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0
Preface

This book—if we may call it that—is a collection of derivations and descriptions intended to deepen
the understanding of the optoelectronic tweezer. It is written as supplementary material to my master’s
thesis, titled ”Microgear Robots: Characterization and Control of Shapeable Microparticles in an Opto-
electronic Tweezer Setup,” submitted in fulfillment of the System Control and Applied Physics master’s
program at Delft University of Technology. Unlike the thesis, this document has not undergone the same
level of academic review or formal scrutiny. It is deliberately written in a more colloquial and accessible
style, with the intention of making the topic understandable even to readers with little or no background
in physics. While it is not meant to serve as a formal academic source, it aims to provide helpful intuition
and a broader context, complementing the main thesis rather than replacing it.

An optoelectronic tweezer (OET) is a device that controls and moves microscopic particles under a
microscope accurately. This is done by shining a pattern on a photoconductive layer to adjust an electrical
field in a microfluidic chip. This sentence does not make much sense to the general public and needs ex-
planation. This work should cover the complete understanding of the OET at a bachelor’s level of physics.

I am Guus, a master’s student at the TU Delft on Applied Physics and Systems & Control. The
subject of optoelectronic tweezers is part of my master thesis. One of the hardest things about OET is
to explain how it works without getting into much detail. This way, a lot of necessary information is
not provided that should be known to understand this system’s limitations and possibilities fully. This
work has been used to explain the subject, in parts but in detail, to several bachelor students, Dion
Jetulahi, Rens van Elk, and Mirthe Folkerts, who also put work in the OET. By explaining it to them
and writing it down, I got a good understanding of how the OET essentially works. Most formulas used
in the literature on OET are really complex. To understand them, I kept asking why until we arrived
at a law of physics. This is, therefore, how the derivations are built up in this work. By understanding
the physics from the ground up, it should be clear which assumptions we had to make to arrive at the
used formulas. This can help us understand the limits and validity when we want to apply them in an
optoelectronic tweezer system. The derivations have small steps, making it understandable to follow them.

At the beginning of each section, we included a ”Jip en Janneke” translation of the subject talked
about. Jip and Janneke, created by Annie M.G. Schmidt and Fiep Westendorp, are two famous figures
in Dutch kids’ books. A lot of children grew up with them. I have chosen these figures as the face
of the elementary-level understanding of OET. The ”Jip en Janneke” parts explain the physics as if it
were explained to a child. Therefore, these parts should be read to help understand the OET but not as
scientific material.
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This work has been build up in six sections. Each section explains in detail an essential part of the
OET. This work starts with describing the dielectrophoretic force, which is the main driving force of the
OET. In section 2, we discuss the microfluidic chip, used as a medium for the particles that are to be
controlled. Section 3 discusses how we can adjust the dielectrophoretic force using the photoconductive
layer. All the dynamics of the dielectric particle are discussed and put together in section 4. To activate
the photoconductive layer and control the particles accurately, we need to use an optical setup to pattern
and image the microfluidic chip. This optical setup is discussed in section 5. Finally, to control and
create the setup, we need some instrumentation to make the photoconductive layer and to adjust the
applied voltages and control inputs. This is discussed in section 6. A schematic overview describing the
layout of this work can be seen in figure 1.

Figure 1: A schematic depiction of an optoelectronic tweezer setup. This describes the structure of this
book.

I have used some simulations to back up some claims. The simulations are discussed in detail in
their respective sections. The complete data for these simulations is included in the appendices. This
work was done under the supervision of Dr. Carlas Smith of the TU Delft. I want to thank him for
enabling this project and for the freedom to set up this incredible subject at the TU Delft. A special
thanks to Dr. Daniel Fan from the University of Melbourne for his help and insights in this field. I
also want to thank Yabin Wang, Dimitri Kromm, Martijn Tijssen, Arno Smets, and Jacob Hoogenboom
for helping me understand the topics of the sections in detail. I want to thank Dion Jetulahi, Rens van
Elk, and Mirthe Folkerts for helping me make the explanations make sense and make the project more
fun. I also want to thank Hadassah Fidder for enabling me to write this work and encourage me to finish it.

I hope I can show you a glimpse of the fascinating world of physics—tucked neatly into the tiny
universe of optoelectronic tweezers—and maybe even spark your curiosity for science as a whole.
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1
Dielectrophoretic force

This section will discuss the dielectrophoretic force (DEP), the main driving force of OET setups. We
will use the electromagnetic laws, as stated by Maxwell, to derive from the ground up how a neutrally
charged particle would move due to a non-uniform electrical field in a neutrally charged medium. This
interaction is due to the electromagnetic stress tensor, which we will solve for spherical particles in a
linearized non-uniform field. We will compare what happens if we include higher orders of this linearized
force and conclude which order of linearization is valid. We will also discuss what happens if we add more
complexity to the system, such as different waveforms of the alternating applied electrical field, various
types of particle compositions, and particle shapes. This section extensively explains the origins of the
DEP force to ensure that each assumption and simplification can be well understood. This understanding
can be essential when simulating the dynamics in an OET setup.

Dielectrophoretic force for ”Jip en Janneke”

In this section, we will explain a concept called dielectrophoretic force, which is essential in
optoelectronic tweezers. When we talk about electrodynamics and magnetism, we often refer
to fields that help us understand how charged particles move through space. You can think of
these fields as a 3D landscape made up of hills and valleys. Imagine a particle sitting on a steep
hillside; it will naturally roll down toward the valleys below. This is similar to the concept of
dielectrophoresis.

How a particle moves depends on the properties of both the particle and the surrounding material.
To describe this interaction properly, we would need to solve many hard equations. So, to make
it simpler, we will make some assumptions and simplifications to make it easier and create a more
useful formula for the dielectrophoretic force.

Additionally, we will talk about what happens when we introduce more complexity to the particles
and the electric field. We show you that it was a good idea to make the formula more simple
because it still works. Finally, we will share some simulations that illustrate what the fields and
forces look like in optoelectronic tweezers. Here, we can see the hills and valleys the particle goes
through in the optoelectronic tweezer. Understanding this force is very important. It is the basis
of the optoelectronic tweezers.

The Jip and Janneke illustration is created by the renowned artist Fiep Westendorp.

1.1 Maxwell equations

On June 13, 1831, in Edinburgh, Scotland, one of the leading scientists in the field of electromagnetism,
James Clerk Maxwell, was born [1]. He stated the four elegant laws that describe electromagnetic
phenomena [2] found in nature denoted in a vacuum and a material (respectively, left and right column).

∇ ·E =
ρ

ϵ0
∇ ·D = ρf

∇ ·B = 0 ∇ ·H = 0

∇×E = −∂B
∂t

∇×D = −ϵ0µ0
∂H

∂t

∇×B = µ0j+
1

c2
∂E

∂t
∇×H = jf +

∂D

∂t

(1)

with electrical field E, magnetic field B, free charge density ρf , permittivity in free space ϵ0, perme-
ability of free space µ0, speed of light c auxiliary field D and H and free current density jf .
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In a medium, there can be a current- and a charge density depending on the system’s properties and
dynamics. We can say that the charge density and current density can be divided into a free part (denoted
with a small f) and a bounded part. The bounded parts cannot leave the atoms they are connected to
and depend on the polarization1 P and magnetization2 M. The free charge density and current density
are extrinsic to the matter.

ρ(r, t) = ρf (r, t)−∇ ·P(r, t)

j(r, t) = jf (r, t)−∇×M(r, t) +
∂P(r, t)

∂t

r denotes the position where we have a point of interest. D and H are the auxiliary macroscopic fields
and depend on the electrical field, the polarization, the magnetic field, and the magnetization.

D(r, t) = ϵ0E(r, t) +P(r, t)

H(r, t) =
1

µ0
B(r, t)−M(r, t)

In the static limit (for ”simple” media), we can approximate these auxiliary fields to

D(r) = ϵ̂E(r)

H(r) = µB(r)
(2)

with ϵ̂ denoting the complex dielectric permittivity

ϵ̂(ω) = ϵ+ i
σ

ω
(3)

with frequency ω and conductivity σ. The i denotes the complex number
√
−1. ϵ denotes the permittivity,

and µ, from equation 2, denotes the magnetic permeability, which both depend on the medium the field is
in. The speed of light can also described in terms of ϵ and µ as 1

c2 = ϵµ. In the case of a monochromatic
plane, i.e., when the applied electrical field is harmonic with a certain frequency, the auxiliary field D will
be harmonic with a similar frequency dependence. The auxiliary field has, however, a slower response to
the electrical field due to the polarization P not changing instantaneously. The permittivity covers these
losses by being partly imaginary [3].

1The direction in which the bounded charges are most prominently distributed.
2The microscopic current densities within a material.
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1.2 The electromagnetic force

For this complete section, a lot of information was gathered from X. Wang et al. and is used to create a
clear understanding of the assumptions made to derive the DEP force [4]. The electrical and magnetic
fields affect the charges and the current densities in a medium. These effects are captured by the Coulomb-
Lorentz force [5]

Fmech =

ˆ
V

(ρE+ j×B)d3r (4)

The charge density and current densities are difficult to measure in a medium, which, therefore, gives
enough reason to eliminate them from the equation

Fmech =

ˆ
V

d3r

[
(ϵ̂∇ ·E)E+

1

µ
(∇×B)×B− ϵ̂

(
∂E

∂t
×B

)]
=

ˆ
V

d3r

[
(ϵ̂∇ ·E)E+

1

µ

[
(B · ∇)B− 1

2
∇(B ·B)

]
− ϵ̂

(
∂

∂t
(E×B)−E× ∂B

∂t

)]
=

ˆ
V

d3r

[
(ϵ̂∇ ·E)E+

1

µ

[
(B · ∇)B− 1

2
∇(B ·B)

]
− ϵ̂

(
∂

∂t
(E×B) +E× (∇×E)

)]
=

ˆ
V

d3r

[
ϵ̂ [(∇ ·E)E−E× (∇×E)] +

1

µ

[
(B · ∇)B+ (∇ ·B)B− 1

2
∇(B ·B)

]
− ϵ̂

∂

∂t
(E×B)

]
=

ˆ
V

d3r

[
ϵ̂

[
(∇ ·E)E+ (E · ∇)E− 1

2
∇(E ·E)

]
+

1

µ

[
(∇ ·B)B+ (B · ∇)B− 1

2
∇(B ·B)

]
− ϵ̂

∂

∂t
(E×B)

]
=

ˆ
V

d3r

[
∇ ·T− ϵ̂

∂

∂t
(E×B)

]
In the first step, we used equation 1 to eliminate the charge and current densities. We rewrote the

double cross product in B using a vector identity in the second step.

(∇×A)×A = −A× (∇×A)

= −
(
1

2
∇(A ·A)− (A · ∇)A

)
In the fourth step, we added (∇ · B)B(= 0) to create symmetry in the formula. In the fifth step, we
rewrote the double cross product in E using the same identity as we did with B.

We see that the force acting on a volume V can not only be described using a time-dependent cross-
product of E and B but also by a tensor T. This tensor is called the Maxwell stress tensor and is defined
as the dyadic

T = ϵ̂(EE− 1

2
I|E|2) + µ(BB− 1

2
I|B|2) (5)

Or when written down in Einstein notation

Tij = ϵ̂(EiEj −
1

2
δijE

2) + µ(BiBj −
1

2
δijB

2)

with i and j coordinates such as x, y, or z. I is the identity matrix. The remaining term in the force
integral, not the tensor T, is known as the Poynting vector [6] and is time-dependent.
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In a capacitor (which our system is very similar to), we know that the electric field, due to an applied

potential V (t), is given as E(t) = −V (t)
d ẑ with d the height of the capacitor which is in z-direction. Due

to the third equation of equation 1, the Ampere-Maxwell law, we know that a magnetic field is created

due to the changing field. This field is given as B = − r
2dc2

dV (t)
dt ϕ̂ with distance r from the center of

the capacitor and the speed of light c. The magnetic field rotates around the z-axis, denoted by the
ϕ-direction [7]. If we use these formulas using our known orders of magnitude of the values, we will see
why we can ignore all effects due to the magnetic field in the capacitor:

d > 50µm,

r < 5cm,

ω < 50MHz,

V (t) < 25 sin(ωt) = 25 sin
(
50 ∗ 106t

)
,

dV (t)

dt
< 25ω cos(ωt) = 125 ∗ 106 cos

(
50 ∗ 106t

)
,

|E(t)| < 5 ∗ 105ẑ,

|B(t)| < 7 ∗ 10−6ϕ̂

The magnetic field is 1011 times smaller than the electrical field. Therefore, we will ignore the magnetic,
making the Maxwell stress tensor much more understandable and workable.

The remaining part of the Maxwell stress tensor can be simplified even further. When using the Maxwell
stress tensor to calculate the force, we are only interested in the real part of the tensor. The com-
plex part is not physical and represents losses. Therefore, we will rewrite the stress tensor to only the
real part for convenience. Also, we will write the electrical field in a complex harmonic form3 such as
Ê(r, t) = E(r)eiωt. Therefore, E = Re(Ê) = 1

2 (Ê + Ê∗) which we can use to simplify the useful part of
the Maxwell stress tensor more.

Re[T(r, t)] = Re(ϵ̂)Re

[
ÊÊ− 1

2
(Ê · Ê)

]
= Re(ϵ̂)

[
1

2
(Ê+ Ê∗)

1

2
(Ê+ Ê∗)− 1

2

(
1

2
(Ê+ Ê∗) · 1

2
(Ê+ Ê∗)

)]
=

1

4
Re(ϵ̂)

[
ÊÊ+ ÊÊ∗ + Ê∗Ê+ Ê∗Ê∗ − 1

2
(Ê · Ê+ Ê · Ê∗ + Ê∗ · Ê+ Ê∗ · Ê∗)

]
=

1

4
Re(ϵ̂)[EEe2ωit +EE∗ +E∗E+E∗E∗e−2ωit

− 1

2
(E ·Ee2ωit +E ·E∗ +E∗ ·E+E∗ ·E∗e−2ωit)]

=
1

4
Re(ϵ̂)

[
EE∗ +E∗E− 1

2

(
|E|2 + |E|2

)
I

]
+

1

4
Re(ϵ̂)

[
EEe2ωit +E∗E∗e−2ωit − 1

2

(
|E|2e2ωit + |E|2e−2ωit

)
I

]
= T1(r) +T2(r, t)

(6)

The frequency of the applied field is high so that we will measure many periods of the harmonic signal.
This is why we are interested in the time-average effects of the applied field on the dielectric particles. As
can be seen, the time-average of the real part of the Maxwell stress tensor is zero for T2(r, t) for it only
depends on harmonic signals with zero mean4. The only thing that remains unsolved is the Poynting
vector, but as we already explained, we will ignore the effects of the magnetic field, for it is too small
compared to the electrical field effects.

3This form can include other terms such as phase in the exponential, but this example is to show the simplification of
the equation.

4The average of sinusoidal functions is 0 when we take into account many periods.
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We can rewrite the force integral using the divergence theorem [8]. Using all these results and methods,
we can simplify the time-average dielectrophoretic force due to the Maxwell stress tensor to the final form
given as

⟨FDEP ⟩ =
ˆ
V

d3r

[
∇ ·T− ϵ̂

∂

∂t
(E×B)

]
≈
ˆ
V

d3r[∇ ·T1]

=

˛
A

T1 · n̂dS

=
1

4
Re(ϵ̂)

˛
A

[EE∗ +E∗E− |E|2I] · n̂dS

(7)

with n̂ being the normal vector pointing outwards of the surface A, which is the surface of the particle
for which we will derive the DEP force.

1.3 Imposing the boundary conditions

In the dielectric medium, so outside the particle, we denote the electrical field as E1; in the dielectric
particle, we denote it as E2. The applied harmonic electrical field will be denoted as E0. We can relate
the first two by using interface conditions [9].

ϵ̂1E1 · n̂ = ϵ̂2E2 · n̂⇒ E1 · n̂ =
ϵ̂2
ϵ̂1
E2 · n̂

E1 × n̂ = E2 × n̂⇒ E1,∥ = E2,∥

(8)

We can fully relate E1 and E2 using these tools.

E1 = E1,⊥ +E1,∥

= (E1 · n̂)n̂+E2,∥

= (E1 · n̂)n̂+E2 − (E2 · n̂)n̂

=
ϵ̂2
ϵ̂1
(E2 · n̂)n̂+E2 − (E2 · n̂)n̂

= E2 + b̂(E2 · n̂)n̂

(9)

with E⊥ denoting the field perpendicular to the boundary (so in the direction of outward pointing n̂
of boundary). E∥ denotes the field parallel to the boundary. The equation is written more concise using

b̂ = ϵ̂2−ϵ̂1
ϵ̂1

. We can use this information now to write some identities that will be useful in a short time.

E1E
∗
1 · n̂ = [E2 + b̂(E2 · n̂)n̂][E∗

2 + b̂∗(E∗
2 · n̂)n̂] · n̂

= [E2 + b̂(E2 · n̂)n̂][E∗
2 · n̂+ b̂∗(E∗

2 · n̂)n̂ · n̂]

= [E2 + b̂(E2 · n̂)n̂](b̂∗ + 1)(E∗
2 · n̂)

combining this with its complex conjugate,

E1E
∗
1 · n̂+E∗

1E1 · n̂ = [E2 + b̂(E2 · n̂)n̂](b̂∗ + 1)(E∗
2 · n̂) + [E∗

2 + b̂∗(E∗
2 · n̂)n̂](b̂+ 1)(E2 · n̂)

= (b̂∗ + 1)[(E∗
2 · n̂)E2 + b̂(E2 · n̂)(E∗

2 · n̂)n̂]+

+ (b̂+ 1)[(E2 · n̂)E∗
2 + b̂∗(E∗

2 · n̂)(E2 · n̂)n̂]

= (b̂∗ + 1)[A+ b̂B] + (b̂+ 1)[C + b̂∗B]

= (b̂∗ + 1)A+ (b̂+ 1)C + (b̂+ 2b̂b̂∗ + b̂∗)B

(10)

using A = (E∗
2 · n̂)E2, C = (E2 · n̂)E∗

2 and B = (E2 · n̂)(E∗
2 · n̂)n̂ = |E2 · n̂|2n̂.
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|E1|2 = E1 ·E∗
1

= [E2 + b̂(E2 · n̂)n̂] · [E∗
2 + b̂∗(E∗

2 · n̂)n̂]

= E2 ·E∗
2 + b̂(E2 · n̂)n̂ ·E∗

2 + b̂∗(E∗
2 · n̂)n̂ ·E2 + b̂b̂∗(E2 · n̂)(E∗

2 · n̂)

= |E2|2 + (b̂+ b̂∗)(E2 · n̂)(E∗
2 · n̂) + b̂b̂∗|E2 · n̂|2

= |E2|2 + (b̂+ b̂b̂∗ + b̂∗)|E2 · n̂|2

(11)

Using equations 10 and 11, we can rewrite equation 7 to represent the DEP force due to the electric
field outside of the particle boundary.

⟨fDEP ⟩ =
1

4
Re(ϵ̂1)

˛
A

[E1E
∗
1 +E∗

1E1 − |E1|2I)] · n̂dS

=
1

4
Re(ϵ̂1)

˛
A

[(b̂∗ + 1)A+ (b̂+ 1)C + (b̂+ 2b̂b̂∗ + b̂∗)B − |E1|2n̂]dS

=
1

4
Re(ϵ̂1)

˛
A

[(b̂∗ + 1)A+ (b̂+ 1)C + (b̂+ 2b̂b̂∗ + b̂∗)B − |E2|2n̂− (b̂+ b̂b̂∗ + b̂∗)|E2 · n̂|2n̂]dS

=
1

4
Re(ϵ̂1)

˛
A

[(b̂∗ + 1)A+ (b̂+ 1)C + (b̂+ 2b̂b̂∗ + b̂∗)B − |E2|2n̂− (b̂+ b̂b̂∗ + b̂∗)B]dS

=
1

4
Re(ϵ̂1)

˛
A

[(b̂∗ + 1)A+ (b̂+ 1)C + b̂b̂∗B − |E2|2n̂]dS

=
1

4
Re(ϵ̂1)

˛
A

[(b̂∗ + 1)(E∗
2 · n̂)E2 + (b̂+ 1)(E2 · n̂)E∗

2 + b̂b̂∗|E2 · n̂|2n̂− |E2|2n̂]dS

(12)

1.4 Linearizing the electrical field

Equation 12 is not trivial to solve; therefore, we will write the electrical field as a Maclaurin series to
simplify the formula even more such that we can solve it analytically [10].

E2(r) = E2(rn̂)

=
∑
s=0

1

s!
rs(n̂ · ∇)sE2(0)

= E2(0) + r(n̂ · ∇)E2(0)

first-order

+
1

2
r2(n̂ · ∇)2E2(0)

second-order

+ . . .

