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Executive Summary

Micro Air Vehicles (MAVs) are able to support humans in dangerous operations, such as search and rescue
operations at night on unknown terrain. These scenes require a great amount of autonomy from the MAV,
as they are often radio and GPS-denied. As MAVs have limited computational resources and energy storage,
onboard navigation tasks have to be performed efficient and fast. To address this challenge, this research pro-
poses an approach to visual obstacle detection and avoidance onboard an MAV. The algorithmic approach is
based on event-based optic flow, using a monocular event-based camera. This camera captures the appar-
ent motion in the scene, has microsecond latency and very low power consumption, therefore a good fit for
onboard navigation tasks. Firstly, a literature study is performed to provide theoretical concepts and founda-
tion for the obstacle avoidance approach. A processing pipeline is designed, based on the use of event-based
normal optic flow. This pipeline consists of three sections: course estimation, obstacle detection and ob-
stacle avoidance. A novel course estimation method ’FAITH’ is proposed which uses optic flow half-planes
along with a fast RANSAC scheme. The object detection method is based on DBSCAN clustering of optic
flow vectors, using the time-to-contact and vector location as clustering variables. The performance of these
methods is experimentally demonstrated by three experiments: in a simulated environment, offline on real
sensor data and online onboard an MAV. As currently no event-based obstacle avoidance datasets are pub-
licly available, a dataset is recorded as supplement to this and future research. Approximately 1350 runs of
event-based camera, RADAR, IMU and OptiTrack data are recorded, manually avoiding either a single or two
poles using an MAV in the flying arena of the TU Delft. This dataset is used in this research to determine
the performance of the course estimation method using real sensor data. The course estimation method is
shown to have state-of-the-art accuracy and beyond state-of-the-art computation time on both simulated
data and the recorded dataset. The final experiment shows the obstacle detection and avoidance approach
integrated onboard an MAV in a real-time obstacle avoidance task. The approach is shown to have a success
rate of 80% in a frontal obstacle avoidance task on a low-textured 50-cm wide pole. The contribution of this
research is an obstacle detection and avoidance approach using a monocular event-based camera onboard
an MAV, along with the novel course estimation algorithm ’FAITH’.
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1
Introduction to Research

Autonomous navigation for mobile robots, including tasks such as obstacle avoidance, is considered one
of the top ten technological challenges of our time [13]. These challenges occur in both ground and areal
robotics. Specifically, Micro Air Vehicles (MAVs) are gaining traction in a variety of applications. MAVs are
able to fly in challenging environments, due to their agile movement and small size. For example, when con-
sidering a disaster aftermath or a fire in a building with an unknown map, it is often considered dangerous
to send humans into the scene. A fully autonomous MAV is able to enter and navigate in the struck area,
providing a safer and faster alternative to sending in humans. Unfortunately, MAVs are endowed with highly
restricted power capacity, and extremely limited computational resources. Their use is also hampered by the
risk of GPS failure indoor, magnetometer disturbances because of surrounding ferrous materials (e.g., build-
ings or infrastructure) and IMU drift over time. The Size, Weight and Power (SWAP) of the MAV are therefore
highly restricted. As visual sensors are light-weight and more energy efficient than active sensors, they are
often used onboard MAVs for visual odometry and navigation. MAVs are often equipped with cameras for
which both the temporal (30− 60 fps on average) and the visual resolutions are limited. These embedded
cameras have greatly contributed to the reduction of navigation failure, but their use remains limited by the
low computational resources available onboard. It is therefore crucial to determine fast and efficient methods
to allow MAVs to autonomously navigate and avoid obstacles.

The recent developments in neuromorphic systems represent a promising opportunity for autonomous
obstacle avoidance and navigation onboard robots, in particular for MAVs. In this respect, event-based cam-
eras were first released in 2008 by Lichtensteiner et al. [8]. Unlike conventional cameras which output images
at a fixed frame-rate, event-based cameras produce a stream of asynchronous and independent events re-
porting changes in brightness at the pixel level. Therefore, these cameras inherently capture the apparent
motion. The intensity change threshold, which triggers the pixel, is user-defined. Event-based cameras of-
fer a high dynamic range (> 120 dB) along with a high temporal resolution (in the range of microseconds).
These advantages make event-based cameras inherently insensitive to classical visual artifacts such as mo-
tion blur or the tunnel effect. As a result, these cameras provide accurate visual information at extremely
high speed, making them suitable for aerial robotics, including MAV. These cameras can therefore be used
for various tasks including obstacle avoidance. The characteristics of this camera are discussed extensively
in Appendix A, Chapter 4.1.

This research is conducted in the context of the preparation for the International Micro Air Vehicle Confer-
ence and Competition (IMAV) in November 2020, which is postponed due to the COVID-19 crisis to Novem-
ber 2021. In this competition, international research teams address challenges, pushing the boundaries of
MAV technology currently available. This edition focuses on ’search and rescue’ scenarios, such as described
above. One of the competition challenges, which is used as inspiration for this research, requires the MAV to
fly through a room filled with smoke and moving poles. This challenging environment pushes the capabilities
of autonomous MAV navigation. To narrow down the scope of the research, the primary focus of this research
is on static obstacle avoidance. This thesis provides a report of the design of a visual obstacle detection and
avoidance system on an MAV, using a monocular event-based camera with fully onboard processing. As vi-
sual course estimation is a crucial process in visual obstacle avoidance tasks, this research also provides a
novel solution to this open challenge.
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2 1. Introduction to Research

The central research question of this thesis is:

What approach can be used to perform monocular event-based obstacle detection and avoid-
ance onboard an MAV?

The main research objective and contribution is as follows:

To contribute to the development of obstacle avoidance systems for MAVs using only onboard
processing; by providing an obstacle detection and avoidance system using a monocular event-
based camera, along with a novel course estimation algorithm.

The following structure is used in this thesis report. The research paper on the novel course estimation
method is the main body of content. The course estimation, obstacle detection and obstacle avoidance meth-
ods are introduced in Chapter 2. This chapter discusses the methodology and system design choices. After
this brief introduction to the sub-systems, the paper is presented in Chapter 3. Afterwards, Chapter 4 draws a
final conclusion on the outcome of the research thesis. Lastly, recommendations for future research are given
in Chapter 5.

Appendix A contains the literature review, which is conducted before the start of the preliminary experi-
ments. This literature review discusses relevant previous research in depth and is used as theoretical founda-
tion for this research. The first section of the literature study reviews many biological concepts regarding vi-
sual obstacle avoidance. During the preliminary experiments, the research focus shifted from a bio-inspired
design to an algorithmic approach as this showed promising results. Therefore, the second section of the
research sub-questions in the literature study are of higher relevance to the final research outcome. It is rec-
ommended to read the synthesis of the second half of the literature study as supplementary information on
the system design choices made.



2
Introduction to Methodology

and System Design

Performing visual obstacle detection and avoidance is a task with a high level of abstraction. To achieve au-
tonomous obstacle avoidance in this research, several sub-systems are designed which interpret visual cues
and fulfill lower-level functions. This chapter gives background information on the assumptions and deci-
sions made in the design of these sub-systems. The proposed novel course estimation method is summarized
in a scientific paper, which uses the obstacle detection and avoidance sub-systems to demonstrate its perfor-
mance onboard an MAV. This chapter therefore gives an introduction to the relevant topics discussed in the
scientific paper. Firstly, three important considerations regarding the sub-system design, resulting from the
literature study and preliminary experiments, are discussed.

• Primary obstacle
Firstly, the literature study and first experiments with the event-based camera give insight into the ca-
pabilities and limitations of the sensor. Due to the complex task of visual obstacle avoidance and the
small amount of previous research on event-based solutions to this task, this research focuses on high-
contrast obstacles. An example of such an object is an orange pole in the flying arena at the TU Delft.
In line with the research challenges discussed in the research introduction (Chapter 1), a static 50-cm
wide pole is chosen as primary obstacle to avoid for this research.

• Algorithmic approach
Secondly, the research takes an algorithmic approach to the obstacle avoidance task. The literature
study showed many learning-based approaches using (Convolutional) Neural Networks, Spiking Neu-
ral Networks (SNN) and others. These solutions often require heavy computational resources, which
are highly restricted onboard. Therefore, these methods do not fit the design requirements of this re-
search and a lightweight algorithmic approach is taken.

• Sub-systems
The third consideration regards the visual cues used in the obstacle avoidance task. The literature study
shows that optic flow is a commonly used visual property, which allows monocular visual systems to
extract information about the environment and perform visual odometry. Therefore optic flow is used
as the primary visual source of information. The event-surface method for estimating optic flow by
Benosman et al. [1] shows robust performance and generates sparse normal optic flow. This method
is selected as most suitable for this research, due to its robustness and availability. The literature study
also concluded that previous research on visual course estimation (i.e., based on the focus of expan-
sion) using sparse normal flow is limited. Therefore a comparison between different methods is made
and a novel method is proposed. Using this proposed method, a clustering-based obstacle detection
sub-system is designed. Lastly, a straightforward obstacle avoidance method using the detected obsta-
cle location and MAV course is designed.

These considerations are taken into account in the obstacle detection and avoidance system design. The
following section will discuss the methodology used to design the sub-systems. Afterwards, Section 2.2 dis-
cusses additional background on the sub-system design assumptions and decisions.
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4 2. Introduction to Methodology and System Design

2.1. Methodology
Several sub-systems are designed to perform lower-level functions in the obstacle avoidance task. To sys-
tematically design and verify these sub-systems, each is subject to the same methodology. This methodology
consists of four parts:

1. Consult literature study and select method(s)
Firstly, the previous research on the topic of the sub-system is reviewed. From this previous research,
the method which suits the system design requirements best is selected, to be implemented and tested
in MATLAB. In the course estimation sub-system design, no clear best solution can be selected from
the available methods. A novel method is proposed and benchmarked against three state-of-the-art
methods. This focus of expansion estimation method and its performance benchmark is extensively
described in the scientific paper (Chapter 3).

2. Perform simulated experiments
With the selected method for the sub-system, simulated experiments are performed to review the per-
formance of the chosen method. An event-based camera simulator ESIM [9] is used and multiple
scenes are designed to test the methods offline in a controlled environment. These simulated experi-
ments allow to fully control the experiment variables (e.g. the environment and MAV trajectory). This
validates whether the chosen concept for this sub-system is suitable for implementation.

3. Perform experiments on dataset using real sensors
After validating the performance of the sub-system on simulated data, its performance is reviewed us-
ing a dataset containing real sensor data. This experiment shows whether the chosen method performs
sufficiently on data from a physical sensor. This data originates from a dataset which is recorded as
supplementary material to this project and future research. It consists of ∼ 1350 MAV obstacle avoid-
ance trials of event-based camera, RADAR, 1920x1080 frame-based video, IMU, and OptiTrack data.
Section 2.2.2 provides additional information on this dataset.

4. Perform real-time onboard experiments
Lastly the method is implemented in C++ using the Robot Operating System (ROS) framework [11]. It is
added to the final processing pipeline and tested in an obstacle avoidance task. This experiment shows
whether the chosen method is implementable onboard an MAV and is able to run real-time.

This concludes the methodology for this research. The considerations from the literature study and the four
steps described above are applied to each sub-system. This results in a systematically verified and validated
obstacle avoidance system. The following section will discuss the design considerations of each sub-system
separately.

2.2. System Design
As described in the introduction to this chapter, optic flow is used as the primary source of information about
the environment and the ego-motion of the MAV. Following the algorithmic approach, four sub-systems
based on optic flow are designed. Figure 2.1 shows this processing pipeline in a flow diagram. Firstly, the
optic flow is generated and derotated using the rotational rates from the inertial measurement unit (IMU).
Secondly, the course of the MAV is determined using the FAITH method to estimate the focus of expansion
(FOE). Afterwards, the Time-To-Contact (TTC) is estimated and used to cluster the optic flow into object and
background clusters. Lastly, these clusters are used with the FOE estimation to determine a roll command,
which is given as input to the MAV control loop. The four sub-systems are discussed as optic flow estima-
tion (Section 2.2.1), focus of expansion estimation (Section 2.2.2), the obstacle detection (Section 2.2.3) and
obstacle avoidance strategy (Section 2.2.4).

2.2.1. Optic flow
The results of the literature study (Appendix A, Section 4.2.2) show that optic flow is a broadly used principle in
visual obstacle avoidance systems. It also shows that, when using a monocular camera, motion based visual
depth cues can be used to infer relative distances. As SWAP limitations of the MAV platform restrict the design
to using a monocular camera, motion based cues are most suitable for this task. Therefore, event-based optic
flow is used to derive visual depth cues. The event-based camera lends itself well for the estimation of appar-
ent motion, as it inherently detects brightness change on the pixel-level. Following the conclusions from the
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Figure 2.1: Processing flow for the obstacle avoidance system. Green elements are sensors onboard the MAV, blue elements are
processing steps and the yellow element is the MAV control loop. The arrows with labels show the output from functions and their

connection to other functions.
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Figure 2.2: Derotating the normal optic flow, using the rotational compontent of the optic flow. This rotational component is estimated
using the angular rates from the IMU. The rotational component is projected and subsequently subtracted from the normal optic flow,

resulting in derotated normal optic flow.

synthesis of the literature study, an event-surface method is used in this research. This method, proposed by
Benosman et al. [1], uses the spatio-temporal representation of the event cloud. By estimating the parameters
of the slope of a group of events, the method is able to estimate sparse normal optic flow. This optic flow is
normal to edges (normal optic flow) as the aperture problem limits the estimation to local optic flow estima-
tion. As described in the literature review, optic flow consists of a translational and rotational component. As
only the translational component contains useful depth cues, the rotational component is filtered out using
the angular rates from the inertial measurement unit (IMU). The normal optic flow is derotated by using the
projection of the rotational component onto the normal optic flow vector. This projection of the rotational
component is subtracted from the normal optic flow vector (Fig. 2.2). The resulting derotated optic flow is
used as input for the focus of expansion sub-system, discussed in the following section.

2.2.2. Focus of Expansion
Visual odometry is a crucial process in autonomous visual obstacle avoidance. The egomotion of the MAV,
relative to the object, determines whether the MAV is on a collision course. This research uses a property of
optic flow, the focus of expansion (FOE), to determine the course of the MAV. As described in the literature
study (Appendix A, Section 4.2.3), this is a singular point from which the optic flow expands, assuming the
scene is static and the motion of the observer is purely translational (Fig. 2.3). Therefore, the optic flow at
this point is zero and indicates the course of the MAV under these assumptions. Estimating the FOE is a
challenging task as optic flow estimation can be noisy, sparse and often only generates normal optic flow.
The restricted computational resources of the MAV also highly limit the amount of processing which can be
used for this visual odometry task.

In this study, the novel FAITH (FAst ITerative Half-plane) method is proposed to determine the course
of the MAV. This is achieved with a fast RANSAC-based algorithm which determines the FOE based on optic
flow half-planes. The performance of the proposed method is demonstrated using three methods, following
the methodology described in Chapter 2. For the sake of experimental simplification, the motion of the MAV
is bounded to translation in the horizontal plane (Fig. 2.4) and within the camera FOV. Firstly, the proposed
method is benchmarked against three recent state-of-the-art focus of expansion implementations in a vir-
tual environment, simulated with the ESIM event-based camera simulator [9]. Secondly, these methods are
benchmarked on real sensor data using the dataset collected in the indoor flying arena, equipped with an
OptiTrack system. Lastly, the proposed method is implemented onboard an MAV and tested real-time in an
obstacle avoidance task.

Simulated experiment
The methods are first benchmarked in a simulated environment such that the experiment parameters (e.g.,
the MAV trajectory) are fully controlled. Figure 2.5 shows a comparison between simulated event-based cam-
era data and real sensor data. Although the ESIM contains simulated Gaussian noise on the contrast thresh-
old, the simulated event-stream still shows a higher amount of texture (e.g., on the steel pillars in Fig. 2.5-B)
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Figure 2.3: Example of optic flow from straight motion towards a tree in simulation. The blue arrows represent optic flow vectors. The
red cross indicates the focus of expansion. Image adapted from G. de Croon [4].

Figure 2.4: Definition of the course angle in the MAV body reference frame. The blue arrow represents the heading of the MAV, the red
arrow the course and ψ the angle between these vectors.
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Figure 2.5: Comparing the simulated DVS output from the ESIM versus real output from a DVS240C on-board an MAV: (A) Simulated
environment of a wood warehouse in Blender, (B) Simulated event-image from output of ESIM, (C) Image of a pole in the flying arena,

captured by the video camera onboard the MAV, (D) Event-image from the output of a real DVS240C onboard the MAV.

compared to the real sensor data. This also results in a higher density of optic flow vectors, as the used event-
surface method is more effective with higher texture. Therefore, the proposed FOE estimation method is also
benchmarked on real sensor data and onboard the MAV to show performance in realistic conditions.

Following the simulation experiment workflow (Fig. 2.6), firstly four 3D environments are generated in
the open-source software Blender [3]. These environments represent different scenarios in which the FOE
estimation method is tested. The MAV trajectories, which are also generated in Blender, are chosen such that
FOE covers a widespread selection of course angles in the field of view (−30◦ to 30◦). These include straight
and sinusoid trajectories to test the robustness of the methods. Next, the 3D model and trajectories are fed
into the simulator, which generates a ROS bag containing the simulated event-stream. This ROS bag is given
as input to the event-surface optic flow estimation method, which outputs a .csv file with optic flow vectors
and timestamps. The FOE estimation methods are implemented in MATLAB and temporal slices of optic
flow are given as input to this implementation. This results in an FOE estimation for each time-slice. With
the ground truth trajectory from Blender and the FOE estimations, a course estimation error is calculated. For
four different environments, 100 trajectories are simulated which lead to the results presented in the research
paper (Chapter 3).

Dataset experiment
The simulated experiment uses an event-based camera simulator to test the performance of the FAITH method
offline in a controlled environment. The results from these experiments show state-of-the-art performance.
To determine the performance on real event-based camera data, it is tested on a dataset which is recorded
as supplementary material to this thesis. As no datasets on MAV obstacle avoidance using an event-based
camera are publicly available, a new dataset was recorded for the purpose of this and future research. The re-
search project of graduate student Nikhil Wessendorp [12] is closely related to this research, by using a RADAR
instead of an event-based camera for a similar obstacle avoidance task. Therefore, this dataset is recorded in
collaboration with his work. An MAV platform is equipped with an event-based camera (DVS240), a 24-GHz
radar sensor, a Full-HD RGB camera and a 6-axes IMU. The obstacles in the flying arena of the TU Delft con-
sist of one or two 50-cm wide poles, of which the ground truth location is known. The MAV is manually flown,
avoiding the obstacles, while the ground truth attitude and location is recorded using the OptiTrack system.
Approximately 1350 runs are recorded, after which the data from all sensors is synchronised and stored in
ROS bags. Figure 2.7 shows an example of a sample from the dataset. The specifications of this project are
published in a dataset paper, and the data will be publicly available on the 4TU servers. Access to the dataset
and paper can be gained via the GitHub repository [6].

As the event-based camera output and ground truth MAV attitude and location are recorded in this dataset,
it is used to test the FAITH method performance offline on real sensor data. Similar to the simulated exper-
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Figure 2.6: The workflow for testing the four FOE estimation methods in the simulated environment. The ’ESIM: Open Event Camera
Simulator’ [9] is used on a 3D renderered environment and MAV trajectory from Blender. Afterwards, the event-surface method is used

to estimate optic flow and the four methods are tested on this output.

Figure 2.7: Example of a sample from the obstacle avoidance dataset, used in this research to show the performance of the FAITH
method offline on real sensor data. (A) RGB camera. (B) DVS camera. (C) Radar sensor (linear and logarithmic scales). (D-E) 2D and 3D
representations of the ground truth trajectory of the MAV (OptiTrack). (F-H) IMU plots (angular rates). Image from Dupeyroux et al. [6].
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iments, the ground truth course angle is determined from the OptiTrack data, optic flow is generated and
temporal slices are given as input to the MATLAB implementations of the FAITH and other FOE estimation
methods. The results of this dataset experiment are presented in the paper (Chapter 3).

Onboard experiment
Because the simulated and dataset experiments show state-of-the-art performance of the FAITH method, an
online experiment is performed. The dataset experiment already demonstrated the performance on real sen-
sor data, therefore the online test is used to show the application of the FAITH method in a real-time obstacle
avoidance task. As this is the main research goal, the set-up of this experiment is discussed in Section 2.2.4
on the obstacle avoidance strategy.

Concluding, the FAITH method for FOE estimation is shown to have state-of-the-art accuracy, with beyond
state-of-the-art computation time on both simulated and real sensor data. Therefore, this method is used in
the final processing pipeline. The next sections will give background on the obstacle detection and avoidance
sub-system designs, which use the optic flow vectors and FOE estimation as input.

2.2.3. Obstacle Detection
Detecting obstacles using a monocular visual sensor is a complex task, in which many visual cues can be
used. The literature review describes the visual cues which can be used to discern objects, of which motion
based cues are most relevant for monocular visual obstacle detection (Appendix A, Section 4.2.1). As optic
flow describes the apparent motion of an image of the scene, it provides valuable motion based cues about
objects. Therefore, optic flow is used as the primary source of cues for the location of obstacles. As sparse
normal optic flow is available and the computational resources are highly restricted, an algorithmic approach
is taken to the obstacle detection task.

