Needs to address integration in
complex systems or
environments

Needs to address integration in
complex systems or
environments

Complexity can arise from
scale, compliance,
dependencies etc. and needs to
be addressed to deliver a
functioning service

Needs personal communication
as well as documentation

Needs personal communication
as well as documentation

Personal communication is
very useful to convey ideas,
however documentation is
important as people fall sick,
leave the organisation or
change positions.

While emergent architecture is evidently needed, as unknown unknowns arise during the
development process, fully emergent architectures in line with principle 11 of the agile manifesto are
not feasible in large organisations or organisations that have high quality standards (i.e. security) due to
compliance, integration in the current environment or high system criticality (i.e. hospital systems).
Quality attributes or non-functional requirements are needed to ensure alignment with current business,
information and application systems and technology, as well as high quality and criticality standards.
Introduction of a new software application cannot be allowed to break down other systems and requires
up-front planning by IT-architects. On the other hand, the product owner wants a system that meets their
functional requirements and wants to see results during the development process. Thus, up-front
architecture design should be balanced with self-organising architecture design in order to increase
management of known and unknown risks. These uncertainties should be addressed in a long-term45
economic sense. This balance should be determined up-front with all stakeholders (including IT-
architects, product owner and agile team(s)), but open to changes during the development process in
order to increase software quality for the organisation.

45 I.e. Total cost ownership instead of cheapest purchase value.

43

Long IT-architecture iterations can cause large amounts of architectural rework if requirements
change, since IT-architecture designs or documentation tend to be extensive. Therefore, IT-architects
might have a natural inclination to hold off changes from the envisioned architecture landscape. While
agile developers embrace changing requirements and use short iterations to identify those early in the
process. Thus, both iteration lengths might seem at odds, however IT-architects could learn from agile
developers in this perspective. They could deliver decisions or outlines of decisions instead of fully
finished designs and test them early with the development team, product owner and customer to identify
areas of improvement and avoid large amounts of architectural rework later. This can reduce
development time, costs and possibly increases software quality as these resources could be spent
elsewhere in the development process. Similarly, agile developers need a long-term perspective to work
towards. They need to know what the vision for the future landscape is to integrate their solutions
properly. In addition, standardisation of functionalities provided by architecture could help them to save
time during the development process and help teams to avoid having to reinvent the wheel as architecture
tends to look 'over the wall' across various teams.
 While documentation can help to convey knowledge if somebody is not available, it cannot be
interchanged for face-to-face communication (Beck et al., 2001b). On the other hand, agile developers
can avoid problems if a team-member becomes unavailable (i.e., falls sick, leaves the team) by investing
time in documentation. Yet again, both practices need to be practiced in a balanced way that is context
dependent in order to increase the efficiency and effectiveness of communication.

4.2. What do frameworks prescribe?
SAFe is an agile framework that aims to scale agile working practices (Scaled Agile, Inc., 2021). Since
it has been found in 2011, some projects in this research did not have the ability to consider the
framework, as it did not exist yet or was unheard of at the time. As scaled agile is associated with larger
projects, scaling, integration and compliance issues need to be addressed. Consequently, the SAFe
framework recognises various IT-architecture roles: that of the enterprise architect, the solution architect
and the system architect (the software architect). The framework also recognise the importance of
alignment with TOGAF layers, as the IT-architecture roles cut across these layers, which are identified
as common domains. In the SAFe framework, solution architects:

1) Design for customer and stakeholders, through understanding the customer and the solution
context.

2) Assure feasibility and sustainability, by evaluating emerging technology, partnering with
suppliers and creating a continuous delivery pipeline.46

3) Design and evolve the technical solution, by using models to describe the system,
collaboratively specify the system, decomposing the solution, managing interfaces between
components, defining of the solution context, ensuring implementation flexibility, performing
technology trade-offs, managing risks and participating in team organisation.

4) Manage non-functional requirements and compliance.
5) Define and prioritise enablers, enablers are supporting elements that are needed for the delivery

of functional requirements or evolving the system, such as refactoring or addressing technical
debt.

6) Enable continuous delivery.
7) Maintain the architectural runway by creating an architectural vision and roadmap and

managing the architectural runway.47
8) Manage suppliers by tracking technology across the supplier landscape, selection and

evaluation of suppliers and aligning the technical solution across the supply chain.

46 The continuous delivery pipeline is a based on the DevOps CI/CD practice.
47 Think of an airplane, it needs a runway to land, and the size of the runway depends on the specifications of the
airplane. The airplane is a metaphor for the software solution and the runway for the supporting architecture.

44

Interestingly, SAFe propagates a balanced exchange model approach to IT-architecture, which is
called ‘Agile Architecture or the architectural runway.’ The framework propagates that a balanced needs
to be determined at the start of the project with a percentage of intentional architecture (up-front
architecture) and emergent architecture (principle #11 of agile manifesto). This balance needs to be
updated throughout the project, depending on the project's needs. The balance point is thus project, time
and context dependent. Even within this context the balance point is dependent on the needs of the
project at that time and thus changes over time. The framework has no publicly accessible explanations
or case study examples that show different reference balance points and implementations.
 The rationale for the SAFe exchange model is that an emergent architecture cannot handle the
complexity of large-scale development, integration, validation, maintenance and is not effective in
reusing common components or addressing redundancy of solution elements. Emergent design alone is
also associated with decline is system qualities/non-functional requirements, delays or reduced velocity
due to excessive redesigns and a reduction in synchronisation and collaboration. On the other hand, the
framework recognises that traditional IT-architecture approaches (intentional architecture alone)
extensively led to early architectural (re)work, with unvalidated designs, abundant documentation and
rework if new requirements emerge or old requirements change. Thus, the combination of intentional
architecture and emergent design in the right proportions help to address the complexity of building
enterprise solutions, as it supports current user needs while allowing evolution of the system to meet
future needs in a complex environment (Scaled Agile, Inc., 2021).

4.3. An initial theoretical framework devised of three conceptual interaction models
What is interesting that all these aspects of both working practices can be enhanced by governance,
albeit in a ‘make or break’ type relation, as governance determines, roles and positions, rights,
responsibilities and authority as well as monitoring and control systems. All these aspects could
potentially influence the balance points, i.e., a solution architect that is monitored and controlled on
delivered designs might not have the right incentives for multiple extensive face-to-face meetings with
developers. My initial theory, captured in Figure 7, was that governance strategies that block or disturb
the creation of the needed balances also disturb the complementary nature of the combination or could
even create the opposite effect: problems that are worse than if one of the practices was badly governed
on its own. While the right governance strategies can enhance the complementary nature of both
software development practices by enabling stakeholder to obtain and maintain the right balance points
by defining the right roles, responsibilities, incentives etc. Based on this theory the following high-level
conceptual model of architecture-agile interaction was devised, resulting in three interaction models:

1) IT-architecture is dominant;
2) Development with a balanced exchange model between IT-architecture and agile software

development; and finally
3) agile is dominant.

45

Figure 7: Initial conceptual model of theory

While these classifications are extremes, extremes can be useful to elicit underlying behaviours
that are not observable in more nuanced situations48 and can serve as points of reference (Flyvbjerg,
2006). Phenomena from extreme cases can be generalised to more nuanced cases by means of analytical
generalisation, for example, if a phenomenon unexpectedly occurs under extreme circumstances this
can be proof that the phenomenon can occur under less extreme circumstances. Similarly, if a
phenomenon does not occur as expected under the ‘perfect conditions’ then this can be evidence of why
a phenomenon does not occur in more nuanced cases.
 The discussed similarities and differences were then compared to findings of the case studies
and the characteristics of the agile and architecture dominant classifications have been defined. An
overview of these characteristics is presented in Table 7. The balanced exchange model can share
characteristics of the other classifications. No specific criteria for the balanced exchange model were
defined, as there were no practical examples of this before this study. Not all characteristics had to be
met in a development process to be classified as a certain type. As, the balance point has been found to
differ for each application in literature.

Table 7: Characteristics of architecture and agile dominance classifications

IT-architecture dominance characteristics agile dominance characteristics
Directionally composed by IT-architects Development team stakeholders are ones that compose the

software/solution architecture
Little/no alterations possible after composition of IT-architecture Frequent alterations to IT-architecture based on new insights or

issues encountered during development process
Development team initially not considered in composition of IT-
architecture

IT-architects outside the development team initially not considered
in composition of IT-architecture

Layered architecture team structure No formalised software/solution architect role, self-organisation to
reach software/solution architecture or lack of recognition for IT-
architecture by development team

Interaction with development team is upon transfer, in case of
problems and upon delivery of the project only

Face-to-face interaction had a central role

Since not everything can be known beforehand, issues for the
development team arise due to the IT-architecture and/or it’s
inflexibility

Issues arose due to a lack of upfront planning or architecture

Waterfall or hierarchical approach Short cyclical approach
Uncertainty is addressed up-front Uncertainty is addressed on the go

48 For example, because they are crowded out by the sheer number of behaviours.

Architecture

Agile so�ware development

Complementarity

Governance

Added value or costs (opposite)

Enhances: make or break rela�onship

Leads to

46

Characteristics of an IT-architecture dominant software development process are directionally
composed IT-architectures by IT-architects; IT-architectures that are difficult to alter based on new
insights by developers after composition; development teams’ perspective not being considered while
composing the IT-architecture; layered architecture team structure; interaction with the development
team at limited, pre-specified moments such as transfer of the IT-architecture, problems or delivery of
the project; problems arise due to the IT-architecture or its inflexibility, as not everything can be known
beforehand; uncertainty is address up with up-front development; and the approach to software
development is hierarchical or waterfall.
 An agile dominant software development process could be classified by: development team
stakeholders are the ones composing the software/solution architecture; frequent alterations to the IT-
architecture based on new insights or issues that were encountered in the development process; no
formalisation of the software/solution architecture role or a lack of recognition for IT-architecture by
the development team; issues that arose due to a lack of up-front planning or architecture; uncertainty is
addressed on the go by the development teams; face-to-face interaction has a central role; and a short-
cyclical approach is used. A case study with more initial architecture than needed would fall into my
architecture dominant category, while a case study with more emergent architecture than needed would
fall into the agile dominant category. Case studies with a balanced exchange model enjoy the best of
both worlds, they are able to plan for foreseen future issues and use their agile process effectively to
deal with unforeseen issues.

4.4. Conclusion of chapter 4
The very aspects that can lead to an interpretation of architecture and agile development as counterparts
can also be the theoretical foundation as of why architecture and agile software development have
potential to be complementary. The similarities of agile and IT-architecture roles are not present in the
approach, but in the deliverables, as they both strive to create working software of good quality.

1) Both up-front as well as emergent architecture design can be useful, depending on the situation.
2) Functional requirements add business value to stakeholders, but need non-functional

requirements to support these functional requirements.
3) There is an opportunity to balance the threats associated with both long-term waterfall working

methodology as well as the threats associated with short-cyclical iterative working
methodology. As, both approaches can take their way of working too far.

4) Documentation is needed to communicate when people are unavailable, but cannot replace face-
to-face interaction.

The SAFe framework proscribes a balanced exchanged model, that balances up-front architecture with
emergent architecture. This balance point differentiates over time in the development process and the
complexity of the environment. This balance has to be managed by the solution architect, which is a
new role located in between the traditional enterprise and software architecture roles.

The following three conceptual interaction models have been formulated.

1) IT-architecture is dominant;
2) Development with a balanced exchange model between IT-architecture and agile software

development; and finally
3) agile is dominant.

IT-architecture dominant interaction models uses more up-front planning than is needed to address
foreseeable problems, while the agile dominant interaction model encounters problems through their
agile process that they could have foreseen with up-front planning. The balanced exchange model uses
both up-front planning for foreseeable problems and their agile process for unforeseeable issues
effectively.

47

5. Empirical IT-architecture and agile software development
interactions
This chapter will provide rationale for the case study selection and will discuss how the characteristics
of each case are related to the selection criteria. Additionally, the cases are characterised as green or
brown field situations. Then the selection of interviewees is discussed. Finally, each case is classified in
an interaction model as defined in chapter 4.2.

5.1. Case study selection and characteristics
First some general remarks for selection criteria are discussed. Then cases are discussed case by case.
Remember that selection was informed, trying to select cases such that agile and architecture dominant
cases, as well as a balanced exchange model would be found. The expectations for each case are
discussed in the case-by-case section. Table 8 shows which selection criteria each case study met.

Table 8: Adherence of case studies to selection criteria

Criterium Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Case took
place between
2016 and
2021

 x x x x Development
phase,
requirements
phase earlier

x

Project
should
involve an
agile
development
team and at
least one
architecture
role.

x x x x x x

Organisation
type

x x x x x x
Geographical
scope

Central,
outsourced
development
on site

Central,
outsourced
development
on site

Mixed,
outsourced
development
off and on
site

Central,
inhouse
development

Central,
inhouse
development

Central,
inhouse
development

Decentral,
development
outsourced
overseas

Development
process up to
a specific
release or
development
process up to
transfer to
operational
phase

x x x x x x x

Specific agile
framework

Scrum None Scrum Scrum,
elements
from SAFe

SAFe LeSS,
currently
SAFe

SAFe

Access to
expertise

Only agile
perspective

Both
perspectives

Both
perspectives

Both
perspectives

Only
architecture
perspective

Only
architecture
perspective

Both
perspectives

Organisation type and access to expertise
A total of 12 interviews has been administered with various roles over 7 distinct organisations. After
having interviewed six public organisations, the decision was made to collect data on a private
organisation, instead of a new public organisation, as saturation had been reached on new information
for the public sector. This is case study 6. Thus, two of these interviews have been conducted at one
private organisation to shed light on the degree to which the findings were related to the government
context or are relevant in a broader context. For all cases it was possible to interview both agile and IT-
architecture roles. For case study 0 only an agile role was available, for case studies 4 and 5 only IT-
architecture perspectives were available.

48

Actuality
The time criterium did not did leave older cases unconsidered, as shown in table 8. Case studies 0 was
considered even though it did not adhere to the selection criterium of taking place in the past five years.
The reason that this case study has been included is that their development practices considering the
interaction were novel for the time they were carried out in. Case study was also included, stakeholders
needed over ten years to reach agreement on requirements, as the software application needed to function
in a network of heterogeneous, European stakeholders. However, the development process did take place
within the past five years. All other case studies adhered this criterium fully.

Agile and architecture frameworks
After several interviews it became apparent that the NORA architecture framework is binding for
government organisations. It seemed that IT-architecture frameworks tend to play a different role than
agile frameworks (NORA, 2019). As the NORA is prescribing on solutions and processes, while agile
frameworks are focused on how to organise processes. All other cases did adhere to this selection
criterium. Most case studies implemented architecture with the TOGAF frame in mind as well, case
study 1 is an exception to this.

Geographical scope
While all cases were developing centrally, except case study 6, which outsourced their development
oversees, their organisation models differed. Case studies 3, 4 and 5 all developed software inhouse
using their own teams. These and organisation 6 were larger organisations, having employed several
hundreds of people if not more. The smaller organisations outsourced their development within the same
country and worked on site, except case study 2. In case study 0, 1 and 2, the client was a large public
entity, that delegated (part of) their responsibility to one or several smaller entities, resulting in a
collaboration of private and public parties.

Case by case description
 Case 0 was the pilot interview, which has been added as the pilot was conducted with an actual
practitioner and contained useful data. Agile software development was very new at this time in the
Dutch public sector. The project worked agile stealthily at the start, as the agile methodology was not
very well understood by the program manager overseeing the programme. This meant that the team
worked according to the Scrum methodology, but phrased the concepts in project management language.
Over the course of the development process, agile concepts were gradually introduced and well received.
 Case study 1 did not follow an agile framework, while it did work agile, using sprints,
retrospectives, a backlog, product owner and refinements. One of the participants remarked that this was
how they were used to work. The case study was characterised by a crisis structure as well as a green
field situation and thus was expected to be agile dominant, as there was more adaptability required due
to uncertainty and standardisation is less important. This case study was the only case study that had no
formalised architecture role.
 Case study 2 did not follow the SAFe framework, as the project was too small to implement the
framework effectively. Consequently, they employed Scrum, which is suitable for projects with a limited
number of teams. It was expected to be agile dominant, since the organisation and team were relatively
small.
 Case studies 3, 4 and 5 were expected to be architecture dominant due to the organisational size,
which tends to invoke more compliance and standards to adhere to. Case study 3 did follow the Scrum
framework, while cherry-picking elements from SAFe. This case study experienced problems with their
context as this was not suited for agile according to participants. Case study 4 did meet all the selection
criteria, however the agile perspective role that had committed to the interview became unavailable and
a replacement was not found. Case study 5 could only provide the IT-architecture perspective as well.
This project used a lightweight version of the LeSS framework. But missed coordination among

49

different agile teams and as a consequence the organisation has recently started implementing SAFe.
Both case study 4 and 5 have agile development processes as non-agile, more traditional development
processes, which allowed for interesting comparisons during the interviews.
 Case study 6 is a private sector organisation that was added to identify whether problems with
a non-agile context were specific for the government sector or not. The interaction model is interesting
as software development is outsourced to another country and time zone. All the case studies were
characterised by complexities in (external) stakeholder dependencies.

Green vs brown field case studies
As the amount of existing systems, standards, dependencies etc. can affect the need for agility or
architecture, Table 9 shows whether a case is a green or brown field situation. A green field operation
is building a completely new system, or a new type of system for the organisation. While a brownfield
situation could be an updated version of a system, a new system that has to be integrated with (many)
existing systems. The green or brown field situation was also linked to knowledge and uncertainty, as
green field situations often require new knowledge and tend to be more uncertain than brown field
situations. Thus, one would expect IT-architecture dominance in green field situations and more agile
dominance in brown field situations. Case study 6 has not been classified, as in this case study a very
high-level discussion was held on a very large software platform that included several teams and
applications. It was unclear whether this is a green or brown field situation based on the interviews, as
the interviews were more focused on checking certain statements made by other participants to see if
they held out in a private sector organisation.

Table 9: Green or brown field situation for each case

 Green field Brown field

Case study 0 x

Case study 1 x

Case study 2 x

Case study 3

x

Case study 4

 x

Case study 5 x

Green field
Case study 0 was classified as a green field situation as their agile approach was new at the time. Part
of the teams worked in a green field technology situation as well, having no prior systems, while some
teams did have an old system and its requirements to look at. Thus, the case shared elements of a brown
field situation in this perspective, but was not fully brown field either. The system for case study 1 was
entirely new for the organisations tasked with its development, consequently it has been classified as a
green field situation. Participants in case study 3 stated that the application they were discussing was
entirely new for the organisation, resulting in a green field classification. Finally, case study 5 was also
classified as a green field situation as there existed no previous network that connected applications for
this purpose, stakeholders had to define their own requirements and reach agreement upon those.

50

Brown field
Case study 2 considered a migration from one platform service to another, the requirements were largely
the same. Thus, it was a brown field situation. Case study 4 considered a modernisation of services,
resulting in a brown field classification as well.

5.2. Selection of interviewees
This section gives further details on the cases, like the roles and experience of participants involved.
The implementation of these and other relevant roles are also shortly discussed. Table 10 shows which
roles have been interviewed for each case, as well as their experience.

Table 10: Roles interviewed for each case study

Case study no. Role 1 Experience in role Role 2 Experience in role

Case study 0 Scrum master/functional
developer

< 5 years n.a. n.a.

Case study 1 Back-end development
team lead/Solution
architect

5-10 years, first time in
political playing field

Back-end developer < 5 years

Case study 2 Back-end development
team lead/Solution
architect

 10 – 15 years Back-end developer < 5 years

Case study 3 Enterprise architect 10 – 15 years Product owner 5-10 years

Case study 4 Enterprise architect 10 – 15 years n.a. n.a.

Case study 5 Domain architect 15 – 20 years Enterprise architect 15 – 20 years

Case study 6 Domain lead 10 – 15 years Product manager 5 – 10 years

The pilot interview was conducted with a professional that shared a Scrum master and functional
developer role. These roles where combined for the majority of the project and later split up. The
interviewee then assumed the functional developer role and passed on the Scrum master role to
somebody else. The interviewee had < 5 years of experience as a functional designer, the Scrum master
role was completely new as agile was a new methodology at this time. An solution architecture role was
approached, but unavailable for an interview, so only the agile perspective was represented in this case.
However, there were enough IT-architecture roles consulted in the other interviews.
 For case studies 1 and 2 a back-end developer and the team lead of this back-end development
team were interviewed. In both cases the tech lead was recognised as a solution architecture role as well.
Thus, both cases contain both perspectives. The back-end teams worked together with front-end teams
in synchronised sprints in the two cases. Both the back-end and front-end teams were outsourced from
different organisations in both cases as well. In the first case study the solution architect/team lead role
had 5 – 10 years of experience, however it was their first time in a project that involved a lot of politics.
The solution architect/team lead role had 10 – 15 years of experience. The back-end developers had <5
years of experience in both cases.
 Case study 3 consisted of an interview with an enterprise architect with 10-15 years of
experience, as well as a product owner with 5 – 10 years of experience. These roles added new
perspectives, as these were the first enterprise architect and product owner roles that were interviewed.
This enterprise architect was also the lead of the IT-architecture team. The enterprise architect role
typically had less interaction with developers and more interactions with other architects, solution
architects in this case. In general, enterprise architects were found to have interaction with more senior
stakeholders, internally in their own organisation, as well as externally with stakeholders from other
organisations, for example concerning external dependencies of systems. The product owner role has
the responsibility to deliver the software solution and determines priorities for/with the development

51

team.
 In case study 4, an enterprise architect as well as an IT-lead role were available for interviews.
However, the IT-lead role became unavailable. The enterprise architect had 10 – 15 years of experience.
In case study 5, two architecture roles were available for interviews: an enterprise and domain architect.
Both roles had 15 – 20 years of experience. It was tried to approach an agile development team role as
well, however unsuccessfully. The enterprise architect in this was also the lead architect and organised
their architecture team according to the TOGAF model: having an enterprise, business, technology
architects. As well as domain and solution architects. The technology architects were specialised in a
specific technology, while a domain architect covered a specific domain within the organisation and
formed a bridge between various IT-architecture roles. For example by helping a solution architect to
fit their solution under the domain and enterprise architecture. Thus, case study 5 investigated an
interesting combination between the TOGAF and the SAFe frameworks.
 In case study 6, a product manager and domain lead were interviewed. The product manager
role oversaw and coached various product owners that were working on a platform that connected,
business clients, consumers and suppliers. The product manager role had 5 – 10 years of experience and
has had a background as developer. The domain lead role had 10 - 15 years of experience. It seemed to
be comparable to a lead architect or domain architect role. As the domain lead had multiple delivery
managers, solution managers and solution architects working in their team and oversaw the business to
consumer side of things. The solution architects were responsible to work across various teams and
integrate several different technologies, as development teams were very technology driven.

5.3. Classifying the interaction model of each case study
The research approach to address the empirical perspective of the first research question was to first
colour code transcripts and put relevant data in a tabular case study report Appendices C-I. Then to
characterise each case study in the conceptual model of the previous section.

5.3.1. Architecture dominant case studies
A final overview of which architecture dominance characteristics cases exhibited is given in Table 11.
Note that case study 1 did not have any of the architecture dominance characteristics.

Table 11: Case studies mapped to architecture dominance characteristics

architecture
dominance
characteristic
s

Directionall
y composed
architecture
by
architects

Little/no
alterations
possible
after
compositio
n of
architecture

Developmen
t team
initially not
considered
in
composition
of
architecture

Interaction
with
developmen
t team is
upon
transfer, in
case of
problems
and upon
delivery of
the project
only

Issues for
the
developmen
t team arise
due to the
architecture
and/or it’s
inflexibility

Since not
everything
can be
known
beforehand,
issues for
the
developmen
t team arise
due to the
IT-
architecture
and/or it’s
inflexibility

Uncertaint
y is
addressed
up-front

Waterfall
or
hierarchica
l
approach

Case study 0 x x
Case study 1
Case study 2 x x x
Case study 3 x x x x x x
Case study 4 x x x x
Case study 5 x x x x x x
Case study 6 x x x

52

In cases 4 and 5 the process flowed in a waterfall like way, as depicted in Figure 8, with an agile
process only at the bottom in formulation of user stories and their translation into working software.
Because of this, these software development processes were classified as IT-architecture dominant
cases. The process usually started with either a minister announcing something, for example an
implementation of a new law or with an internal business stakeholder that had an idea, such as a new
software application that optimised the workflow in a business process. For now, the important notion
is that this interaction model is vastly different from what the SAFe framework, that organisations
wish/try to adhere to, propagates (Figure 9). This approach created fragmentation and throw it over the
fence behaviour instead of multi-disciplinary teams that take co-ownership and co-create solutions that
align business processes with the IT landscape. While there was some multi-disciplinarity in the teams,
by mixing architects and business stakeholders and sometimes product owners, development team roles
were not considered at the start on a structural basis.

Figure 8: Waterfall process flow

Figure 9: SAFe agile architecture process flow (Lankhorst, 2019)

53

The waterfall model, depicted in figure 8, usually followed a similar structure, an enterprise
architect discussed with external and senior internal stakeholders how the new idea or law would affect
and fit into the current enterprise landscape. This concerned the business processes as well as IT.
Cooperation with developers was not present or minimal, I.e., quarterly. In all case studies interaction
between the enterprise architect and developers was minimal. For example, in case study 3 the enterprise
architect(s) presented the new architecture, consisting of principles, frames/guardrails and guidelines,
and the development teams could listen and ask questions. In case studies 2, 4 and 5 there was no face-
to-face interaction between enterprise architects and developers, as this was the task of domain and/or
solution architects. After the enterprise architect was finished finding agreement on requirements with
external and senior internal stakeholders, the relay baton was passed on to the domain architect or
solution architect, depending on the size of the organisation. A domain architect was responsible for a
specific domain of the enterprise in a larger organisation and thus implements the changes of the
enterprise architecture into their domain architecture. In this process the architecture lost some of
abstraction and became more fine-grained. This continued as the domain architect passes the changes in
the domain architecture down to the solution architect, which translated the domain architecture into a
solution architecture, Project Start Architecture (PSA), technical design, list of requirements or a
combination of these. Based on the PSA, technical design, requirements document or solution
architecture the development team started to formulate user stories together with the business. The
deliverable of the solution architect was in practice anything between a predefined blueprint ready for
implementation to a set of guidelines, principles and frames.49 Thus, there was a varying amount of
freedom for the development team to work with, even for distinct development processes within
organisations, depending on the solution architect. These user stories are then transformed into working
software through an agile process, meaning that in essence the agile process only took place at the end
of the process.
 There was a clear reason why architects are usually the role to affect a software development
process50 first in a government context. First, they had technical expertise as well as access to senior
stakeholders that was needed to start with the translation of a legal text into a technical solution. The
architects worked out a high-level architecture for the chain, or network of stakeholders and then how
this affected their own enterprise architecture landscape, which was then translated into a Project Start
Arichitecture (PSA), which could range from a high-level description of the solution to an extensive
document with hundreds of requirements or even snippets of code. Across and within organisations there
seemed to be no general definition on what should be included in a PSA to frustration of both IT-
architects and developers. Second, as this process was formalised through the NORA and in such a way
that allowed for discretionary freedom of experts (ICTU, 2021b). This often led to complaints of
developers that they received either too little frames to work in or were that too much was predetermined.
This confirmed the findings of the literature review that the amount of architecture that is needed is a
case specific balance point.
 While initially, the role of a software architect was thought to be found present closely to agile
development teams, this role was not found. Instead, solution architect was the architect that was closest
to the development team. Even in cases where the SAFe framework was not used at the time of the
development process. Thus, it might also be that the participants perspectives are enriched with their
current knowledge when reflecting on past software development processes. Even though the framework
prescribed the use of a system architect, which is closer to a technology, application or software architect
role (Scaled Agile Inc., 2021). Case studies 5 and 6 specifically stated that they used a technology
architect role, while an enterprise architect in case study 3 mentioned specifically that this role was
lacking within their organisation. In case studies 0 and 2 an infrastructure team or DevOps and
Implementation Engineer roles were comparable to the software architecture role.

49 Constraints or must have requirements.
50 Often called a project, programme or procedures, but usually has project management like characteristics in
terms of governance and management.

54

 The way organisations coped with feedback on the architecture from the development team
differed greatly across and within organisations, again depending mainly on the architect. This was an
important factor in the classification of the conceptual interaction model. Where some architects sought
to balance short term functionality with long term sustainability of the IT landscape more according to
interactive theoretical model in Figure 9, others dug themselves into trenches, defending their
architecture, sticking to the theoretical model of Figure 8. Not since they did not want to cooperate, but
since the proposed changes were only helpful in the short-term and would cause issues in the long term.
The degree to which architects allowed changes to the architecture varied. For example, in case study 4,
deviations from the architecture were allowed, but needed to be cleaned up after several months in such
a way that the operation becomes unattended and unmonitored. A similar formalised process exists in
case studies 5, however with limited success.

5.3.2. Agile dominant case studies
Case studies 1 and 3 were classified as agile dominant. Table 12 presents an overview of which cases
have which agile dominance characteristics.

Table 12: Case studies mapped to agile dominance characteristics

agile
dominance
characteris
tics

Developm
ent team
stakehold
ers are
ones that
compose
the
architectu
re

Frequent
alteration
s to
architectu
re based
on new
insights
or issues
from
developm
ent
process

Solution /
software
architects
outside
the
developm
ent team
initially
not
considere
d in
compositi
on of
architectu
re

No
formali
sed
architec
t role

Lack of
recogniti
on for
architectu
re by
developm
ent team
or
architectu
re is not
considere
d

Issues
arose due
to a lack of
upfront
planning or
architectur
e

Uncertain
ty is
addressed
on the go

Short
cyclical-
approach
used in
solution
architecture
design.

Face-to-face
interaction
had a central
role in
establishmen
t of
software/sol
ution
architecture
and agile
software
development

Case
study 0

 x x x x
Case
study 1

x x x x x x x
Case
study 2

x x x x
Case
study 3

 x x x
Case
study 4

 x
Case
study 5

 x x
Case
study 6

 x x x x

In case study 1, the software/solution architecture role was not really formalised and recognised.
Still, both interviewees in this case study pointed towards the same person when asked who fulfilled this
role. This was one of the cases where the Team lead was also envisaged as the solution architect.
Interaction surrounding architecture issues was frequent and formalised as well as initiated outside
formalised meetings by both parties. The solution architecture foundation was laid in the first week and
further developed ‘along the way.’ For example, the Team lead/solution architect would address issues
with tooling that the development team experienced. The responsibility for the solution architecture was
clearly with the development team here. Solution architecture items were put on the backlog and
implemented through sprints, just as in other case studies. Thus, this could be an example of emergent
architecture dominant case as described by the SAFe framework and was classified as an agile
dominance case in the basic typology of interaction models.
 Consequently, case study 1 was an example of just starting to build things, as a minimal solution
architecture has been developed by the person who started the project. Which was up and running after

55

a week. While there are some architectural designs, like a drawing. This seemed limited when compared
to other cases, where the designs had passed the hands of various architecture roles before it reaches the
development team. Further evidence was a description of how technical problems emerged during the
project, the question is whether a formalised architecture role could have identified these problems
before hand, for example when planning a few sprints ahead, and advised the team how to cope with
quality problems. Which was something case study 2 employed. They planned a few sprints ahead with
the development team, PO, operations, solution architect/team lead and identify issues that may cause
problem and assign these to be researched by the relevant stakeholder. This way they cleared as much
impediments they were able to foresee as possible and could be an explanation for their lack of technical
debt.
 The solution architect worked out the solution architecture together with the lead developer in
case studies 3. However, this did not go as intended, as trouble with ownership was encountered. In case
study 3 the IT-architects had their own informal procedure to address these differences of opinion on
working under the IT-architecture. In case study 3, the enterprise architect escalated the decision to
ignore the IT-architecture to management, as the consequences were their decision. They wrote a
scenario document for both following and ignoring the architecture and presented these to the
management. Usually, the relevant architecture was upheld, but not always. There were several
examples given by the enterprise architect of how their opinion was ignored and caused issues later
(Appendix F).
 Since the developers built working software and pushed this into production, while IT-
architects had an advisory role, the informal decision-making capacity was with the developers in case
studies 3 and 5. Even though there were formal escalation procedures to management, where IT-
architects sometimes got the formal support of management, this did not lead to developers doing what
the architects want in case study 5. As reworking to make the application fall under the architecture
again had low priority with management, PO’s and teams while human resources were scarce and
demand for (alterations in) applications was high. Resulting in the changes standing on the backlog
indefinitely. Development teams seemed to have become aware that they could ignore the IT-
architecture without real consequences and started regarding the IT-architecture as some documentation
that nobody read or should read, often with large rework phases and a lot of technical debt on the backlog
as a result. Sometimes even blaming the IT-architect team for the rework and technical debt.
 While other cases did have characteristics of an agile dominant interaction model, they were not
classified as such. All case studies used an short-cyclical approach for their software development,
however case studies 4 and 5 had a mix of both traditional and agile development teams.

5.3.3. Balanced exchange model case studies
In case study 2, the solution architect and team lead were consolidated into the same role. The solution
architect thought out an unfinished blueprint. Interestingly, their interaction model came close to what
the SAFe framework prescribes. A blueprint with holes in it was used as a metaphor in the interview.
Physical workshops were organised specifically to fill these holes over the course of the development
process, together with other relevant stakeholders, for example from operations, to ensure sustainability
of the solutions. Hence this case studies shared characteristics of agile and IT-architecture dominance
models. Development team stakeholders were not initially considered, but were involved for specific
issues during special architecture workshops. This case study experienced almost no technical debt and
interviewees reflected positively on the project.
 Case study 0 did not take place in the past five years, which is relevant, as it had an interaction
model that was similar to that described in SAFe, even though SAFe did not yet exist at the time of the
project. Consequently, it was classified as having an balanced exchange interaction model. In this
software development process, the PO and Scrum master/functional developer were involved in the
formulation of the requirements in the PSA. Requirements from the PSA were then translated into
features using the refinements, up to two sprints ahead. During this process various stakeholders were
present, a solution architect was consulted before and during the refinement process. The solution

56

architect helped to represent the non-functional requirements, while the PO represented the functional
requirements. In addition, a Project End Architecture (PEA) was made by solution architects at the end
of the development process. This documented all new insights and developments that defined the new
solution architecture state and was then transferred to the administration organisation.51. If this happened
in an iterative process, it came close to an agile architecture. However, an agile architecture is developed
in an incremental way up-front and during the development process to assist development teams, while
the PEA was mainly for operations.
 What is interesting about case study 5 is that it ran agile software development processes as well
as waterfall software development projects. Consequently, not every team had an assigned solution
architect. This organisation used an incremental architecture on an agile development process, this
incremental architecture process was called an MVA, minimum viable architecture. However, since the
discussed project was an older project, the non-iterative PSA procedure was used. The domain architect
that worked on the project tried to keep some room in the PSA for the development team and solution
architect to work with. In doing so, he experienced pushback from colleague architects. For now, it is
important, that in this case study, during the specific software development process that was discussed
there was an exchange model present. However, it is difficult to say how interactive this exchange model
actually was, as the solution architect made the first iteration of the MVA with designers. The later
iterations of the MVA were delivered in dialogue with the development teams.
 In case study 6, the architecture was designed in an iterative, agile process. The solution
architects had a critical position that looked across teams, as individual teams are very technology
driven. Meaning they were specialised in a certain technology, such as a programming language, but
unable to identify the effects of their work on other parts of a solution that used a different technology.
The solution architect worked together with development team leads, designers, product owners, senior
testers and a business analyst in a ‘horizontal bubble.’ A first design of the solution was made and
challenged by the other stakeholders, adding insights that the solution architect had missed. The amount
of involvement of the solution architect was determined by the uncertainty that a capability had. In
general, for completely new or big impact capabilities the solution architect was more involved than in
smaller, more procedural changes. However, in the latter case the architect was still involved, albeit
more in a reviewing role, for example in refinement and end-to-end testing.
 A final overview of the classification of cases to interaction models in the typology is given in
Table 13. It would be interesting to be able to make more distinctions within balanced exchange model,
as in this model, case studies seemed to differ more than across cases than in architecture dominant
cases. Case studies 1, 3, 4 and 5 were classified according to expectations of the case study upon
selection. Case studies 2 and 4 differed from the expectation.

Table 13: Initial classification of case studies to interaction models in typology

Interaction model Agile dominant Balanced exchange model Architecture dominant
Case 0 x
Case 1 x
Case 2 x
Case 3 x
Case 4 x
Case 5 x x
Case 6 x

51 Operations

57

5.4. Conclusion of chapter 5
Characteristics of the selected case studies have been discussed. The roles of the interviewees in the case
studies were also presented. Then the case studies were classified using the typology that was presented
in chapter 4. Two case studies has been classified as agile dominant, two case studies as It-architecture
dominant and four case studies have been classified as a balanced exchange model. One case study had
both waterfall development processes as agile development processes in the organisation. Two cases
were not classified according to expectations upon selection. For the balanced exchange models it was
difficult to determine how they were balanced with the typology of chapter 4. It would be interesting to
be able to make more distinctions within balanced exchange model, as in this model, case studies seemed
to differ more than across cases than in IT-architecture dominant cases.

58

6. The influence of context factors on empirical interaction models:
an extended typology
This section discusses how context factors impacted the empirically identified agile-architecture
interactions. Context factors from literature where validated. New context factors have been found:
trust and stability.

6.1. Communication, trust, stability, knowledge and perceptions
Since communication, knowledge and the software architect and team have been found as important
factors for IT-architecture and factors that are related to governance, these factors were discussed with
participants to start a discussion on how governance affected the interaction and added value. Expected
perceptions between the role of IT-architect and of agile developer have been identified in some cases,
while in others they were absent. Trust and stability are new factors that were included due their
occurrence across cases.

