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HIGHLIGHTS

® State space models are proposed for all-electric ships.

® Novel predictive energy management and maneuvering control approaches are proposed.
e Using the approaches, optimal engine loading is guaranteed.

® The fuel efficiency increases by 2-15% depending on the operating profile.

® Trajectory tracking performance is improved.
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Over the last few years, autonomous shipping has been under extensive investigation by the scientific com-
munity where the main focus has been on ship maneuvering control and not on the optimal use of energy
sources. In this paper, the purpose is to bridge the gap between maneuvering control, energy management, and
the control of the Power and Propulsion System (PPS) to improve fuel efficiency and the performance of the
vessel. Maneuvering control, energy management, and the control of the PPS are in the literature typically
studied independently from one another, while they are closely connected. A generic control methodology based
on receding horizon control techniques is proposed for the ship maneuvering control as well as energy man-
agement. In the context of this research, Direct Current (DC) all-electric architectures are considered for the PPS
where the relationship between the produced power by energy sources and vessel propellers is established by a
DC microgrid. The objective of the proposed approach is to ensure the ship mission objectives by guaranteeing
efficient power availability, decreasing the trajectory tracking error, and increasing the fuel efficiency. In this
regard, for the ship motion control, a Model Predictive Control (MPC) algorithm is proposed which is based on
Input-Output Feedback Linearization (IOFL). Through this algorithm, the required power for the ship mission is
predicted and then, transferred to the proposed Predictive Energy Management (PEM) algorithm which decides
on the optimal split between different on-board energy sources during the mission. As a result, the fuel efficiency
and the power system stability can be increased. Several simulations are carried out for the evaluation of the
proposed approach. The results suggest that by adopting the proposed approach, the trajectory tracking error
decreases and the Specific Fuel Consumption (SFC) efficiency is significantly improved.

1. Introduction

The concept of autonomous shipping, its benefits, and future utiliza-
tion are undergoing extensive study and investigation by both academic
and industrial communities. Autonomous ships are expected to yield ad-
vantage from several points of view such as reduced crew cost, higher
safety, and more adaptability to different operating profiles. However,

several challenges need to be addressed before fully operational autono-
mous ships can be enabled. These difficulties include problems with au-
tomatic path planning, navigation and trajectory tracking, cooperation
with other vessels, power and energy management issues, and fault-de-
tection, isolation and reconfiguration. To address these issues, several re-
searches have been and being carried out in academia and maritime in-
dustries. Path planning approaches are designed with obstacle avoidance
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features to steer the vessel in congested waterways based on the specifi-
cations and dynamics of the vessel [1]and also to increase fuel efficiency
during operation [2]. Novel navigation and trajectory tracking approaches
are proposed to steer the ship smoothly towards its planned trajectory in
congested waterways [3] and also in the presence of uncertainties [4].
Cooperation of autonomous ships has recently been considered for path
following with collision avoidance capabilities [5,6] and also for pla-
tooning and building vessel train formations [7]. Energy management is-
sues have been addressed to increase the fuel efficiency [8,9] and ro-
bustness of the on-board power system [10] while also increasing the
autonomy of the power and propulsion system. In unmanned vessels fault-
detection, isolation and reconfiguration is a vital issue [11]. These pro-
blems have been considered in the literature for both the electric power
system [12] and also propulsion system of vessels [13]. Due to the ex-
pected reduced number of on-board crew members in autonomous vessels
the role for automation and independent machine performance in all of
the mentioned issues increases significantly and becomes more vital. For
this purpose, the adoption of intelligent control and management algo-
rithms for diverse purposes is necessary.

Alongside with increased autonomy, and mainly due to environ-
mental restrictions from international maritime authorities, there is a
shift towards more efficient Power and Propulsion System (PPS) ar-
chitectures as a replacement for direct-diesel propulsion configurations
[8]. As a result, the complexity of the on-board PPS architecture is in-
creasing due to the addition of several components such as synchronous
generators, induction motors, and power conversion modules. Fur-
thermore, it has been proved that such advanced architectures cannot
be as efficient as expected unless advanced control and energy man-
agement algorithms are adopted [8,9]. These architectures can be di-
vided into two different types: hybrid architectures where the re-
lationship between diesel engine and propellers is established directly
and also through electrical machinery [8,14] and all-electric archi-
tectures where this relationship is formed only through an electrical
grid [15,16]. There have been several research works for increasing the
fuel efficiency of ships with these architectures. For more information
regarding these works see [8,17] and references therein.