The literature study introduced time-to-contact (TTC) as a concept that is encountered both in nature
and robotics. Neural networks in nature are capable of detecting looming predators, or even enable complex
dynamic tasks such hitting a baseball. This property of optic flow is related to the motion parallax, which
states that objects closer to the observer have a higher apparent velocity. The TTC is defined as the distance
between observer and object, divided by their relative velocity. As both the relative velocity and distance are
often unknown in visual TTC estimation, a different approach is taken. The TTC estimation in this research
uses the geometrical properties of optic flow to estimate the TTC. This is a combination of the FOE, vector
location and magnitude. The derivation is stated in Appendix I of the research paper in Chapter 3. This
results in a TTC for each optic flow vector in the image. If the velocity of the observer is very low, or the
obstacle very far away, the TTC tends to go towards infinity. Divergence is inversely related to the TTC and
therefore has converging properties in these scenarios. Although this seems an advantage, divergence values
are therefore also lower (i.e. zero for infinite obstacle distance or zero observer velocity) and less suitable to
be clustered properly. Therefore, TTC is chosen as primary clustering variable. The spatial information of
the object is captured in the vector locations. Assuming relatively small objects (e.g, a 50-cm pole at several
meters from the MAV) and high contrast object edges, an additional assumption is made on the proximity
of vectors. If vectors have a similar TTC and location, they can be clustered using an Euclidean distance
measure. This research uses Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [5] as it is
a non-parametric algorithm. It does not assume a predetermined amount of clusters and is able to determine
clusters of arbitrary shapes. After the DBSCAN algorithm identifies the object clusters, the proposed obstacle
detection method draws a bounding box around the cluster, indicating the object boundaries.

As this object detection method uses multiple properties of optic flow, which can be very sparse on low-
textured objects, the approach has certain limitations. Firstly, the use of optic flow requires translational
motion of the observer or objects. For example: if the observer does not move, the lack of optic flow results in
no detection taking place. Secondly, if the distance between the object and the background is small, the TTC
values of the object and background will be close to each other. This renders effective clustering impossible.
Thirdly, object edges should be near each other or connected for the spatial proximity assumption to be
fulfilled. Therefore, a clear object silhouette must be present for the DBSCAN algorithm to identify all object
vectors as core points. Lastly, the object detection method uses the estimated FOE to determine the TTC of
the points. As this estimation deteriorates when the potential FOE area is not fully bounded by optic flow (e.g.,
due to low-texture), this will also lead to erroneous TTC values and clustering subsequently (see Section 3-C
of the paper in Chapter 3).
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2.2.4. Obstacle Avoidance
The proposed obstacle detection method outputs the location of the object boundaries in the camera image.
With this information, a simple obstacle avoidance strategy is proposed. The basic strategy checks whether
the global FOE is inside of an object cluster. If the mean TTC of the cluster is below an user-defined threshold,
the obstacle avoidance method gives an 1.5 second roll command in the direction of the cluster with the
highest mean TTC. This ensures the MAV flies towards a region with texture, as information is known about
this region. The roll command is given as input to the flight controller, which sets the roll rate of the MAV.
This basic strategy is valid for static objects, as it does not consider the effect of object motion in determining
the avoidance direction.

Similar to the obstacle detection method, this strategy has limitations. The sparsity of optic flow vectors
and noise in the estimation limit the effectiveness of the method. The strategy uses the estimated FOE loca-
tion to determine if a collision is imminent. Therefore, similar to the obstacle detection method, the obstacle
avoidance strategy also suffers the consequences of erroneous FOE estimation. If the potential FOE area is
not fully bounded by optic flow due to a low-textured environment, the subsequent obstacle detection and
avoidance methods also deteriorate.

This concludes the introduction to the methodology and system design assumptions and decisions. As dis-
cussed in the introduction, the FAITH method to estimate the FOE has been shown to have state-of-the-art
performance and the scientific paper discussing this is therefore the main body of content of this thesis.
This paper focuses primarily on the FOE estimation method and uses the obstacle detection and avoidance
method proposed in this research to demonstrate its onboard performance. The following chapter includes
the paper, after which a conclusion is drawn and recommendations for future research are made.
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FAITH: Fast iterative half-plane focus of expansion estimation
using event-based optic flow

Raoul Dinaux, Nikhil Wessendorp, Julien Dupeyroux and Guido C. H. E. de Croon∗

Abstract— Course estimation is a key component for the de-
velopment of autonomous navigation systems for robots. While
state-of-the-art methods widely use visual-based algorithms, it
is worth noting that they all fail to deal with the complexity of
the real world by being computationally greedy and sometimes
too slow. They often require obstacles to be highly textured
to improve the overall performance, particularly when the
obstacle is located within the focus of expansion (FOE) where
the optic flow (OF) is almost null. This study proposes the
FAst ITerative Half-plane (FAITH) method to determine the
course of a micro air vehicle (MAV). This is achieved by
means of an event-based camera, along with a fast RANSAC-
based algorithm that uses event-based OF to determine the
FOE. The performance is validated by means of a benchmark
on a simulated environment and then tested on a dataset
collected for indoor obstacle avoidance. Our results show that
the computational efficiency of our solution outperforms state-
of-the-art methods while keeping a high level of accuracy. This
has been further demonstrated onboard an MAV equipped with
an event-based camera, showing that our event-based FOE
estimation can be achieved online onboard tiny drones, thus
opening the path towards fully neuromorphic solutions for
autonomous obstacle avoidance and navigation onboard MAVs.

I. INTRODUCTION

Autonomous navigation, including path planning, obstacle
avoidance, and localization, for both ground and aerial robots
is considered as one of the top ten technological challenges
of our time [1]. Despite outstanding studies in this field,
it must be noticed that we still fail at tackling real-world
scenarios, where lighting conditions can change abruptly,
light can be absent, and where obstacles can severely hamper
the performance of the navigation system running onboard
the robot. Another crucial aspect for making an autonomous
navigation system suitable for real-world applications is to
make sure that the robot can deal with high speeds. This is
precisely one of the bottlenecks for drone applications, where
computational resources and energy usage are important
factors for the viability of the proposed method. Lastly,
the navigation system must be endowed with deep auto-
adaptation skills to make it worth deploying onboard robots
in complex environments that remain hard to model, or of
which the core nature is simply not understood yet.

The limitations of navigation systems are multi-factorial,
but the most important reason for this may be the sensing
component itself. While observing the animal kingdom, one
can note that each species optimized its sensors to better
evolve in its environment. For instance, birds and insects are

∗All authors are with Faculty of Aerospace Engineering, Delft Uni-
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Fig. 1. An application of the FAITH method for fast and accurate FOE
estimation in MAV flight towards a single pole. The left plot shows a video-
image from the MAV, flying towards a single pole in the TU Delft flying
arena. The right plot shows an event-image of the pole with an overlay of
optic flow vectors and the FOE estimation, performed by our method.

sensitive to the polarization state of the skylight to estimate
their course, dung beetles retrieve navigational cues from
the Milky Way, and eagles have an extremely high visual
acuity to better find their preys. In comparison, robots are
often equipped with cameras for which both the temporal
(30 − 60 fps on average) and the visual resolutions are
limited. This gets even more crucial with small drones.
Given their small dimensions and weight, micro air vehicles
(MAVs) are safe to operate autonomously around humans in
complex environments. Unfortunately, MAVs are endowed
with highly restricted power capacity, and extremely limited
computational resources. Their use is also hampered by
the risk of GPS failure indoor, magnetometer disturbances
because of surrounding ferrous materials (buildings, infras-
tructures), and IMU drift over time. Embedded cameras have
greatly contributed to the reduction of navigation failure, but
their use remains limited by the low computational resources
available onboard. It is therefore crucial to determine fast and
efficient methods to allow MAVs to autonomously navigate
and avoid both static and moving obstacles.

The recent developments in neuromorphic systems repre-
sent a promising opportunity for autonomous obstacle avoid-
ance and navigation onboard robots, in particular for MAVs.
In this respect, event-based cameras were first released in
2008 by Lichtensteiner et al. [2]. Unlike conventional cam-
eras which output images at a fixed frame-rate, event-based
cameras produce a stream of asynchronous and independent
events reporting changes in brightness at the pixel level [3].
Therefore, these cameras inherently capture the apparent
motion. The intensity change threshold, which triggers the



pixel, is user-defined. The events are labeled by the pixel lo-
cation, trigger time and a polarity (+1 for positive change of
brightness, −1 for a negative change). Event-based cameras
offer a high dynamic range (> 120 dB) along with a high
temporal resolution (in the range of microseconds). These
advantages make event-based cameras inherently insensitive
to classical visual artifacts such as motion blur or the tunnel
effect. As a result, these cameras provide accurate visual
information at extremely high speed, making them suitable
for aerial robotics, including MAVs, for various tasks such
as obstacle avoidance [4], [5] and visual odometry [6].

In this study, we propose the FAITH (FAst ITerative Half-
plane) method to estimate the course of the MAV by means
of an event-based camera (i.e., the DVS240C [7]), along
with a fast RANSAC-based algorithm for the determination
of the focus of expansion (FOE) using optic flow (OF) as
an input (Fig.1). Optic flow is described as the pattern of
apparent motion of objects in a visual scene caused by
the relative motion between the observer and a scene [8].
The FOE is therefore defined as the singular point from
which the apparent OF expands, assuming the scene is static
and the motion of the observer is purely translational. This
point indicates the course of the observer, and therefore is
a crucial element in visual-based navigation. Appendix I
gives a theoretical background to OF and FOE estimation.
Determining the FOE is challenging as only normal flow is
available, and the computational limitation of the MAV does
not allow for expensive online visual-processing.

The determination of the FOE onboard mobile systems
equipped with cameras has received large attention from
researchers over the past decades, showing a great variety
of approaches to solve this very complex problem. In the
following study, we focused on sparse OF-based FOE estima-
tion, for which state-of-the-art solutions currently available
can be divided into three categories: (i) counting vectors
directions [9], [10], (ii) creating a probability map based on
negative vector intersections and (iii) based on negative half-
planes.

Methods relying on counting vectors show limited per-
formance when exploited in online MAVs application. To
reduce the computation cost of online FOE estimation,
methods based on probability maps seem to be a promising
alternative. Guzel et al. [11] proposed to compute a probabil-
ity map based on the amount of OF vector intersections per
location. They demonstrated the performance of their method
through a navigation task with a ground robot equipped with
a camera. A similar method was implemented by Buczko et
al. [12], where RANSAC scheme randomly selects two OF
vectors, create a candidate FOE location by calculating the
intersection, and test this location against all OF vectors.
After a predetermined amount of iterations, the candidate
with the highest amount of inliers is selected as the FOE.
Results obtained with a RGB camera showed a translation
error as low as 0.81%. Yet, using vectors intersection remains
a limited solution to FOE estimation since OF estimation on
natural scenes is a complex task and the resulting estimates
(normal flow) can differ from the true flow.

Fig. 2. Schematic example of an FOE estimation by the FAITH method.
The arrows represent normal optic flow, the dotted lines their orthogonal
half-planes. As the centre of the potential FOE area lies within three half-
planes, the iteration score of this estimation is three.

To compensate for this, it has been proposed to build the
probability map using the negative half-planes [13]. As the
normal flow is computed, the assumption is made that the
FOE must lie in the negative half-plane of as many normal
OF vectors as possible. For each OF vector an orthogonal line
is taken, which intersects the vector location. The negative
half-plane of this orthogonal line is used to update the
probability map. All locations which are not updated are
subject to exponential decay over time. The location with
the highest value on the probability map is selected as the
FOE. This method has been used with event-based cameras
to estimate time-to-contact (TTC) in the context of obstacle
avoidance with MAVs [14].

Although the negative half-planes approach suggest an
improvement in the course estimation, it is worth noting that
the new computation introduced in the plane estimation and
intersection considerably affect the overall performance.
Contributions – We propose the FAITH method for FOE es-
timation based on negative half-planes intersections, further
optimized by means of a RANSAC process. Our contribu-
tions are:

(a) a novel course estimation algorithm (FAITH) that is
highly computationally efficient, runs real-time on-
board robots (including MAVs), and provides a robust
estimate of the FOE even with poor-textured obstacles;

(b) an exhaustive assessment of the overall performance of
the FAITH algorithm, first using the ESIM event-based
camera simulator [15], and then using an extensive
dataset collected in the TU Delft flying arena equipped
with the OptiTrack motion tracking system;

(c) a real-world demonstration of the performance onboard
an MAV designed for the purpose of this study.

II. MATERIALS AND METHODS

A. The proposed FAITH method

We apply an event-surface method to compute the local
normal flow based on visual events streamed by an even-
based camera [16], [17]. When an OF vector is available,
we assume the FOE lies in the negative half-plane delimited
by the straight line orthogonal to the OF vector (Fig. 2).



Algorithm 1 FAITH method for FOE estimation
for iterations do

stop search = false
Pick two random OF vectors.
Calculate current FOE area (bounded by negative half-
planes orthogonal to the selected vectors).
while stop search == false do

Pick new random vector.
Calculate new area (bounded by current FOE area
and the negative half-plane of the selected vector).
if new area < current FOE area then

current FOE area = new area
else

Calculate score as the total amount half-planes the
center of new area lies in.
stop search = true

if score > max score then
max score = score
best area = new area

FOE = center of best area

The aperture problem limits OF on edges to be normal to
the edge, whereas only OF on corners result in true OF.
Therefore, the assumption is made that the FOE must lie
in the negative half-plane of a line orthogonal to the OF
vector. We then build on the approach from [13] to compute
a probability region for the FOE estimation. As MAVs are
limited by their computational resources, the ego-motion
estimation should require as little as computation as possible
while still assuring accuracy. Because we are using an event-
based camera, the algorithm implemented in [13], which
updates all pixels of the probability map for each OF vector,
will inevitably lead to large computational needs.

To compensate for the computational cost, we propose
to apply a RANSAC scheme to create an FOE area by
taking the intersection of the negative half-planes of two
randomly chosen vectors (Algorithm 1). A new OF vector is
then chosen and the intersection of the negative half-plane is
updated. If the new vector reduces the size of the FOE area,
it is added as a new boundary. This process is continued
until the new chosen vector does not reduce the size of
the FOE area. Then the center of this area is calculated
(Fig. 2) and an iteration score is assigned by computing
in how many negative half-planes the FOE estimate lies.
The score and center position are saved and another iteration
is performed. After a user-defined amount of iterations, the
search is stopped and the iteration with the highest score is
chosen as the best FOE candidate.

B. Computational complexity analysis

Given that our proposed method extends the one intro-
duced in Clady et al. [13], we determined the computational
complexity of both algorithms to assess their overall compu-
tational performances. For each vector, the method by Clady
et al. updates all locations of a probability map. Therefore
the computational complexity for this method can be written

as O(N ∗Mp), with N the number of OF vectors and Mp

the number of pixels in the probability map.
In our method, the majority of the computational complex-

ity lies in checking how many inliers the candidate locations
have. This depends on the total of OF vectors and candidate
locations, which is equal to the user-defined number of
iterations run. Therefore it can be expressed asO(N∗I), with
N the number of OF vectors and I the number of iterations
(i.e., potential FOE locations). To get an estimate of this I ,
the theoretical minimum of RANSAC iterations required to
construct a proper model with a chosen probability is:

I =
log(1− p)
log(1− wn)

(1)

where I is the required number of iterations, p is the prob-
ability of selecting a proper model, w is the ratio between
inliers and the total set, and n is the sum of inliers required
for a proper model.

This formula can be seen as a theoretical upper bound
as it assumes that the random selection of vectors can
include already chosen vectors. For example: requiring a
probability of 95% to find a proper model, assuming at
least 10 vectors are required for creating a proper model
and assuming that 75% of the total set consists of inliers,
the total amount of iterations required is 52. Comparing
the computational complexity of both methods (assuming
a 240 × 180 pixel probability map) shows that the method
implemented by Clady et al., O(43200 ∗N), is a few orders
of magnitude more complex than the proposed method,
O(52 ∗ N). Therefore, it is concluded that in the general
case the theoretical computational complexity of our method
is lower, and user-defined.

III. PERFORMANCE BENCHMARK

To assess the performance of our method, we first test
it in a virtual environment featuring an event-based camera
simulator. Then, we demonstrate its robustness by testing it
on a manually controlled obstacle avoidance dataset that we
collected in our indoor flying arena equipped with the Opti-
Track motion capture system (see Supplementary Materials).
Lastly, the online performance is demonstrated by testing the
method onboard an MAV equipped with a DVS240 camera
in an autonomous obstacle detection and avoidance task. For
the sake of experimental simplification, the motion of the
MAV is bounded to translation in the horizontal plane and
within the camera FOV. Appendix II discusses the impact
this assumption. While assessing the performance of our
proposed method, we compare it with the state-of-the-art
FOE estimation methods. As described in Section I, three
categories of FOE estimation methods using sparse normal
flow are identified. Therefore, we also implement the three
following algorithms to test them on both simulated and real-
world dataset: (i) the vector counting method from Huang
et al. [10], (ii) the probability map method based on vector
intersections implemented by Buczko et al. [12], and (iii) the
negative half-planes method introduced by Clady et al. [13],



Fig. 3. Rendering of four scenes used in the simulated benchmark: (A)
the TU Delft flying arena, (B) a kitchen, (C) a set of storage shelves, and
(D) a wood warehouse.

further referred to as ’NESW’, ’Vec. Intersections’, and
’Half-planes’ respectively.

A. Benchmark on simulated data

First, the FAITH method is benchmarked in a simulated
environment using the ESIM event-based camera simula-
tor [15] provided with the DVS240 event-based camera spec-
ifications which we used in our indoor obstacle avoidance
dataset. Four distinct 3D scenes are exported from the open-
source software Blender to .obj files. These scenes have
different textures and layouts to ensure the diversity of
environments (Fig. 3). We then provide these scenes to the
ESIM simulator along with 100 flight trajectories (camera
coordinates over time in a .csv file). To test the robustness
of the methods to different FOE locations, the trajectories
are chosen such that the FOE covers all course angles in the
FOV (−30◦ to 30◦). Both straight trajectories (with different
yaw angles) and sway trajectories (varying the FOE during
simulation) are used. The ground truth FOE is known from
the simulated trajectory and camera pose.

The results of these N = 100 simulations are shown in
Figure 4 and Table I. The mean course angle estimation error
is compared for the four methods. The FAITH method shows
state-of-the-art accuracy, with a mean error of 4.84◦±2.53◦.
The worst performance is achieved by the ’Vec. Intersec-
tions’ method with an overall angular error of 17.39◦±6.54◦.
Fig. 4-B shows the mean computation time per 1000 vectors.
This proves the large reduction in computational effort for
our method, confirming the theoretical insight detailed in
Section II-B. It also clearly demonstrates the computational
efficiency of the ’Vec. intersections’ method, which also does
not update all probability map pixels and uses a RANSAC
scheme. In contrast, the mean course estimation error is
significantly larger for the ’Vec. intersections’ method, con-
firming that using the OF vectors instead of half-planes
decreases the accuracy (normal vs. real flow).

B. Benchmark on an event-based obstacle avoidance dataset

The event-based domain requires new approaches and
datasets due to the sparse asynchronous event representation.
To address this challenge, a novel obstacle avoidance dataset

Fig. 4. Comparison of the overall performance of our FOE estimation
method with three other state-of-the-art methods, after testing over 100
distinct trajectories in the four simulated environments (Fig. 3). (A) Average
angular error (in degrees) in the FOE estimation. (B) Mean computation time
(in seconds) required to process 103 OF vectors.

using a real event-based camera was recorded (see Supple-
mentary Materials). It consists of ∼ 1350 manual obstacle
avoidance runs performed with an MAV equipped with an
event-based camera (DVS240), a 24-GHz radar sensor, a
Full-HD RGB camera, a 6-axes IMU, and OptiTrack data
for position and attitude ground truth. The obstacles consist
of one or two 50-cm wide poles, of which the ground
truth location is known (Fig. 5). Each trial consists of
approximately 10 seconds of recording.

The benchmark on the obstacle avoidance dataset is per-
formed by comparing the four methods. The ground truth
FOE is available as the OptiTrack system tracks both the pose
and the position of the MAV during the trials. These trials
contain a variety of trajectories, obstacles and backgrounds
to ensure diversity of environment and motion.

The results of this benchmark, as seen in Figure 6 and
Table I, confirm those obtained with the simulator indicating
that the FAITH method outperforms the others. Comparing
these results show that the FOE estimation accuracy of all
methods on the live recorded data is lower than when using
simulated data. This is a consequence of multiple factors,
such as the higher amount of noise from the DVS240 camera,
vibrations caused by the propellers of the MAV or the
increased sparsity of the OF due to the texture and lightning
conditions of the scene. In contrast, the relative performance
of the methods does not change, our method is still the most
accurate and computationally efficient of these methods.



TABLE I
OVERALL PERFORMANCE OBTAINED WITH THE FAITH METHOD, COMPARED TO OTHER STATE-OF-THE-ART FOE ESTIMATION METHODS,

FOR BOTH THE SIMULATED BENCHMARK (ESIM) AND OUR OBSTACLE AVOIDANCE DATASET.