Communication
In case study 3 and 5 there was mention of internal conflict between several groups. For example,
between solution architects and developers, but also among IT-architects and developers themselves.
One explanation could be that these organisations are more large scale and that people that interact on a
team-to-team basis have less incentives to avoid confrontation than people who work in small teams.
However, the organisation of case study 3 is smaller than the organisation of case study 5. Another
explanation could be that people or teams interact less often in these organisations. However, there was
also mention of conflict within certain roles, it is unclear whether this was always between different
teams sharing the same role (I.e., developer or domain architect). In both cases it was clear that it
concerned different teams. Participants argued that a certain degree of conflict or difference in
perspective is needed to build something that works for all stakeholders. On the other hand, too, much
conflict can be destructive as it can lead to people not willing to interact anymore. These are clear
examples of how communication affects the interaction models.

Trust and stability
While the literature review identified risk management, communication, the team. Software architect
and knowledge as important factors that influenced the combination, interviewees in case studies 0 and
1 emphasized the role of trust when asked for benefits, while case studies 1 and 2 linked trust to the
stability of the team. In case study 1 mainly in the negative sense, seeing team members from other
teams leave due to a lack of trust. In case study 2 more in the positive sense, allowing to create a stable
sprint rhythm through trust.

Knowledge
Trust can be increased by knowledge in each other’s practices or decreased by ignorance on each other’s
practices. The disregard of It-architecture in some cases by teams were examples of a lack of
architectural knowledge that led to technical debt. While the inability of IT-architects in other cases to
alter their designs on new insights by the development teams was an example of a lack of knowledge on
agile methodologies. One participant in case study 5 made an interesting statement on how they
envisioned their organisation in a perfect world: this was an organisation that was very experienced and
knowledgeable in agile and IT-architecture, where architecture knowledge would be an inclusive part
of the agile development teams, beyond the function of a solution architect, with team members taking
on the role of an solution architect. However, this would require organisational development, as this
would require developers with It-architecture knowledge. A similar vision was expressed in case studies
3 and 6.

59

Perceptions
The perception of both participants in case study 3 was that IT-architecture lays the foundation and agile
could help to design the building on top of the foundation. And both can work together to reach a good
end product. If you do not lay this foundation with IT-architecture, a team will take shortcuts that lead
to issues later on. This perception is interesting as it is quite IT-architecture dominant. Such an
perspective, shared by both the agile and IT-architecture perspective are very likely to have influenced
the interaction model in this case. Two interviewed IT-architects from case studies 3 and 5 were unable
to interact with a development team member, due to the simple fact that they were an IT-architect and
this development team member had an unfavourable perception of IT-architects. These are empirical
illustrations how perspectives on both roles affect a software development process.

6.2. Uncertainty and risk
First the definitions of uncertainty and risk are given to illustrate the difference, then their influence in
case studies is discussed.

Uncertainty
Uncertainty are white spots in knowledge or future events. Often expressed in quantitative distributions,
i.e. percentages of occurrence, or qualitative ordinal rankings, such as low, medium, high
classifications.

Risk
Risk is uncertainty multiplied by impact. Thus taking into account the consequences of the possible
outcomes as well. This could also be a quantified measure or a more qualitative ordinal scale.

Risk management
The practice of identifying and mitigating risks through the use of governance strategies that investigate
or mitigate the uncertainty or impact of a risk.

Occurrence in cases
The main difference between uncertainty and risk is that uncertainty does not consider the impact yet.
Risk management is important for us as Waterman (20181; 2018b) introduced risk tolerance of an
organisation as a way to determine how up-front architecting should be balanced with agile architecting.
The following uncertainties and associated risks have been found in case studies:

• Staffing: finding the right people.
• Requirements: will requirements change? Will new requirements come up in the

development process? What will be the impact of this?
• Technology: legacy systems and technical debt. How will this affect the project?

 In case study 5 the IT-architects tried to make their designs waterproof and deliver them
‘finished.’ However, since new things kept popping up, the designs were never actually finished. Even
though the deadlines of the development teams were fixed. The IT-architects intention was not to hamper
the developers in their progress, but to manage risks and uncertainties. The agile methodology was
founded to cope iteratively with a specific kind of uncertainty. Empirically, it has been found that rework
and technical debt could be a consequence of up-front architecture as well as the short-cyclical agile
methodology. Since not everything can be known beforehand, up-front architecture design have been
found to be a cause of technical debt and rework in case study 4. IT-architects were not always able to
assess which issues developers would encounter, thus the IT-architecture could not consider these issues.
Similarly, if the IT-architect has been overly fearful of certain issues, that had only limited effect on the
development process (or other processes). This led to overly stringent requirements or frames for
developers to work with. The other way around, just starting to build something in a short-cyclical way

60

led to developers running into issues that could have been simply avoided with more up-front planning
and coordination on when to build what. This has been found in case study 1. Thus, up-front architecture
could reduce known uncertainties and risks, while the agile methodology could help to tackle unknown
uncertainties risks.
 Case study 0 addressed uncertainty on requirements by using refinement and demo52 sessions,
which is interesting as another case study, number 1 and 3, struggled with getting these sessions right
and experienced problems due to too much uncertainty on requirements. In case study 2 participants
also stated the stories and agile approach helped them to address uncertainty. Interestingly, case study 6
followed Waterman’s (2018a & 2018b) theory on managing uncertainty in an economic sense. One
participant defined two extremes to address uncertainty and associated risk: 1) up-front planning, so
dependency and risk management or the ‘normal’ project management approach if impact or uncertainty
are large; 2) if the uncertainty or impacts of the risks are low: proceed in an 100% agile way to
incrementally build and solve impediments. The participant concluded by stating that there is a
combination of both. Thus showing that Waterman’s (2018a & 2018b) theory is implemented in
practice.

6.3. Improving the typology
The balanced exchange model can be split up based on these context factors. Four new interaction
models are introduced with their own characteristics:

1) The carry over or ping-pong model;
2) The louse in pelt model;
3) The solution architect as cooperating foreman; and
4) The co-development model.

Note that the first model leans more towards the IT-architecture dominance model, while the fourth
model leans closer to the agile dominance model. Consequently, these four interaction models are
archetypes for balance points of IT-architecture and agile in software development. Both the IT-
architecture and agile dominant interaction models can considered as more extreme models than before,
due to the new nuances in the balanced exchange models. The individual models and their characteristics
will be discussed next.

6.3.1. The carry over or ping-pong model
The most IT-architecture dominant exchange model is the carry over or ping-pong model. It has the
following characteristics:

1) IT-Architects starts with up-front design and throws this over the fence and is to be carried over
to development team.

2) IT-Architecture may not be altered or is difficult to alter.
3) Solution/software architecture role is one-to-many relationship with agile development teams.
4) IT-architecture is designed iteratively, going back and forth between IT-architects, developers

and business.
5) Solution/software architecture deliverable is (nearly) finished architecture.
6) Agile team delivery is working software before a big deadline
7) Solution/software architects and developers do not or rarely interact, interaction must be

organised by an external party
8) IT-architect is rarely involved in development team issues, mainly through formalised IT-

architecture or quality boards
9) Solution/software architecture role is not involved in agile ceremonies
10) IT-Architecture role is/wants to be in charge of solution

52 To present a prototype.

61

11) Ownership of solution transfers from IT-architecture roles to product owner/development team
role

12) Development team has informal power over solution as they develop working software

In conclusion, the IT-architecture is quite rigid, but alterable with difficulties for example through a long
formalised processes including high-level boards. Iterations are used to develop the IT-architecture,
however these are ping-ponged over various stakeholders, following a waterfall-like or layered structure
from senior stakeholders to agile developers. The balance point regarding uncertainty and risk is more
on the up-front side than on the agile side, especially in the phases before actual development takes
place, such as requirements and design stages. Consequently, the organisation is less mature in agile, as
this phased approach to software development clashes with agile software development.

6.3.2. The louse in pelt model
A less IT-architecture dominant exchange model that is still on the IT-architecture side of the balance is
the louse in pelt model. It can be characterised by the following characteristics:

1) IT-architecture is altered if really necessary.
2) Solution/software architecture role is one-to-multiple relationships with agile development

teams.
3) Solution/software architecture deliverable an incomplete blue outline of components and their

relationships.
4) Agile team delivery is working software before a big deadline.
5) Solution/software architect(s) and developers have formalised interactions through agile

ceremonies and do seek out each other on their own initiative.
6) Solution/software architecture role is involved in the first iterations of the refinement process

of features/stories that have not been done before, more standard cases are handled by the tech
lead.

7) IT-architecture role is involved in agile ceremonies in a not-so hands-on way, for example as
reviewer only.

8) Product owner is in charge of solution.

In summary, alterations are easier than in the previous model, a single solution or software architect
interacts with several agile development teams through formalised interaction points in the agile
ceremonies of teams, for example refinements. However, not in a hands-on way, for example as
reviewer. The deliverables of solution or software architects are incomplete designs, so some risk is
taken on how to approach certain components. This exchange model allows for more agile maturity than
the ping-pong model as agile teams and IT-architects work together more closely. Thus, the agile
processes are less conflicting with the approaches of the IT-architects, they are even integrated on a
basic level. However, the focus is still more on delivering working software before a specific big
deadline instead of at the end of sprint.

6.3.3. The solution architect as cooperating foreman
Moving from the IT-architecture dominant side to the agile dominant side, the first exchange model that
comes to past is the solution architect as cooperating foreman. In this model the IT-architecture
component of the combination is relatively influential as it is shared with the team lead role of the agile
development team. Thus, the balance point is determined by the person fulfilling this role. This
interaction model can be identified by these characteristics:

1) IT-architecture is altered regularly.
2) Solution/software architecture role is shared with team lead role.
3) Solution/software architecture deliverable an incomplete blue outline of components and their

relationships.
4) Agile team delivery is shippable software at the end of a sprint.

62

5) Solution/software architecture role and agile developer roles have constant interaction through
internalisation of both roles within the same team.

6) Solution/software architecture is involved in agile ceremonies hands-on way.
7) Product owner is in charge of solution.

Since the solution architect is the same person as the team lead, the solution architect is involved in more
agile ceremonies than the previous interaction model. In addition this role is more actively involved,
occasionally picking up software/solution architecture related development work for example.
Shippable, working software is delivered at the end of sprints and agile maturity is relatively high. The
team is self-organising as the IT-architecture knowledge is integrated within the team, the IT-
architecture role can serve as an interface with other teams and introduce specific knowledge if
necessary, for example from an infrastructure team. Alterations to the IT-architecture are made faster
and more frequently, as the solution architect experiences them directly and communicates changes in
software/solution architecture that affect other parts of the IT-architecture to relevant IT-architecture
roles.

6.3.4. The co-development model
The most agile dominant exchange model is the co-development model. It has the following
characterises:

1) IT-architecture is altered constantly
2) Solution/software architecture knowledge is integrated in the development team
3) Solution/software architecture deliverable is minimal set of decisions on components and their

relationships
4) Solution/software architecture role and agile developer roles have constant interaction through

internalisation of both roles within the same team
5) Agile team delivery is shippable software at the end of a sprint
6) Solution/software architecture is involved in agile ceremonies hands-on.
7) Ownership of solution is shared among stakeholders
8) Solution/software architecture is involved in agile ceremonies in a hands-on way

In this model software is software is developed by multi-disciplinary agile teams that have integrated
solution, software and relevant technology architecture knowledge in multiple team members. Since the
IT-architecture knowledge is shared among team-members, but not formalised in the team lead role, the
interaction model has more potential to balance IT-architecture and agile software development as is
needed, as the knowledge does not lie with a single person. Moreover, this single person is not the leader
of the agile development team. This interaction model requires high agile and IT-architecture maturity
to work properly, as team members to need be able to identify which balance point is suited based on
the context. This interaction model enables high maturity of both agile and IT-architecture, as team
members are hands-on involved in issues, while also communicating them effectively to other
stakeholders in the organisation, being able to stand-above coordination issues themselves, or knowing
who to seek out and value in this regard.

63

6.4. Classifying case studies in the new typology
In this section the classification of case studies is re-evaluated. All case studies were classified in the
new typology. An overview is given is table 14.

Table 14: Classification based on extended typology

Interaction model Agile dominant Ping-pong Louse in pelt Solution architect
as cooperating
foreman

Co-
development

IT-architecture
dominant

Case 0 x
Case 1 x
Case 2 x
Case 3 x
Case 4 x
Case 5 x x
Case 6 x

Case study 0 was classified as a louse in the fur interaction model. In this case study, the solution
architect supported several teams, similar as in figure 10. The Scrum-master and PO were involved in
the formulation of the requirements in the PSA. These requirements were translated into features, which
were detailed in the refinement sessions. Workshops were organised to discuss what has been built and
to discuss what should be built in the next sprints. The solution architect, PO, operations and other
stakeholders, for example end-users were involved in these workshops. Prototypes were extensively
used to validate requirements during these workshops. Changes to requirements that affected the PSA
were iteratively added to the PEA. The solution architect was asked each week to review user stories as
part of the refinement and to review deliverables during the workshops. The distance between the
solution architect and agile development teams was described as small by the participant. The participant
stated that this stood out from other development processes they experienced.

Figure 10: Team of architecture roles supports multiple agile development teams (Mihaylov, 2015a)

 Case study studies 1 and 5 kept their classifications. Case study 1 was classified again as agile
dominant. While the case study did have integrated a solution architect in without an formalised solution
architect role. Up-front planning and design were not effectively used to cope with problems. For
example, the team ran into issues with scalability later in the project. A more scalable setup could have
prevented these issues from happening. These problems, were however more attributed to the green
field, crisis situation and the PO’s, than to the team. As the PO’s did not act on feedback by the solution

64

architect and prioritised for new functionalities rather than non-functional work. Moreover, the
requirements changed abnormally frequently, multiple times over a sprint. Essentially, preventing the
team from achieving balance in up-front and agile architecting. An alternative explanation could be the
relative inexperience of the development team in the roles of solution architect and back-end developers
in combination with the crisis situation. However, the participants stated that their team was always
able to deliver the expected quality on time.
 Case study 2 was classified as an solution architect as cooperative foreman model. This situation
is represented by figure 11. In this case study, the tech lead role was combined with the solution architect
role and employed by an experienced person. This project was more stable due to the lack of a crisis
structure and brown field situation. Thus, the context provided more room for the solution architect and
team to effectively use up-front planning, for example by using a micro-service architecture to allow for
standardisation and scalability. But the context cannot be attributed alone, as the solution architect and
team initiated workshops themselves to discuss the solution architecture with all stakeholders. In
addition, the team used separate refinement sessions for design and more technical stories, enabling the
PO to create design oriented stories for the backlog, and the developers to transform these into technical
stories at a stable rate through the sprint rhythm. Allowing the team to plan ahead 3 sprints, while
keeping flexibility to alter this planning if new insights occurred, for example during the refinements of
functional requirements, as here the impacts on other parts of the platform were also discussed. During
the interviews, it became apparent that the team lead position granted the solution architect considerable
power over the software development process, as they were the one that trained both back-end
developers on the team and peer reviewed their work. All of the work at the start and selectively later,
showing very hands-on involvement through the peer reviews, coding, agile ceremonies and workshops,
while also being the main interaction point with other stakeholders, such as the DevOps engineer.

Figure 11: Architecture role integrated in agile development team (Mihaylov, 2015b)

 Case study 3 was classified as a ping-pong or carry over model. The IT-architecture team was
described as supporting troops in bringing alignment between the software and clients’ needs by the
enterprise architect. While this role also admitted that the teams might not always see the IT-architects
this way. Since they set constraints or impose additional requirements, such as setting something up as
a service for re-use, they were often seen as burdensome by agile development teams. Giving a clear
illustration of how perspective affect the interaction model, as this diminished their recognition for the
IT-architecture roles and IT-architecture. The team leads and solution architects were struggling with
ownership of the solution architecture. Leading to either too little or too much solution architecture for
teams. This is made worse by the lack of the software architecture layer, that specifies functional needs
into technical design decisions and could address the gap between solution architecture and development
teams. Moreover, participants found their organisational context, and the government context in general,
not suited for agile. Since stringent deadlines, tender procedures and budgets are clashing with agile
processes. Additionally, IT-architecture was described as important to lay a foundation, such as a micro-
service architecture, on which the agile teams could alter the looks of the buildings in an agile fashion,
hinting at carrying over IT-architecture designs from the top of the hierarchy down to the development.
 Case study 4 was also identified as a ping-pong model as well, as in the first steps of the IT-
architecture, IT-architects mainly interacted with business stakeholders. Then when several iterations
have been done, the solution architecture was presented towards the agile teams, in a go do way. Making
the business and It-architecture, callers, calling for new capabilities and functionalities and the agile
software development teams producers of these capabilities and functionalities. Forgoing, the idea of

65

prioritising which capabilities or functionalities that are needed together. Instead the idea has been
transformed into an epic hypothesis, accompanied with constraints, which were then prioritised by
business. Then detailed epic designs were worked out to a solution outline, a business would be added,
and an MVP would be defined. This would again be prioritised by business based on expected added
value, business goals and risks, and if passed as important enough, worked out into features. Then these
features would enter the backlog of the agile development teams. Resulting with an waterfall process
with an agile process at the end.
 Similarly, in the MVA process of case study 5, the first iteration of the MVA was with business
stakeholders. The second and third-iterations were with more technical stakeholders. This would lead to
a classification as carry over model as well for case study 5. The organisations architecture structure
was layered according to the TOGAF model. However, the domain and solution architects did attend
agile ceremonies such as refinements and demo’s. This was difficult due to the fact that five teams
worked in synchronised sprints. In addition, it seemed that the PSA provided the agile teams with
direction for the definition of ready for their user stories. It was stated that this was an interaction point
for the solution architect and agile development team, as discussions on the goal of the solutions the
teams were building were held. Resulting in classification as louse in pelt interaction model. Note that
case study 5 has been classified as IT-architecture dominant as well, as it involves non-agile
development teams who have no assigned solution architect. Resulting in a traditional software
development process for these teams.
 Participants of case study 6 described that they were transitioning from waterfall towards agile
software development. The degree to which this transition was implemented differed across teams. The
case study was classified as a louse in pelt model as a combination of waterfall project management and
agile software development existed. On the other hand, relevant stakeholders, such as PO’s and solution
architect were taken into a bubble that worked out designs in an agile fashion, gathering new insights
along the way. However, solution architects designed the first iteration of a solution architecture and
then included the tech leads, product owners and senior testers to shoot on the solution. After this the
solution would help the team to create features and two or three epics. The product owner would start
working out the features, epics and stories below them. The reason being, that the platform combined
several technologies, which were practiced by specific teams, which provided functionalities. So an
individual story did not directly add business value in this organisation. These features were more
business oriented and included acceptance criteria and end-to-end outcomes. Features were reviewed by
the solution architect. Product owners did not go deeper than feature level. However, this process was
only used for new features and not for known cases, which were handled by the tech lead. This case
study was striving for a headless, micro-service architecture to enable agile software development,
especially for front-end components. Interaction between solution architects and agile development
teams was mainly conducted through product owners and team leads. Solution architects were used to
look ‘over the wall’ as illustrated in figure 10 to identify possible effects of choices by one team on
another team, as teams worked independently on different technologies.
 The co-creation model was not found in any of the cases, however it was formulated as the
desired situation by various domain and enterprise architecture roles in case studies 3, 5 and 6. The main
reason being that solution and software/solution architecture personnel is difficult to find.

66

6.5. Conclusion of chapter 6
The importance of communication and knowledge as context factors of the interaction from literature
have been validated. Trust, stability and perceptions of both role were found to influence the case studies
as well across several case studies. Trust, stability and perceptions of both roles were discussed to add
to existing literature. The influence of uncertainty and risk as context factors to determine a balance
point for agile-architecture interactions by Waterman (2018a & 2018b) has been validated. Risk and
uncertainty played a role on three different aspects: 1) Requirements, 2) Technology and 3) Staffing.
Context factors were able to influence the interaction of IT-architecture and agile software development
in both positive and negative ways. Based on the influences of the context factors that were identified
and the differences and similarities of balanced exchange interaction models, the typology has been
expanded. The balanced exchange interaction model has been split up into four new exchange
interaction models, resulting in a total of six possible interaction models:

1) It-architecture dominant interaction model;
2) The carry over or ping-pong model;
3) The louse in pelt model;
4) The solution architect as cooperating foreman;
5) The co-development model; and
6) Agile dominant interaction model.

Contributing with two very extreme ends and four reference points for balanced exchange models to
academic literature and practitioners.

67

7. Problems in empirical interaction models
In this chapter bottlenecks as well as tensions that were identified in the case studies are discussed.
Remember that a bottleneck was defined as an limitation to a desired outcome in an interaction model,
while a tension concerns a discrepancy in perspective versus another part or role in the organisation.
This chapter will also discuss whether they are reinforcing problems or balancing problems out.

7.1. Bottlenecks and tensions
Bottlenecks and tensions are discussed in relation to the interaction model of each case study.

7.1.1. Agile dominant
Bottlenecks and tensions for case study 1 are discussed.

Bottlenecks
A solution architecture role is often scarce, thus this can lead to this scarce resource being approached
for issues unrelated to the role. Technical debt caused crashes, requiring hot-fixes and further increasing
technical debt. Implementing these fixes put extra pressure on team-members as it imposed working
over hours and increased the chance of new bugs. Over hours were also caused by a lack up-front
planning caused as there was no recognition from the PO for non-functional requirements. This caused
the solution architect to address critical technical debt in over hours, as these non-functional
requirements were not prioritised during the planning sessions and thus could not be addressed in sprints.
Frequent requirement changes during a sprint undermined both effective up-front planning and effective
use of the agile methodology. This resulted in unrefined tickets entering the sprints. While adoption to
changes is key in the agile methodology, changing requirements multiple times a week and assigning
priority to all those changes does not allow for a development team to create a stable sprint rhythm,
especially if the tickets are not well refined. Badly refined tickets were also a bottleneck for the agile
teams in case of requirements that followed the normal procedure.

Tensions
Overhead, including solution architecture knowledge in your agile development team can cause
overhead if there is too little architectural work to do. However, this was not experienced in this case
study, as the solution architecture role could then pick-up development tasks. The quality was
compromised by a lack of time allocated for peer reviews as well, simple procedures as this could have
limited the technical debt. In case study 1, documentation was lagging behind, which caused difficulties
for the development team as the solution architecture changed.

7.1.2. Ping-pong or carry over
Bottlenecks and tensions for case studies 3 and 4 are discussed.

Bottlenecks
Due to large rework phases for old projects, the possibilities for the implementation of new
functionalities and development processes became limited. This bottleneck was present in both case
studies. In case study 3, conflicts between certain people hampered them to do their jobs effectively, as
they could not collaborate effectively, for example getting in heated discussions while they meant the
same thing. The solution architect and tech lead working out technical designs together required time,
however as there was a capacity issue, this tension evolved into a bottleneck in case study 3. This
bottleneck limited knowledge in the organisation as well. In case study 4, business owners could not
reach agreement on a of companywide aggregation and prioritisation. As everything was given
management support in the first step of the process. This created a bottleneck, as there was scarcity in
resources to develop the actual solution and direction level mandate was needed to override this process.

68

Tensions
The software solution that was delivered in case study 3 was supposed to be an MVP, however it was
not really viable, it was more a proof of concept (POC). The enterprise architect in case study saw a risk
of losing oversight of the bigger picture in the nature of agile working, by dividing work into small
chunks. Especially if IT-architecture were not given enough time and mandate. This occurred in case
study 3, where the IT-architecture was ignored and large rework phases resulted. The argument for
ignoring the IT-architecture was to save a few sprints. On the other hand, the enterprise architecture role
in case study 3 admitted that there was too much room for interpretation and there were too much
implicit assumptions in the IT-architecture. Making detailed designs with the tech lead would take time,
on the other hand practising ivory tower architecture also leads to endless discussions. The match of
the government context and agile development were not found fit in case study 3. Fixed deadlines and
large political forces increased the pressure on development teams to skim on non-functionals to save a
few sprints. Stringent budgets and 1-2 year long tender procedures to acquire tooling and expertise
imposed additional tensions, requiring extensive up-front planning to address associated uncertainties
they imposed. Another tension in the government context for agile were the complex networks or chains
of stakeholders, often with specific tasks or mandates. Similarly, governmental entities usually delegated
the execution of their responsibilities to a specialised or lower entity. Which reduced the ability of the
PO and agile development team to interact with end-users or the entity that initiated the development
process. This tension has been found in case study 3 as well. Operations needed to know a lot of libraries
in case study 3, as each team was self-organising and could choose the libraries to build new
functionalities themselves. This could have been addressed by one or more software architects
communicating on this aspect. It could also have been addressed by implementing DevOps, making
development teams responsible for the operation of software after the development phase. This was
aggravated as teams can be reallocated to another project every quarter. In case study 4, projects that
required a lot of enablers were prioritised as low, even though addressing of technical debt could be
included in those enablers. Political commitments, without technical consultation led to more stringent
solution possibilities in this case.

7.1.3. Louse in pelt
Bottlenecks and tensions for case studies 0, 5 and 6 are discussed.

Bottlenecks
Scaling the interaction model of case study 0 was identified as difficult. As the solution architecture and
agile development team roles need to be tuned into each other if they work on more than one product.
Similarly, it was identified that smaller systems may seem to allow for complete up-front design by a
solution architect, however issues arise if these systems need to be scaled. Additionally, the Scrum
master identified that a good solution architect needs communication skills, feeling for the business, but
also good technical skills to talk to the developers, which makes them difficult to find and hire. Solution
architects in an agile environment need to be open to and have knowledge on one or more agile
methodologies as well. As, according to this participant implementation of this interaction model would
not have worked well if the IT-architects of the organisation were not open to agile. Case study 5, added
to this perspective by stating that it is difficult to recruit developers for the salary and working
environment that could be offered in the public sector. Similarly, an enterprise architect in case study 5
highlighted that to achieve the added value of agile, developers need to change their distribution of tasks
and become more multi-disciplinary. An organisations needs to implement agile on a certain scale and
for a long enough period of time to achieve the effectiveness of agile, such as predictability of burn-out
charts and the learning effects for agile team members. Similar to case studies 3 and 4, in case studies 5
and 6 the impact of technical debt was not noticed by business. This is problematic as this is where the
money and prioritisation came from. In case study 6, solutions architects were also a bottleneck as there
was more work for them than they could absorb, reducing the self-organisation of the agile teams or
even turning into an impediment if they became unavailable. This could also be an issue if a solution

69

architect did not manage their time well, as the diversity of their role requires them to manage their
bandwidth and a risk to lose themselves into one aspect of their role. This happened in some edge cases.

Tensions
The Scrum master in case study 0 identified an interesting tension: the agile working methodology needs
to be supported by the IT-architecture. As the IT-architecture and principles should enable the agile
teams to develop autonomously and independently. This tension was replicated by a participant in case
study 6. As the domain lead stated that: the IT-architecture is a determining factor for the amount of
flexibility that an organisation can have. While the agile approach is used to identify, prioritise, commit,
implement, test and release, the actual work stays the same. For the agile process it does not matter
whether the requirement has been discussed for several years or since yesterday. It needs to be refined
and well understood, have acceptance criteria and solution designs to be implemented, which happens
upstream. Moreover, the roles up-front determine the functional scope as well as the architectural setup:
a headless, micro-service architecture enhances the flexibility. Due to this IT-architecture, complex
and/or end-to-end solutions do not need to be developed for changes. While an architecture that requires
end-to-end solution for new or changing capabilities strains your resources and potentially kills your
flexibility, turning the supporting IT-architecture in a potential bottleneck. This is in line with the idea
of Waterman (2018a) that an architecture should be able to adapt and tolerant to change.
 IT-architecture roles are separated according to the TOGAF model in case study 5, however any
type architect should be able to look across these boundaries, as otherwise it will be impossible to
integrate these aspects. This has been identified by the participant of case study 0. This participant also
identified a tendency of IT-architect too make things too standard, reducing the ability to adapt things
later on. Similarly they identified that the waterfall approach could lead to a lot of rework, even though
a lot of time and effort has bene put into the early stages. While the agile methodology has a risk of too
much attention for the here and now and too little attention for the future.
 Case study 5 illustrated this point as the domain architect stated that PSA’s are either too detailed
or too vague, depending on the solution architect involved, as there was no clear standard on what to
put in and what not. Tensions also occurred in infrastructure enablers in this case study. Agile teams
failed to address these infrastructural enablers or conditions to deliver software, such as network
connections, certificates, id’s etc., as they required up-front planning. There was a similar tension in
resources, as new developers want to work with the tools they know, while IT-architects want a
standardisation of tools. Thus this created additional difficulties in hiring and learning effects of agile
teams. The tension of hard deadlines of the government context and agile methodologies has been
replicated in case study 5.
 The domain architect in case study 5 identified that a complete up-front architecture where
everything is known did never exist. What one writes today is no longer relevant a year later. Striving
for such a complete PSA is at odds with the deadlines that are present in reality. Moreover, it would end
up in analysis-paralysis and one would never be able to start building, as one would always encounter
new things. This participant also identified that a gap in knowledge occurred if a solution architect left.
This also was the case when one leaves temporarily, for example for holidays, hampering the
productivity. Since DevOps was not implemented in case study 5, documentation provided by the agile
teams was often too scarce for the operations team, as explanations and images of the ideas behind the
code were lacking. This was worsened by attrition. Tensions were present between IT and business,
shadow-IT like robotics were the result, which imposed operational and continuity risks for the
organisation. Some IT-architecture solutions were purely conceptual, while reality was different as
developers needed to comply with legislation and provide business value.
 In case study 6 tension between speed and stability of the solution was identified. It occurred
that business stakeholders wanted the solution yesterday and did not care for stability, but IT was to
blame when things broke. Additionally, the solution architecture was heavily influenced by the solution
architect that designed the solution. For example by adding a fat front-end with a lot of business ruling,

70

adding spaghetti53 in orchestration or hard coding to make the solution work correctly instead of
designing and building a proper back-end system were ways to deliver quicker. But this created a
difficult situation for maintenance if bugs did arise. The discussions with stakeholder bubbles in the
iterative solution architecture approach could get very heated and comments could be taken personally
as the solution designs were being challenged, however these discussions increased the solution designs
quality. There was also tension in how minimal or viable an MVP needed to be, as in the past it used to
be some dirty work one could throw away. But this vision shifted so that an MVP needed to be something
that could be built upon. Sometimes solution architects were skipped in communication by tech leads or
PO’s, resulting in surprises upon end-to-end testing and in some cases knock-on problems for other
teams due to dependencies the tech leads and PO’s did not foresee. In case study 6 it was also identified
that it was difficult to work with non-agile budget processes targets and acquisition procedures, even
though it was a private sector case study. Case study 6 also experience fixed deadlines, as they operated
in a regulated industry. They devised processes to deal with those issues in their interaction model and
to avoid surprises. Thus, causes for mismatch in context and agile were not only present in a government
context.

7.1.4. Solution architect as cooperative foreman
Bottlenecks and tensions for case study 2 are discussed.

Bottlenecks
The organisational burden was identified as high. As a lot of time was spent on planning, discussing and
finding implementation for non-functional questions. Quite some time was spent on managing the
process as well. Thus, while the approach was manageable for a small team, it might not scale well. The
approach was demanding for stakeholders, as it required all of them to be present during the ceremonies
and IT-architecture workshops. Thus, time of stakeholders could be a bottleneck for this interaction
model. Since the solution architect role was with one person in this model, the solution architects needed
to be available for this project whole week, as the developers were working on the project full time.
Even though the solution architect worked 2,5 days on the project each week officially, because
otherwise the developers could get stuck.

Tensions
There were architectural requirements for the platform that did not add new features. These were focused
on non-functional aspects thus would show changes less fast. The Scrum meetings were of a technical
nature, which could pose a challenge if the PO is not very tech-savvy. A steep learning curve was
identified, as the team was self-organising. This also imposed the biggest risk: multiple team members
leaving at the same time. While the distinction between design and technical stories did allow the team
to work on stories from a functional perspective first and then from a technical perspective, it did create
a large backlog which could fill several sprints. The team was a small island within the organisation.
This posed a risk as the organisation was relatively dependent on the team. The software development
process could be considered as hierarchical by developers, as the solution architect had a lot of power
as the team lead. On the other hand, it did work effectively and allowed the solution architect to learn
the developers defensive development processes and strategies. The short versus long term perspectives
of agile and IT-architecture were replicated in this case as well. The solution architect added to this that
a Scrum process makes it easier to drag each other down, than to lift each other up in terms of laziness.
Due to the way the solution architect wants to see things developed, the process could be more slow and
stiff. The ability to adapt imposed the risk of not meeting the planned sprint goals.

53 Code that lacks programming style rules or has a complex and tangled control structure, resembling a bowl of
spaghetti (Pizka, 2004)

71

7.1.5. Co-development
Bottlenecks for this interaction model are discussed based on the envisioned co-development interaction
model by participants in case studies 3,5 and 6.

Bottlenecks
The team size and knowledge were identified in case study 6 as a bottleneck. With big platform solutions
in an agile setup, it would not be possible to fill an agile teams with all different technologies. As this
would create teams with 25-30 people, which is not suited for agile development. Additionally, finding
T-shaped or Pi-shaped specialists that know all these technologies and associated processes, such as
building services, was not possible. For all three case studies, the current knowledge vis-à-vis the
required architecture and agile knowledge posed a bottleneck of achieving this envisioned interaction
model.

7.1.6. IT-architecture dominant
Bottlenecks and tensions for case study 5 have already been discussed in 7.1.3. The main bottleneck for
this model were issues that arose was: if mistakes were made in up-front planning and discovered later
during the development process. Which led to large rework phases, additional budget and staffing
required to deliver the software.

7.2. Reinforcing or balancing?
Tensions and bottlenecks for the carry over interaction model were found to aggravate each other,
showing signs of counterproductivity. An IT-architecture that was directionally composed or inalterable
led to the IT-architecture not being considered by the development team. Which in turn led to technical
debt and rework, as the short-cyclical agile methodology caused the development team to lose oversight
over long-term issues, for example licensing, capacity allocation, scalability, operability, security,
maintainability etc. This led to quick wins in terms of development time and the opportunity to deliver
functionality to the customers, but caused issues later in the process as while the POC or MVP worked,
it could not be implemented as a working application (due to scaling, security. integration etc.). Thus,
having no or limited business value in the long term. In these cases the agile and IT-architecture
processes were affecting each other negatively instead of positively by diminishing quality. On the other
hand, the louse in pelt interaction model showed that tensions or bottlenecks can alleviate each other,
for example the short-term agile perspective was found repeatedly to balance out the long-term
architecture perspective instead of aggravating each other. The bottlenecks for the co-development
model raise the question whether this model could be implemented on a large scale at all. This question
is also relevant for the solution architect as cooperative foreman model. It would be interesting to see
how interaction models add value as well.

7.3. Conclusion of chapter 7
Tensions and bottlenecks that have been identified in case studies can shed a light on what problems
were found in the interaction models that organisations used. This information adds to academic
literature, as it gives substance to the typology. This information could be used by practitioners to
identify the associated tensions and bottlenecks for their own interaction model.

Recurring bottlenecks across interaction models were:

• Hiring of staffing with the right knowledge.
• Scalability of agile dominant exchange models, coordination issues arose on larger scales.
• Lack of formalisation or recognition of roles.

Reoccurring tensions across interaction models were:

• Short- versus long-term perspectives in combination models.

72

• The IT-architecture should enable agile software development.
• Agile and the government context.

73

8. Added value in empirical interaction models
This chapter will discuss the added value first for each individual case. Then it will make cross-case
comparisons. Finally it will discuss which added value had complementary interaction patterns.

8.1. Added value found in each interaction model.
In section the added value is discussed for each interaction model. The co-development model is shortly
addressed along with the ping-pong interaction model, as the enterprise architect of case study 3
identified the added value they envisioned it would bring. Added value for IT-architecture dominant
interaction model was not discussed in the interviews.

Agile dominant
In case study 1 participants stated that they did not need to account for IT-architecture decisions as added
value, however this seemed to be a sword that cut both ways, as it was also stated that the lack of priority
the PO had for non-functional requirements resulted in accumulating technical debt and over hours for
the development team. On the other hand, having the solution architect as part of the team helped to
address more out-of-the-box issues than a team of just developers could have handled. The solution
architect could join in to the conversations with the infrastructure teams as well. Moreover, the
interaction model sped up development, as the solution architect developed enablers for the team that
were required to create new functionalities.

Ping-pong or carry over
Case study 3 mentioned that functional software was delivered in their case. Moreover, an improved
model was proposed, where ownership transfers from the solution architect towards the lead developer
as the project progresses could reduce endless discussions, which were present at the time. However,
this transition of ownership was faltering in this development process. The enterprise architect did see
a lot of added value in agile in terms of good communication, the refinement process, multi-disciplinary
perspective on issues and division of large tasks into small pieces. Moreover, the envisioned co-
development interaction model would have the added value in terms of a happier customer, more
pleasant interaction between developers and IT-architects, better products and less struggle.
 Not only the frequency of communication was found to be important, the means and
stakeholders that were involved in communication were also important. For example, in case study 4,
the solution architect interacted with business on behalf of developers on impediments. This allowed the
development team to devote their time to development tasks. On the other hand direct communication
might have been more effective. Another benefit was that the development team was allowed to come
up with their own solutions that fit the architecture guardrails. Thus, the interaction model gave direction
for developers, as requests for epics or quick wins that created more work in the long term as they did
not fit the IT-architecture could be rejected by a relevant architecture board.