(13)

This way, we can rewrite the components in equation 12, which we will show first only using the
first-order approximation and then expanding it to higher orders. From this point forward, we will also
approximate the particle as a perfect sphere. This shape is symmetric in every direction,n making it
much easier to calculate the surface integral using this shape. The Maxwell stress tensor must be solved
numerically for other particle shapes.
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1.4.1 Relation between E2 and E0

Let’s consider a spherical particle with (complex) permittivity ϵ̂2 in a medium with (complex) permittivity
ϵ̂1. We can relate the applied electrical field E0 to the electrical field inside the particle E2. E1 is the
electrical field outside the particle. These fields are depicted schematically in figure 2.

Figure 2: A schematic depiction of the field E1 outside the particle and the field E2 inside the particle.
The uniform field E0, which we would expect in a capacitor, is disturbed by the dielectric particle [11].

We can relate the field by writing the applied potential using spherical harmonics5.

Φ0(r, θ, ϕ) =

N∑
l=0

l∑
m=−l

Almr
lYlm(θ, ϕ)

Φ1(r, θ, ϕ) = Φ0(r, θ, ϕ) +Φinduced(r, θ, ϕ)

=

N∑
l=0

l∑
m=−l

Almr
lYlm(θ, ϕ) +

N∑
l=0

l∑
m=−l

Blm
rl+1

Ylm(θ, ϕ)

Φ2(r, θ, ϕ) =

N∑
l=0

l∑
m=−l

Clmr
lYlm(θ, ϕ)

(14)

To solve this, we need more information on the constants A, Y,B, and C for all l and m. The electric
potentials on the boundary of the particle are related by continuity at r0, which is the radius of the
spherical particle.

Φ1(r0, θ, ϕ) = Φ2(r0, θ, ϕ)

ϵ̂1
∂Φ1(r, θ, ϕ)

∂r

∣∣∣∣∣
r=r0

= ϵ̂2
∂Φ2(r, θ, ϕ)

∂r

∣∣∣∣∣
r=r0

(15)

Giving us

Φ1(r0, θ, ϕ) = Φ2(r0, θ, ϕ)

N∑
l=0

l∑
m=−l

Almr
lYlm(θ, ϕ) +

N∑
l=0

l∑
m=−l

Blm
rl+1

Ylm(θ, ϕ) =

N∑
l=0

l∑
m=−l

Clmr
lYlm(θ, ϕ)

N∑
l=0

l∑
m=−l

(Almr
l +

Blm
rl+1

)Ylm(θ, ϕ) =

N∑
l=0

l∑
m=−l

Clmr
lYlm(θ, ϕ)

Almr
l +

Blm
rl+1

= Clmr
l

Alm +
Blm
rl+2

= Clm

(16)

5Please note that this is not valid for all forms of particles but only for spherical ones.
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and giving us

ϵ̂1
∂Φ1(r, θ, ϕ)

∂r

∣∣∣∣∣
r=r0

= ϵ̂2
∂Φ2(r, θ, ϕ)

∂r

∣∣∣∣∣
r=r0

ϵ̂1

N∑
l=0

l∑
m=−l

lAlmr
l−1Ylm(θ, ϕ) + ϵ̂1

N∑
l=0

l∑
m=−l

−(l + 1)
Blm
rl+2

Ylm(θ, ϕ) = ϵ̂2

N∑
l=0

l∑
m=−l

lClmr
l−1Ylm(θ, ϕ)

N∑
l=0

l∑
m=−l

ϵ̂1

(
lAlmr

l−1 − (l + 1)
Blm
rl+2

)
Ylm(θ, ϕ) =

N∑
l=0

l∑
m=−l

ϵ̂2lClmr
l−1Ylm(θ, ϕ)

ϵ̂1

(
lAlmr

l−1 − (l + 1)
Blm
rl+2

)
= ϵ̂2lClmr

l−1

ϵ̂1
ϵ̂2

(
Alm − (l + 1)

l

Blm
r2l+1

)
= Clm

(17)

Using equation 16 and equation 17, we can find a way to write both constant Blm and Clm in terms
of Alm.

Clm = Alm +
Blm
rl+2

=
ϵ̂1
ϵ̂2

(
Alm − (l + 1)

l

Blm
r2l+1

)
Alm +

Blm
rl+2

=
ϵ̂1
ϵ̂2

(
Alm − (l + 1)

l

Blm
r2l+1

)
Blm
r2l+1

=

(
1 +

ϵ̂1
ϵ̂2

l + 1

l

)−1(
ϵ̂1
ϵ̂2

− 1

)
Alm =

ϵ̂2l(ϵ̂1 − ϵ̂2)

ϵ̂2(ϵ̂2l + ϵ̂1l + ϵ̂1)
Alm

Blm =
l(ϵ̂1 − ϵ̂2)

ϵ̂2l + (l + 1)ϵ̂1
r2l+1Alm

Clm = Alm +
l(ϵ̂1 − ϵ̂2)

ϵ̂2l + (l + 1)ϵ̂1
Alm =

(2l + 1)ϵ̂1
ϵ̂2l + (l + 1)ϵ̂1

Alm = KlAlm

(18)

The last thing we need to do is to relate Φ2 to Φ0 in the center of the spherical particle, and rewriting
this using E = ∇Φ[12].

Φ2(r, θ, ϕ) =

N∑
l=0

l∑
m=−l

Clmr
lYlm(θ, ϕ) =

N∑
l=0

l∑
m=−l

KlAlmr
lYlm(θ, ϕ) =

N∑
l=0

l∑
m=−l

KlΦ0,lm(r, θ, ϕ)

∂lΦ2

∂xi∂yj∂zk

∣∣∣∣∣
r=0

= Kl
∂lΦ0

∂xi∂yj∂zk

∣∣∣∣∣
r=0

(∇lΦ2)(0) = Kl(∇lΦ0)(0)

(∇l−1E2)(0) = Kl(∇l−1E0)(0)

(19)

for any i, j and k satisfying i + j + k = l − 1. Using this beautiful relation, we can rewrite all terms in
equation 13 accordingly.
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1.4.2 First-order DEP force

When we consider only a slightly non-uniform field, we can neglect all terms in equation 13 to the order
O(1) meaning

E2(r) = E2(0) + r(n̂ · ∇)E2(0)

= (∇1−1E2)(0) + r(n̂ · ∇2−1)E2(0)

= K1(∇0E0)(0) +K2r(n̂ · ∇1)E0(0)

= K1E0(0) + rK2(n̂ · ∇)E0(0)

(E2(r) · n̂) = K1E0(0) · n̂+ rK2(n̂ · ∇)E0(0) · n̂

(20)

Using this, we can express the terms in equation 12 as functions of E0.

(E2(r) · n̂)E∗
2(r) = K∗

1K1(E0(0) · n̂)E∗
0(0) + rK∗

1K2(n̂ · ∇)(E0(0) · n̂)E∗
0(0)+

+ rK1K
∗
2 (E0(0) · n̂)(n̂ · ∇)E∗

0(0) + r2K2K
∗
2 (n̂ · ∇)2(E0(0) · n̂)E∗

0(0)

(E∗
2(r) · n̂)E2(r) = K∗

1K1(E
∗
0(0) · n̂)E0(0) + rK1K

∗
2 (n̂ · ∇)(E∗

0(0) · n̂)E0(0)+

+ rK∗
1K2(E

∗
0(0) · n̂)(n̂ · ∇)E0(0) + r2K2K

∗
2 (n̂ · ∇)2(E∗

0(0) · n̂)E0(0)

|E2(r)|2n̂ = [E2(r) ·E∗
2(r)]n̂

= [K1E0(0) + rK2(n̂ · ∇)E0(0)] · [K∗
1E

∗
0(0) + rK∗

2 (n̂ · ∇)E∗
0(0)]n̂

= K1K
∗
1 [E0(0) ·E∗

0(0)]n̂+ rK1K
∗
2 [E0(0) · (n̂ · ∇)E∗

0(0)]n̂+

+ rK∗
1K2[E

∗
0(0) · (n̂ · ∇)E0(0)]n̂+ r2K2K

∗
2 [(n̂ · ∇)2E0(0) ·E∗

0(0)]n̂

|E2(r) · n̂|2n̂ = [(E2(r) · n̂) · (E∗
2(r) · n̂)]n̂

= [(K1E0(0) · n̂+ rK2(n̂ · ∇)E0(0) · n̂) · (K∗
1E

∗
0(0) · n̂+ rK∗

2 (n̂ · ∇)E∗
0(0) · n̂)]n̂

= K1K
∗
1 (E0(0) · n̂) · (E∗

0(0) · n̂)n̂+ rK1K
∗
2 (E0(0) · n̂) · (n̂ · ∇)(E∗

0(0) · n̂)n̂+
+ rK∗

1K2(E
∗
0(0) · n̂) · (n̂ · ∇)(E0(0) · n̂)n̂+ r2K2K

∗
2 (n̂ · ∇)(E0(0) · n̂) · (n̂ · ∇)(E∗

0(0) · n̂)n̂
(21)

We can, therefore, rewrite equation 12 fully using the terms from equation 21. We will rewrite E0(0)
as E0, i.e., we will derive the DEP force as a function of the applied electrical field in the center of the
spherical particle. The next step is to solve this integral, which is not trivial, to say the least. The first
thing we can do here is simplify every integral part that involves odd powers of n̂. Those parts will vanish
under the surface integral[13]. Also, at the center of the particle, we have one more boundary condition
due to the field’s uniformity and continuity, i.e., ∇ · E0 = 0. It is first necessary to show which trick
we are using to solve the integrals of the normal vectors. These tricks are related to the second and
fourth-order isotropic symmetric tensors. For a sphere, we have for n̂ = [nx, ny, nz], n

2
x + n2y + n2z = 1

and therefore ⟨n2i ⟩+ ⟨n2j ⟩+ ⟨n2k⟩ = 1. Due to symmetry in the sphere, we have the same expected values

for i, j and k and therefore ⟨n2i ⟩ = 1
3 . We used i, j, k = x, y, z as different notations for the coordinate

system. The expected value of ⟨ninj⟩ = 0 for i ̸= j [14].

⟨ninj⟩ =

{
0, if i ̸= j.
1
3 , if i = j.

⟨ninj⟩ =
¸
S
ninjdA¸
S
dA

= ⟨ninj⟩
˛
S

dA =
1

3

ˆ 2π

0

ˆ π

0

r2 sin(ϕ)dϕdθ =
1

3
2πr2[− cos(ϕ)]π0 =

4π

3
r2

(22)
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For the fourth order, we have a tensor that we can write as a combination of Kronecker delta func-
tions and some constants α, β and γ, using tensor algebra [15]. Here, we used that n̂ = n̂(ϕ, θ) =
[cos(θ) sin(ϕ), sin(θ) cos(ϕ), cos(ϕ)].

⟨ninjnknm⟩ = αδijδkm + βδikδjm + γδimδjk

⟨n4i ⟩ = αδ2ii + βδ2ii + γδ2ii = α+ β + γ

=

¸
S
n4i dA¸
S
dA

=

´ 2π
0

´ π
0
cos4(ϕ)r2 sin(ϕ)dϕdθ

4πr2
=

1

2

ˆ π

0

cos4(ϕ) sin(ϕ)dϕ

u = cos(ϕ) → dϕ =
du

− sin(ϕ)

⟨n4i ⟩ =
1

2

ˆ −1

1

u4
sin(ϕ)

− sin(ϕ)
du =

1

2
[−u

5

5
]−1
1 =

1

5

(23)

We found that α + β + γ = 1
5 for the fourth-order tensor. When i = j ̸= k = m, we can derive the

values of these constants.

⟨n2in2j ⟩ = ⟨nininjnj⟩ = ⟨ninjninj⟩ = ⟨ninjnjni⟩
⟨nininjnj⟩ = αδiiδjj + βδijδij + γδijδij = α

⟨ninjninj⟩ = αδijδij + βδiiδjj + γδijδji = β

⟨ninjnjni⟩ = αδijδji + βδijδji + γδiiδjj = γ

α = β = γ

⟨n2in2j ⟩ =
α+ β + γ

3
=

1
5

3
=

1

15˛
S

n2in
2
jdA = ⟨n2in2j ⟩

˛
S

dA =
4π

15
r2

(24)

14



We finally have enough tools to solve the integral of equation 12 part by part by looking at the terms in
equation 21 and using the integrals from equation 22 and 24 and using that ∇·E0 = 0. All the derivations
are shown to make clear how these parts will simplify equation 12.

˛
S

(n̂ · ∇)(E0 · n̂)E∗
0dA =

˛
S

ni∂iE0jnjE
∗
0kdAêk

= ∂iE0jE
∗
0kêk

˛
S

ninjdA( ̸= 0 if i = j)

=
4π

3
r2∂iE0iE

∗
0kêk =

4π

3
r2(∇ ·E0)E

∗
0 = 0˛

S

(E0 · n̂)(n̂ · ∇)E∗
0dA =

˛
S

E0ininj∂jE
∗
0kêkdA

= E0i∂iE
∗
0kêk

˛
S

n2i dA =
4π

3
r2(E0 · ∇)E∗

0˛
S

(n̂ · ∇)(E∗
0 · n̂)E0dA = 0

˛
S

(E∗
0 · n̂)(n̂ · ∇)E0dA =

4π

3
r2(E∗

0 · ∇)E0

˛
S

[E0 · (n̂ · ∇)E∗
0]n̂dA =

˛
S

E0ini∂iE
∗
0jnkêkdA

= E0i∂iE
∗
0j êj

˛
S

n2i dA =
4π

3
r2(E0 · ∇)E∗

0˛
S

[E∗
0 · (n̂ · ∇)E0]n̂dA =

4π

3
r2(E∗

0 · ∇)E0

˛
S

(E0 · n̂) · (n̂ · ∇)(E∗
0 · n̂)n̂dA =

˛
S

E0inini∂iE0jnjnkêkdA

= E0i∂iE
∗
0j êj

˛
S

nininjnjdA+ E0i∂iE
∗
0kêk

˛
S

nininknkdA

= (E0 · ∇)E∗
0

4π

15
r2 + (E0 · ∇)E∗

0

4π

15
r2 =

8

15
πr2(E0 · ∇)E∗

0˛
S

(E∗
0 · n̂) · (n̂ · ∇)(E0 · n̂)n̂dA =

8

15
πr2(E∗

0 · ∇)E0

(25)

We can write the terms in equation 12 as fully worked out integrals from equation 25.

˛
S

(E2 · n̂)E∗
2dA =

4

3
πr3K1K

∗
2 (E0 · ∇)E∗

0˛
S

(E∗
2 · n̂)E2dA =

4

3
πr3K∗

1K2(E
∗
0 · ∇)E0

˛
S

|E2|2n̂dA =
4

3
πr3K1K

∗
2 (E0 · ∇)E∗

0 +
4

3
πr3K∗

1K2(E
∗
0 · ∇)E0

˛
S

|E2 · n̂|2n̂dA =
8

15
πr3K1K

∗
2 (E0 · ∇)E∗

0 +
8

15
πr3K∗

1K2(E
∗
0 · ∇)E0

(26)

We know that Kl =
(2l+1)ϵ̂1

ϵ̂2
l + (l + 1)ϵ̂1 = (2l+1)

lb̂+(2l+1)
.
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Using the parts we derived, we can get closer to the known DEP force formula. We denote the first order

DEP force vector as f
(1)
DEP .

⟨f (1)DEP ⟩ =
1

4
Re(ϵ̂1)

˛
S

[(b̂∗ + 1)(E∗
2 · n̂)E2 + (b̂+ 1)(E2 · n̂)E∗

2 + b̂b̂∗|E2 · n̂|2n̂− |E2|2n̂]dA

=
1

4
Re(ϵ̂1)

(
4

3
πr3(b̂+ 1)K1K

∗
2 − 4

3
πr3K1K

∗
2 + b̂b̂∗

8

15
πr3K1K

∗
2

)
(E0 · ∇)E∗

0+

+
1

4
Re(ϵ̂1)

(
4

3
πr3(b̂∗ + 1)K∗

1K2 −
4

3
πr3K∗

1K2 + b̂b̂∗
8

15
πr3K∗

1K2

)
(E∗

0 · ∇)E0

= πr3Re(ϵ̂1)

[(
1

3
b̂K1K

∗
2 +

2

15
b̂b̂∗K1K

∗
2

)
(E0 · ∇)E∗

0 +

(
1

3
b̂∗K∗

1K2 +
2

15
b̂b̂∗K∗

1K2

)
(E∗

0 · ∇)E0

]
= πr3Re(ϵ̂1)

[
1

15
b̂
(
5 + 2b̂∗

)
K1K

∗
2 (E0 · ∇)E∗

0 +
1

15
b̂∗
(
5 + 2b̂

)
K∗

1K2(E
∗
0 · ∇)E0

]
= πr3Re(ϵ̂1)

1

15
b̂
(
5 + 2b̂∗

)( 3

b̂+ 3

)(
5

2b̂∗ + 5

)
(E0 · ∇)E∗

0+

+ πr3Re(ϵ̂1)
1

15
b̂∗
(
5 + 2b̂

)( 3

b̂∗ + 3

)(
5

2b̂+ 5

)
(E∗

0 · ∇)E0

= πr3Re(ϵ̂1)

(
b̂

b̂+ 3
(E0 · ∇)E∗

0 +
b̂∗

b̂∗ + 3
(E∗

0 · ∇)E0

)
= πr3Re(ϵ̂1) [K(ω)(E0 · ∇)E∗

0 +K∗(ω)(E∗
0 · ∇)E0]

(27)

WithK(ω) being the Clausius-Mossotti factor, which indicates if the force is repellent whenK(ω) < 1,
or attractive when K(ω) > 1. This formula is widely used for optoelectronic tweezers, giving a simple
and relatively accurate approach to the physics behind the electromagnetic phenomenon. The force has
a different form depending on the applied electrical field. For example, when we apply an electrical field
that does not depend on spatial coordinates, we define the DEP force as conventional dielectrophoresis
(cDEP). The field has a form as E0 = Ej(r)e

iωtêj with i =
√
−1 and with j being the field in x, y

or z direction. The amplitude of the field is a real scalar, depending on location. We will use that
K(ω) +K∗(ω) = 2Re(K(ω)) and ∇f2(r) = 2f(r)∇f(r).

⟨f (1)cDEP ⟩ = πr3Re(ϵ̂1) [K(ω)(E0 · ∇)E∗
0 +K∗(ω)(E∗

0 · ∇)E0]

= πr3Re(ϵ̂1)
[
K(ω)(Ej(r)e

iωtêj · ∇)Ej(r)e
−iωtêj +K∗(ω)(Ej(r)e

−iωtêj · ∇)Ej(r)e
iωtêj

]
= πr3Re(ϵ̂1)

[
K(ω)(Ej(r)e

iωte−iωt∂j)Ej(r)êj +K∗(ω)(Ej(r)e
−iωteiωt∂j)Ej(r)êj

]
= πr3Re(ϵ̂1) [K(ω)Ej(r)∂jEj(r)êj +K∗(ω)Ej(r)∂jEj(r)êj ]

= πr3Re(ϵ̂1) [K(ω) +K∗(ω)]Ej(r)∂jEj(r)êj

= 2πr3Re(ϵ̂1)Re(K(ω))Ej(r)∂jEj(r)êj

= 2πr3Re(ϵ̂1)Re(K(ω))

[
1

2
∂jE

2
j (r)êj

]
= πr3Re(ϵ̂1)Re(K(ω)) [∂j(E0 ·E∗

0)êj ]

= πr3Re(ϵ̂1)Re(K(ω))∇|E0|2

(28)

This equation is widely used and appears in almost every paper discussing DEP force. We see through
the derivation which assumptions lay behind this formula. A different variant of the DEP force formula
often uses the rms-value of the applied electrical field. When the electrical field behaves like a sinusoidal
function, it adds an extra factor 2 and replaces |E0|2 with Erms[16].
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Another electrical field which we could consider is when the harmonic exponential is also spatially
dependent E0 = Ej(r)e

i(ωt+ϕj(r))êj . This is called the generalized DEP force. Here we use that
iK∗(ω)− iK(ω) = 2Im(K(ω)). We also used the product rule ∇[f(r)g(r] = f(r)∇g(r) + g(r)∇f(r).