Method ESIM benchmark (N = 100) Obstacle avoidance dataset (N = 1300)
Angular error Computation time Angular error Computation time

NESW [10] 9.97◦ ± 5.34◦ 0.32± 0.08 s 18.87◦ ± 3.95◦ 0.35± 0.12 s
Vec. Intersections [12] 17.39◦ ± 6.54◦ 0.02± 0.02 s 17.49◦ ± 5.41◦ 0.05± 0.02 s

Half-planes [13] 5.66◦ ± 2.67◦ 0.37± 0.02 s 10.60◦ ± 3.91◦ 0.43± 0.15 s
FAITH 4.84◦ ± 2.53◦ 0.01± 0.02 s 10.06◦ ± 2.88◦ 0.05± 0.02 s

Fig. 5. Representation of 78 sample trajectories from the obstacle avoidance
dataset. This dataset is used to validate the performance of the FOE
estimation method. The MAV is controlled manually and two poles in the
center of the TU Delft flying arena are avoided.

Fig. 6. Comparison of the overall performance of the FAITH method with
three other state-of-the-art FOE estimation methods, after testing over 1300
samples of our obstacle avoidance dataset. (A) Average angular error (in
degrees) in the FOE estimation. (B) Mean computation time (in seconds)
required to process 103 OF vectors.

C. Experiment onboard MAV

To show onboard performance of the FAITH method, it
is implemented within the ROS (Robot Operating System)
framework using C++ and used in an autonomous obstacle
avoidance task. The MAV is set to fly straight-forward at a
constant velocity in the flying arena and encounters a pole
approximately halfway. The obstacle avoidance algorithm
then detects the pole and gives an avoidance command to
the iNav Autopilot running onboard the MAV.

1) Obstacle avoidance strategy: A straight-forward obsta-
cle avoidance algorithm is designed using OF as input and an
avoidance course as output which is fed to the iNav autopilot.
In order to detect an obstacle, OF is clustered based on the
concatenated image coordinate (normalized between 0 and 1)
and TTC (normalized by mean and variance). The FOE is
estimated using the FAITH method. The TTC is calculated
using this FOE estimation (Appendix I-C). To cluster the
vectors, we apply a Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [18] with ε = 0.2,
minPts = 20 and an Euclidean distance measure. High
TTC values are clipped to a user-defined maximum. The
mean TTC of the clusters is calculated and the cluster with
lowest TTC is assumed to be the highest priority obstacle.
A bounding box is drawn around this obstacle cluster. If
the FOE location is within the obstacle region and the mean
obstacle TTC is below a user-defined threshold, the algorithm
gives an 1.5 second roll command to the autopilot to avoid
the obstacle. The sign of the roll command is determined by
selecting the direction towards the cluster with the highest
mean TTC.

2) Hardware architecture: The MAV is a quadrotor built
upon the GEPRC FPV frame kit Mark4, featuring the Kakute
F7 Tekko ESC Combo v1.5 flashed with the iNav autopilot.
The embedded CPU consists in the Intel Up board (64-bits
Intel Atom x5 Z8350 1.92GHz Processor) running the Linux
18.04 LTS operating system. An overview of the hardware
architecture is provided in Fig. 8. The board is used for
data acquisition and processing, autonomous navigation, and
wireless communication with the host machine. All MAV-
related embedded processing, i.e., DVS data acquisition,
OF and FOE estimation, obstacle avoidance and navigation,
are performed within the ROS (Robot Operating System)
framework. As for the obstacle avoidance dataset, the MAV
is equipped with the DVS240 event-based camera (240×180
pixels). The altitude of the drone is controlled separately with
a downward-facing micro LiDAR (TFMini, QWiic).



Fig. 7. Example of DBSCAN clustering for the onboard FOE estimation
experiment, implementing the FAITH method in an obstacle avoidance task.
(A) Frame-based image of the pole. (B) Event-based image of the pole. (C)
Clustering optic flow based on TTC and position. (D) Clusters, mapped to
a spatial plot. As Cluster 2 has the lowest mean TTC, it is identified as
(highest priority) object and a bounding box is drawn.

Fig. 8. Hardware architecture of the MAV. The visual processing and the
obstacle avoidance algorithms are processed onboard Intel’s Up board within
the ROS environment. A switch allows the user to switch from manual
control to autonomous mode. In both cases, the altitude is kept constant by
means of the micro Lidar.

3) Experimental setup: During the experiments, the MAV
ground truth position and attitude are determined by the
OptiTrack motion capture system installed in the flying
arena. A pole, of which the ground truth location is known,
is positioned in the center of the flying arena. The MAV is
set to autonomously fly along a straight trajectory, from 12
different starting positions and headings. A set of 60% of the
trajectories are designed as collision courses with the pole,
while the remaining 40% trajectories concern a near pass of
the pole. This configuration is meant to qualitatively assess
the robustness of the FOE estimation and obstacle avoidance
methods in real-world conditions.

Fig. 9. 20 Successful autonomous obstacle avoidance trajectories using
the FAITH method to estimate the FOE. This shows the successful imple-
mentation of our method in an obstacle avoidance task.

4) Results: The autonomous obstacle avoidance method,
using FAITH to estimate the FOE, is shown to perform a
successful obstacle avoidance manoeuvre in 80% of the runs
(20 out of 25). The faulty runs are a result of the low-
textured scene, which impedes the FOE estimation. When
the potential FOE area (Fig. 2) is not fully bounded by
OF, the FOE estimation becomes less accurate. This also
influences the TTC estimation and subsequently deteriorates
the clustering quality. As a result, occasionally when no
fully bounding OF is generated in the scene, the object is
not detected correctly. Fig. 9 shows the trajectories of 20
successful obstacle avoidance runs. This figure shows the
ability of the MAV to autonomously determine its course
using the FAITH method and avoid the object. This shows
the successful onboard performance of our method in a real-
time obstacle avoidance task.

IV. CONCLUSION AND FUTURE WORK

We introduced the novel FAITH method to determine the
course of an MAV by means of an event-based camera, along
with a fast RANSAC-based algorithm for the determination
of the FOE. Using event-based normal OF as input, the
method is able to efficiently estimate the course of the MAV.
The accuracy and computational performance are validated
by performing a benchmark using both a simulated event-
based camera data and a novel live obstacle avoidance dataset
containing real sensor data. On both simulated and real event-
based camera data, the FAITH method shows a state-of-the-
art accuracy, with a beyond state-of-the-art computational
performance.

We further tested our method in an obstacle avoidance
task onboard an MAV, successfully demonstrating real-time
performance of our method. The limitations of OF-based
strategies in low-textured environments show the bottleneck
towards MAV autonomous applications, also suggested by
results obtained with our dataset.
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SUPPLEMENTARY MATERIALS

The ROS implementation of FAITH can be found here:
https://github.com/tudelft/faith, and the sup-
porting video https://youtu.be/X09mIqoqAFU. The
Obstacle Detection and Avoidance dataset is available at:
https://github.com/tudelft/ODA_Dataset.
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APPENDIX I
OPTIC FLOW, FOCUS OF EXPANSION AND

TIME-TO-CONTACT THEORY

A. Optic Flow Theory

Optic flow (OF) consists of two components, due to
translation and rotation. The OF generated by translation
gives information about the scene and the ego-motion of the
observer. In contrast, the OF generated by rotation does not
provide any insights on translational ego-motion. Therefore,
the OF in this research is derotated using an onboard IMU
such that only OF based on translation is used. This research
uses an event-surface method, firstly proposed by Benosman
et al. [16], and later improved for online application by
Hordijk et al. [17]. This method generates sparse normal
OF. In order to describe the underlying geometry of OF,
an arbitrary point from the 3D world is projected on a 2D
surface. The projected point on the surface has the following
coordinates (Fig. 10).

x =
X

Z
, y =

Y

Z
(2)

To determine the motion of this point, the equation above
is differentiated with respect to time.

ẋ =
Ẋ

Z
− XŻ

Z2
, ẏ =

Ẏ

Z
− Y Ż

Z2
(3)

Values for Ẋ , Ẏ and Ż can be derived (for a derivation
see Longuet-Higgins et al. [19]), resulting in the following
OF equations.

u = −U
Z

+ x
W

Z
+Axy −Bx2 −B + Cy = uT + uR

v = −V
Z

+ y
W

Z
− Cx+A+Ay2 −Bxy = vT + vR

(4)

Note that these equations consist of a translational
(uT , vT ) and rotational (uR, vR) component. The rotational
component is a result of camera rotations and does not
contain information about the ego-motion of the observer.
This effect is compensated in this research by using the
known ego-rotation from an onboard Inertial Measurement
Unit.

B. Focus of Expansion Theory

When an observer translates through a static scene, the
OF diverges from a singular point called the FOE. At this
location on the image, the OF is zero and all OF is directed
outwards. This position is an indication of the course of the



Fig. 10. Optic flow reference system. From Longuet-Higgins et al. [19].

observer. If the OF is zero and the rotational component is
filtered out, the following derivation is made using Eq. 4.

uT = 0 = −U
Z

+ xFOE
W

Z

vT = 0 = −V
Z

+ yFOE
W

Z

(5)

Rewriting these equations gives the following result.

xFOE =
U

W
, yFOE =

V

W
(6)

To show OF diverges from the FOE, (5) and (6) are used
to re-express uT and vT .

uT = −U
Z

+
xW

Z
= (− U

W
+ x)

W

Z
= (x− xFOE)

W

Z

vT = −V
Z

+
yW

Z
= (− V

W
+ y)

W

Z
= (y − yFOE)

W

Z
(7)

Rewriting this equation shows the geometrical relation
which results in the OF diverging from the FOE.

uT
vT

=
x− xFOE

y − yFOE
(8)

This geometrical relation is used as basis for the methods
discussed in the benchmark (Section III).

C. Time-To-Contact Theory

The Time-To-Contact (TTC) is a property of each point
in an image, describing its relative velocity to the camera
principle axis. Eq. 7 can be rewritten to the following
equation for divergence.

W

Z
=

uT
x− xFoE

=
vT

y − yFoE
(9)

The divergence is inversely related to the TTC.

τ =
Z

W
(10)

In the onboard test of the FAITH method for estimating
the FOE, an obstacle detection method is used which clusters
the OF based on the vector position and TTC. Divergence is

inversely related to the TTC and has converging properties.
Although this seems an advantage over TTC, divergence val-
ues are much lower (i.e. zero for infinite obstacle distance or
zero observer velocity) and unsuitable for proper clustering.
Therefore, TTC is chosen as primary clustering variable in
this research.

APPENDIX II
FOE OUTSIDE THE FIELD OF VIEW

The performed benchmark on simulated and real event-
based camera data considers only FOE locations inside the
camera field of view. In the obstacle avoidance strategy, the
MAV flies towards clusters which are within the field of
view, as this gives certainty about the scene the MAV is
flying towards. If the MAV flies a course which is outside
the field of view, our method will provide an unbounded FOE
region, and thus also no exact FOE location. Although this
is a limitation of our method, it does provide the general
direction the MAV is moving towards. The side in which
the FOE region is unbounded is also side on which the
FOE lies, thus the FOE location is bounded to a half-
plane. Of the compared methods in the benchmark, only the
vector intersections method (e.g. implemented by Buczko
et al. [12]) is able to estimate FOE locations outside the
field of view. Fig. 11 shows the performance of the vector
intersections method for 40 simulated trials, with an FOE
angle ranging from 30◦ to 90◦. The course estimation error
and CV grows rapidly as the course is further outside the
FOE. This results in CV values of over 300%, which show
a very low estimation certainty. Therefore, it is concluded
that this method has a limited advantage over our method
regarding estimating the FOE outside the field of view.

Fig. 11. Performance of the ’Vec. intersections’ method implemented by
Buczko et al. [12] for a course of 30◦ to 90◦, outside the FOV. The lower
plot shows the coefficient of variation as percentage, CV = µ

σ





4
Conclusion

As MAVs have limited computational resources and energy storage, navigation tasks are required to be per-
formed onboard, efficient and fast. This research proposes a monocular event-based obstacle detection and
avoidance method, applicable onboard an MAV. To achieve this, firstly a literature study is performed which
provides a theoretical background using previous research. As a result from this study, an algorithmic ap-
proach to obstacle avoidance is chosen, which leads to designing sub-systems and step-by-step processing.
A processing pipeline is designed, based on the use of event-based normal optic flow. This pipeline consists
of three sections: course estimation, obstacle detection and obstacle avoidance. A novel course estimation
method ’FAITH’ is proposed which uses optic flow half-planes along with a fast RANSAC scheme. The object
detection method is based on DBSCAN clustering of optic flow vectors, using the time-to-contact and vector
location as clustering variables. The performance of these methods is demonstrated by three experiments:
in a simulated environment, offline on real sensor data and online onboard an MAV. Firstly, the performance
of the FAITH method is compared to previous research in a simulated environment. By using an event-based
camera simulator and four virtual scenes, an experiment is performed in which the mean course estima-
tion error per method is determined. Secondly, the performance of the methods is determined in an offline
experiment on real sensor data. A manually controlled obstacle avoidance dataset using a real event-based
camera is recorded in which the ground truth MAV attitude and course is known. The FAITH method is shown
to have state-of-the-art accuracy and beyond state-of-the-art computation time on both simulated and real
sensor data. Lastly, the real-time performance of the FAITH method and the obstacle detection and avoid-
ance method is demonstrated in an obstacle avoidance task. The methods are implemented in C++ using the
Robot Operating System (ROS) framework onboard the MAV. This platform is used in an obstacle avoidance
task in which a successful avoidance rate of 80% is achieved. The remaining 20% of unsuccessful trials are
due to the low-textured scene, which deteriorates the focus of expansion, time-to-contact and object cluster
estimations subsequently. These three experiments show that the designed obstacle detection and avoid-
ance approach is computationally efficient and accurate. This approach can therefore be used to perform
monocular event-based obstacle detection and avoidance efficient and fast, onboard an MAV.
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5
Recommendations

The main research goal of this thesis is achieved successfully with the assumptions and decisions described
in this report. Due to the restricted timeline of the research project, the scope of the research is limited to the
critical elements for the research goal. Therefore, certain topics are open for future research. In this chapter,
several recommendations for future research are made. These are divided into the three main challenges of
this research: course estimation, obstacle detection and obstacle avoidance.

Course estimation
A limitation of the novel FAITH method to estimate the FOE is its inability to perform an estimation outside
the FOV. As described in the research paper (Chapter 3), the method uses optic flow half-planes due to the
limited information normal optic flow carries. Therefore, the FOE estimation becomes unbounded if the
course is outside the FOV of the camera. The vector intersections method discussed in the paper is able to
provide an estimation outside the FOE, although this deteriorates fast as the course is further outside the
FOV. A fusion between the FAITH and vector intersections method is potentially valuable as the vector inter-
sections method can provide an FOE estimate if the FAITH method gives an unbounded FOE estimate. This
would increase the computational demand though, as the two algorithms would execute in series.

The FAITH method also does not take any temporal relation into account between time-frames. Each
time-frame, the FAITH method estimates a new FOE estimate. Due to the inertia of the MAV, its course will
not change instantaneously. Therefore, a correlation exists between the FOE estimates of subsequent time-
frames. By applying for example a Kalman filter to the FOE estimate, this temporal relation can be captured.
This is expected to increase the accuracy and robustness of the course estimation.

Obstacle detection
As mentioned in Section 2.2.3, the obstacle detection method is tested on a low-textured pole. As the envi-
ronment was also low-textured in the experiments, the FOE estimation was occasionally inaccurate, resulting
in no obstacle being detected. Although this is a fundamental challenge, the experimental setup in the flying
arena of the TU Delft does not represent real-world scenarios well. Therefore, a recommendation is to test the
obstacle detection method in realistic scenarios using for example humans or trees as obstacles. This would
provide valuable information on the performance of the method in real-life scenarios.

The obstacle detection method is based on the use of optic flow vectors, just as the course estimation
method. Although this approach has been shown to be effective, it does not utilize the event-stream itself.
As the event-based camera output provides a unique representation of the edges in the image, it could also
support the object detection method. As nearby events also have a spatial correlation, this can be introduced
in the object clustering as an extra clustering variable. It is expected that this will increase the object clustering
quality.

Obstacle avoidance
The implemented obstacle avoidance strategy for this research is based on a threshold of the time-to-contact
(TTC) of the nearest obstacle. As this threshold is reached, a 1.5 second roll command is given to the autopilot
in the direction of the cluster with the highest TTC. This is a basic avoidance strategy, and does not include
any path or motion planning. Three recommendations for future research can be made in this domain.
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Firstly, this strategy does not take into account any spatial or temporal relation between the different time-
frames, as it only considers the objects, TTC and FOE at the current time-frame. The information about the
location of the obstacle is mapped to a two dimensional space, which limits the ability to perform advanced
avoidance manoeuvres. To exploit the three dimensional spatial relation between the obstacle and the MAV,
for example, the TTC information can be used in a vector field histogram [2] type of approach. As the obstacle
(x,y) location and its TTC are known, the Cartesian histogram space can be created containing the obstacle
and MAV information. From this space a suitable avoidance direction and velocity can be chosen. Another
valuable approach would be to use a potential field [7] in which the goal point is an attractive potential and the
obstacle a repulsive potential. The original approach does assume knowledge on absolute distances between
the MAV and the obstacle, but this can be solved by using the TTC as a repulsive force.

The second recommendation is related to the object TTC and cluster size. Although the TTC on itself does
not provide an absolute location of the obstacle, its development over time does provide an indication of the
urgency of the avoidance reaction. Another visual cue that can be potentially valuable is the object size on the
camera image. In the implemented object detection method, the object cluster is indicated with a bounding
box. The change of size of this bounding box is also an indication of the urgency of the avoidance manoeuvre
and therefore can be used to improve the obstacle avoidance method.

Lastly, the third recommendation extends the current avoidance strategy to include dynamic obstacles.
As mentioned above, the implemented avoidance strategy uses the object TTC and FOE location to determine
an avoidance manoeuvre. This strategy is not tested on multiple poles and is not valid for dynamic obstacles.
To improve this strategy for dynamic obstacles, an extension on this method is shown in Figure 5.1. It is not
experimentally verified, as this is outside the scope of the thesis. This strategy uses the local cluster FOE to
determine whether an object is a collision candidate. After determining the object clusters in the optic flow,
the FOE for each cluster is separately estimated by the FAITH method. As seen in Figure 5.1, the strategy uses
the object cluster labels and optic flow as input, from which the local FOE is estimated. This strategy is also
valid for dynamic obstacles as this takes the local direction of optic flow into account. This strategy is based
on work Schaub et al. [10], discussed in Section 4.2.4. of the literature review. The strategy assumes that if an
object is on a collision path, the optic flow from the object diverges. If the FOE of these vectors is inside the
object boundary, it is on a collision path. A proposed avoidance strategy is to maximize the distance between
the cluster FOE and the cluster boundary. This advanced strategy would lead to an increased computational
effort, as the FOE of each cluster has to be estimated separately. The concept is similar to the implemented
collision detection approach, but is also valid for dynamic obstacles. Therefore, this approach is expected to
be valuable for future research.
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Figure 5.1: Processing flow for the obstacle avoidance system, using an advanced obstacle avoidance strategy. Green elements are
sensors onboard the MAV, blue elements are processing steps, the purple elements are the advanced obstacle avoidance strategy and

the yellow element is the MAV control loop. The arrows with labels show the output from functions and their connection to other
functions.
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Abstract

Micro Air Vehicles (MAVs) are able to support humans in dangerous operations, such as search and rescue
operations at night on unknown terrain. These scenes require a great amount of autonomy from the MAV,
as they are often radio and GPS-denied. This research takes a bio-inspired approach to designing an MAV
obstacle detection and avoidance system usable in these conditions. A bio-inspired event-based camera
is used to sense the environment, and all processing is executed fully on-board to ensure autonomy. To
provide a fundamental theoretical basis for the design of the obstacle avoidance system based on event-
based optic flow, several topics are reviewed. Biological inspiration is drawn from insect and nocturnal vision,
resulting in concepts usable in the obstacle avoidance system design. Regarding visually guided behaviour of
insects, the centering response in corridors, peering behaviour and saccadic motion are identified as usable
concepts. The fundamental principles of nocturnal vision show that spatial and temporal summation, and a
slow response time with high gain improve vision in low-light conditions. These neural processing concepts
are used as bio-inspiration in the obstacle avoidance system design. As this design is based on event-based
optic flow, several methods are reviewed to provide an overview of the current field of research. Subsequently,
state-of-the-art obstacle avoidance research is reviewed to provide methods which suit different obstacle
avoidance scenarios. These methods are implemented in future experimental research. This literature study
provides a fundamental theoretical basis for the bio-inspired approach to MAV obstacle avoidance in low-
light using an event-based camera.
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NN Neural Network
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1
Introduction

Micro Air Vehicles (MAVs) are able to fly in challenging environments, due to their agile movement and small
size. When considering a disaster aftermath at night or a fire in a building with an unknown map, it is often
dangerous to send humans into the scene. A fully autonomous MAV is able to enter and navigate in the struck
area, providing a safer and faster alternative to sending in humans. This research proposes an obstacle avoid-
ance system which can be used to increase the autonomy of such MAV. Much of the previous research on
autonomous MAVs use a ground-station to perform sense and avoid computations, but as indoor or disaster
scenes often are radio and GPS-denied, this is not a feasible approach. The Size, Weight and Power (SWAP) of
the MAV is limited as the operational conditions require it to fly as long as possible and with fully on-board
processing. A bio-inspired approach, based on insects, is used to design the obstacle avoidance system. They
have shown to solve complex visual tasks with very little neurons and photoreceptors [97], and thus use very
efficient methods. Following this approach, an event-based camera [76] is used in this research. It allows to
asynchronously detect changes in pixel brightness, such that it captures motion in the scene. This camera
design is based on the same principles as the human visual system (see Section 4.1.3). Based on this visual
sensor, a novel bio-inspired obstacle detection and avoidance system is proposed. This system is based on
the use of optic flow [49], as it is a well-known phenomena. Its use is encountered both in nature (e.g. in
the human brain [67]), and the computer vision domain (e.g. in the famous Lucas-Kanade algorithm [81]).
Estimating event-based optic flow is often challenging in dark scenes due to visual noise [46], resulting in
a low Signal-to-Noise Ratio (SNR). Therefore, as this obstacle avoidance system has to navigate in dark in-
door scenes, several bio-inspired adaptations to the event-based camera processing pipeline are proposed
to improve performance in low light. These adaptations are based on biological principles that allow night
vision of nocturnal animals. To verify the performance of the obstacle avoidance system and its night vision
methods, benchmark experiments are conducted in the experimental research phase. To validate these re-
sults, the experiments are performed under different controlled conditions. This literature review provides a
fundamental theoretical basis for these experiments.