Louse in pelt
Case study 0 mentioned that their louse in pelt exchange model helped the solution architect to keep
close ties with reality due to the frequent interaction with the agile development teams. Additionally,
the approachability of the IT-architect helped the development not to get lost in the solution architecture
or their own short-cyclical way of working. The interaction model reduced strains of too much up-front
design that was experienced in other, more waterfall projects by this participants. Interestingly, the
participant stated that their interaction between the solution architect and agile developers helped to
build things on the first try. Which conflicted with a statement by another participant in case study 3,
who claimed that first time rights do not exist in IT. Technical uncertainty was approached in a stepwise
manner, together with the solution architect, who played a big role in this process. Finally the solution
architect could add a lot of value for the PO, as the PO had a more functional perspective, the solution
architect could provide balance by representing the non-functional requirements.

74

 In case study 5, the ability of development teams to deviate from the IT-architecture and the
ability to seek how the solution could get back under the architecture again was mentioned as added
value of their louse in the pelt interaction model. Note that this case study was conducted with IT-
architecture roles only, which did not allow to check the agile development teams’ perspective on this.
However, there was varying success with this process, depending on the involved persons. Added value
was also found in the ability to adjust, as there was less ‘wandering in the process’ than with Big Up-
Front Design (BUFD), where you find out that something has been estimated incorrectly54 when it’s too
late. This was mentioned as a big advantage, as they did experienced this problem with their architecture
dominant development processes. Which connected nicely to the added value that roadblocks are
identified early in the MVA-process. The provision of frames by IT-architecture provided added value
to the agile teams as they provided the freedom that agile needs. Added value that was more to the agile
side of the interaction was that an agile approach motivate people intrinsically and create learning
effects, through smaller, repeated steps.
 In case study 6, the cross-team stakeholder sessions to discuss the first iteration of the solution
architecture was found to add a lot of value by the product manager. MVP’s were also found of added
value, as they could be used to determine whether a solution could actually move the needle on business
Key Performance Indicators (KPI’s). Then based on this outcome, resources could be allocated to this
solution or not. The difference of perspective in the technology driven teams and the more broadly
looking solution architect were found to be of added value as well. As the solution architect was able to
look ‘over the wall’ for teams and identified possible knock-on effects for other teams. This way the
solution architect role functioned as a bridge between teams, as they had more general knowledge of
multiple different technologies, while the teams had deeper, detailed knowledge of a specific
technology. The domain lead stated that the interaction model allowed the IT-architects to create a vision
on what future the capabilities would have, as opposed at only formulating a vision on how to solve
current product owner needs. This allowed the IT-architects to create white spots in the first place, and
to fill them in the second place. The solution architect also was able to formulate a solution that avoided
having to do rework. Seeking up-front alignment on requirement was found to create a deeper
understanding on what was really needed, ending up with a solution that satisfied all the different needs
better than a step-by-step solution would that would require a lot of modification or rework entirely. An
example would be, a solution that works functionally, but kills your system in terms of performance.
Something like this has been experienced in case study 3, where a system worked functionally, but was
unable to cope with changes in requirements.

Solution architect as cooperative foreman
In case study 2, added value was found in that internally everybody was up to date and there was an
open and direct culture. Stakeholders could share their thoughts. This made the systems that were
developed maintainable for operations for example. Since everybody was up to data, stakeholders could
be transparent on issues with their superiors as well. The team could deliver added value to the PO and
customers, as they were good at dealing with chance. So much that they did not require clearance (as in
other cases) as they had the trust of the PO. Which allowed the team to anticipate on issues they already
foresaw. This case study had almost no technical debt, and was able to use up-front planning in
combination with their agile process to address future and current roadblocks.

8.2. Comparison across cases
A comparison can be made in the cases where the solution architect and Team lead are combined into
the same role, cases 0 and 1. As one case is characterised by a lot of technical debt, while the other is
not. This could be due to several things. First, the lack of technical debt could be caused by the fact that
one development process was a brownfield situation, while the other case was a green field situation.
Second, the experience of the Team lead/solution architect differed, as the case with technical debt had

54 Due to uncertainty or the inability to know everything beforehand.

75

5-10 years of experience, while the other had 10-15 years of experience at the time of the project. Third,
the stability of the environment could also be a factor, as the case with technical debt experienced a lot
of new or changes in requirements during sprints due to the political nature of the project, while the
other case seemed to be more independent from the politics and the requirements were more stable. Due
to stability, the team was able to show the ropes to new entrants and deliver quality software. The team
was also able to communicate clearly on what they would delivered, at what quality and when. This
gained them trust from stakeholders like management, PO and operations. Fourth, the difference in
technical debt could be attributed to the fact that in one case there was time for peer reviews, research
work and work on non-functionals during sprints, while in the technical debt case there was no time for
these elements. This was partly the result PO’s their prioritisation, but could also be due to the ability of
the team to communicate the importance of these procedures. Finally, it could be due to a combination
of these things.
 The MVA procedure was initiated as directionality composed IT-architectures created issues
later in the development process if the wrong decisions were made at the start. The latter regularly
occurred since not everything could be known beforehand, new developments occurred and things
changed over time. The MVA was an iterative architecture, where in the first iteration a high-level sketch
was done, for example when implementing (part of) a package, a market analysis was done to investigate
how feasible the formulated requirements were, based on this the business and IT would sharpen their
requirements. In the second iteration the IT-architecture team would formulate a solution architecture
together with high-level design. This gave a picture of how something could be implemented and helped
to formulate a plan of requirements. In the third and final iteration, the MVA turned into a PSA, since
this document showed how things should be built, implemented and configured. The iterative process
was found as preferable over the old situation by participants.

8.3. Added value with complementary interactions
Note that added value often was derived from relieving pain or problems. Participants across several
cases recurred how a more iterative architecture process helped them to cope with issues of both the
short-term perspective of agile development and the long-term perspective of IT-architecture. Added
value was found in balancing these two approaches based on the context. The fact that no participant
wanted to move to the traditional situation, could imply that the participants see complementary added
value in the combination. When asked why the added value was not attributed to agile or IT-architecture
alone, the domain lead of case study 6 provided a very interesting answer: “The fact that you have an
architect who doesn't talk to anybody or doesn't talk to PO's, what good does it do? Right, so as an
architect, you are there to in essence figuring out how to enable a scalable, maintainable and
sustainable setup that will enable us to be successful in the future as well as today. Now, how do you
determine where should that future go and where you had it and etcetera? By talking to many different
stakeholders and product owners are being one of the stakeholders that you normally would interact
with to figure out: all right was the direction that our business is taking, right? What is it that we need
to be prepared for and want to, five years in advance because the strategy is going that way. But we as
an IT team don't have a capability in place in order to accommodate for that, the same time the architects
play a role to a bit guide that version as well, right. So, we often encourage what we call it driven
innovation. We're saying, hey, do we have some fantastic solutions that we as a team can bring as their
proposal to the business to actually drive innovation and improve strategic sort of competitive edge or
maybe just optimize processes and automate things, which maybe the product owners would have never
thought of, because they are not aware that it exists or that sort of that's a possibility that's kind of where
the architects would bring that innovative suggestion to the PO’s. So, if you will say they are not talking
to each other, then all of this disappears. Right. And you have two organizations that are sort of running
side by side and not communicating with each other. So, it's again it's as simple as that sort of what is
the power of communication.” This was the same participant that proposed the idea that the architecture
setup should enable the agile teams to be flexible. This way the agile development team can create
stability, by using their agile ceremonies to refine, implement and reflect on incoming work. As a back-

76

end developer in case study 2 stated: the agile process says nothing on the content that is developed, it
creates a predictable rhythm in which work can be carried out that enables flexibility by making
transparent the trade-offs that new or changing requirements bring. The other way around, the business
and IT-architecture feed the backlog with requirements and user stories. These statements show how the
added value of an effective agile-architecture combination could complementary.

8.4. Conclusion of chapter 8
It was found that every interaction model provided added value, except for the IT-architecture dominant
model. For this model added value was not discussed by participants. The main complementary added
value of the combination was the ability to balance up-front design with the agile process to address
roadblocks or issues. This agile-architecture interactions’ complementary was found in alleviating the
problems that occurred when IT-architects and agile developers worked side-by-side and did not
communicate effectively. Which led to either problems with sustainability of the solution, as quality
attributes were not addressed or to problems with functionality, as the wrong thing had been built, since
it has never been shown to an end-user.

77

9. Governance strategies and how they help to obtain
complementary added value in empirical interactions
In the previous sections, descriptions of added value and problems showed that they caused balance in
some cases, while added value and problems strengthened each other in other cases. Creating different
types of behaviour: negative feedback loops or stabilising feedback and positive feedback loops or
amplifying feedback loops. While the former offers an opportunity to provide stability but also inability
to change, the latter induces change and spiralling behaviour, which can turn out positively or negatively.
Thus, it was confirmed that interaction of IT-architecture and agile software development could be either
complementary and counterproductive in terms of balance and cascades, depending on the
implementation and context. Therefore, it is important to recognise these situations and find controls for
them so that they can be used to the advantage of practitioners.

9.1. Coping with coordination issues in scaling
Case study 5 tried to achieve and implement an agile architecture on a larger scale through their MVA
process, resulting in a louse in the pelt interaction model. Since the scale was larger in this project, as
there were multiple PO’s and teams involved. This introduced the problem of missing coordination over
the agile teams. One participants mentioned that this sometimes caused two different teams to state the
same, albeit in a different manner. Pointing out to the other they did not understand, while they meant
the same thing. This seemed to be due to the ‘bloodtype’ that another person belonged to, for example,
architects versus developers and Java developers versus COBOL developers. A domain architect then
started to organise coordination across teams together with the project leader, as the previous agile
implementation led to everybody being responsible for their own ‘household’ through their own
backlog. This was difficult as resistance occurred towards IT-architects, since the development teams
were in the process of building something. However, no team felt responsible to build an overarching
or interconnecting services. Thus, a small management team has been put in charge to coordinate things
across teams. What is interesting, is that case study 4 also used the same governance strategy to address
the coordination issues that arose in making a companywide prioritisation during programme
increments. In both cases, these were multi-disciplinary teams. This is something the market was
already doing, for example, this can be found in SAFe. However, the government was a bit slower to
adopt these things, however the need became so great that the organisation implemented this.

9.2. Moving away from directionally composed architecture towards iterative
architecture
The MVA process55 mentioned case study 5 is an interesting example of a governance strategy to address
the issues with the directionally composed PSA procedure. Most interestingly multiple participants
referred to the SAFe framework as the envisioned situation of how agile should be implemented in their
organisation. This is unsurprising as adherence to this framework was a selection criterion and this
framework is widely adopted in the Dutch government. There is formalisation of the framework in the
PSA section of the NORA (ICTU, 2021b), to use the idea of a balance between emergent and intentional
architecture when working according to an agile methodology. Through triangulation the MVA method
from case study 5 and agile architecture concept from the SAFe framework have been found to be
embraced by the NORA user council to “come to diverse high-level domain architectures that are
dynamic, adaptive and flexible while offering stability at the same time, without being rigid.56” (NORA
Gebruikersraad, 2022, p. 1) in a discussion on how to approach a common government domain

55 Based on the SAFe framework on agile architecture.
56 Original quote: ”De werkgroep GO omarmt het Agile/SAFe concept als de toekomstige manier van
samenwerken. In die lijn wil de werkgroep het concept MVA (Minimum Viable Architecture) introduceren om op
deze manier tot diverse domeinarchitecturen op hoofdlijnen te komen, die dynamisch, adaptief en flexibel zijn én
tegelijkertijd stabiliteit bieden, zonder rigide te zijn.” (NORA Gebruikersraad, 2022, p. 1)

78

architecture. This formalisation of the MVA or agile architecture in the NORA can further substantiate
that Dutch public organisations that were struggling with their interaction of models of IT-architecture
and agile software development and were looking to move away from directionally composed
architectures. Case studies 3 and 6 envisioned that not only the processes should become more agile,
but that agile software development is enabled by technology as well. Technology choices such as a
headless setup or a micro-architecture setup were said to enable the flexibility and self-organisation of
development teams. Since, these technology choices do not require the development teams to develop
complex end-to-end solutions every time, but ‘pluggable’ components instead. Similarly, automated
tests should accompany procedures to define test and acceptance criteria. Investing on, and actively
altering the technology landscape is another governance strategy that can help to move from
directionally composed architecture to more self-organisation of development teams.
 Likewise, case study 6 envisioned that stability of technical solutions can organised in two ways:
1) By making separate IT operations teams that ensure that the solutions stay up, running and
performance according to expectations; and 2) setting up DevOps teams that are responsible for both
the development and the operations cycles, aligning the incentives to build sustainable and maintainable
software in these teams.

9.3. Addressing agile in a government context
A reoccurring theme was that agile is not suited for the Dutch government environment, as their
governance structure, management and procedures do not match. This statement was widely supported
among architects that were interviewed. Their reasons were strict deadlines on which laws take force,
which puts very stringent deadlines on the projects. Another reason was that the management of
government organisations needs to plan their budgets more than 1 year in advance, which leaves little
room for agility. Other reasons were that tender procedures that caused 1-2 year delays and government
budgets did not allow to hire (human) resources such as good solution architects and programmers.
However, this begs the question, do these issues not also arise in a private sector environment? Do the
same issues apply for those that implement legislation also apply for parties that have to comply with
legislation? Is budgeting in the private sector more agile? Do large firms not work with tender-like
procedures as well? To test these propositions, a private sector case study, number 6, has been added as
well, to identify whether the mismatch between agile and government context exists or that there is
another explanation. For example, the usual resistance that occurs when a new change is implemented.
It turned out that similar problems were experienced in case study 6, as IT worked according to the agile
methodology, but the rest of the organisation did not. Resulting in a hybrid situation as well. More-over
this organisation also worked with a tender procedure for procurement and made budgets in advance.
Another counterargument was that a fixed deadline and set of resources should not be a problem in agile
development and were traditional problems of a waterfall approach. This is illustrated by Figure 8, which
shows how the iron triangle of project management changes which elements are variable and fixed in
an agile project (Aljaber, n.d.-a & n.d.-b). In Figure 8 resources are budget and available team members,
time are deadlines for releases or milestones and scope is the work to be done, consisting of features and
functionalities. In traditional waterfall development, the scope was fixed and resources and time were
variable. While in agile development, the time and resources are fixed trade-offs are made in the scope.
This is the fundamental added value of the agile approach, the ability to respond quickly to what is
happening in the market. In other words, the product owner or manager being able to change the scope
of the service based on new insights or developments while working with fixed resources towards a
fixed deadline. The fact that multiple IT-architects made such claims could hint at a limited
understanding of the agile methodology or an example of how both roles their perspectives clash on
practical issues. Finally, governance strategies were identified to cope with mismatch in context between
agile and an organisation, case study 1 for example, coped successfully by adopting a PRINCE 2 ‘hood’
on top of their small scale agile process, as the organisation was not ready for agile at the time. While
the agile methodology helped to make trade-offs on what could be developed in which timeframe
transparent for stakeholders.

79

Figure 12: Iron triangle for agile and waterfall development (Aljaber, n.d-a.)

 Strategies, proposed by a participant from the more agile mature IT section in case study 6, to
cope with a non-agile context were to 1) onboard top-level leadership to agile working one of the first
steps. Ensure that leaders are trained and onboarded into the agile way of working so they know what
they expect; 2) Employ an agile coach if your level of agile is low, to really embed this mindset across
the board. Several full-time jobs if your organisation is large; 3) Follow the process by the book. If you
alter the ceremonies before you have experienced them because you don’t believe in the added value,
you will end up thinking and working according to your old situation, as this is comfortable for you; 4)
Compliance induced fixed deadlines or quality requirements do not appear out of thin air, multiple steps
and checks could be integrated in the development life cycle, including testing, quality and regulatory
validation, as well as legal checks. These processes span across several roles and those roles need to
recognise each other to address compliance effectively; 5) If the quality is not there for critical solutions,
do not take it live into production until the quality is fixed. If it considers a small edge case, set up a
multi-disciplinary team to address the issue and allocate extra budget and time accordingly.

9.4. Coping with a lack of resources or knowledge
Another reoccurring theme was the in-ability to hire sufficient and knowledgeable programmers and
solution architects. Case studies with problems such as technical debt or large rework phases attributed
these problems to a lack of interaction between solution architects and developers. This interaction was
caused by understaffed solution architects. Resulting in a lack of stable access to knowledge of solution
architecture for the development team. Vice versa, there was no stable access to knowledge on developer
issues and planned workarounds for solution architects. This was made explicit by case study 3, as in
this organisation development teams, PO’s and solution architects could be reassigned to other projects
on a quarterly basis. Affecting the stability of teams and changing the interaction points. These issues
were aggravated by the inability to retain personal and hire new personal. These issues further
complicated the relationship between the IT-architects and developers in some cases, as IT- architects
felt ignored if developers just started building something that did not fit under the IT-architecture, while
developers felt left in the dark by a lack of architectural guidance, but still felt the pressure of fixed
deadlines. Trust then became diminished, unproductive interaction as well as monitoring and control by
management started taking place, since big forces started to shift if the deadlines were not met or the
quality of the solution was not sustainable upon delivery. However, these monitoring and control
mechanisms were not helpful for the organisation and solution, as they left even less time and resources
for productive interaction and reduced solution architects and developers willingness to take ownership
of the products they delivered, pointing fingers instead. The data contained some rich descriptions of
how scarcity in resources evolved into a serious bottleneck, unconstructive interaction pattern, technical
debt and large rework phases as the long-term perspective was neglected or insufficiently propagated.
While cases that did have access to architectural knowledge due to close contact with a solution architect
or integration of a solution architect within the teams reflected more positively on interaction with
architects and experience less rework and technical debt.
 An interesting governance strategy to integrate architectural knowledge into the agile process
through a formal process was by having an architectural review on a user story as a checklist item for
the definition of ready, as in case study 0. Another example was the combination of the development

80

team lead role with that of the solution architect, instead of dividing these roles over separate people. In
case study 3 the separation of these roles caused trouble with ownership in the translation from a PSA
to a more technical solution description as this was to be done by the lead developer and a solution
architect. However, since sometimes disturbed relationships were present, both the solution architect
and lead developer would not take ownership (at the right time) of this technical solution description.
Pointing fingers at who should do what instead. Another explanation could be that both had conflicting
interests, for example the solution architect does not have to program the design and thus may care less
about practical issues regarding programming or the time it takes to implement a solution. While the
lead developer is not responsible for safeguarding the IT landscape and may care less about
standardisation and long-term quality wins that take time away from more pressing functional
requirements, especially if the long-term gains are not reaped by the lead developer. Aligning these two
perspectives into one role seemed to help, as these case studies did cope with less rework and technical
debt.57
 If integration is not possible, practitioners could follow a governance strategy identified in case
study 4. In this organisation an solution architect that had initially worked out an epic was tasked with
safeguarding implementation of that epic. Effectively establishing a check-and-balances model where
the solution architect, business stakeholders and agile development team kept each other in check. This
provided clear lines of reporting for the development team and architects and aligned their incentives
on the implementation of the epic. Similarly, case study 1 coped effectively with the available resources
by putting the architect in a third team that supported the other two teams that worked on different parts
of the same solution. This had advantages, such as increased sharing of knowledge across teams and the
solution architect could do communication with external stakeholders as the solution architect had an
overview of what both teams did. This strategy was replicated in case study 6, where the solution
architect cut across different technology driven teams. In these case studies, the solution architects
interacted with product owners and tech leads to put less pressure on the solution architecture resources.

9.5. Addressing the importance of formalisation and recognition of roles
Another interesting comparison could be made in the cases, 1 and 2, where the solution architect and
Team lead are combined into the same role. Yet again, by whether the technical debt could be caused
by the lack of formal solution architect role. Having such a formal role could help to emphasise the
importance of non-functional or quality attributes of the software to the PO. In support of this theory,
there is another case, number 3, in which the solution architects and developers did not always see eye
to eye. This case also had difficulties in moving from to a co-development exchange model. In this case,
the PO viewed IT-architecture as limiting on the ability to deliver business value and to meet hard
deadlines but was also experiencing technical debt and a large rework phase. Comparing both cases, it
seemed that a formally appointed and recognised solution architecture role could have helped the
development team to prevent going for short-term time gains or business value delivery while neglecting
the inner workings of software from a quality perspective in a broader sense than business value only.
 Similarly, participants from case studies 0, 5 and 6 identified that solution architects need to
recognise the practical issues that developers run into and how they should be able to think along. A
formalised process, such as an architecture workshop with the team can help. Formally including the
architect in the agile ceremonies seemed to help as well, as the developer in the solution architect as
cooperative foreman was able to recognise the importance of the solution architecture and non-
functional requirements for the sustainability and quality of their solution. Formal escalation procedures
also help, but the organisation needs to ensure these have actual teeth, and are not paper tigers that result
in a slap on the wrist but lack follow-up. Formalising several scenarios or types of issues and the
associated levels to escalate to up-front can also help.
 To enable the agile team with IT-architecture frames, the IT-architect needed to adopt an agile
approach and sought dialogue with teams, stated one participant from case study 5. This architect stated

57 Or attributed this to other reasons in case 1.

81

that there were enough frames to work in for developers from IT-architecture, however the compliance
of the frames could be better. This was where communication and knowledge of the architect could help.
In this case development teams would like to have an solution architect to visit them more often. The
participant also emphasised that an IT-architect needed to seek dialogue with an MVA approach. While
an enterprise architect in case study 3 stated that both the IT-architects and the development teams have
an obligation to inform each other and to collect information from each other.

9.6. Coping with the product owner role
It was hard for the PO and development team to reach end-user or client through the layered and
networked government structure. In some cases development teams and PO’s did not have access to
interact with the client and end-user at all, even though this is at the core of the agile methodology.
Similarly, if the PO did not recognise the importance of non-functional requirements, as in case study
1, then an exchange interaction model is not viable. Thus, another likely explanation for the difference
in technical debt in cases 1 and 2 is that there was no formalised architecture role that could push on
these requirements and push-back if the PO wanted to go for new functionalities instead of addressing
non-functional requirements. Moreover, the development team had to work overtime to address bugs
and quality issues, which has likely led to even more technical debt as people got worn out. In this case
the PO did also not allow to reserve time for peer reviews in the sprint, increasing the chances for bugs
and technical debt. A final theory could be the inability to create a steady sprint rhythm. As the PO’s in
case study 1 came up with urgent and even super urgent requirements repeatedly after sprint planning
and changed requirements as they saw fit on a daily basis, a steady sprint rhythm could not be achieved.
Thus making it very difficult for the development team to deliver sustainable58 functionalities. The team
tried to cope by reserving capacity in sprints for urgent requests or changes and started to push back
later in the process, however a formalised solution architecture role might have been able to do so earlier.
In conclusion, it is very important to consider who is to be the PO and depending on the team and
context. For example, whether a more technical PO is needed with understanding of non-functional
requirements or a less-technical, more connected PO is necessary that can provide access to various
(external) stakeholders. Shortcomings in knowledge of the PO should be compensated by team
members, for example by employing a person with extensive functional knowledge to compensate for a
lack of functional knowledge by a PO.
 Trust was obtained by creating quality software and being transparent on when this could be
expected. This seemed to go well in case studies 0 and 2, and not so well in case study 3. Trust and
stability of the team(s) seemed to be linked, as case 3 both experienced instable teams as well as a lack
of trust on both sides. On the side of IT-architects as low-quality software has been developed, while
ignoring the It-architect(s). On the side of developers as architects were not always able to define frames
well enough, defined frames felt unfeasible for the developers or do not always find the time to explain
their frames/decisions. A logical explanation for the link between trust and stability is that instability
could lead to lower quality software/architecture and less time to communicate with other stakeholders.
Thus, reducing the trust from other stakeholders upon delivery and in the process before. It is interesting
that there were mixed feelings on trust in case study 1, on the positive note is was nice to experience
freedom to develop how the team saw fit, as the PO’s did not care much for how their wishes were
implemented. On the more negative note, the development team needed to develop parts that were not
recognised by the PO’s, as they did not add new functionalities directly, in over hours. Hinting a lack of
trust by stakeholders. Not allocating time for non-functionals that they could not understand or see, even
though the development team asked time for them. This was addressed by not accepting unrefined tickets
and repeatedly addressing the importance of non-functional requirements.

58 Scalable, maintainable, secure etc.

82

9.7. Balancing up-front and agile architecture
Case study 2 was an interesting example of how the effects from both methodologies were balanced out
through implementing an agile architecture process. Case study 5 was experimenting with a similar
approach on a larger scale. In case study 2, the solution architect/team lead did up-front planning to
identify components and an order on how to assess them, however they usually did so together with the
team and other stakeholders, such as operations, in workshops. What was interesting is that this architect
left ‘holes’ in his blueprint that could be filled in and was open to alterations on parts of the blueprint
that were not holes. This way, the stakeholders responsible for building and operating the solution could
raise questions and issues, while other solutions were designed together. Sometimes a research story
was time boxed and put onto the backlog, the relevant stakeholders then figured out what the options
were or addressed missing information. This governance strategy was also find in case study 6. The
result was that they were able to present new information or a set of options with their impact as a
deliverable. This way the negative effects from upfront architecture and emergent architecture alone
were balanced out, through using a balance of initial and emergent architecture. As this balance point
differed for the point in time of the project, this was an agile architecture process, doing the amount of
up-front and emergent development that was needed at that point in time.

9.8. Coping with risk and uncertainty
Multiple case studies identified that both the agile and up-front processes provide added value to address
risk and uncertainty. Both processes were identified as useful in addressing uncertainty on both
requirements and technology. This showed that a combination is desired to be able to respond to foreseen
and unforeseen issues, as in most software development processes, both type of issues occurred.
Interestingly, case study 6 used more up-front planning when establishing new functionalities they did
not have experience with, a green field situation. There were also cases where they combined this with
an agile approach, as the solution architecture would be made in several iterations with various
stakeholders over time. Even though a participant stated that in low uncertainty and impact cases, a
100% agile approach was used to incrementally build software and solve impediments. The rationale
for this was that in those cases, the organisation could take more risk. Thus, determining where to
allocate the scarce solution architecture resources based on risk. Which is an interesting showcase of
Waterman’s (2018a & 2018b) model in practice.

9.9. Conclusion of chapter 9
This chapter described how governance strategies could be used to obtain complementary added value
in agile-architecture software interactions by:

• Coping with coordination issues in scaling;
• Moving away from directionally composed IT-architectures towards iterative IT-architectures;
• Addressing agile in a government context;
• Coping with a lack of resources or knowledge;
• Addressing the importance of formalisation and recognition;
• Coping with the product owner role;
• Balancing up-front and agile architecture; and
• Coping with risk and uncertainty.

Multiple governance strategies have been found and linked to the added value, bottlenecks and tensions
that were identified in case studies and interaction models.

83

10. Conclusion and reflection
The objective of this research was twofold: 1) to explore the relationship of IT-architects and agile
software developers; 2) to develop theory on how these are influenced by governance strategies which
could help practitioners to achieve outcomes they desire. The results of the previous chapters are
discussed in this chapter to explain the implications of what has been found and learned. Consequently,
the main results, limitations of the research, contributions to literature and practice, recommendations
and opportunities for future research are discussed in this chapter.

10.1. Main findings
This exploratory study has identified and analysed several architecture-agile interactions in the public
and private sector. Conducting this research was motivated by gaps in knowledge on if and how
architecture-agile interactions were practised and affected by governance. First, it showed that based on
grey and academic literature, three basic interaction models could be devised, resulting in a basic
typology. Then it illustrated through multiple case studies that in practice, there was always some form
of interaction between solution architecture and agile software development. The interactions of case
studies were classified on the basic typology. The study then identified how the case studies were
influenced by context factors found in the literature review, as well as new empirically found context
factors: trust, stability and perceptions. The context factors were used to split up the balanced exchange
interaction model into four new exchange interaction models, resulting in a typology of six archetypes:
two extremes and four points of reference for balance between IT-architecture and agile development
interactions. The case studies were reclassified using this new typology. According to this new typology
problems have been identified in the form of bottlenecks and tensions. Complementarity and
counterproductivity have been identified in those problems through reinforcing and balancing effects.
Similarly, added value has been identified and found to be complementary. Finally governance
strategies have been discussed to that help to the identified complementary added value by illustrating
how they could alleviate tensions and bottlenecks.

10.1.1. Generalisability of results
This study hints that the need for agile-architecture interactions are present in a broader context than the
public sector alone, as a the private, corporate sector case study identified similar problems. However,
this needs to be validated through a study that investigates various organisational types in the private
sector and in mixed forms of public private partnerships, as well as varying sizes of organisations.
 To cope with the small sample size and issues this can create, multiple interviews have been
conducted for each case study and multiple case studies have been performed. It is also worth noting
that not all researchers agree on the limited ability of even a single case study, as even extreme cases
can be useful to make issues transparent that might also be at play in less extreme cases for example
(Flyvbjerg, 2006). Thus this single case can then be used as a reference for other, but similar cases.
Thus, contributing to science.
 The interviews showed that practice was both different and similar to theory. Falessi et al.,
(2010) identified that theoretical frameworks, ideas or principles to define roles, responsibilities and
rights were used as reference points, they were often not achievable in practice due to practical matters
of adoption. This finding has been replicated. In practice, practitioners tried to cope with these
limitations, in ways that were not discussed in theory. Effectively tailoring theory to their own situations,
as in most case studies, respondents answered that they had implemented a framework with their own
'sauce' to tailor the framework to the organisational or development processes' needs. This study has
also replicated findings on context factors of studies by Yang et al. (2016) and of agile architecting by
Waterman (2018a & 2018b). The interviews also showed that the combination or the interaction of IT-
architecture and agile software development ranged from a theoretical concept to something so obvious
it seems a bit strange to inquire on in an interview. This variety of implementations and responses
contributed to the generalisation of new findings, while replication of various interaction models,

84

problems, added value and governance strategies indicate that these findings are generalisable beyond
the case studies.

10.2. Limitations
This section will discuss limitations of the findings. This section will also be used to evaluate the theory
building process and discuss limitations of my own theory building process (as opposed to general
limitations discussed in Chapter 3).

10.2.1. Multi-case study approach
There were practical limitations: the availability of participants versus the research timeline, assessing
the expertise of the participants, assessing the tone59 of the participants, inquiring on topics60 and the
time that interviewing and transcribing took. There were also methodological limitations, such as the
small sample size which could be said to reduce generalisability and the difficulty to analyse the amount
and richness of interview data. Finally, identification of problems was difficult in some cases due to the
preference of participants to give socially acceptable answers.
 Since the interviewees were inquired on working practices and problems in their organisations
and with their colleagues, they have been promised anonymity of their organisations and themselves.
The transcripts have been typed by hand by the researcher, which took up a considerate amount of time
that could have been spent on more thorough analysis, data collection or reporting. Since availability of
interviewees was a limitation, a trade-off has been made between comparative capacity of cases and
availability of interviewees with respect to the timeline of the research. While the focus was on software
architects, solution architects, enterprise architects and domain architects were interviewed instead in
several cases. As not every organisation had a solution or software architect. But also since these roles
were understaffed. However, due to this decision more opportunities arose than time allowed to
investigate and the opportunity arose to select cases which were most likely to provide new or rival
insights, such as the private sector case. Moreover, flexibility to ask different questions to various roles
was a great benefit, as some roles could shed light on the up-front design processes, while others could
explain more on the development processes. Similarly, slight differences in case study selection as well
as discussions with supervisors helped to identify rival hypotheses and reduce researcher bias. Thus, the
benefits of the multi-case study theory building methodology have been successfully exploited to
address issues associated with small sample size. To the inclusion of multiple case studies, the effects
of limitations such as assessing the expertise and tone of participants became less influential, as
contradictions made themselves prevalent across cases.
 A major limitation of this study was that participants had difficulty in defining interactions
between IT-architecture and agile software development. As mentioned, the cases differed greatly in
richness of description of the interaction models. Some interviews were too short to discuss this
interaction, it’s added value, problems and its relationship with governance, while others the
interviewees quickly glossed over the interaction models and its effects, unopen to further inquiry and
probing by the interviewer. On the one hand, this makes the case studies difficult to compare, on the
other hand the (in)ability to give further details is telling as well.
 The vastness and richness of data were a limitations and a blessings in this study. Especially in
respect to the timeframe of 20-25 weeks and the sensitivity of data which did not allow external tooling
to lower the burden of transcribing and analysing the interviews. Data in the form of over 18 hours of
recordings and 180 pages have been collected, which made transcription and analysis long and difficult
processes. The case study logbook, colour coding of transcripts, discussions with the research team and

59 Some people tend to be overly pessimistic or make statements on problems, while other tend to be overly
positive, making things seem better than they are.
60 This concerned both working practices, which is information that organisations do not want to be public as
well as inquiring participants on problems within their organisations and elicitation of critical judgment of their
colleagues. These types of questions tend to invoke socially acceptable answers, especially if the transcripts were
to be made publicly available.

85

summarising insights into tabular displays helped to cope with the vastness and richness of the data but
were time-consuming processes, as determining what could actually be an insight required shifting back
and forward through this data on seven different organisations and over twelve roles. Similarly, each
new case study could add new insights, which could turn previously irrelevant statements to relevant
ones. This led to rereading, analysing and summarising the transcripts multiple times. On the other hand,
a lack of rich data or interview participants were serious threats for this study, as this would have reduced
the validity of the individual cases, as well as the ability to generalise and replicate theory across cases.
So, while the number of cases was a benefit on one hand, it had the implication that each case received
less attention than if a lower number of cases would have been used. Moreover, cases tended to focus
on either the high level architecture facets from enterprise architecture and senior stakeholders or on
very operational facets of solution architects and developers. Therefore, a lack of triangulation on the
interaction of this higher, organisational level with the operational level is present. On the other hand,
many of these senior stakeholders did not interact with developers at all and vice versa. Also, the
operational and more senior levels could be compared across cases.
 This research has been carried out by a researcher that followed an educational internship at a
company. This company internship has biased the case study selection. However, the company also
provided access to data which the researcher did not have. To address the potential of too much similarity
in selection, participants have been approached through a variety of people working at different
departments in the company.

10.2.2. Influence of perspectives
In this specific research, which role said what is important to identify whether this is a perspective or a
fact. As even the questions which seemed to be factual were prone to perspective or framing. For
example, when asking whether the project was delivered within time and budget, I often got the answer:
it depends on how you look at it, we had a working product, but were prolonged to improve/repair the
product. I would take this indistinguishability further by stating that there are facts within the data, but
it is impossible to distinguish them from perspectives due to the nature of the research. A logical
replication of a (reoccurring) perspective is the closest one can come to a fact in this research and these
are biased by the perspective of the interviewee as well as of the interpreter.61 Nevertheless, this research
is a contribution to science as through performativity perspectives can affect reality. For those that do
not believe in this phenomenon, the identification and publication of these perspectives can serve as
starting points for identification of facts.

10.3. Research contributions
This section discusses the contributions to scientific literature and as contributions for practice.

10.3.1. Scientific implications
This thesis used multiple case studies to update knowledge of interactions between IT-architects, agile
developers and governance. While this is partly replication of earlier theory, such as influence of
contextual factors identified by Yang et al. (2016) and Waterman’s (2018a & 2018b) diptych, there have
been made various new contributions which were replicable across cases. New context factors: trust,
stability and perceptions as well as the typology, governance strategies and complementary nature of
added value and problems. The diptych by Waterman (2018a & 2018b) has been validated by showing
how the agile architecture is put into practice. Showing which roles are included at which stages of
designing an agile-architecture in various organisations, which were identified in the literature review
as a gap in knowledge. Falessi et al. (2010) stated that issues of adopting agile-architecture interactions
resided in practical matters of adoption. The complementary nature of added value and problems in the
interaction, the typology and governance strategies are new contributions to academic literature in this
regard. The typology could be further developed or expanded by other researchers. The relationship
between governance and interaction models was not as simple as the make or break relationship

61 Researcher, but also reader.

86

presented in the beginning of the results section. For example, in some cases formal governance
procedures could be circumvented as power resided with those who delivered working software. While
in other cases the governance strategies led to complementary added value. Practical detail has been
given to the theoretical notion of interaction through the typology and accompanying characteristics.
This thesis has updated the scientific knowledge repository by presenting new archetypes that can be
used for case-based reasoning with practitioners in other, but similar situations. Flyvbjerg (2006) stated
that expert knowledge is achieved by having internalised many distinct cases through experience and
literature. This way the study has improved on grey literature in the classification of interaction models
and added empirical evidence for complementary relationships between architecture and agile to
scientific literature. As opposed to architecture or agile frameworks alone and the high-level interaction
model of the SAFe framework, this study has split this balanced exchange model into four archetypes
based on the empirical case studies. Of which one, the co-development model, needs yet to be identified
in practice. Similarly, it would be interesting to investigate whether the archetypes can be found in mixed
public-private, medium and smaller private organisations, like scale- and start-ups.

10.3.2. Practical implications
This study provides an opportunity for experts to internalise new knowledge through the seven new case
studies. In order to gain interview time from their scarce resources, organisations that were experiencing
problems due to their interaction models asked to share and present the findings of this research to learn
from other organisations. Illustrating how knowledge of other case studies could help practitioners to
address their problems and provide practitioners with the ability to pursue or avoid interaction models
through governance strategies. The case studies clearly illustrated that what works for an organisation
is context dependent and gives practical examples of how each case had its own problems and added
value, how added value was situational and optimisation existed only locally. If one is to look at the
effects on the organisation, operation, client, end-user and wider context, only trade-offs exist.
Therefore, it is up to the practitioner to make an informed decision on which interaction model and
associated added value and problems they wish to pursue. This research has made the trade-offs more
transparent for practitioners. Chapter 6 provides practitioners with the opportunity to investigate which
archetype is closest to their own organisation. Chapters 7 and 8 allow them to identify which problems
and added value others experienced. Chapter 9 provides practitioners with several governance strategies
for various distinct use cases and with governance strategies are applicable in multiple interaction
models. Chapters 6-9 could also be used to identify which archetypes is more desirable than a
practitioners current situation.
 Participants from multiple case studies stated that integration of architectural knowledge into
development teams was something they desired but were not able to accomplish due to scarcity in
resources. Based on this it is recommended to practitioners to formally integrate an solution and software
architecture role into each development team if resources allow so. If resources do not allow so, smart
choices could be made, looking at which teams could share a supporting team of experts. Looking for
teams that need to integrate their services is helpful in this case, as the solution and software architecture
role can keep an overview of integration of the teams their work and communicate with external
stakeholders. It is advised to keep the number of teams a solution or software architect supports as low
as possible and to take other measures that allow attendance of these architects to agile developer rituals,
such as organising workshops with multiple teams instead of working in isolated, synchronised sprints.62
Integration of the solution and software architecture role could also be done by assigning co-ownership
of these architectures and software deliverables or by formalising interaction through procedures or
meetings to kick-start the interaction process between both roles. For example by adding an architectural
review as a requirement for the DoR of a user story. On the other hand, the study showed that separation
of solution architecture and development roles could help to keep both roles in check through a checks-
and-balances system and comes with the potential to look over the wall. This, has potential to affect the

62 These make it practically difficult for an architect to attend, as synchronisation of isolated sprints would mean
that the architect has to follow multiple meetings on the same day or even at the same time.