1.1. DC power and propulsion systems

Among different architectures, in this paper, the focus is on the DC
Power and Propulsion System (DC-PPS) architecture which, with ad-
vances in the domain of semiconductors, is perceived as one of the most
efficient architectures [17]. Several advantages of DC-PPS are the
possibility for optimal engine loading, variable diesel engine speed, and
fuel efficiency, which make this PPS suitable for ships with different
operational profiles. Moreover, increase of flexibility in the design stage
and a decrease in the number of converting stages are among ad-
vantages of DC on-board microgrids [15,8]. As a result, DC-PPS can be a
proper power system candidate for autonomous ships. On the other
hand, there are several challenges in taking full advantage of this ar-
chitecture such as power system stability [18], fault tolerance [12], and
optimal energy management issues [17]. As a result, the complexity of
this architecture suggests performing more elaborate investigations to
increase the performance and efficiency of this architecture. In [15], an
on-board DC-PPS is modeled and the interaction between different
components are investigated. This work is extended in [17] where an
energy management algorithm is proposed to increase fuel efficiency
under different loading conditions. In [10,19], MPC-based algorithms
are used for energy management where a combination of ultra-
capacitors and a battery is adopted for on-board energy storage.

To guarantee power availability during operation, the energy
management controller should cooperate with maneuvering controller.
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This cooperation should be devised in a form of information exchange
where the future required power for the operation is predicted within a
finite horizon and made available for the energy management con-
troller to guarantee power availability during the operation.

1.2. Maneuvering control

The problem of maneuvering control of autonomous vessels in the
presence of environmental disturbances is one of the main challenges on
the way of having fully autonomous ships. Intelligent controllers of au-
tonomous ships should be capable of propelling the vessel towards an
apriory planned path. Regardless of difficulties within controlling this
complex system, one of the main issues is to keep the ship as close as
possible to the planned trajectory in the presence of environmental dis-
turbances such as waves and currents. This issue exposes its significance in
or near port areas and hinterlands where the problem of waterway con-
gestion exists. The problem of trajectory tracking control is being studied
extensively, where several approaches have been proposed for the tra-
jectory tracking control including Model Predictive Control (MPC) [3,20],
adaptive schemes [21,22] and nonlinear methods [23,20]. In [3], a linear
Model Predictive Control (MPC) algorithm is proposed to address the
problem of trajectory tracking control with knowledge over arrival time
where the nonlinear model of the vessel is linearized to decrease com-
putational complexity. Nonlinear MPC schemes are adopted in [20] for
trajectory tracking in the presence of uncertainties. A neural learning
control strategy is adopted in [24] to guarantee trajectory tracking of an
autonomous vessel with uncertainties within its model. In [25], the tra-
jectory tracking problem is investigated using neural-adaptive control
schemes in the existence of output constraints and parameter uncertainties
in the maneuvering model. Maneuvering control in the presence of un-
certainties within propeller’s model is considered in [4] where an adaptive
control approach is proposed for trajectory tracking. These control stra-
tegies are extended to multi-vessel applications where different vessels
should collaborate with each other to fulfill diverse tasks including tra-
jectory tracking [26] and platooning [7]. However, in none of the above
works the interaction between the PPS and the ship maneuvering control
algorithm is considered.

1.3. Contributions of the paper

In this paper, the objective is to bridge the gap between maneu-
vering control on one hand and energy management on the other hand
to maximize the fuel efficiency of the all-electric vessels and improve
their performance. First, the overall system is described and a mathe-
matical model is presented for different components. A mathematical
model in 3 Degrees of Freedom (3DoF) is presented for the vessel which
captures the vessel’s voyage in waterways. Moreover, the overall DC-
PPS is modeled and a benchmark is created for experimenting the
proposed approaches. Then, an MPC algorithm is proposed for the
purpose of trajectory tracking and maneuvering control. The MPC al-
gorithm is designed based on Input-Output Feedback Linearization
(IOFL) that is established by using the results in [27,28]. By adopting
this technique, quadratic programming methods can be applied for
solving the optimization problem which leads to a significant decrease
in computational costs. Then, using the propeller dynamics and the
efficiency curve of induction motors [9], the predicted required power
is estimated over a finite horizon. This estimation is used for de-
termining the optimal power split between different energy sources on-
board, where the objective is to maximize the fuel efficiency and con-
tribute to the robustness of the power system by avoiding sudden
changes in diesel-generator’s loading condition. The energy manage-
ment algorithm guarantees that if a Diesel-Generator-Rectifier (DGR)
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Fig. 1. Block diagram of the proposed control methodology.

set is in-line, it functions around its optimal point in Specific Fuel
Consumption (SFC) curve. This is achieved by determining an optimal
split between DGR sets and the battery. Using this so-called Predictive
Energy Management (PEM) approach, the battery’s power is used for
damping the load fluctuations. In Fig. 1, the block diagram of the
proposed control methodology is presented. All in all, the contributions
of the paper are:

1. Modeling the overall ship with DC-PPS and representing its math-
ematical model in a state-space format.

2. Proposing an MPC approach for maneuvering control of the vessel in
3DoF which is designed by adopting IOFL and linearization of
constraints so that quadratic programming approaches can be
adopted.

3. Through the proposed predictive maneuvering control approach,
the future required energy for the ship operation is predicted in a
finite horizon and is used by the energy management controller.

4. An energy management approach is proposed which guarantees the
optimal power split between different energy sources by taking into
account the predicted required energy, the objective is to increase
the SFC efficiency during operation.