The review is divided into three chapters: defining research questions (Chapter 2), biological inspiration
(Chapter 3) and state-of-the-art obstacle detection and avoidance methods (Chapter 4). As this literature re-
view serves as fundamental basis for the experimental research, the research questions consist of two parts:
’literature study’ and ’Experimental research’ questions. After defining these questions, first the motivation
for taking a bio-inspired approach is given in Section 3.1, along with fundamental knowledge on biological
visual systems. Afterwards, the biological principles of obstacle avoidance and vision in low-light are given in
Section 3.2. The most relevant biological inspiration for this research is synthesised in Section 3.3. Chapter 4
starts with an introduction to event-based cameras and their non-conventional processing in Section 4.1.
Afterwards, key concepts for event-based obstacle avoidance and state-of-the-art methods are discussed in
Section 4.2. To select the most suitable methods as basis for the novel obstacle avoidance system, Section 4.3
proposes obstacle avoidance scenarios and their corresponding approaches from state-of-the-art research.
Chapter 5 concludes the literature review with a concise summary of the most relevant findings.
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2
Research Questions

With the aforementioned context, a concise set of research questions is given in this section. The research
questions consist of two parts: literature study and experimental research. The first part uses previous re-
search to answer important questions that define the basis of the experimental research. The experiments
implement and test the knowledge from the literature study, leading to a novel obstacle avoidance system
and low-light vision methods. This literature review answers the research questions under ’Literature Study’,
where future experiments answer the research questions under ’Experimental Research’. First, the central
research question and objective are given.

The central research question of this thesis is:

What bio-inspired approach can be used to perform monocular event-based obstacle detection
and avoidance in low-light conditions?

The main research objective and contribution is in twofold:

To contribute to the development of obstacle avoidance systems for MAVs using an event-based
camera in low-light; by both providing a novel obstacle avoidance system using only on-board
processing, and providing methods to improve performance of the event-based camera in low-
light.

The central research question is split into several sub-questions. Each lower-level question answers a part of
a higher level question. First, the questions which are answered by literature study are given. Afterwards, the
questions which are answered by experimental research are given.

Literature Study

1. Why a bio-inspired approach to obstacle avoidance by insects?

(a) What does the theory state about the general principles of insect vision?

(b) What comparison can be drawn between human, insect and computer vision?

2. What biological insights regarding obstacle avoidance in low-light can be gained when considering a
nocturnal insect?

(a) What biological principles are fundamental for obstacle avoidance?

i. What biological processing principles enable obstacle avoidance?

A. What does the theory state about biological visual processing?

B. What is the main biological motion detection theory?

ii. What type of obstacle avoidance behaviour is encountered at insects?

(b) What biological principles are fundamental for nocturnal vision?

i. What does the theory state about ’nocturnal’ animals and environments?

3



4 2. Research Questions

ii. What does the theory state about specific principles used by insects in low-light?

iii. What does the theory state about noise in low-light, with respect to the visual system?

3. What obstacle avoidance system using a monocular event camera can be used as baseline method?

(a) What does the theory state about event-based vision?

i. What is the principle of operation of the event-based camera?

ii. What are the benefits of using an event-based camera in contrast to frame based cameras?

iii. What type of data processing is used for an event-based camera?

iv. What biological principle is the event-based cameras based on?

(b) What are state-of-the-art monocular event-based obstacle avoidance methods in the mobile robotics
domain?

i. What does the theory state about mapping methods?

ii. What does the theory state about methods using optic flow?

A. What are the general principles of optic flow?

B. What does the theory state about event-based optic flow estimation?

C. What are state-of-the-art event-based optic flow estimation methods?

D. What state-of-the-art obstacle avoidance methods use event-based optic flow?

Experimental Research

1. What bio-inspired systems can be designed, considering the results of the literature study?

(a) What bio-inspired methods can be used in the event-based camera system that potentially im-
prove performance in low-light?

(b) What bio-inspired event-based obstacle avoidance system can be designed?

2. What impact do these low-light methods have on the performance of the event-based camera system?

(a) What metrics can be used to evaluate qualitative and quantitative accuracy?

(b) What experimental setup can be used to measure these metrics?

(c) What can be learned from testing the low-light methods, considering the evaluation metrics?

3. What is the performance of the novel obstacle avoidance system?

(a) What metrics can be used to evaluate qualitative and quantitative accuracy, and computational
efficiency and complexity?

(b) What experimental setup can be used to measure these metrics?

(c) What can be learned from executing the experiments, considering the evaluation metrics?

The research questions from this chapter are used as a general guide in the literature review. In the synthesis,
after each chapter, the relevant research questions are explicitly answered. The following chapter reviews
biological research in human and insect visual systems, obstacle avoidance and low-light vision.



3
Biological Inspiration

In order to prevent collisions, catch prey and more generally wander around in nature, humans and animals
have developed powerful senses. Evolution has caused the visual system to be able to adapt to a variety of
scenes, including under day and night conditions. These biological principles can be an useful inspiration in
developing robotic systems operating in difficult conditions, for example navigating through low-light envi-
ronments. Human vision, utilizing a camera eye, is known for its ability to adapt to a broad range of lighting
conditions. Insect visual system, often utilizing a compound eye, are developed for specific lighting condi-
tions, but often with higher visual acuity. Therefore both camera eye (human) and compound eye (insect)
vision are used as inspiration in this chapter. Firstly, the advantage of the biologically inspired approach
will be discussed in Section 3.1. This section will include the general principles of camera eye and com-
pound eye vision, and draw a conclusion on a comparison of human, insect and computer visual systems.
After discussing the fundamental principles of these visual systems, the more complex biological principles
of obstacle avoidance and nocturnal vision will be discussed in Section 3.2. With this this knowledge, several
methods are chosen as biological inspiration for the obstacle avoidance system design.

3.1. Motivation for the bio-inspired approach
In order to highlight the benefits of a biologically inspired approach to visual obstacle avoidance, both the
human and animal visual system will be discussed. Insects are able to perform impressive navigational tasks
and aerial manoeuvres, whilst having a relatively very basic neural system. Therefore insects are an interest-
ing field of research, to learn and be inspired by. Many insects have a compound eye (which is anatomically
different than the well-known camera eye), and therefore it will be discussed separately. In Section 3.1.1, a
brief background on the biological principles of human vision will be given. The same will be done for insect
vision in Section 3.1.2. Afterwards, a comparison will be drawn between human, insect and computer visual
systems in Section 3.1.3. The main goal of these sections is to emphasise the gap between the efficiency of bi-
ological visual systems and the computer vision domain. The next section will start with a brief introduction
to the fundamental principles of the camera eye and the human visual system.

3.1.1. General principles of human camera eye vision
The camera eye has come a long way of millions of years of evolution, before ending up at the very complex
structure it has today. Starting as a small light sensitive spot on the skin approximately 540 million years ago
[68], the evolutionary advantages of perceiving the world around using vision made the eye slowly develop
and progress to more complex features. To be able to compare the human, insect and computer visual system,
first a high level overview of the human visual system is given.

Neural processing of visual information in humans
The visual system of the human eye is a highly optimized chain of events. After being reflected from an object
in the scene, a photon travels firstly through the cornea and lens (see Fig. 3.1). Here the path of the photons
is adjusted twice, after which it falls at the focal point (in focused vision) on the retina. The retina consists
of photoreceptor cells who absorb the photon. These photoreceptors set a chain reaction in motion which
ultimately results in an action potential being send towards the brain. A significant part of visual processing
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already takes place in the neural connections in the retina. Many of the neurons in the retina connect laterally
to other neurons in the same layer, enabling more advanced receptive fields such as motion. These retinal
pre-processing concepts will be discussed in Section 3.2.4. After this pre-processing in the retina, the action
potential is send from the eyes through optic nerves to the optic chiasm, where the information from both
eyes is combined (see Fig. 3.1). Next, the signals are send through the lateral geniculate nucleus (LGN). Here
the temporal and special correlation between the signals of the eyes is determined. This creates a three-
dimensional representation of the visual image. The output of the LGN is also fed back to the eyes as control
the for the vergence and focus of the eyes. After processing in the LGN, the signals are send towards the
visual cortex for further higher level interpretation [132]. In the following section, the chain of events from
the photon to sending an action potential towards the brain, is highlighted.

Figure 3.1: Schematic overview of the anatomy of the human visual system. Image from Nieto [93]

Photon to action potential
To understand how biological systems process light into information, the full chain of events has to be taken
into consideration. Photons that reflect back from surfaces are captured in the eye at the retina. To be able
to convert these photons to a usable signal for the brain, a series of events take place. Firstly, the photon is
absorbed by photoreceptors in the retina. In the retina, there are many cells responsible for converting the
photon to an action potential. First, the cells responsible for absorbing the photon are discussed, the rods
and cones:

Rods These cells perform best in low light conditions and are located mostly on the outer edges of the
retina. The location of these rods make them govern peripheral vision (vision outside of point of fixation).
There is only one type of rods in the retina, sensitive to one type of wavelength. Therefore, rods are not able
to distinct colour. In the human eye there are much more rods than cones: approximately 120 million rods to
6 to 7 million cones [32]. Rod cell stimuli are added over approximately 100ms, which makes them sensitive
to low quantities of light but also makes them slower in response to temporal changes. Rods are sensitive
to wavelengths of around 498 nm (green-blue) and insensitive to wavelengths of around 640 nm (red) [135].
This selective sensitivity causes the eye’s sensitivity to shift towards blueish green at low light levels (called
the Purkinje shift [8]).

Cones The cone shaped cells perform best in bright light conditions and are responsible for colour vision.
These cells are primarily present in the foveola (the visual focus) on the retina, where 100% of the photorecep-
tor cells are cones. There are three types of cones present in the retina, all sensitive to different wavelengths:
short, medium and long wavelengths (for respectively blue, green, red colour vision).

Next to these photoreceptors, which are directly responsible for converting photons, a third type of cells is
an important link in the visual system. Retinal ganglion cells are responsible for converting the signals from
photoreceptors to action potentials which are processed by the brain.
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Figure 3.2: Compound eye overview with dissection. Image from EPFL [37]

In order to process the photons to signals usable by the brain, rods and cones use a chemical chain of events.
Rhodopsin (for rods) or iodopsin (for cones) absorb a photon, generating a chain of amplifying unstable
events. This eventually results in bipolar cells inducing action potential in the retinal ganglion cells, which
fire this electric signal towards the brain [89].

This section has given a brief physiological background on human vision. In the next section, an introduction
to the fundamental principles of insect vision will be given.

3.1.2. General principles of insect compound eye vision
From an evolutionary perspective, the compound eye has taken a different path than the human eye, but
nonetheless has developed into a highly sensitive sensor. A short introduction to the visual system of insects
using compound eyes is given, starting with their visual sensor: the compound eye.

Compound eye
The compound eye is the visual organ of many arthropods, such as insects. It consists of thousands of om-
matidia which consist of small independent photoreception segments. Each segment contains a cornea,
‘facet’ lens and photoreceptor cells in the ‘rhabdom’. The rhabdom is a membranous structure that contains
rhodopsin cells which absorb photons (see Fig. 3.2 for an overview of the compound eye).

The inner structure of these compound eyes differ between insects, and are dependent on the living environ-
ment and diurnal (’living by day’) or nocturnal (’living by night’) lifestyle. These compound eyes are typically
split into three categories: apposition, optical superposition and neural superposition compound eyes (see
Fig. 3.3).

The least complex type of compound eye is the apposition eye (top row in Fig. 3.3). This is thought to
be the evolutionary predecessor of the more complex neural and optical superposition eyes [94]. The light
entering the eye only reaches the photoreceptor by a single corneal facet lens located directly above. This
type of eye is mostly seen in diurnal insects, living in bright light.

In optical superposition eyes (middle row in Fig. 3.3), the light passes the lens through a bullet shaped
cone and is send across a clear zone in the eye. After passing this clear zone it reaches a single photoreceptor
in the retina. Up to several thousands of lenses forward light towards a single photoreceptor, resulting in
significant improvement in visual sensitivity. Therefore, many nocturnal animals have this form of refracting
superposition eyes. The effective width of the pupil (or aperture) is much larger (see Section 3.2.4, ‘A’ in
Equation 3.2), resulting in a high visual sensitivity [138]. Consider for example a comparison between the
diurnal bee and the nocturnal dung beetle. The diurnal bee has apposition eyes and a visual sensitivity of
0.1 µm2 steradians. The nocturnal dungle beetle has superposition eyes and this results in a visual sensitivity
of 68 µm2 steradians, therefore much more sensitive than the diurnal bee [41].

Neural superposition eyes (bottom row in Fig. 3.3) have the same separated lens and rhabdom structure as
apposition eyes but groups of different ommatidia are connected through neural connections (neural pool-
ing). A study by Kirschfeld et al. [64] showed that one central rhabdomere shares the field of view with his six
adjacent ommatidia. The receptor responses of these seven ommatidia, which image the same section of the
scene, are send to the same synaptic cartridge in the lamina. In order to achieve this, the angular separation
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Figure 3.3: Three types of compound eyes: apposition, neural superposition and optical superposition. Examples (left-to-right,
top-to-bottom): migratory locust, mantis shrimp, house fly, fruit fly, moth, mayfly.

of rhabdomeres (∆φ in Fig. 3.4) must be equal to the interommatidial angle (D/R) across the whole eye. Land
et al. [69] showed that the amount of photons (N̄ in Eq. 3.1) required in order to perceive a certain contrast
(C in Eq. 3.1), are related by the following formula:

N̄ > 1

C 2 (3.1)

This pooling in neural superposition eyes allows for the photon signals of 7 receptors to be combined (7N in
Eq. 3.1). This improves the contrast detectability by

p
7 without compromising resolution. To achieve this

increment in resolution for a normal apposition compound eye, the rhabdom diameter (D in the Figure 3.4)
has to be scaled by

p
7, which would compromise the resolution (see Eq. 3.2).

Figure 3.4: Compound eye dimensions. (a): relation between apposition compound eye (upper) and camera type eye (lower). (b): The
acceptance angle of an ommatidium (∆ρ) split up in its two parts consisting of the point-spread function (left), and the rhabdom

acceptance angle (right). Image adapted from Land et al. [70]

Non-uniform ommatidia density
The compound eye does not consist of a grid of evenly placed ommatidia, but rather a non-uniform distri-
bution. This change in ∆φ (see Fig. 3.4), and thus ommatidia density, causes certain areas of vision to be of
higher acuity than others. This change in density exists in both the horizontal as vertical directions. Acuity
in certain visual areas is traded for other areas, a trade off due to the limited amount of space for ommatidia.
Optical superposition eyes show this effect less often, as they rely on a spherical shape of the eye.



3.1. Motivation for the bio-inspired approach 9

There are three types of density structures often seen in insects, related to: forward flight, prey and mating
behaviour and flat scenes such as water surfaces [70]. Flying herbivores such as bees and butterflies have a
density structure that supports forward flight: a small ∆φ in the horizontal and vertical front of the eye and
increasing towards the back (see Fig. 3.5). The second density structure often seen in insects is related to prey
capture and mating. This acute zone is located forward and upward. Often only males have this acute zone,
using it to detect females against the sky or for hunting preys. The third density structure, found in insects, is
the horizontal acute zone. This is often found in flat environments such as water or deserts. The high density
of ommatidia in the horizontal plane helps imaging the horizon during scavenging.

Figure 3.5: Ommatadia pattern of different regions of the eye of an Australian woodland butterfly (Heteronympha merope).
A, D, P, V: Anterior, Dorsal, Posterior, Ventral. Image from Land et al. [70]

Ocelli (simple eye)
The visual system of an insect often cannot rely fully on its compound eye. It requires an extra visual sensor
as support, which is the ocelli eye. The term ‘ocellus’ comes from the Latin ‘oculus’, meaning eye or little eye
in zoology. These little eyes are found in most insects, co-existing next to the compound eye. Ocelli are light-
sensitive organs, mostly located at dorsal (top-most) or lateral (side) positions. The amount (often three or
one) and form of ocelli differ per species, where flying arthropods are often seen with larger, more sensitive
ocelli [122]. Ocelli consist of a single lens and a rhabdom, where light sensitive proteins convert the photons
into usable electric potential. The structure of the ocellus does not allow for visual images to be perceived,
as the lens and retina are too close together. For example: the visual focal point of the ocellus of a migratory
locust is five times as far as the retina, not allowing for a sharp image to be perceived [102]. Although this re-
striction only allows for light intensity to be measured by ocelli, their neural organisation does allow for high
visual sensitivity and high speed of signal transmission [87]. It is suggested that ocelli often are used to detect
instability in flight, due to their spectral sensitivity, and the temporal and spatial filtering characteristics of
their neurons [141].

Neural processing of visual information in insects
Similar to the human visual system, the neural processing of visual signals in insects start in lobe-like struc-
tures in the brain. These optical processing lobes are divided into three sections: the lamina, medulla and the
lobula (see Fig. 3.6). Each section performs a specific visual processing task, but all are also interconnected
and often provide feedback signals to each other [15]. Axons from the eyes synapse onto the lamina, where
five parallel processing streams are found (L1 – L5). The large monopolar cells (LMCs) in processing streams
L1 and L2 are most prominent and largely sufficient for motion dependent behaviour. These neurons then
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forward the signals towards the medulla for further retinotopic mapping. The medulla and lobula-complex
sections contain greater number of neurons and also perform more complex visual processing. The medulla
is thought to be involved in a variety of visual processing tasks, such as colour, motion and shape detection
[109]. The lobula-complex consist of the most dense nerve structure and is thought to be mainly responsible
for motion perception. The lobula plate contains large directionally sensitive tangential cells which spatially
integrate the output of local motion detectors. Section 3.2.1 elaborates further on these directionally sensitive
cells.

Figure 3.6: Overview of optical processing lobes of the fruit fly (Drosophila Melanogaster). Scale bar = 100 µm.
Image adapted from Takemura [131].

These sections give a fundamental theoretical basis on human and insect vision. In many optics, computer
vision systems are still much less efficient than biological systems. Computational efficiency, energy usage,
processing speed are some of many examples where biological visual systems still outperform computer vi-
sion. Therefore, in the next section a comparison is drawn between human, insect and computer vision to
make this potential gain in efficiency more tangible.

3.1.3. Comparison between human, insect and computer vision
Biological visual systems have had the advantage of many millions years of evolutionary progress to end up at
the highly optimized systems they are today, highlighted in previous sections. Modern day computer vision
systems are able to solve many impressive challenges, but still are orders of magnitude behind the capabili-
ties of biological systems. Computer vision systems often exploit the benefit of having great computational
power available via modern CPUs or GPUs. In contrast, biological visual systems perform the same (and often
more) impressive tasks, with much less computational power, energy usage and operations. Therefore, many
valuable lessons can be learned from biological principles, launching the field of research forward. This sec-
tion briefly compares these visual systems on visual sensors, processing power and energy consumption to
show the theoretical possible gain using a bio-inspired design.

To simplify the comparison, it will be reduced to comparing the visual systems of the human (see Section 3.1.1),
the fruit fly (see Section 3.1.2) and the commonly used Parrot Bebop 2 [101]. The fruit fly is an interesting ex-
ample with a relatively simple and well-mapped neural structure, but still capable of performing complex
tasks such as object tracking, navigation and other visually guided behaviour. The Parrot drone is an interest-
ing example, as it shows that there still is very large gap between robotics and biological systems. Although
the Parrot drone also uses its high definition camera for entertainment purposes, it still shows the orders of
magnitude difference between the computer and biological visual systems. Table 3.1 gives a summary of the
comparison made below.

Visual sensor
First, a comparison between the visual sensors of the human, fruit fly and drone is made. The Parrot Bebop
has a 14 Megapixel CMOS camera, which is equal to 14 million pixels. It is able to capture 1920 x 1080 pixels
at 30 frames per second. Although this specific drone camera is also used for entertainment purposes, many
of the visual systems in current day visually guided robotics use high definition cameras comparable to this
example.
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A human eye has approximately 127 million photoreceptors (rods and cones) [32], which are similar to indi-
vidual pixels in a camera. The high density of photoreceptors in the fovea, enables humans to discern small
details and motion in scenes.