⟨f (1)gDEP ⟩ = πr3Re(ϵ̂1) [K(ω)(E0 · ∇)E∗
0 +K∗(ω)(E∗

0 · ∇)E0]

= πr3Re(ϵ̂1)[K(ω)(Ej(r)e
iωteiϕj(r)êj · ∇)Ej(r)e

−iωte−iϕj(r)êj+

+K∗(ω)(Ej(r)e
−iωte−iϕj(r)êj · ∇)Ej(r)e

iωteiϕj(r)êj ]

= πr3Re(ϵ̂1)[K(ω)(Ej(r)e
iϕj(r)∂j)Ej(r)e

−iϕj(r)êj+

+K∗(ω)(Ej(r)e
−iϕj(r)∂j)Ej(r)e

iϕj(r)êj ]

= πr3Re(ϵ̂1)[K(ω)Ej(r)e
iϕj(r)êj [Ej(r)∂je

−iϕj(r) + e−iϕj(r)∂jEj(r)]+

+K∗(ω)Ej(r)e
−iϕj(r)êj [Ej(r)∂je

iϕj(r) + eiϕj(r)∂jEj(r)]]

= πr3Re(ϵ̂1)[K(ω)[E2
j (r)e

iϕj(r)∂je
−iϕj(r)êj + Ej∂jEj(r)êj ]+

+K∗(ω)[E2
j (r)e

−iϕj(r)∂je
iϕj(r)êj + Ej∂jEj(r)êj ]]

= πr3Re(ϵ̂1)[K(ω)[−iE2
j (r)e

iϕj(r)e−iϕj(r)∂jϕj(r)êj + Ej∂jEj(r)êj ]+

+K∗(ω)[iE2
j (r)e

−iϕj(r)eiϕj(r)∂jϕj(r)êj + Ej∂jEj(r)êj ]]

= πr3Re(ϵ̂1)[K(ω)[
1

2
∇|E0|2 − i(E2

x(r)∇ϕx(r) + E2
y(r)∇ϕy(r) + E2

z (r)∇ϕz(r))]

+K∗(ω)[
1

2
∇|E0|2 + i(E2

x(r)∇ϕx(r) + E2
y(r)∇ϕy(r) + E2

z (r)∇ϕz(r))]

= πr3Re(ϵ̂1)[(
1

2
K(ω) +

1

2
K∗(ω))∇|E0|2+

+ (iK∗(ω)− iK(ω))(E2
x(r)∇ϕx(r) + E2

y(r)∇ϕy(r) + E2
z (r)∇ϕz(r))]

= πr3Re(ϵ̂1)[Re(K(ω)∇|E0|2+
+ 2Im(K(ω))(E2

x(r)∇ϕx(r) + E2
y(r)∇ϕy(r) + E2

z (r)∇ϕz(r))]

= ⟨f (1)cDEP ⟩+ ⟨f (1)twDEP ⟩

(29)

With the ⟨ftwDEP ⟩ being the traveling wave DEP force which depends on the imaginary part of the
Clausius-Mossotti factor and the spatial gradient of the harmonic exponential [17].

1.4.3 Higher-order DEP force

As we saw in equation 13, we can increase the level of complexity (and correctness) by considering a higher
order of the MacLaurin series to describe the electrical field inside the particle. The steps to derive the
first-order DEP force are similar to those for the higher orders. The final results are shown here to give
an idea of the added dynamics. Before we move on to the formulas, it is important to explain some
notation that we will use to describe the forces compactly. We will use that aeib = a cos(b)− ia sin(b).

∂k1∂k2 . . . ∂k(n−1)E0j = (Ej1,k1,k2,...,k(n−1) − iEj2,k1,k2,...,k(n−1))e
iωt

1st order: E0j = (Ej1 − iEj2)e
iωt

= [Ej cos(ϕj)− i(−Ej sin(ϕj))]eiωt

2nd order: ∂kE0j = (Ej1,k − iEj2,k)e
iωt

= [Ej,k cos(ϕj,k)− i(−Ej,k sin(ϕj,k))]eiωt

(30)

with k1, k2, . . . , k(n−1) being the coordinates x, y, z for each k. If we want to calculate the nth order,
we will need information on the nth derivative of the applied electrical field.
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Another changed notation we will use is the nth-order Claussius-Mossotti factor.

K(n)(ω) =
n(ϵ̂2 − ϵ̂1)

nϵ̂2 + (n+ 1)ϵ̂1

1st order: K(1)(ω) =
ϵ̂2 − ϵ̂1
ϵ̂2 + 2ϵ̂1

2nd order: K(2)(ω) =
2(ϵ̂2 − ϵ̂1)

2ϵ̂2 + 3ϵ̂1

(31)

Using these notations, we can write the generalized DEP force for the nth order [18] and derive from
this point the conventional DEP by setting ϕ(r) = 0, at the origin of the particle.

⟨fgDEP ⟩ =
p∑

n=1

⟨f (n)gDEP ⟩

⟨f (n)gDEP ⟩ =
2πr2n+1Re(ϵ̂1)

n!(2n− 1)
[Re(K(n)(ω))[Ej1,k1,k2,...,k(n−1)∇Ej1,k1,k2,...,k(n−1)

+ Ej2,k1,k2,...,k(n−1)∇Ej2,k1,k2,...,k(n−1)]

+ Im(K(n)(ω)[Ej2,k1,k2,...,k(n−1)∇Ej1,k1,k2,...,k(n−1)

− Ej1,k1,k2,...,k(n−1)∇Ej2,k1,k2,...,k(n−1)]]

⟨f (n)cDEP ⟩ =
2πr2n+1Re(ϵ̂1)

n!(2n− 1)
Re(K(n)(ω))Ej1,k1,k2,...,k(n−1)∇Ej1,k1,k2,...,k(n−1)

1st order: ⟨f (1)gDEP ⟩ = 2πr3Re(ϵ̂1)[Re(K
(1)(ω))[Ej1∇Ej1 + Ej2∇Ej2]

+ Im(K(1)(ω)[Ej2∇Ej1 − Ej1∇Ej2]]

⟨f (1)cDEP ⟩ = 2πr3Re(ϵ̂1)Re(K
(1)(ω))Ej∇Ej

= πr3Re(ϵ̂1)Re(K
(1)∇|E0|2

2nd order: ⟨f (2)gDEP ⟩ =
2πr5Re(ϵ̂1)

6
[Re(K(2)(ω))[Ej1,k∇Ej1,k + Ej2,k∇Ej2,k]

+ Im(K(2)(ω)[Ej2,k∇Ej1,k − Ej1,k∇Ej2,k]]

⟨f (2)cDEP ⟩ =
2πr5Re(ϵ̂1)

6
Re(K(2)(ω))Ej1,k∇Ej1,k

=
πr5Re(ϵ̂1)

6
Re(K(2)(ω))

∑
i,j

∇(∂iEj)
2

3rd order: ⟨f (3)cDEP ⟩ =
2πr7Re(ϵ̂1)

30
Re(K(2)(ω))Ej1,k1,k2∇Ej1,k1,k2

=
πr7Re(ϵ̂1)

15
Re(K(3)(ω))

∑
i,j,k

∇[∂k(∂iEj)]
2

(32)

If we want, for example, to calculate the complete conventional DEP force on the 3rd order, we would
have

⟨fcDEP ⟩ = ⟨f (1)cDEP ⟩+ ⟨f (2)cDEP ⟩+ ⟨f (3)cDEP ⟩

= πr3Re(ϵ̂1)Re(K
(1)(ω))∇|E0|2 +

πr5Re(ϵ̂1)

6
Re(K(2)(ω))

∑
i,j

∇(∂iEj)
2

+
πr7Re(ϵ̂1)

15
Re(K(3)(ω))

∑
i,j,k

∇[∂k(∂iEj)]
2

(33)
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1.5 Numerical result of the DEP force calculation

1.5.1 Effects of the higher order Clausius-Mossotti factor

As seen in equation 31, the Clausius-Mossotti factor changes by order n. This nth-order Clausius-Mossotti
factor can be rewritten into a real and an imaginary part.

K(n)(ω) =
n(ϵ̂2 − ϵ̂1)

nϵ̂2 + (n+ 1)ϵ̂1

=
n(ϵ2 − ϵ1) + n 1

ω (σ2 − σ1)i

[n(ϵ2 + ϵ1) + ϵ1] +
1
ω [n(σ2 + σ1) + σ1]i

=
n(ϵ2 − ϵ1) + n 1

ω (σ2 − σ1)i

[n(ϵ2 + ϵ1) + ϵ1] +
1
ω [n(σ2 + σ1) + σ1]i

×
[n(ϵ2 + ϵ1) + ϵ1]− 1

ω [n(σ2 + σ1) + σ1]i

[n(ϵ2 + ϵ1) + ϵ1]− 1
ω [n(σ2 + σ1) + σ1]i

=
n[(ϵ2 − ϵ1)(n(ϵ2 + ϵ1) + ϵ1) +

1
ω2 (σ2 − σ1)(n(σ2 + σ1) + σ1)]

(n(ϵ2 + ϵ1) + ϵ1)2 +
1
ω2 (n(σ2 + σ1) + σ1)2

+
n[ 1ω (ϵ1 − ϵ2)(n(σ2 + σ1) + σ1) +

1
ω (σ1 − σ2)(n(ϵ2 + ϵ1) + ϵ1)]

(n(ϵ2 + ϵ1) + ϵ1)2 +
1
ω2 (n(σ2 + σ1) + σ1)2

i

(34)

From this, we can easily derive for each order n the limits of the Clausius-Mossotti factor by filling
in ω = 0 and ω = ∞.

K(n)(ω = 0) =
n(ϵ2 − ϵ1) + n 1

ω (σ2 − σ1)i

[n(ϵ2 + ϵ1) + ϵ1] +
1
ω [n(σ2 + σ1) + σ1]i

=
ω(ϵ2 − ϵ1) + (σ2 − σ1)i

ω[(ϵ2 + ϵ1) +
1
nϵ1] + [(σ2 + σ1) +

1
nσ1]i

=
σ2 − σ1

σ2 + (1 + 1
n )σ1

(35)

K(n)(ω = ∞) =
n(ϵ2 − ϵ1) + n 1

ω (σ2 − σ1)i

[n(ϵ2 + ϵ1) + ϵ1] +
1
ω [n(σ2 + σ1) + σ1]i

=
ϵ2 − ϵ1

ϵ2 + (1 + 1
n )ϵ1

(36)

We can also derive the cross-over frequency, which is defined as the frequency fco = ωco

2π where

Re[K(n)(ωco)] = 0.

Re[K(n)(ωco)] = 0

n[(ϵ2 − ϵ1)(n(ϵ2 + ϵ1) + ϵ1) +
1
ω2

co
(σ2 − σ1)(n(σ2 + σ1) + σ1)]

(n(ϵ2 + ϵ1) + ϵ1)2 +
1
ω2

co
(n(σ2 + σ1) + σ1)2

= 0

n[(ϵ2 − ϵ1)(n(ϵ2 + ϵ1) + ϵ1) +
1

ω2
co

(σ2 − σ1)(n(σ2 + σ1) + σ1)] = 0

1

ω2
co

(σ2 − σ1)(n(σ2 + σ1) + σ1) = (ϵ1 − ϵ2)(n(ϵ2 + ϵ1) + ϵ1)

Which gives us the cross-over frequency.

ωco =

√
(σ2 − σ1)(n(σ2 + σ1) + σ1)

(ϵ1 − ϵ2)(n(ϵ2 + ϵ1) + ϵ1)

fco =
1

2π

√
(σ2 − σ1)(n(σ2 + σ1) + σ1)

(ϵ1 − ϵ2)(n(ϵ2 + ϵ1) + ϵ1)

(37)
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As can be seen in equation 37, there only exists a real finite cross-over frequency when σ2−σ1

ϵ1−ϵ2 > 0
which happens when σ2 > σ1 and ϵ1 > ϵ2 or when σ1 > σ2 and ϵ2 > ϵ1. We can plot the Clausius-
Mossotti factor for certain permittivities and conductivities. We take as medium deionized water and as
the dielectric particle a 15 µm diameter polystyrene bead. The relative permittivity of deionized water
is given as ϵ1,r = 78 and of polystyrene as ϵ2,r = 2.56. The conductivity of deionized water is given as
σ1 = 2× 10−4S/m [19]. The conductivity of the bead depends on its radius and is given as

σ2 = σbulk =
2Ks

r
(38)

With σbulk = 10−16S/m being the bulk conductivity and Ks = 2× 10−9S being the surface conductivity
and r = 7.5 × 10−6m being the beads radius [20] [21]. Therefore, we can find that a 15µm diameter
polystyrene bead has a conductivity of σ2 = 5.33×10−4S/m. Using these parameters and using equations
35, 36 and 37, we can find that

K(1)(0) =
5.33× 10−4 − 2× 10−4

5.33× 10−4 + 4× 10−4
= 0.3569

K(∞)(0) =
5.33× 10−4 − 2× 10−4

5.33× 10−4 + 2× 10−4
= 0.4543

K(1)(∞) =
ϵ0(2.56− 78)

ϵ0(2.56 + 156)
= −0.4758

K(∞)(∞) =
ϵ0(2.56− 78)

ϵ0(2.56 + 78)
= −0.9364

f (1)co =
1

2π

√
(5.33× 10−4 − 2× 10−4)(5.33× 10−4 + 4× 10−4)

ϵ0(78− 2.56)(2.56 + 156)
= 9.1609× 104Hz

f (∞)
co =

1

2π

√
(5.33× 10−4 − 2× 10−4)(5.33× 10−4 + 4× 10−4)

ϵ0(78− 2.56)(2.56 + 156)
= 1.1392× 105Hz

These results can also be seen in figure 3, where the different colors denote different orders n. The
dynamics of the limits of the Clausius-Mossotti factor and the cross-over frequencies for different orders
n are shown in figures 4, 5 and 6.

Figure 3: The Claussius-Mossotti factor with frequencies ranging from 1 Hz to 1 THz. The solid line
represents the real part, and the dashed line represents the imaginary part. The colors indicate the
different orders n.
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Figure 4: The CM factor at ω = 0
for different orders n

Figure 5: The CM factor at ω =
∞ for different orders n

Figure 6: The cross-over fre-
quency for different orders n

As can be seen, at DC voltage (ω = 0), the CM factor at the order of infinity is 0.4543
0.3569 = 1.273

times bigger than at the first order. At the frequency at infinity, the CM factor at the order of infinity
is −0.9364

−0.4758 = 1.968 times bigger than at the first order. These are the maximum differences visible, not
including the differences due to the different electrical fields, when including higher orders.

1.5.2 Electrical field simulation in COMSOL

An OET chip was simulated using COMSOL [22]. This OET chip has a total width of 1 mm and consists
of 4 layers. The lower layer is made from ITO (In2O3-SnO2) with a height of 200 nm and was given a
conductivity of 106 S/m [23]. A potential6 of 25/

√
2 V was applied on this bottom ITO layer. On top of

this ITO layer, there is a 1 µm layer of amorphous silicon with a light conductivity of σL = 10−4S/m, a
dark conductivity of σL = 10−11S/m and a relative permittivity of 11.7 [24]. Two illuminated spots are
put symmetric to the center of the chip with an illumination width of 50 µm. On top of this silicon layer
is a 150 µm of deionized water with a conductivity of 10−4 S/m and a relative permittivity of 78. In
this medium, a matrix of 121 by 31 points was inserted, which functions as nodes to pick up structured
data. This matrix does not influence the simulation but only creates a way to output the data into a .csv
file. On top of this deionized water medium is a final ITO layer with the same parameters as previously
discussed. This ITO layer is grounded, which closes the capacitor-like OET chip. Figure 7 shows a
zoomed version of the chip with dimensions. The mesh setting was set to ”finer” and the physics used
was ”Electric currents”. The simulations were run on an HP Zbook studio G4 with an Intel(R) Core(TM)
i7-7700HQ CPU @ 2.80GHz 2.81 GHz, an NVIDIA Quadro M1200, and 8GB RAM. The version used
was COMSOL Multiphysics 6.2 (build 339).

Figure 7: A schematic part of the OET chip created in COMSOL

6This is the rms-value of a sinusoidal voltage, which will be discussed later in this section.
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The resulting potential distribution and electrical field from this simulation is shown in figure 8. As
discussed, the needed information to calculate the DEP force is ∇|E0|2, which is also derived in COMSOL
and is shown in figure 9.

Figure 8: The resulting potential distribution and electrical field from the discussed simulation

Figure 9: The resulting ∇|E0|2 which is needed for the DEP force

In COMSOL, the electrical field was exported on 3751 different points (121 in width direction and 31
in height direction). COMSOL itself was capable of calculating the electrical field’s gradient and thus
could simulate the first-order DEP force. When applying another gradient, problems arose in COMSOL,
which returned null values. Therefore, the exported data was put in MATLAB to simulate the DEP force
in higher orders [25]. This was done using the gradient function [26], which takes the central difference
for interior data points except on the edges of the set, where it takes the single-sided difference. The
simulated electrical field in MATLAB can be seen in figures 10a and 10b. The imported gradients of
the electrical field and the derived gradient in MATLAB using only the electrical field data are shown in
figures 11a, 12a, 11b and 12b for respectively the derivatives in COMSOL and MATLAB. Figure 13 shows
the differences between the imported and derived data. As can be seen, the error has sharp peaks around
the peaks of the gradient data itself. This can be explained by some shifting errors. The shape and the
magnitude of the COMSOL data and the corresponding MATLAB-derived data are similar enough that
we will take this for granted. The primary purpose of this section is to show the working principles and
the scaling of the dynamics. Therefore, we will only use the COMSOL data for the electrical field in the
x-direction and y-direction, but we will derive all gradients and corresponding forces in MATLAB.
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(a) The electrical field in the x-direction from COMSOL(b) The electrical field in the x-direction from COMSOL

Figure 10: The simulated electrical field from COMSOL opened in MATLAB

(a) d
dx

Ex data from COMSOL (b) d
dx

Ex data derived in MATLAB

Figure 11: A comparison of the gradient of the electrical field in the x-direction using COMSOL and
MATLAB

(a) d
dy

Ex data from COMSOL (b) d
dy

Ex data derived in MATLAB

Figure 12: A comparison of the gradient of the electrical field in the y-direction using COMSOL and
MATLAB

23



(a) The difference in d
dx

Ex (b) The difference in d
dy

Ex

Figure 13: The difference between the gradient data created in COMSOL and the data derived in MAT-
LAB

1.5.3 DEP force simulation in MATLAB

We will use MATLAB to derive the factors in equation 33 and see how they scale to each other. The
first order factor ∇|E0|2 can be seen in figure 14. The second order factor

∑
i,j ∇(∂iEj)

2 can be seen

in figure 15. The third order factor
∑
i,j,k∇[∂k(∂iEj)]

2 can be seen in figure 16. We already discussed
how the Clausius-Mossotti factor behaves at higher orders, so using all this information, we can fill in
equation 33.

(a) ∇|E0|2 in x-direction (b) ∇|E0|2 in y-direction

Figure 14: The first order gradient part ∇|E0|2 derived in MATLAB
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(a)
∑

i,j ∇(∂iEj)
2 in x-direction (b)

∑
i,j ∇(∂iEj)

2 in y-direction

Figure 15: The second order gradient part
∑
i,j ∇(∂iEj)

2 derived in MATLAB

(a)
∑

i,j,k ∇[∂k(∂iEj)]
2 in x-direction (b)

∑
i,j,k ∇[∂k(∂iEj)]

2 in y-direction

Figure 16: The third order gradient part
∑
i,j,k∇[∂k(∂iEj)]

2 derived in MATLAB
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One thing that is already noticeable is the big difference in scaling in each gradient part of each order.
The first order part is in the range of 1015 whereas the second and third order are respectively in 1020 and
1031. This difference decreases with the higher exponents on the bead radius, which grows with an order
of 2 for each increasing order in DEP. In fact, they decrease so much that the second and third-order DEP

forces are very small compared to the first-order. We can compare how big the gradient parts E
(n)
factor for

each order needs to be compared to E
(1)
factor so that they are all in the same size range.

πr3Re(ϵ̂1)K
(1)
factorE

(1)
factor = π

1

6
r5Re(ϵ̂1)K

(2)
factorE

(2)
factor

E
(2)
factor =

6

r2
K

(1)
factor

K
(2)
factor

E
(1)
factor

≈ 6

(7.5µm)2
1

1
E

(1)
factor ≈ E

(1)
factor × 1011

πr3Re(ϵ̂1)K
(1)
factorE

(1)
factor = π

1

15
r7Re(ϵ̂1)K

(3)
factorE

(3)
factor

E
(3)
factor =

15

r4
K

(1)
factor

K
(3)
factor

E
(1)
factor

≈ 15

(7.5µm)4
1

1
E

(1)
factor ≈ E

(1)
factor × 1021

(39)

Due to the small radius, we see that the second and third orders differ by more than a factor 105.
This can also be seen in figure 17 where the DEP force in the x-direction and y-direction are plotted
against each order in a logarithmic scale. As was already predicted, higher-order forces than n = 1 are
neglectable. Therefore, the first-order DEP force is a pretty good approximation of the DEP force in an
optoelectronic tweezer setup.

(a) DEP force in x-direction for 3 orders (b) DEP force in y-direction for 3 orders

Figure 17: A comparison of the DEP force using 3 different orders

The electrical field depends on the applied voltage, the difference between the illuminated and dark
conductivity of the photoconductor, the permittivity of the medium, and the bead radius. The force
simulated in the previous section is, therefore, on the high side, considering the effects of the parameters.
Also, this simulation is done in 2D to show the impact of higher-order DEP force contributions.
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When considering a 3D polystyrene bead in a 3D medium, we cannot just take one point in space and
decide that it will determine the magnitude of the DEP force. We must take the volume average as a
correction to get a more accurate description. For example, the grid is spaced 4.17 µm in the x-direction
and 4.50 µm in the y-direction, so if we take a 15 µm diameter bead, it overlaps multiple grid nodes.
Therefore, we must calculate the first-order field gradient as average.