For evaluation of the proposed control approaches, several simula-
tions are carried out including a trajectory tracking simulation in the
port of Rotterdam and operating profiles of real harbor tugs. It is shown
that the trajectory tracking error is decreased and fuel efficiency is
increased if the proposed generic approach is adopted.

1.4. Outline

The remainder of the paper is organized as follows. In Section 2, the
ship maneuvering model and the overall DC-PPS are described. In
Section 3, the MPC algorithm for the motion control of autonomous
ships is presented. In Section 4, the proposed PEM approach is de-
scribed and its interactions with the motion control algorithm is de-
scribed. The results of simulations are presented in Section 6. In Section
7, concluding remarks and future research directions are provided.

2. System description

In this section, the overall system under study is described. First, the
equations of motion in 3DoF are presented for the maneuvering model
of the vessel. Then, the DC-PPS architecture is explained and a math-
ematical model for each of its components is given. The maneuvering
model dynamics represent the lowest block (vessel’s hull) and DC-PPS is
power and propulsion system block in Fig. 1.

2.1. 3DoF maneuvering model

In the context of this paper, the 3DoF motion of the ship is con-
sidered [23,22]. The maneuvering model of the ship can then be de-
scribed as:

7, (t) = R, (1)) vs (1)
MsVs (t) + Cs (Vs (1)) s (1) = 75(t) + Tdrag (vs (1), s (1)), 1)

where 7 (t) = [x(t), y(t), r (t)]" is the ship position and orientation at
time t, vs(t) = [Vx(t), vy (t), v, ()" is the 3DoF ship speed and 1 is the
vector of forces applied to the ship center of gravity. M; is the Inertial
Mass matrix which consists of rigid body and added mass matrices.

MS = MRB + MA (2)
where

m, 0 O myx 0 O
M= 0 my O], Ma=| 0O my 0]

0 0 I 0 0 |y 3)

Parameter my, is the mass of the vessel, |, is the moment of inertia, m,
and m,, are the added mass in x and y direction, respectively, and I,
represents the added moment of inertia.

Matrix Cs(*) is the Coriolis and Centrifugal matrix defined as:

0 0 —myy
Cs(vs)=| O 0 mvy
mvy — mvy 0 4)

Function tgrag (.), which is a function of ship speed and course angle,
represents drag forces in 3DoF applied to the craft. The details of this
function are provided in appendix.
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Matrix R (7,) is a Jacobian matrix that transforms ship velocity from
body-fixed into inertial velocities, defined as:

cos(r) —sin(r) 0

sin(r) cos(r) O]
0 0 1 5)

R(n) =

Vector T is the vector of forces generated by propellers applied to
the ship center of gravity and is:

Tx (t)
() = | ()
% (t) (6)

where 7 and 7y are surge and sway forces and 7 is the yaw moment.

Considering non-rotatable typical propellers, the relationship be-
tween the thrust produced by actuators (propellers and thrusters) and
the vector of forces is [23]:

& (m)
5= 1—‘3 m ’

G (Nm) )
where ¢, ,0, are actuator dynamics, ny, ,nm are actuators shaft

speeds, m is the number of actuators, and I is the thrust configuration
matrix defined as:

r=[n Ynl, (8)
with %, %, %, column vectors for standard actuators. If the actuator is
a propeller, then:

[ 1
yl = 0 N

= ©

if the actuator is a stern or bow thruster, then:

=11
[ Ix 10)

where |, and I, represent the position of the actuator in the vessel’s
reference frame. Since, generally, I is not a square matrix the solution
to the problem of unconstrained thrust allocation to non-rotatable ac-
tuators can be found using the pseudo-inverse of I':

T = TT(ITT) 1z, an

2.2. DC power and propulsion system

The fulfillment of the ship desired operation is not only dependent
on the ship maneuvering control algorithm but it is also vitally related
to power availability during the operation. As a result, the PPS should
be studied alongside to the ship maneuvering model. In this paper, a
DC-PPS is considered for the vessel.

On-board DC microgrids consist of prime-mover(s) and AC/DC
conversion modules on the energy generation side and motor controller
inverters, induction motors, propellers and other loads (like hotel loads,
weaponry facilities, etc) on the consumption side. Diesel-generator sets
act as prime-movers. The generators are connected to six-pulse recti-
fiers where the AC/DC conversion process is carried out. The DGR sets
are connected to the consumption side through a DC-link which in our
study consists of a capacitor. The schematic of the system under study is
shown in Fig. 2. Note that for redundancy and safety purposes in some
variations of this architecture, more than one bus bar exist.

One of the main advantages of DC-PPS is enabling the use of
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variable speed generators. As a result, the diesel engine can run at
variable speed which can lead to a reduction in fuel consumption [8].
This feature alongside with the other benefits of this architecture
(mentioned in the introduction) increases the flexibility of this PPS
which leads to increased adaptability to different operating profiles. On
the other hand, one of the major challenges for enabling the DC-PPS is
the problem of stability. In the context of this paper, the stability pro-
blem is addressed form an energy management point of view where the
proposed approach guarantees the power availability and prohibits
DGR sets to undergo extreme and rapid changes in their loading con-
dition by prioritizing the battery when the energy generation side faces
rapid load transients.