87

perspective of practitioners as well. Seeing how conflict, discussion or extra work adds value for the
business or quality of software.
 This study has potential to shift the perspective of practitioners that agile software development
and IT-architecture are not suitable for combination in a public context. Combining the fact that similar
problems and added value were found in the private sector with the fact that many IT-architects made
this claim as well as the falsified claim that agile does not match well with fixed deadlines, I would
recommend to invest in training for architects in working in an agile environment to show that balance
can be obtained in stability and flexibility. Similarly I would recommend to train agile developers in IT-
architecture knowledge and the benefits that are working together or under an IT-architect(ure) can bring
in terms of viability and sustainability of the software that is created. Training both perspectives makes
interaction with the other role more accessible, as one knows better which issues could be interacted on.
In addition, training could help to identify which technological changes are needed to accommodate
agile working practices and self-organising teams. Moreover, the change in practitioner perspective is
the first step towards better quality software, developed in a reduced timespan and for a lower budget.
While the government should invest on quality education in both deep and broad knowledge of IT.
Employers should also see training or education of their personnel in technical as well as methodological
matters of IT as an investment. Similarly, the government can increase its agility by providing training
in both the technical and methodological best practices, to integrate knowledge on how agility can be
achieved in the organisation. Touch points to increase agile maturity in the public sector would be
technical architectures and architecture processes that enable agility, onboarding of top-level
management of government organisations to the agile working methodology and new organisational
structures such as DevOps teams.
 Finally, the study shows that it is important to create trust between both roles to ensure
cooperation. I would recommend practitioners to be sensitive of actions that built or decrease trust from
other stakeholders. For example, ignoring the architecture for a short-term time or resource gain can
decrease trust of architects in the development teams. Similarly, stating that the way something has been
built in an unconstructive manner, without taking the time to think alongside with the team to what could
be feasible or taking a long time to deliver a fully fleshed out architecture instead of some key decisions
on which the team can act can decrease the trust of agile developers in IT-architects. It is important for
practitioners to realise that other stakeholders are not there to make your life difficult, but strive to create
quality software from their perspective as well. One developer stated that trust could be built by being
transparent on what you will deliver, when you will deliver, at which quality and to make this a
predictable pattern by delivering quality consistently. An IT-architect stated something similar, by
stating that it is sign of weakness to reject an idea of a development team without a conversation on why
they think this is the right way, how this would affect the organisation and being open to the perspective
of the developer on architectural decisions. Teams that reflect positively on their development process
described that they had trust and mandate from stakeholders to do what they thought was necessary,
while teams that reflected more negatively on their development found this lacking and experienced
more technical debt and rework later.

10.4. Recommendations for future research
The hypothesis that exchange models can create an upward spiral in terms of trust and the ability to
deliver quality software could be tested in an experimental sense, as there has been no investigation on
which software development process delivered most quality in respect to the resources and time used,
as this was not the point of the research. Comparing these cases on qualities comes with its own
limitations, for example being heavily dependent on the definition of quality. An in-depth single case
study of one organisation with direct observation could provide further evidence for or against the theory
that complementary added value could be obtained from architecture-agile interactions in software
development. A multi-case study could also be used but will require more resources, such as a research
team to facilitate discussions and cope with the amount of data within a reasonable timeframe.
 Case studies that take into consideration more roles and perspectives from the same organisation

88

would add to validity. For example, the perspective of external parties such as end-users and clients
missed in this study. Thus, a more detailed study could interview a client, PO, program manager,
enterprise architect, solution architect, involved development teams, end-users and various business
stakeholders to capture the full journey from a business idea or legal text to a working software product.
This would require a researcher that is close to, but independent of, the organisation to gain access while
avoiding bias. Similar case study research is needed to identify whether the interaction models defined
in the typology can be replicated.
 Problems were encountered when working according to agile methodologies, however, are the
problems caused by agile or it's interaction with architecture? Or is this methodology making problems
that were previously also involved in software development more observable? Agile methodologies
were developed to close the gap between developers, the end-user(s) and client. However, this does not
solve further problems in software development, such as the transition from development to operations,
or influences from the 'outside world' that require a certain level of quality for a certain budget and
delivered in a certain time. Nonetheless, the majority of organisations in the case studies were working
according to an agile methodology and successfully implemented basic agile processes such as a
backlog, daily stand-ups, refinement sessions and sprints, however stated that further improvements
could be made in their software development processes, such as implementing DevOps63 or creating
more interaction on the formulation of the solution architecture. The difference in agile approaches and
maturity turned out to be more of an opportunity than a threat, as it led to the identification problems as
well as added value in transitions from waterfall development towards agile. Making apparent the
interaction between traditional and agile favoured IT-architects.
 While, most modern agile methodologies propagate the creation of an agile architecture64 and
multi-disciplinary development teams that include all stakeholders that can affect or will be affected by
the solution: IT-architects, developers, testers, business stakeholders, end-users, etc. The fact that these
best practices were not implemented begs the question what this research would have found if these best
practices were implemented. Therefore, a study with a longer time span, more researchers in order to
cover a broader range of organisations or a case study approach focused on an exquisite development
organisation(s) could yield additional insights on how affected this study is by the selection of cases.
This study could then have contributed by exploring facets which could determine what an exquisite
development organisation would look like and how it would (not) approach software development
through the exploration of interaction models, outcomes of development processes, governance
strategies and the added value and problems that they created.
 From a governance perspective it would be interesting to investigate the role of the NORA user
community and whether the adoption of the agile architecture process is top-down, bottom-up or a
combination of the two. Moreover, it would be interesting to investigate the effect of having a user
community that administers a national government reference architecture on software development and
compare the Dutch approach with other countries.

63 In DevOps, the developers are responsible for keeping the system operational after development. This reduces
the gap between developers and operations and should create software that is easier to maintain, monitor, alter
etc.
64 An architecture that allows for options, as not everything can be known beforehand, and even if, then there
will be changes in the outside world that affect the architecture over the course of the development process.

89

Literature
Aljaber, T. (n.d.-a). Agile Iron Triangle [Illustration]. Atlassian.

https://www.atlassian.com/agile/agile-at-scale/agile-iron-triangle
Aljaber, T. (n.d.-b). The iron triangle of planning. Atlassian. Retrieved June 2, 2022, from

https://www.atlassian.com/agile/agile-at-scale/agile-iron-triangle
Alsahli, A., Khan, H., & Alyahya, S. (2016). Toward an Agile Approach to Managing the Effect of

Requirements on Software Architecture during Global Software Development [Article].
Scientific Programming, 2016, 16, Article 8198039. https://doi.org/10.1155/2016/8198039

ANP, & Doorenbosch, T. (2019, December 4). Software-update legt informatie NS plat. AG Connect.
Retrieved June 9, 2022, from https://www.agconnect.nl/artikel/software-update-legt-
informatie-ns-plat

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., & Jeffries, R. (2001a). Manifesto for Agile Software Development.
Agilemanifesto. Retrieved June 28, 2022, from https://agilemanifesto.org/

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., & Jeffries, R. (2001b). Principles behind the Agile Manifesto.
Agilemanifesto. Retrieved June 28, 2022, from https://agilemanifesto.org/principles.html

Bellomo, S., Gorton, I., & Kazman, R. (2015). Toward Agile Architecture Insights from 15 Years of
ATAM Data [Article]. Ieee Software, 32(5), 38-45. https://doi.org/10.1109/ms.2015.35

Bloch, M., Blumberg, S., & Laartz, J. (2012, 12-01). Delivering large-scale IT projects on time, on
budget, and on value. https://www.mckinsey.com/business-functions/mckinsey-digital/our-
insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value

Scaled Agile, Inc.. (2021, April 27). SAFe Glossary. Scaled Agile Framework.
https://www.scaledagileframework.com/glossary/

Bourgeois III, L. J., & Eisenhardt, K. M. (1988). Strategic decision processes in high velocity
environments: Four cases in the microcomputer industry. Management science, 34(7), 816-
835.

Breivold, H. P., Sundmark, D., Wallin, P., & Larsson, S. (2010, 2010). What Does Research Say about
Agile and Architecture?

Burgelman, R. A. (1983). A Process Model of Internal Corporate Venturing in the Diversified Major
Firm. Administrative Science Quarterly, 28(2), 223–244. https://doi.org/10.2307/2392619

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2009). A framework for adapting agile development
methodologies. European Journal of Information Systems, 18(4), 332-343.
https://doi.org/10.1057/ejis.2009.26

Chulani, S., Williams, C., & Yaeli, A. (2008). Software development governance and its concerns
Proceedings of the 1st international workshop on Software development governance, Leipzig,
Germany. https://doi.org/10.1145/1370720.1370723

Cleland-Huang, J., Hanmer, R. S., Supakkul, S., & Mirakhorli, M. (2013). The twin peaks of
requirements and architecture. Ieee Software, 30(2), 24-29.

Creswell. (2009). The Selection of a Research Design. In Research Design: Qualitative, Quantitative,
and Mixed Methods Approaches (pp. 3-18).

Curasi, C. F. (2001). A Critical Exploration of Face-to Face Interviewing vs. Computer-Mediated
Interviewing. International Journal of Market Research, 43(4), 1-13.
https://doi.org/10.1177/147078530104300402

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of management
review, 14(4), 532-550.

Falessi, D., Cantone, G., Sarcia, S. A., Calavaro, G., Subiaco, P., & D'Amore, C. (2010). Peaceful
Coexistence: Agile Developer Perspectives on Software Architecture [Article]. Ieee Software,
27(2), 23-25. https://doi.org/10.1109/ms.2010.49

Flyvbjerg, B. (2006). Five Misunderstandings About Case-Study Research. Qualitative Inquiry, 12(2),
219–245. https://doi.org/10.1177/1077800405284363

Fukuyama, F. (2016). Governance: What do we know, and how do we know it? Annual Review of
Political Science, 19, 89-105.

https://www.atlassian.com/agile/agile-at-scale/agile-iron-triangle
https://www.atlassian.com/agile/agile-at-scale/agile-iron-triangle
https://doi.org/10.1155/2016/8198039
https://www.agconnect.nl/artikel/software-update-legt-informatie-ns-plat
https://www.agconnect.nl/artikel/software-update-legt-informatie-ns-plat
https://agilemanifesto.org/
https://agilemanifesto.org/principles.html
https://doi.org/10.1109/ms.2015.35
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value
https://www.scaledagileframework.com/glossary/
https://doi.org/10.2307/2392619
https://doi.org/10.1057/ejis.2009.26
https://doi.org/10.1145/1370720.1370723
https://doi.org/10.1177/147078530104300402
https://doi.org/10.1109/ms.2010.49
https://doi.org/10.1177/1077800405284363

90

Glaser, B. G., & Strauss, A. L. (1967). The Discovery of Grounded Theory-Strategies for Qualitative
Research (London, Weiderfeld and Nicolson). Přejít k původnímu zdroji.

Gong, Y. (2012). Engineering flexible and agile services: a reference architecture for administrative
processes.

Gong, Y., & Janssen, M. (2019). The value of and myths about enterprise architecture. International
Journal of Information Management, 46, 1-9. https://doi.org/10.1016/j.ijinfomgt.2018.11.006

Gong, Y., & Janssen, M. (2020). Exploring Causal Factors Influencing Enterprise Architecture
Failure. In (pp. 341-352). Springer International Publishing. https://doi.org/10.1007/978-3-
030-64849-7_31

Hanschke, S., Ernsting, J., & Kuchen, H. (2015). Integrating Agile Software Development and
Enterprise Architecture Management. 2015 48th Hawaii International Conference on System
Sciences. https://doi.org/10.1109/hicss.2015.492

Harris, R. (2021, May 20). Agile vs. Waterfall [Illustration]. LinkedIn.
https://www.linkedin.com/pulse/software-development-life-cycle-sdlc-tutorial-richard-harris/

ICTU. (2021a, October). NORA Online. noraonline. Retrieved February 16, 2022, from
https://www.noraonline.nl/wiki/NORA_online

ICTU. (2021b, December 29). NORA (Nederlandse Overheid Referentie Architectuur).
DigitaleOverheid.nl. Retrieved May 30, 2022, from https://www.digitaleoverheid.nl/overzicht-
van-alle-onderwerpen/standaardisatie-en-architectuur/nora/

ICTU. (2022, January 13). PSA (Project Startarchitectuur) - NORA Online. noraonline.nl. Retrieved
May 30, 2022, from https://www.noraonline.nl/wiki/PSA_(Project_Startarchitectuur)

Irvine, A. (2011). Duration, Dominance and Depth in Telephone and Face-to-Face Interviews: A
Comparative Exploration. International Journal of Qualitative Methods, 10(3), 202-220.
https://doi.org/10.1177/160940691101000302

ISO. (2011). ISO/IEC/IEEE Std 42010-2011. In Systems and software engineering – Architecture
description.

Kable, A. K., Pich, J., & Maslin-Prothero, S. E. (2012). A structured approach to documenting a
search strategy for publication: A 12 step guideline for authors. Nurse education today, 32(8),
878-886.

Lankhorst, M. (2009). Enterprise architecture at work (Vol. 352). Springer.
Lankhorst, M. (2019, January 9). Four-layer incarnation of SAFe [Illustration]. Bizzdesign.

https://bizzdesign.com/blog/agile-architecture-using-archimate-with-the-scaled-agile-
framework-safe/

Madison, J. (2010). Agile-Architecture Interactions [Article]. Ieee Software, 27(2), 41-48.
https://doi.org/10.1109/ms.2010.35

Mihaylov, B. (2015a, December 28). A Separate Team of Software Architects Works with Multiple
Development Teams [Illustration]. InfoQ. https://www.infoq.com/articles/towards-agile-
software-architecture/

Mihaylov, B. (2015b, December 28). Each Development Team Has One Software Architect
[Illustration]. InfoQ. https://www.infoq.com/articles/towards-agile-software-architecture/

Mihaylov, B. (2015c, December 28). Towards an Agile Software Architecture. InfoQ. Retrieved June
18, 2022, from https://www.infoq.com/articles/towards-agile-software-architecture/

Mihaylov, B. (2015d, December 28). Traditional waterfall model [Illustration]. Infoq.
https://www.infoq.com/articles/towards-agile-software-architecture/

Miles, M. B., & Huberman, A. M. (1984). Qualitative data analysis. Beverly Hills.
Mintzberg, H. (1979). An Emerging Strategy of “Direct” Research. Administrative Science Quarterly,
 24(4), 582–589. https://doi.org/10.2307/2392364
NORA. (2019, October 8). NORA bindende afspraken. Digitale Overheid. Retrieved June 26, 2022,

from https://www.digitaleoverheid.nl/achtergrondartikelen/nora-bindende-afspraken/
NORA Gebruikersraad. (2022, March). NORA Gebruikersraad/2019-03-26 (No. 2019–03–26). ICTU.
 https://www.noraonline.nl/wiki/NORA_Gebruikersraad/2019-03-26
Parlementaire ondervragingscommissie Kinderopvangtoeslag. (2020, December). Ongekend Onrecht

(No. 35510, nr. 3).
https://www.tweedekamer.nl/sites/default/files/atoms/files/20201217_eindverslag_parlementai
re_ondervragingscommissie_kinderopvangtoeslag.pdf

https://doi.org/10.1016/j.ijinfomgt.2018.11.006
https://doi.org/10.1007/978-3-030-64849-7_31
https://doi.org/10.1007/978-3-030-64849-7_31
https://doi.org/10.1109/hicss.2015.492
https://www.linkedin.com/pulse/software-development-life-cycle-sdlc-tutorial-richard-harris/
https://www.noraonline.nl/wiki/NORA_online
https://www.digitaleoverheid.nl/overzicht-van-alle-onderwerpen/standaardisatie-en-architectuur/nora/
https://www.digitaleoverheid.nl/overzicht-van-alle-onderwerpen/standaardisatie-en-architectuur/nora/
https://www.noraonline.nl/wiki/PSA_(Project_Startarchitectuur
https://doi.org/10.1177/160940691101000302
https://bizzdesign.com/blog/agile-architecture-using-archimate-with-the-scaled-agile-framework-safe/
https://bizzdesign.com/blog/agile-architecture-using-archimate-with-the-scaled-agile-framework-safe/
https://doi.org/10.1109/ms.2010.35
https://www.infoq.com/articles/towards-agile-software-architecture/
https://www.infoq.com/articles/towards-agile-software-architecture/
https://www.infoq.com/articles/towards-agile-software-architecture/
https://www.infoq.com/articles/towards-agile-software-architecture/
https://www.infoq.com/articles/towards-agile-software-architecture/
https://doi.org/10.2307/2392364
https://www.digitaleoverheid.nl/achtergrondartikelen/nora-bindende-afspraken/
https://www.noraonline.nl/wiki/NORA_Gebruikersraad/2019-03-26
https://www.tweedekamer.nl/sites/default/files/atoms/files/20201217_eindverslag_parlementaire_ondervragingscommissie_kinderopvangtoeslag.pdf
https://www.tweedekamer.nl/sites/default/files/atoms/files/20201217_eindverslag_parlementaire_ondervragingscommissie_kinderopvangtoeslag.pdf

91

Pfeffer, J. (1982). Organizations and organization theory (pp. 237-251). Boston: Pitman.
Pizka, M. (2004, June). Straightening spaghetti-code with refactoring?. In Software Engineering

Research and Practice (pp. 846-852).
Poort, E. R. (2014). THE PRAGMATIC ARCHITECT Driving Agile Architecting with Cost and Risk

[Article]. Ieee Software, 31(5), 20-23. https://doi.org/10.1109/ms.2014.111
Smite, D., Van Solingen, R., & Chatzipetrou, P. (2020). The Offshoring Elephant in the Room:

Turnover. Ieee Software, 37(3), 54-62. https://doi.org/10.1109/ms.2018.2886179
The Open Group. (n.d.). ArchiMate® 3.1 Specification. Retrieved February 16, 2022, from

https://pubs.opengroup.org/architecture/archimate3-doc/toc.html
The Open Group. (2018, April). The TOGAF Standard, Version 9.2 - Content Metamodel. Retrieved

February 16, 2022, from https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap30.html
Waterman, M. (2018a). Agility, Risk, and Uncertainty, Part 1: Designing an Agile Architecture

[Article]. Ieee Software, 35(2), 99-101. https://doi.org/10.1109/MS.2018.1661335
Waterman, M. (2018b). Agility, Risk, and Uncertainty, Part 2 How Risk Impacts Agile Architecture

[Article]. Ieee Software, 35(3), 18-19. https://doi.org/10.1109/MS.2018.2141017
Woods, E. (2015). Aligning Architecture Work with Agile Teams [Article]. Ieee Software, 32(5), 24-

26. https://doi.org/10.1109/ms.2015.119
Yang, C., Liang, P., & Avgeriou, P. (2016). A systematic mapping study on the combination of

software architecture and agile development [Article]. Journal of Systems and Software, 111,
157-184. https://doi.org/10.1016/j.jss.2015.09.028

Yin. (n.d.). A (very) brief refresher on the case study method. In Case Study Research (pp. 3-20).
Yin, R. K. (1981). The case study crisis: Some answers. Administrative science quarterly, 26(1), 58-

65.
Yin, R. (1984). case study research. Beverly Hills.
Yin, R. K. (2018). Case Study Research and Applications: Design and Methods.

Personal communication with supervisors:
Consultation with supervisor M.F.W.H.A. Janssen. (2021). Full Professor in ICT & Governance at TU

Delft.
Consultation with supervisor W.G.P. Heijnen. (2022). Senior Manager Digital Transformation public

sector at KPMG.
Consultation with supervisor H.G. van der Voort (2022). Assistant professor in Organisation &

Governance at TU Delft.

https://doi.org/10.1109/ms.2014.111
https://doi.org/10.1109/ms.2018.2886179
https://pubs.opengroup.org/architecture/archimate3-doc/toc.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap30.html
https://doi.org/10.1109/MS.2018.1661335
https://doi.org/10.1109/MS.2018.2141017
https://doi.org/10.1109/ms.2015.119
https://doi.org/10.1016/j.jss.2015.09.028

92

Glossary
Administrative/management organisation: party to which ownership of the software solution is
transferred after development.

Business landscape: Collection of documents, designs and visions that describe the current and future
business processes and capabilities of an organisation.

Client: party that the development team is building a solution for.

Customer: person that will have to work with the software solution, end-user.

Governance strategy: Formal policy that assigns roles and responsibilities or monitors or enforces
these roles and responsibilities. Management decisions, governance structures, frameworks, rituals and
procedures are manifestations of governance strategies.

IT-architect: Since architect is a protected term related to the construction of buildings, a preposition
had to be used for the term architect. Even though in literature and practice the term architect is often
used to discuss the collection of various architecture roles: enterprise, business, technology, solution,
software, infrastructure etc., in this research the word IT-architect is used for this. This does have the
unfortunate implicit assumption that only the IT-side of the architecture roles are considered and not
the business architecture role(s), however these are included in the IT-architect term, for lack of a
better term.

IT-architecture: Similarly to IT-architect, the word IT-architecture is used to discuss the products of
several architecture roles in an organisation, for example the enterprise architecture is the product of
an enterprise architect and an IT-architecture is a collection of an enterprise, domain and solution
architecture. Thus, an IT-architecture are the products of various architecture roles, with the same
unfortunate implicit assumption that the business architecture is not included in this collection, while it
is.

IT-architecture landscape: Collection of IT-architecture documents, designs and visions that
describe the current and future IT capabilities of an organisation.

Operations: party to which ownership of the software solution is transferred after development.

Product owner: Stakeholder, usually from the business side of the organisation that takes
responsibility for the solution and determines together with the development team which user stories
are worked on in which sprint.

SAFe: Scaled agile framework, a framework designed to help organisations cope with issues that
arise when agile is implemented with multiple teams that work on the same solution. Builds upon
Scrum and is tailored towards the whole organisation.

Scrum: Agile framework for small teams.

93

Appendix A – Quality assessment of papers
Table 15 gives an overview of all the papers that were assessed by hand with the inclusion and
exclusion criteria.

Table 15: Overview of papers selected for quality assessment

ID. Author, year Selection method Quality appraisal:
include/exclude

1. Gong & Janssen, 2019 Manual/ supervisor Exclude, already used for
introduction.

2. Gong & Janssen, 2020 Manual/ supervisor Exclude, already used for
introduction.

3. Luna et al., 2019 Manual/ supervisor Exclude, focused on agile
governance theory, enough
papers about the interaction of
agility and architecture are
available

4. Cao et al., 2009 Manual Exclude, pre 2010

5. Ashrafi et al., 2019 Search query 2 Exclude, only focused on how
business analytics can increase
agility.

6. Larson & Chang, 2016 Search query 2 Exclude, paper is a review of
how agile practices have
evolved with business
intelligence.

7. Liu et al., 2013 Search query 2 Exclude, not about software
architecture and agile software
development

8. Dingsoyr et al., 2012 Search query 2 Exclude, Falessi et al., 2010 is
referenced to and already
discusses these issues.

9. Spijkerman, 2021 Search query 3 Exclude, paper proses a
framework to align
requirements engineering

10. Kisimov et al., 2020 Search query 3 Exclude, specifically focused
agile architecture for big data

11. Waterman, 2018 part 1 Search query 3 Include, paper is about a
dilemma software architects
face in agile environments.

12. Waterman, 2018 part 2 Search query 3 Include, discusses the risks
associated with the outcome of
part 1.

13. Angelov & Beer, 2017 Search query 3 Exclude, focused on software
architecting in agile projects in
education.

14. Aslahli et al., 2016 Search query 3 Include, discusses an
integration of agile practices in
architecting practice for
software development. Does
use the Twin Peaks model,
however as a base to design a
new approach to
simultaneously handle
requirement and architecture
changes.

94

15. Yang et al, 2016 Search query 3 Include, systematic mapping
study of literature about
architecture-agility
combination.

16. Bellomo, 2015 Search query 3 Include, review of agile
community refocusing on
approach architectural
concerns.

17. Woods, 2015 Search query 3 Include, focused on
collaboration problems of agile
development teams and
software architects

18. Poort, 2014 Search query 3 Include, proposes advice that
architects can help to become
more effective in agile world
without implementing new
methods or frameworks.

19. Diaz et al., 2014 Search query 3 Exclude, focused on specific
framework and smart grids.

20. Gill, 2014 Search query 3 Exclude, paper inaccessible.

21. Lee and Baby, 2013 Search query 3 Exclude, too focused on fisk
management.

22. Zlatev et al., 2013 Search query 3 Exclude, paper design of an
architecture for a specific
application.

23. Falessi et al., 2010 Search query 3 Include, discusses tension
between agile and architecture
communities, along with myths
and facts about coexistence.

24. Madison, 2010 Search query 3 Include, argues that agile
development is not at odds
with architecture.

25. Gong (2012) Manual Include, proposes a conceptual
architecture aimed at providing
agility and flexibility. Example
of case study approach in this
field.

26. Eloranta & Koskimies
(2013)

Search query 3 Exclude, paper inaccessible.

27. Watfa & Kaddoumi
(2021)

Search query 3 Exclude, paper is a specific
framework for Agile
Enterprise Architecture .

28. Alzoubi & Gill (2020) Search query 3 Exclude, about the effects of
agile enterprise architecture on
agile software development

29. Gill (2015) Search query 3 Exclude, paper on agile
enterprise modelling.

30. Sandoval et al. (2017) Search query 3 Exclude, written in Spanish.

31. Santos et al. (2021 Search query 3 Exclude, paper inaccessible.

33. Mitsuyuki et al. (2017) Search query 3 Exclude, paper inaccessible.

34. Bondar et al. (2017) Search query 3 Exclude, specific enterprise
architecture framework is used
to model a system-of-systems

95

perspective. Unrelated to
software development.

35. Rane & Narvel (2021) Search query 3 Exclude, application of agility
and Block-chain architecture in
a domain unrelated to software
development.

36. Rane & Narvel (2021) Search query 3 Exclude, application of agility
and Block-chain architecture in
a domain unrelated to software
development.

37. Boyer & Mill (2011) Search query 3 Exclude, book chapter.

38. Stoica et al. (2018) Search query 3 Exclude, conceptual design of
an agile collaborative
architecture for E-government
services

39. Bosch & Bosch-Sijtsema
(2010)

Search query 3 Exclude, book chapter

40. Yli-Ojanperä et al.
(2019)

Search query 3 Exclude, paper about agile
manufacturing concepts to the
reference architecture model
industry 4.0. Not about
software development.

41. Chicaiza et al. (2018) Search query 3 Exclude, paper written in
Spanish.

96

Appendix B – Case study protocol
The purpose of the case study protocol is to define a set of guidelines that govern the case study
research project (Yin, 2018). The case study protocol is contains a section on informed consent forms,
case study questions. Normally, procedures, data collection, case selection and limitations are also
included in the case study protocol, however these have already been included in chapter 3.

B.1 Case study procedures
This section discusses the protocols, instruments and timeline that are used in the research.

Data collection and protection of humans subjects
Yin (2018) identified six data collection methods for case study research: 1) Documentation; 2)
Archival records; 3) Interviews; 4) Direct observation; 5) Participant observation; and 6) Physical
artifacts. Both observation techniques are not compatible with the given timeframe of 20. The small
timeframe this leaves for data collection. Thus it is very likely that the researcher will not be able to
observe the consequences of governance strategies. A physical artifact (i.e. serious game) could be
used to simulate governance strategies affecting (part of) a software development process in order to
study the interaction of software architects and agile development teams, however time and knowledge
to set up such an experiment are lacking. Mastery of the chosen data collection methods is identified
as important by Yin. For this research expert interviews and document (including archival records if
relevant) analysis are used as these data collection techniques are best understood by the researcher
and this type of data is available to the researcher.
 Since documents analysis and interviews are the chosen data collection methods, it is
important to consider their benefits and limitations. Yin (2018) identified that interviews are prone to
response bias and bias due to poorly articulated questions. Moreover, inaccuracies can arise as
respondents have trouble recalling events and participants might say what the interviewer wants to
hear (reflexivity). Documentation might be difficult to find or access due to i.e. privacy reasons. In
analysing documentation a researcher should also consider the (unknown) bias of the author and
biased selectivity. On the contrary there are also advantages to consider. Interviews can focus on the
case study topics and provide insight in personal views as well as explanations. While document
analysis is repeatable, unobtrusive, specific (i.e. on event) and can cover a long time span or consider
many events or settings. Since availability of interviewees could be a limitation, a trade-off will have
to be made between comparative capacity of cases and availability of interviewees.
 Changes in governance are likely to be well documented and can support or contradict claims
made by participants, on the other hand they might not be accessible due to confidentiality or privacy
reasons. Therefore, this data collection method is considered a ‘nice to have’ and is not a hard
requirement. Both software development practices involve the provision of documentation, however in
varying degrees.
 An idea booklet will be used to document thoughts and insights during the interview, this idea
is based on Burgelman (1983) and is implemented as it is not always clear what will be important later
on. For this reason and since the researcher is working alone, which makes it difficult to make
extensive notes while also conducting the interview, the interviews will be recorded. The recordings
will be deleted after transcription within 10 working days and validation by the participant. These
transcriptions will later be summarised, once it is clear what is important and which details can be left
out. The transcriptions will be deleted one month after the research has been completed. The main
reason for this is to preserve the privacy of the participants and to protect participants and their
employing organisations from reidentification through the research data.
 Data will be collected, stored, processed and published based on informed consent by
participants. An informed consent form (Appendix B.1) will be used to inform and acquire consent
from participants on the research agenda, data storage procedures and time and publication of research
data. Ranges are often used to present numerical data that will be published in order to decrease the
risk of reidentification. TU Delft OneDrive will be used as a safe storage mechanism. The procedures

97

and forms have been reviewed and approved by the TU Delft Human Research Ethics committee.

Research team
Another limitation is that only one researcher is able to carry out the data collection, even though
Eisenhardt’s (1989) methodology is meant to leverage the complementary insights of multiple
researchers and increase the confidence in findings. However, the researcher is working under the
supervision of a research team, discussions with this team can simulate the presence of multiple
investigators with complementary insights and increase confidence in the findings.

COVID-19
Face-to-face interviews are very unlikely to occur due to the COVID-19 pandemic. Since telephone
interviews tend to lead to a less detailed response by interviewees, preference will be given to
computer-mediated interviews (Irvine, 2011). Hence consideration need to be given to the differences
between computer-mediated and face-to-face interviewing, such as informing the interviewee that a
detailed response is desired and that there are no right or wrong answers when the interview questions
are sent (Curasi, 2001). Moreover, since successes as well as failures will be the subject of this
research, interviewees and organisations should be protected through anonymisation. Finally, the
object of study (combination of people, approaches, methods, policies and tools) might change while
under study, either by the fact that subjects are researched or for other reasons (Yin, n.d.).

Time schedule and number of cases
Eisenhardt (1989) advises that adding cases and incrementing between theory and data should stop
when theoretical saturation is reached. This is the point where incremental learning becomes marginal
as the researcher starts to observe reoccurring phenomena. However, this point will be difficult to
recognise in the research process as conducting the interviews, transcription and analysis of the
interviews is likely to occur synchronously, depending on the availability of participants. To prevent
issues with the time schedule hard deadlines have been set for data collection, transcription and
analysis in Figure 13. This figure visualises the research activities and the amount of time they need to
be completed. Figure 14 gives a visual representation of the Research flow and includes the same
research activities as the Gantt chart. It connects the main research activities and deliverables. Data
collection and transcription will both last 41 days, the latter starting and ending about a week later,
while data analysis will last 46 days and ends last. Eisenhardt’s advice of a number between four and
ten case studies will be followed. Fewer than four case studies make it difficult to generate theory with
much complexity and has unconvincing empirical grounding. While more than ten cases creates
coping issues with complexity and the volume of data.

98

Figure 13: Gantt chart of research activities

Id Research activity Start date End date Duration (days)

feb 2022 m rt 2022 apr 2022 m ei 2022 jun 2022

30-1 6-2 13-2 20-2 27-2 6-3 13-3 20-3 27-3 3-4 10-4 17-4 24-4 1-5 8-5 15-5 22-5 29-5 5-6 12-6 19-6 26-6

1 2d1-2-202231-1-2022Start

2 2d1-2-202231-1-2022Meeting 31-jan

3 11d14-2-202231-1-2022Finalise HREC application

4 11d14-2-202231-1-2022Fine tune kick-off proposal

7 3d7-3-20223-3-2022Prepare kick-off presentation

8 2d9-3-20228-3-2022Kickoff

9 4d11-3-20228-3-2022Process kickoff feedback

10 6d18-3-202211-3-2022Literature review

6d23-2-202216-2-2022Case study design

6d2-3-202223-2-2022Case study selection (criteria)

11 41d9-5-202214-3-2022Conduct case studies

12 2d10-5-20229-5-2022Stop data collection

13 41d16-5-202221-3-2022Transcript case studies

14 2d17-5-202216-5-2022Stop transcription

15 46d23-5-202221-3-2022Analyse case study data

16 2d24-5-202223-5-2022Stop data analysis

17 6d6-6-202230-5-2022Prepare Greenlight

18 2d7-6-20226-6-2022Green Light meeting

19 2d10-5-20229-5-2022Book a room for graduation

20 11d20-6-20226-6-2022Revise report

21 8d6-7-202227-6-2022Prepare defense

22 2d5-7-20224-7-2022Defense

5

6

99

Figure 14: Research Flow Diagram

Proposal

Main RQ

Defense

Start/ Stop

Process

Deliverable

sub-
questions

Research
metho-
dology

Chapter 1

Finalise HREC
application Finetune kick-off

proposal

Prepare kick-off
presentation

Process kick-off
feedback

Literature review

Case study design

Conduct case
studies

Transcript case
studies

Analyse case study
data

Prepare Greenlight

Greenlight
meeting

Revise report

Prepare defense

HREC
approval

Kickoff

Kickoff
proposal

Kickoff
presenta-

tion

Sub-
question 1

Case study
selection

criteria

Case study
selection

Case study
data

Case study
transcrip-

tions

Cross case
analysis

Chapter 2
Background

Chapter 3
Materials &

Methods

Chapter 4
results

Chapter 5
Discussion

Sub-
questions

2-4

Thesis draft

Feedback
on thesis

draft

Final thesis

Thesis
presen-

tation

Legend:

100

Interview time
Interviews will take up at least one and no more than two hours, striving for one and a half hour. Less
than one hour will not be enough to answer the full questionnaire. While interviews of more than two
hours are considered to be disproportionally straining on the interviewees time. A limit is also useful
for the researcher, while more data can seem better, it is useful to keep focus while collecting data.
Additionally, since the interviews have to be transcribed, limited time will keep transcription
manageable for the researcher. Especially, since at least two participants have to be interviewed per
case, doing interviews that are longer than two hours can make the amount of data unmanageable.
 Yin (2018) classifies interviews of under two hours as shorter case study interviews states that
the open ended interviews can be conducted in a conversational manner. Similar to, prolonged case
study interviews of 2 (or more) hours. However, he notes that the case study protocol is likely to be
followed more closely. Especially if this type of interview will be used to corroborate specific
findings, which very likely will be the case in the research due to the theory building character, the key
is to ask questions in a genuinely uninformed way to allow the interviewee to provide a fresh
commentary. If the questions are asked in a leading way, the corroboratory purpose cannot be served.
Another way to do so, is by asking people who are known to have different perspectives, this is
addressed by interviewing both an architect and agile developer, who are known for their different
perspectives on software development. Consequently, questions are added in order to identify and
understand the own interviewee’s perceptions and sense of meaning on the material (Appendix B.2.2).

Interview protocol
The interview protocol is presented in Appendix B.2.2. The interviews will be semi-structured with
open ended questions to support rich qualitative data needed for theory-building. The interview
questions might change as theory evolves or new insights emerge, changes will be documented to
safeguard reproducibility and scientific rigor. Questions one until four are used to identify the context
of the project, organisation of the product owner, role of the participant, expertise of the participant,
agile adoption and architecture practices. Questions five until nine and thirteen until fifteen are related
to governance, the interaction and added value and problems of the interaction.
 While most of the data is of a qualitative nature, incurring phrases, classifications or
descriptions from the participants, the closing questions on delivery of the project in terms of costs and
savings or overrun, plus quality perception by the customer might result in quantitative data combined
with a qualitative description, i.e. the project was 7 days overdue, because of reason X. As this
information is useful to determine added value or incurred costs by governance strategies on the
software development combination, this data will also be used if relevant. Similarly, the opening
questions ask the participant about their experience in terms of years and will be considered in the
following classification: < 5 years, 5-10 years, 10 – 15 years and 15 + years . Thus while the core of
the research is of a qualitative nature, there are small quantitative elements that can add meaning or
validity to findings.