The fruit fly retina only consists of approximately 800 photoreceptors [97], which is many orders of magnitude
less than the human eye and the Parrot Bebop 2. Although this low amount of photoreceptors limits the fly
its visual acuity, it is still able to fly around without hitting obstacles, navigate towards targets and perform
avoidance manoeuvres (see Section 3.2.1).

Information processing and energy consumption
When considering the processing of information in these three visual systems, a comparison between the
neural system of the human and fly and the computational processing of the Parrot Bebop 2 is made. Al-
though this comparison cannot be made directly, as neural networks process information with a significantly
different method, its comparison is used to show the computational efficiency. The energy consumption
by these neural networks and processing units is used to emphasise the gap between biological and artifi-
cial computation. From an evolutionary perspective, energy consumption puts a constant pressure on the
cost/benefit ratio of sensory and neural systems [95]. Therefore these systems have developed towards mini-
mal energy consumption, while still processing all essential information.

In order to enable visual processing, the Parrot Bebop 2 [101] has a System on a Chip (SoC) circuit, with a
dual-core Cortex-A9 CPU (which can run at 2 GHz) and a quad-core Mali-400MP4 GPU (capable of process-
ing 2 Gpix/s). Although dependent on computational load, on average this CPU uses 3.7 W and a comparable
mobile GPU uses 4.1 W [24].

Considering the human brain as a whole, it contains approximately 86 billion neurons. The human primary
visual cortex (mainly responsible for visual processing) contains 140 million neurons [75]. Although in rest
the human brain consumes a stunning 20% of the total energy intake [55], the visual cortex only compro-
mises 0.16% of the neurons in the human brain. To estimate the amount of energy used by this part of the
brain, an assumption of linearity between energy use and amount neurons is made. The human brain uses
on average 2159 kJ per day [55], which is approximately 25 Watts. Using the ratio of neurons in the primary
visual cortex and the total brain and multiplying it with the average energy consumption of the brain, the
energy consumption of the primary visual cortex is gained. Therefore it is estimated that the primary visual
cortex uses approximately 40 mW.

When considering the amount of neurons in the visual system of the fruit fly, only approximately 150.000
neurons are found [97]. Assuming the same linearity of energy consumption per neuron, proposed in the
work of Houzel et al. [55], the fruit fly brain is estimated to use 44 µW. This shows again, the fruit fly brain is
able to perform complex visual tasks with very limited resources.

From this comparison (see Table 3.1) between a commonly used drone system, the human eye and the fruit
fly eye, it is concluded that there is still a large performance and efficiency gap between biological and robotic
vision systems. The fruit fly is able to navigate and avoid obstacles with a very low amount of photoreceptors,
neurons and energy consumption, where a drone setup still relies on heavy processing power. This brute
force approach shows that there is still a lot of efficiency to gain in visually guided systems. Therefore, taking
a bio-inspired approach to visual obstacle avoidance is a valid methodology.

Visual Sensor Visual Information Processing
Visual Information Processing

Energy Usage

Parrot Bebop 2
14 million

pixels
Dual-core Cortex-A9 CPU (2 GHz) &

Quad-core Mali-400MP4 GPU (2 Gpix/s)
CPU: 3.7 W
GPU: 4.1 W

Human
127 million

photoreceptors
140 million neurons

(primary visual cortex)
40 mW

Fruit fly
(Drosophila melanogaster)

800
photoreceptors

150.000 neurons
(visual system)

44 µW

Table 3.1: Summary of characteristics of visual systems of a typical drone, human and fruit fly.
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These previous sections discussed the fundamental principles of human and insect visual systems and shows
the relevance of a bio-inspired design approach. The next section will discuss more complex visual biological
processing such as obstacle avoidance and nocturnal vision. This body of theory provides insights which are
used in the design of the visual obstacle avoidance system on the MAV.

3.2. Biological obstacle avoidance and nocturnal animals
3.2.1. Fundamental biological principles for obstacle avoidance
ith this background on general principles of human and insect vision, this section will discuss more com-
plex biological visual processing. In order to perceive the dynamic world, the visual system uses a complex
combination of neural structures. Perceiving visual motion is fundamental to gaining environmental aware-
ness, and is the basis for obstacle detection and avoidance. Optic flow, which is the apparent motion of the
optical image, is directly related to this principle [67]. Therefore, the next sections will show the biological
principles behind motion detection and some applications. The main biological motion detection theory
is discussed: Elementary Motion Detection (EMD). After highlighting this theory, some examples of visually
guided behaviour are given.

Biological motion detection theory
The complexity of neural connections in the eye and foremost in the brain, make it inherently difficult to
exactly pinpoint brain areas responsible for certain tasks, such as motion perception. This neural structure
is significantly less complex in insects such as the fruit fly. Therefore much research is conducted on flies,
for example regarding motion detection theory. Dispite the complexity, there are many models describing
motion detection (for a review, see Borst et al. [17]), called EMD models. When considering an image on the
retina, individual photoreceptors are not able to perceive the direction of motion as they only perceive an one
dimensional brightness change. Only when the signals of at least two photoreceptors are used, it is possible
to discern direction of motion. This directional perception is achieved in synapses downstream, and thus is
a result of neural computation. There has been extensive research on models for this computation, of which
the most established one (the Hassenstein–Reichardt model [104]) is discussed below. There are extensions
of this model (e.g. by Eichner et al. [36]), but this simple version is sufficient to show the purpose of the EMD
models and some applications.

Directionally-sensitive motion detection
When considering directionally-sensitive motion detection, one of the simplest models proposed, consists
of delays and correlation calculation. Consider two photoreceptors, A and B, in close vicinity of each other.
When motion passes the two photoreceptors, they both are stimulated but with a short time interval in be-
tween. If the signal from A is delayed, and the correlation with signal B is calculated, the correlation will be
strong in case of a motion from A to B. If the motion moves from B to A, the correlation will be low. This
amount of correlation indicates the direction of motion. However, time delay operators are not commonly
found in nature. This computation is performed, not using this simple delay and correlate scheme, but by
temporal filters which will be explained below.

The directionally-sensitive motion detector can be modelled by the circuit overview in Fig. 3.7, which
shows strong similarities to the simple concept explained above. Two photoreceptors A and B in each others
vicinity are shown, which are excited by a moving object. R is a temporal filter, which often represents the first
stages of the visual processing pathway. This includes the dynamics of the photoreceptors and the first neural
processing in the retina. G and H are also temporal filters, representing higher levels of visual processing
in for example the lamina, medulla and lobula complex. The outputs of A-R-H and B-R-H are multiplied
with the processed signals of the adjacent photoreceptor. The ‘average’ box averages the signal with other
photoreceptor responses, processing other image patches in the vicinity. This circuit results in the same
qualitative response as the simple circuit described earlier. For example: consider an edge moving from A
to B and the temporal filters G are sluggish. The multiplication of the A-R-G signal with the B-R-H signal
will result in a strong positive value as response. If the object moves from B to A, this circuit will result in a
strong negative response. The optomotor response (discussed in Section 3.1.2) is an example visually guided
behaviour, using this directionally sensitive principle.
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Figure 3.7: The Hassenstein–Reichardt Elementary Motion Detection model. A and B: photoreceptors, R: temporal filter representing
lower visual processing, G and H: temporal filters representing higher level visual processing. Image adapted from Srinivasan et al. [125]

Directionally-sensitive cells

There are three types of cells which have been identified for vertebrates to be responsible for directionally-
sensitive motion detection. This concerns the following types of ganglion cells: ON/OFF, ON and OFF gan-
glion cells [18]. ON/OFF ganglion cells which respond to leading and trailing edges of a stimulus. These
cells are considered local motion detectors. ON ganglion cells respond only to a leading edge of a stimulus.
These cells respond best to global motion and are tuned to lower temporal frequencies [142]. OFF ganglion
cells are tuned to respond to trailing edges of stimulus, primarily sensitive to upward motion [62]. Including
both direction and brightness information in the response of these cells would result in too large amount of
information being transferred (due to the bandwidth of the optic nerve) under certain viewing conditions.
Experiments of Im et al. [58] have shown that, where the directionally sensitive retinal ganglion cells in lab-
oratory conditions respond to both direction and brightness, these cells suppress response to brightness in
natural viewing, transmitting a relatively pure motion signal to the brain.

Directionally in-sensitive motion detection

Some insect behaviour has been discovered not to depend on directionally sensitive motion detection, but
to be directionally in-sensitive. This has two advantages: it requires a less complex motion detection system
and it allows to measure image velocity accurately. The image velocity is used in behaviour such as the land-
ing response, peering behaviour, centring behaviour and the flight speed control (all discussed below). Also,
as insects fly forward in a straight line, the direction of image motion is known but the image velocity be-
comes relevant to determine range. This velocity detection can be achieved with a non-symmetrical motion
detection scheme (see Fig. 3.8 ). It also contains two photoreceptors and a temporal (low-pass) filter.

This asymmetrical motion detector is independent of the grating period (temporal frequency), which
can be seen in the response in lower plot of Fig. 3.8. When using a single asymmetrical motion detector,
angular velocity estimation is still ambiguous. This can be solved by using at least two motion detectors,
tuned to different angular velocities (by changing the time-constant of the low-pass filter). This will result
in two responses, both giving two possible angular velocities, but with one overlapping. This overlapping
angular velocity is then assumed to be correct. This asymetrical system is only one of many models possible
and it is thought that these symmetrical, asymmetrical and but also partly symmetrical models co-exist in
biological visual systems [144].
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Figure 3.8: Direcitonally in-sensitive Elementary Motion Detector with response plot to a grating stimulus. A and B: photoreceptors,
Low-pass filter: Representing lower visual processing. Image adapted from Srinivasan et al. [125].

Visually guided behaviour
The theoretical models described in the previous section are encountered in nature in many forms of insect
behaviour. This visual processing is often coupled to motor responses, enabling insects to navigate without
requiring very complex and high level understanding of the environment. Some applications of this sensory-
motor coupling are described below. Following this section, obstacle avoidance principles will be discussed.

Optomotor response The optomotor response is described as natural orienting behaviour based on the
whole optical field. Reichhard et al. [105] showed that flies tend to compensate visual movement that is not
a result of their own intended motion. For example: when the optical image of the fly moves to the right, the
fly also tends to move to the right to compensate that image movement. The optomotor response of flies to
moving striped patterns is mainly governed by the temporal frequency of the moving pattern, rather than the
angular velocity. Therefore it requires a directionally sensitive motion detector.

To display this behaviour, Srinivasan et al. [125] measured the torque response of a fly mounted to a mea-
suring device. It allows to see the different response curves to certain grating densities at different angular
velocities (see Fig. 3.9). Normalizing these responses for grating densities, show that the optomotor response
is angular velocity independent and spatial frequency dependent (rightmost plot). It also shows that the
response is less for low and high temporal frequencies. At low temporal frequencies, the response is low be-
cause the directional information from neighboring photoreceptors becomes weaker. The response drops to
zero at high frequencies because the optics become less and less effective at transmitting contrast (also due
to reaching the critical fusion frequency). For optomotor response, where the direction of motion is most
important, this response behaviour is sufficient.

Landing response Flying invertebrates are able to land softly on all sorts of surfaces, with an elegant con-
trolled motion. The landing strategy of flies has been a subject of research in the past as it is heavily based
on neural optic flow processing. This principle uses mechanisms of directionally sensitive motion detection,
just as the optomotor control described above. Previous research shows that landing response is based on
an expanding image of the surface. The magnitude of the landing response is shown to be based on spatial-
frequency, contrast of the pattern and duration of expansion [16]. Research also showed that the time of onset
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Figure 3.9: Results of optomotor response experiments by Shrinivasan et al. [125], showing torque response of a fly in a scene with
different angular velocities.

of deceleration was approximately the same, regardless of the speed of approach [134]. This showed that the
landing fly uses the relative rate of expansion of the image of the surface (dr /d t )/r , with r = instantaneous
target size) to determine the time-to-contact. This time-to-contact is used to determine the onset of deceler-
ation. From this onset, the insect holds the rate of expansion of the image constant, resulting in the smooth
and controlled landing often seen at insects [7].

Centring response As bees fly through a hole, they tend to fly as close to the centre of the hole as possible.
This is a result of the centring response behaviour, controlled by the visual system. As insects lack stereo
vision, balancing the distance to the edges of the hole is controlled by other visual cues. Experiments on
bees flying in between two walls [126] have shown that they estimate the distance of surfaces in terms of the
apparent motion of their visual images. They compare the angular speed of the images from both walls and
keep those balanced. It is also shown that bees measure the angular speed largely independently of spatial
period, intensity profile and contrast of the grating. In the context of the grated wall experiments, this implies
that the density of grading does not affect the centring response, only the speed of the wall. Experiments
have shown that bumblebees use maximum pooling of the frontal visual field in order to control their lateral
position in a corridor [71].

Visual regulation of flight speed Experiments on fruit flies [33] and bees also have shown that their flight
speed is controlled by monitoring and holding the speed of which the image moves constant. The flight
speed is controlled by monitoring the angular velocity, independently of the spatial structure. This behaviour
is similar to the centring response. Experiments also show that optic flow is used for visual odometry: bees
integrate the amount of optic flow perceived to reach a goal, to estimate distance travelled [124]. Experiments
have shown that bumblebees monitor the optic flow from 23 degrees to 155 degrees to regulate the flight
speed [6]. This ensures that also small objects on the collision path are detected and avoided.

Peering behaviour Insects have, in contrast to humans, fixed focus vision. Humans can use binocular dis-
parity (from stereopsis) to determine the distance of objects but insects cannot use these techniques. Nature
has evolved certain peering strategies to overcome these restrictions. For example: the locust moves its head
from side to side, before jumping towards a target. This behaviour is shown to be a means of measuring ob-
ject distance [136]. It is based on a simple principle: when the observer moves its eyes, the retinal images of
objects closer to the observer move further and faster than images further away from the observer (motion
parallax, see Section 4.2.1). Experiments on praying mantis have shown that the speed of the retinal image
governs the distance estimate [66]. The amplitude and velocity of the peering motion can be varied, but these
quantities are used to determine the ratio of peering velocity to image motion velocity.
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These forms of insect behaviour utilize the biological principles described by the Elementary Motion De-
tection models, mainly used for navigational purposes. The next section will describe biological obstacle
avoidance methods.

Biological obstacle avoidance methods
To effectively avoid obstacles, an observer requires extra environmental awareness in addition to the be-
haviour described in the previous section. As animals move throughout the world, they constantly need to
perceive and interpret information about moving objects in their field of view in order to prevent collisions.
For many animals, visual information about incoming predators is valuable for planning an escape manoeu-
vre. This section gives a short introduction to visual depth cues, Section 4.2.1 elaborates further on this.
Incoming objects (or predators) have a characteristic motion: their size in the retinal image enlarges as they
approach the observer. This results in a characteristic optic flow (see Section 4.2.2 on optic flow), which can
be utilized both by humans and insects. As described in the previous section, humans have an extra tool to
perceive depth: binocular disparity. They are able to use the increasing binocular disparity of the retinal pic-
tures perceived by both eyes to estimate a depth field. This measurement of change in binocular disparity is
mainly used for slow moving objects, where the optic flow is utilized for fast moving objects [40]. Most insects
(except the praying mantis [111]) are not able to use stereopsis to perceive an incoming object, as the field of
view of each eye often does not overlap and the distance between eyes is relatively small. Therefore insects
are mainly dependent on optic flow for object avoidance. Some applications of this interpretation of optic
flow are Time-To-Contact, the Lobula Giant Movement Detector and saccadic movements of insects. These
examples biological obstacle avoidance principles, are briefly discussed below.

Time-To-Contact In order to effectively avoid collision, the observer requires to know what time it has left
to react. This time-to-contact is a measure for urgency of the avoidance reaction, and therefore implicitly
also the velocity of the reaction. The time-to-contact can be estimated if the distance and relative velocity
between the observer and the object is known ( Z

Ż
=Time-To-Contact (TTC), with Z = relative distance of the

object, Ż = relative velocity between the object and observer). Both these quantities are not directly available
to the observer and a different approach is required. The expanding image of the object on the observers
retina is able to give a ratio of two types of information: the image size and the rate of expansion of the image.
This ratio is able to give an accurate estimate of the time-to-contact, without the requirement for the absolute
speed or distance. The usage of this ratio is encountered in nature, for example in plummeting gannets. They
streamline their wings at a fixed time-to-contact from the water, avoiding injury to their wings [73]. This usage
of the time-to-contact is also shown to be used by humans: breaking in a car [72], playing table tennis [14] or
hitting an accelerating ball [74].

Lobula Giant Movement Detector The Lobula Giant Movement Detector (LGMD) is a wide-field visual neu-
ron located in the Lobula of the Locust (see Fig. 3.10), and its neural structure is expected to exist in other
insects as well. It is assumed that this neuron triggers an escape reaction, for example when a locust is at-
tacked by a predator [118]. This neuron increases its firing rate according to the velocity and proximity of an
incoming object. It is tuned to respond to objects on a direct collision course, but has little to no response to
receding objects [59]. The peak of the firing rate is located at or close to the projected time of collision [43].
The descending contralateral movement detector (DCMD) is its postsynaptic partner, and connects with mo-
tor neurons associated with jumping and flight steering manoeuvres [22].

Saccadic movements to induce optic flow The flight trajectories of flies and bees have been shown to con-
sist of straight flight sequences, followed by a turn (called a saccade). These intersaccadic movements, vary-
ing from 20 ms to 200 ms, are purely translational. It is suggested that these translational movements are
used to obtain optic flow using Lobula-Plate Tangential Cell (LPTC)-neurons [61]. The peak angular velocity
and succession into either direction are variable and depend on the visual surroundings. Saccade rate and
amplitude also are correlated with the time-to-contact to the frontal objects such as walls. By increasing the
duration of an intersaccade, the dependency on the texture in the environment can be decreased, assum-
ing the visual integration time is increased accordingly. The intersaccade duration is possibly linked to the
collision avoidance necessity. If there are no obstacles in the neighbourhood, there is no need for collision
avoidance and long intersaccades are possible. However, if there are obstacles in the vicinity, collision avoid-
ance could be necessary and short intersaccades followed by an evasive turn might be required. Saccade and
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Figure 3.10: Location of the Lobula Giant Movement Detector (LGMD) and Descending Contralateral Motion Detector (DCMD) in the
locust visual pathway. Image adapted from Rind et al. [108]

velocity control rely to a large extent on the intersaccadic optic flow generated in eye regions looking in front
of the fly [61].

The previous sections gave insight into biological motion detection and obstacle avoidance principles,
encountered in humans and insects. These principles are used as inspiration for the obstacle avoidance
system onboard the MAV. As described in previous sections, the visual system of humans and insects consists
of tightly tuned parts, which allow for sight under various conditions. In order to apply the MAV obstacle
avoidance system in low-light conditions, the visual system has to be tuned to these conditions. Therefore,
the next section will introduce the fundamental principles of biological night vision.

3.2.2. Defining low-light vision
Many years of evolution have caused the visual system of animals to be tightly tuned to allow for extraordinary
high performance under various conditions. As described in Section 3.1.3, current computer vision systems
still rely on heavy computational power while biological systems elegantly perform complex processing tasks.
When considering low-light conditions, this becomes even more important. Much of the current research in
MAV design is performed in laboratory light conditions (often using bright white lights). This is convenient
for testing, but does not allow for these systems to be applied outside of the laboratory environment. To create
an MAV obstacle avoidance system that is capable of performance under various conditions, including low
light, inspiration is taken from animals living in these conditions: nocturnal animals. The next sections will
introduce the definition of these conditions, and the principles enabling vision in low-light intensity.

Nocturnal animals and low-light conditions
The life pattern of many species such as humans, animals, plants and microbes depend on the day and night
cycle. As humans are mostly restricted to a diurnal (living by daytime) lifestyle, the vast majority of research
is also conducted for daytime conditions. As nocturnal (living by night) conditions push animal sensory
capabilities to the limit, this is still a very interesting field of study. Many valuable lessons and concepts can
be learned from nocturnal animals, including sensory and processing techniques.

Nocturnal behaviour Animals that inhibit nocturnal behaviour are characterized by being active during
the night and sleeping during the day. The leading hypothesis for this behaviour is thought to the ‘bottleneck
theory’ [53]. During the Mesozoic Era (± 250 - 65 million years ago) the ancestors of mammals avoided di-
urnal (living by day) saurian predators by living at night and hiding (and sleeping) by day. They also did not
compete for the same resources as diurnal animals. During this Era these mammals evolved a variety of sen-
sory adaptations to support their new night life. This included for example: improved hearing [28] and higher
visual sensitivity. It is thought that at the same time, many of these animals lost the capability for photopic
and tetrachromatic colour vision [53].
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In order to distinct between different light conditions, an international definition of luminance levels is set.
An international standard specified by Commission Internationale de l’Eclairage (CIE) contains three vision
levels: photopic, mesoscopic and scotopic vision [50].

• ‘Photopic vision’ = From English photo, from Greek phos, meaning “light” or “produced by light”. Oc-
curs at luminance levels of 10 to 108 cd/m2 (or Lux).

• ‘Mesoscopic vision’ = from Greek mesos, meaning “middle”. Occurs at luminance levels of 10−3 to
10 cd/m2 (or Lux).