The consumption side of DC-PPS contains induction motors that are
connected to propellers and thrusters as well as non-propulsive loads
such as hotel loads. The induction motors are connected to the DC bus
using motor controller inverters. In the remainder of this section, a
mathematical model is given for the different components of the DC-
PPS.

2.2.1. Propeller
The relationship between the shaft speed and propeller torque and
thrust is established using the following equations [29]:

Tp = KrpD4|np|np (12)

Qp = KgpD®|np|np, 13)

where D is the propeller diameter and p is the water density. Para-
meters Kr and Kq are thrust and torque coefficients which are functions
of propeller structure and advance ratio J,[30] that is:

Va

J, = —
)

where V; is the advance speed of the ship.

2.2.2. Induction motor

The model of the induction motor is also represented in the dg-
reference frame [31]. The dynamical equations of the squirrel-cage
machine are:

z;bdsm = Vdsm — wplabqsm + Tymidsm

ztbqsm = Vosm — wplabdsm - rsmiqsm

Barm = Varm + (%C‘)p — @e)¥grm — frmigm

d’qrm = Vgrm — (%wp - CUe)llerm - rrmiqrm

Qem = 1.5p (Ygsmigsm — Pgsmidsm), 14)

where igsm and igm are stator currents in the dq-reference frame, igm
and igrm are rotor currents, Yysm, Yosm»> Porm and Py are the stator and
rotor fluxes, respectively. Parameter p represents the number of poles,
wy, is the rotor speed, w is the electrical angular velocity and Qg is the
electric torque. The stator and rotor voltages in the dq-frame are shown
as Vgsms Vgsm» Varm and Vgrm, respectively. The relationship between the
machine currents and fluxes are established using the machine in-
ductances Lgm, Lrm and Ly, as:

ztbqsm = Lsmiqsm + meiqrm
ztbdsm = Lsmidsm + Linmidrm
Z/)qrm = eriqrm + meiqsm
Piem = Limidgrm + Lmmidsm. (15)

A voltage source inverter is used as a converting stage between the
DC-link and the machine which controls the machine by adopting a
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Fig. 2. The DC-PPS under study.

direct torque control technique [31].

2.2.3. Diesel engine

The diesel engine is the primary energy supplier by transforming
chemical energy to mechanical energy. The produced power appears as
torque generation. The diesel engine dynamics can be approximated by
nonlinear or linear equations (see, e.g., [29,32,33]), depending on the
level of accuracy needed. In this paper, a linear model is adopted to
accommodate the relationship between the fuel index and produced
torque Qgn by means of a transfer function as below [34]:
3 - Qen
Qen = Ton + Kenfenv (16)
where Kg, is the torque constant, f,, is the governor setting (i.e., fuel
index and flow) and 7, is the torque buildup constant which determines
the response speed of the diesel engine, a function of diesel-generator
shaft speed:

_ 09

Ten )

@dg 17)

where wqy represents the rotational speed [35].

2.2.4. Synchronous generator

The mechanical energy is transformed to electrical energy by use of
the synchronous generators. The relationship between a generator and
a diesel engine is established through the shaft speed where the gen-
erated torque of the diesel engine is an input for the generator. In the
context of this research, the Park equivalent Direct-Quadratic (dq)
modeling approach is used to represent the dynamics of the synchro-
nous generator. The relationship between the voltages, fluxes, and
currents in the dq reference frame is established using the following
equations:

¢d =-—Vq+ wdg¢q + Kig

Py = —Vq + wagthy + Kig

Prg = Vig — it

Prg = —Tiaika

Yiq = ~Tkalka: (18)

where I, Iy, I, and ryg are stator, field circuit and damping re-
sistances, respectively. Variables ), and 3, are fluxes in the d and g axis,

Pyq and ¥, are damper fluxes; field flux is represented by %y. In the
above model, vy and V4 are dq voltages and viq is the field voltage of the
generator. The mechanical dynamics of the synchronous generator are
given as:

. 1 . .
Wag = m(d)dlq - d’qld + Qen)r (19)

where wqy is the shaft speed of the diesel generator, Qe is the me-
chanical torque produced by the diesel engine, and H = % is the inertia
constant per pole. Using the system inductances, the relationship be-
tween electrical currents and fluxes can be established as:

ig “Ls 0 Lmg Lma O ' | %
iq 0 —Lg 0 0 L Py
ig|=]—-Lma O L Lma O Prg
ikd “Llmd 0 Lmd Laa O Pg
g 0 —Lmg 0 0 La| [g 0

where Ly, Lind, Lid, Lids Lg, Lmq and Liq are per unit inductances ([31]).