Supporting principles
Yin (2018) identified the following principles to address challenges in construct validity and
reliability: 1) usage of multiple sources of evidence (triangulation); 2) creating a case study database;
3) maintaining a chain of evidence; and 4) exercising care in using data from electronic sources, i.e.
social media.
 The first principle is addressed by interviewing at least two experts that worked on a project
and document analysis. Moreover, the individual cases will be subjected to cross-case analysis to
increase the construct validity and reliability. A case study database that separates the raw data from
interpretation will be used. The raw data should remain untouched after transcription and validation by
the participant. This is important to preserve the integrity of the research and statements of the
participants. The only exception to this of data and interpretation will be the summary that will be used

101

to provide transparency about the data that supports the findings while safeguarding the privacy of the
participants. This means that updates in the form of notes should be made in the report and not in the
raw data. Versioning will be used to increase transparency in changes of tabular materials, the case
study report and master thesis. Documents that are studied are also to be added to the database and to
be mentioned in the bibliography. New narrative compilations should also be part of the case study
database. These are i.e. cross-references or classifications, interesting themes or ideas (basis for
theory) and the researchers own open-ended answers to the case study protocol questions. The latter is
part of the analysis and can be a starting point for the case study report and theory building process.
The documentation of new narrative compilations and notes should not be edited extensively, but
should be informative enough to connect the original questions of the case study protocol to the
responses.
 In order to establish a chain of evidence, the findings are to supported by a reference to the
specific document or interview. The specific sources should be highlighted in this document and the
database should describe the circumstances under which the data was collected. These circumstances
should be consistent with the case study protocol. Thus the protocol questions and original study
questions should be observably linked. However, some of the practices supporting this principle are at
odds with the privacy that is guaranteed to the individuals, hence the aggregate summaries should be
as informative and consistent with this principle as privacy allows. In short, privacy of the participants
is chosen over this principle in case of conflict. The fourth principle mainly concerns interviews
through chat-rooms, where it is not always clear who is on the other side. This is not relevant, as the
computer-mediated interviews will take place via a videoconferencing software: Microsoft Teams.
Additionally, the principle is for when social media posts from i.e. Facebook or Twitter are used.
These sources will not be used.

Field procedures
In theory-building from case studies there is frequent overlap in data collection and data analysis.
Overlapping data analysis and data collection helps to take advantage of flexible data collection. As it
allows the freedom to make adjustment to the data collection process, such as the interview
questionnaire. This allows the researcher to take advantage of special opportunities that may arise or
addition of data sources in selected cases. Additional cases or participants may be added that have
become clear after data collection has started. Thus newly emerged lines of thinking can be
discovered, which helps with theory building, as this new line of thinking can be tested. The
researcher needs to be careful to document these new lines of thinking and changes to data collection
to ensure that the approach remains systematic and documented.
 According to Yin (2018) there are five desired attributes for a researcher conducting case
study research: 1) ask good questions and interpret the answers fairly; 2) be a good listener and to
think beyond existing ideologies or preconceptions; 3) stay adaptive and see new situations as
opportunities, not threats; 4) have a firm grasp on the issues being studied and; 5) conduct research
ethically, be open to contrary evidence. These desired attributes are in line with the idea of
overlapping data analysis and collection and the use of literature in a theory-building case study by
Eisenhardt (1989).
 Asking good questions is important, as in case study research it is not readily predictable
which information will become relevant, even though a formal protocol is followed. Thus in case
study research, analysis occurs during the data collection process which is determined by the ability of
the researcher to ask good questions and being a good listener. Being a good listener helps to
understand not only what has been said, but also what has been meant.
 In order to conduct case study research ethically and without preconceptions it is important to
report contrary findings to two or three critical colleagues while still in data collection phase (Yin,
2018). This can help to offer alternative explanations and suggestions for data collection. The critical
colleagues will be the members of the research committee in order to safeguard confidentiality. The
other principles will also be implemented.

102

B.2 Case study Instruments
B.2.1. Informed consent form
Information sheet for Consent Form

The purpose of the research is to identify general governance strategies that can be used to achieve
complementary added value form practicing software architecture together with agile software
development. In this case, complementary means that the added value of combining both software
development approaches is greater than the sum of individual added value of the approaches. To
address this research topic, a multi-case study approach is used. In order to collect data for the multi-
case study approach interviews with experts are used. Participating in this research will help
researchers and practitioners to recognize potential added value and pitfalls of combining software
architecture and agile development. The results will allow product owners, software architects and
agile development teams to use the identified governance strategies to steer towards complementary
added value in their software development process.

Participation is on a voluntary basis. This means that informed consent is needed from the participant
and that this consent can be withdrawn at any time during or after the study, without having to give a
reason. Participants are free to refuse to answer any question(s). Participants can withdraw from the
interview by expressing their willingness to do so during the interview or later by sending a statement
and referral to the subject of this research via e-mail: c.vandervliet@student.tudelft.nl. This e-mail
address can also be used to file a complaint. Informed consent is needed separately for:

1) Participation in the research
2) The use of quotations from the interview in the master thesis
3) Publishing the findings from interviews master thesis and the anonymised summaries

Since the interview will be conducted by one researcher, video-recordings of the interview will be
made. Being a participant in an interview comes with the risk of re-identification and/or reputational
damage of the participant or the participants employing organisation. To address this risk the
following mitigating measures are taken:

• The video-recordings will be transcribed in a privacy preserving way within 10 working days
and send back to the participant, the video-recordings will be deleted after validation of the
interview transcription by the participant. Participants have the right to view the transcription
of their interview and ask for rectifications.

• The transcripts of the interview will be deleted one month after the research has been
completed.

• Separate from the transcriptions of interviews, anonymised summaries will be created. Any
data unrelated to the results will be deleted. Data that is relevant for the results and could
potentially lead to re-identification will be generalised, using for example ranges instead of
absolute numbers. Names will not be mentioned in the summaries.

• The recordings and transcriptions are only accessible to the researcher and graduation
committee.

• Only the anonymised summaries and the master thesis will be made publicly available.
• Personal information about the participant such as names, email addresses, employers will

only be stored for communication purposes in a secure institutional storage place and will be
deleted one month after the research has been completed. This data will only be shared, if
necessary, with the graduation committee.

It is important to know that a detailed response is desired by the researcher and that there are no right
and wrong answers to the interview questions. By giving informed consent to participate in this
research the participant acknowledges that they understand the information in this form, has be able to
answer questions and received satisfactory results.

mailto:c.vandervliet@student.tudelft.nl

103

Consent Form for: Agile software development and software architecture,
complements or counterparts? The role of governance.

Please tick the appropriate boxes Yes No
1. Taking part in the study

I have read and understood the study information or it has been read to me. I have been
able to ask questions about the study and my questions have been answered to my
satisfaction. I consent voluntarily to be a participant in this study and understand that I can
refuse to answer questions and I can withdraw from the study at any time, without having
to give a reason.

□ □

2. Use of the information in the study

I agree that my information can be quoted anonymously in research outputs.
□

□

3. Future use and reuse of the information by others
I give permission for the anonymised transcript summaries that I provide to be published
alongside the master thesis in the TU Delft educational repository.

□

□

Signatures

_____________________ _____________________ ________
Name of participant [printed] Signature Date

I have accurately read out the information sheet to the potential participant and, to the best
of my ability, ensured that the participant understands to what they are freely consenting.

________________________ __________________ ________
Researcher name [printed] Signature Date

Study contact details for further information:
Stan van der Vliet,
will add phone number later,
c.vandervliet@student.tudelft.nl

104

B.2.2 Interview questions
Share informed consent form with participant and obtain informed consent from participant.

Questionnaire

1) What is your current position at …. ?

2) I would like to talk about the software development process. Can you describe the software
development process? Who was the product owner? Who was the end-user of the product? How
would you define them?

3) What was your role in the project? What is your experience in this role? How would you describe
the function of your role? What are the tasks and responsibilities? Which role in the process was
responsible for flexibility? Which role in the software development process was responsible for
stability?

4) How did you employ agile software development in the project? What was its role in the
development process?

5) How did you employ (software) architecture in the project? What was the role of the (Software)
architect in the development process? Did they design upfront? Was it possible to alter these
designs?

6) How did agile software development and software architecture interact in the development
process? What were advantages? What were disadvantages?

7) Now I would like to shift the interview towards added value or problems in the project. Could you
describe added value or problems that occurred due to the interaction of agile software
development with architecture?

8) Why do you think that this added value or problem can be attributed to the interaction of agile
development and architecture? Why is it not related to either architecture or agile alone?

9) How did the agile team and software architect communicate? Why? How did this impact the
project?

10) How would you describe the knowledge of the architect? / How would you describe the
knowledge of the agile development team?

11) What types of uncertainties were addressed? How was uncertainty addressed in the project?

105

12) Let’s talk about governance and how it impacted the project. Could you describe what you
consider a governance strategy?

13) Could you describe what you consider a governance strategy that affect your project with special
attention to the interaction of SA and agile that we just discussed? Is this interaction affected by
compliance to legislation? By budgets? Are you able to hire the right personnel? Or by tender-like
procedures?

14) Could you describe in detail which added value or problems this delivered or incurred for your
project due to this governance strategy?

15) Was the project delivered within allocated time and budget or was it not?

16) How was the project received by the customer in terms of quality? Was the quality of the project
in line with what the clients' expectations?

17) Do you know somebody else who might be interesting to interview on this project? Are you able
to share documents surrounding the events that we discussed?

106

Appendix C – Case study report 0
Table that summarises findings of case study 0

Table 16: Case study report 0

Variable name Unit of measurement Functional designer and Scrum
Master

Project description Description Establishment of a nationwide
application for the prevention of
fraud. This system should support
inspection and enforcement of
compliance to rules. All three
applications/uses of the
application, registration, inspection
and enforcement had different
teams as different stakeholders
were responsible for each part.

PO description

Tech savvy / non-tech savvy /
description

One person from a ministry who
delegated their tasks and
responsibilities to a person from
the organisations responsible for
inspection and enforcement. So,
there were two product owners that
had the freedom and mandate to
formulate requirements. I worked
on the inspection team and thus
collaborated with the PO from
inspection. I was amazed at the
PO’s skills for this role, for
example management of
stakeholders or leadership but also
leaving room for their thoughts on
the product. PO was responsible
for operation of other systems at
their organisation, including the
old system. So, somewhat tech-
savvy, knew the problems and
challenges of
software(applications) and could
translate what this means for
operations.

PO impact on project description Both ‘parts’ were developed
separately from each other and
needed to work together. So, both
POs would have to communicate
well over things like architecture.
Was difficult to engage PO at first,
as their stance was: the PSA
contains 200 requirements, so you
guys could build right? However,
after a lot of convincing the PO
agreed to attend a three-hour
workshop every week.

End-user description Tech savvy / non-tech savvy /
description

On the inspection side, the
inspectors. On the enforcement
side enforcers, which were all
organised differently, so this part
of the project was a bit more
complicated. For example, a small
organisation is organised
differently than a bigger
organisation. For this interviewee,
the inspectors who had to go
through the application and
inspection process on the basis of
the assessment framework
(toetsingskader). The end-users
were not so tech savvy, basic
computer skills.

Role in project Software architect, enterprise
architect, member of agile
development team,

Functional developer and Scrum
Master

107

Experience in role < 5 years, 5-10 years, 10 – 15 years,
15 > years

 < 5 years, agile was fairly new
then and so was the Scrum master
role.

Project status Functional version / in operation
phase / description

Reflection on a development
process in the past.

Agile framework used SAFe etc. Three teams interacted with
Scrum, SAFe did not yet exist.

(Reference) architecture
framework

TOGAF, NORA etc. NORA

Geographical scope International, national, regional,
local, central (same building/room)

Central

Agile implementation Maturity / Description Worked agile three months after
project start. Before that: waterfall.
After three months: made three
teams: inspection, enforcement
and a team that developed the
nationwide application.

Role in project Description Used prototypes to get agreement
on requirements during a three-
hour workshop as PO’s were not
fulltime on site. During this
workshop, product owners would
bring relevant stakeholders on
board.

Solution architecture
implementation

Top-down, architect actively
involved in agile development team
and / or description

Architects went to work on a
Project Start Architecture (PSA) at
the start of project. This included
assumptions and nationwide
standards such as NORA. What do
we do with data, where do we
store it? How do we address
functional and non-functional
requirements? This was a Solution
architecture+. System was
developed from the PSA. The PSA
was transformed iteratively into a
Project End Architecture (PEA)
which was transferred to the
managing organisation. Architect
that was interacted with could be
identified as a solution architect.

Interaction between architecture
and agile

Description Functional developer/Scrum
master and PO were involved in
formulation of requirements for
PSA.

Requirements from PSA were
translated into features which were
detailed in refinements, up to two
sprints ahead.

Architect (PO, operations and
other stakeholders) attended the
workshops and was closely
connected to the content.
Workshops were used to discuss
what was built and to discuss the
next sprints.

Architect was asked each week to
review user stories and
deliverables. Architectural review
was part of DoR.

Advantages or disadvantages of
interaction

Description Protypes and the ability to give
immediate feedback helped to
convince PO of importance of
attending the workshops.

Packages that contained everything
were delivered at the end of
sprints, including documentation.
Because of this one could access
the right documentation and source
code easily a year later.

108

Uncertainty on requirements could
was addressed by working
iteratively and by showing
prototypes to customers.

A good architect can be a gauge
for the team to assess whether the
right thing has been built. This role
is not always carried out although
there is a lot of added value in it.
This allowed the team to build the
right things on the first try.

A good architect is a visionary
descriptor based on the
organisation and the market. They
look at how components should fit
together.

An architect can be an interface to
external stakeholders, for example
operations.

Architect had good knowledge of
government standards and
interfaces that needed to be
adhered to.

Good software architects should
keep close ties with reality.

Frequent interaction and
approachability of
software/solution architect can
help to avoid the development
team getting lost in the
architecture, while also avoiding
the pitfall of losing oversight in
short cyclical agile working
methodology.

Reduced the disadvantage of a
purely waterfall architecture
approach of straining the
development team too much with
upfront design, as in software
development you cannot know
everything beforehand.

Technical uncertainty could be
approached stepwise in an agile
approach together with the
architect. Architect played a big
role in this.

An architect has a lot of added
value towards a products owner, as
the PO has a functional
perspective, while a good architect
can help a PO to think about non-
functional requirements.

Interaction specific problems,
tensions or bottlenecks

Description Agile working methodology needs
to be supported by the architecture.
The architecture and principles
should enable the teams to develop
autonomously and independently.

Scaling of agile teams is difficult;
teams need to be tuned into each
other if they work on one product.

For smaller systems it may seem
like an architect can design
everything upfront, however issues

109

arise if these systems need to be
scaled.

An architect needs good
communicative skills and feeling
for the business, but also good
technical skills to talk to
developers. This makes them
difficult to find and hire.

Often architecture roles are
separated: business architecture,
solution architecture, domain
architecture, however an architect
should be able to look across these
boundaries, otherwise it will be
impossible to integrate these
aspects.

Tendency of architects to make
things too standard, which can
reduce the ability to adapt things
later on.

Waterfall approach can lead to a
lot of rework even though a lot of
time and effort has been put in, in
the early stages.

Risk of too much attention to here
and now and too little attention for
the future.

Architect has to have knowledge
of agile working methodology,
understanding on what that entails
is needed.

Bottleneck: architect has to be
open to working in agile
environment. If architect has a
more traditional perspective on
software development or a more
layered architecture organisation,
the interaction might not work
well.

Communication in combination Irregularly / weekly / daily /
Description

Architect stood close to team and
was easily approachable.

Impact of communication Description Differs from other teams that
claimed to be more agile, was
better interaction between architect
and agile team in this case than in
others.

Knowledge of architect / team Description Good.
Uncertainty addressed (types of) Costs / schedule / quality /

description
Low uncertainty in requirements
on application and inspection as
there was an old system. For
enforcement, this was not the
case.

Technology, amount of load that
needed to be handled.

Uncertainty on specs of from other
organisation.

Impact of uncertainty on project. Challenging technical architecture
on non-functional part. Architect
was responsible for this.

Strategies to address uncertainty Description Agile methodology helped to
address high uncertainty for what
should be built for the enforcement
system through prototyping with
stakeholders. Determining how
much points you can work on in
the given timeframe helped to

110

engage in discussions on what
should be developed and what not.

Approached technical uncertainty
in a stepwise approach together
with architect. Architect had a big
role in this.

governance structure Description 3 teams with a PRINCE 2 ‘hood’
on top, but agile below this.

Architect was shared over two
teams.

Operations used ‘throw it over the
fence model.’

Impact of governance structure on
project

Description PRINCE 2 to outside, risk log etc.
Agile procedures within teams
helped to manage risk, I.e. the
sprint-rhythm, realising, DoD,
being transparent on the progress.

Interaction was centralised, which
helped as the architect could keep
overview. Responsibility for
interaction with external
stakeholders was also centralised
(as it was put with the architect).

Governance of operations was
incompatible with agile
governance, as they came with a
long list of operational
requirements instead of
formulating them together.

Timing of event Description After 3 months.
Management Description PO was good in managing the

stakeholder group.

Product owner got really good at
prioritising after a few months.

Impact of management on project Description End-users were present in the
workshops to give feedback.

PO communicated to other
stakeholders that trade-offs needed
to be made, while still leaving
room for feedback. This is what
you expect from a PO. This was a
very good execution of the PO
role.

(Changes in) procedures Description Started working agile after 3
months.

Impact of procedures on project Description Less uncertainty on requirements,
more stakeholder support.

Project delivered within budget Yes /no + description Yes, new budget asked and
approved for increased
functionality.

Project delivered within time
schedule

Yes /no + description Yes, delivered within 12 months.
Extension for increased
functionality. Transferred to
operations after 12 months and
short pilot.

Project delivered within client
quality expectations

Yes /no + description After a year, the system was
further developed while it was in
operation.

111

Appendix D – Case study report 1
Table that summarises findings of case study 1.

Table 17: Case study report 1

Variable name Unit of measurement Back-end developer Solution architect/team lead
Project description Description Software application where lot of

new data needs arose during the
development process.

Crisis structure which caused ad
hoc requirement(s) (changes).

Software application with internal
and external stakeholders. Very
political project with a lot of
stakeholders. Stakeholders were
often unwilling to commit or give
concrete answers, wanting to be
able to frame things differently if
needed, which caused difficulty for
the teams that needed concrete
decisions in order to move forward
with the technical product.

PO description

Tech savvy / non-tech savvy /
description

MT consisted of two program
managers who determined what
would happen, they were in
contact with the minister and thus
operated as PO.

Contact was frequent, PO’s stood
close, however participant has
experienced cases where the PO
stood closer to the team. The
PO’s did attend the dailies with
the whole programme. This had
to do with the fact that there were
several teams, not only
development teams.

PO’s did have a lot of expertise
on policy, scientific affairs and
the use case that the application
was developed for.

Multiple, not tech-savvy / never
have led a technical project before,
policy makers, not clear on
requirements and their urgency,
very involved, political career over
technical product

PO impact on project description PO’s were both non-tech savvy
and had no clue on the technique
behind the software
application. But did have a clear
opinion on the software
application and what should
happen with it.

Interests to superiors had more
weight than delivery of a good
technical product. There was no
focus on the long-term of the
technical product.
Urgent tickets jeopardized the
stability of the technical product
and of the development process.

Unclarity on requirements and their
urgency led to mistakes, errors,
lagging behind of documentation
and technical debt. High
involvement in combination with no
technical background led to delays.
Calls in the weekends and changes
in requirements after sprint
planning put extra stress on teams.

Unclear requirements made it
difficult for development team to
work according to sprintplanning.

Lack of recognition for quality
attributes from PO’s build technical
debt and pushed issues to overtime.

End-user description Tech savvy / non-tech savvy /
description

Non-tech savvy Not tech-savvy, illiterate, end-users
could raise questions about the
software application and were
critical in doing so.

Role in project Software architect, enterprise
architect, member of agile
development team,

Back-end developer, develop
systems that collect and transform
data and send data to the front-
end. Continuous optimisations to

Solution architect and team lead
(cloud engineer, software engineer,
data engineer, BI specialist,
operations/administrator of system,

112

develop the software application
further.

team manager Jack of all trades),
not suitable for one box, can be
summarised as cooperative
foreman. As team lead:
Coordinating towards team. Discuss
priorities and possibilities with PO
(if PO comes with requirements
after sprint planning). Keep team
out of the heat.

As solution architect: make
designs/drawings of how
architecture, cloud architecture and
data streams should be, so that the
team can develop those elements.
But also implement these things
myself. Devise the frame in which
can be worked, keep tabs on how
things are going.

Operations: keep system running
and functional (dataflows, KPI’s,
calculations in the right way etc).

Communication with internal team
members and communication with
other teams.

Development tasks.

Final responsibility.

Experience in role < 5 years, 5-10 years, 10 – 15
years, 15 > years

< 5 years 5-10 years, first time in political
playing field

Project status Functional version / in operation
phase / description

 Operational Operational

Agile framework used SAFe etc. None. There might have been
thought about using a specific
framework, however in reality it
was not possible to say, that was
this framework.

None

(Reference) architecture
framework

TOGAF, NORA etc. Not discussed Not discussed

Geographical scope International, national, regional,
local, central (same
building/room)

Same room crisis structure Same room crisis structure

Agile implementation Maturity / Description Front- and back-end team worked
in synchronised sprints of two
weeks. First week was mainly for
building, second week for
integrations, testing, releasing and
cleaning. Non-development teams
did attend sprint-demo and
dailies.

Development work was assigned to
developers through tickets via a
backlog by the PO and team. Team-
members gained responsibilities
over time like releasing etc. Took a
while for team was able to carry out
activities like this by themselves.
Refinements was done by another
team and never done in time / at a
satisfactory level.

Role in project Description Working agile helped to keep
things organised. People know
what the others are doing, it
especially helped to align the
front-end and back-end.
Participant stated that they did not
know better than to work agile
with a team to develop a product.

Used to pose deadline, participants
don’t think agile was well
implemented. This became better
after a PO was introduced with
experience on leading technical
projects.

Solution architecture
implementation

Top-down, architect actively
involved in agile development
team and / or description

Architect built tooling and used
various components for this.
These components were used by
the developers in daily activities.

Architect delivered design and
implementation of database,
components and connections with
customer portal.

Architecture was barely
implemented, one person set up the
data warehouse and data
orchestration in the first week. After
that architecture was not recognised
by participant as a role that was
employed. However, participant did
take responsibility for quality
attributes after further inquiry.

Interaction between architecture
and agile

Description If a component in the tooling did
not work properly or we
encountered problems, we would

Since PO did not recognise the
backend (things that happened
beyond the website) the agile

113

call the team lead/architect and
then he would rethink and change
things.

If new requirements occurred that
was not supported by the current
tooling, the architect would make
sure that the tooling could support
the new requirement.

Architectural items were present
in sprint backlog and
implemented through sprints.

If architecture changed, the team
needed to alter their way of
working. For this the team needed
clarity on what has changed.

process only served to address the
website. Thus, the architecture-agile
interaction was not present.

Because of the combination of the
role on the one hand the Sol.
Arch/Team lead is making
architecture decisions and designing
the architecture. For example, how
the dataflows should go. The team
will execute this, but the Team
lead/sol. Arch. Helps with this as an
engineer. So, there was no real
separation in this.

Advantages of interaction Description Fast communication

Architect role was the connection
point with the infra team.

If you get a new request that you
cannot address with the current
solution, you can work on your
architecture in sprints so that the
new solution can be supported.
Thus, the architect built or
enabled new functionalities for
the development team and the
interaction of architect and team
speed up the process of
implementing the new
functionality.

The interaction with an architect
allows the team to do more than
when it would have just been
developers. A team that has an
architect can address issues that
are more out-of-the-box.

An architect that is part of the
development team can be useful
if the architect can do developer
tasks as well, as this reduces
overhead if there is a sprint with
no or little architectural work to
be done.

No need to account for architecture
decisions.

We were sharp, had eyes on the ball
and were always able to publish
anything in time. We did not make
any extreme mistakes that were
traceable to us. Mistakes that
occurred were due to other parties
not delivering the right data, as we
had to trust other parties to deliver
the right data.

Disadvantages of interaction Description An architecture function of often
scarce, I can image that putting
the architect in an agile team can
result in the architect being
approached for issues unrelated to
architecture.

Overhead, there are sprints where
an architect cannot do much, this
can induce overhead. However,
this was not experienced in this
case as the architect could also
carry out developer tasks.

Architect in agile context gets
approached with issues that are
unrelated to architecture.

Frequent crashes occurred due to
technical debt, requiring hot-fixes.
Resulting in overtime for the team.

Communication in combination Irregularly / weekly / daily /
Description

Dailies and other scrum meetings.
Calls throughout the day, easy to
reach other.

Solution architect was part of team,
thus daily communication through
the daily stand-ups. Additional
interaction in the sprint planning
sessions and team building
activities.

Impact of communication Description Get things done faster. On the
other hand it could be more

People were able to find each other
easily. Team building helped to

114

pleasant for the architect to work
less close to the fire and
experience less of the everyday
affairs. This would result in fewer
requests, since the distance is
bigger.

algin and understand each other’s
characters.

It is important to trust each other
within the team, that people dare to
communicate openly and are not
afraid of another’s opinion. Also,
towards the team lead.

Knowledge of architect / team Description Good, experienced, positive
impact on the project. Could
make the right choices.

Team: only knowledge of SQL.
While knowledge of Java and C#
would have been helpful.
Knowledge about Git, branching
strategies, pipelines, releasing etc
was also limited at start. This grew
over the project.

Lack of technical background for
PO’s.

Impact on project of knowledge Description

Architect allowed to make the
right decisions.

Technical knowledge of PO would
have helped to identify that
components need maintenance.
Because there was no knowledge of
this, this was not included in the
process.

Uncertainty addressed (types of) Costs / schedule / quality /
description

Requirements: last minute
changes in the course.

Requirements: A lot of urgent
requests/tickets after the sprint
planning.

Sprint planning and prioritisation
changed continuously during sprint
due to political nature of project.

Tickets were badly defined by
responsible stakeholders and never
really finished on time for sprint
planning.

Staffing: Do I have enough
people?

Technical: do the data streams flow
right? Will I get my data? What will
be the quality of the data?

Front-end web application was
hosted by an external party which
used Dockers, while these were not
suited. The server's memory could
not handle this, and this would
cause long deployment times and
frequent outages. As these also
occurred on weekends or holidays
this put further stress on the team,
who would have to find the issue
and rebuild the pipeline. As the
system administration party was not
really suited for this role.

There was only one person who
could program in C#, so what if this
person became unavailable? Who
will check their work? Errors due to
this could cause outages.

Impact of uncertainty on project. Lot of redundant work on features
that were not needed after a week
or that were not put live on the
production environment.

Requirements entered after the
sprint has started in the last
month. Additional requirements
would then be forced into the
sprint on Monday or Tuesday,
which then turned out to be not
necessary on Wednesday, but on

Requirements: Urgent tickets
disturbed the flow of the sprint and
reduced time that could be spent on
the actual sprint goals and quality
attributes in working
hours. Resulting in lower code
quality, documentation lagging
behind and affecting the stability of
the project becomes endangered.

Sprint-planning was often thrown
overboard after 1,5 days.

115

Thursday morning it appears to
be necessary, on Thursday
afternoon it is necessary in a
different way than before. This all
happens when the team wants to
be ready on Friday to start testing
and releasing.

Difficulties for team to implement
tickets as stakeholders did not
commit to their decisions.

Team would realise that a ticket is
wrong, have to ask questions, revise
work/tickets which resulted in
delays and overtime as tickets
needed to be finished in that sprint.

Staffing: time spent on internal
politics.

Technical: issues with data are
mainly caused by other
stakeholders, however, can result in
overtime for back-end dev. team.

Strategies to address uncertainty Description Changes like this are inherent to
the process and have to be
included if they come from an
important figure in the
government.

Try to signal whether the
requirement could be
implemented as early as
possible.

Be clear if the ticket needs further
refinement. If we found out at day
two then we missed information,
we should not have accepted the
ticket. Therefore, we were quite
critical in the refinement sessions
to avoid nasty surprises.

In sprint planning we
communicated clearly what we
could handle and if new
requirements came up, we
referred to the sprint planning to
show how the new requirement
affects the sprint planning to
make trade-offs transparent in
respect to when it would be
possible to release.

The team lead pushed back later in
the project on urgent tickets and
communicated that for this ticket to
be addressed others would have to
be dropped and a decision about
this would have to be made.
However, since quality attributes
had no priority with PO’s this
strategy did not solve the technical
debt.

Urgencies were further addressed
by reserving time for urgent tickets.

Staffing: finding senior leadership
support for resource allocation.

A front was created between the
front- and backend to draw a line on
tickets that were not well refined.
These were sent back, which caused
the responsible stakeholder to plan
more refinement sessions and
increased ticket quality.

For the hosting part, transparently
communicating the consequences
towards the client if this setup
continuous to exist.
Administration/management of the
application was transferred to
another party who put it in the
cloud.

Governance structure/strategies Yes /no + description Back-end development team did
not directly into contact with
other teams such as
communication and policy teams
(outside dailies with the whole
programme and demo's).

Other teams did not work agile,
but more ad-hoc.

Separate infrastructure team.

Crisis and layered
structure. Implementation of new
legislation occurred during the
project that required changes to
the application.

For the party that was responsible
for the data delivery, one team was
made responsible to address data
issues for this project. Previously
there was no single responsible
person, which caused issues in
approaching the right person within
this organisation if there were issues
with the data.

Government entities had clearly
demarked responsibilities.

Impact of governance structure on
project

Description Because other teams were present
in agile rituals no
misunderstandings occurred, a
sort of mixed-from emerged.

This worked fine as agile is for
software/ICT related activities,

Single responsible team within
organisation responsible for data
helped, as this person would
address the issue internally.

Stakeholder form policy team was
also program manager, this should

116

while operations has to keep
things running and issues, which
is more ad-hoc work, being less
suited for the agile approach.

Normally this infrastructure is the
responsibility of the architect, in
this case the architect could serve
as an interaction point, since he
could join in on this
conversation.

Ad hoc requests for new
requirements or changes in
requirements. Requirements came
in through PO but have been by a
few teams before they reach the
developers.

have been separated. If there would
have been a project manager, there
would have been a clearer
separation, somebody who could
push back. This should have
happened if you take the
perspective of the product.

As the project was very political,
the chance of errors increased.

Other entities that project was
dependent on were not always
cooperative. This also had to do
with understaffing.

Timing of event Description Not discussed ¾ years in.
(Changes in) management Description The PO changed during the

project in the last month that
participant was on the project.

Additional staffing was allocated
to the project during
development, as the backlog and
sprints were getting fuller.

Yes, PO changed from non-
technical to more technical person +
manager of dev. team was out of
running for a while.

Over time the team lead learned
which people did raise issues in
time and who did not.

High workload and short time
schedule created high workload for
team. Teams were all addressed for
issues in the product.

PO’s were confusing and micro-
managing.

PO’s prioritised new functionalities
based on internal politics higher
than structural improvements in
non-functionals.

Manager of back-end team
protected the team from last minute
requirement changes or new
requirements, by showing that not
everything could be done. In other
words, by making the trade-offs
visible.

Lots of ego’s involved in the
project.

Impact of management on project Description Not discussed. Would have been less stressful if
the project management would have
been more professional and
experienced with technical projects.
This should have been somebody
who had zero interest in the
political arena. The different
interests played a role, for example
the fact that one slip can be fatal in
the political arena or that the project
management has ambitions for a
political career. In this case the head
of the policy team was the program
manager. There should have been a
separate policy team with a senior
stakeholder that communicates with
a project manager would have
resulted in a purer line of
distinction. This would have
allowed the project manager to push
back if things would not fit the
current planning. Which would
have been better from a product
point of view, as now there was a

117

stakeholder that had a
predominating interest, making
their will the law.

Ability to educate the people on
when to raise issues. Management
style of team lead changed from
top-down to laissez faire as
development team became more
experienced.

Degrees in priority requirements
that needed to be added after the
sprint planning. While
micromanager delayed business.
This caused people from other
teams to drop out early of the
project. Confusion occurred due to
miscommunication.

High workload and short time
schedule which increased the
number of errors made. Thus,
increasing technical debt.
Moreover, it required a lot of the
teams, leading to unhappy people
that did not deliver to their abilities.

Decreased stability of the
application. Resulting in more work
for developers that had to do fix
issues, while these issues could
have been prevented by more
attention to non-functional
requirements.

Team was able to maintain stability,
while other teams did not. Manager
took over the role PO. Which was
an additional role next to team
lead/Sol. Arch. Pushing back helped
to see through which were
important changes or new
requirements and which were not.

Project had the image of being the
pet project of someone important
rather than for the public
good. Which affected the
cooperativeness of other
stakeholders.

(Changes in) procedures Description Constantly seeking for ways to
put information of refinements in
the team. How can we ensure that
everybody understands the code
that has been written through
documentation? A wiki was used
to document the way of working.

Refinements were organised with
one or some members of every
team, there was a club of different
teams that refined the tickets.

Documentation was used to share
knowledge on changes in the way
of working through architecture
changes.

Due to inexperience of team, team
lead was involved in a lot of aspects
of the projects such as releasing. As
the team gained experience this
decreased. This took about 4
months with the new team.

There was no time allocated for
peer reviews and there was nobody
who could do reviews of certain
pieces of codes: mainly
architectural parts.

Impact of procedures on project Description Way of working changes slowly
over time, this was documented
to share knowledge within the
team.

This caused issues as person A
within a team could have refined

Additional work for team lead.

Increased occurrence of bugs.
Decreased stability of the
application.

118

the ticket, while person B needed
to implement the ticket. Tried to
resolve by presenting all info on
the wiki but caused more
overhead than added value. Then
tickets were assigned in such a
way that members worked on the
tickets they had refined
themselves or had expertise in.
Short calls also helped to share
knowledge.

Project delivered within budget Yes /no + description Extra staffing was added because
the backlog filled up.

Were put on the project for the
duration of the project so difficult
to say if we could go out of
budget.

Yes, budget was no issue since it
was a crisis.

Project delivered within time
schedule

Yes /no + description Project was prolonged, thus extra
budget was also granted.

Yes, team never missed a deadline.

Project delivered within client
quality expectations

Yes /no + description No issues, as it was clearly
defined what should have been
delivered. Back-end development
is simple, right or wrong, other
than front-end a discrepancy can
occur on what has been designed
and delivered. Still, this was also
mainly in line with expectations
due to the sprint demos.

Yes, Even though difficulties were
encountered in this case, the team
succeeded in delivering quality on
time. Client gave a very high rating
on quality afterwards.

119

Appendix E – Case study report 2
Table that summarises findings of case study 2.

Table 18: Case study report 2

Variable name Unit of measurement Back-end developer Team lead/Solution architect
Project description Description Authentication platform migration

from old version to new version.
Ongoing project in operational
phase. There are one or two
screens behind which happens a
lot of magic.

Authentication platform migration
from old version to new version.
Ongoing project in operational
phase. The platform is mainly
technical, there is only a small
functional area which you can see.
Very large project with a lot of
code, some of which might reaper
after multiple years, so quality is
very important.

PO description

Tech savvy / non-tech savvy /
description

PO does understand functional
added value of technicalities, such
increased robustness or security.
However, cannot understand the
lines of code, but can bridge
technology and functional added
value.

Functional PO is complemented by
a more technical role.

PO impact on project description PO is internal from the
organisation that is responsible
for the platform.

PO does the organisation of the
service on a larger scale,
communicates with external
parties, sometimes technical
parties that we need to include in
the workshops and discussions.
PO also does communication on
the website and organises a beta-
test with various modules.
Feedback that comes out of this
enters the backlog through the
PO.

Key towards organisation and
external parties.

PO chairs most Scrum ceremonies
and prepares the refinements.

End-user description Tech savvy / non-tech savvy /
description

Different end-users since it is a
platform, both tech savvy and
non-tech savvy end-users.

Different end-users since it is a
platform, both tech savvy and non-
tech savvy end-users.

Team structure Description Implementation Engineer checks
off items as Done. Everybody
does testing in the team.

Operations team member that
works mainly on releases of new
versions of our software and
packages and deploys them on the
test, staging and production
environment. This role also makes
connections and configurations
needed for applications to
interact.

Front-end themes are done by
designers. They should allow
other parties to do self-service and
administer their connections.

Three back-end developers, one
of which is team lead/solution
architect.

Team is layered. DevOps engineer
and implementation engineer. The
latter is the technical interaction
point, i.e., what are the limitations
of components? Both work for a
project manager who is the key
between development team, the
organisation and external
environment and collects
requirements of external parties.
The project manager has a more
functional focus, for example on
the flow and text in the application.
Thus, the project manager and
implementation engineer support
each other, one being more
technical, the other more
functional. This can occur as the
Scrum team is very open.

Testing capacity was already
present in the team.

Role of interviewee in project Software architect, enterprise
architect, member of agile
development team,

Back-end developer, implement
back-log items, think along in
functional issues from the
business and give a technical
solution for this. Delivery of
quality and support.

Solution architect. Started out as
developer/Scrum master and later
replaced the former solution
architect, which left.

End responsible for what is
delivered, as team lead and back-

120

end team are hired by the
organisation that owns the
platform.

Supporting and training the
developers.

Shadow Scrum master, coach team
members in background to raise
issues at the right time.

Experience in role < 5 years, 5-10 years, 10 – 15
years, 15 > years

 < 5 years 10 – 15 years

Project status Functional version / in operation
phase / description

 Operational phase Operational phase

Agile framework used SAFe etc. Scrum with own alterations WaterScrum
(Reference) architecture
framework

TOGAF, NORA etc. Not discussed Not discussed

Geographical scope International, national, regional,
local, central (same
building/room)

Remote, but with offline same
room meetings for architecture
workshops.