• ‘Scotopic vision’ = From Greek skotos, meaning "darkness". Occurs at luminance levels of 10−6 to
10−3 cd/m2 (or Lux).

This thesis mainly focuses on the mesoscopic and scotopic conditions (see Fig. 3.11) for MAV navigation,
as these conditions are highly demanding for the visual system and pushes its sensory capabilities. The next
sections will introduce visual noise and principles that allow for vision under these low-light conditions.

Figure 3.11: Luminance spectrum from scotopic to photopic vision (measured in Lux). Rods and cones in the human visual system are
sensitive to both low and high light intensity. Image from ’Azo materials’ [84].

3.2.3. Noise in visual systems
At night or indoors, often there is only a small amount of photons available for photoreceptors (or digital
sensors) to capture. A sufficient Signal to Noise Ratio (SNR) is required to obtain valuable information from
the scene. Therefore, identifying the main causes of visual noise is valuable for designing low-light systems.
The causes of visual noise for biological and computer vision systems overlap in certain areas. The quantum
behaviour of photons and thermal agitation are a cause of noise in both biological and computer vision sys-
tems. In biological systems, spontaneous biochemical reactions also cause noise. These different forms of
visual noise are described below.

Photon shot noise Light travels in discrete photon packages, which are subject to quantum effects. This
implies that light behaves stochastically. As photons hit the photoreceptor, a discrete amount of electrons is
generated by the photosensitive proteins. When measuring either the amount of photons or electrons, the
measured quantity is an integer number drawn from a probability distribution determined by the emission
source [52]. This causes the intensity of the light to vary, even at a constant source brightness. This effect
is mainly noticed when there is little signal that overrules the noise (thus at a low SNR). If the effect of pho-
toreceptor bleaching in eyes can be ignored, photon absorption is described with a Poisson distribution [77].
Fig. 3.12 shows an example of photon absorption at four different light levels. In the first two light intensities
the black center circle cannot be discerned. At the third light intensity, its shape is still uncertain and only
with the fourth light intensity, it discerned for certain.

Thermal noise Thermal noise (also called Johnson–Nyquist noise [96]) is a result of the thermal agitation of
electrical charge carriers, electrons. The very small movement of the electrons cause an electrical flow which
is perceived by the visual system as a signal. Increasing the temperature also increases the amount of thermal
noise. It is present in all electrical systems, therefore also in the signal transduction pathway of biological
visual systems and in computer vision sensors. It has been shown that a lower biological body temperature
results in less of these noise events, which improves visual sensitivity [2].
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Biochemical retinal noise Another form of visual noise originates from the biochemical processes leading
to signal amplification. The biochemical pathways, responsible for picking up the photon and signalling the
brain, are occasionally activated resulting in so called ‘dark light’. This is due to spontaneous conversion of the
rhodopsin protein or spontaneous activation of transducin in the signal transduction pathway. This triggers
the ganglion cells to fire a burst of spikes, resulting in a false positive measurement [9]. Other causes of noise
in visual pathways originate from synaptic transmission (in bipolar synapses [42]) and the spike generation
processes [133]. These processes also are subject to quantum effects, therefore adding perceived visual noise.
These two noise types set the ultimate lower limit for stimulus detection. These noise levels differ per animal,
where some insects experience approximately 1 event every 10 hours, nocturnal toads experience for example
about 360 events every hour.

Figure 3.12: Example of the combination of spatial resolution and light level. 400 Photoreceptors are set in a matrix, shown as small
circles. The black disc at centre cannot be discerned in the first two light levels (1×,10×) as it is disguised by noise.

Image adapted from Warrant [138].

3.2.4. Animal vision in low-light
Where the humans visual system is highly limited in low-light conditions (e.g. moonless night), a great
amount of animals are able to walk, crawl, fly and swim around without effort. Even in the deepest seas,
animals are still able to manoeuvre their way around, for example using very faint light from biolumines-
cence [140]. The visual systems of these animals are greatly adopted to low-light conditions by evolutionary
development. Nocturnal animals rely vitally on these evolutionary benefits and are therefore an interesting
field of study. The following section will highlight some of the principles seen in nature which enable vision
in low-light intensities.

Before discussing the principles that allow vision in low-light, a quantification of visual sensitivity is dis-
cussed. As visual sensitivity is hard to quantify, Michael Land proposed a tool [65] which enables sensitivity
comparison between species and can quantify the vast majority of camera and compound eyes correctly [41].
The following equation quantifies optical sensitivity:
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In this formula, ’S’ is the sensitivity of the eye in units of µm2 steradians (steradian = unit of solid angle), ’A’ is
the diameter of the eye its pupil (or aperture), ’d’ is the diameter of the photoreceptor (rhabdom for insects),
’f’ is the focal length, ’k’ is the absorption coefficient of the photoreceptor and ’l’ is the photoreceptor length.
When these length units are in micrometres, the unit of ’k’ is µm−1.
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When considering nocturnal animals, a great variety of visual characteristics are seen which allow for
excellent night vision (for a review see the work of Warrant et al. [137]). These principles can be divided in
sensory and neural processing characteristics. Sensory characteristics such as wider pupils, wider receptive
fields, shorter focal lengths and a tapetum lucidum are related to the physical structure of the eye. Spatial
pooling, time integration and increased gain of rod responses are related to the neural processing of the
information received by the eye. These principles will be discussed briefly below.

Wider pupils and larger eyes Nocturnal animals often have wider pupils to allow more light to fall onto
the retina. This increases photon capture and therefore visual sensitivity. Examples of vertebrates who use
this principle are owls and tarsiers (with pupil diameters of approximately 2 cm). This is reflected Eq. 3.2:
increasing the diameter of the eye pupil ‘A’ will increase the visual sensitivity. The most distinguished example
of this feature is part of the cephalopods: the giant deep-sea squid (with a pupil diameter of approximately
36 cm) [69]. Some deep-sea fish go to even greater lengths to catch the dim light at the bottom of the sea. For
example: the Grimatroctes microlepis has a significantly larger pupil than its lens (an aphakic gap), resulting
in more light being able to enter the eye past the lens. This light will be defocussed but still significantly
improves sight [139]. Some nocturnal animals have relatively large eyes to maximize visual sensitivity. Within
the group of nocturnal animals, the visual predators (e.g. Tarsius or Loris) tend to have larger eyes than
diurnal primates [63] [48]. This feature also results in more photons reaching the retina, which allows for
higher visual sensitivity.

Wider receptive fields If the receptive field of the photoreceptors is widened (therefore viewing a large solid
angle), the scene that the visual channel views is also broadened. This also results in more photons being
captured. This is solid angle is reflected in Formula 3.2 in πd2/(4f2) steradians. Increasing the viewed solid
angle by a photoreceptor therefore also increases visual sensitivity.

Shorter focal lengths The focal length determines the distance between the retina and the lens in order
to achieve a focused image on the retina. Nocturnal animals on land often have a highly powerful curved
cornea, which allows the lens to be closer to the retina. This implies that the focal length ’f’ is smaller and
thus visual sensitivity is increased (see Eq. 3.2). A smaller focal length relative to the pupil diameter ’A’ results
in a large viewed solid angle. For nocturnal vertebrates this often results in a tubular eye shape, allowing a
short focal length [119]. These tubular eye shapes are seen for example in owls, which have great scotopic
visual sensitivity [83]. Short focal lengths are also encountered in nocturnal spiders with extremely sensitive
eyes e.g. the net casting spider ‘Deinopis subrufa’. These spiders utilize a combination of a very large lens,
short focal distance and large diameter of its photoreceptors to achieve vision that is 2000 times as sensitive
as the human eye [13].

Tapetum lucidum Often, when a bright light is shined on the eyes of nocturnal animals, it seems that their
eyes ‘light up’, a phenomenon known as ‘eye-shine’. This is due to the tapetum lucidum, a reflective layer in
the retina of many nocturnal animals [98]. This reflective layer is often positioned behind the photorecep-
tors, reflecting unabsorbed light a second time back through the photoreceptors. This effectively doubles the
length of the photoreceptor, increasing visual sensitivity in dim light. The tapeta have been developed evo-
lutionary within different invertebrates and vertebrates species but show surprisingly similar light reflection
mechanisms. The tapetum reflects wavelengths most relevant to each species behaviour [120].

Pooling of rod responses (spatial summation) Nocturnal animals make use of spatial summation of rod
responses to increase visual sensitivity. The number of ganglion cells (which forward action potentials to the
brain) is much lower than the amount of rods that can be triggered. This implies that many rods converge
to a single ganglion cell, determining the local spatial resolution [29]. A trade-off is made between visual
sensitivity and visual resolution (with a dense area of ganglion cells). This spatial summation is found in
many nocturnal animals, such as in bees [51], cockroaches [107] and moth [129].

Time integration of rod responses (temporal summation) Just as stimuli are summed spatially, a temporal
summation also is able to increase visual sensitivity (see Fig. 3.13). It can be compared to the shutter time of
a camera: light is absorbed over a longer period before processing, increasing visual sensitivity. This time
integration comes at the cost of the response time. Many nocturnal animals use this long time integration.
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For example: the common toad (B. bufo) has a neural integration time of approximately 1.5 seconds [35].
This allows it to see under scotopic conditions but highly limits its response time. Therefore high integration
times are more often seen at animals who do not require fast and agile movement.

Slow response time with increased gain As described above, nocturnal animals use spatial and temporal
summation to increase their visual sensitivity. These concepts are also often used in combination with a
higher transduction gain. If photoreceptors send stronger responses (higher voltage potentials) to stimuli,
this results in a higher contrast gain. The downside of this high gain is that noise (discussed in Section 3.2.3)
will also be amplified. Thus on itself, this increased gain does not increase visual sensitivity. As the visual
noise from each photoreceptor or ommatidia is uncorrelated, the noise is averaged out spatially. This is
where the spatial summation is beneficial again, to suppress visual noise, amplify the signal and therefore
increase visual sensitivity [129].

Figure 3.13: Example of temporal and spatial summation of an image at low light intensity.
Image adapted from Stöckl et al. [129]

These biological principles described above all contribute to increasing the Signal to Noise Ratio (SNR)
of the visual system. Some principles focus on maximizing the received amount of photons (such as wider
pupils or receptive fields), where others focus on minimizing the effect of visual noise (such as neural pool-
ing). All visual systems, including human, animal or computer vision, are subject to different forms of noise.
As low-light conditions imply that there is little signal available, the SNR subsequently will be low. Therefore,
in the next section different forms of visual noise will be identified.
Previous sections gave insight into the biological principles behind obstacle avoidance and vision in low-
light conditions, from a biological perspective. The following section will synthesise this literature review,
into concepts usable for the obstacle avoidance system design.

3.3. Synthesis
To highlight the most relevant findings from the literature review regarding biological principles of obstacle
avoidance and low-light vision, this section will synthesise the biological research into important insights.
The relevant research questions and answers are also given.

Why a bio-inspired approach to obstacle avoidance by insects? (Section 3.1)
Section 3.1 showed the motivation for using a bio-inspired design, based on insect vision. First, a general
introduction to the human and insect visual system is given. From this introduction is concluded that the
insect visual system is able to provide more valuable insights, relevant to this research, than the human visual
system. Therefore, the following sections focused on insect obstacle avoidance and low-light vision.

The non-uniform distribution of ommatidia on the compound eye, discussed in Section 3.1.2, shows an
interesting insight. This principle enables insects to have more visual acuity on certain areas of their visual
field. The output from the visual sensor on the MAV has to be down-sampled (due to the high output rate, see
Section 4.1). This non-uniform down-sampling encountered at insects can be applied to maintain the visual
acuity in important areas of the field of view (e.g. supporting forward flight), while reducing the visual acuity
in other less important areas. This reduces the computational load while maintaining relevant visual acuity.



22 3. Literature Review - Biological Inspiration

As summarized in Table 3.1, the visual system of insects (here: the fruit fly) is orders of magnitude less
complex on all categories than human or the commercial drone. Insect show a low amount of photoreceptors,
neurons and power usage while still being able to fly and navigate effortless. This shows that a bio-inspired
approach is valuable and it provides a general sense of the possible efficiency gain.

What biological principles are fundamental for obstacle avoidance? (Section 3.2.1)
To gain inspiration for the obstacle avoidance system design, Section 3.2.1 reviewed the Elementary Motion
Detection (EMD) theory and showed examples of visually guided behaviour. The EMD theory is shown to be
valid for humans and insects. This is still a high level abstraction (representing neural structures as filters)
of the actual processing, but serves as a fundamental theory for the examples of visually guided behaviour.
Motion detection is found to be processed by directionally-sensitive cells, which respond to certain stimuli
such as leading and/or trailing edges on the retina image. The pixels of the event-based camera used as visual
sensor in this research, shows great similarity with these cells.

The visually guided behaviour shows interesting concepts which are useful for the obstacle avoidance
system design. The following concepts provide valuable insights:

• Time-to-contact (TTC)
This principle is useful as it only depends on the flow of the image and in theory can provide an accurate
time to collision. TTC can be estimated using a monocular camera, which is a highly limiting factor for
the MAV design. Therefore, this concept is used in the system design.

• Centering response
By balancing the optic flow in both sides of the image, insects are able to fly through the center of a
corridor. This simple strategy can only be applied in corridors. Therefore it can used as inspiration for
a solution in corridor environments during the system design.

• Peering behaviour
This is an interesting concept as it perceives depth from motion, using the motion parallax. As this
research uses a monocular camera, stereopsis cannot be used to perceive depth. Therefore, utilizing
the motion parallax can be a valuable approach.

• Saccadic motion
Flying in straight sequences, followed by a turn, can be an effective strategy. As the event-based cam-
era (used in this research) only triggers on motion, this strategy might provide a controlled method to
induce motion in the scene.

What biological principles are fundamental nocturnal vision? (Section 3.2.4)
In low light conditions, biological visual systems are subject to three types of noise described in Section 3.2.3:
photon shot, thermal and biochemical retinal noise. The first two are relevant to this research as they also
are encountered when using the event-based camera in low-light conditions. To increase the signal-to-noise
ratio, the signal can be strengthened or noise can be suppressed. Photon shot noise can be described with
a Poisson distribution and can be partially suppressed by using filters. Thermal noise can be suppressed by
lowering the temperature of the event-based camera. Lowering the temperature of the system is a strategy
also encountered in nature (see Section 3.2.3).

To gain inspiration for improving the event-based camera system in low-light, Section 3.2.4 reviewed the
visual system of nocturnal animals. The biological characteristics that enable vision in low-light are divided
into two categories: sensory and neural processing characteristics. All sensory characteristics are not feasible
to implement, as hardware modification to the event-based camera would be necessary. Neural processing
characteristics can be used as inspiration for the processing pipeline of the obstacle avoidance system. The
following characteristics are potentially valuable:

• Spatial summation
By pooling rod responses, nocturnal animals gain increased visual sensitivity in low-light. This biologi-
cal principle effectively reduces the visual acuity, while increasing the visual sensitivity. In the context of
the obstacle avoidance system, this would result in reducing the resolution of the event-based camera
by pooling triggered pixels (or optic flow vectors). This can be used in combination with the proposed
non-uniform down-sampling, described above.
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• Temporal summation
Time integration of rod responses is also an often encountered characteristic at nocturnal animals. It is
comparable with using a time surface image, as it also accumulates events over time. In the context of
the obstacle avoidance system, this strategy might cause issues due to the fast and agile motion of the
MAV.

• Slow response time with increased gain
Combining spatial and temporal summation is often encountered in nature. Amplifying visual signal
on itself does not increase visual sensitivity. In combination with reducing the noise by spatially aver-
aging the signal (as the individual pixel noise is uncorrelated), this can improve low-light vision. This
is concept of spatio-temporal summation, in combination with increased gain, can be used for the
obstacle avoidance system design.

This concludes the chapter on biological inspiration from nocturnal insects. The central research questions
on biological obstacle avoidance and nocturnal vision are answered. This fundamental theoretical knowledge
is as inspiration in the system design, resulting in a bio-inspired obstacle avoidance system. The following
chapter will review previous research on MAV obstacle detection and avoidance methods.





4
Obstacle Detection and Avoidance

methods

To design a novel obstacle avoidance method, inspired by the concepts from Chapter 3, previous research
on event-based cameras and state-of-the-art obstacle avoidance methods is reviewed. As the research goal
is to fly fully autonomous in unmapped, GPS denied environments, the MAV is limited by its Size, Weight
and Power (SWAP). As all processing for sensing and navigation has to be performed on board the MAV, there
are strict restrictions on what is feasible. This chapter will discuss the chosen visual sensor (the event-based
camera) and its processing in Section 4.1. Following this, previous research on obstacle avoidance algorithms
is discussed in Section 4.2. Section 4.3 will provide a synthesis of the most useful concepts and methods from
this review.

4.1. Event-based vision
Flying MAVs in unknown environments such as disaster scenes, dark indoor spaces and other hazardous cir-
cumstances is challenging. Often there is no prior information about objects in the environment, there is no
map available, lighting conditions are uncontrolled and the MAV cannot return easily to recharge the battery.
This requires the MAV to perform with low latency, a high visual bandwidth and with low power consump-
tion. Conventional cameras often perform poorly in these challenging conditions due to their all-purpose
design.

A revolutionary new bio-inspired camera design was released in 2008 by Lichtensteiner et al. [76] which
addressed the majority of these challenges. They released the first commercially available event-based cam-
era, which is able to perceive changes in brightness (and thus capture apparent motion). Unlike conven-
tional cameras, the event-based camera is triggered asynchronously on an individual pixel level by bright-
ness change. The intensity change threshold which triggers the pixel is user-defined. This results in the
event-based camera not having a set frame-rate, but rather asynchronously outputting a stream of events.
The events are labelled by the pixel location, trigger time (in microseconds) and sign of the intensity change.

Section 4.1.1 will describe the physical principles which characterize the event-based camera. Subsequently,
Section 4.1.2 will discuss the benefits of using an event-based camera with respect to a conventional camera.
The bio-inspired design is highlighted in Section 4.1.3. As the output of the event-based camera is signifi-
cantly different from a conventional camera, Section 4.1.4 will highlight the main challenges and methods
for processing the event data stream.

4.1.1. Design of the event-based camera
The event-based camera uses a novel method to capture the motion in a scene. It does not take the bright-
ness values at all pixels at a set framerate (such as a normal camera would), but its output rate is rather
determined by motion of edges in the scene. An event-based camera pixel triggers on brightness changes in
the scene, asynchronously and independent of other pixels. This asynchronous output of events is inspired
by the spiking of action potential seen in the biological visual pathways (see Section 4.1.3). Light intensity is
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not perceived linearly by humans, but is rather characterised on a logarithmic scale. Each pixel continuously
monitors the log intensity, and compares it to the last measured value at that pixel. If the change in log inten-
sity exceeds a certain threshold (which is user defined), the pixel triggers and sends a x, y location, the time t
and the polarity of the change (see Fig. 4.1). The DAVIS camera, used for this research, also includes an Active
Pixel Sensor (APS). This frame-based sensor shares the same photodiode as the DVS in each pixel, and allows
to capture intensity readouts. This is used to create an intensity image at a constant frame rate.

Figure 4.1: Left image: simplified circuit diagram, red = DAVIS circuit, blue = APS circuit.
Right image: example of triggering of a single DVS pixel. Image adapted from Gallego et al. [46]

Let tk−1 be the last time when an event triggered at pixel location x. Let Lk−1 = L(x, tk−1) be the log intensity
level at that pixel location at tk−1. A new event is triggered at the pixel location at tk if the difference in log
intensity between Lk−1 and Lk is larger than an user defined threshold C > 0. Thus a new event is triggered if:

||L(x, tk )−L(x, tk−1)|| >C (positive event)

||L(x, tk )−L(x, tk−1)|| < −C (negative event)
(4.1)

To emphasize the novelty of this new approach to visual sensing, the next section will compare the charac-
teristics of the event-based camera to a conventional camera.

4.1.2. Characteristics of the event-based camera
As the event-based camera opens up a new paradigm in visual sensing, a comparison between conventional
frame-based cameras and event-based cameras is made. Conventional frame based cameras often face mo-
tion blur under fast moving scenes, and under or over sampling, resulting in too much or too little produced
data. The event-based camera is scene driven, and thus modifies its sampling rate to the motion present in
the scene. A comparison of the main characteristics of the event-based camera with respect to a conventional
camera is made below.

• Very fast sampling (ranging from 2 MHz to 1200 MHz of events). Events are timestamped with mi-
crosecond resolution and are transmitted with sub-millisecond latency, which make these sensors re-
act quickly to visual stimuli.

• Asynchronous sampling, resulting in sparse data. As the camera only triggers on motion, a sparse
representation of the scene is obtained. Where conventional cameras capture all intensities of all pixels
in the frame in a set frame rate (e.g. 24 frames per second), event-based cameras only trigger on object
edges that traverse the pixels.

• Low power consumption. The event-based cameras use only 10 mW (including processing: 100mW)
[46], where conventional cameras often need a few Watts for operation.

• High dynamic range. Event-based cameras have a very high dynamic range (> 120 dB), allowing usage
under varying lighting conditions. The light that hits a pixel is the result of the product of scene illumi-
nation and surface reflection. If the log intensity of the scene changes, that is generally due to a change
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in surface reflectance (e.g. caused by object motion). The illumination in a scene is often constant. Re-
sulting in: log((scene intensity)× (object reflectance)) = log(scene intensity)+ log(object reflectance),
as the log of a product is the sum of the logs. Therefore event-based camera has a built-in invariance to
scene illumination.