2.2.5. Rectifier and the DC-link

We consider an average value model with constant parameters is
considered for the uncontrollable rectifier [36]. In our model, the rec-
tifier is introduced to the benchmark with generator currents as input
and DC current as the output. The DC current can be computed as:

ide = Brecy/ig + ig - 1)
The DC-link voltage is derived using the below Kirchhoff equation:

Vge = i(i — il0ad)

dc — C dc load (22)

where ijoaq is the DC load current.
The dqg-voltages from the rectifier to the generator are as follows:

Vg = Otrec VgeCOS (6)
Vd O‘rechCSin(eg)x (23)

where 6 is the load angle and is computed as below:

iq
6, = arctan(—) — .
9 (iq) ¢rec (24)

Variables ayec, B, and ¢, are considered constant in this model.
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Fig. 3. The architecture of the non-isolated converter.

2.2.6. Battery

A model from [37] is used for representing the battery dynamics.
This is suitable for power and energy management purposes. The State-
of-Charge (SoC) of the battery is determined using:

Soc(k + 1) = Sec (k) — (”‘C“)ib

n

(25)

where 7, is the cell Coulombic efficiency, i.e., ; = 1 for discharge and
7; < 1 for charge. Parameter C,, is the nominal capacity of the battery, k
is the sampling time, At is the sampling period, and i, is the battery
current. The battery voltage can be derived as:

Vp = Ocv (S0C (K)) — rpip (26)

where Ocy is the open circuit voltage of the battery and is a function of
Sec and ry, is the battery resistance.

2.2.7. Bidirectional converter

A non-isolated bidirectional converter is considered for the DC-PPS.
Non-isolated bidirectional converters are suitable for low and medium
voltage DC microgrids. They are cheaper and have lower losses com-
pared to isolated converters. The configuration of the non-isolated bi-
directional converter considered for this paper is illustrated in Fig. 3.

The dynamical model of the converter is adopted using Kirchhoff
current and voltage laws:

. d(t t
i = v (1) - 2

Ve = %iL(t) - 7""&30) @7)

where d (t) is the duty cycle of the switching operation, i, is the current
of the equivalent inductor on the low voltage side of the converter, vy, is
the battery voltage and D is the voltage ratio. The converter is con-
trolled using a cascaded PID control approach [38].

2.2.8. State space modeling of energy generation side

In this part, a state space model is presented by combining the
components of the energy generation side, i.e., diesel engine, syn-
chronous generator, rectifier, battery, and bidirectional converter. First,
(18) is rewritten in matrix form as:

Y 0 wg 00 0]| % 0 0 0 0 ][ia va
Y Wy 0 000 Y 0r 0 0 0 iq Vq
Yal=l0 0 000 P | +]0 0 —rg O 0 ifg | + | Vid
. 00 0 —rk 0 i 0
P 0 0 00 0||¥% kd

< 0 0 00 0ffy 00 0 0 —ruli 0
lpkq ka K

(28)

Then, by combining the above equation with (20) and (23), we obtain:

i
= X3S, (wag)Xals + X5'Rals + Vae Xg*

OrecSin (arctan (:_g) — Prec)

ClrecCOS (arctan(:—g) = Prec)

0
0
0 (29)

+ X5 bvgg

where Ig is the vector of currents, Xg is the matrix of per unit in-
ductances, and Rg is the diagonal matrix of resistances. Moreover,

0 wy 000
@y 0 000
Sul@i) =| 0 0 000
0 0 000
0 0 000

andb=1[0 0 1 0 o.
The dynamics of a diesel-generator shaft speed can now be re-
presented in matrix form as:

g = 5 (Qen — X Gy lc)

Qen = =& + Kenf,
S

en?’ (3())
where
0 100 0<
—-1> 00 0 O<
Gi=( 0> 000 0O<
0> 00 0 O<
0> 000 O

The dynamics of the DC link voltage in the presence of m number of
DGR sets can be written as:

1y e i~ i
Vde = E(ﬁreq\/lglGZIGl + m+ ﬁrecm\/m * DIL - |Ioad) (31)

where

10000
01000
G,=]100000
00000O
00000O

As a result, the overall dynamics of the energy generation side can be
described using the following equations:
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-1 1

I, = Xg; Sw (@dgy) Xe,ley + Xg, Rey lsy
1 -1

+ Vo Xg, E1 + Xg, bVia

o _ 1 Ty T

Wdg, = lel(Qenl — lg; X, G1lsy)

5 — Qenm
Qem - - 5 + Kenlfenl

] — y-1 —1

Iy = X, So (@dg,) Xem lom + XeRemlom
-1 -1

+ VdCXGm En + XGm bvfdm

Soo— 1 T T

@dg,,, = 2Hm (Qenm — IGmXGm Gilgy,)

Qenm = — Qe + Keng

om enm leny

(= Sy 20

Vge = é(ﬁrec1\/|(-3rlGZ|G1 + m+ 5recm\/‘|gm G lg,, + DiL — ijgad) (32)
where

. id;
recSin (arctan (ﬁ) - ¢reCj)
]

id;
— ]
E = OCrechOS(arCtan (_iqj) - ¢rec,‘) .

0
0
0 (33)

For the control of energy generation side and load sharing, conven-
tional PI-based schemes are adopted [17,38].