∇|E0|2simulation =

˝
V
∇|E0|2dV
4
3πr

3
(40)

The simulation is the part to be put in the DEP force formula. Suppose we want to compare this
with literature. In that case, we need to take a radius that is less than ≈ 4µm

2 to fit it within the grid
nodes7. When we would take a 4 µm diameter bead and an applied signal of 25 Vpp, we would end up
with a maximum force of 2.2301 pN and 3.8038 pN in respectively x-direction and y-direction as can be
seen in figure 18. Compared to literature, this is in the right ballpark (around 2 ∼ 3 pN) [27]. This was
already evident by looking at the scaling of the electrical field and its gradients [28].

(a) DEP force in x-direction (b) DEP force in y-direction

Figure 18: A comparison of the DEP force with literature [27].

In literature, the DEP force is often denoted as positive or negative. We talk about a positive DEP
force when a particle is attracted to an illuminated spot. In contrast, the DEP is negative when a particle
is repelled by the illuminated spot [29]. This is directly related to the Clausius-Mossotti factor. When
this factor is positive, we have a positive DEP verse and vice versa. This is schematically shown in figure
19.

Figure 19: A schematic depiction of a positive and a negative DEP force from [30].

7Actually, this is still a tricky description because the integral needs to take more points into account to get an accurate
volume average. Nevertheless, this is for benchmarking purposes good enough for this project’s scope
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1.6 The shape of the applied electrical field

The form of the applied signal in the previous section was sinusoidal. Due to ∇|E0|2, we have the absolute
magnitude of the field, meaning that the force depends on the absolute magnitude of the applied signal.
This is what we call the root-mean-square [31] and is defined by the square of the integral of the signal
in one period divided by the period length.

Erms =

√
1

T

ˆ T

0

[E(t)]2dt (41)

When we take a sinusoidal function such as E(t) = A sin
(
2π
T t
)
, this would result in

Erms =

√
1
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ˆ T

0

[
A sin
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)]2
dt =
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A2 sin2(
2π

T
t)dt =

√√√√A2

T

[
t

2
−

sin
(
4π
T t
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2
+

sin(0)
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=
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2
=
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2

Therefore, when applying a sinusoidal signal with an amplitude of V, we will have an effective electrical
field of 0.707 V. This is different for different signal shapes. For an alternating field, the effective electrical
field is the strongest using a square wave because the effective field strength is equal to the amplitude of
the square wave [32]. A comparison of the waveform shape effect is shown in figure 20. Keep in mind
that in the force equation, the Erms is squared meaning that the ratio between a square wave and a

sinusoidal wave is respectively (A)
2
:
(
A√
2

)2
→ A2 : A

2

2 .

Figure 20: The effect of the waveform shape in an OET trap for alternating potentials with the same
amplitude.
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1.7 DEP force in multilayer particles

In the previous section, we only looked at particles of a single material. This works for testing subjects
such as polystyrene beads but will not be accurate for widely occurring particles of interest, such as
e.g. cells. The DEP force from equation 28 depends on the particle material in the Clausius-Mossotti
factor in equation 31. Therefore, when working with multilayer particles, another way of describing ϵ̂2
is necessary. We will show 3 ways the complex permittivity can be approached [33]. These approaches
describe the particles shown in figure 21b, c, and d.

Figure 21: Multilayer models for DEP force calculation. (a) Single-layer model. (b) Two-layer model.
(c) Three-layer model for mammalian cells without a cell wall. (d) Three-layer model for plant cells with
a cell wall. [33]

When considering a two-layer model, we can denote rmem and ϵ̂mem as the radius of the whole cell
and the complex permittivity of the membrane. We denote rn−c and ϵ̂n−c as the radius and the complex
permittivity of the center of the cell8.

ϵ̂2 = ϵ̂effcell = −ϵ̂mem
2(ϵ̂n−c − ϵ̂mem)r3n−c + (ϵ̂n−c + 2ϵ̂mem)r3mem
(ϵ̂n−c − ϵ̂mem)r3n−c − (ϵ̂n−c + 2ϵ̂mem)r3mem

(42)

When we consider a three-layer model such as in figure 21c, We introduce a separate nucleus with
radius rn and complex permittivity ϵ̂n. The cytoplasm has radius rc and ϵ̂c. This means that ϵ̂n−c from
equation 42 will get more complex and defined.

ϵ̂n−c = −ϵ̂c
2(ϵ̂n − ϵ̂c)r

3
n + (ϵ̂n + 2ϵ̂c)r

3
c

(ϵ̂n − ϵ̂c)r3n − (ϵ̂n + 2ϵ̂c)r3c
(43)

Finally, suppose we would consider a three-layer model with instead of a separate nucleus an added
cell wall with radius rw and complex permittivity ϵ̂w. In that case, we need to define the complex
permittivity of the particle again in steps. We define, e.g., the radius to the membrane as rn−c−mem.

ϵ̂p = ϵ̂effcell = −ϵ̂w
2(ϵ̂n−c−mem − ϵ̂w)r

3
n−c−mem + (ϵ̂n−c−mem + 2ϵ̂w)r

3
w

(ϵ̂n−c−mem − ϵ̂w)r3n−c−mem − (ϵ̂n−c−mem + 2ϵ̂w)r3w

ϵ̂n−c−mem = −ϵ̂mem
2(ϵ̂n−c − ϵ̂mem)r3n−c + (ϵ̂n−c + 2ϵ̂mem)r3n−c−mem
(ϵ̂n−c − ϵ̂mem)r3n−c − (ϵ̂n−c + 2ϵ̂mem)r3n−c−mem

(44)

8With n-c, we mean the nuclear and the cytoplasm
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1.8 DEP force in non-spherical particles

Besides multilayer particles, particles in OET setups can also be non-spherical. In most cases, this is very
hard to solve for complex forms and numerical analysis is usually required to solve the Maxwell stress
tensor and simulate the DEP phenomena well. A good example is when using a silicon microbot as a
particle with a complex shape. In figure 22, we see 3 different complex forms made by SU8. In figure
23, we see the comparison with a spherical bead, which was translated using DEP force and a spherical
bead inside a cogwheel-shaped microbot (from figure 22a), which is translated using DEP force. The red
line in figure 23 is very similar to the black line in figure 22a. As can be seen, the manipulation force
magnitude for a microbot is in the same order as that of a single bead. The shape is not as linear as that
of a bead. Therefore, some experimental identification, which will also be discussed later, will need to be
done to get a more accurate description of the phenomena and to apply control on this microbot.

Figure 22: Optoelectronic microrobots SEM images and maximum linear (left axis, black) and angular
(right axis, red) velocities as a function of OET bias voltage for translating and rotating. (a) cogwheel-
shaped microrobot. (b) box-shaped microrobot. (c) spaceship-shaped microrobot. [34]

Figure 23: Maximum linear velocity (left axis) and corresponding DEP manipulation force (right axis)
as a function of bias voltage for a bead translated alone (black) or inside a microrobot (red). Error bars
represent ±1 SD from 5 measurements for each condition. [34]
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1.8.1 DEP force in ellipsoid particles

The most straightforward form next to a spherical shape is the elliptical shape, which occurs often in
cells, for which the DEP force is better defined. When considering an ellipsoidal particle with principle
radii a, b, and c, we can define the DEP force [35].

⟨FellipsoidDEP ⟩ = 2πabc

3
Re(ϵ̂1)[px∂x + py∂y + pz∂z]E0 (45)

with effective dipole moment pi for i = x, y, z.

pi =
4πabc

3
Re(ϵ̂1)Re

(
ϵ̂2 − ϵ̂1

ϵ̂1 + (ϵ̂2 − ϵ̂1)Li

)
Ei

Li =
abc

2

ˆ ∞

0

ds

(s+ r2i )
√
(s+ a2)(s+ b2)(s+ c2)

(46)

with ri = a when i = x, ri = b when i = y and ri = c when i = z.

1.9 Torque due to the DEP force

The last thing we need to discuss is the torque on a particle due to the electrophoretic force. We can
rewrite the DEP force equation 28 to be a function of the dipole moment p.

⟨FDEP ⟩ = peff · ∇E

= 4πr3Re(ϵ̂1)Re(K(ω))E · ∇E
(47)

Where the force on a dipole moment depends on the dot product with the gradient of the electrical
field, so does the torque, which depends on the cross product with the electrical field. Just as the force
was different and more complex for an ellipsoid, so is the torque different as well. The torque on a
spherical particle is given by equation 48, and the torque on an ellipsoid particle is given by equation 49
[36] [37].

TSphere
DEP = pSphereeff ×E0

= −4πr3Re(ϵ̂1)Im(K(ω))|E0|2
(48)

As seen in equation 48, it depends on the imaginary part of the Clausius-Mossotti factor. This is
opposite to the DEP force from equation 28. An applied signal with a frequency on the boundaries is
often chosen When the DEP force is desired for it gives the highest values9. At those frequencies, the
complex part of the Clausius-Mossotti factor is usually zero. Therefore, in practice, the torque is often
ignored in literature.

TEllipsoid
DEP = pEllipsoideff ×E0

TEllipsoidDEP,x =
4πabc(ϵ̂2 − ϵ̂1)

2(Lz − Ly)EyEz

3Re(ϵ̂1)[1 + ( ϵ̂2−ϵ̂1ϵ̂1
)Ly][1 + ( ϵ̂2−ϵ̂1ϵ̂1

)Lz]

TEllipsoidDEP,y =
4πabc(ϵ̂2 − ϵ̂1)

2(Lx − Lz)ExEz

3Re(ϵ̂1)[1 + ( ϵ̂2−ϵ̂1ϵ̂1
)Lx][1 + ( ϵ̂2−ϵ̂1ϵ̂1

)Lz]

TEllipsoidDEP,z =
4πabc(ϵ̂2 − ϵ̂1)

2(Ly − Lx)ExEy

3Re(ϵ̂1)[1 + ( ϵ̂2−ϵ̂1ϵ̂1
)Lx][1 + ( ϵ̂2−ϵ̂1ϵ̂1

)Ly]

(49)

As seen in equation 49, the vector is less trivial than the one for a spherical particle. The polarization
is not homogeneous for an ellipsoid particle. This expression shows that the alignment due to the torque
is the biggest for the axis parallel to E0. For each principal axis, there exists a frequency where there is
a stable direction in that axis. In the high and low limits, the longest principal axis is only stable [38].

9The extreme values of the Clausius-Mossotti factor are found on ω = 0 and ω = ∞
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2
Microfluidic chip

This section will explain the design parameters to consider when making the microfluidic chip for OET
purposes. The consistency of the fluidic medium depends on the OET’s use case. Therefore, we discuss
briefly what this would mean for our chip. Because this chip contains a specific type of fluidic medium
and is subject to an alternating electrical field, we will need to discuss different phenomena that could
arise that could limit the use of the OET. Vice-versa will discuss how the medium could influence the
electrical field inside the microfluidic chip needed for the DEP force. Lastly, we will discover the expected
effects from an overhang in the chip, which we will back up with some simulations.

Microfluidic chip for ”Jip en Janneke”

In the world of optoelectronic tweezers, we need a tiny see-through box to hold the tiny particles
and liquid we want to move around. This box has to be small enough so we can look at it through
a microscope. We learned earlier that we need to use electricity to help move things in this box.
This special little box is called a microfluidic chip, and it can do many different things that we
will talk about here.

The type of liquid we use in the box can change how we move the particles. For example, if
we want to move tiny living cells, we need to make sure the liquid has the right food, salt, and
temperature for them. But if we want to move small plastic balls, we can just use normal water.

We will also talk about how the liquid and the chip can help or make it harder to move things
with the optoelectronic tweezers. Plus, we’ll explore how a bent chip might change how everything
works, and we will show a simulation to help explain it better.

The Jip and Janneke illustration is created by the renowned artist Fiep Westendorp.

2.1 Dielectric medium

2.1.1 Dionized water

In the Netherlands, regular tap water is very safe to drink [39]. This water is tested to meet strict
standards. This water, however, still contains many substances different from H2O. Consider minerals,
salts, bacteria, and pesticides (although in tiny concentrations) [40]. Therefore, deionized water is often
chosen as the dielectric medium for a simple medium with uniform electric properties. This is not to be
confused with demineralized water. Deionized water is purely H20 with ions removed, while demineralized
water could still contain different ions of water [41]. A pure water molecule consists of 1 oxygen atom
and 2 hydrogen atoms, which are separated from each other with an angle of 104.5 degrees, which is
the energetically optimal geometry for this atom [42]. The water molecules have a polarization angle
because this angle is less than 180 degrees. Due to this polarization, water is a dielectric medium. When
a dielectric medium is subject to an alternating electric field, the molecules will rotate, and energy will
be lost to heat [43].

Wvol =
V 2

d
ϵ0Im(ϵ̂)ω (50)

The power loss per volume is Wvol. It depends on the bias voltage on the medium V and the height
of the microfluidic chip d. The permittivity of free space is denoted by ϵ0. The complex permittivity of
the medium is denoted by ϵ̂. The frequency of the AC voltage is given by ω.

32



In the previous section, we already worked with the complex permittivity, which we took as constants.
In reality, the real part of the permittivity and the conductivity seem to change with respect to the
applied frequency. Figure 24 shows an example of this. The dielectric loss appears to peak around 20
GHz. Electromagnetic waves and that frequency range are known as microwaves and are used by people
worldwide to heat food in the kitchen [44]. If we do not want to have this effect play any role in our OET
setup, we should avoid frequencies that are too high and induce microwave heating.

Figure 24: The black line shows the real part of the complex permittivity of water. The grey line shows
the complex part of the complex permittivity. Both the values for tap water (400µS/cm) and for pure
water (0.1µS/cm) are shown [45].

2.1.2 Cell-culture media

If we want to move the OET field to live cell research, we can no longer use simple deionized water
in the microfluidic chip. Cells have semipermeable membranes, which means osmotic pressure must be
prevented. Also, temperatures should not fluctuate too much, e.g., temperature differences of more than
4 ◦C are known to kill mammalian cells rapidly [46]. To summarize, for live cell research, cells require
some specific care [47]:

• Temperature control

• Appropriate pH and osmolality

• A certain type of culture medium

• Stable conditions

Because this is very cell-specific, one should determine which media is necessary for their use case.
Some typical cell culture media often used are shown in table 1 [48].

Cell Line Morphology Species Medium
HeLa B Epithelial Human MEM + 2mM Glutamine + 10% FBS + 1% NEAA
HL60 Lymphoblast Human RPMI 1640 + 2mM Glutamine + 10-20% FBS
3T3 clone A31 Fibroblast Mouse DMEM + 2mM Glutamine + 5% NBCS + 5% FBS
COS-7 Fibroblast Monkey DMEM + 2mM Glutamine + 10% FBS
CHO Epithelial Hamster Ham’s F12 + 2mM Glutamine + 10% FBS
HEK 293 Epithelial Human EMEM (EBSS) + 2mM Glutamine + 1% NEAA + 10% FBS
HUVEC Endothelial Human F-12 K + 10% FBS + 100 µg/ml Heparin
Jurkat Lymphoblast Human RPMI-1640 + 10% FBS

Table 1: Overview of cell lines, their morphology, species, culture medium, and applications [48].
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When cell research is directed toward proliferation and cell growth, culture media often contain a nutrient-
rich serum. The needed buffer media are available in powdered form, concentrated form, or ready-to-work
form. Because cell culture media is often very complex, it also has a more complex permittivity. Cell
culture media is often more conductive and more ionized, which reduces the electrical field strength, which
makes it harder to have a working OET [49], and induces effects such as light-induced AC electroosmosis
which will be discussed in section 4.2.1. The temperature control of the microfluidic chip can be realized
by using a Peltier heater, which uses thermoelectric cooling and has been shown to work in an OET
environment [34][50].

2.1.3 Electrolysis

The microfluid chip can also be seen as an electrochemical cell with a positive electrode (anode) and
a negative electrode (cathode). When water is put in this system, and the correct voltage is applied,
electrons can be added to the water molecules, making them split apart. The reaction of this water-
electrolysis is given by breaking them apart into hydrogen and oxygen atoms [51].

2H2O + EEL → 2H2 +O2 (51)

This reaction is the general form but can exist in many half-reaction types depending on the electro-
chemical cell type and medium. The system’s needed potential difference is EEL. This voltage is given
by the Gibbs free energy, which describes the energy of a chemical equilibrium with constant pressure
and constant temperature [52].

EEL = −∆G

nF
(52)

The amount of added electrons is given as n, which is 4 in the case of the water electrolysis reaction.
F is the Faraday constant, which is 96485 C/mol. The Gibbs energy for the water electrolysis reaction is
237 kJ/mol, which means that the added voltage for pure water must be at least 1.23 Volts. In practice,
this theoretical lower limit is higher due to thermal effects. When ions are added to the electrochemical
cell, as is the case for the cell culture medium, the chemical reactions are more complex, and more types
of gasses can be created. The electrolysis phenomenon can be increased in efficiency by injecting pulses
of direct current in the electrochemical cell instead of standard direct current. This is because double
layers, discussed in more detail in section 4.2.1, are reduced, and electrons have more freedom to move
[53]. The effect of this pulsed input is shown in figure 25.

Figure 25: Electrolysis produced gas depending on the applied pulse frequency. The applied pulsed
voltage is 4 V, and the electrodes are separated by 0.1 mm [53].
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In optoelectronic tweezers, electrolysis is an unwanted phenomenon. The created gas bubbles reduce the
freedom of particles to move around. Besides that, can the created gasses destroy the chip’s cells or the
microfluidic chip itself. Therefore, it is essential to avoid having electrolysis in the OET system. As can
be seen in figure 26, electrolysis has been seen to occur at frequencies up to 400 Hz for standard OET
setups. This limits the working range of most OET setups in the lower range, as shown in figure 27.
Therefore, when using an OET setup, the lower limit should be known and avoided.

Figure 26: The combination of frequency and voltage of a sinusoidal AC input on which electrolysis
happens in a gold film OET setup. The gold film is added to the electrode without the photoconductive
layer in a standard OET setup [54].
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Figure 27: The DEP force for different frequencies on a 90 µm polystyrene bead in a gold film OET
setup. The gold film is added to the electrode without the photoconductive layer in a standard OET
setup [54].

2.2 ITO electrodes

The electrodes in the microfluidic chip must be see-through enough for the illumination pattern to reach
the photoconductive layer. Also, when imaging, it is essential that the electrodes transmit enough light to
detect the particles in the chip. To cover this, microscope slides and slips can be covered by a nanoscopic
layer of ITO (Indium Tin Oxide). ITO proved very useful in everyday household applications such as
touch screens, TV screens, and solar panels [55]. In figure 28, it can be seen that the transmittance of
ITO fluctuates for different wavelengths of light but can be seen to decrease with increased ITO thickness
generally. In figure 29, it can be seen that the density per centimeter decreases with increasing thickness
of the ITO layer. This can be related to the number of carriers in ITO, which is growing with increasing
ITO layer thickness [56]. The Hall mobility is the measured mobility of the carriers due to a magnetic
field, i.e., the Hall effect [57].

Figure 28: The transmittance and absorbance
of different thicknesses of ITO film [56].

Figure 29: The resistance, carrier concentration, and Hall
mobility of different thicknesses of ITO film [56].
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2.2.1 Photoconductive layer

The photoconductive layer in the microfluidic chip is the part where precise control can be implemented.
When specific wavelengths of light illuminate a part of the photoconductive layer, the resistance drastically
drops compared to the not-illuminated state. This way, virtual electrodes can be created that change
the shape of the electric field in the microfluidic chip. Because of this, the photoconductive layer can be
seen as a resistor with resistance depending on the illumination. The photoconductive layer is discussed
in more detail in section 3.

2.3 Electrical circuit

The two conducting glasses, with the photoconductive layer on one side, create a capacitor from the
microfluidic chip. Because of that, we can model it as an electric circuit.

Figure 30: The microfluid chip modeled as an electric circuit.

As can be seen, the current in the circuit is subject to 4 resistances, which are from the electrodes, the
photoconductive layer, and one from the dielectric medium. The resistance of the photoconductive layer
depends on the wavelength, which will be discussed in section 3. The capacitance of the dielectric medium
is often reduced to an ideal capacitor, with no resistance Zm,R and inductance Zm,L. In reality, capacitors
have some resistance and parasitic inductance [58]. This parasitic inductance makes the capacitor behave
like an inductor with applied frequencies that are higher than the cross-over frequency of the capacitor.
The resistance of the capacitor is the bias resistance of the capacitor, which can be measured at the
cross-over frequency.
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The capacitance of a parallel plate capacitor with a dielectric in between the plates is given by the relative
permittivity of the medium and the geometry of the plates [59].

Zm,C =

(
iωϵrϵ0

A

d

)−1

(53)

ϵr is the relative permittivity, ϵ0 is the permittivity of free space, ω is the angular frequency of the
applied signal, A is the area of the parallel plates and d is the distance between the plates. The parasitic
inductance of this parallel plate capacitor can be estimated by the permeability of the medium and the
self-inductance [60].