Remote, but with offline same
room meetings for architecture
workshops.

Agile implementation Maturity / Description Mature, Scrum ceremonies. No
need for Scrum master anymore
as team members trust each other
and know the process.

Agile serves to define, priorities
and document items on our to do
list.

Mature, Scrum ceremonies. No
need for Scrum master anymore as
team members trust each other and
know the process. 2 week sprints.

Solution architecture
implementation

Top-down, architect actively
involved in agile development
team and / or description

Architecture workshops on how
applications and data streams
should come together in the
landscape with all stakeholders
present in which everybody's
input is valued.

Devs also work on architecture
items in backlog. Architect is
Senior Dev and team lead with
formal architecture role.

Solution architect is hands-on
(writes codes, starts up
applications, delivers packages to
DevOps). Architect thinks about
bigger picture and involves
stakeholders in open discussions
about this. Creates a speak-up
culture in which issues and
questions are important.

Solution architect discusses a lot of
architectural issues such as
scalability, redundancy etc. with
the implementation engineer and
DevOps engineer, as they are
responsible for the technology and
infrastructure, making them perfect
to design and setup the technical
environment. This was done in
formal and informal sessions.

Solution architect made a large
sheet with the outcomes of the
offline landscape workshops.

Leading in the development
process, if things are to be
developed, I would like that to
happen in a certain way.

I often build completely new
services; however, I try to
distribute certain tasks to the other
developers. For example, parts or
large parts of applications. This
decision needs to be supported by
the team.

Enterprise architecture
implementation

Description Not discussed There is an enterprise architect in
the organisation, however this
person is more involved in the
chain. They can tell you what it
does, but not on a technical level.

Interaction between architecture
and agile

Description Architecture and agile feed each
other. Agile is process of
working: formulation of backlog
items, prioritisation, and

Distinction between design and
implementation phase to unburden
the team as there is a hard deadline
to go live. For every step in the

121

implementation. While the
architecture feeds the backlog.

Architect is a member of the team
and develops alongside with the
team.

Each team member can work on a
piece of architecture, as
architectural requirements enter
the backlog as requests that are
addressed in a user story.

Architecture feeds the backlog
and agile structures the
implementation of architecture
work. Each practice feeds the
other. As, the agile process says
little on the content of the
requirements or software
development. It determines the
way we work. But on what we
work, it has little say on. The
architecture and business provide
us with content. So, the
combination ensures that we can
deliver what we deliver and loans
itself for advantages like
responsiveness and adaptability.
But on implementation it does not
add value if you don’t know what
to change.

process, a design is prepared by the
project manager, implementation
engineer, designers and sometimes
an additional role. These designs
together with the whole flow are
presented to the development team.
The development team can then
raise questions about the flow or
implementation order, possible
improvements or the ability to
implement at all, but also whether
the work can be timeboxed. The
solution architect has the biggest
role in this, as he was involved in
the old platform and remembers
which choices were made there and
why. This session is held weekly.
This is an hour-long refinement
session for design stories.

An additional hour is planned for
refinement of technical stories.

Offline architecture workshop with
the whole team in the same room in
which the landscape was discussed.
Which applications are there? What
are the connection between the
distinct applications? Which
applications are involved in which
parts of processes and how does the
data flow? Which functionalities do
we miss? Sort gap analysis and to
get an overview of what is out
there, what are we talking about?
From bird-view to details.

Best place to discuss changes in
functional requirements are in the
refinements of the agile process. As
the impact of the change is
discussed here on other parts of the
platform.

I think that the agile component is
stronger than the architecture
component. If you are an
architecture-fanatic, then you work
out a complete architecture on a
basis of the modules, and put it
down as given for how it’s going to
be built. We are more in dialogue.
We develop a certain way to
accommodate standardisation as
much as possible, this way the
architecture evolved over time. But
since we are in a learning
environment, everybody knows
how the platform is built up in
some degree, also the DevOps
engineer and designers. And
because we are in a learning
environment, you should not
prescribe things, you need to
facilitate discussion and give back
things. You have to give a starting
point to develop into a certain
architecture. Start with a blueprint
(architecture) with main elements,
but not everything yet. Some holes
in it. Fill these holes in discussions
with developers, operations, and
business. Then apply Scrum on the
blueprint and outcomes of the
discussions. What our developers

122

do really well, is working out their
ideas and to discuss these with
stakeholders before they start
developing to test their
assumptions.

The architecture is relatively agile.
If it would have been waterfall,
then all the boxes would have been
coloured. We define a structure
with some questions marks, that
can be filled in later. What helps is
a modular architecture, as much
micro-services as possible, as many
API’s as possible, as much
pluggable as possible. To remain
flexible in that way, so that if
something needs to be changed, not
the whole application structure
needs to be changed.

Also work with layered
architecture, the back-end and
front-faced applications are
different layers. The front-faced
applications are publicly
accessible. For applications that
have a front- and back-end
application in one application there
is also some layering. A piece of
layered authorisation is also
present.

Advantages of interaction Description Work process is experienced as
good by participant.

It helps to have all requirements
in an early stage and to have the
ability to discuss them. This
allows us to identify and address
problems that we can already
foresee. This relieves the problem
of having to start over again
because you found that something
does not fulfil.

Internally, everybody is up to date
and we have an open and direct
culture in which stakeholders
(operations and business) can
share their thoughts. This reduces
nasty surprises when we deliver
software, as all involved
stakeholders are on the same
page. I.e., this makes that
operations can actually manage
the implementation that is
developed, as they have the
ability to state their concerns.

We are good at dealing with
change. Ability to address
production issues fast which
provides added value for PO and
customers. New requirements or
issues are discussed in the
regularly held refinement
sessions. If we cannot make an
estimate based on this, then we
push it to the next refinement.
Things that are identified on the
backlog are given technical
interpretation and prioritised. This
allows us to respond to change
and is added value for the PO and
client as well.

Refinement of designs with whole
team early on helps to avoid
finding out late that you are
building the wrong thing.

Offline architecture workshops
helped for developers as people
could share their experience with
applications they touched and see
everything together all of a sudden.
This gives context for individual
applications, shows what the
platform is dependent on and how
it interacts. This background is
needed to develop things in the
right way.

If a story cannot be implemented
within the sprint, it is known for
everybody. It is not a surprise, as it
has been discussed during the daily
stand-ups whenever a sprint cannot
be completed.

Retrospectives each sprint help to
improve ourselves continuously.

Research story for uncertainty
helps to make it tangible and
measurable. You can timebox and
assign points to it, document it in
JIRA and show what you did in the
allocated time. This helps to relieve
time pressure, as you don’t run into
the issue that you need to do
research, but the sprint also needs
to be finished. It becomes an
element in the sprint, and you
award yourself the time to do
research in this way.

The way of working is efficient for
the current process. There are

123

Since everybody is up to date,
relevant stakeholders have the
ability to be transparent to and
discuss issues with their superiors.

Architect as senior developer
within the teams makes him
approachable for issues that
(more) juniors run into.

There is a risk that the envisioned
sprint planning goals are not met,
as reality required the team to
adapt. However, the PO
understands this, as they know
why this is.

No official clearance needed to
make changes due to trust in
team. This allows the team to
anticipate issues they see looming
on their path.

certain design structures that can be
reused, and I know where to find
them. I can find and use them
quicker. I also know how to
combine them with modern
techniques.

The fact that the ownership for the
architecture role is with one person
helps to establish the role more
strongly.

No large technical debt in backlog.
Although there is technical debt in
applications.

Processes (I.e., peer reviews)
ensure quality of code delivered
and increased learning for
developers. Developers learn from
each other, through peer reviews,
but also from others through the
other sessions. These are manual
governance mechanisms imposed
by the Team lead/solution
architect.

All the processes make
development predictable, ensures
ownership as low-quality work will
be seen. It is loss of face if during
orchestration, your story does not
work well, since you forgot
something. Thus, it keeps people
sharp and structures the process.
Since people are sharp the chance
for errors is decreased.

We can bring applications live in a
day.

Disadvantages of interaction Description Architectural requirements from
the workshops are inherent to the
platform and do not add new
features. The architectural
requirements focus on robustness,
security, scalability and
performance. These are more
quality attributes than features,
thus you see changes less fast.

It is quite the organizational
burden, we are spending quite a
lot of time on discussing,
planning and finding
implementation for these
questions. Thus, time spent on
managing the process. For one
team our approach is manageable,
however I can imagine that our
approach doesn’t scale.

Scrum meetings are of a technical
nature, this can pose a challenge if
your PO is not tech-savvy.

Steep learning curve for starters /
new team members, as the team is
currently self-organising.

We require all stakeholders to join
all ceremonies and architecture
workshops, this can be demanding
for your team members.

The distinction between design and
technical refinements and early
feedback on designs requires up-
front work for relatively far in the
future. The next three sprints are
completely filled because of this
and there is a large backlog which
can fill several sprints.

Team responsible for this platform
is a small island within the
organisation, which might be the
greatest risk. As, the organisation is
relatively dependent on the team.
After the migration this
dependency will be less big, as this
is an existing platform where other
parties are connected to. Tacit
knowledge of the old platform is
not there currently, as the person
who had this has left. However, the
stability of the current team helped
the team to gain an understanding
of the old platform.

Team members might consider that
the solution architect/team lead role
has too much power. That is why
he distributes architectural work, to
allow the other developers to take
ownership. However, there are
certain things, that the architect has
already seen from his predecessor,
this makes it more convenient for
the team if the architect does a

124

design and the developers do the
implementation. This way they can
learn and take the design role if a
similar application needs to be
built. It is a bit hierarchical, but it
works effectively for this process at
the moment.

The fact that the architecture role
lies with one person has the
implication that the architect
always needs to be available to
explain things. Even more so, as
the solution architect/team lead
works 2,5 days on the project while
the developers are involved full
time. Therefore, the solution
architect needs to be available the
whole week. Not immediately, but
as soon as possible, as otherwise,
the team can get stuck.

Problems only arise if things come
on your radar that were not on your
radar. This is what happens in the
extreme example of agile, where
you start with development in
sprint 1. Somewhere you will mess
yourself up. So, I am fan of a sprint
0, where you work out design
principles and architecture
principles on which you can build.
They don’t need to be complete, as
you need to adapt, which requires
rework. No matter your
architecture setup. The question is
which choices you make in your
rework or technical debt, if you
choose for the short term, that is
not the wisest. In our process there
is understanding for this and we got
the room to change the setup to
make it more stable in the future.
Thus, there is technical debt in
applications.

A danger of a Scrum process is
laziness, as it is easier to pull the
whole team down than to lift the
whole team up.

Due to the way the development is
set up, it can be more slow and
rather stiff.

Biggest risk is if a key stakeholder
within the organisation or team
leaves.

Communication in combination Irregularly / weekly / daily /
Description

Daily, weekly and two-weekly.
All previously offline meetings
are now held online. Offline
architecture workshops. Team
members are accessible and open
to calls / discussions.

Daily, weekly and two-weekly.
Offline architecture workshops
thrice last year. Online culture that
simulates offline working when
necessary.

Impact of communication Description Stakeholders are aligned. No
nasty surprises. Stakeholders can
give insight to superiors about the
situation.

Stakeholders are aligned. No nasty
surprises. Trust within our team is
key for our success.

Open discussions lead to architect
as well as developers being able to
challenges each other’s ideas and
convince each other.

Knowledge of architect / team Description Good. Sol. Arch. Can act as a
senior dev and help more junior
devs.

Devs had good base knowledge but
limited product specific knowledge
and improved this greatly.

125

Uncertainty addressed (types of) Costs / schedule / quality /
description

Technical (I.e., can the new
platform deliver the same
performance and security as the
previous version).

Low uncertainty on requirements,
as these are mainly the same as on
the old platform.

Technical, requirement risk was
not present as stories that raised
questions were not integrated, and
stories were generally of high
quality. In other words, uncertainty
on requirements was well
mitigated.

Strategies to address uncertainty Description Technical: Run (performance)
tests to collect data and determine
next steps. No real uncertainty in
requirements as these are the
same as those of the old platform,
however technical solutions might
differ.

Uncertainty from regulation/
compliance is addressed by the
PO and transformed into stories.

Requirements: stories that raise to
many questions are parked or sent
back to refinement. Make visible
how much work new uncertain
stories brought by use of research
stories.
Technical: assign research story to
backlog to investigate technical
risk and solutions.

New requirements were evaluated
by the team in terms of points and
this score was given back to the
PO. This helped in situations where
the PO thought something new was
less work than it was, as a higher
number of points would then lead
to a lower prioritisation on the
backlog.

Moreover, stories with too much
uncertainty were sent back for
further refinement or a research
story was used to address the
uncertainty.

Max size of a story was 13 points,
larger stories were split up. There
was a preference to split up stories
in general to make them more
tangible, clear and achievable.

Our vision on the setup of new
applications is pretty standard: we
always want a micro-service
application which is scalable, non-
stateful, so it can pick-up on
another node, lightweight and
Dockered to allow easy scalability.
Making use of proven
technologies. This is shared with
the rest of the platform, as we do
not want tens of different
technologies for every different
micro-service. Thus, as much
standardisation as possible as we
are a small team.

Governance structure/strategies Description Stable team and governance
structure of software development
processes.

Organisation has separated teams
for their services.

Technology officer that
coordinates all the teams for
different services.

Stable team and governance
structure of software development
processes. Made clear to
organisation that careful
development takes time and is
important.

Micro-services architecture is
implemented to separate primary
processes from secondary
processes and increase scalability.

Hard deadline for beta-test with
first end-users.

Development team is flexible
towards the organisation by being
available and working hard to get
things working. In addition, the
team strives for quality, with a

126

strict way of development, a lot of
testing, peer-reviewing and
speaking up when something is not
in order or could have been done
better. While allowing room to
have fun.

Most governance strategies or ways
of working snuck in over time, as
they worked well.

Team lead/Solution architect steers
towards research stories if he
thinks uncertainty is large for a
specific functional question in
refinement.

Knowledge that was not present in
the organisation has been hired
externally.

Impact of governance
structure/strategies on project

Description Stable team and processes build
trust of team itself but also of PO
and external stakeholders such as
operations and business. This trust
is built through the ability to
deliver quality at a transparent
and constant pace.

There is little communication or
alignment between teams.

Technology officer collects
updates from all the teams
regularly and inquires on status,
issues and how things are going
within for the service. Moreover,
this role updates the teams on
changes on an organisational level
through the PO or implementation
engineer.

Stable team builds trust of team
itself but also of PO and external
stakeholders such as operations and
business.

Decoupled primary and secondary
processes allow for primary
processes to continue, while
secondary are not.

Hard deadline means that the basic
features should be ready by then.
This requires careful prioritisation.
Consequently, recent refinements
were focused on prioritisation and
determination what was necessary
at which time.

Focus on flexibility and quality
gave the team trust. They were
taken seriously and seen as a
partner of the organisation. This
allowed the team to take co-
ownership, which enables people to
speak their minds and feel taken
seriously. This is different from
other projects where the
requirements were thrown over the
fence and stamped down if stories
were not finished.

Research story on uncertainty on
functional questions shows the
impact of the new functionality that
the PO considers and makes
transparent the differences in
estimations of story points, i.e., 1
or 2 by the PO and 5 till 8 by the
team. This the PO to make better
trade-offs.

(Changes in) management Description New PO, who is less tech savvy
then previous PO.

Scrum master role has been
abolished

Impact of management on project Description PO cannot think along on
technical solution as previous PO
could, but does understand that
quality attributes as robustness,
security etc. are important.

PO has a better eye for functional
parts of the service than technical
parts, however there is another,
experienced role that is actively
involved that has a good eye for
technical parts/gaps.

Team lead/ sol. Arch. Is shadow
Scrum Master, as team is mostly
self-organising due to ownership of
activities and speak up culture.
This culture is due to the team lead/
sol. Arch. But also due to the

127

context of the organisation.
Shadow Scrum Master role was
more at the start of the project
when team members were less
experienced.

Team Lead/ Sol. Arch. Seems to be
a coaching mentor type of leader
that nudges team members and
plant ideas in them to empower
them.

(Changes in) procedures Description Governance strategies determine
how we align agile way of
working with the vision of the
service.

Developers peer review each
other’s code.

UX designer is responsible for
designing and testing the flow of
the application. Other designer has
written a UI Library that can be
used over different applications.

Differentiation between design and
implementation phase to unburden
the development team, as there is a
hard deadline to go live.

People who need each other seek
each other out in formal and
informal sessions.

Research story on backlog to
identify and assess replacements
for a framework which was end-of-
life support.

Documentation in JIRA, not whole
documents full.

Preference for defensive
development strategy: assume
functions can be called that should
not be callable or that certain rights
could do more than they should.

CI/CD that checks code and does
processes. The extensiveness of
testing depends on the user story,
stories concerning security,
authentication or authorisation in
an application then it needs to be
flawless.

Impact of procedures on project Description Agile process makes sure that
architecture is open to criticism
and change. Current processes
allow team to adapt quickly,
deliver quality to the PO, show
that we want to be taken seriously
and how we can deliver through
our own process and
governance.

Peer reviews requires knowledge
of different technologies and the
processes under the code.

Architect picks up more
difficult/experience relevant tasks
but leaves room for devs to learn
through smaller architectural tasks.
Architect actively invests in the
capabilities of his developers. Peer
reviews, workshops and
retrospectives are used to ensure
quality of code and deliverables.
Architect did the last peer review
of both developers to ensure code
was up to standards with the
envisioned way of development
and to guide the learning process.

The UI Library creates uniformity
in the organisations landscape.

Distinction helps to avoid endless
discussion, as for every step in the
process the design is prepared in
several sessions with the project
manager, implementation engineer,
designers and sometimes another
person if needed. The team can
then shoot on this design.

128

Open culture creates a more viable
and sustainable IT-landscape.

Research stories allowed the team
to carry out this market research
and present the results to
stakeholders with decision making
power in the organisation, for
example other architecture roles.
After this the decision could be
build and everybody was informed.

This amount of documentation is
acceptable for team and
organisation.

More structured, secure way of
developing. Requires more
thinking on how to code. Code
minimalization, no redundant
duplication of code.

Automated testing, unit tests to
check the code, performance
testing which include
functionalities of the whole
platform. Solution architect cherry
picks pieces of code for review, the
implementation engineer tests the
code functionally on the test
environment. For design stories,
one of the designers checks
whether the flow is good. Thus,
there is a layered approach. The
solution architect always makes the
releases, which are put on the
acceptance environment by the
DevOps engineer and tested again
by the DevOps and implementation
engineers. They also check which
stories are in the releases and look
at the logging for anomalies. Then
it is moved to production. So, the
release process is waterfall,
however very streamlined and
structured to ensure availability of
the platform.

Project delivered within budget Yes /no + description Project ongoing Project ongoing
Project delivered within time
schedule

Yes /no + description Project ongoing

Project ongoing

Project delivered within client
quality expectations

Yes /no + description Yes, compliments from day-one
stakeholders.

Yes, various compliments each
retrospective. A lot of one-time
rides, little rework. Things work as
they should. Thus, the perception
of quality is there.

Recommendations Description If you require clearance to
implement changes from your PO,
do so as this can built trust.

Deliver predicably and with
consistent quality to earn trust
from stakeholders.

Engage your PO, business and
operations stakeholders into your
ceremonies: daily stand-ups,
weekly refinements and biweekly
retrospectives.

To ensure quality we use an
automated scan that checks for
issues at each change, as changes
to a current system are always a
risk on its own. It tests all

Put a lot of attention and care in a
new person that joins the team to
rebuilt trust and stability if a team
member has left. Support this
person, even though it will cause
delays, this is a thing that you need
to accept.

Changing a key person can also
bring new ideas.

Disable vulnerabilities that are
actively exploited. Making a mess
within an application will destroy
more than is dear to you.

129

functionalities in the technical
sense.

Peer reviews ensure quality, as
does consultation with the client
about what to compose.

Keeping a stable team helps to
build trust within team and with
external stakeholders.

Use mock-ups or sketches to
convey your ideas.

130

Appendix F – Case study report 3
Table that summarises findings of case study 3.

Table 19: Case study report 3

Variable name Unit of measurement Product owner Enterprise/lead architect
Project description Description Application within a chain (of

stakeholders) that needed to
calculate certain things based on
data from other parties.

A lot of stakeholders and
dependencies on these
stakeholders (their systems) in the
project which made the project
very political. Stakeholders could
also be very heterogeneous within
their own group (municipalities).
Working in a chain required a lot
of coordination with these
stakeholders and their IT. Laws
determine which data may be
shared with whom. Product has a
lifecycle of about 20 years.

Project is innovative as
orchestration was new for this
organisation.

Requirements were more political
than technical due to complex
governance structure and
stakeholder landscape.

PO description

Tech savvy / non-tech savvy /
description

PO views itself as the final
decision maker as what is
considered in the final application
and what not. However, as PO’s
are not dedicated to a specific
service, but could be re-assigned
on a quarterly basis, they cannot
take ownership of the formulation
of a vision and capacity needed
etc.

Tasked make sure that internally
the customers’ wishes are
implemented with a team of
developers. PO represents a client
he barely speaks to. Moreover, the
actual client has outsourced the
programme to another entity.

PO impact on project description PO takes decisions that conflict
with the architecture if he feels
like they are withholding them.
This creates tension with the
architects.

The actual client or PO comes to
the organisation once to explain
what they need, then an internal PO
takes over. Thus, there is distance
between the PO and the actual
client due to several delegations of
power. The PO interacts with the
client only occasionally.

End-user description Tech savvy / non-tech savvy /
description

End-users don’t know their own
processes and are of an
administrative function.

End-user is a specific type of
civilian and the administrative
organisations and persons are an in-
between role. Could also be the
party that we do the assignment for.
In reality there is no one customer,
but a set of stakeholders with
different, conflicting interests.

Role of interviewee in project Software architect, enterprise
architect, member of agile
development team,

Product owner, saying no to
things and stakeholder
management.

Enterprise and Lead architect.
Managing the architecture team and
responsible for the enterprise
architecture on a strategic level.
Involvement in chain architecture
with all stakeholders in the chain.
Then transformed the Chain Start
Architecture into a Procedure
(traject) Start Architecture for own
organisation and propagated the
PSA to the environment.

Experience in role < 5 years, 5-10 years, 10 – 15
years, 15 > years

5-10 years 10 – 15 years

Project status Functional version / in operation
phase / description

Functional but in a large rework
phase.

Not discussed.

Agile framework used SAFe etc. Scrum with elements of SAFe. Scrum ceremonies, sprints,
refinements, demo’s etc.

Cherry picking elements from
SAFe.

(Reference) architecture
framework

TOGAF, NORA etc. Not discussed. NORA

131

Geographical scope International, national, regional,
local, central (same
building/room)

Netherlands Netherlands

Agile implementation Maturity / Description PI’s, portfoliolayer,
portfoliomanager, InfraOps is the
name of the operations
department/teams, this and the
hosting provider is where the
dependencies go to.

Agile process fails to achieve
product-oriented development, as
the context does not allow it.

After development, the software
is passed on to a separate
operations team, so no DevOps.

Committed work is done in
sprints of two weeks.
Refinements, daily stand-ups and
reviews are used.

Scrum ceremonies are done, such
as stand-ups, refinements and
demos. However, if this is agile,
that is something that I have an
opinion on. I find agility on team
level irrelevant, agility in the
service provision of your
organisation is what I find
important. By which I mean that
you are able to act on changing
requirements or wishes. For this
there appear then some non-
functional demands for the
software that is realised by your
teams. These are on adaptability
and lead to service orientation,
decoupling and containerisation,
avoiding monoliths, stuff like that.
Then if your client asks you to
make a blue field red, you could
implement that in a day. However,
these are not the client requests that
we get. We get a request from a
ministry to build a complete service
provision and two times a year, we
get a load of requirement changes
to implement in the next half-year
release. Of course, it helps to divide
this into small pieces that represent
customer value, but we still collect
them to release them once every
half a year. Which raises the
question for me, what does agile
mean? We are doing the Scrum
ceremonies, however if we give a
demo where developers tell what
has been built, there is nothing to
see. As the service that we are
building is an interface, there is
nothing to see. The customer
interacts from their own application
and do not notice anything. The
governance is not agile, while we
try to be. We need all the
specifications three months in
advance, then we built for half a
year and release, so nine months
prior, the requirements need to be
known. Where is the agility in that?
I am critical, but really, I am a fan
of agile and the SAFe framework,
which gives a position to
architecture as well. We cherry
pick some elements from SAFe.
However, I don’t see the match
between our context and the agile
development process and think it is
not so successful in practice. In a
private context, for example with a
web shop, you could implement
some smart features at the frond-
end of your platform and provide
new functionalities directly to your
partners through your platform.
Providing added value. This is
where I see agility, make new
features today, deploy tomorrow.
This differs from a more
infrastructural solution to exchange
data with some small pieces of
functionality.

132

Role of agile in project Description Delivery of working code to
deliver functionalities.

Agile maturity is low.

Not discussed

Role that represents flexibility Role and description Scrum master should take on this
role more, as Scrum master
currently holds PO responsible for
this role. While the organisational
context does not always allow
this.

PO feels responsible for
flexibility and tries to create
conditions for flexibility. Also
thinks that this should be
represented by everybody within
the organisation.

Not discussed

Role that represents stability PO feels responsible for stability
and tries to create conditions for
stability.

Not discussed

Software architecture role in
project

Top-down, architect actively
involved in agile development
team and / or description

Not discussed, solution and
enterprise architecture have been
discussed.

Software architect does the design
of how the software that will be
built and makes technology
choices. For example, they will
determine how certain libraries
correspond with each other and
how to decouple them. A software
architect goes into more details
than a solution architect.

Lacking. We have solution
architecture, which is positioned
somewhat far from the technology,
and technical people. Bridging this
gap is difficult.

Solution architecture role in
project.

 More of a pushed forward
designer. Determining what the
software should do. PO expects
more boundaries: I.e., pitfalls,
non-functional requirements,
expected changes.

Architecture does not deliver
working code.

You could call a solution architect
an application architect, that
translates the higher frames/guard
rails from the enterprise architect
into the functionalities of an
application. However, they will not
interfere with which technologies
will be used to build the
application. They do have an
opinion on the choices that affect
functional requirements of the
technologies.

Explain that requirements are more
political than technical.

Enterprise architecture role in
project

 High-level design of which
components there are and how
they should interact.

Provides direction. High-level
product vision. Some architecture
boundaries.

High abstraction level on top of
hierarchy.

Describe/design something that is
buildable.

Setting of boundaries/guardrails
what the developers can(not) do.

Explain that requirements are more
political than technical.

Help to reel in assignments by
discussing how own organisation
could help and designing
architectures to convince
stakeholder that assigns the project.
Ambassador of the organisation.

Interaction between architecture
and agile

Description Conflict between architects and
developers. Developers have the
final decision as they built
working things. Conflict has
nothing to do with agile.

The architects are the supporting
troops, providing support to the
teams in alignment of the software
and the client needs. This does not
mean that every client wish is
important, it is about the goal of the
organisation. Whether the teams

133

Architects have either too much
or too little architecture on
functional parts.

experience it this way, I don’t think
they always do. As architects are
often seen as a burden, because
they complicate the solution and
things become more work to build.
An example occurred lately, for a
functionality that had to be added
to an application that was some 50
lines of code. However, we
architects wanted it as a service,
requiring containers, namespaces
etc. Making this 1,5 sprint of work.
The reason being, that this
functionality also can be
implemented in another
application. This leads to big
discussions, as the steering on the
agile teams is very ad hoc, what is
needed now? While architecture is
about what is needed in the future,
could be the next two months or the
next five years. If you made the
wrong decisions now, it will give
trouble in the future. This is
something that has occurred in the
past in the organisation, even
though the architect had said
something about it, but it was not
acted upon. Another example was
given, where an authorisation
package could not be migrated to a
new version, lagging behind
multiple versions. As the package
has been built in the software,
while the architect advised to not
do that and built it next to it.
However, the decision was made to
build it in the application as this
saved two weeks of work. The
outcome is that it took two years to
complete the migration. Saying I
told you so does not help in these
cases. But it is frustrating.

View of this participant is that
architecture lays the foundation and
agile could help to design the
building on top of the foundation.
And both can work together to
reach a good end product. If you do
not lay this foundation with
architecture, a team will take
shortcuts that lead to issues later.

The architecture team could also
work in an agile fashion.

Interaction with EA and devs is
four times a year during
programme increment (PI) events.

Solution architects and dev teams is
more frequent, however there is no
dedicated solution architect for
each team. So, a sol. Arch. Works
with multiple teams.

Sol. Arch and lead dev should work
out technical design of business
analysis process together.

Changes to the architecture are
welcome, but not if they help
today, but not tomorrow.

134

Sometimes changes of this kind to
the architecture are proposed. For
this I will not alter the architecture,
then I write a scenario document
that shows the consequences of
follow the architecture and of
following the developers. This
document goes to the management
team. Since the management team
is the one with the mandate to make
this decision. But usually, this is
not necessary, and it is possible to
allow a temporary alteration to the
architecture and to keep the
architecture standing. But I would
rather have had a good
conversation. This is a consequence
of not having a software architect,
in the end the solution architecture
is a bit high-level. That several
technical solutions fit this solution
architecture, does not mean that
everything is conform the
architecture. However, there is
some room for interpretation in this
high-level architecture which lead
to problems, as there are
interpretations that this architecture
leads to certain solutions. But this
solution is not specified enough.
Writing more granular architectures
lead to discussions with the teams
which take up a lot of time, which
lead to us not doing it. We need to
find the right balance in this.

Both architects and developers
have a duty to inquire and bring
knowledge, ideas, interests and the
vision from the other party. The
solution architect should not have
to do the whole technical design
alone. The lead developer and
solution architect should both take
ownership. This ownership should
be more on the side of the solution
architect in the beginning and
transfer to the lead developer more
and more as the process continues.
At some point the team lead should
have most of the ownership.

Advantages of interaction Description Functional software is delivered. A transition of ownership from the
solution architect to the lead
developer would reduce endless
discussions.

I do see the added value of agile in
good communication, refinement
processes, multidisciplinary
perspective on issues and division
of large tasks into small pieces.
These are elements that could help
us.

Envisioned scenario of co-
ownership should lead to a happier
customer, more pleasant interaction
between architects and teams,
better products and less struggle.

Disadvantages of interaction Description Technical debt, rework, software
requires a year to implement
new/altering requirements.

Software that is delivered is more
of a Proof Of Concept than a

Software that is delivered is
actually a MVP.

Sol arch and tech lead working
together takes time. However, this
time is also attention that is

135

Minimum Viable Product. It is
not viable.

Conflict arises, even though both
architects and developers mean
the same thing.

Both developers and architects
cannot do their jobs properly due
to the conflicts.

required to work out a technical
design together. However, it is
currently a capacity issue.

Due to agile way of working,
especially division of work into
small chunks, there is a risk, and
this has unfolded, that you lose
oversight of the bigger picture and
create shortcomings in your
fundaments. Especially if you do
not give your architects enough
time and mandate.

Match between agile and our
context is not fit.

Large amount of rework arises later
in software that is released and
technical debt as the architecture is
not adhered to. See procedures cell
for role of governance.

Operations team need to know a lot
of libraries, as self-organising
teams decide for themselves which
libraries they use to build
functionalities in software.
However, this would be better if it
was done by a software architect.

Too much room for interpretation
and implicit assumptions of
architects in the architectures.

If we practice architecture from an
ivory tower, we know we will have
endless discussions.

Communication in combination Irregularly / weekly / daily /
Description

Nasty, unconstructive remarks
have been made in the past.

Combination/interaction of
architects and agile devs requires
attention, however this cannot be
done as there is shortage in
personnel. Some solution architects
and development team members
cannot find each other well in
communication.

Impact of communication Description Due to the history, there is still a
gap between architects and
developers.

If architects and developers do not
find each other it shows in the
quality of the software they built.

Knowledge of architect / team Description Development team is decent. Development team knows their
business well. There is not so much
knowledge on what more
successful organisations do and
what the clients are doing. Little
knowledge of and attention to
architecture.

Uncertainty addressed (types of) Costs / schedule / quality /
description

Technical due to new
functionalities: orchestration and
micro-services.

Requirements.

Requirements were formulated by
people that might not be able to
fathom what is really going on.

Operational and security (non-
functional) requirements are not
always on paper.

Technical debt and legacy systems.

Strategies to address uncertainty Description

No clear agreements were made
with third parties, which increased
the uncertainty.

Communication with other teams
on what they need, how that
works and what the impact is.

Do up-front design and thinking.

Developers start asking questions
on requirements and started a
project where stakeholders from
operations and lead dev are
involved in requirement
identification and they like this.

Idea to determine acceptance
criteria and define a process to tests

136

whether these requirements are
satisfied.

 Governance structure Yes /no + description Organisation is steered by
assignments that come from
government entities outside the
organisation, however this starts
to change.

The assignment is then assigned
to a PO and a development team.
Project leader role has been
changed to agile delivery role.
This role is managing the external
stakeholders together with
relationship management to ease
the burden of PO.

Teams can be reallocated every
quarter, which can increase
development times, as the
reallocation is not based on
relevant experience.

Ministry delegated the programme
to a project bureau.

Legal text is basis for the
service/product that is developed.
However, the process from an idea
to legal text takes about 10 years.

Preliminary investigation is carried
out by a party that has more interest
in political aspects than feasibility
aspects.

This assignment falls under a
different governance frame than the
organisation is used to.

Organisation falls under two other
organisations which leads to two
types of management, or two
captains on the same ship. This
affects architecture, BPM,
operations etc. as they have
opposing interests.

Agile was used to deliver an MVP
instead of the functional software
product that was needed. However,
this is a political use of agile, not
what it was intended for.

Line of responsibility of reporting
is in line with hierarchy of
architecture team.

Impact of governance structure on
project

Description The process of winning an
assignment and building it are
waterfall. Solution architect
already has made a design before
the project reaches a development
team.
Coordination of who will deliver
what has already been arranged
with stakeholders. Discussion of
PO with external stakeholders is
only on the details. Project has
been running for three years
before a PO starts on the project.

As other organisations in the
chain are pressing on new
assignments, there is no time to
go from a functional product to a
product that works well under ‘the
hood’ and is manageable for
operations.

Projects can take longer as people
might be assigned to a project for
which they lack the required
experience, even though the
experience is available inhouse.
However, this starts to change as
the PO’s organised themselves to
gain attention for this issue.
Moreover, the quarterly
assignment system reduces the
stability of the teams and the
ownerships of teams and PO’s of
the products that they develop.

PO, developers and architects are
far away from client.

First problem statement is drafted
by legal persons, not architects or
developers. Feasibility is not
considered in writing the legal text.
Process of creation of legal text
does not match the agile context.

The preliminary investigation
further strains feasibility of
solution. Each step described above
creates more distances to factors
that play a role in reality.

The different frame led to more
discussion, delays, new
agreements, back to the drawing
table.

Due to the different captains on the
same ship, devs can start building
something, but it is very difficult to
know whether they built the right
thing and stakeholders in the chain
and own organisation are satisfied.

See cells on delivery within time
and budget.

Software architect shows that their
software architecture is conform
the with the solution architecture.
The solution architect shows that
their solution architecture is
conform the enterprise architecture
and is conform with the enterprise
security frames. The enterprise

137

architecture shows that their
enterprise architecture is conform
the chain architecture. The chain
architect shows that their chain
architecture is conform the NORA.
Deviation is possible, however then
you need to be able to account for
why and accept the consequences.
The acceptation of the
consequences is a management
team decision in my view. If it’s
small, it could be handled by the
PO. But the mandate is currently on
a high-level, if this was not the case
it could be decided by another party
than the management team. So, it is
not the PO’s decision to save time
and address the compliance issues
to the architecture later.

Management Yes /no + description Management did not define clear
roles and responsibilities of
architects, PO’s and developers.
Therefore, they also do not
enforce these role and
responsibilities.

Decisions on capacity allocation
and new assignments are top-
down.

Management feels the need to
tighten controls due to developers
going out of their way
(overstepping their mandate).

Steer on working from assignment
(new law implementation) to
assignment, while technical debt
needs to be addressed.

Managers priorities shifted over the
decades from interest in the whole
chain and good working ICT-
solutions to risk management and
managing their self-interests.

It is difficult to get your interests
voiced through all the different
layers of different stakeholders that
are involved.

Trying to expand the architecture
team to bridge the gap between
solution architects and technical
people. However, this is a struggle
as it costs money, thus the added
value needs to be clear for
management.

Impact of management on project Description Lack of clarity on roles and
responsibilities might be a source
of the conflict between architects
and developers.

PO feels like he lacks consistent
capacity and mandate to do his
job.

Other teams and PO’s lose
mandate, capacity and trust to do
their job.

No/less time to address technical
debt. Difficult to work agile in an
environment that is assignment
driven.

Leads to discussions on how much
infra rework/innovation can be
considered in a project which in
turns limit the ability to achieve
agility.

Change is slow, but possible.

Expansion of architecture team
does not really work, as people
leave. There is currently, one
principal developer with software
architecture knowledge, however
this is too little. There should be a
software architect in each team,
who together are responsible for a
software architecture across all
teams. However, currently, due to a
shortage of architecture personnel,
it stops at a non-technical solution
architecture.

Procedures Yes /no + description Development teams are not
considered in the performance test
that is done when the assignment
is prepared.

All dependencies end up in the
supporting teams.

There is no clear responsibility
defined when a discussion between
an architect and development team
arises. The teams are self-
organising and workers
independent. However, they do
have limited mandate.

138

Only sometimes does operations
attend daily’s or refinement
sessions. There is not a lot of
input.

Starting experimenting with
DevOps by assigning somebody
from operations to each
development team.

Impact of procedures on project Description This creates conflict where the
organisation would want
commitment, as the teams are not
considered in the test if the
assignment can be done, and they
are given an assignment with a
beginning and an end-date.