• Bandwidth (compared to 60 FPS camera). Event-based cameras also outperform conventional cam-
eras under varying light conditions. To show the physical limit of the event-based camera, its response
was measured by Lichtsteiner et al. [76] under different motion frequencies varying from low to high
(see Fig. 4.2). Above a cutoff frequency, the physical photoreceptor dynamics filter out the change in
intensity, resulting in a dip in performance. When using bright light, the DVS pixel bandwidth is ap-
proximately 3 kHz which is comparable to a shutter speed of 300 microseconds. When reducing the
light intensity by a factor 1000, the bandwidth is still about 300 Hz which is still 10x higher than the
Nyquist frequency of a 60 FPS camera (30 Hz). Events are generated reliably and reproducibly down to
less than 0.1 lux of scene illumination [76].

Figure 4.2: Measured responses of DVS to sinusoidal LED stimulation for two DC levels of illumination. Figure adapted from
Lichtsteiner et al. [76].

4.1.3. Bio-inspired design of the event-based camera
The event-based camera has a biologically inspired design, based on the spiking of neurons in visual path-
ways. The visual system can be divided into two information processing streams: ‘where’ and ‘what’ path-
ways. The dorsal area is related to spatial vision (’where’) and the ventral area is related to object recognition
(’what’). The DVS design is related to ‘where’ pathway, as it encodes spatial information. In comparison,
grayscale events can be corresponded to the ‘what’ pathway. The DVS fulfils the role of directionally selective
(DS) cells in first order motion perception, described by models from Hassenstein and Reichardt (see Sec-
tion 3.2.1). The DVS outputs a location and ON or OFF signal, indicating respectively intensity increase and
decrease at that pixel. This principle is analogous to the ON/OFF directionally selective cells in the visual
system, which fire on leading or trailing edges of a stimulus.

These characteristics enable an unique interpretation of the scene. Although the event-based camera has
impressive specifications, the novel design also requires a new form of digital processing. Conventional com-
puter vision methods cannot be used directly on the event stream and the sensor also produces noise and
non-idealities. Therefore the next section will discuss the challenges and solutions for data processing of the
event-based camera.

4.1.4. Event stream data processing
The asynchronous and binary event-based camera output is an unique representation but also a challenging
one. Conventional computer vision methods rely on frame based video input, and all processing pipelines
are designed accordingly. Therefore old processing pipelines are re-designed or novel methods are created to
handle the event stream. The three main challenges on event data processing are described below.
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• Different space-time output than conventional cameras (asynchronous) The decoupling (or non-
existence) of the frame-rate also requires the processing pipeline to handle asynchronous data (see
Fig. 4.3). This is often resolved by transforming the event stream back to conventional computer vi-
sion representations (such as time surfaces or 2D frames). This often causes loss of the unique space-
time representation, and therefore loss of scene information. Others approach the asynchronous event
stream event by event with neuromorphic computing, keeping the characteristic event stream intact
(see Section 4.2 for examples of neuromorphic applications).

• Different photometric sensing (binary increase or decrease signal instead of greyscale info) As the
event-based camera is triggered on intensity change, it only outputs the sign of the change (+ or −).
Therefore brightness change is also dependent on current and past motion of objects. This results in a
fundamentally different image than from conventional cameras, which output absolute intensity level
per pixel. This also requires a non-conventional approach to event processing.

• Inherent shot noise in photons and electrical circuits Digital visual sensors are also subject to photon
and electrical shot noise (see Section 3.2.3). As the event-based camera captures change in intensity, it
also captures the fluctuation in intensity due to the stochastically arriving photons. These effects has
been characterized for conventional cameras, but not yet for event-based cameras.

Figure 4.3: Visualization of a rotating dot, captured by an event-based camera.
This shows the asynchronous output of the camera. Image adapted from Liu et al. [79]

Event representations and processing methods
The event-based camera outputs an asynchronous stream of events, which has to be interpreted to obtain
valuable information about the scene. There are several event representations and processing methods used
in literature. The main representations and processing methods used in previous research are listed below.

• Individual events
ek = (x yk , tk , pk ) events are used in event by event processing schemes such as Spiking Neural Net-
works. The disadvantage of using individual events is that they do not contain information about the
underlying motion and are subject to noise. Often, deterministic filters (e.g. for noise reduction or fea-
ture extraction) or probabilistic filters (e.g. Kalman filters) are used as they can handle asynchronous
data.

• Event packages
Neighbouring events can be grouped based on spatial-temporal information. When processing events
in groups, it is possible to improve the SNR. The number of events per group strongly influences the
performance of the algorithm. Two main strategies are often used: a constant number of events, or a
constant observation time. Using a constant number of events that are assigned to a group, fits better
with the asynchronous output of the camera. Using a constant observation time to assign events to a
group, causes a variation in the amount of events per frame, which could cause issues further down the
processing pipeline.

• Event image or 2D histogram
Events in each others spatial-temporal neighbourhood can be mapped to a simple 2D frame. This
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results in the loss of the asynchronous stream and data sparsity. This method is often used as it converts
the event stream to a format that can be interpreted by conventional image-based algorithms such as
Convolutional Neural Networks.

• Time surfaces
This method maps all motion to a 2D frame and decayes older motion. The intensity of the image is
the amount of motion history that pixel has had, with brighter pixels corresponding to more historic
motion. This is called ’Motion History Images’ in the computer vision domain. The effectiveness of
these time surfaces is less in very textured environments, as pixels spike frequently and overwrite itself
on motion.

• Voxel grid
This representation can be seen as a 3D histogram, effectively dividing space-time up into boxes. Each
box represents a certain space and time interval. This is a form of down sampling, and a discretization
of space-time.

• 3D point set
When time is considered the third spatial dimension, an event stream can be represented as a 3D point
cloud. This is used for point-based geometrical processing methods such as plane fitting.

• Point set on image plane
Events can also be represented by an evolving image of points on a 2D image. This is mainly used by
early vision algorithms that track edges and shapes.

• Motion compensated event images
When moving an edge over event-based camera pixels, the edge triggers pixels along its motion. This
motion can be compensated by warping events to a reference time and aligning them such that a fo-
cussed image is produced. This was first proposed by Gallego et al. in 2018 [45] and the focus framework
later improved in 2019 [47]. This mapping creates a more familiar representation of visual information,
by showing the map of edges in the event stream. Section 4.2.2 also elaborates on this approach.

With this knowledge from previous sections on operational principles and data processing for the event-
based camera, the next section will discuss state-of-the-art research in event-based obstacle avoidance. The
following section will highlight the key concepts for obstacle avoidance in the robotics domain and event-
based obstacle detection and avoidance methods.

4.2. Event-based obstacle avoidance methods
MAVs are able to fly agile through various environments, performing vertical take-offs and landings, hovering
and other movements in 6 degrees of freedom. The environments in which they are flown are often unknown,
dynamic scenes who require environmental awareness to prevent collisions. To gain awareness of the envi-
ronment, sensors such as cameras, ultrasonic sensors or light detection and ranging (LIDAR) systems can
be used. The Size, Weight and Power (SWAP) restrictions of the MAV also limits the sensors and accompa-
nying processing which can be used to gain this environmental awareness. Active sensors (such as LIDAR)
often weigh more and require more power than passive sensors (such as a camera sensor). Due to these con-
siderations and following the bio-inspired approach, it is decided to use a monocular visual sensor on the
MAV. Therefore, all obstacle detection methods described in this section will focus on the use of a monocular
camera. First, visual cues which allow the observer to sense depth are discussed, including the fundamental
principles of optic flow in Section 4.2.1 and 4.2.2. The focus of expansion (FOE) is discussed afterwards in
Section 4.2.3. With this background on optic flow and FOE estimation, a review of previous research in obsta-
cle avoidance using monocular cameras is performed. This review is split into two types of methods, based
on optic flow in Section 4.2.4 and learning based in Section 4.2.5.

4.2.1. Visual depth cues
An observer is able to use many cues to estimate its position relative to objects in a scene. See Fig. 4.4 for a
categorization of depth cues. In natural scenes, a distinction between two types of depth cues is be made:
observer and object-centered cues [106]. As the name suggest, observer-centered cues are related to the visual
system of the observer. Accommodation, convergence, myosis and binocular disparity of the observer their
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eyes give depth cues to the brain. These concepts all rely on the use of stereo-vision. As the visual system
on the MAV is strictly limited by weight, computational power and energy usage, only a monocular camera
is chosen to be used. Therefore, no observer-centered cues are used. Object-centered depth cues can be per-
ceived with a monocular camera. These cues are categorized in static and motion-based cues. Static cues
in an image include linear perspective, interposition, the height in the image plane, light and shadow, rela-
tive size, textural gradients and aerial perspective. Motion-based cues are the motion parallax and dynamic
occlusion.

The motion parallax is an interesting cue to highlight as it depends on the motion of the observer in a
static scene. When the observer moves (in a transitional motion), objects closer to the observer move at
a higher velocity than objects further away. This effect is also used by some insects to perceive depth (see
’Peering behaviour’ in Section 3.2.1). The optic flow generated by these objects can be used to detect them
and estimate their relative position and depth. Optic flow is a key concept to many obstacle avoidance sys-
tems, and therefore is reviewed first. The fundamental principles of this apparent motion are discussed, and
a review of event-based optic flow estimation methods is performed. After discussing optic flow, obstacle
avoidance methods using a monocular camera are discussed.

Figure 4.4: Categorization of observer and object-centered depth cues. This research focuses on monocular motion-based depth
information. Image adapted from Reichelt et al. [106]

4.2.2. General principles of optic flow
Optic flow can be described as the distribution of apparent velocities of movement in an image. Gibson [? ]
introduced the concept of ecological optics, where optic flow is used to discern actions that can be taken in an
environment (affordance perception). Optic flow is used by humans for a variety of tasks such as self-motion
perception [20] and others (see Section 3.2.1).

When an observer moves towards an object, all visual stimuli on the retina move radially away from this ob-
ject. This visual source point is called the focus of expansion (FOE), where the optic flow is zero. The image
will move faster, as it reaches an angle of 90 degrees in the field of view, after which the image gradually slows
down in to the focus of convergence (FOC). The FOE is discussed separately in Section 4.2.3.

In order to obtain an optic flow estimate for an arbitrary point from the 3D world, it is projected on a 2D
surface (the camera or retina). The projected point on the surface has coordinates (see Fig. 4.5):

x = X

Z
and y = Y

Z
(4.2)

As we want to determine the motion of this point, the equation above is differentiated with respect to time:
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Values for Ẋ , Ẏ and Ż are found (for a derivation see Longuet-Higgins et al. [80]), resulting in the following
optic flow equations:
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(4.4)

Note that it consists of a translational and rotational component. The rotational component is a result of
camera rotations and does not contain information about the environment. Its effect can be compensated by
using an Inertial Measurement Unit. These equations above also describe the relative velocity to the camera
principle axis:
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(4.5)

Which is inversely related to the ‘Time-To-Contact’ (TTC):

τ= Z

W
(4.6)

Figure 4.5: Optic flow reference system. Image from Longuet-Higgins et al. [80].

Estimating event-based optic flow
As event-based cameras produce an asynchronous stream of events, a non-regular data processing pipeline
has to be created compared to when using the output of a regular frame-based camera. In order to calcu-
late optic flow from the event stream, previous research shows multiple approaches. At first, researchers
applied conventional computer vision algorithms on event images. In many methods, this does not fully uti-
lize the unique format of event-based camera output. Since event-based cameras are a relatively new field of
study, recently many impact-full findings and improvements have been done. However, there is still a lack of
standardized metrics and datasets (such as commonly found in the Computer Vision domain). Therefore, the
actual performance of methods relative to others is often unknown. Although this new paradigm requires un-
conventional techniques, calculating optic flow from events can be efficient. Events represent edges, which
are the sections of the scene where optic flow estimation is less ambiguous. This allows for a more efficient
calculation of optic flow. Another advantage is the very high sampling rate. As this rate is much higher than
when using conventional cameras, it is possible to measure high speed optic flow.

Early approaches In contrast to the synchronous output of frame-based cameras, the event-based camera
sensor does not provide this absolute brightness data. Therefore, a different relation has to be found between
motion and the x, y, t space to calculate optic flow. Early research focused on event-based optic flow used
conventional computer vision methods [11] [34]. As the temporal derivative of brightness can be calculated
using events, it is possible to calculate the optic flow (when making assumptions for the spatial derivative



32 4. Literature Review - Obstacle Detection and Avoidance methods

Figure 4.6: Top image: Frame based images of a horizontal bar moving upward. Bottom image: Event-based output, with two event
surfaces caused by the leading and trailing edge of the horizontal bar. Image from Paredes-Valles et al. [100].

∇L). But as moving edges can generate a very sparse amount of events, the derivatives are hard to calculate
and lead to unreliable results [19]. Therefore, optic flow methods using the distribution of events in the x, y, t
space give better results.

Event surface approach Approaching optic flow from a local time and space distribution of events was first
proposed by Benosman et al. [12]. When considering edge slopes in the x − t and y − t cross sections of the
event stream, the edge motion over time can be derived. Planes are fitted in this x, y, t space and the optic
flow is estimated by reading the slopes of these planes (see Fig. 4.6). This results in the normal flow (which is
perpendicular to the edge), but not directly in the actual direction of the edge motion. In general, the aperture
problem [92] limits the accuracy of optic flow methods. The size of the spatial-temporal neighborhood, on
which the planes are fitted, also influences the accuracy of the flow estimates.

A study by Rueckauer et al. [112] in 2016 compares classical Lukas-Kanade methods with local plane
fitting methods, showing that plane fitting methods generally are more accurate and computationally less
demanding. Though this was only demonstrated for optic flow generated with a rotating event-based camera
(non-translational movement), it still shows a significant performance gap. However, they also showed that
these methods require hand crafted outlier rejectors as they do not properly model the output of the event-
based camera.

Several improvements on the plane fitting approach are made afterwards. In 2018, Aung et al. [5] opti-
mized the method for usage on a Field-Programmable Gate Array (FPGA) allowing for 100M plane fits per
second. Hordijk et al. [103] made efficiency improvements by reducing the number of parameters in the local
plane, and capping the amount of identified optic flow vectors.

Spatio-temporal filters The local plane structure of the event cloud is well suited for extraction of informa-
tion by filtering. Brosch et al. [19] introduced spatio-temporal filters, that yield directional motion selectivity
(based on Gabor and temporal filters). By hand-crafting filters to be sensitive to flow velocities and direc-
tions, optic flow can be determined. By normalizing the responses, the effect of the aperture problem is
limited. Barranco et al. [10] also use a frequency based approach, in order to determine optic flow at textured
edges. By using a bank of filters tuned to certain spatio-temporal frequencies, the local spatial and temporal
angular frequencies is determined. Although this approach shows better results on textured edges than e.g.
Benosman et al. [12] their method, it does not show real-time performance.

Artificial neural networks (ANN) ANNs have proven to be highly valuable for conventional frame-based
computer vision. An advantage of ANNs is that they avoid explicitly modeling the entire problem. The new
event-based paradigm does not yet fully benefit from this progress, as the event representation is significantly
different and there still is a lack of large quantities of labeled training data. When using neural networks for
estimating event-based optic flow, often the event stream is collapsed into time-slices in order to be inter-
preted by the network. This does not fully utilize the characteristic asynchronous representation, but these
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methods still achieve significant performance.

EV-FlowNet is a self-supervised learning method proposed by Zhu et al. [147] which firstly introduced the
image-based representation of the event stream. This image representation can be interpreted by a standard
NN architecture. The event images are fed into the NN as sole input, while the corresponding greyscale
images are used as supervisory signal. This loss function is based on a proxy ground truth, originating from
conventional image-based optic flow techniques. This allows the network to be trained without any manually
labeled data.

Ye et al. [143] proposed an Evenly-Cascaded convolutional Network (ECN), which is able learn to estimate
optic flow, depth and ego motion from sparse event data (trained on the MVSEC dataset). The ECN has only
150k parameters and also uses time slices as input. It is shown to be robust to noise (often encountered in
low-light conditions), by not using the latest but averaged timestamps in the event-image. This averages out
noise in the time slices and therefore increases performance.

The method used in EV-FlowNet is later extended by Zhu et al. [148] to support unsupervised learning
and a novel discretized event volume representation. This representation captures the full spatio-temporal
distribution of events by discretizing the time domain and accumulating events in a linearly weighted fashion.
It outperforms the original EV-FlowNet on almost all MVSEC datasets and also the ECN on certain datasets.

Spiking Neural Nets (SNN) Where ANNs do not fully utilize the unique asynchronous event stream repre-
sentation, SNNs are in favor as they are able to handle the event stream as direct input. The SAVME method
from Orchard et al. [99] uses a spiking neural net to mimic the Lucas-Kanade algorithm. It uses individual
events as spike input for the SNN and uses bio-inspired direction and velocity selective neurons to calculate
the optic flow. This method is not yet applicable in real-time computation.

The method proposed by Paredes-Vallés et al. [100] also determines optic flow with a hierarchical SNN,
using a novel biologically plausible Spike-Timing-Dependent Plasticity (STDP) protocol. It is also able to
handle the rapidly varying input distribution of the event camera output. Just as the SAVME method, it learns
the neural selectivity from the event stream and thus can also be interpreted as a spatio-temporal filter.

Correlation-based methods A fundamental challenge in estimating event-based optic flow is the lack of
association between events and established features. Grouping events and searching for the most similar
event group would require a time window specification, and is thus not suitable for the asynchronous event
stream.

Zhu et al. [146] propose a correlation-based method for feature tracking, where the optic flow is calculated
by maximization of the expectation over all data associations. By making the event associations probabilistic,
no hard commitments have to be done for events to features. It outperforms a Kanade–Lucas–Tomasi (KLT)
tracker applied to a 240 FPS camera, but is not yet applicable in real-time calculation.

Works by Gallego et al. [44], [45], [47] seek for the point trajectories on the image plane that best fit the
event data, also known as contrast maximization or focus. The framework proposed is able to calculate optic
flow, perform 3D reconstruction and motion estimation. By warping the events, a good fit is found with pre-
vious events, and therefore recovers the relative motion between camera and scene expressed in parameters.
These methods maximize the fit of groups of events, using their spatio-temporal and polarity information.
Stoffregen et al. [128] review different reward functions for contrast maximization. They showed that using a
combination of sparsity- and magnitude-reward functions, supports dealing with the aperture problem and
increases performance under noisy conditions.

Liu et al. [78] propose an adaptive block-matching optic flow (ABMOF) method, which uses a conven-
tional computer vision algorithm ‘block matching’ (known from MPEG video encoders) on time slices of the
event stream (see Section 4.1.4). These time slices are created by taking either a constant time or constant
amount of events. Blocks from these time slices are matched against each other, which allows for optic flow
derivation from their position difference. The advantage of this method is that it is highly parallelizable on
hardware.

This section gave a general overview of optic flow and event-based optic flow estimation methods. In this con-
text, the focus of expansion is an important flow characteristic. Therefore its theory and estimation methods
are discussed in the following section.
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4.2.3. Focus of Expansion
The focus of expansion is a singular point from which the apparent optic flow expands, assuming the scene
is static and the motion of the observer is purely translational. This singular point indicates the course of
the observer, and therefore is a crucial element in visual-based navigation. Determining the FOE is challeng-
ing as often normal flow is available (due to the aperture problem), and the computational limitation of the
MAV does not allow for computationally expensive online visual-processing. If the optic flow is zero and the
rotational component is filtered out, the following derivation is made.
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Rewriting these equations gives the following result.
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To show optic flow diverges from the FOE, (4.7) and (4.8) are used to re-express uT and vT .
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Rewriting this equation shows the geometrical relation which results in the optic flow diverging from the
FOE.

uT
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(4.10)

Estimating the Focus of Expansion
The determination of the FOE on-board mobile systems equipped with cameras has received a large atten-
tion from researchers over the past decades, showing a great variety of approaches to actually solve this very
complex problem. This literature study is focused on sparse OF-based FOE estimation, for which state-of-
the-art solutions currently available can be divided into three categories: (i) counting vectors directions, (ii)
creating a probability map based on negative vector intersections and (iii) based on negative half-planes.

i) Counting vectors directions An early approach by Souhila et al. [123] estimates the FOE by counting the
amount of vectors that diverge from a location, for all horizontal and vertical locations. The location in which
most vectors diverge is the FOE. Huang et al. [57] take a similar approach, in which all vectors are projected
onto lower-dimensions and all horizontal and vertical locations are evaluated.

ii) Probability map based on negative vector intersections Guzel et al. [121] proposed an implementation
of a method which calculates the intersections of all rays in opposite direction of the optic flow vectors. A
probability map is generated which holds the amount of intersections per location. The location which has
the most intersections has the highest probability of being the FOE. Stabinger et al. [127] used this method
in an obstacle detection application. A similar method was implemented by Buczko et al. [21] which uses
a RANSAC scheme to randomly select two vectors, create a candidate FOE location by calculating the inter-
section, and testing this location against all vectors. After a predetermined amount of iterations, the candi-
date with the highest amount of inliers is selected as the FOE. This and research by Suhr et al. [130] use this
RANSAC method to determine outliers in a visual-odometry pipeline.
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iii) Probability maps based on negative half-planes intersections The third type of approach, creating a
probability map using negative half-planes was implemented by Clady et al. [26]. As normal optic flow is cal-
culated, the assumption is made that the FOE must lie in the negative half-plane of as many normal vectors
as possible. For each optic flow vector an orthogonal line is taken, which intersects the vector location. The
negative half-plane of this orthogonal line is used to update the probability map. All locations which are not
updated are subject to exponential decay over time. The location with the highest value on the probability
map is selected as the FOE. This research by Clady et al. and research by Colonnier et al. [31] use this method
to estimate the Time-To-Contact in an obstacle avoidance task.