Zm,l = iωµrµ02w

[
ln

2w

d
+ 1 +

d

w

]
(54)

mur is the relative permeability of the medium, µ0 is the permeability of free space, ω is the angular
frequency of the applied signal, w is the long side of the parallel plates and d is again the separating
distance. Suppose we use the permeability and permittivity of deionized water for a microfluidic chip of
20mm by 5mm with a separation of 150µm. In that case, we can find C ≈ 47.8nF and L ≈ 31.7µH.
The total impedance of the real capacitor can be calculated as the capacitor impedance in series with
the parasitic inductance and the parasitic resistance.

ZC = Zm,C + Zm,L+ Zm,R

=
1

iωC
+ iωL+Rc

(55)

The norm of this complex number gives the magnitude of this impedance.

|Zc| =
√
R2
C − 2

L

C
+ ω2L2 +

1

ω2C2
(56)

The cross-over frequency is the frequency at which this magnitude has a minimum. It can be found
when the magnitude’s first derivative with respect to the angular frequency is 0.

∂|ZC |
∂ω

=

(
2ωL2 − 2

1

ω3C2

)
1

2

(
R2
C − 2

L

C
+ ω2L2 +

1

ω2C2

)−1

= 0

→ ω =
1√
LC

(57)

At this cross-over frequency, also known as the capacitor’s self-resonance frequency, the impedance’s
magnitude is equal to the parasitic resistance RC . The impedance of the parallel plate capacitor, as
discussed, can be seen in figure 31. When we want to find the real capacitance, parasitic inductance, and
parasitic resistance, it would be wise to measure the exact chip and fit it on equation 56.
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Figure 31: The magnitude of the impedance of a parallel plate capacitor with deionized water as dielectric.
The real impedance is a sum of the capacitance, the parasitic inductance, and the parasitic resistance.

Because this system is simply in series, we can say that the current is equal everywhere, the voltage
drops at each component, and the circuit’s total resistance is the sum of all impedances [61].

Rtot = RITO +RPL(P ) + ZC +RITO (58)

We can relate the current in the system to the input voltage and the total resistance using Ohm’s
Law [62]. This current is equal everywhere in the system because it is in series.

I =
Vin
Rtot

=
Vin

RITO +RPL(P ) + ZC +RITO
(59)

The voltage drop at each component is related to the relative resistance compared to the system’s
total resistance. Thus, the system’s voltage, and therefore energy, is divided proportionally. Thus, this
proportionality can be used to find the total voltage in the capacitor created by the microfluid chip.

VC = IZC =
Vin
Rtot

ZC

= Vin
ZC

2RITO +RPL(P ) + ZC

(60)

The uniform electrical field in a parallel plate capacitor is proportional to the voltage drop in the
capacitor and the separating distance between the parallel plates [7].

E =
VC
d

=
Vin
d

ZC
2RITO +RPL(P ) + ZC

(61)

Therefore, the electrical field strength depends highly on the difference between the resistances of the
ITO glass and the photoconductive layer and the capacitor’s impedance. This could significantly impact
the DEP force’s usability in certain types of dielectric media, which is discussed in section 3.4.3.
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2.4 Overhang

Every material has a specific resistance against deformation. English physicist Thomas Young discovered
this property called Young’s modulus [63]. This modulus gives the relation between the strain of a
material per applied unit of stress in the same direction. The deformation of a material on a certain
amount of stress can be calculated using the Cauchy stress tensor, named after Augustin-Louis Cauchy
[64]. We would have a perfectly uniform electric field in a perfect parallel plate capacitor. If the plates
bend due to some stress, the plates will stop being parallel and produce a non-uniform field. Calculating
the deformation of the top ITO glass is complex due to it being clamped in on all sides. Therefore, we
want to simplify the deformation case to 1D and argue that for 2D, the deformation will be much smaller.
If a 1D rod is clamped in on both sides, it has a smaller deflection than when it is clamped on only one
side. When clamping this rod in on the two remaining edges, the deflection should be even smaller [65].
The deformation of a double-clamped rod with a uniform distributed load is given the moment of inertia
and Young’s modulus of the system [66].

δmax =
wL4

384EI
(62)

w is the distributed load (N/m), L is the length of the rod, E is Young’s modulus, and I is the moment

of inertia, which is for a plate with depth b and height h given as I = bh3

12 . In the case of the ITO glass
that covers the microfluidic channel in the microfluidic chip, we can give some insight into the expected
effects on the DEP force. Suppose we have a microfluidic chamber with length A and width B. In that
case, we can find the gravitational force to be Fz = gρABh, with the density of the ITO glass being ρ,
with the thickness of ITO glass being h and with gravitational constant g. If we would only take the rod
to be clamped in the direction of the side with length A, we would find the maximum distribution in the
middle of the plate

δA =
wA4

384EI
=
gρABh

A

A4

384E
(
Bh3

12

) = gρBhA4 1

4608EBh3
=

gρA4

4608Eh2
(63)

If we had clamping in the B-direction, we would only need to change the A in this formula to B. As
we can see, the deflection is the biggest in the direction with the largest length. If A is the long side
of the unsupported ITO glass, equation 63 gives an upper limit for the deflection due to the weight10.
Using A = 2 cm, B = 5 mm, h = 200 µm, ρ = 2380 kg/m3 and E = 70 GPA, we find that this deflection
is smaller than 1 nm.

To understand the impact of this overhang, we simulate the DEP force in this system in COMSOL
as was done similarly in section 1.5.2. The only difference is that the top electrode has been modeled to
have the sag spherically, similar to figure 32. The actual deflection in the 1D case is quadratic, but this
was less complex to implement. Because the calculations done in MATLAB use the point evaluation of
the grid as discussed in section 1.5.2, we cannot have the deflection to overlap a point of this grid. This
distance in this grid is 7.5 µm in this simulation, much larger than the calculated deflection. Therefore,
the deflection has been taken to be proportional to this maximum deflection.

d =
dmax
a

(64)

dmax has been taken to be 7 µm to avoid overlap with grid points even more and for a values were

taken as 1, 43 , 2, 4, and 330. The radius of the circle can be calculated from figure 32 to be r = d
2 + b2

8d .
The simulated results of the OET, when two spots are illuminated, can be seen in table 2.

10As we already discussed, is the plate going to be less deformed because the plate is clamped in all directions, therefore,
this amount of deflection is an exaggeration of the real deflection.
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Figure 32: The geometric figure created a circular overhang in the simulation in COMSOL. The lowest
part of the overhang is equal to d and is related to the radius of the circle r and the width of the chip b.

The simulated results of the OET, when there is no illumination, can be seen in table 3. The complete
data can be found in appendix A.

Table 2: The main results of the DEP simulation with overhang of the electrode on top in illuminated
state with alternating deflection factor a as described by equation 64.

a max Ex [V/m] max Ey [V/m] max Fx [pN] max Fy [pN] Increase of ∂x|E|2 [%] Increase of ∂y|E|2 [%]
1

330 254735.3018 293460.0819 3601.9976 6172.6027 N.A. N.A.
0.25 231291.1983 266675.5767 2980.0495 5114.2547 -17.267 -17.146
0.5 232271.9944 268265.2174 3015.4420 5159.2902 -16.284 -16.416
0.75 233346.9416 269613.3319 3033.2409 5179.7011 -15.790 -16.086
1 234117.6331 271138.8387 3087.2052 5290.1414 -14.292 -14.296

Table 3: The main results of the DEP simulation with an overhang of the electrode on top in the off
state with alternating deflection factor a as described by equation 64.

a max Ex [V/m] max Ey [V/m] max Fx [pN] max Fy [pN] Increase of ∂x|E|2 [%] Increase of ∂y|E|2 [%]
1

330 1.5390× 10−11 1.7677 1.8910× 10−18 2.8486× 10−18 N.A. N.A.
0.25 6.1211× 10−3 1.7711 2.7125× 10−11 5.6977× 10−11 1.4344× 107 5.9553× 108

0.5 1.2290× 10−2 1.7745 5.4209× 10−11 1.1454× 10−10 2.8666× 107 1.1928× 109

0.75 1.8508× 10−2 1.7779 8.1350× 10−11 1.7269× 10−10 4.3018× 107 1.7946× 109

1 2.4773× 10−2 1.7814 1.0849× 10−10 2.3139× 10−10 5.7371× 107 2.3998× 109

As we can see in table 2 and table 3, the difference between a minimal overhang and some overhang
is around 16% for the illuminated state and very large for the off state. The amount of overhang does
decrease with increasing overhang after dmax

4 . Even though the increase of the DEP effect is considerable
for the off-state at the start, the total force is small enough to be ignored. Therefore, using this simulation,
we can conclude that a large enough overhang would decrease the DEP effect in the illuminated state.
Its effect seems to be unnoticeable in the off-state.
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2.5 Dimensions

The last important thing to discuss for the microfluidic chip is the dimensionality. The size of the
microfluidic chip depends very much on the particles and the wanted dynamics. The particles in the chip
should have enough room to be moved, pass each other, and not get stuck. This also applies to the height
of the chip. The electrical field’s magnitude depends on the chip’s height, as shown in equation 61. The
area of the microfluidic channel will influence the amount of overhang deflection as was demonstrated in
equation 63. The photoconductive layer’s heights can influence this layer’s effectiveness, for it can absorb
more photons, which is discussed in more detail in section 3. The photoconductor can be shaped into
a specific pattern such that there are not only virtual electrodes but also static, stronger electrodes in
the OET chip [28]. The size of the microfluidic channel changes influences the thermal and fluidic forces
discussed in section 4. The height of the chip also influences the minimal focal distance we can use for an
objective, which will be discussed in section 5. We also need to consider the available types of premade
(conductive) glasses, which can practically limit the system.

Figure 33: An example of a microfluidic chip used in optoelectronic tweezers. (a) shows the schematic
chip with the different layers. (b) and (c) are pictures of an actual microfluidic chip used in literature
[67].
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3
Photoconductive layer

In this section, we will explore the fundamental physics of the photoconductive layer in the microflu-
idic chip for optoelectronic tweezers. The conductivity of the photoconductive layer increases at the
points illuminated by light, a phenomenon attributed to solid-state physics originating from quantum
phenomena. Our focus will be on silicon photoconductive layers, particularly hydrogenated amorphous
silicon, the predominant material in the literature on optoelectronic tweezers (OET) devices. We will
elucidate the processes occurring within these photoconductive layers upon illumination, detailing how
varying wavelengths and light intensities affect the conductivity. Additionally, we will investigate the
consequences of prolonged illumination. The macroscopic structure of the photoconductive layer and
its implications for the electrical field within the microfluidic chip will be examined and simulated. We
will also address the adhesive interactions between the photoconductive layer and particles, including
strategies to mitigate these effects. Finally, we will briefly review other types of photoconductive layers
documented in the literature beyond just a form of intrinsic silicon.

The photoconductive layer for ”Jip en Janneke”

In the last section, we learned about a special box that has particles and fluid inside. There’s
also a cool part called a photoconductive layer. This layer is made of a unique material that,
when we shine light on it, pulls the particles we want to move even more.

It does this because it lets electricity flow better. Now, the way this photoconductive layer
works is explained by science called quantum physics and solid-state physics, which tell us
about what’s happening inside it. We will look at different materials that can be used for this
layer and see how they change how it works. We’ll also discover what kind of light is best
to make sure the particles are pulled really strong. But we have to watch out because if we
shine a light on this layer for too long, it can get weaker, and we will talk about why that happens.

The way the photoconductive layer looks can also affect how well it works. The roughness of the
layer can influence the pulling force, and it can also be sticky for the particles that we want to
move. In the last part of this section, we’ll mention some other materials that can work as a
photoconductive layer too, even though they are a bit rare.

The Jip and Janneke illustration is created by the renowned artist Fiep Westendorp.

3.1 Solid state physics and electron transition

Within solid materials, many properties can be quantified. One important property is the electrical con-
ductivity. This measures the ease at which an electrical charge can pass through a material [68]. When
a material has high conductivity, we call them conductors, and they are, in most cases, metals. When
a material has a very high resistance, i.e., low conductivity, we call it an insulator. These insulators
are found to be materials such as wood, plastics, or ceramics. The reason this happens can be found in
quantum theory. The electrons in the material are bounded by nuclei in specific orbitals. The types of
orbitals depend on quanta, i.e., discrete quantity of energy, hence quantum theory, such that there are a
discrete amount of orbitals. Niels Bohr first theorized these orbitals in 1913 and later worked out further
by Erwin Schrödinger in 1926 [69]. A specific energy level is assigned for each orbital, called an energy
band. These bands can have as many electrons occupied in them as the connected orbital allows. For
example, in the first band, there can be 2 electrons (one spin-up and one spin-down) before it is full. This
is why helium, having 2 electrons, is noble [70]. It has only fully occupied bands, as all noble elements
normally do. Given the energy levels, we will need to find out how these electrons can move.

43



3.1.1 The dispersion relation of an electron in a simple solid

Erwin Schrödinger theorized that a particle behaves like a wave. Therefore, the particle needs to have
a function that describes what this wave looks like. The general formula Schrödinger created shows this
wave function’s general solution.

iℏ
∂

∂t
Ψ(r, t) =

[
− ℏ2

2m
∇2 + V (r)

]
Ψ(r, t) (65)

With ℏ being the reduced Planck constant, m is the mass of the particle, V (r) is a potential that
describes the wave for each position r and t denotes the dependence on time. This ”easy-looking”
formula is quite deceiving and needs some simplification to give general solutions. For example, we are
only interested in the number of states, which is equal to this system’s eigenvalues. Therefore, we can
remove the dependence on time and look at stationary wavefunctions to find these eigenvalues.[

− ℏ2

2m
∇2 + V (r)

]
Ψ(r) = ĤΨ(r) (66)

With Ĥ denoting the Hamiltonian, which is the function on the left side. This Hamiltonian can be
an eigenfunction setting it equal to an eigenenergy E. We will discuss only a simple form first, which
describes a free particle in a box (i.e., we will set the potential V (r) = 0. This results in the following
eigenvalue.

− ℏ2

2m
∇2Ψ(r) = EΨ(r) (67)

To solve this, we will use the ansatz Ψ(r) = Ceik·r with k being the wave vector which gives direction
to the wave11. This will give us the energy relation depending on this k called the dispersion relation.

− ℏ2

2m
∇2
[
Ceik·r

]
=

ℏ2

2m
C(ik) · (ik)eik·r

= − ℏ2

2m
|k|2Ceik·r

=
ℏ2k2

2m
Ψ(r)

(68)

With the magnitude of the wave vector k denoted by k. This shows us that the energy given this

k is given as E(k) = ℏ2k2

2m . We want to know how electrons move, which we can describe using these
quantum particles. We will take each electron in the solid as a particle confined in the crystal lattice
of the solid. We simplify each particle to be in a cubic box with length L and, therefore, a volume of
V = L3. According to Bloch’s theorem, we need to add periodic boundary conditions12 in each cubic
box [71]. We denote the unit carthesian directions x̂, ŷ and ẑ as r̂.

Ψ(r) = Ψ(r+ r̂L)

Ceik·r = Ceik·(r+r̂L)

= Ceik·reik·r̂L

eik·r̂L = 1

cos(k · r̂L) + i sin(k · r̂L) = 1 + 0i

k · r̂L = n2π

(69)

This means that in the x-direction, the solutions of possible magnitudes of the k-vector are given as
kx = nx

2π
L for all nx ∈ Z. The same is true for the y and z directions. Therefore, the k-vector is given

as k = 2π
L (nx, ny, nz). The physical meaning behind this is that for each discrete state k, there is an

accompanying discrete amount of energy given by the dispersion relation E(k). Each state exists in a

volume of V =
(
2π
L

)3
, which is the product of the spaces between each point in 3D k-space.

11This is a very simple, but working, ansatz. We will discuss a more complex and realistic version later on.
12Periodic boundary conditions mean that for a specific value, the function repeats. A perfect easy example of this is a

normal sinusoidal function f(x) = sin(x). We can not tell the difference between this function starting at x = 0 or x = 2π.
Therefore, this function would be periodic in 2π. In the case of this cubic box, we want it to be periodic in r̂L, which is
the length L in the direction of one of the sides of the cubic box.
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For example, if we are interested in the total number of states in a volume, we need to sum over all
ni in each direction, equal to ki

2π/L . This results in a discrete summation13 where we denote ∆k to be

the space between each point in k-space.

N(k) =
∑
n

=

(
L

2π

)3∑
k

∆k (70)

If we consider the box length infinite, we will have ∆k becoming dk, changing the discrete summation to
an integral.

N(k) =

(
L

2π

)3∑
k

∆k

≈
(
L

2π

)3 ˆ
V

dk

=

(
L

2π

)3 ˆ 2π

0

dϕ

ˆ π

0

sin(θ)dθ

ˆ ∞

0

k2dk =
L3

2π2

ˆ ∞

0

k2dk

(71)

where we took the k-space integral in spherical coordinates. We need to include spin degeneracy because
we talk about electrons here, which are fermions with half-odd-integer spin. Pauli’s exclusion principle
tells us that each half-integer-spin particle in an atom needs to have different quantum numbers. In each
state k, there can be two similar electrons due to the different spin configurations, i.e., different quantum
numbers. Therefore, we must add a factor 2 due to the degeneracy [72]. Also, we can derive k and dk by
using the dispersion relation we found.

E =
ℏ2k2

2m

k =

√
2mE

ℏ2

dk =

√
m

2ℏ2E
dE

(72)

If we would only be interested in the energies E(k) < E with E being an allowed eigenenergy, we can
use this to create the number of states at a certain eigenenergy14.

N(k) =
L3

π2

ˆ
E(k)<E

k2dk

N(E) =
L3

π2

ˆ
2mE

ℏ2

√
m

2ℏ2E
dE

=
L3

√
2m3/2

π2ℏ3

ˆ √
EdE

(73)

From this, it is a short step towards the density of states, which is defined as g(E) = dN
dE or N(E) =´

g(E)dE. This gives the number of states for each amount of energy [73].

N(E) =

ˆ
L3

√
2m3/2

π2ℏ3
√
EdE

=

ˆ
g(E)dE

g(E) =
L3

√
2m3/2

π2ℏ3
√
E

(74)

13This is a bit of a shaky notation but will make sense when we change this to a continuous sum
14Notice that we used a factor 2 due to the spin degeneracy.
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3.1.2 The dispersion relation of an electron in a semiconductor

In the beginning, we made the (simple) ansatz that the wavefunction has only spacial dependency in
the exponential. In reality, we do not have completely free electrons. This opens up the band gaps due
to weak lattice potential. This effect is visualized in figure 34. The blue lines denote the original free
dispersion, while the orange lines denote the dispersion of a nearly free electron. The disconnected orange
lines create band gaps between each continuous orange line. The band gap is also known as the forbidden
gap, for an electron can’t be in a state with that amount of energy. This energy gap shifts the density of
states such that it is discontinuous at the band gap energy. When we consider more complex potentials,
such as general Bloch waves or the tight-binding model, the dispersion and the density of states can be
more complicated.

Figure 34: The dispersion relation of a free electron in blue and a nearly-free electron in orange. The
dispersion relation is periodic in ka with a being the length of the cubic box, which we denote as L [74].

When the energy of a single electron increases, it can jump to a higher energy band if the increased
energy is at least the same as the difference between the bands. When an atom is at 0 Kelvin temperature,
all electrons cannot have a bigger energy than the Fermi energy, which is different for each solid [75].
When an electron can move around in a solid, it has its energy in the conduction band. When it cannot
move around, it is in the valence band. Both the conduction band and the valence band are groups of
multiple different energy bands. The band gap usually denotes the energy gap between the conduction
and the valence band. The Fermi energy lies between the conduction and valence band. A conductor
has an overlap between the valence band and the conduction band, making the combination of the two
include the Fermi energy. This means that there are always electrons free to move in the solid. When
the valence band is far below the Fermi energy and the conduction band is far above the Fermi energy,
it takes a lot of energy to put electrons in the conduction band, which means it is not a good conductor,
hence an insulator. When the band gap is not very big, the solid is an insulator but does not need a lot of
energy to become conductive. Those materials are called semiconductors. These three types of materials
are shown in figure 35.
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Figure 35: A band gap diagram showing the different sizes of band gaps for conductors, semiconductors,
and insulators. [76]

An electron in a solid can have different momenta. This amount of momentum is linearly dependent
on the wave vector and is also, therefore, often denoted by k as well. This is called the crystal momentum.
The energy of the electron depends on this crystal momentum, meaning that for each k, there is a different
band gap. When an electron in a semiconductor transitions from the valence band to the conducting
band without changing the crystal momentum, we talk about a direct transition. If an electron changes
its momentum, it can transfer to a conduction band energy level that is easier to reach. This is called an
indirect transition. Figure 36 shows a schematic of this phenomenon.

Figure 36: A schematic of the valence band (below) and the conduction band (above) with the straight
arrow denoting a direct transition and the dashed arrow denoting the indirect transition.

When an electron moves from the valence band to the conduction band in a semiconductor, it leaves
behind a hole. The electron has a charge of -1 C, which means that the valence band misses a charge of -1
C. The hole can, therefore, be seen as having a virtual charge of +1 C to show the change in net charge.
This hole can move around the valence band with mobility µp. The connected electron in the conduction
band can move with mobility µn. Both the hole and the electrons are carriers of charge. This is why
they are often denoted as ”carriers”. Semiconductors can be doped with extra holes or extra electrons.
This is called p-type with added holes (positive) and n-type with added electrons (negative) [77]. If p-
or n-type carriers are added, the ability for electrons to move in the solid increases, i.e., the conductivity
increases.