2.2.9. State space modeling of energy consumption side
Considering (13)—(15) the state space model for an induction motor-
propeller set can be written as:

v = Xutvm — Xt Wi Xm v — XitRulm

Om = %(1-5pm|r\T/|X1\T/|M1|M - Qp) (34)
where
[w, 0 0 0
0 wp 0 0
Wm=10 0 _(iwp_we) 0 !
2
i 0 0 0 (acup — We) 35)
[—rkm O 0 O
10 rm O O
Ru=1 0 o fm O |’
0 0 0 I (36)
[ Lgn O Lmm O
Xor = 0 Lem O Lmm
Ml Lom 0 Lm O [
| 0 Lom O Lm 37)
0 100
_|-1000
M=10 000
0 00O (38)

v = [idsm: iqsm: irsmv iqrm]Ty and Vm = [Vdsmy Vagsms Vrsms Vqrm]T-
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3. Model predictive maneuvering control

MPC approaches enable constraint handling and predicting future
values of states and control inputs. These features are advantageous for
ship maneuvering control purposes and interaction with the PPS as they
can lead to safer and more fuel-efficient ship operations. In this section,
an MPC algorithm is proposed for maneuvering control of autonomous
ships in 3DoF. The proposed algorithm is based on IOFL where by in-
troduction of an auxiliary control input, a linear relationship is estab-
lished between the system outputs and auxiliary inputs. Moreover, by
adoption of the methodology introduced in [27,28], the constraints are
linearized which leads to the possibility of using quadratic program-
ming methods for solving the optimization problem of the MPC algo-
rithm. As a result, the computational costs of the algorithm reduce
significantly compared to the algorithms presented in [3,20]. We use
the speed dynamics in (1) for the trajectory control. The position dy-
namics in (1) are used for determining the desired speed of the ship.

Let us rewrite the speed dynamics of the ship as:

Vs (t) = M (% + Tarag (Vs (1), 75 (1)) — Cs (Vs (1)) Vs (1) (39)
With the following IOFL law the above system can be linearized:
Ts = Mg (—Tarag (Vs (), 75 (1)) + Cs (vs (1)) Vs (1) + AsVs + Bss) (40)

where v; is the input vector of linearized system, ¢ represents its states
and A and Bs are states and input matrices of the linear system, re-
spectively. As a result, the transformed linear system can be written as:

Vs = AgVs + By, (41)

After discretization, MPC is applied where the objective is to keep the
ship as close as possible to the reference trajectory. In this regard, the
following MPC problem is defined with sample time Ty:

N-1
P (vs): min (VN (v, v5) = Z I(vs(k + 1), vs(k + i))J]

i=0 (42)

subject to:

Vs(k + i+ 1) = Ag(Ti)Vs (k + 1) + Bs(Ti)ws (k + i)
Viin (K + 1) < vs(K + 1) (K) < Vmax (K + 1)
Vmin(K+ 1 —=1) <vs(k+i—1) <vpx(k+i—-1),Viel[0 N] 43)

where

TG (KD, v5(K) = (G (K) = Vayeq (K))TWe (4 (K) = Vg (K)) + 22T (K) 5 (K).
44

In the above MPC problem, parameter N is the prediction horizon and
W, is the weight matrix of the cost function and is a positive definite
matrix.

The reference ship speed Vs, (k) is approximated using (1) as:

et (K + 1) — 77s(k))_

Vo (K + 1) = R_l(ﬂs(k))( T

(45)

The adoption of IOFL for MPC results in clear advantages since the
optimization problem is simplified, however, due to non-linearity of
input constraints, quadratic programming cannot be adopted for sol-
ving the optimization problem. In the following, using the results in
[28], we adopt a methodology for linearizing the input constraints in
(43) to further simplify the optimization problem which leads to major
reduction of computational costs.

The main idea behind this methodology is linear estimation of non-
linear constraints. Let us present the constraints acting on the thrust
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Fig. 4. The block diagram of the proposed maneuvering control strategy.

Fig. 5. Tito-Neri: a harbor tug 1:30 replica model [39].
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Fig. 6. Combined SFC curve of the harbor tug.
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Fig. 8. Simulation results of the energy consumption side (Experiment I).
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Fig. 9. Load and the battery current in charge mode (Experiment I).

vector T:
Tmin < Ts(K) < Tmax- (46)
If the IOFL rule is rewritten as:
v5(t) = Ws(v(t), T{t))
= Bg (Ms1s(t) + Tarag(v(1), ns(t) — Cs(vs(D)) v{t) — A (D),
(47)

then, vs can be approximated around (vs(to), 7s(t 9) as:
vs(t) ~ T, (v(t), T41))

o
= W(ve(to, Tt ) + —
Vs lvs(to.7ot 9)

() - 1)+ 22
s lws(to.s(t 0)

(zs(t) — 7s(ta)- (48)

Let vs(k + i]k) denotes the value of v; at time (k + i)ty predicted at time
ktk, then using (48), the linear constraints can be found as:

Vmin (K +1—1) = (rl'(nin )‘/I\Jsl(+i|k71(v5(k + ik = 1), sk +i — 1))
Tg(K+i—1
k+i-1)= Q.. K+ ik —1), ze(k +i—1
Vmax (K + i ) vzm-i—ai)—(l) sk+.|k71(Vs( + | ), s(k + i ) (49)
subject to,
Tnin S 5K+ i — 1)< tpax, Vie[O,N-1] (50)

11

Note that for time instant (k + N — 1)y, we have:

Viin (K + N — 1) = vmin (K + N - 2)

Vmax(K + N — 1) = vau (K + N — 2). (51)

Note also that, due to the linearity of (I\l5k+i|k—l(')’ the optimization pro-
blems in (49) are trivial to solve.