These sections gave a general overview of optic flow, the focus of expansion and event-based estimation
methods. These key concepts are often used in visual obstacle avoidance methods. The following section will
review obstacle avoidance methods, primarily based on optic flow.

4.2.4. Obstacle avoidance methods using optic flow

Optic flow is a key concept in order to gain environmental awareness. As it describes the apparent motion of
an image of the scene, it holds important information about objects and motion of the observer. Therefore,
previous research already proposed a variety of methods for the use of optic flow in obstacle avoidance. In
this research, optic flow is estimated from the output of an event-based camera. As this event-based camera
is a relatively new field of research, limited previous work has been proposed. Therefore, this section will
review both frame and event-based methods to obstacle avoidance. These methods are reviewed on the
following criteria: obstacle detection method, obstacle avoidance strategy, novelty of method, weaknesses of
method, computational needs and biological plausibility. These criteria are used to highlight the advantages
and disadvantages of implementing the method for this research.

Optic flow balancing

A simple strategy, based on the centering behavior of insects (see Section 3.2.1), is optic flow balancing. When
flying through a corridor, it is possible to stay laterally centered by balancing the amount of optic flow in the
left and right side of the image. The literature review showed that only frame-based monocular cameras have
been used for this approach, no optic flow balancing approaches using an event-based camera are proposed
yet. Early research in 2004 showed an implementation by Argyros et al. [4] on a mobile robot. This imple-
mentation used a very basic control law, but proves the concept of mimicking the centering behaviour. The
main disadvantage of optic flow balancing is that it is not able to avoid obstacles directly in or near the focus
of expansion, as the optic flow is zero at this point.

In 2010, Zingg et al. [149] implemented this optic flow balancing strategy on an MAV for indoor corridor
following. An omnidirectional camera is used to calculate the optic flow along the two walls. From this optic
flow, the distance to the walls is estimated. A PD controller on the error from the corridor center is used to
keep the MAV centered. It was also concluded that very accurate IMU data is required to calculate reliable
flow information.

Research by Agrawal et al. [1] in 2017 showed that using a control strategy that uses the inverse of the
optic flow difference between the two Field of View (FoV) halves, it is able to avoid frontal collision with walls.
The disadvantage of this strategy is that it generates a lot of control jittering, as the optic flow difference is
zero when flying straight through a corridor.

In 2019, Cho et al. [25] implemented the standard optic flow balancing method, but also extended it to-
wards the vertical axis by splitting up the FoV in four planes. Figure 4.7 shows the left horizontal optic flow
region, with increased activity as a wall is nearby. A frontal obstacle avoidance strategy is also implemented
by calculating the expansion of optic flow in both horizontal planes and subsequently determining the head-
ing rate. Their experiments are performed with low velocities and therefore do not include any pitch or yaw
compensation. Also, the performance highly depends on the quality of dense optic flow estimation, which is
low for non-textured objects.
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Figure 4.7: Example of an optic flow balancing method, applied in simulation. The left horizontal optic flow region shows increased
magnitude and is subsequently used in calculating the control input. Image adapted from Cho et al. [25]

Concluding in general, optic flow balancing is a simple method, inspired by the centering response of insects.
It enables straight flight in well-textured corridors but is not able to handle obstacles that lie in the focus of
expansion. It has a low computational demand as the strategy can be derived directly from the estimated
optic flow in regions of interest in the FoV.

Time-To-Contact (TTC)
As shown in Section 4.2.2, the calculation of TTC is straightforward. If the Focus of Expansion (FoE) and
the optic flow vector is known, the TTC is a direct derivative of the optic flow. TTC is a biological plausible
concept (see Section 3.2.1), and requires low computational effort as it is a direct derivative of the already
calculated optic flow. It is also able to handle multiple objects, as for each tracked image patch, the TTC can
be calculated. A disadvantage is that it cannot handle objects directly in the FoE (as the optic flow is zero in
the FoE). It is also highly dependent on the estimation accuracy of the FoE and flow vectors.

Considering frame-based monocular cameras, early works by Kai-Tai et al. [60] in 2001 showed the possibil-
ity of estimating TTC in real time. They estimated dense optic flow and mapped the TTC for all pixels in an
angular histogram. Information from the histogram is then used to choose a suitable avoidance direction. In
2009, research from Byrne et al. [23] performed expansion segmentation in simulation on images by mini-
mizing an expectation-maximization framework. They used a novel TTC uncertainty model and were able to
segmentate collision regions in simulation. It was not tested on-board a mobile robot, and the segmentation
optimization required high computational power.

TTC estimation using event-based monocular cameras was proposed first by Clady et al. [27] in 2014. They
implemented event-based TTC on a mobile ground robot. To estimate the optic flow, an event surface method
was used. Subsequently, a probability map was used to estimate the FoE. As they do not compensate for rota-
tional motion of the mobile robot, it was only able to perform under stable translational motion. The imple-
mentation on the mobile robot did not contain any control algorithm, it was only proposed to show the TTC
estimation. Milde et al. [85] also implemented TTC on a mobile robot using event surfaces to estimate optic
flow in 2015. They also included a (open-loop) control scheme, based on TTC estimates. It was not validated
by controlling the mobile robot under closed-loop conditions or using real-time data processing.

In 2018, Colonnier et al. [30] improved the work of Clady et al. and proposed an implementation on a
quadrotor. An FPGA was used to filter events, and subsequently send them to a ground-station for further
processing. Under assumption of a constant velocity, they implemented a Kalman filter on the TTC esti-
mation. Dividing the Field of View (FoV) into three regions of interest, they were able to create a controller
which allowed for a simple obstacle avoidance strategy. If a threshold TTC in one of the regions of interest
was reached, the controller steered the quadrotor in the opposite direction until the TTC has decreased again.
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Concluding in general, using TTC for obstacle detection is a simple, biologically feasible strategy, able to
handle multiple objects with low computational demand. Disadvantages are the heavy reliance on the optic
flow and FoE estimation accuracy and the inability to handle objects in (or close to) the FoE.

Object size expansion & epipolar geometry methods
As described in Section 4.2.1, the change of object size is a depth cue which can be used for obstacle detection.
First, the object has to be detected and subsequently, the rate of expansion has to be determined. There
are several frame-based approaches which track features, identify whether they belong to an object, and
subsequently estimate the rate of expansion of the identified group. No event-based methods are proposed
yet on this topic.

In 2013, Mori et al. [90] used a SURF feature tracker and estimated the relative scaling of tracked features
over several frames in a certain region of interest. Its performance is highly dependent the accuracy of the
SURF feature tracker and on the amount of texture on the object. Al-Kaff et al. [3] used the same feature
size expansion method in 2016. They also added a convex hull around the tracked features and included
the size expansion of that hull in their estimation. This approach has the same disadvantage as the work of
Mori, described above. In 2017, Falanga et al. [39] proposed a method that was able to fly through a narrow
inclined gap using on-board sensing and advanced trajectory planning. It uses a priori information about
the geometry of the gap, and uses a feature tracker to estimate the relative position of the gap. Although this
method shows the agility of the MAV and fast on-board processing, it is not generalizable due to the specific
task it was proposed for.

Works by Schaub et al. [116] [117] proposed a method that is able to handle dynamic objects using clus-
ters of tracked features, similar to the size expansion methods described above. As psychologist J. Gibson
described [49], if an object expands symmetrically on the scene image, the obstacle is on a collision path. If
the epipolar center of optic flow vectors, related to the dynamic object, lie within the object boundary, the
object is on a collision path. If the epipole of the flow vectors is outside of the dynamic object, it passes the
observer (see Fig. 4.8). This approach was implemented on an autonomous vehicle, but has a high computa-
tional demand (due to the clustering optimization) and is strongly dependent on the feature tracker accuracy.

Figure 4.8: Example of epipolar geometry method, applied in simulation. The yellow dot is the epipolar center of the optic flow vectors
in the obstacle cluster. The epipolar center clearly lies outside the object boundary and thus the object is not on a collision course.

Image from Schaub et al. [117]

Concluding in general, size expansion methods using tracked features are able to handle frontal objects but
cannot handle corridors and are heavily dependent on the feature tracker accuracy. Using epipolar geom-
etry, it is possible to discern if objects are on a collision course or passing the observer. This is also highly
dependent on the clustering accuracy of optic flow vectors on objects.

Scene mapping methods
Creating a map of the environment enables map-based motion planning. There are many optimized plan-
ning methods which are outside the scope of this literature review. A well-known mapping method is ’Vi-
sual Simultaneous Localization And Mapping’ (VSLAM). It localizes the MAV locally, estimates its state and
builds a three-dimensional map of the environment using visual information. This is often achieved by us-
ing monocular, stereo or RGB-D cameras [91]. Although these methods allow for an advanced model of the
environment, the computational complexity limits its usage on fully autonomous MAVs. Often, the visual
data is processed by an off-board ground station and only the control command is send to the MAV using a
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wireless connection (such as by Zhang et al. [145] or Esrafilian et al. [38]), which strongly limits its autonomy.
Heng et al. [54] showed that by tightly synchronizing the IMU and four on-board stereo vision cameras, while
heavily down-sampling the 3D virtual scan data, SLAM and obstacle avoidance can be performed using fully
on-board processing but is still a computationally highly demanding task.

This concludes the review of optic flow based obstacle avoidance methods. As obstacle avoidance is a com-
plex task which is hard to model, many researchers use a learning based approach. The following section
reviews previous research on learning based obstacle avoidance methods.

4.2.5. Obstacle avoidance methods using learning
Visual obstacle avoidance is a complex task with many possible cues. In the computer vision domain, often a
learning based approach is used to avoid modelling the entire problem. As already described in Section 4.2.2,
optic flow estimation is often performed using neural networks and a learning based approach. This sec-
tion will cover methods that use the camera video stream as input, and output a control command. This
end-to-end approach avoids modelling the complex mechanisms behind obstacle avoidance, but also has its
limitations.

Imitation and supervised CNN learning
In 2012, Ross et al. [110] proposed a monocular frame-based approach based on imitation learning. Frame
based video and control input from a piloted drone, flying through a dense forest, was used as training set.
Based on four types of features, the video stream is analyzed and given as input to the trained network. The
main disadvantage of this approach is the large amount of manually generated training data which is re-
quired.

Manglik et al. [82] trained a convolutional neural network (CNN) to estimate TTC from a frame based
camera. They used a LIDAR scanner to generate ground truth values and video from a monocular camera to
train the network. Although this is a novel approach, the network is hard to generalize to unknown scenes
and a LIDAR scanner is required to generate ground truth values.

The first implementation of a CNN for monocular event-based obstacle avoidance, was proposed by Moeys
et al. [88] in 2018, in combination with their PRED18 dataset. In a ’prey following’ task, they divided the FoV
into three vertical regions and used a CNN to recognize the relative heading of a target ’prey’. They trained the
CNN by using laser range meters to estimate distance to obstacles. Their approach was only able to output
three control commands: steer left, right or center. In 2019, Sanket et al. [115] proposed the EVDodgeNet, an
MAV implementation which is able to avoid small objects thrown at the MAV. It uses a CNN on event-images
to perform obstacle segmentation and to estimate optic flow. Based on the size of the object (known a priori),
it is able to estimate a three dimensional avoidance path. The disadvantage of this approach is its require-
ment for a priori information, and its heavy computational requirements.

LGMD neural structure
The Lobula Giant Movement Detector neurons (see ’Lobula Giant Movement Detector’ in Section 3.2.1) in
the brain of locust, are able to detect looming predators. Several implementations have took the approach of
mimicking this neural structure for obstacle avoidance. A frame-based camera approach was done in 2016
by Hu et al. [56]. They implemented the system on a micro-robot, which was able to avoid collision with
textured poles. Its neural structure allowed for very low computational demand but also allowed for only
three output signals: stop, drive forward, or move right or left (chosen randomly). This strongly restricts the
generalizability of their approach.

When using an event-based camera for this method, the asynchronous spiking ouput of the event-based
camera fits well with the spiking structure of spiking neural nets (SNN). In 2017, works by Salt et al. [113]
[114] implemented the event-based camera and an LGMD neuron on a quadrotor. It was able to avoid loom-
ing stimuli by moving towards a region in the field of view with less spiking LGMD neurons. Milde et al. [86]
implemented an LGMD network on a mobile robot with a ROLLS neuromorphic chip. Their approach al-
lowed for two motor outputs of the network: turn left (when there is an obstacle in the right field of view),
and vice versa. Although in general, the LGMD method is one of the most biologically feasible approaches,
the implementations still lack generalizability as it is still a very undeveloped field of research.
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In general, learning approaches are advantageous as they do not require to model the full problem and neural
nets are biologically inspired. These methods also have certain disadvantages, such as being hard generalize
to unknown scenes. Also, low-light applications are often an issue for neural net approaches, as little training
data is available for these conditions. More broadly, this is an issue for event-based camera applications with
a learning approach, in contrast to conventional frame-based approaches.

4.3. Synthesis
This chapter focuses on previous research on obstacle avoidance using event-based cameras. To highlight the
most relevant findings in this field of research, this section will answer the research questions on event-based
cameras and obstacle avoidance.

What does the theory state about event-based vision? (Section 4.1)
The event-based camera is chosen as a basis for this research as it has characteristics that suit the research
objective well. Its pixels detect brightness change, which can be interpreted as apparent motion in the scene.
It is evident that this is highly relevant for obstacle avoidance. The event-based camera also has a very low
power consumption (< 100 mW), which is advantageous for MAV applications. It is also based on a biological
inspired principle (directionally sensitive cells), which follows the bio-inspired approach of this research. As
the event-based camera outputs an asynchronous stream of events, the processing pipeline also needs to be
changed significantly. Using event packages (e.g. to estimate optic flow) preserves the correlation between
individual events, and has been shown to be an effective method of processing events.

Section 4.2.2 discussed different methods of estimating event-based optic flow. In general, there is no clear
best performing method, as there is still a lack of benchmark metrics and datasets in this field of research.

In order to use conventional neural network approaches to estimate optic flow, the event stream has to be
converted back to frames. This disregards valuable spatio-temporal information. ANN approaches require
a lot of training data and do not generalize well to low-light environments. Spiking neural net optic flow
research is still in its infancy, and has not been shown to perform as well as other approaches. Correlation (or
’focus’) methods have a high potential as they fully utilize the spatio-temporal structure of the event cloud.
However, these methods require an optimization scheme to find a correlation between events. This has a
high computational demand and unknown performance for estimating optic flow. In contrast, using an event
surface approach utilizes the time and space distribution of events. It has also been shown to estimate optic
flow with higher accuracy than the conventional Lukas-Kanade algorithm. Therefore, this is a promising
approach to estimating event-based optic flow.

What are state-of-the-art monocular event-based obstacle avoidance methods in the mo-
bile robotics domain? (Section 4.2)
This section discussed different optic flow, scene mapping and learning based obstacle avoidance methods,
using a frame- or event-based camera. Optic flow based methods utilize the apparent motion of the scene
image. Optic flow balancing, Time-To-Contact (TTC) and object size expansion methods have been shown
to have a relatively low computational complexity and are based on biological principles discussed in Sec-
tion 3.2.1. Scene mapping methods (such as VSLAM) allow for map-generation, but are also highly compu-
tationally demanding and not biologically feasible. As fully on-board processing is required for this research,
and a bio-inspired approach is taken, scene mapping methods are not considered. Learning based meth-
ods, such as imitation learning or supervised CNNs, are advantageous as they do not require to model the
full problem and neural nets are biologically inspired. However, these methods are also hard to generalize
to low-light environments, as little training data is available for event-based camera applications. Learning
approaches also often require heavy computations, which cannot be performed on-board the MAV. Based on
these considerations, optic flow based methods are most suitable to fit the research objective: an obstacle
avoidance system usable in low-light and with on-board processing.

To review optic flow based obstacle avoidance methods from a functional perspective, different scenarios
are proposed in this section. Depending on the scene in which the MAV has to manoeuvre without hitting
obstacles, the discussed methods have certain advantages and disadvantages. With these scenarios, the most
suitable approaches to obstacle avoidance are given, alongside with a recent state-of-the-art paper. First,
scenarios with static objects are shown in Table 4.1. As can be seen, the Time-To-Contact and object size
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expansion methods can be utilized for both the frontal wall and pole. However, if the frontal surface of the
pole is too small, the Time-To-Contact method will not be able to detect the pole (as the TTC in the FoE
is zero). Therefore, for the pole scenario, the object size expansion methods are preferred. The optic flow
balancing approach can be applied to both the corridor and one-sided wall scenarios. The state-of-the-art
research for each method is also given in Table 4.1. No event-based approaches are known for the object size
expansion and optic flow balancing methods and thus frame-based approaches are listed.

Frontal Wall Frontal Pole Corridor One-sided Wall

Method:
Time-to-contact

Method:
Object Size Expansion

Method:
Optical Flow Balancing

Method:
Optical Flow Balancing

State-of-the-art:
Colonnier et al. (2018) [30]

(Event-based camera)

State-of-the-art:
Mori et al. (2013) [90]

(Frame-based camera)

State-of-the-art:
Cho et al. (2019) [25]

(Frame-based camera)

State-of-the-art:
See ’Corridor’ scenario

Table 4.1: Scenarios for static obstacle avoidance, with most suitable methods and state-of-the-art research papers.

Table 4.2 shows the scenarios with dynamic objects, such as an approaching pole. The frontal approach-
ing pole is similar to the static pole, although if the MAV would stop its motion, the pole would still advance
towards the MAV. The same methods as for the static pole can be applied here. The Translating Perpendicular
Pole and Approaching Pole Under Angle both require a more complex method. It is unknown if the obstacle
will pass in front or behind the MAV, or is on a collision course. The literature review has shown that using
epipolar geometry of the optic flow vectors provides a solution to these scenarios. These methods are able to
detect if the pole is on a collision course or will not hit the observer.

Frontal Approaching Pole Translating Perpendicular Pole Approaching Pole Under Angle

Method:
Object Size Expansion

Method:
Obstacle segmentation +

Epipolar lines

Method:
Obstacle segmentation +

Epipolar lines
State-of-the-art:

See ’Frontal Pole’ scenario
State-of-the-art:

Schaub et al. (2016) [117]
(Frame-based camera)

State-of-the-art:
See ’Translating Perpendicular

Pole’ scenario

Table 4.2: Scenarios for dynamic obstacle avoidance, with most suitable methods and state-of-the-art research papers.

This concludes the chapter on event-based cameras, optic flow, FOE estimation and obstacle avoidance
methods. As the obstacle avoidance methods apply to specific scenarios, a combination of these methods is
required to make the system robust to any scenario. This implementation is performed in the experimental
research. For this literature research, the central research questions are listed and answered in this synthesis,
such that this knowledge is applicable in the obstacle avoidance system design.



5
Conclusion

This literature review provides a fundamental basis for the research into a bio-inspired approach to obstacle
avoidance in low-light using event-based cameras on an MAV. The contribution of this literature review is
in threefold: biological inspiration is drawn from fundamental principles of insect obstacle avoidance and
nocturnal vision, and state-of-the-art optic flow, focus of expansion and obstacle avoidance methods are re-
viewed. To support the bio-inspired approach, the biological principles behind human and insect vision are
discussed and compared. This shows that insects are able to process visual information using very efficient
methods and which provide valuable insights for MAV applications. The first topic of biological inspiration is
insect obstacle avoidance. Several types of visually guided behaviour are discussed, of which time-to-contact
estimation, the centering response in corridors, peering behaviour and saccadic motion are the most rele-
vant concepts. These concepts are used as inspiration in the obstacle avoidance system design. The second
topic of biological inspiration is the set of fundamental principles enabling nocturnal vision. Spatial and tem-
poral summation and a slow response time with increased gain are neural processing characteristics, which
can be used as inspiration to improve the performance of the event-based camera system in low-light. In
these low-light conditions, two relevant types of visual noise are identified: photon shot noise and thermal
noise. To suppress these types of noise, spatially filtering the output and cooling the event-based camera is
proposed. After discussing these two topics of bio-inspiration, state-of-the-art research in event-based optic
flow, focus of expansion and obstacle avoidance is reviewed. As the event-based optic flow domain still lacks
standardized metrics and datasets, no clear comparison can be made between methods. The event-surface
optic flow approach has been shown to utilize the space-time distribution of events well, has high accuracy
compared to conventional techniques and therefore is a promising approach. To categorize state-of-the-art
obstacle avoidance methods, several static and dynamic obstacle scenarios are proposed. According to these
scenarios, the most suitable obstacle avoidance methods and state-of-the-art research is listed. With this lit-
erature review, all literature research questions are answered and a fundamental theoretical basis is provided
for reaching the research objective.
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