47



3.1.3 Hydrogenated amorphous silicon semiconductors

As was already discussed, the density of states in a semiconductor has a parabolic shape. To be more
exact, gc(E) ∝

√
E − Ec for the conduction band and gv(E) ∝

√
Ev − E for the valence band. An

assumption made to get to these densities was that the solid has a crystal lattice, which is the case for,
e.g., crystalized silicon. If we scramble this solid structure up and remove the periodic structure, we get
something we call amorphous silicon. The disorder in the structure results in localized states in between
the conduction band and the valence band [78]. These localized states can be found in the band tails,
also called Urbach tails. An exponential density of states usually describes these localized states. This is
shown in figure 37. Due to the added localized states, electrons can jump to the conduction band more
easily.

Figure 37: A schematic density of states for crystal silicon and amorphous silicon. Ev is the maximum
energy of the valence band. Ec is the minimum energy of the conduction band. The band tails are due
to disorder in the structure [79].

In the amorphous structure, there are many dangling bonds. Those are loose ends of the mismatched
crystal structure. When an electron frees itself from the valence band, it is often recaptured by the
dangling bonds, reducing the amount of carries. Hydrogen atoms are used to cap these dangling bonds
by binding on them to compensate for this recombination. A schematic is shown in figure 38. This
hydrogenated amorphous silicon (or a-Si:H) is often used in solar cells and OET chips.

Figure 38: An illustration of the difference in crystal lattice structure. From left to right, monocrystalline
silicon, amorphous silicon, and hydrogenated amorphous silicon. [80]

48



The localized states in the band gap of a-Si:H are often described by 2 Gaussian distributions on top of
the Urbach tails to denote possible acceptor-like states and donor-like states [81]. This description uses,
on top of the general semiconductor density of states, a combination of 4 densities of states.

gDT (E) = GD0 exp

(
− E

ED

)
gAT (E

′) = GA0 exp

(
E′

EA

)
gAG(E

′′) =

(
NAG√
2πσAG

)
exp

(
− (E′′ − EAG)

2

2σ2
AG

)
gDG(E

′′′) =

(
NDG√
2πσDG

)
exp

(
− (E′′′ − EDG)

2

2σ2
DG

)
(75)

With E measured from Ev untill ED. E′ is measured from EA until Ec. ED and EA are the
characteristic widths of the left and the right Urbach tails. GD0 and GA0 are defined that way it describes
the Urbach tail density of states gDT and gAT . The two Gaussian distributions describe the acceptor-like
density of states gAG and the donor-like density of states gDG. NAG and NDG are the number of acceptors
and donors such that the peak of the Gaussian describes the density of states correctly. σAG and σDG
are the standard deviations of the 2 gaussian. E′′ and E′′′ are measured inside the crystal silicon’s band
gap. A schematic density of states can be found in figure 39.

Figure 39: A schematic depiction of the difference in density of states between crystallized silicon and
amorphous hydrogenated silicon. ED and EA describe the tails of the Urbach tails. Ev, Ec, and Ef are
the valence band energy, conduction band energy, and the Fermi energy. D+/D0 and D−/D0 represent
the donor-like gap states per unit volume and the acceptor-like gap states per unit volume [81].
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In general, this is still an approximation. The dangling bonds influence the density of states in a complex
manner, even when they are capped by hydrogen. The big difference between crystallized silicon and
amorphous hydrogenated silicon is how easily carriers are created. There are more possible energy states
in the band gap in the latter, making an electron need less energy to jump to a higher energy band. A
comparison between the density of states and the energy gaps can be seen in figure 40.

Figure 40: The density of states for a-Si:H with 3% hydrogen concentration. The red arrows denote the
Urbach tails, whereas the red dotted lines denote the cutoff energies from the conduction and valence
bands. The blue dotted line denotes the Fermi energy. The left figure is the energy against the density
of states. The right figure is the energy against the wave number k [82].
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3.2 Change in conductivity due to the photoelectric effect

Some semiconductors can create carriers due to light’s illumination. Heinrich Rudolf Hertz called this
phenomenon in 1887 the photoelectric effect. This effect was quantized15 by Albert Einstein in 1905 [83].
The energy of a photon is given as

E(λ) =
hc

λ
(76)

With Planck’s constant h and the speed of light c. λ is the wavelength of the photon [84]. The
magnitude of the optical intensity |I| is defined as the amount of optical power P per illuminated area
A. The optical power is the amount of energy E per second.

|I| = P

A
=

E

At
=

hc

λAt
(77)

The amount of intensity in a material is highly dependent on the thickness of the material. This was
discovered by Pierre Bouguer before 1729 and later worked out further by Johann Heinrich Lambert and
August Beer [85].

dI

dx
= −I(x)α

I(x) = I(0)e−αx
(78)

I(0) is the intensity at depth x = 0, i.e., before the light starts going through the material. α is the
absorption coefficient, which is the relative number of photons absorbed per unit distance. This is often
has the unit cm−1. We have already seen that electrons can jump up to higher energy bands when
provided with enough extra energy in the material. This phenomenon is described by the generation
rate, which gives the number of carriers created per volume (often cm−1) per second and depends on the
change in intensity 16.

g(x) = −η dI(x)
dx

= ηαI(0)e−αx (79)

With x being the depth of the material and η being the quantum efficiency describing how many carriers
are created per photon [86]. In reality, the generation rate depends on the depth and the wavelength of
the incoming light. Therefore, a more accurate description is given by

g(x, λ) = η(λ)α(λ)I0(λ)e
−α(λ)x (80)

In this generation rate, we did not take into account the reflectance of the material which needs to be
done as well. This reflection is also depending on the wavelength of the illumination.

g(x, λ) = η(λ)I0(λ)α(λ)[1− r(λ)]
e−α(λ)x + r(λ)e−α(λ)xe−2α(λ)d

1− r2(λ)e−2α(λ)d
(81)

With d being the entire thickness of the material and r(λ) being the reflectance at a specific wavelength
λ [87]. This is not trivial at all, for it also needs to consider the internal reflection of the material. When
the reflectance is taken as 0, we get back the generation rate of equation 80. For now, we will refer to the
generation rate of equation 81 as go. The wavelength-dependent absorption coefficient is more complex
since it comes from the quantum perturbation theory of light-matter interaction [87].

α(λ) =
e2λ

6ϵ0nrc2m2
0V

|Mfi|2Jc,v (82)

With the charge and mass of an electron e and m0, with refractive index of the matter nr and the
volume V . The norm of the matrix |Mfi|2 is known as the matrix element of the perturbation17 describes
the disturbance between the final state f and initial state i. This is often denoted in bra-ket notation
as | ⟨f |M |i⟩ |2 [88]. The final part in this equation is the joint density of a pair of states Jc,v, i.e., the
density of a hole-electron pair with, e.g., the hole in the valence band and the electron in the conduction
band [87].

15quite literally for it depends on a quantum of energy.
16Remember that the intensity is defined as the number of photons per second multiplied by the photon energy. A

positive dI/dx would show an increase in photons per distance, so therefore, a negative dI/dx shows the amount of photons
absorbed per distance.

17Think of this as the probability of an ’initial state’ going to a different ’final state’ due to a disturbance in the stable
system, i.e., light colliding with the matter. The Hamiltonian matrix M
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3.2.1 Intrinsic Photoconductivity

A hole and an electron both have a specific mobility in a material. This is given as µp and µn because
the holes are positive compared to the negative electron, hence the p and n notation. A hole and an
electron have the same magnitude18 of charge |e|. The conductivity is defined as the ease of charge
moving inside the medium. Therefore, the mobility of holes and carriers add to this [89]. The initial
thermal-equilibrium conductivity is given as σ0.

σ0 = |e|(µnn0 + µpp0) (83)

Where n0 and p0 denote the amount of electrons and holes in the initial thermal equilibrium. This
is the conductivity of the semiconductor when, e.g., no illumination is applied to excite the material.
Therefore, we often call this the dark conductivity. The conductivity increases accordingly when we add
enough energy to the semiconductor to add holes and electrons.

σ = |e| [µn(n0 + δn) + µp(p0 + δp)] (84)

The form of interest of this increase in conductivity happens due to illumination by light. Therefore, this
is called the light conductivity or the photoconductivity.

We call this intrinsic photoconductivity when we have exactly enough energy to excite an electron
from the valence band to the conduction band. Due to the intrinsic absorption, the photoconductivity
is ambipolar, i.e., the amount of electron carriers created equals the number of holes created: δn = δp.
Using this, we can simplify the equation further to better grasp the theoretical background of the increase
in photoconductivity.

δσ

σ0
=
δn(µn + µp)

n0(µn + µp)
≈ δn

n0
(85)

Where we considered an undoped semiconductor, i.e., p0 ≈ n0, as we can see, the increase in conduc-
tivity is directly related to the rise in the number of carriers. Using the information from the previous
section, we can write the increase of electrons over time using the generation rate from equation 81.

dn

dt
= g(t)− r(t) = g(t)− cc,vnp (86)

The time dependency of the generation rate g(t) is an on/off state. When the light is turned on,
the generation rate equals the generation rate g(x, λ) from equation 81. When the light is off, g(t) = 0.
The recombination rate r(t) is the constant cc,v times the number of holes and electrons. This gives
the amount of electrons going from the conduction band back to the valence band. Notice that for
intrinsic photoconductivity, equation 86 is equal to the change in the number of holes dp

dt . This first-order
differential equation can be solved by applying some necessary boundary conditions. We can solve this
equation with n = 0 at t < t0 where t0 is the moment the illumination is turned on. We use that n = p to
describe intrinsic photoconductivity. We denote the generation rate g(x, λ) as go and the recombination
coefficient cc,v as co.

dn

dt
= go − con

2

dn

go − con2
= dt

1

go

ˆ n=n(t)

n=0

dn

1− co
go
n2

=

ˆ t

t=t0

dt

1

go

√
go
co

tanh−1

(√
co
go
n(t)

)
= t− t0

n(t) =

√
go
co

tanh (
√
goco(t− t0))

(87)

18This is a bit counterintuitive, but look at the hole as the literal opposite of an electron, for it is the absence of the
electron. If the hole and the electron are back together, there is a net charge of 0 again, for the system is back to its original
state.
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Where we used that f(x) = tanh−1(ax) → df(x)
dx = a

1−(ax)2 . The tanh(t) function converges to 1 when

t is big enough. Therefore, the steady state amount of carriers nmax is given by
√

go
co
. The bigger

the absorption, the bigger the generation rate and, thus, the bigger the photoconductivity. When the
illumination is turned off after some time, we keep the recombination, which results in an exponential
decay of the number of carriers. (

dn

dt

)
decay

= −cc,vn2

−1

cc,v
n−2dn = dt

ˆ n(t)

nmax

−1

cc,v
n−2dn =

ˆ t

t1

dt

n(t) =
nmax

1 + nmaxcc,v(t− t1)

(88)

With t1 denoting the moment the right is switched off, the amount of electron carriers equals nmax.

3.2.2 Extrinsic Photoconductivity

When we consider extrinsic photoconductivity, we need to consider the localized states, also called defects,
in the band gap due to, e.g., the Urbach tails. There are three types of extrinsic photoconductivity
possible.

1. Excitation from a defect with direct recombination into the same type of energy level, i.e., the
carrier is directly pulled back to the level it already was.

2. Excitation from a defect with carrier recombination into another type of energy level.

3. Excitation into a band where major trapping occurs. This can be seen as carriers getting stuck in
a band, which stops them (temporarily) from adding to the conductivity.

The new dynamics of the carriers are given as

dn

dt
= go − cc,actpactn− dntrap

dt
dntrap
dt

= cc,trapn(Ntrap − ntrap)− etrap,cNcntrap

(89)

with generation rate go, transformation coefficient cc,act from the conduction band to a defect band
with the number of holes in the defect states denoted as pact. The trapped electrons are denoted by ntrap
where Ntrap is the maximum amount of trapped electrons. cc,trap is the transformation coefficient from
the conduction band to a trapped state. Finally, etrap,c denotes the transformation coefficient where an
electron is excited out of the trapped state into the conduction band with Nc denoting the number of
electrons in the conduction band.
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As the amount of trapped electrons increases, the amount of electron carriers decreases, which is unfavor-
able for the photoconductivity [87]. When an electron is excited, it moves away, leaving a hole behind.
Due to this, we have a quasi-neutrality condition relating the amount of holes to the elevated electrons.

pact = n+ ntrap (90)

Due to this relation, we can find the steady state solution of equations 89 and determine how the trapped
electrons influence the overall photoconductivity analytically.

dntrap
dt

= 0

cc,trapn(Ntrap − ntrap)− etrap,cNcntrap = 0

ntrap[etrap,cNc + cc,trapn] = cc,trapnNtrap

ntrap =
cc,trapnNtrap

etrap,cNc + cc,trapn

(91)

We look at the two limits of this trap occupation to simplify and get a more quantitative under-
standing. When we have a deep trap, it is harder for an electron to escape the trap in comparison to
getting trapped, i.e., etrap,cNc << cc,trapn. In this case, the trap can be considered completely filled,
ntrap ∼= Ntrap. In this case, the steady-state solution of the number of electron carriers, i.e., the first of
equation 89, is given as19

go = cc,actpactn

= cc,actn(n+ ntrap)

≈ cc,actn
2 + cc,actnNtrap

n ≈

√(
Ntrap
2

)2

+
go
cc,act

− Ntrap
2

(92)

If we consider a shallow trap, electrons are more easily able to escape compared to the deep trap, i.e.,
etrap,cNc >> cc,trapn. In this case, ntrap still depends on n.

ntrap =
cc,trapnNtrap
etrap,cNc

Putting this in the dynamics gives us the steady-state solution.

go = cc,actpactn

= cc,actn(n+ ntrap)

= cc,actn
2 + cc,actn

2

(
cc,trapNtrap
etrap,cNc

)
n =

√
go

cc,act[1 +
(
cc,trapNtrap

etrap,cNc

)
]

(93)

As can be seen, in both the case of the deep and shallow traps, we have a decrease in the available
carriers. Therefore, the trapping energy states need to be as small as possible. This can be done,
for example, by optimizing the doping20 concentrations, by optimizing the conditions when depositing
the semiconductor, or by optimizing the pre-/post-treatment conditions [90][91][92]. In this section,
we just wanted to show the effects of traps explaining the complex dynamics of the semiconductor’s
photoconductivity. The photoconductivity of an a-Si:H film can also be approximated as being linearly
dependent on the optical power [32].

∆σ = eηαµnτn
S

hfl
(94)

With electron charge e, quantum efficiency η, absorption coefficient α, electron mobility µn, electron
lifetime τn, optical power S, Planck’s constant h and the frequency of the light fl. The photoconductivity
of hydrogenated amorphous silicon using an optical power of 0.2 mW/cm2 can be seen in figure 41.

19Notice that the square-root is only taken as positive in the solution because n cannot be negative.
20Doping is putting initial holes or electrons in the material to have an initial number of carriers.
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Figure 41: The photoconductivity of hydrogenated amorphous silicon at different wavelengths of light
[32]. The data is recovered from 3 different sources. In the bibliography, ref 22 can be found as [93], ref
23 can be found as [94] and ref 24 can be found as [95].

3.2.3 Photoconductivity after long-term illumination

We discussed why the conductivity of certain semiconductors increases when illuminated with light. One
thing that is also interesting to mention is the long-term effects of the photoconductivity. The dark
conductivity is increased at first due to a phenomenon called persistent photoconductivity. After this
increase, the Steabler-Wronski21 effect takes over, which decreases the dark conductivity. Figure 42 shows
an example of this effect. The persistent photoconductivity can be explained by the spatial separation of
the holes and carriers due to potential barriers in a superlattice, i.e., a periodic lattice of different materi-
als. Another possible reason could be that electrons have a stronger interaction with the lattice, leaving
the holes behind in a self-trapped state, making it harder to recombine [96] [97]. Both these theories give a
reason for the different dynamics of the electrons and the holes, increasing the conductivity for some time.

The Steabler-Wronski effect shows that photons could create photo-induced defects like extra dangling
bonds22 in a-Si:H [98]. Those dangling bonds could trap carriers, which remain trapped when the illumi-
nation is turned off. This reduces the dark conductivity over time. Both the persistent photoconductivity
and Steabler-Wronksi effects can be reversed using thermal annealing.

21This effect is present in a-Si:H and not generally in every type of semiconductors.
22Remember the loose ends in the lattice of amorphous silicon
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Figure 42: The conductivity of undoped a-Si:H after illuminating it 1 s, 4 s, 15 s, 40 s, 1 min, 5 min, 23
min, and 30 min. Each light exposure is followed by 5 min of rest before the next, longer illumination
time. An increase in dark photoconductivity can be seen in the first 22 min, after which it decreases [99].

3.3 Macroscopic structure of the photoconductive layer

We have mainly discussed the internal physics of the photoconductive layer, including its internal structure
and the resulting dynamics in conductivity. The surface of this photoconductor is in contact with the
chip’s medium and influences the dynamics of the dielectric particles. Regarding the outer structure of
the photoconductor, two subjects of interest are the surface roughness and the particles’ adhesion.

3.3.1 Surface roughness of the photoconductive layer

When looking at the surface roughness of the photoconductive layer, we have to look at the adhesion
effects of the particles on the surface and the effects of a rough surface of an electrode in a capacitor. The
electrical field lines can never cross and are uniform23 between the charged electrode and the grounded
electrode. If we consider a rough surface, we disturb the uniformity of the electrical field, creating a field
with certain gradients. This is especially present in the peaks and troughs [100] [101]. From this logical
reasoning alone, we must assume that this will play a role in the DEP force. Therefore, the simulation
in COMSOL from section 1.5.2 needs to be tweaked such that the top of the photoconductive layer is
randomly distributed to a certain degree. This way, we can discover the expected effects in this OET
setup. The computer specifications that ran the simulation were the same as in the previous simulations.
The simulation is similar to the last simulations with the added surface roughness. Therefore, we will
discuss only the changes made to this simulation here.

We define the height of the photoconductive layer in the simulation as h(x).

h(x) = 1[µm] + aY (x) (95)

with a being the magnitude of the uniform distributed value Y (x) where Y (x) ∼ U(−1, 1). x denotes
that the surface is divided in L/x pieces with stepsize x and total surface length L. This means that the
total surface is uniformly distributed around 1µm. The effects of a can be seen more clearly in figure
133, 134, 135, 136 and 137 in appendix B.1.2. All results of these simulations can be found in appendix
B. The main takeaways will be discussed here.

23In a perfect parallel plate capacitor at least.
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Two scenarios were considered to determine the impact of the surface roughness on the DEP force.
One scenario with illumination, as was done in 1.5.2, and one scenario without illumination, i.e., where
the photoconductive layer has a uniform photoconductivity. The second scenario’s results are shown in
appendices B.1.3, B.2.3 and B.2.4 while the rest of appendix B covers the results from the scenario with
illumination. Table 4 shows the main results of the first, illuminated, scenario while table 5 shows the
main results of the second scenario where there is no illumination.

Table 4: The main results of the photoconductive layer roughness simulation in the illuminated state
with alternating randomness a as described by equation 95.

a max Ex [V/m] max Ey [V/m] max Fx [pN] max Fy [pN] Increase of ∂x|E|2 [%] Increase of ∂y|E|2 [%]
0 230269.9324 265602.3707 2939.0657 5039.6666 - -
0.5 230714.7595 265815.1588 2989.0121 5071.2532 1.6994 0.6268
1 232183.7205 266538.0513 3080.2493 5159.4258 4.8037 2.3763
1.5 233870.5916 267444.1682 3195.2635 5269.8918 8.7170 4.5683
2 235892.026 268381.785 3320.7259 5398.8094 12.986 7.1263

Table 5: The main results of the photoconductive layer roughness simulation in off state with alternating
randomness a as described by equation 95.

a max Ex [V/m] max Ey [V/m] max Fx [pN] max Fy [pN] Increase of ∂x|E|2 [%] Increase of ∂y|E|2 [%]
0 5.2433×10−7 117070.6591 5.8293 ×10−9 1.4644×10−8 - -
0.5 5.3027×10−7 117070.6591 8.3164 ×10−9 1.8783×10−8 42.667 19.151
1 5.3000×10−7 117070.6591 8.3456 ×10−9 1.8573×10−8 43.167 2.4679
1.5 5.1023×10−7 117070.6591 8.5832 ×10−9 1.5440×10−8 47.243 16.190
2 5.1970×10−7 117070.6591 9.4638 ×10−9 1.5794×10−8 62.349 -4.4541

As can be seen, the force increases in the illuminated state with increasing surface roughness. This
is expected as the gradient increases due to the increased randomness. According to this simulation,
the max DEP force in both directions increases faster than linearly. The simulation without illumina-
tion shows the roughness’s minimal effect on the surface. The magnitude of the electrical field in the
y-direction is of the same order as in the illuminated scenario, which can be explained by the electrodes
being charged with 25V and 0V in both scenarios. The max DEP force is in an order of -12, smaller than
in the illuminated case. As discussed in previous chapters, the amount of force a particle needs is more
in the ballpark of pN or nN, which means that these zeptoforces will be no concern regarding the DEP
force. Also, as can be seen in appendix B, the difference of the partial derivative in both directions for
each scenario quickly falls off in the y-direction, meaning that the roughness effects are only visible (if
they already are) very closely to the surface.