The adoption of this methodology leads to simplification of the
optimization problem within MPC and to the possibility of using a
quadratic programming scheme. The block diagram of the proposed
control approach is depicted in Fig. 4.

At every sample time k, the proposed control algorithm generates a
set of control inputs vs(k|k), ..., »s(k+ N —1k) and vs(Klk), ...,
Vs(k + N — 1]k). Using these sets and (40), the set of future control
inputs 75(k|K), ..., 7s(k + N — 1|k) can be estimated. By adoption of (12)
and (13), the set of future power demand for propelling the ship over
horizon N can be approximated that is R(KK), ..., R(k+ N — 1|k). In
the next section, we propose an energy management strategy that will
utilize this set.

4. Predictive energy management

In this section, an energy management algorithm is proposed for the
purpose of finding the optimal split between the different energy
sources, namely, the DGR sets and the battery-converter set. The
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Fig. 10. Generated power and current by the energy sources (Experiment I).

objective is to keep the diesel-generators functioning around their op-
timal point in the Specific Fuel Consumption (SFC) curve which leads to
an efficient performance. Furthermore, the algorithm limits DGR sets to
experience sudden changes in loading condition which results in higher
robustness of the DC-PPS.

In the following, the cost function of the PEM problem that is based
on the SFC curve of diesel engines is derived. SFC curve is an indicator
for fuel-efficient power and energy generation. The SFC curve of a
diesel engine can be represented as:

_a
SFC(Re) = o + bibe + « 2

where Pog is the delivered mechanical power and a, b and ¢ are para-
meters dependent on the diesel engine specifications.

The electrical losses in energy generation side of the power network
are functions of the output power of the diesel engine [31]. In this
paper, based on the results in [17], the copper, iron, mechanical and
rectifier losses of the generator-rectifier set are included in the problem
by a constant coefficient, i.e., Pogr = apgrPpr where 0 < apgr< 1
which depends on the specifications of the generator-rectifier set. The
same approach is also considered for the set of battery-converter. As a
result, Psc = agcPe where 0 < agc < 1. Since, the efficient region in the
SFC curve is a wide area, this approximation does not affect the op-
timality of the process, significantly.

The power share assigned at time ki, that should be delivered by
DGR set j over horizon Ne is denoted as
PDGRj(I<|k), PDGR(k+ 1|K), ...,FE)Gj(k+ i— 1|K. Similarly, the assigned

12

set is
NE.

power to be delivered by the battery-converter
Psc(KK), Psc(k+ 1|K), ..., Bc(k+ i— 1|K over the horizon
Considering these sets, the following relationships are consistent:

Pogi (k + i — 1]k) = Vocipg (K + i — 1)
Poc(k+ i—1|k) = vpcigc(k + i — 1k), (53)
where vpc is the DC voltage of the power network, which must be kept
constant around a certain value and ipg;, and igg are current shares
provided by DGR i and battery-converter sets, respectively.

The efficient delivered power by diesel engine i is denoted as Pef
and defined as:

Pefi, = Arg min (SFX( ).
P 54

PDGRj(k+ i—1]k)

As a result, the first goal of the algorithm is to keep e

around Pef; -

It is assumed that the different sets of diesel-generators can have
different specifications with different Py, and maximum power that
they can deliver. Since the power demand changes over the operation
time, first the set of active DGRs should be determined using specifi-
cations of DGRs (i.e., Pes; and their power ratings) as well as the power
demand Ry (k). For this goal, a set of optimization problems needs to be
solved over the prediction horizon. The optimization problems for
charge and discharge modes are different. For the battery discharge
mode, we have:
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Fig. 11. Stability results of the power system. (Experiment I).
Pher ™ mikn JDGR|(¢:{1 ,¢r'n) board of a ship is limited, the above optimization problems are trivial.
# (55) Note that for the charge mode, Pg¢ is negative.
subject to For cor}structing the n.lain objective function in this part, we define
the following function using (52):
I I
1 ¢m
Pett, + ...+ Pett, + K > . .
tooR effy DGR, efim + Pac(1K) = R(1K S (iog; (k + i — 1]K))
. . ADGR 4 b; . .
Vie[k k+i-1, Vie[0,N] (56) =i (kFi .J 9" aD(J; Vociper (k + i — 1K) ©0)
The optimization problems in battery charge mode are: R R
PIDGRC: min bor(P) -8 where a; and bj' are SFC coefﬁcients of 'diesel engine j dgﬁned in (52).
é (57) Suppose Ipgr is the set of ipgr(k + i — 1K) for all j €[1, m] and
bi i € [0, N], then by employing (60), the cost function for the PEM pro-
subject to blem can be formulated as:
I I
% Petry + ...+ I Perty = R(IK V e[k k+ i—1], Viel0,N] Nenoo .
DGRy %DGRm Imocr) = D, D, ¢S (iber (k+ i — 1[K)).
(58) i=0 j=1 (61)