DevOps could help to reduce
these dependencies to one point.

More stakeholders attending the
refinements and daily’s might
help to identify problems earlier
than release.

Benefits from this DevOps
experiment is limited to the
person you get assigned. As some
operations members don’t know
how to setup a development
environment.

The architects have no power to
block a release that does not
conform to the architecture, even
though they would like to. This
would give incentive to adhere the
architecture. Now the architects try
to tempt the teams in advance, by
helping the teams. However, the
organisation suffers from software
that is released, which gives large
amount of works to rework or alter.
It creates a lot of technical debt.
The management thinks that teams
and architects should find the
answers in a meeting. But in
practice this often does not happen.
In an agile environment, a lot of
responsibilities need to be put with
the team, however then the team
needs to be told that they are
responsible to follow the
architecture. If they don’t, they just
do something. For example, there
are multiple teams which choose
their own libraries to create pieces
of software. Thus, it happens that
the same functionality is held in
production using two or three
different libraries. Which I think is
inconvenient. But self-organising
teams choose these things
themselves. This creates problems
upon transfer to the operations
team, which is in itself
inconvenient. As it is better to keep
software within the team to ensure
that they built it maintainable.
Thus, the operations team has
issues sometimes as they need to
know a lot of libraries.

Project delivered within budget Yes /no + description No, it was over budget. I don’t have a clear view on that, I
think it was reasonably within
budget. There was a difference in
the initial development budget. The
project falls within this due to the
Minimum Viable Trick and since
there is extra budget for
replacements if people fall sick,
however we cannot always find
them. But if you put all the extra
work and continuous releases in the
operation phase, which is normal,
but are you within budget then?

Project delivered within time
schedule

Yes /no + description Yes, I got compliments that we
delivered the first product within
the organization on time.
However, an extra team was
needed for four months to get it in
production after testing. We were
the first party that could go live in
the chain.

We undressed the project and made
an MVP of it. The MVP has been
delivered, however if you look
what has been built and what was
necessary, then there is a gap. The
MVP has been delivered within
time; however, its properties were
in a minimum way usable for the
customer.

Project delivered within client
quality expectations

Yes /no + description Client was very
satisfied. However, we were late
with some follow-up changes.

There were functionalities missing
in the MVP, that we had to build
after delivery. The client is

139

That is why I had to do a
refactoring iteration. Almost no
malfunctions.

reasonably satisfied, it performs
well, gives the right answers.

Recommendations Description There should be a software
architect within each development
team. who together are responsible
for a software architecture across
all teams.

140

Appendix G – Case study report 4
Table that summarises findings of case study 4.

Table 20: Case study report 4

Variable name Unit of measurement Enterprise Architect
Project description Description This development process

considered the improvement of
interaction and the modernisation
of services.

PO description

Tech savvy / non-tech savvy /
description

PO’s are usually from IT,
business owners are from the
business (BO) and provide
knowledge to development team.
However, they should do so on
top of their normal activities.

In this project multiple PO’s are
involved as there are multiple
components.

PO impact on project description Project has a PO, BO (one or two)
and a tactical strategic programme
manager.

End-user description Tech savvy / non-tech savvy /
description

Internal stakeholders as the
project was a modernisation of
services.

Role in project Software architect, enterprise
architect, member of agile
development team,

Enterprise Architect, this is a
separate role from the IT-lead
architect. Which in SAFe are
combined into one role. This is a
governance strategy based on
priority, availability and
specialisation of the team.

Experience in role < 5 years, 5-10 years, 10 – 15
years, 15 > years

10 – 15 years

Project status Functional version / in operation
phase / description

 Ongoing

Agile framework used SAFe etc. SAFe, difficulty to get dynamics
in teams.

(Reference) architecture
framework

TOGAF, NORA etc. TOGAF and NORA concepts are
used in a non-rigid manner.

Geographical scope International, national, regional,
local, central (same
building/room)

Not discussed.

Agile implementation Maturity / Description Features are determined by
architect and business and they
enter agile process through the
backlog. Epics are prioritised
during PI’s and allocated to
development teams.

Role that represents flexibility Role and Description Enterprise, IT-lead and solution
architect, they steer on making
choices for the MVP, to seek out
customer wishes and which types
of choices to make. Also where
solutions and flexibility is needed.
Business act more in this regard.

Role that represents stability Role and Description IV-firm. Making maintenance
plans for technology based on
monitoring reports.

Software architecture
implementation

Top-down, architect actively
involved in agile development
team and / or description

Not discussed.

Solution architect role in project Description Work out the general outlines of
the solution. Draft a mini-
business case with business,
delivery of a high level feature
map and global MVP definition
of an epic. Safeguard the epic
during development.

Give input for maintenance plans
drafted by IV.

141

Enterprise architect architecture
role in project

Description Transform ideas of business
owners into epic hypothesis by
determining the core of the
changes and frames, the
guardrails/frame where it should
operate in and the added value it
should deliver through a few
advisory conversations. The aim
is to describe the hypothesis very
functionally. A template that is
like those from SAFe is used.
Identify hick-ups, sizing issues,
external dependencies or
deviations from strategy in these
ideas and reject idea if necessary.

Internally, ensure that business
processes are known in order to
determine whether to do them
internally or to outsource them.
Enable coordination and choice in
this regard. Identifying
shortcomings and bottlenecks in
our business processes and
determining which services do we
want to change together with IT
lead architect. While coping with
scarceness of resources.

Manage external impulses form
chain partners, suppliers or
legislation.

Proposals for big changes come
from both Enterprise and IT lead
architect and are proposed to the
chain architecture or a concern
architecture board.

IT lead architect Description Oversee the technology supply
that the IV-organisation has.
Which shortcomings are there in
the technology supply? What
should be developed, what should
be bought? Draft proposals for
this to business with Enterprise
architect.

Interaction between architecture
and agile

Description A development process usually
starts at with an initiative of the
business. This is the beginning of
a ‘change’ on what needs to
known and why. This idea needs
to have an epic owner which is a
business owner that wants
something (SAFe). This business
owner can go to the portfolio
managers and architects with their
idea. Architects and business
interact early, when there are no
requirements yet, just an idea.
The architects help to make epic
hypotheses of the idea and try to
identify the effects on the frames,
guardrails and what it should
deliver. This usually happens in a
few conversations between the
business owner and architect. The
business owners needs to gather
management support
(investments) for their idea. Thus,
usually the idea that reaches the
portfolio has MT mandate and is
supported on paper, with
powerpoints, scenario’s, figures
etc. Architect works together with
business owner to draw an epic

142

hypothesis. Business needs to
pitch the idea in a (tactical)
prioritising consultation. This is
the first iteration, the idea is now
prioritised and parked.

Prioritised epics are prepared by
preparation team of designers and
architects, they will work out
detailed designs of epics in the
current programme increment that
need to be realised in the next
programme increment based on
capacity and urgency. The
outcome is a rough architecture
sketch of what the idea is and
how the landscape should be
altered, a sort of solution outline.
A business case with the expected
costs and benefits is added and
delivered alongside the solution
outline and definition of an MVP.
Specialists are also involved in
this process. These are discussed
in another prioritising
consultation by the business
owners, based on the expected
added value, risks, business goals
and if they fit with the current
guardrails etc. If it has passed,
features will be defined. It is
passed on to a requirements team
that specifies the features with the
businessowner and experts. They
write featured documents which
end up on the backlog of the
development teams.

Allocation of work for solution
outline/crude architecture sketch,
which is then transformed into
several feature documents. These
documents then enter the agile
process through the backlog.
Then they are allocated in PI’s
based on availability, priority and
specialisation. However, the
‘flow’ from idea to solution is
more waterfall with an agile
process at the end when the
solution outline and feature
documents have been
determined.

Some themes are strongly
embraced in the business side and
worked out in small change teams
with project managers until it is
only an IT thing and thrown
towards the SAFe train. Forgoing
the model of doing things
together. In other themes it is
difficult to find business owners
to embrace a theme formulated by
architects based on process or
technology similarities.

Architect that worked on the epic
in the early phases of the idea is
tasked with guarding that epic.

Architecture has conversations
about changes and impediments
with business.

143

Deviations of the architecture can
be made, but need to ‘cleaned’
after several months so that it
becomes an unattended and
monitored operation.

There is one global release train
with eight to twelve teams which
are very oriented on the IT
solution. Since the IT solutions
are relatively complex there is a
low throughput/flow between the
teams in the past. Some have been
small islands in the past, this is
something that we try to get more
on the move by trying to connect
teams more to flow and change.

Advantages of interaction Description Development team can come up
with their own alternative
solutions if they fall within the
guardrails of Enterprise / Lead
architect, otherwise it will end up
with the architecture board or a
board responsible for the chain
architecture.

Stories help for development
teams to clarify requirements for
their services.

Direction, requests for epics or
quick wins, that create more work
in the long term, that do not fit the
architecture can be rejected.

Disadvantages of interaction Description Technical debt / legacy systems.

Little budget for modernisation,
implementation of laws and
changes due to continuous rework
and refactoring.

Projects that require a lot of new
enablers are prioritised as low.

Political commitments can force
the organisation to specific
solutions.

Business owners are not capable
to make a companywide
aggregation and prioritisation.
The business owners are steered
by their managers and the
management team. Thus,
everything that was given
management team support in the
first step of the process is
important. However, this is
unsustainable as there is scarcity
in the capacity that develop the
actual solutions. Direction level
mandate is needed to override this
process.

Communication in combination Irregularly / weekly / daily /
Description

Communication seems to be
formalised according to
procedures.

Impact of communication Description Communication follows a
waterfall like flow, similar to the
process of an idea to software.

Knowledge of architect / team Description Not discussed.
Uncertainty addressed (types of) Costs / schedule / quality /

description
The risks and benefits of an idea
are defined by the business
owners with help of the architect.

Impact of uncertainty on project. Description The risks influence the decision to
go forward with the idea.

144

Strategies to address uncertainty Description The business owner can then
pitches their idea, it’s benefits and
risks to in a prioritisation meeting
with a group of stakeholders that
cover the whole business area. A
priority is assigned to the idea and
it is parked. This is the first
iteration.

Governance structure/strategy Description Actual business value delivery
depends on co-creation by two
organisations as a result of a split
some years ago. This transition
introduces some governance
complexity.

Role of Enterprise and IT-lead
architect are separated. This is
because the IV-firm and business
are also separated in the mother
organisation. A separate IT
department makes the IT
solutions for other departments.
There is also a separate entity
with its own managing board that
builds the information provisions
for this department. There are also
departments for general IT
services, such as interaction, data
processing, data and analytics
etc.

There is also the possibility to
offer specialised services or
applications to other departments,
these are prioritised in a portfolio.
To prevent endless negotiations
on the details, the offering party
determines the realisation of the
service after identification of the
organisational services and
applications.

Business case is made by team of
IV-firm, specialists and business
owners.

Solution outline is made by
architects and functional
designers.

Meeting culture.

Organisation has to respond to
political whims. Organisation is
tasked with execution and is
steered by political processes.

Appointed a member of the
management to take the lead in
the portfolio prioritisation process
to align it more with SAFe.

Stories have been formulated that
clarify the strategy and themes of
the organisation.

Impact of governance structure on
project

Description Due to the split of this
organisation (A) and the mother
organisation, the mother
organisation (B) does not have to
develop special cases for this
organisation anymore. Thus these
cases are pushed back to this
organisation (A) if they require
too much effort, even though they
would cost the other organisation

145

(A) more effort to develop than
they would organisation (B).
There is an escalation procedure
for cases like these to ask for
extra budget and staffing.
Architects are looking at other
options than the mother
organisation and business starts to
experiment with external
suppliers or supply.

Architect represents the business
and represents the IT (landscape)
and trade-offs as well for a large
degree. The technical
architecture, choices and
responsibilities on how to fill in
the application architecture are
with the IT-lead architect.

The acquisition of special services
is a black box approach for the
customer. The offering party asks
for the non-functionals and
interface specifications and builds
with those. This creates
vulnerable dependencies to other
organisations when issues arise, if
the offering organisation finds
your case to exotic and too much
work it might not be handled.

Difficult to plan working sessions
to work on a theme with other
party (IT/business), especially as
people need to do so on top of
their normal activities.

Uncertainty and political whims
lead to inefficiency as plans are
initiated on signals about/from
political arena, but might turn out
to be not necessary. People get
tired of this and stop anticipating,
is it worth the effort? Could I not
better spend my times on things
that are more certain? Or people
anticipate on other things as there
are more urgent signals from the
political arena.

Bad governance structure on PI
planning events is broken up.

People know the domain and
organisational strategy.

Management Description A development process usually
starts at with an initiative of the
business. This is the beginning of
a ‘change’ on what needs to
known and why. This idea needs
to have an epic owner which is a
business owner that wants
something (SAFe). This business
owner can go to the portfolio
managers and architects with their
idea. The business owner needs to
gather management support
(investments) for their idea.

Business owners are controlled by
their department management, but
do not have the mandate to
prioritise their own epic over that

146

of others, as this mandate is on
the management board level.

Impact of management on project Description Thus, usually the idea that reaches
the portfolio has MT mandate and
is supported on paper, with
powerpoints, scenario’s, figures
etc. And ask the portfolio
managers and architects for help.

Since the businessowners are
controlled by their department
management they cannot
prioritise and aggregate epic’s on
an enterprise level, but strive to
get their own epic’s prioritised.
Business owners occupy strategic
behaviour to get their own epic’s
prioritised, I.e. by making several
smaller epic’s.

(Changes in) procedures Description Old process to come from a
business idea is replaced by a new
process. The former idea was to
put business owners in the same
room and let them prioritise the
different epic’s. However,
business owners are not able to
prioritise and aggregate epic’s on
an enterprise level. Now a person
has been given the mandate to
take the lead in this portfolio
prioritising process which is in
line with SAFe, in a uniform,
traceable and repeatable manner.

Trying to link teams more to
value streams/flows or changes
they implement. As there was
relatively static structure of
teams, this was because the
landscape was viewed as
complex.

Changes in architecture that
implicate external business
partners require agreement from
the relevant concern architecture
board.

Tenders are required to do
business with external partners.

Maintenance portfolio is managed
with a checklist that measures the
business and technical value of
applications, which is approved
by IV-firm and business.

Impact of procedures on project Description Business tries to throw their ideas
to SAFe trains instead of
developing ideas together as
business and IT.

The quite static structure of the
teams over time resulted in
islands, there is now more
movement between them. There
is movement towards the Spofity
model where there is steering on
how much work team is expected
for each team, reallocating teams
if necessary.

Enterprise and IT lead architects
should get approval from external
architecture concern boards with
chain partners.

147

Tenders and integration tests
require 1,5-2 years, causing
delays. Pilots with suppliers are
difficult as this gives preliminary
insight for the tender process.

Checklist for maintenance
portfolio helps to determine
which elements need investments
and which elements need to be
phased out.

Project delivered within budget Yes /no + description Not discussed
Project delivered within time
schedule

Yes /no + description Not discussed

Project delivered within client
quality expectations

Yes /no + description Not discussed

148

Appendix H – Case study report 5
Table that summarises findings of case study 5.

Table 21: Case study report 5

Variable name Unit of measurement Lead Enterprise Architect Domain architect
Project description Description Organisation benefits form the

network, on the other hand they
need to comply and participate
through European law. There is
no harmonisation of European
laws within the network, which
adds complexity.

Due to the relatively high degree
of automatization in Dutch
processes, the reference
application was of limited
usability. While on the other hand
connecting with much smaller
organisations poses security
issues.

A system that needs to exchange
information and data in a network
of different organisations on a
European Level. The system came
forth from European legislation.
This requires building a piece of
software that connects the own
administration of the organisation
to the network. There were many
organisations from different
countries that had to connect to the
network, which made the
requirements procedure complex.

There was a reference application
developed which was later
discontinued. The reference
application was not suited as it did
not allow for processing large
volumes of data. So, some
alterations needed to be made.

Project lasted over 10 years;
majority of this time was to reach
agreements on standards for the
network.

As some countries had a lot of
institutions that needed to connect
to the network, the requirements
procedure took a long time and was
difficult. The result is ‘a sheep with
25 legs’ that you must connect to.

PO description

Tech savvy / non-tech savvy /
description

PO acted more as a program
manager. The PO might have
multiple PO’s under him/her, so
is more of a Chief product owner.
Within the program there were
multiple teams that developed.

The business stakeholder, the
senior user was the director of the
managing board.

Drive to execute the
functionalities, ensure that IT
delivers on time and correctly.
Tensions have developed here.

PO was from business and had
multiple teams. Under this PO
worked several teams.

PO impact on project description Business owners didn’t care much
for the capacity issues on skilful
resources such as Java
programmers and quality of the
reference application that has
been developed externally. They
just wanted the stuff to be
implemented and to work as
planned. Technology can be a
limiting factor, but uncertainty is
difficult for them to cope with.

Iteratively replanning is
sometimes difficult as there is a
deadline that needs to be met.

Lot of communication happens
through PO’s, as teams listen to
their PO’s.

End-user description Tech savvy / non-tech savvy /
description

End-user is of secondary
education level and needs to be
trained to use the new software.
This was done by the business

Staff member within the
organisation which handles
customer requests and raises
questions to external parties or

149

through a train-the-trainer model.
IT was more concerned with
development of the software,
security and performance were
big topics.

answers questions from external
partners.

Role in project Description Participating in the steeringroup
and guarding things from outside.
Take decisions on big topics.

Very diverse. Great difference in
the level of detail, sometimes
engaged with high-level solution
design, then you hear that an
operator wants to open the Firewall
ports. Engaged on a conceptual
level and deep technical level.
Which puts you in a split.

On one hand legislation that you
need to follow on the other hand
design of the solution.

As architect you are often some
sort of problem owner, where you
regularly are playing chess with the
overall PO.

Experience in role < 5 years, 5-10 years, 10 – 15
years, 15 > years

15 – 20 years

15 – 20 years

Project status Functional version / in operation
phase / description

Not discussed. Ongoing for 10 – 15 years. Most of
this time was used for the setting of
standards of the network at the start
of the procedure (traject). The
software connection is in
production, however there are still
teams doing aftercare and
removing technical debt, I.e.,
making the application conform the
PSA, removing workarounds with
robotics.

Agile framework used SAFe etc. Not discussed Lightweight version of LeSS was
implemented by project manager
that organised a common backlog
and prioritisation for the project.

SAFe did not exist for a large part
of the project.

Currently there is an agile roadmap
being implemented to become
more in line with the SAFe
framework. However, this was not
yet happening at the time that the
software was in development. This
project was leading the way in
terms of agile implementation.

(Reference) architecture
framework

TOGAF, NORA etc. TOGAF Not discussed

Geographical scope International, national, regional,
local, central (same
building/room)

 Central inhouse development Central inhouse development

Agile implementation Maturity / Description Relatively outdated way of IT-
development that needs to be
addressed. Functionalities are
determined ad hoc and solutions
are already considered in this
stage. While we should look at
what the capability is that should
be delivered to external clients or
partners. Which processes support
these capabilities and which
processes should be automated?
Do I have a functional component
already? Do I have the supporting
infrastructure? And work
downwards like this. This flow is
not present yet, only from the
creation of the functionalities on.

This project took place in a
situation where the organisation
was working with agile teams,
however there were no agreements
on how to manage these teams.
This is not a problem with a small
project.

3 week long sprints were used for
agile teams. There were also teams
involved that did not work agile
that had to be coordinated with for
the release. Non agile teams
worked with a Kanban-like system.
This was on a monthly basis. Peer
reviews, refinements, demos and
retrospectives were used; however,
the quality of the peer reviews was
not up to standards. End-users were

150

involved in the demos and
retrospectives. However due to the
number of teams involved (five) it
was not possible for the architect to
follow all these ceremonies.

Role of agile in project Description Not discussed Prioritisation. The outline or
frames are there, but the agile
teams need to do the prioritisation
and create right heartbeat of stories
that are committed to come to final
solution. Thus, refinements and
going the to the final solution in a
stepwise manner. Often using
demos, to show intermediate
products that show clear business
value. Where I mainly look at the
final solution, they mainly look I
need to deliver something that
already has value.

Role that represents flexibility Role and Description In agile PO and Scrum master or
project manager for unexpected
technical issues.

In structural cases the MVA-
process is used which helps to
identify roadblocks early.

Architecture is there to help with
technical issues but are not
responsible to tow the solution.
They do look at the completeness
of the solution and decomposition
into building blocks and their
implementation order.

At a certain point you notice that
things are not feasible. Mainly
teams encounter this and try to
cope with this and do things
different, think of alternative
solutions. For example, a test tool
that delivers synthetic test data.
Thus, you see a lot of flexibility
from the teams themselves. While
the architect is busy safeguarding
the eventually desired end-goal.
However, the architect needs to
move along with teams and provide
them with enough space, as the
reality is different. Thus, the
architect can then allow things to
occur differently for a while, while
trying to move back to the solution
desired by the architecture over
time. Thus, this flexibility needs to
be given by the architect and is
asked by the business and teams.

Role that represents stability Role and Description Architecture, right decomposition
and architecture principles. For
example, working with the
current version or a maximum
back-dated level.

The chain provides stability. Here
you need an overarching role. So, I
took an architect, project manager,
information analyst and a chain
manager from the operations role
to see whether there is a stable in-
between situation. As we are in an
in-between situation, we are
working in a line and do not have
DevOps teams which are
responsible themselves for
operations, thus while we are still
in the project, this needs to move to
the line. Which is not very agile.

Software architecture
implementation

Top-down, architect actively
involved in agile development
team and / or description

Not discussed, but similar to
application architect.

Not discussed.

Solution architect role in project Description Makes an implementation design,
first high-level and then goes into
discussion with the designers on
how the components are going to
be designed.

Needs to engage iteratively with
development teams in dialogue to
deliver an MVA.

When I arrived here, there were no
solution architects. Currently, they
are there to define frames and
guidelines. Concerned with the
requirements and the actual
solution. Some teams do not have a
solution architect yet.

Enterprise architect role in project
and organisation

Description Four Enterprise architects.
Architecture roles are
implemented according to
TOGAF layers: Enterprise,
business, application and
technology.

Within the organisation enterprise
architects do not really make a
domain architecture. That is not
really present. Thus, what you see
is that a PSA is made, however that
this scope is not well defined and
elements that should be in the

151

Internally, keeping contact with
the CIO. Keeping the architecture
capability intact. Ensure good
architecture within the
organisation and determine
architecture roles for different
aspects within the organisation.
Coaching and leading architects.
Review and advisory work for
CIO. This often means
simplifying things while keeping
things right concerning the more
technical documents.

Externally, represent the CIO in
the steering group and control
external influences.

Role of architect is often to come
with critical footnotes to ideas,
decisions or designs. Which often
makes the architect the bogeyman
from the perspective of others.

Role of architect is to give
direction on solutions in
consultation with stakeholders.
For example high-level decisions
on development and further
development.

Keep the stakeholders that give
direction upwards satisfied and
explain the conditions,
difficulties. In other words giving
good explanations, decision
preparation.

solution architecture are in the
PSA.

Enterprise architecture can be
disturbing for the progress of
regular projects. They need a vision
or a dot on the horizon to gain
insight in what is expected of them
in the long term.

Business architect role in
organisation

 (Assists in) Formalisation of the
organisations processes and
information flows.

Business architecture is relatively
immature within the government
sector.

Domain architect role in project Description Fitting the project within the
complete landscape of the domain
that the domain architect
manages.

On one hand, defining high-level
architectural building blocks of
the solution and fit these into the
complete architecture landscape.
On the other hand, coaching the
solution architect with working
out the high-level design and
drawing up the PSA.

For their own domain, they
update final architecture, the
architecture model.

Look at the execution and
technicalities through the solution
architect. Help with the
development process, application
of the right technology, clearing
of roadblocks, ensure a
connection between the
technology and domain party that
is needed for the domain.

Support solution architect in
MVA process.

Overall architecture. Sometimes
acting as panacea (oliemannetje) as
there was a lot of discussion among
various ‘blood types.’ For example,
mainframe developers differ
greatly from Java developers.

Formal responsibility is to give
advice on what the solution should
adhere to and to safeguard that
things are going the right way.
Escalate if things deviate.

Tasks are broader. On one hand
sketching the solution, while on the
other hand thinking along whether
the solution works and if the
solution fits in practice and adapt
the solution.

So, there is a gap between the
formal responsibility and tasks that
one is doing.

Being available to explain the
solution.

Help teams to overcome issues.

Technical architect role in project Description Need a connection between a
technical architect and domain
architect or solution architect.
Need to look at completion of the
picture or ensure enabling

Not discussed.

152

features, such as network
connections, server definitions,
middleware components.

Technology architects ensure
general development building
blocks. They are involved in how
software is developed, the
facilities with which software is
developed.

Interaction between architecture
and agile

Description Working under architecture is
held in high esteem within the
organisation. However,
development teams can deviate
from the architecture under
circumstances, I.e., high business
pressure, but get additional
requirements to steer back to
working under architecture.

Criteria are defined surrounding
the enablers in the PS;, however,
the PSA is more to set frames. To
do the actual infrastructure order
with an infrastructure supplier
some high-level design
engineering is needed. Capacity
needs to be specified with the
sourcing partner. This needs to be
addressed up-front, in every
project we see that this is an issue
since the organisation has been
transformed towards agile. So, the
conditions that are needed to
deliver software are an issue.

This was not used in this project:
iterations of the Minimum Viable
Architecture. First iteration is a
high-level sketch of the
architecture. This works well if a
package is partly or completely
implemented. Then take a look at
how well the requirements are
defined and apprehend them into
the business architecture,
deliverables, thus, processes,
information flows and a few
important architectural building
blocks in terms of functionalities
and check whether the
composition of functionalities is
good, in terms of how the market
looks at them. This is done with
business and technical people to
determine what is possible and
what is not. Since they have had
information on this, they sharpen
their requirements. Then we
move to the second iteration
where a good picture is created on
how to implement something and
draft a plan of requirements. This
is done from an architecture
perspective in combination with
high-level design: solution
architecture and design. The final
iteration of the MVA is more like
a PSA, as this deliverable is used
to build, implement and
configure.

In the first two iterations the
architect is working with the ones
propelling the changes, while in

Architecture does coordination
with other parties and defines a
PSA. Agile team does work in
PSA.

The interaction differs at each
organisation that I have worked. In
some private sector organisations,
there was a very layered
architecture from enterprise level to
solution/lead engineer who did the
technical design. In another it was
very different, there a solution
architect designed the solution,
sold it to the architecture board and
helped the team to implement the
solution. This included for
example, working out the sequence
diagrams on how things should
work in the tool and used multi-
disciplinary teams that were pulled
through the whole ‘chain.’

Domain and solution architect tried
to be present in the refinements as
much as possible. In addition, they
tried to follow what was discussed
in the demo’s as much as possible
to determine the position of the
project and see what has been built.
However, attending all the
refinement sessions is not possible
for one architect as they happen in
sync for five teams.

The definition of Ready and
definition of Done need frames
from a PSA. This is where agile
and architecture interact. You need
to provide direction, otherwise it is
not possible to let these team
cooperate. This coordination is
needed to determine prioritisation
of functionalities in the sprints.
You cannot just build a front-end
for example, as you need data from
another system. Thus, this service
needs to be realised. This needs to
happen in a coordinated way and
requires coordination among teams.
A PSA is a great help to determine
the goal of what the teams are
building. This all needs to happen
in discussions, what are the steps?
Who should play a part and how do
they work together? How will we
build a service? How will this
service be used by the customer?
How will you cope with things that
cause asynchrony as they take
longer to develop?

153

the second and third MVA the
architect is more involved with
people that will deal with the
change and how it should be
implemented and designed.

Enterprise architect has no
contact with developers, but with
senior stakeholders. Domain and
solution architect do have contact
with developers. Enterprise
architect does interact with
domain architect.

Architecture builds a high-level
roadmap and defines frames for
the ‘whole’, and for the order in
which deliverables should be
delivered in respect to the
deadline. Within certain phases
iterative development can be
used.

Goal is to have solution architects
that work in development teams
but is not feasible for the time
being. For this you need an
organisation that is very mature in
agile and has architecture
knowledge integrated in the
development teams. This goes
beyond the function of solution
architect and means that team
members take on the role of
solution architect. For this your
developer community needs
certain architecture skills and
your organisation needs to
develop towards this.

Advantages of interaction Description Focus on a specific discipline and
everybody can keep focus on
their own context and know their
dependencies. A lot of domain
parties are dependent on
developments within the
technology architecture.

Ability to adjust, less wandering
in the process. Due to the issue
with BUFD that you find out that
something is estimated wrong
when it’s too late, this is a big
advantage.

Motivate people intrinsically to
deliver things.

The learning effect of a team can
be increased through more,
smaller repeated steps.

Provision of frames by
architecture is an enabler to
provide the freedom that agile
needs.

Development teams can alter
from architecture, but solutions
are sought to get back under
architecture again together.

MVA-process helps to identify
roadblocks early.

We do have an example of a
solution architect that forms a
bridge between the high-level PSA
and can make matters concrete. For
example, things that were so
apparent for me as domain
architect that I did not write them
down. The solution architect can
help here and point to the relevant
standards, instead of having
endless discussions on small
things. Here the solution architect
who knows the architecture frames
can translate them to the
programmers and developers. As
sometimes you are blind to these
things.

Dialogue instead of red card
procedure (see procedures) gains
more commitment from
development teams.

154

Attracting enough architecture
resources to organise frequent
interaction is difficult to achieve
for organisation.

Disadvantages of interaction Description Tensions with agile as things
come together in infrastructure.
We will not develop a distinct
system and dialect for each pillar,
you want a certain amount of
standardisation. Thus, you are
forced in a corset of standards. In
addition, you have things like
systems, network connections,
certificates, user id’s and things
outside the organisation, these
need to be arranged before they
can be realised. This preparation
work needs to be done up-front
and is the runway. The enabling
features need to be considered.
This is a tension as it is an
architecture (from enterprise to
solution level) task to manage
these things.
Criteria are defined surrounding
the enablers in the PSA; however,
the PSA is more to set frames. To
do the actual infrastructure order
with an infrastructure supplier
some high-level design
engineering is needed. Capacity
needs to be specified with the
sourcing partner. This needs to be
addressed up-front, in every
project we see that this is an issue
since the organisation has been
transformed towards agile. So, the
conditions that are needed to
deliver software are an issue.

Resources, architects want
standardisation of tools, while
developers want to work with the
tools they know. Because of this I
have never seen the learning
effect achieved due to the lack of
personnel.

To achieve the added value of
agile, people need to change their
task distribution in teams and
become more multidisciplinary.

To achieve the effectiveness of
agile, such as the predictability of
bur-out charts and learning effects
the agile, you need to have it
implemented on a certain scale
and for a long enough period of
time.

Old environment and stringent
standards make it difficult to
recruit good developers, also
considering the salary that could
be offered.

Misconception that agile is a
warrant to develop as one sees fit.
If you take agile too far, then it
becomes difficult to plan.

Tension of short-cyclical agile
methodology with hard deadlines
from legislation.

A complete up-front architecture
where everything is known does
not exist. This is the definition of
an ivory tower and will create an
endless process of identifying and
changing things. What one writes
today is no longer relevant a year
later. The PSA that included
everything never existed. If I
address all issues in the
architectural designs as expected
by some of my colleagues, how
will it be feasible for the
development team to make the
deadline? Not to mention the fact
that you will end up in analysis-
paralysis and will never start
building, as you will always
encounter new things.

No clear definition on what should
be in the PSA, some make it too
high level, while others almost
include snippets of code. The result
is either a lack in guidance or a
lack in freedom for the
development team.

The frames that we give are not
sufficient, we need to supply
standards for development,
guidelines, how to approach a peer
review of a colleague that sort of
things. However, we are only
advising a bit on this part. This is
not for us as CIO-office but for IT
themselves. We give some advice
on the solution direction, with our
knowledge and expertise as
mandate. But we have no official
mandate.

Problems occur if a solution
architect leaves, a gap falls
between the senior engineer, who
had a clear picture of how things
tied together across teams and the
team. The solution architect should
play a role in this, but could not
enter, as the PO of the team said
we determine everything ourselves.
However, they had too little
oversight of what played in the
chain. In the end the solution
architect was able to earn their
spot.

More projects than solution
architects, we have too little people
and that is a problem. A sort of
ping-pong occurs, where things are
discussed that make me think, that
is not right, we agreed on
something else. Then it appears
that a solution architect is on
holiday and confusion and grey
noise appears. Hampering the
productivity.

Since we don’t use the traditional
agile where teams stay responsible

155

Need to find balance between
short term planning and working
ahead but need to have the
plannability of your epics in
mind. So, after the epics are
refined in user stories is fine,
however big forces start to shift in
the political arena if things are not
executed on time.

for the things they built, the effects
of attrition are worsened. Transfer
to operations requires more
documentation and pictures of the
main ideas of the code, as they
have not developed the code. How
to approach documentation in a
chain is a tension.

There are large amounts of large
amount of work that is lagging
behind. These are things that the
business does not see and that is
where the money comes from.
While things are going fine, the
business does not notice and that is
the problem. This is an area for
improvement.

Tensions between IT and business
create shadow IT like robotics,
which adds business value but are
not meant to act as a structural
solution. These robotics solutions
created operational and continuity
risks.

What you encounter often in
architecture is that solutions are
purely conceptual, a paper tiger,
but reality is different. While you
need to take things into production
to comply with legislation and add
business value.

Communication in combination Irregularly / weekly / daily /
Description

I don’t really interact with the
developers, but the domain
architect in combination with the
solution architect does. I mainly
interact with senior stakeholders.

It was impossible to talk to an
information analyst as an architect
because of the fact that one was an
architect.

Communication often occurred
through the PO.

I started to discuss the PSA in
sessions with teams. Which helped
enormously to get people on the
same line. However, it is difficult
to get continuity in this. As the
teams know a fair amount of
attrition. This requires more
documentation in my opinion than
most agile thinkers agree on.

Impact of communication Description Enterprise interacts with domain
architect, who interacts with
developers and solution architect.
The enterprise can then manage
the senior stakeholders and
communicate conditions and
problems that were encountered,
account for them, explain and
prepare decisions. While the
domain architect executes the
technology through the solution
architects, by helping in the
development process,
implementing the right
technologies, clearing roadblocks
and connecting domain and
technology parties.

It is important to keep the distance
small. However, if there are many
teams, the amount of interaction
moments grows and it becomes
difficult to plan.

To prevent architecture from
becoming an ivory tower, you need
to think along with what happens in
reality. Thus, requires adapting to
new insights and giving in to
developers’ ideas.

Knowledge of architect / team Description Don’t know about development
team. Architects have a good
distribution of skills on focus
areas and experienced, versus
learning.

If documentation lacks, the gap is
huge if a person with a lot of
knowledge leaves.

The ability of teams to oversee the
whole chain is limited. We are
dependent on local heroes that have

156

been around longer. However, this
is a vulnerable situation to be in.

Uncertainty addressed (types of) Costs / schedule / quality /
description

Technical, how to integrate above
average automated system to a
more general system. So, how to
get information out of specific
Dutch systems into a general
European system.

Technical: quality and
discontinuation of reference
application.

Staffing

Requirements: specs of reference
application were clear. However,
were dependent on large parts the
reference application as the whole
application needs to be developed
in-house which is a big task.

Technical: quality and
discontinuation of reference
application.

A lot of important technical people
are aging towards pension age that
are responsible for legacy systems.

Requirements: not so much
uncertainty in this area as the specs
were pretty clear. However how to
fill these specs and organise
interactions between teams was
difficult.

Impact of uncertainty on project. Decision to build own
application. However, this gave
difficulties as well as it is difficult
to attract skilful Java
programmers.

Difficulties with non-functionals
as reference application was not
built for high level of
automatization. Functionally the
reference application was good.

Technical: Decision needed to be
made on how to continue.

Knowledge is leaving the
organisation and this will become
worse.

Requirements: the reference
application with limited
documentation which made it less
usable.

Strategies to address uncertainty Description Try to create co-creation on a new
reference application instead of
doing it alone as the Netherlands.

Technical: Decision was made to
develop own application with other
parties in Europe.

Need to gain more transparency on
how the technical systems work
that these people built.

Requirements: this is not where the
main problems were.

Governance structure/strategy Description Hard deadline due to European
regulation.

Governance structure is mirrored
in architecture structure.

Political arena does not give
enough time to the executing
parties to get their affairs in order
and test the executability of
legislation.

Complex legislation due to
stacking of legislation.

Decision was made to make use of
the reference application. However,
it was not fully suited for the
organisation as it was developed
for less automated organisations.

Later, it was decided to develop an
application in-house instead of
using the reference application. As
the reference application was
discontinued.

Hard deadline to be connected to
the network.

Organisation needs to be more
open to outside world, which is a
broader issue. This requires
technical changes to current
systems and development of new
systems, interfaces and UI.

Issues on cooperation of agile
teams and how to get the right
teams and do prioritisation across
teams.

There are different systems with
different needs in the organisation.
They can be classified using the
Gartner framework for example;
systems for interaction are more
suited for agile. While more

157

infrastructural or organisation
critical systems benefit from
stability, less change. This needs to
be considered in the architecture.

An overall backlog was
implemented for the project to plan
and safeguard progress.

An overarching coordination for
the teams missed. There were some
agile and Kanban teams, who had
their product owners and they
needed to work it out with each
other. There was a project manager
that worked according to the PSA,
however the project workers
listened to their product owner
which prioritised their own
backlog.

An agile roadmap is implemented
which lead to a lot of changes in
roles on the business side.
However, business has a tendency
to do so without finding agreement
with IT and the CIO-office as they
are less flexible in this regard.
Leading to shadow IT solutions by
the business stakeholders.

Impact of governance structure on
project

Description Java development teams can work
agile in sprints; however, the
deadline stays fixed.