Another effect the roughness can have on the particle is surface-particle adhesion. The electrostatic
effect, Van der Waals interaction, protein adsorption, or hydrophobic effects could attract particles in
the range of nano Newtons while the OET produces forces in the range of pico Newtons [102]. These
phenomena highly depend on the type of materials used due to characteristics such as e.g. the surface
energy of the materials. When a surface has a high surface energy, a particle will feel a relatively big
adhesive force. Materials with high surface energy are metals, while most plastics have low surface energy.
The energies24 of different materials are shown in figure 43.

24The surface energy is often denoted as the amount of energy per area [mJ/m2] but can also be denoted as force per
distance [mN/m].
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The full force of an elastic particle on frictional contact can be described by the Hertz-Mindlin model
[103]. Later, this model was extended by Johnson, Kendall, and Roberts to include van der Waals
interactions as well [104]. Those models are too complex to dive into but can be read into when wanting
a more detailed understanding of the physics behind the surface adhesion. One interesting takeaway is
how the adhesive force is implemented in the JKR-model.

Fadh = πa2γ∗ (96)

where a denotes the effective contact radius, which assumes the area of contact between 2 materials
being a circle.γ∗ is the effective surface energy which can also be written as γ∗ = γ1 + γ2 − 2γ12 with γ1
as the surface energy of, e.g., the photoconductive layer and with γ2 being the surface energy of, e.g., the
dielectric particle that sticks on the photoconductor. γ12 is the interface energy between the materials,
mainly in liquid or gas states, describing the ”ease of mixing”. As can be seen, the adhesion force depends
on the area of contact, which is without holes for a perfectly smooth sphere on a perfectly smooth surface.
If we consider the contact area rough on the side of the photoconductive layer, we will introduce spots
where the non-liquid materials don’t touch. To give this a physical meaning, we can add an efficiency
term in equation 96. The contact area is smaller when the surface is rough, meaning the adhesive force
will be smaller. Therefore, a rough surface on the photoconductive layer would create bigger electrical
field gradients, which create bigger DEP forces and reduce the adhesion forces, making the effective force
in the OET bigger.

Figure 43: A surface energy chart denoting different surface energies of different materials. The blue dot
is a schematic depiction of how well a material attaches to this surface [105].
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3.3.2 Surface-Particle adhesion prevention

In microfluidic chips, there can be multiple reasons for the adhesion interaction between particles and
the photoconductive layer. Therefore, the adhesion/fouling could give a too big threshold to provide the
ability to move the particles. This would create a big problem, for it is quite the opposite of the idea
behind the optoelectronic tweezer. Therefore, an antifouling coating between the photoconductive layer
and the medium can be added. For the specific optoelectronic setup, two known materials are primarily
used: Bovine serum albumin (BSA) and polyethylene glycol (PEG) [106]. BSA is a protein obtained
from the bloodstream of a bovine. This protein has a hydrophilic and a hydrophobic end. When two
hydrophobic entities are immersed in water, they are attracted to each other with more strength than a
hydrophobic entity is attracted to a hydrophilic one [107]. When the hydrophobic ends of the proteins
are attached to the photoconductive layer, the hydrophilic ends create a new antifouling surface that does
not attract the hydrophobic particles as strongly as the photoconductive layer did. The hydrophilicity
of the photoconductive layer creates a new problem, for it mostly attracts the hydrophilic side of the
protein. Therefore, a hydrophobic Teflon layer of 50 nm can be put onto the photoconductive layer using,
e.g., a spin-coating process. This hydrophobic Teflon layer makes it possible for the BSA to stick to the
photoconductive layer.

PEG is a polymer hydrogel with structure HO-(-CH2CH2-O-)n-H. A surface made from this polymer
has proven itself to be a good antifouling material by reducing the attached particles up to 90% [108].
The PEG works using entropic repulsion and osmotic pressure. When the PEG layer is hydrated, the
PEG chain swells and excludes cells and proteins from sticking to the photoconductive layer. The attach-
ment of PEG to the photoconductive layer can be done using SiO2 as the intermediate layer on which
the PEG can be deposited.

An experiment has been conducted to see the antifouling effectivity using HeLa cells25 which were
put into five different optoelectronic tweezer setups [106]. The percentage of free cells was measured
after various amounts of time, as shown in figure 44. As can be seen, both antifouling methods show
a significant improvement over no coating. Although it is easier to apply, the BSA coating reduces
effectiveness over time because it is easily washed off.

(a) a-Si:H without any fouling-
reducing coating.

(b) a-Si:H with a BSA coating on top
of a 50 nm Teflon layer.

(c) s-Si:H with a PEG coating on top
of a 10 nm SiO2 layer.

Figure 44: Attachment of HeLa cells after different lengths of time to the a-Si:H layer using different
antifouling methods [106].

We can look at the difference in surface energy to put these materials into the perspective of the
adhesive force described by equation 96. The average surface energy of amorphous hydrogenated silicon
is 340-510 mJ/m2, comparable to high surface energy materials [110]. The surface energy of BSA is
around 59-71 mJ/m2, and the surface energy of PEG is found to be 48.3 mJ/m2 making BSA and
PEG both low surface energy materials [111] [112]. Another method often used in literature is putting
0.05% TWEEN-20 in the deionized water. This has been shown to improve the surface passivation in
microfluidic chips [113].

25HeLa cells are cancerous fast multiplying cells that belonged to Henrietta Lacks. Her cells are immortalized due to
their high importance and impact in scientific research [109]
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3.4 Different types of photoconductive materials

So far, we discussed the most occurring photoconductive material, amorphous hydrogenated silicon, while
more photoconductive candidates exist for OET. Theoretically, every photoconductor would work, but
only a few materials have been proven useful and strong enough to create a strong enough DEP force.

3.4.1 Bulk-heterojunction polymer

To counter the complicated fabrication process of a hydrogenated amorphous silicon chip, a bulk-heterojunction
polymer (BHJ) can be used instead. This polymer is a mixture of poly(3-hexylthiophene) (P3HT) and
[6,6]-phenyl C61-butyric acid methyl ester (PCBM). The carrier mobility of BHJ is 7.7×10−5 cm2V−1s−1

for electrons and 5.1×10−5 cm2V−1s−1 for holes [114]. Compared to a-Si:H with an electron mobility of
1.0×10−2 cm2V−1s−1 [115], this shows that the diffusion of carriers is smaller in BHJ than in a-Si:H. This
means that BHJ can potentially have more precise manipulation, as it can create a sharper gradient. The
BHJ is created by dissolving a certain weight percentage of P3HT:PCBM in 1,2-dichlorobenzene before
spin-coating this on a layer of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS).
This PEDOT:PSS layer smoothens the ITO substrate and ensures the photoconductive layer’s adhesion
on the conductive glass. The amount of weight percentage P3HT:PCBM in the 1,2-dichlorobenzene
changes the absorption spectra as is shown in figure 45.

Figure 45: The absorption spectra of the 1,2-dichlorobenzene solution with different weight percentages
of P3HT:PCBM spin coated at 600 rpm [116].

On top of this P3HT:PCBM layer, a lithium fluoride (LiF) layer is added to protect the photoconductor
from water and oxygen, creating traps by reacting with conjugated molecules in the BHJ layer. The
created traps rapidly degrade the chip, giving it a relatively small lifetime. The LiF does not remove this
problem entirely but elongates the BHJ chip’s lifetime. The maximum DEP force on a 20 µm diameter
polystyrene bead is shown over time for a BHJ chip in figure 46.
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Figure 46: The maximum drag velocity and the respective drag force over time of a 20 µm diameter
beads using an AC voltage of 24 Vpp and a frequency of 100 kHz, using white light with an intensity of
7.8 W/cm2 for illumination. [116].

As can be seen, the maximum DEP force was less than 40 pN, and the chip’s lifetime was less than
400 minutes, i.e., less than 7 hours. For comparison, an OET chip using a-Si:H has been found to induce
DEP forces around 90 pN for 20 µm polystyrene beads using an AC signal of 20 Vpp and a frequency of
30 kHz [27]. Besides this, a-Si:H has been stable for years and was not found to limit the lifetime of an
OET chip [117]. Therefore, a standard a-Si:H chip proves to be more stable and more potent than a chip
using a BHJ layer. The main advantage of a BHJ chip is the less complicated and expensive fabrication
process, for it does not need PECVD as a-Si:H does. An interesting additional use for BHJ is the ability
to be made into a flexible chip [118]. A general (bend) setup of the BHJ polymer photoconductive layer
can be seen in figure 47.

Figure 47: A schematic illustration of the flexible BHJ OET device. The top and bottom layers are the
conductive ITO glasses. The second layer from the bottom is the PEDOT:PSS layer, followed by the
P3HT:PCBM photoconductive layer. The upper layer from the bottom part is the protective LiF layer
[118].
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3.4.2 Organic photosensitive material

A promising competent of a-Si:H is titanium oxide phthalocyanine (TiOPc), an organic material (i.e., with
carbon atoms). This compound can form in multiple different crystal structures called polymorphs. Each
polymorph consists of the same materials but is arranged differently, giving different material structures.
The TiOPc type used for OET was Y-TiOPc. The absorption spectrum of this TiOPc lies mainly in the
infrared spectrum, as shown in figure 48. TiOPc can be put on a conducting glass by baking it after
spin-coating it on the surface. Making a TiOPc-based chip can be finished within 40 minutes and is
a relatively quick and easy option for an OET chip [119]. Furthermore, can the TiOPc stay stable for
months under normal operation.

Figure 48: The absorption spectrum of Y-TiOpc made by the traditional method and made with nanocrys-
tals [120].

The light-induced DEP force on a TIOPc has been tested for a 15 µm diameter polymer bead. Figure
49 shows the DEP force for multiple voltages. The maximum measured force is around 11 pN. There
has not been an experiment in the literature that uses 4 Vpp to actuate a 15 µm bead using a chip with
a-Si:H. Therefore, it is harder to benchmark these results. Nevertheless, can we say that the forces are
in the right ballpark considering a bead with 15 µm diameter and an applied voltage of 20 Vpp with a
DEP force of around 35 pN [27]. Therefore, on the scaling of the DEP force, the TiOPc chip is a good
candidate if the chip performs as well with larger applied signals.

Figure 49: The DEP force using on a TiOPc OET chip. The force actuates a 15 µm diameter polymer
bead using an AC voltage with a frequency of 20 kHz [119].
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3.4.3 Phototransistor-based material

A chip containing silicon can be tweaked to achieve better results by introducing multiple layers with
different doping amounts. Implementing different amounts of holes or electrons than silicon intrinsically
has can be used to create p- and n-doped silicon. When making an n-p-n junction26, we can create a
transistor that is activated using light, i.e., a phototransistor. A transistor is an electronic device that
behaves like a switch. It is easy for electrons to flow from an n-doped material to a p-doped material.
Still, it is hard to go from a p-doped material to an n-doped one27. When a small voltage is applied
on the p-doped side called the base, the holes get filled up, making this material easier for electrons to
traverse. In that case, the charges can go from the n-doped emitter to the p-doped and now neutralized
base and go from here to the n-doped collector. Using this phenomenon, a small voltage can enable the
base to open the switch and let a large voltage flow from the emitter to the collector. A schematic of a
transistor is shown in figure 50. A phototransistor is essentially the same, but the base is activated using
light instead of an applied voltage.

Figure 50: The schematic of a n-p-n junction transistor. Electrons cannot flow from the emitter to the
collector unless a small voltage is applied to the base [121].

The phototransistor is created by starting with a highly n-doped silicon substrate. The top layer
of this substrate is implanted with boron, which converts the silicon into a p-doped material after a
drive-in process. After this, the top layer of the p-doped silicon is converted to an n-doped silicon again
by implanting arsenic. One additional thing that is included in the design of the photoconductor is a
dielectric grid that separates the p-doped layers in pixels. This separates the phototransistors such that it
reduces the lateral flow of carriers. When illumination is applied to the phototransistor, the conductivity
sharply increases, for it first blocks the flow in the p-doped base. The difference in conductivity between
the phototransistor and the a-Si:H can be seen in figure 51. At 5 V, the phototransistor’s conductivity
was around 1.4 mS, while the conductivity of a-Si:H at 5 V was around 0.0028 mS.

26A junction is a multilayer structure.
27This p-n junction is also known as a diode, which we discuss again in section 5.3.1.

63



Figure 51: The difference in the current size due to an applied voltage between the phototransistor and
the a-Si:H photoconductor [49].

To understand the advantage of this increased conductivity, we first need to model the system as
an electric diagram modeling both the photoconductive layer and the medium using an impedance or
resistance as we did similarly in section 2.3. This is shown in figure 52. The schematic shows two
resistances in series coupled to an AC voltage.

Figure 52: A basic schematic of the OET setup as an electric diagram. VAC is the applied AC voltage,
ZM is the impedance of the medium and ZPL is the impedance of the photoconductive layer.
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Using Ohm’s law, we can see that the current flow in this system is equal to

I =
VAC

ZPL + ZM

The voltage drop over both the photoconductor and the medium can be calculated using this calculated
current and again using Ohm’s law.

VPL =
VACZPL
ZPL + ZM

VM =
VACZM
ZPL + ZM

Using the standard equation of the electric field in a parallel plate capacitor, E = V
d with d being the

distance between the plates, we can see that the bigger the voltage is over the medium, the bigger the
electric field will be in the medium as well. Therefore, when the illumination is on, we want to have an
electrical field as big as possible, while we want to have an electrical field as small as possible when the
light is off. Therefore, when the illumination is turned on, we want VM = VAC − VPL to be as big as
possible. We want VM as small as possible when the illumination is turned off.

VM =
VACZM
ZPL + ZM

=
VAC

ZPL

ZM
+ 1

ZPL
ZM

+ 1 ≫ 0

ZPL ≫ ZM

(97)

If we do the same when the illumination is on, we want VM to be as close as possible to VAC . In
this case, we need ZM to be much bigger than ZPL. So to summarize, we want to have in general
ZPL,dark > ZM > ZPL,light and therefore, σPL,dark < σM < σPL,light where σ ∼ 1/Z is the conductivity.

When OET is needed in a setup that requires the cells to stay alive, the medium is often highly
conductive. This means that the light conductivity of our photoconductor also needs to be high, which
is impossible with simple a-Si:H. The introduced phototransistor can have a photoconductivity that is
high enough with relatively low optical intensity. This difference is shown in figure 53 where we can see
that the phototransistor is above the threshold of the cell culture medium with an optical power of 1
W/cm2. The hydrogenated amorphous silicon layer can also top this threshold with an optical power
that is strong enough. Still, this power will be so high that it will often cause undesirable effects, such
as heating the medium so much that it causes damage to the cells.
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Figure 53: Photoconductivity per unit area of both the phototransistor and a-Si:H against optical inten-
sity. The dashed lines denote the threshold for low conductive media and high conductive media, such
as respectively deionized water and phosphate-buffered saline [49].

The last interesting thing in comparing the phototransistor to the standard a-Si:H is comparing the
induced DEP forces. As shown in figure 54, the manipulation speed around 6 Vpp is 4 µm/s. When we
take a HeLa size to have an average diameter between 20 µm and 40 µm, we can compare it to known
literature using a-Si:H [122]. When comparing it to an MCF-7 cell using a 6 Vpp, 20 kHz sine wave, we
find a cell speed larger than 22 µm/s [27]. This means that, so far, we can compare these different cells,
the a-Si:H chip seems to work better, although it is confined to working with dead cells. The primary
added value of the phototransistor is that it opens up the possibility of working with cells that are alive.

Figure 54: Manipulation speed for different applied voltages of HeLa and Jurkat cells using the photo-
transistor OET chip [49].
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4
The dynamics of the dielectric particle

In this section, we will introduce the comprehensive dynamics of the dielectric particle. To achieve this,
we must examine the various forces acting on the particle, in addition to the dielectrophoretic (DEP)
force. We begin by considering the forces of gravity and buoyancy, which account for vertical displace-
ment. We also incorporate random forces, such as those arising from Brownian motion. The drag force,
which arises from the interaction between the particle’s velocity and that of the surrounding medium, is
explored in detail. This examination includes the necessary assumptions leading to Stokes’ law, which
is widely referenced in literature for quantifying the DEP force on particles. These assumptions do,
however, constrain the applicability of Stokes’ law, prompting a discussion on its validity in comparison
to form drag. When a particle carries an electric charge, additional forces, namely electrophoresis and
electrostatic forces, play a role.

Additionally, the medium itself exhibits dynamics that can affect the particle through the drag force,
influenced by phenomena like electrophoresis and (electro)thermal flow. Therefore, these factors will also
be addressed.

Finally, we will discuss frictional forces resulting from surface adhesion. By summing all these forces,
we can derive a complete understanding of the particle’s dynamics within the system, which can be
expressed in state-space form, defined by the system’s input and output states. Since certain forces
dominate at specific states, we will explore the various force regimes present in this context.

The dynamics of the dielectic particle for ”Jip en Janneke”

In an optoelectronic tweezer, a tiny particle moves around because of a special force called
the dielectrophoretic force, which we learned about before. But there are other forces that
also push and pull the particle. Think of it like when you drop a stone in water; it sinks
more slowly than when you throw it in the air. Gravity pulls the stone down, while buoy-
ancy and something called drag force slow it down. The faster you try to swim in water, the
harder it gets to move. The same thing happens to our tiny particle as it moves around in a liquid.

There are more forces pushing and pulling on the particle. If the tiny particle has an electric
charge, it can also move in the liquid due to a force called electrophoresis, which is a bit
different from dielectrophoresis. When the particle is really small, it can move randomly
and bumpy because it gets bumped by other tiny particles that we can’t see. If the bottom
of the microfluidic chip (where the particle is) is super sticky, the particle might get stuck there too.

The liquid itself can also move. If the liquid is charged, it can feel the force of electrophoresis,
just like the charged particle. We can also move the liquid by making it hot. Like when you put
your hand above hot food, you can feel warm air moving up. This happens with the liquid too
when some parts get hot.

Finally, we can put all the different pushing and pulling forces together in a simple way using
something called state space. This helps us describe how the particle moves using just a few
important factors. When certain factors are strong, some forces become stronger than others.

The Jip and Janneke illustration is created by the renowned artist Fiep Westendorp.
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4.1 Forces on the particle

We already discussed the most important force, the DEP force, in the optoelectronic tweezer setup in
section 1. This is not the only force working on a particle in the system. To get a good understanding of
the dynamics of a particle in the OET, we need to take all the present forces into account and sum them
up according to Newton’s second law [123]. All forces that we will consider are shown in figure 55 and
depend on different variables. We will introduce and explain every force28 so that we can understand the
underlying effects, limitations, and assumptions made for this dynamical system.

Figure 55: The OET forces that are working on a particle submerged in a medium, free to move (left)
and stuck to the bottom (right).

4.1.1 Gravity

One of the most famous stories from the history of physics is how Sir Isaac Newton discovered the law of
gravity when an apple fell on his head while sitting under a tree. This moment was one of the pinnacles
of the theory of mechanics, although the apple never fell on his head [124]. We now know how two masses
are attracted to each other due to some invisible potential. This potential has been postulated to be
created due to gravitons and gravitational waves [125]. On earth, it suffices to say that the gravitational
force is pointed towards the center of the earth and has a size equal to the mass of the particle times the
gravity constantg ≈ 9.81m/s2. We can write this mass as the density ρp times the volume of the particle
V . The force is given in the direction ẑ direction.

Fg = V ρpgẑ (98)

4.1.2 Buoyancy

Another famous story is from Archimedes, who was asked to determine the gold volume the king’s crown
was made of. In the story, while Archimedes was sitting in a bath, he found out that the volume of water
moved by the crown was equal to that of the crown itself. After this discovery, he went to run naked on
the streets, shouting ”Eureka”. This was the beginning of the discovery of buoyancy [126]. Later, this
principle was reformed by stating that the force pushing an object upwards when submerged equals the
displaced medium’s gravity force [127]. If a fully submerged particle is in a medium, the displaced water
equals the particle’s volume V . This helps us set up the buoyancy to be very similar to the gravity force
from equation 98 by rewriting it using the density of the medium ρm. The force is given in direction ẑ.

Fb = V ρmgẑ (99)

28Except for the DEP force that is already described in section 1.
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4.1.3 Brownian motion

If we manipulate very small particles in the OET, the particles will have dynamics due to the collisions
with the molecules in the medium. Scottish botanist Robert Brown discovered this in 1828 [128]. He
observed rapid oscillatory motion, which was later redefined by French physicist Paul Langevin [129]. The
theory of Langevin describes the motion of a small particle with a randomly distributed external force
[130]. This random distribution creates a random walk that moves in random directions. A spherical
particle’s average speed is an expected value [131]. The Brownian motion can also be approached as a
stochastic disturbance, where the effect becomes more significant with decreasing particle size.