Note that for the charge mode, Psc is included in Ry. Function Jbgg is
defined as:

Jbor (Pefy o Peiy) = , SFG (Par) + -+ +¢ SFGn ( Ret),

where m is the overall number of DGR sets and ¢,, ¢,, ...4,, are binary
numbers with 0 or 1 values. If ¢j' = 1 then DGR set j is considered active
during the sample time period t. Since the number of DRG sets on-

(59)
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The inequality constraints are divided into two types. The first type
of constraints are used to keep the energy sources operating in a safe
predefined zones. The second type of constraints are employed to
prohibit occurrence of major changes in loading condition of energy
sources in short intervals to prevent instability in the DC power net-
work. Take var(.) as the variance operator, then the inequality con-
straints are as below:
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Fig. 12. Diesel-generators shaft speeds. Top: 1.8 MW diesel-generator, bottom: 1.2 MW diesel-genrator (Experiment I).

var(g{iocr KK), ... N Viper (k + N = 1k)) < M

var(gKincry K[K), .., N Vipgr, k + N = 1)) < Mp,
ipgr (KIK), ..,iper kK +N — 1K) <iwmy

gy (KIK), —ipoan & +N = 1K) < iy ©2)

The battery constraints depend on its operation mode, i.e., charge or
discharge. During discharge the following constrains must be handled.

var(igcKK), ...igck +N — 1k)) <Mgc

igc(kIK), --.igcn & +N = 1K) i fige 63)
Similarly for the charge mode, the constrains are as follows:
var(isckK), ...iscck +N — 1k)) <Mgc

isc(KlK), ..ipcn & +N = 1K) > i e (64)

where Mgc, M§c and i, are positive and i, is negative.
The equality constrains are established to keep the sum of power
shares equal to the demanded power:

¢{Poor (KK+ +85Pocry (KK) + Ric(KR = R(KB

BN DPoer (k+ N = 1JK)+ +¢1 N VRocr, (k+ N = 1]K)
+ Pac(k+ N—1]k) = R(k+ N— 1|K) (65)

where Pocr () and Pgc(.) are calculated using (53). Now, the
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optimization problem can be formulated as:

Pym: Min J (1
pm IpGR (foe) (66)

subject to constraints in (62)-(65).

Remark 1. The cost function in (61) is a sum of multiple convex
functions. As a result, it is convex and convex optimization methods can
be used for solving the optimization problem in (66).

Remark 2. The presented PEM algorithm can guarantee maximum
efficiency for any set of DGRs accompanied by a BC set with different
power ratings and SFC curves if the maximum charge/discharge power
by the battery at the desired voltage vy is greater or equal to R¢ of the
diesel engine with the highest power rating, i.e.,

Peffl Peffm 1

d
maxﬁ Mgc * I I\SIBC |} > max{

s ]
DGR, Vde DGRy Vdc (67)

If the above non-equality does not hold, then, finding the optimal split
between energy sources using SFC curves is not guaranteed for all time
instants kty.

The above remark indicates that during the design stage, the on-
board energy sources should be chosen with regard to achieving op-
timal fuel efficiency. If this is not the case and (67) does not hold, then,
achieving optimal fuel efficiency is not guaranteed.

Remark 3. Using the presented algorithm and based on the predicted
power demand over horizon N, the safe turn on/turn off time of DGR
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Fig. 13. Battery SOC and the fuel consumption rate (Experiment I).

sets can be predicted. Since, it takes some time (warm up time) for DGR
sets to be able to provide power for the power network, this prediction
can lead to increased safety and robustness in the system. However,
modeling the warm-up dynamics of the DGR sets are out of the scope of
this paper and are not considered in the simulation cases.

Remark 4. The uncertainties, which are the result of environmental
disturbances as well as modeling mismatches, can lead to inaccurate
prediction of the future required propulsive power. Since using the
proposed energy management approach no diesel engine is fully
loaded, in the case of uncertainties within the prediction of the future
required power, a great amount of the power capacity is always
available to compensate sudden overshoots or increases in the
propulsive load.

5. Model predictive maneuvering and energy management control

In this section, the interaction between maneuvering controller and
energy management controller is presented explicitly. It is shown how
the data from the maneuvering controller can be used by the energy
management controller, so that the power availability is guaranteed
during the operation.

The following algorithms represent the overall predictive approach

for the ship control. The maneuvering control algorithm steps are:

e Initialization: Let 74(0) = 7, vs(0) = vc.

1. Compute Vi (kK + 1) = w, for alli = 0, ...,N — I where T;
is the sample time of predicstive maneuvering controller.

2. Solve the optimization problem in (42) using the constraint lin-