Each business unit has a domain
architect, which in turn works
together with one or more
technology and solution
architects.

Creation of hard deadlines which
have no attention to feasibility for
executing organisations, thus
architects and developers as well.
This creates tension with agile
development. On the other hand,
it helps for developers to work
with refinement, manageable
chunks of work in sprints and
seeing the results.

Long term program is initiated in
government to renew systems,
ensure the right decoupling and
simplify systems. This program
requires a lot of time and budget.

Thus, some changes needed to be
made to increase performance, but
the reference application could
serve as a basis.

There were a lot of small
organisations that do not have the
capacity to develop their own
application, this comes with
security risks other organisations
connected through the network.
This organisation was one of the
first to be connected. Things work
from a business perspective, but
from a technical perspective it is
still quite primitive. So, there is
still a bit of technical debt and
some trouble with the ‘technical
adapter.’

Required Business Use Cases
(BUC’s) need to be finished on the
hard deadline.

Resistance from inside the
organisation from those who want
to keep things as they were.

Agile roadmap was implemented to
identify which teams there are, how
they could cooperate and control
the use of resources. However,
some architects keep their own
ways which are more a traditional
ivory tower style than in dialogue.

The front-end allows for more
room, while the back-end needs
more clarity, outlines and a clearer
architecture vision. I think that with
architecture we do this too little,
provide too little or too much
hinderance through outlines,
guardrails or frames. Currently the
teams are disturbed by the

158

exploration of new technologies by
architecture. We cannot hinder the
processes that add business value
as architects.

Overall backlog helps to reach its
goals and to deprioritise things that
don’t add business value.

Stakeholders who previously found
each other can now no longer find
the right role to engage for their
project. This is a risk for current
projects as it affects everything
from requirements elicitation, to
reaching agreement on
requirements with each other and
the realisation itself of the
software.

Management Description The PO changed two or three
times.

PO worked together with a
project leader that took care of
enabling factors.

Management made a decision in
the past to replace legacy systems
with new systems.

Due to the lack of overarching
coordination, the project manager
could not manage the situation.
Thus, a virtual team that was able
to look across disciplines in the
chain was created. These
overarching issues were discussed
by this team, there were two
variants of these meetings. One for
more functional things and one for
more technical things. Decisions
were taken in these meetings to
create overarching coordination.
Additionally, this helped to discuss
things from which it was not clear
where to discuss them previously.
However, this governance strategy
was implemented only in this
specific project, creating an issue
for new projects.

Impact of management on project Description There were struggles with the
enabling features or the so called
‘runway’ from SAFe. This were
mainly infra issues that needed to
be addressed. This was addressed
more project based.

Implementation of new systems
failed. Now the decision has been
made to refactor the system.

(Changes in) procedures Description Changes are only discussed with
developers, domain and solution
architect once a decision has been
made on a management level that
leads to a change.

You want to allow developers
with responsibility and
accountability to choose their
own development and
development and test
environment if they develop code
according to certain specifications
and coding norms. Which comes
with the accountability of the
complete development process,
including back-up, no loss of
work, no loss of productivity,
working in a secure way.

Worked initially with big room
planning, which was dependent on
(in)formal hierarchy.

Since there is no real demarcation
of roles, the contents of the PSA
are personal tastes of the
responsible architects.

Breaking up of monolith and
turning them into services gains
resistance from certain teams. The
team members have a power
position as they have knowledge of
how critical technical systems
work.

There is a procedure for alterations
form the architecture. An architect
can give off sort of red card that
can be escalated up to the non-
executive board. The team needs
then to rework the solution so that
it falls under the architecture again.

Impact of procedures on project Description Developers, domain and solution
architect are not included in the

Business process owners were
pushing and pulling on projects to

159

decision-making but do have to
ensure the right execution.

This is not feasible as things
could easily leak to the outside
world through a developer’s pc
which causes big problems. This
is where it stings, you cannot or
do not want to leave this to
people, as you do not want to be
at risk.

get what they want. Was a chaotic
process. Changes are being
implemented by portfolio
management combined with
information management. Now the
organisation is in an in-between
form, Agifall, where agile projects
exist next to combinations of agile
teams, agile teams that work in
their own space and large projects
with project managers.

Discussions arise between
architects on why something is
(not) included in the PSA and
solution architecture.

These are the elements where
people with technical knowledge
are also reaching their pension age,
which worsens the risk of losing
this technical knowledge before the
system has been refactored.

The refactoring for the red cards
stays on the backlog for ever, as
nobody commits to address the
work, it is not prioritised and the
architects are side-lined. So, it is
better to sit with the teams in a
more constructive manner how to
rework towards the architecture
and put it on the backlog as was
done in this project.

Project delivered within budget Yes /no + description All the business use cases and
structured electronic document
implementations have been made,
however, there is some
development still going on.

The system is in production and all
business use cases and structured
electronic documents are
supported. We are completely
compliant, as the business value is
totally there. There are a few
changes that need to be coped with
and the solution is not completely
conform the PSA, there are still
several workarounds implemented
that need to be phased out. Thus,
the solution is in a state of
aftercare. For this extra budget has
been allocated.

Project delivered within time
schedule

Yes /no + description Most problems were present in
the planning and making the
delivery deadlines due to issues
with resourcing.

See previous cell.

Project delivered within client
quality expectations

Yes /no + description Good. We had a lot of issues with
changing from the reference
application as front-end to building
our own front-end. However, this
user interface is experienced as
better. So, in the stakeholders were
satisfied.

160

Appendix I – Case study report 6
Table that summarises the findings of case study 6.

Table 22: Case study report 6

Variable name Unit of measurement Product manager Domain lead
Project description Description Sales platform that needs to

accommodate consumers,
businesses. But also new
financial and supply chain
functionalities. This case study
gives a perspective of how
different teams work together on
a specific solution.

Reflection on various projects
around a platform that
accommodates consumers as well
as business clients.

PO description

Tech savvy / non-tech savvy /
description

Business, more senior product
owners are more technical. PO
has a product.

From business. Interact with the
requesters in the markets and
businesses to align requirements
and shaping their own mission and
roadmap for the capability that they
are responsible for.

PO accepts work, is part of the
demo.

PO impact on project description Some PO’s are involved in
writing stories, but most PO’s
take a backseat when features are
decomposed into stories. Asking
critical questions.

Do enhancements to existing,
running capabilities and
transforming topics. The latter
includes formulating a vision on
where to go with that capability In
the next 1-5 year time frame.

End-user description Tech savvy / non-tech savvy /
description

Interaction with end-user via
online test panels platforms for
qualitative data on user
experience and AB tests for
quantitative data on user
experience. Feedback from these
processes is fed into the Sprint
cadence, so refinements etc.

PO represents end-users, because in
many cases there are multiple end-
users and requesters that need to be
shaped into one vision.

In more complex cases, the end
users are directly involved in
demos, user acceptance tests and
the deployment group.

Role in project Software architect, enterprise
architect, member of agile
development team,

Product manager brings together
Senior product owners in a
functional way, rather than a
hierarchical way. Coaching them
to make the right choices and set
the right priorities in ‘putting the
puzzle together’ and managing
dependencies for example.
Helping the PO’s to do planning
etc. in an agile way through
project management. Role and
responsibilities are fluid because
of the agile processes employed
in bubbles.

Head of IT of Direct-to-Consumer
(D2C) within organisation.
Overseeing the digital portfolio
related to directive business.

Various roles, currently a leadership
role, which means accountability
for operations, development,
everything. Overseeing multiple
delivery managers, solution
managers and architects that are
working in a team, who are
distributed across many different IT
scrum teams that deliver and run a
D2C portfolio. Meaning
responsibility for the operational
phase of everything that is in
production.

Experience in role < 5 years, 5-10 years, 10 – 15
years, 15 > years

5-10 years, previous experience
as a developer, as well as
business background.

10 – 15 years

Project status Functional version / in operation
phase / description

In operation In operation
Agile framework used SAFe etc. SAFe, with own flavour. Project

management and horizontal
coordination are added.

SAFe, done with implementation in
department. However, this differs
across departments in the
organisation. Continuously
changing and improving it to make
it adapt to the situation of the
organisation.

(Reference) architecture
framework

TOGAF, NORA etc. Not discussed. Combination of layered and
modular architecture. Architecture

161

is not highly layered such as in
TOGAF.

Geographical scope International, national, regional,
local, central (same
building/room)

Decentral, development capacity
is outsourced to another
continent.

Decentral, development capacity is
outsourced to another continent.

Agile implementation Maturity / Description Stories are planned two weeks
ahead. Epics and enablers are
determined by a quarterly
handshake process. The stories
use, two, two and a half sprints of
up-front planning. The enablers
and epics are designed as a
solution.

Demand in D2C domain is very
flexible and dynamic. This creates
tension with the quarterly
Programme Increment (PI) planning
sessions that SAFe prescribes. Since
the demand is not laid out a quarter,
but only 2 sprints ahead, it does not
make sense to do an extensive up-
front planning session. As you end
up planning for stuff that you don’t
know enough about to plan
effectively, and your plans will end
up being inaccurate. You end up
faking the situation a bit and
making guesses, while you know it
is going to change. So, for
programmes with extremely
dynamic scope, so more continuous
improvements/optimisations, which
are usually small features that you
deliver based on what is most
needed and delivers the biggest
value in a situation for an area, we
still run release planning sessions
on a quarterly basis but use it more
to align strategic direction with the
entire group. Align on key areas
that will be touched, without going
into details of the whole PI
planning, dependency mapping etc.
This happens sprint by sprint as you
go

Role that represents flexibility Role and Description Refinements and retro’s. But also
the sprint rhythm itself. See cells
on uncertainty.

For fundamental changes, there is
a bi-weekly portfolio
management meeting with the
markets and business. Shifting
timelines and changes are
discussed here.

The product owner makes a call,
in case of changes, if it concerns
multiple product owners, then the
chief product owner makes the
call.

We do this for multiple levels,
including AB tests continuously to
validate the requirements that are
coming in and to get end-user
feedback from consumers on what
really works. Thus, in order to find
out what the best solution is and to
get that in your software
development life cycle.

For this you need to set up your
architecture in a way that allows for
this flexibility on various levels. It
does not have the be altered very
month, but you can use a
microservice based architecture and
is relatively headless decoupled
architecture. So that you don’t kill
your flexibility with complex and
end-to-end solutions. This allows
you to incorporate AB-test results,
late requests and other things when
you need to change direction and
implementation or part of the UI
only. Thus, enhancing flexibility to
a degree.

In development you must be
flexible enough to accommodate
new and last-minute requirements
coming in, but the flexibility part
should happen upstream because, as
a developer you are likely using the
same process irrespective of which
requirements comes. You need to
make sure it’s well groomed, well
understood, have acceptance criteria
and solution designs. In essence,

162

everything needs to be ready to be
taken into Sprint, no matter if it’s a
new requirement or some that
you’ve been planning for years. The
roles up-front determine the
functional scope as well as the big
architectural setup and solution
designs and are thus more critical to
enable flexibility.

Role that represents stability Role and Description The bubble, combination of PO,
solution architect, team leads etc.

If you look at stability of technical
platforms, it is an IT responsibility
that you can organise in several
ways. 1) Organising separate
operation IT-groups that are
responsible for stability, making
sure the platforms are up and
running and performing according
to expectations. 2) You can setup
DevSecOps groups who are taking
responsibility for both the Dev
cycle as well as the Ops cycle. In
this case the product owner is
responsible for technical
performance and that functional
things make sense. This means not
focussing on if the service is up and
running, but on the user journey.
Can users find what they are
looking for and complete their
goals?

IT-architecture implementation Top-down, architect actively
involved in agile development
team and / or description

Multiple solution architects are
involved.

1-to-many relationship, so an
architect is overlooking a larger part
of the landscape. Even though there
are architects who are deep experts
in a particular technology, in most
cases they are broad end-to-end
experts in a set of technologies: T-
or Pi-shaped specialists. So,
architects create an end-to-end
architecture instead of a technology
specific architecture.

Solution architect role in project Description Solution architecture works
horizontally across different
technologies.

Solution architects are responsible
for full stack, including
infrastructure architecture,
application layer, the whole thing.
There are also more deep experts
that take care of the infrastructure,
albeit that it isn’t changed that
often. So, while the functional
architects would have end-to-end
responsibility, they do rely on
deeper infrastructure experts if the
infra setup needs to be modified.

Enterprise architect architecture
role in project and organisation

Description Enterprise architecture
determines which software
packages are bought and which
functionalities are expected from
bought or licensed software
packages. Enterprise architects
together with procurement
negotiate and sign a contract with
a supplier for a certain software
package.

Not specifically discussed.

Interaction between architecture
and agile

Description Transitioning from waterfall to
agile development. Currently in
an in-between hybrid situation, as
there are agile processes for
development. But dependencies
are managed through a
waterfallish project management
approach, as there are various
teams and technologies involved.
Thus, there is a combination

PI's, product increments and release
planning sessions every roughly
every quarter to determine basically
what ends up on a release train.
As part of that, basically we have a
what we call a demand intake
processor, requirements gathering
process that happens with a number
of product owners, tribe leads,
markets and other parts of the

163

between waterfall project
management and agile software
development.

Relevant stakeholders, including
PO’s and solution architect are
taken into a bubble, that looks
horizontally across teams. This
bubble designs an up-front
solution and works in an agile
way by gathering new insights
along the way. Each bubble
determines the balance in up-
front and emergent design based
on their context.

Solution architect makes the first
iteration of a solution and then
the tech lead, product owners,
senior representatives of the test
team and in some cases business
analysts can shoot on the
solution.

After challenging the solution,
the solution architect is going to
help the team to create features
and two or three epics. The
product owner starts working out
the features and the epics with the
stories below it. As the individual
stories do not add value, they do
so when they are combined into a
feature. However, a feature can
be composed of 5 different stories
from different technologies. This
is easy for the PO, as they are
more business oriented, so the
feature can describe acceptance
criteria, end-to-end outcome etc.
This is interesting because this is
too technical for a product owner,
because it is in a different
technology. Thus, the product
owner does not go deeper than
the feature level.

The stories contain acceptance
criteria and test scripts already
this way. The solution architect is
involved in the decomposition of
the features into stories, which is
a more technical discussion.
Therefore, the PO is only
sometimes there and the solution
architect, tech lead and business
analyst take it a step further. The
PO is still in the lead, but the
solution architect reviews the
written feature. The features is
then documented and referenced
on a wiki. The solution architect
also reviews the stories. There is
interaction between the tech leads
and solution architect, for
example on use-cases that the
solution architect did not think of
before. This is a very iterative
process where everybody brings
their own perspectives and
knowledge to the table. This
process is used for new features,
not for features that the tech lead
can handle alone.

organization, those requirements get
translated into initially high-level
designs. Where the architects get
involved, then they are translated
into lower-level solution designs
where normally our what we call
technical leads per team get
involved and finetuning the large
level architectural direction to
smaller level solution design and
then the solution designs are used
by the actual developers to deliver
the solutions according to those
specifications of those designs.
Then the work gets tested.

Role of architect depends on, two
use cases. 1) capability that does not
exist, architectural white spot.
Ongoing alignment of business on
strategic and tactical level to
determine business and IT
architecture landscape. Which
solutions are in place to support the
bigger capability problems and
which solutions are not in place?
The architect gets involved to
explore how to fill that white spot,
that exploration is usually a Request
For Proposal (RFP) process, which
is like a tender procedure, meaning
that you analyse the market. Before
you do this, you must make sure
you understand what the business
requirements are on a more global
scale, then you analyse the market
to find out which tools are out there
to fulfil those requirements. Then
you do the deep assessment to
determine which tool you want to
buy or develop in-house. So, the
architects are involved on the first
step, at the strategic tactical level to
determine what solution should be
chosen and how it would fit the
entire ecosystem.
2) A capability is in place, meaning
the architectural selection has been
done. The tool is there. The tool is
being built, deployed and enhanced.
In this case the architects are
involved in several stages. They are
involved up-front in getting their
requirements and determining if
adjustments need to be made to
access or integrate between
systems. Or are only minor
adjustments needed and will the
Tech lead do? If it would do with
the tech lead, then they create an
architectural design according to
that and are still involved in the
actual execution of the project. To
ensure that what is delivered ends
up filling the architectural direction.
Lastly, the architects are involved in
bigger cases of production problem
management. If there is a structural
issue with a capability. It must be
bigger than just a few patches here
and there, in these cases architects
are also involved to look more
structurally if the direction needs to
be changed or a different solution
would solve the problem. This is

164

The solution architect has a lot of
touch points in the refinements.

Department is going for a
headless architecture setup; this
means that the front-end back-end
are decoupled. So, front-ends can
be plugged into a ‘socket’ and
gets the right answers.

done in a very agile fashion, so this
all happens very close in time and
in an iterative way. In use case 1
this means that if demand intake is
today, then execution happens next
year and you see it in production a
year later. In use case 2 a demand
intake today, gets planned into a
sprint one or two sprints from now
and then it’s in production
immediately and after incidents
start popping up these are to be
addressed. The architect interacts
with the development teams in these
cases through the team/technical
leads and product owners. This
allows for alterations to be made if
the architecture design does not fit
for the development team.

Advantages of interaction Description Even though the sessions where
the first iteration of a solution is
discussed can be heated, it adds a
lot of value since you can make a
discussion to do some dirty work
if there is a lot of uncertainty to
throw the MVP away and learn
from it. See whether it moves the
needle on the business KPI’s. On
the other hand, if it is known
beforehand that the situation is
complex, or it has been done a
few times and is known to bring
value. Then a bigger development
investment can be made, which
takes longer, but creates a
fundament that can be expanded
upon.

The headless setup enables agility
for development teams.

The skill set of the teams is very
technology driven. The teams do
not employ multiple technologies.
Therefore, the teams and tech
leads are unable to look over the
wall. The solution architect can
cut across these teams and
technologies and act as a bridge.
Knowing a lot of technologies,
but not the details. This can
prevent issues occurring
downstream in different parts of
the solution that the tech lead
cannot foresee. Additionally, this
difference in perspective and
level of details adds new insights
to the discussions.

Allowing architects to formulate a
vision as on how to not only solve
current product owner needs, but
also identify what are the future
capabilities that we might have.
Therefore, up-front find out how to
fill white spots or create white spots
in the first place.

The architect would be able to
formulate a solution that will avoid
having to do rework later. If you
align requirements up-front and
understand deeper what is really
needed, you will end up building a
solution that satisfied all the
different needs instead of building a
sort of step-by-step solution that
you may need to modify or rework
entirely. For example, your solution
works functionally, but
performance wise it is killing your
system.

Disadvantages of interaction Description You cannot fit a big platform to
an agile setup because the teams
would become too big. As you
would need to fill the team with
different technologies, which
would create teams that are too
big, as around 9 people in a team
would be ideal for a Scrum team.
But you would end up with teams
of 25-30 people, which is not
doable.

To add to the previous bottleneck,
you cannot find T-shaped people,
that know all these technologies
and the associated processes,
such as building services. Thus,

Bandwidth. Everybody is busy with
a lot of activities. Some daily, some
operational, some tactical, others
more strategic. So, it’s a
requirement for architects or other
more senior positions to properly
balance that. Thus there is a risk
that if a person does not manage
their time and overall role well, they
might end up going to far in one
direction, having no more time the
others.

If bandwidth is not managed well or
an architect becomes unavailable,
then multiple teams can suffer from

165

proper project management is
needed to manage dependencies
that the multiplicity of
technologies creates.

Since the solution architect makes
the first iteration alone, the
solution design depends on the
solution architect. Interviewee
describes how with one you need
to steer on more thoroughness,
while with the other you need to
steer on more speed.

The meeting with the solution
architect, tech lead, product
owners and business analyst can
get very heated discussions, as
the solution is being challenged.

There is a tension in the scope of
the solution. It used to be an
MVP, however, this would be
dirty work that was not scalable
and needed to be thrown away
after presentation. However, the
organisation is moving away
from this and developing MVP’s
that can be built upon.

Disadvantage is that the solution
architects are a scarce resource
and a bottleneck. There is more
work than they can absord. This
reduces the autonomy of the
teams, as they run in impediments
if the solution architect in
unavailable.

Sometimes tech leads skip the
conversation with the solution
architect, for example by
agreeing with another tech lead
on a specific solution without
consulting the PO or solution
architect. Usually this is
discovered only due to end-to-end
testing. Getting this feedback
faster into the bubble is a
struggle. This is usually at the
micro-level, but can have knock-
on effect further down the line
depending on the context due to
dependencies.

It is difficult to work agile when
the financial processes and targets
are very waterfallish.

this on a structural basis, however
these are edge cases.

Why are (dis)advantages related to
the interaction and not architecture
or agile alone?

Description Not discussed.

The fact that you have an architect
who doesn't talk to anybody or
doesn't talk to PO's, what good does
it do?
Right, so as an architect, you are
there to in essence figuring out how
to enable a scalable, maintainable
and sustainable setup that will
enable us to be successful in the
future as well as today. Now, how
do you determine where should that
future go and where you had it and
etcetera? By talking to many
different stakeholders and product
owners are being one of the
stakeholders that you normally

166

would interact with to figure out: all
right was the direction that our
business is taking, right? What is it
that we need to be prepared for and
want to, five years in advance
because the strategy is going that
way. But we as an IT team don't
have a capability in place in order to
accommodate for that, the same
time the architects play a role to a
bit guide that version as well, right.
So, we often encourage what we
call it driven innovation. We're
saying, hey, do we have some
fantastic solutions that we as a team
can bring as their proposal to the
business to actually drive
innovation and improve strategic
sort of competitive edge or maybe
just optimize processes and
automate things, which may be the
product owners would have never
thought of, because they are not
aware that it exists or that sort of
that's a possibility that's kind of
where the architects would bring
that innovative suggestion to the
PO’s. So, if you will say they are
not talking to each other, then all of
this disappears. Right. And you
have two organizations that are sort
of running side by side and not
communicating with each other. So,
it's again it's as simple as that sort of
what is the power of
communication.

Communication in combination Irregularly / weekly / daily /
Description

People do not always know when
to raise their hand during a sprint,
when to escalate or ask a
question.

Both, formalised and ad-hoc
meetings. So, we have structural
meetings in place where we sort of
we call them Scrum of Scrums but
in this case on tech lead and
solutions architect level. In our case
we have a weekly call like this
where all the architects and
technical leads from my department
look together into all the demand
that is coming and they also do a bit
of a, so they update each other on
who's working on what gets
changed in the landscape so that
they can identify potential
dependencies between each other
on a larger scale. And they also
present their solution design so they
can do a bit of a peer review, and
feedback has to write it doesn't sort
of make sense or not or can we
improve the process that happens
that happens weekly again, as a
structural setup but then you have
many of the more ad hoc meetings,
calls, etcetera that then not the
whole group, but few individuals
from the group would set up on a
particular topic.

Impact of communication Description See interaction cell on bubbles. Ability to identify dependencies on
a larger scale, while also keeping
the ability to discuss things that are
related to a smaller set of
stakeholders.

Ability to capture feedback early.

Knowledge of architect / team Description See interaction cell on technology
driven teams.

Both of architect and developer
teams, ranging from very senior to
junior and in-between. However,

167

architects are more high-level
profiles than developers.

Uncertainty addressed (types of) Costs / schedule / quality /
description

New ‘stuff’ that teams do not
have experience with.

Many
Impact of uncertainty on project. This inexperience leads to more

new findings or surprises during
the development process.

Epics and features cannot be
pokered, but resources need to be
planned in advance.

There is a big risk in
implementing new features on the
platform due to the current stage
of technical debt on the platform.
If you, do it right there are a lot of
benefits, but if you do it wrong
there is a big penalty. The
commercial priorities of business
do not allow for cleaning up in
the platform and making way for
big ticket items.

Not discussed.

Strategies to address uncertainty Description Daily stand-up to discuss the
issue, follow up with relevant
people outside of daily stand-up.

Retrospectives to do root-cause
analysis.

Plan a Spike, to gather knowledge
on the issue. A Spike does not
deliver a shipable product, but
provides learning as a team as
added value.

See other measures in cell on
flexibility.

Since features and epics cannot
be pokered they are T-shirt sized:
S, M, L etc., to do resource
planning a quarter up ahead.

Two ways to address uncertainties:
1) up-front planning; dependency
and risk management. Everything
part of normal project management.
2) When the impact of uncertainties
is lower, you simply proceed in a
100% agile approach, incrementally
building and solving impediments.

Then there is a combination of both,
as cases that use more up-front
planning also use agile. However, in
the fully agile cases the organisation
takes more risk for low risk, low
impact topics.

Governace structure/strategy Description Teams are very technology
driven.

Strict project and architecture
boards where impediments
(concerning architecture) are
discussed for which the ‘stars and
stripes’ of those facing the
impediments are not enough.

IT falls under the CFO.

Developers are all outsourced to
another country.

Home brewn solutions are off the
table, no longer developing
solutions in-house. In the past
solutions were developed in
house. Since there was too much
trouble in the past with upgrades
and compliancy with home brewn
software.

Agile transformation started more
than 5 years earlier in IT than in
business. The transformation to
SAFe in business is still ongoing.
Now if you look at how our both
the governance of our organization
was organized, but also how we
have been working with a demand.
A lot of it was what I would call
vertical demand, meaning you can
deliver it as a capability in one
function or in one team or in one
program. Therefore, you don't need
too much of scalability across.
What we see happening in the last
several years already that most of
our demand is shifting to become
very horizontal demand, meaning
you need multiple functions to
really work together to deliver a
solution end-to-end. And for that
you need very effective planning,
alignment sort of demand the
portfolio management and so on for
which SAFe seemed to be a smart
solution.

Moving towards DevSecOps where
engineers do all parts of the normal
development life cycle. Meaning
they develop, write test scripts,
automate test scripts and deliver

168

working software that is SAT, RT,
Security and performance tested
before releasing it into production.

Budgets are more rigid, planned for
a year in advance. However, the
demand shape is re-evaluated and
adjusted on a continuous basis in an
agile fashion. So, while the top-
level budget is set for a year, there
is still flexibility to prioritize and
adjust scope within it.

For some projects there are fixed
deadlines and is related to
uncertainty, as it is the same with
bigger risk, complex and high
impact projects, that you would take
more time to get deeper in the
details because you want to be
certain or have a strong chance of
success to meet the deadline. For
lower risk items you are less
inclined to the deadline fix and
more going with the flow of what
the organisation needs at the time.

Compliance topics are present due
to the industry. Compliance issues
cannot be deprioritised and are
simply done. Thus, a process is
created where one is not surprised
by compliance topics.

Purchases of tools or products go
through an RFP, tender like,
process.

In corner cases were architects and
PO’s do not come to an agreement
on architecture or the feasibility of
working under the architecture,
there are several boards that can be
escalated to, for example a
consortium of architects,
programme boards which include
architects and DevSecOps
managers. These issues could also
be discussed in overall program
performance status and programs.

If a project is not finished on time,
then the costs can be absorbed, but
in most cases there is agreement to
limit the scope. So, time and budget
are frozen, then the scope must
remain flexible to accommodate
that. Otherwise, you freeze all three,
which is far from agile.

Normally there will not be
compromised on the quality.

Impact of governance structure on
project

Description Platform has multiple teams
assigned to it, to address the need
for specific technologies. Project
management is needed to
coordinate the dependencies these
different teams create.

The governance board helps to
break through the impediment or
escalates if necessary.

Mismatch in maturity of agile
implementation within the
organisation. IT is more agile than
business. Many cases of a
waterfallish approach with elements
of agile as the organisation is in
transition. The top-level
stakeholders work more waterfall
than agile. Gradually people move
into a more agile rhythm. The
mismatch in maturity creates

169

IT is seen as a cost centre and not
as an added value. If they raise
questions on the added value of
the solutions they are asked to
build, they are not heard and
expected to build it anyway.

Developers have to pick-up calls
in a different time zone. They
have to fix issues, while already
having worked a full day. There
is a lot of attrition in teams due
the long hours, this way
knowledge leaves the company
and technical debt.

Hard to cut out waste in
development processes due to the
distance and timezone
differences.

Pull request system where code
that has been written is going to
be pulled on the branch, code and
peer reviews to assure quality in
outsourcing model.

More standard software solutions
are used with customization,
especially for standard processes.
These should satisfy 70/80% of
the requirements to cover the
fundamentals. This allows to save
the brains and capacity for non-
standard cases that add value on
the KPI’s.

differences or complexities in
communication and alignment.

In high risk, complex and high
impact cases, you would also agree
on the agile principle that you can
fix your deadline, but your scope
becomes variable. Not fixing the
deadline means that certain
requirements are being pushed, in
theory indefinitely, because bigger
or more important requirements are
on the backlog instead.

Compliance does not just pop up, it
is a normal part of the process, there
are multiple steps and checks that
are part of the normal development
life cycle, including testing, quality
and regulatory validation, legal
checks etc. These processes span
across several roles, for example the
architects are aware of the
compliance requirements and take
them in as part of their solution, so
do product owners. These are the
non-functional requirements
(NFR’s). Since the industry is
compliance intensive, there are
specialised people who are part of a
quality and regulatory group, who
are validating every step of the way
whether delivery is according to
specifications, that the
specifications are correct, and that
testing is right etc. Protecting the
organisation against compliance
surprises.

For the RPF process, market
research is done, where you go from
a long to a short list of vendors,
then a procurement process is
started up. Vendors in the short list
can result in a pilot or POC if the
right legal and test agreements are
in place. Risks with vendors are
investigated and internal approval is
needed, the level of approval that is
needed is dependent on the tool
level you buy. It is a lengthy
process, you cannot just go and buy
something. The length of the
process depends on the complexity
and size of the tool, but normally,
starting from scratch it takes about
three months to get a tool. If it
concerns a large setup it can be
much longer.

Limiting the scope means that there
is agreement to create a lower MVP
solution, that can be delivered
within the available time and budget
and still makes sense. The rest that
does not get put up as an MVP will
then become part of the future
roadmap; phase two MVP or MVP
plus. Whether that gets picked up is
a future priority call based on
budget availability and so on.

If the quality is not there, then in
many cases the sessions will not be
taken live into production until the

170

quality is fixed. However, if it only
considers a small edge case that is
not working as expected but still
functions, then a joint multi-
disciplinary team decision may be
taken to accept it. Depending on the
frequency of occurrence. Still if it
impacts the end consumer then in
most cases there will be a no go for
the release. If a small element is
missing though, extra budget and
time is usually not allocated to fix
the issue.

Advise for those in a agile
transition.

Description Not discussed

Follow the process by the book if
you are new to the process. Do
exactly what the ceremonies
prescribe even though sometimes
you do not believe in it or that it is
not adding value. Experience and
learn how it should be and then
modify to see what really works for
you and what doesn’t. But if you
start the modifications immediately
and have no clue yet how the real
process should be working, you will
end up thinking and working
according to your old situation,
since that is comfortable for you.

If your level of agile maturity is low
in your organisation, employ an
agile coach. Make sure that it does
not become a side organisation, but
in large organisations full time jobs
for many people to really embed
this agile mindset across the board.

Make sure there is top-down
leadership support to actually work
in an agile fashion and that your
leaders get trained and onboarded
into the agile way of working and
know what to expect out of it, as
one of the first steps.

Management Description Costs are saved on personnel.

Very senior level is very
traditionally thinking.

See governance strategy.

Impact of management on project Description Co-located solution architects in
the Netherlands are replaced by
solution architects in the country
where development is outsourced
to.

Agile working is considered as
working in sprints and that is
good enough. This very senior
level is hard to get behind the
transformation, as they like to
work waterfall with milestones.
This is also present in other
corporates: a hybrid situation
between agile and waterfall, less
so in start-ups.

See governance strategy

(Changes in) procedures Description We have a very toxic process also
in our company where we
handshake on enablers. So that
the markets and the business can
reach their financial targets. So,
their sales targets are pegged to
some enablers that we delivered
as a digital team. This procedure
is being changed, but currently it
is still in use.

See interaction and governance
strategy cells

171

To address the flexibility/fastness
and stability tension, the
outcomes of the session with the
solution architect, product
owners, tech lead and business
analyst informs the involved
stakeholders and later presents a
set of options, including pros,
cons and their preference, to the
program board after having
reached agreement.

The creation of the stakeholder
bubble is dependent on the
context.

Impact of procedures on project Description Business does not care for
stability, but IT is to blame when
things break. There is no time to
address technical debt as teams
have to deliver new features. The
values that are pegged to the
enablers are very theoretical and
sometimes inflated.

The program board will evaluate
the set of options as well as their
pros and cons and make a
decision on which option to
pursue.

See interaction and governance
strategy cells

	Preface
	1. Introduction
	1.1. Research problem
	1.2. Research objective
	1.3. Suitability for Complex Systems Engineering & Management programme
	1.4. Structure of thesis

	2. Background
	2.1 Definition of core concepts
	2.1.1 Agile and agility
	2.1.2 Software and Enterprise architecture
	2.1.3 Theoretical framework for governance and governance strategies
	Governance
	Management structure
	Processes
	Governance strategy

	2.2 Literature review methodology
	2.3 Literature review
	2.3.1 Review articles
	2.3.2 Agile practices that can help IT-architects
	2.3.3 IT-architecture practices that can help agile developers
	2.3.4. Improvements to methodologies

	2.4 Knowledge gaps & Research question

	3. Materials and Methods
	3.1. Research approach and data collection
	3.2. Sub questions and approach per sub question
	3.3. Data collection and processing
	3.3.1. Limitations of data collection methods
	Pilot
	Other coping mechanisms

	3.3.2. Benefits of data collection methods

	3.4. Data analysis methods
	3.4.1. Analysis of within-case data
	Pattern matching
	Explanation building

	3.4.2. Searching for cross-case patterns
	Replication logic

	3.4.3. Shaping Hypotheses
	Enfolding literature

	3.5. Definition of a case study, selection criteria
	3.5.1. Case study definition
	3.5.2. Case study selection criteria
	Time
	Access to expertise and Organisation type
	Geographical scope
	Project status
	Agile framework

	3.6. Strengths and weaknesses of research approach, data collection and analysis
	3.6.1. Strengths
	3.6.2. Weaknesses

	4. Agile-architecture interactions according to grey and academic literature: a basic typology
	4.1. How are IT-architecture and agile software development interactions described in academic and grey literature?
	4.2. What do frameworks prescribe?
	4.3. An initial theoretical framework devised of three conceptual interaction models
	4.4. Conclusion of chapter 4

	5. Empirical IT-architecture and agile software development interactions
	5.1. Case study selection and characteristics
	Organisation type and access to expertise
	Actuality
	Agile and architecture frameworks
	Geographical scope
	Case by case description
	Green vs brown field case studies
	Green field
	Brown field

	5.2. Selection of interviewees
	5.3. Classifying the interaction model of each case study
	5.3.1. Architecture dominant case studies
	5.3.2. Agile dominant case studies
	5.3.3. Balanced exchange model case studies

	5.4. Conclusion of chapter 5

	6. The influence of context factors on empirical interaction models: an extended typology
	6.1. Communication, trust, stability, knowledge and perceptions
	Communication
	Trust and stability
	Knowledge
	Perceptions

	6.2. Uncertainty and risk
	Uncertainty
	Risk
	Risk management
	Occurrence in cases

	6.3. Improving the typology
	6.3.1. The carry over or ping-pong model
	6.3.2. The louse in pelt model
	6.3.3. The solution architect as cooperating foreman
	6.3.4. The co-development model

	6.4. Classifying case studies in the new typology
	6.5. Conclusion of chapter 6

	7. Problems in empirical interaction models
	7.1. Bottlenecks and tensions
	7.1.1. Agile dominant
	Bottlenecks
	Tensions

	7.1.2. Ping-pong or carry over
	Bottlenecks
	Tensions

	7.1.3. Louse in pelt
	Bottlenecks
	Tensions

	7.1.4. Solution architect as cooperative foreman
	Bottlenecks
	Tensions

	7.1.5. Co-development
	Bottlenecks

	7.1.6. IT-architecture dominant

	7.2. Reinforcing or balancing?
	7.3. Conclusion of chapter 7

	8. Added value in empirical interaction models
	8.1. Added value found in each interaction model.
	Agile dominant
	Ping-pong or carry over
	Louse in pelt
	Solution architect as cooperative foreman

	8.2. Comparison across cases
	8.3. Added value with complementary interactions
	8.4. Conclusion of chapter 8

	9. Governance strategies and how they help to obtain complementary added value in empirical interactions
	9.1. Coping with coordination issues in scaling
	9.2. Moving away from directionally composed architecture towards iterative architecture
	9.3. Addressing agile in a government context
	9.4. Coping with a lack of resources or knowledge
	9.5. Addressing the importance of formalisation and recognition of roles
	9.6. Coping with the product owner role
	9.7. Balancing up-front and agile architecture
	9.8. Coping with risk and uncertainty
	9.9. Conclusion of chapter 9

	10. Conclusion and reflection
	10.1. Main findings
	10.1.1. Generalisability of results

	10.2. Limitations
	10.2.1. Multi-case study approach
	10.2.2. Influence of perspectives

	10.3. Research contributions
	10.3.1. Scientific implications
	10.3.2. Practical implications

	10.4. Recommendations for future research

	Literature
	Glossary
	Appendix A – Quality assessment of papers
	Appendix B – Case study protocol
	B.1 Case study procedures
	Data collection and protection of humans subjects
	Research team
	COVID-19
	Time schedule and number of cases
	Interview time
	Interview protocol
	Supporting principles
	Field procedures

	B.2 Case study Instruments
	B.2.1. Informed consent form
	B.2.2 Interview questions

	Appendix C – Case study report 0
	Appendix D – Case study report 1
	Appendix E – Case study report 2
	Appendix F – Case study report 3
	Appendix G – Case study report 4
	Appendix H – Case study report 5
	Appendix I – Case study report 6