⟨ẋ⟩ =

√
kbT

3πηr
(100)

With the Boltzmann constant kb, the temperature T , the viscosity of the medium η, and the radius
of a spherical particle r. Brownian motion also appears to create stochastic rotational movements [132].
Both these Brownian dynamics can be taken into account as a stochastic disturbance.

4.1.4 Drag force

If we want to know what the effect of a fluid on the particle is, we have to look at the Navier-Stokes
equation [133]. This equation, named after Claude-Louis Navier and Sir George Gabriel Stokes, describes
fluid dynamics.

ρ

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+ µ∇2V + F (101)

Where ρ is the density of the fluid, µ is the fluid’s viscosity, V is the speed of the fluid, and p is the
pressure on the fluid. This equation is complicated to solve and can sometimes be simplified into a less
complex form. We can look at the Reynolds number [134] to do this.

Re =
ρV L

µ
(102)

Where ρ is the density of the fluid, V is the speed of the fluid relative to the particle, L is the
characteristic length of the particle (e.g., the diameter of a sphere), and µ is the viscosity of the fluid.
We can transform equation 101 using equation 102.

Re

(
∂V

∂t
+ (V · ∇)V

)
= V L∇2V − V L

µ
∇p+ V L

µ
F (103)

Because the speed of the particle has not been measured bigger than 750∗10−6 m/s with particle size
smaller than 200 ∗ 10−6 m for OET, the Reynolds number can be taken to be much smaller than 1 when
using water with ρ

µ bigger than 10−6 s/m2. Also, we will take the external forces into account later but
will take them to be 0 to derive the addition of the drag force only.

V L∇2V − V L

µ
∇p = 0

µ∇2V = ∇p
(104)

We can derive another condition from the steady-state continuity equation [135]. When we assume
that the density of the fluid is constant and homogeneous, we can derive that the divergence of the fluid
flow is 0.

dρ

dt
+∇ · (ρV) = 0

∇ ·V = 0
(105)
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The thing we want to solve is to find the force due to a moving fluid on an axisymmetric particle due to
the viscous stress. This can be done by solving the surface integral of the viscous stress tensor over the
surface of the particle [135].

F =

‹
S

σ · dS

σ = −pI+ µ(∇V + (∇V)⊤)

(106)

with pressure p and the identity matrix I. To solve this, we need a description of the pressure and
the fluid speed at the particle’s surface. To do this, we can introduce two boundary conditions. At the
surface, the speed of the fluid is 0. This is often denoted as the no-slip boundary condition and can
be seen as the fluid sticking to the surface due to the roughness of the surface [136]. In some special
cases, like porous materials, this condition does not apply. Still, because we are specifically looking for
the viscous force, we can assume this condition to be true [137]. Another boundary condition is that far
from the particle, the fluid is constant in the same direction. We will take the fluid moving in a positive
z-direction, as shown in figure 56. We will consider cylindrical coordinates first, with ϕ rotating the axis
r around the z-axis.

Figure 56: A schematic depiction of the stream function around an axisymmetrical particle. The direction
ẑ from equation 107 is pointing upwards [138].

In figure 56, we see that we considered a sphere for which the drag force has been well defined.
In general, this should also work for every smooth axisymmetric particle. Therefore, we will write the
boundary condition and the shape function to match a higher-order smooth boundary condition.

V(
2n
√
r2n + z2n → ∞) = V∞ẑ

V(
2n
√
r2n + z2n = R) = 0

(107)

with n being an integer bigger than 0. The velocity of the fluid can be described by the Stokes stream
function, which describes how the fluid behaves in a laminar flow around a smooth axisymmetric object
[139].

V =
1

r

∂Ψ

∂r
ẑ − 1

r

∂Ψ

∂z
r̂ (108)
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As can be seen, the derivative with respect to the radius must be equal to rV∞ to validate the far-field
boundary condition. We can make an Ansatz that validates both boundary conditions.

Ψ(r, z) =
1

2
V∞r

2

(
1 +

AR
2n
√
r2n + z2n

+
BR2

( 2n
√
r2n + z2n)2

+
CR3

( 2n
√
r2n + z2n)3

+ . . .

)
=

1

2
V∞r

2
∑

m=0,1,2,3,...

CmR
m

( 2n
√
r2n + z2n)m

(109)

Filling this form of Ψ in equation 108, we can find a solution for the velocity of the fluid.

V =

(
V∞Pm − r2n

2
V∞Qm

)
ẑ +

(
rz2n

2z
V∞Qm

)
r̂

Pm =
∑
m

CmR
m(r2n + z2n)−

m
2n

Qm =
∑
m

mCmR
m(r2n + z2n)−1(r2n + z2n)−

m
2n

(110)

To solve this, we need to introduce one other variable.

ω = ∇×V (111)

ω is called the vorticity and describes how the velocity of the fluid changes in rotation around a certain
point. Using the vorticity and the vector identities ∇2x = ∇(∇ ·x)−∇× (∇×x), and ∇ · (∇×x) = 0,
we can derive an important last condition from equation 104 to solve for V [140].

∇p = µ∇2V

= µ∇ (∇ ·V)︸ ︷︷ ︸
=0

−µ∇× (∇×V)︸ ︷︷ ︸
=µ∇×ω

∇× (∇p)︸ ︷︷ ︸
=0

= −µ∇× (∇× ω)

(112)

Therefore, if we solve ∇× (∇× (∇×V) = 0, we can find which integers m would allow a solution of
equation 112. As we can see from this triple curl of V, this is not trivial to solve at all. The only integer
of n where an easy solution is found is for n = 1, i.e., for a sphere. For more complex shapes, it is better
to find a numerical solution. We can find the integers m for a sphere to be a solution for m = 0,m = 1,
and m = 3. We can fill these in for Pm and Qm from equation 110.

Pm = C0 + C1
R√

r2 + z2
+ C3

R3

(
√
r2 + z2)3

Qm =
1

r2 + z2

(
C1

R√
r2 + z2

+ 3C3
R3

(
√
r2 + z2)3

) (113)

If we take the boundary conditions from equation 107, we can solve for the constants C1, C2 and C3.

V(
√
r2 + z2 → ∞) = (V∞C0) ẑ + 0r̂

C0 = 1

V(
√
r2 + z2 = R) =

(
V∞ [1 + C1 + C3]−

r2

2
V∞

[
C1

R2
+

3C3

R2

])
ẑ +

(
rz

2
V∞

[
C1

R2
+

3C3

R2

])
r̂

1 + C1 + C3 = 0

C1 + 3C3 = 0

C1 = −3

2
& C3 =

1

2

(114)
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We now have a good idea of fluid dynamics around the sphere. To solve the surface integral, it will
be easier to first change the velocity vector of the fluid to spherical coordinates. By substituting in√
r2 + z2 = ρ2, r = ρ sin(θ), z = ρ cos(θ), r̂ = sin(θ)ρ̂ + cos(θ)θ̂ and ẑ = cos(θ)ρ̂ − sin(θ)θ̂, we can make

the equations much more compact.

V(ρ, θ) = V∞

(
1− 3

2

R

ρ
+

1

2

R3

ρ3

)
cos(θ)ρ̂+ V∞

(
R3

4ρ3
+

3R

4ρ
− 1

)
sin(θ)θ̂ (115)

We can find the pressure in spherical coordinates by substituting this velocity vector in equation 104.

p(ρ, θ) = −3µRV∞
2ρ2

cos(θ) (116)

With that out the way, we only need to solve the viscous stress tensor integral from equation 106.
Because the tensor consists of a part depending on the pressure and a part on the velocity, we can also
write the force as a sum of those parts. We will look at the pressure part first. We will also need to
derive the force in this direction because we have decided that V∞ is in the positive z-direction. Because
the sphere is axisymmetric, we can assume that this viscous force is in the same direction as V∞.

Fz,p =

‹
S

ẑ · (−pI) · dS

=

ˆ 2π

0

ˆ π

0

−pẑ · I · ρ̂R2 sin(θ)dθdϕ

=

ˆ 2π

0

ˆ π

0

−p
[
cos(θ) sin(θ) 0

]
I

10
0

R2 sin(θ)dθdϕ

= 2π
3µRV∞
2R2

R2

ˆ π

0

cos2(θ) sin(θ)dθ

= 3πµRV∞

[
−cos3(θ)

3

]θ=π
θ=0

= 2πµRV∞

(117)

We can derive the force due to the velocity of the fluid in the same manner.

ρ̂ ·
(
µ(∇V + (∇V)⊤

)
· ẑ = 2

∂Vρ
∂ρ

µ cos(θ)−
(
1

ρ

∂Vρ
∂θ

− Vθ
ρ

+
∂Vθ
∂ρ

)
µ sin(θ)

= V∞ sin2(θ)
3

2

R3

ρ4
µ

(118)

Fz,v =

ˆ 2π

0

ˆ π

0

ρ̂ ·
(
µ(∇V + (∇V)⊤

)
· ẑR2 sin(θ)dθdϕ

= 2πµ
3

2

1

R
V∞

ˆ π

0

R2 sin3(θ)dθ

= 3πµRV∞

[
cos3(θ)

3
− cos(θ)

]π
0

= 4πµRV∞

(119)

Therefore, when a spherical particle moves in a fluid with a small Reynolds number, the particle feels
a drag from the fluid’s viscosity. If we put together the velocity and pressure components, we arrive at
Stokes Law.

Fz = Fz,p + Fz,v = 6πµRV∞ (120)
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We have to consider that we had to make a lot of assumptions to get to this formulation of the drag force.
If we would have a different shape or a fluid velocity that is too big, we would need a different model to
describe the fluid force. A formula often used is called the form drag [141].

F =
1

2
ρCdAV

2
∞ (121)

We used A as the cross-sectional area29 of the fluid on the particle, ρ as the density of the fluid, V∞ is
the same fluid velocity as described in Stokes law, and Cd as the drag coefficient depending on the shape
of the particle and the Reynolds number of the fluid. This drag coefficient is derived from experiments
and makes the force fit in the form of equation 121. As shown in figure 57, the drag coefficient is fairly
constant in the range 103 < Re < 2 ∗ 105. At a higher Reynolds number, the drag coefficient quickly
drops. This drop, called the ”drag crisis”, is due to the boundary layer of the fluid separating from the
particle [142].

Figure 57: The drag coefficient on a spherical particle for different Reynolds numbers. At low Reynolds
numbers, Stokes law is shown as a blue dashed line [142].

We can calculate the point at which Stokes’s law is not a good description anymore when looking at
when the drag force becomes bigger than Stokes’s law. This relation is also shown in figure 57 as the
blue dotted line. At low Reynolds numbers (Re < 1), we can see that equation 122 is satisfied. Because
we will be using particles on a microscopic scale subject to tiny forces and, therefore, also very small
velocities, we can conclude that Stokes’s law is a valid description of the fluid force on a spherical particle.

Fformdrag > FStokeslaw

1

2
ρCdAV

2
∞ > 6πµRV∞

Cd >
24

Re

(122)

29Imagine the fluid being a perfectly collimated light beam without any effects of diffraction, then the cross-sectional area
would be the shadow of the particle behind the particle.
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Using a similar manner as the derivation for the Stokes law, we can find the torque of a rotating spherical
particle in a fluid. We can derive the velocity of the fluid with similar boundary conditions. We take the
fluid velocity to be V (ρ = R) = Rω where ω is the angular velocity30 of the sphere. At V (R = ∞), we
will assume zero velocity.

V(ρ, θ) = ω
R4

ρ3
sin(θ)ϕ̂ (123)

Using equation 104, we can derive the pressure, which we can use again to calculate the force using
the shear tensor from equation 106. Notice that we want to find the torque, which means that we have
to take the cross product of the force on the particle with the distance to the center of rotation of the
particle. The torque is assumed to be in the z-direction due to rotation in the ϕ-direction.

T =

‹
S

Rρ̂× σ · dS

= 8πµR3ω

(124)

Unfortunately, the correlation between the torque on a particle in a rotating fluid is more complex
than in the case of linear drag. A fluid is often described as having a linear and rotational direction. In
literature, descriptions are in the same form as equation 121, but this is not a very useful assumption for
non-spherical particles [143] [144].

T = ρπR5CTω
2 (125)

4.1.5 Electrophoresis

In the 18th century, scientists found that the force responsible for binding atoms could be related to
the charge and distance in the system. This phenomenon is called Coulomb’s law, named after Charles
Coulomb [145]. For two charges, this is found to be proportional to the distance between the two charges
squared.

Fc =
1

4πϵ0

|q1q2|
r2

(126)

Where ϵ0 is the permittivity in a vacuum. q1 and q2 are two point charges. If they have an opposite
sign, the two charges attract each other. If they have an equal sign, they repel each other. Keep in mind
that this formula is only valid for point charges in a vacuum. We can write Couloms’s law in terms of
the electrical field E, which is more helpful for OET cases.

F = qE (127)

The force on a charge q has the same direction as the electrical field if the charge is positive. This
Coulomb force is also known as the electrostatic force because we disregard the effects of the magnetic
field. The magnetic field would have an effect when the charges move, which can be seen in equation 1.
Therefore, this formula can only be used in OET for particular cases: static electrical fields and charged
particles. When the particles are neutrally charged, the static electrical force is negligible.

If we would have a charged particle in a medium, the force due to the electrical field would be slightly
different. A negatively charged submerged in a medium attracts positive ions from this medium, which
neutralizes the total charge. This layer with positive ions around the particle is called the Stern layer,
named after German scientist Otto Stern [146]. After this layer is formed, it attracts ions with different
charges again and forms the diffuse layer. The outer boundary of this diffuse layer is called the slipping
plane. This two-layer description of a charged particle in an ionic medium is called the electric double
layer. These layers are shown in figure 58. The electrical potential decreases due to this double layer. At
the slipping plane, the potential equals the ζ-potential, which depends on the Debye length [147].

30Notice that this angular velocity is not the same as the vorticity ∇ × V. In the drag of the Stokes law, we assumed
that the velocity was rotational symmetric, but here, we consider a slightly different assumption.
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Figure 58: The electric double layer around a submerged negatively charged particle. The surface charge
decreases with radial distance. At the Stern layer, the potential is the Stern potential. At the slipping
plane, the potential is the ζ-potential [148].

The slip velocity due to the double layer depends on the electrophoretic mobility, which depends on
the ζ-potential [149] [150].

µe =
v

E

=
2ϵrϵ0
3µm

ζf(κa)
(128)

The velocity of the particle is given as v. The electrical field is given as E. ϵr and ϵ0 are respectively
the relative permittivity and the permittivity of vacuum. µm is the viscosity of the medium and ζ is
the discussed potential at the slipping plane. f(κa) is the Henry coefficient named after William Henry,
depending on the particle’s radius a and the Debye length κ [151]. Marian Smoluchowski found the limit
of the Henry coefficient to be f(κa) = 3

2 when κa≫ 1. When the Debye length is much bigger than the
particle’s radius, i.e., κa ≪ 1, the limit of the Henry coefficient is f(κa) = 1, as found by Erich Hückel
[152]. Similar to the electrostatic force from Coulomb’s law, we need an electrically charged particle for
the electrophoretic force to play a role in the dynamics. In many cases in OET experiments, the particle
is not electrically charged.

4.2 Forces on the medium

4.2.1 Light-actuated AC electroosmosis

Electrophoresis does not play a significant role in the dynamics of the particle on many occasions because
the particles are neutrally charged on these occasions. We do have charge on the electrodes in the
microfluidic chip. These electrodes, therefore, experience an electrophoretic force when the medium has
enough ions. The charge on the electrodes creates a diffusive layer with a ζ-potential. Because the
surfaces of the electrodes are flat, we can use Smoluchowksi’s limit for the Henry coefficient. At the
slipping plane, the ions in the medium start to move tangentially to the electrical field and toward the
illuminated spot with the bigger surface potential. This means that a fluid velocity is induced within the
microfluidic chip. This phenomenon is called light-actuated AC electroosmosis and is depicted in figure
59 [153].
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Figure 59: The fluid has a certain slip velocity due to the light-induced AC electroosmosis [153].

The slip velocity of the fluid is given by the Helmholtz-Smoluchowski equation, which is a limit of the
electrophoresis formula given in equation 128.

Vslip =
ϵrϵ0
µm

ζEt (129)

Et is the tangential component of the electrical field concerning the photoconductive layer. If we had
a dielectrophoretic force that repels a particle from the illuminated spot, we would have this force be
opposed due to Stokes’s law with Vslip. Due to this duality, a certain stable distance from the illuminated
spot is created. This is shown in figure 60 where a simulation was done on a 12 µm diameter polystyrene
bead in a medium with a conductivity of 5 ∗ 10−5 S/m and a relative permittivity of 2.56 [153]. The
stable distance depends on frequency due to the DEP force.
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Figure 60: (a) The electrical field in an OET chip where the middle is illuminated. (b) The fluid flow
in an OET chip is due to the light-induced AC electroosmosis. (c) Simulated electrical field data and
fluid velocity data in the x-direction (horizontal) at 10 µm from the bottom. (d) The force due to the
dielectrophoresis and Stokes law. At a certain point, there is a stable point. [153]

Suppose we want a dominant light-induced AC electroosmosis fluid force in the OET system. In that
case, we need to have the frequency so that the impedance of the electric capacitor does not differ too
much from the resistance of the medium. This will result in an optimal combination of the ζ-potential
and the tangential electrical field [154].

fopt =
σλd
2πϵL

(130)

σ is the conductivity of the medium. λd is the thickness of the double layer. L is the height of the
medium and, thus, the microfluidic chip. ϵ is the permittivity of the medium.
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4.2.2 Electrothermal flow

The last electromagnetic process that we need to discuss is the induced temperature change from the
electrical field. The internal energy of the fluid per unit volume can be found to be related to the
temperature and the electrical field [155].

ρmcp

(
dT

dt
+ (V · ∇)T

)
= k∇2T + σE2 (131)

The density of the medium is given as ρm. cp and k are the specific heat and the thermal conductivity
of the fluid. σ is the conductivity. We can rewrite this equation in steady state to the Peclet number Pe,
named after Jean Claude Eugene Peclet [156].

ρmcp(V · ∇)T = k∇2T + σ⟨E2⟩
ρmcpV

k︸ ︷︷ ︸
∼Pe

·∇T = ∇2T +
σ

k
⟨E2⟩ (132)

When we consider the Peclet number to be very small due to the small velocity, we find Poisson’s
equation, which relates the Joule heating to the change in temperature.

k∇2T = −σ⟨E2⟩ (133)

Due to high illuminating power, the temperature can also be increased locally. As we did by deriving
the dielectrophoretic force, we want to see how this increased temperature impacts the electric force.
This time, we will calculate the force on the medium fluid, which will induce an electrothermal flow. We
want to find the time-average force per unit volume.

fET = ρqE− 1

2
E2∇ϵ+ 1

2
∇
(
ρm

∂ϵ

∂ρm
E2

)
(134)

ρq is the charge density in the volume and ϵ is the permittivity of the medium. The last term is
related to the electrostriction, which creates pressure in the fluid. We will assume the medium to be
incompressible and therefore ignore the last term [157]. We can relate the charge density to Gauss’s law
and the conservation of charge.

ρq = ∇ · (ϵE)

dρq
dt

= −∇ · (ρqV)−∇ · (σE)
(135)

If we assume a low Reynold’s number, as we did in deriving the drag force, we can ignore the velocity
term in the charge conservation. To solve this, we will use perturbation theory to expand the electrical
field E = E0 + E1, where |E0| ≫ |E1| [158]. We will assume that we have no free charge in the
medium, and the electrical field is only due to the electrodes of the microfluidic chip. This means that
∇ ·E0 =

ρq
ϵ0

= 0 [159].

ρq = ∇ · (ϵ(E0 +E1))

= ∇ϵ · (E0 +E1)︸ ︷︷ ︸
≈E0

+ϵ(∇ ·E0︸ ︷︷ ︸
=0

+∇ ·E1)

≈ ∇ϵ ·E0 + ϵ(∇ ·E1)

(136)
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We will also assume that the electrical field can be described using a complex vector amplitude times a
complex exponential with angular frequency ω, i.e., E(r, t) = [Ereal(r) +Eimag(r)]e

iωt. This means that
the time derivative of the charge density is a product of iω times the charge density.

dρq
dt

= ∇ · (σE)

iω(∇ϵ ·E0 + ϵ(∇ ·E1)) = ∇σ · (E0 +E1)︸ ︷︷ ︸
≈E0

+σ(∇ ·E0︸ ︷︷ ︸
=0

+∇ ·E1)

iω∇ϵ ·E0 + iωϵ(∇ ·E1) = ∇σ ·E0 + σ(∇ ·E1)

(iωϵ+ σ)∇ ·E1 = −(iω∇ϵ+∇σ) ·E0

∇ ·E1 =

[
−iω∇ϵ−∇σ
(iωϵ+ σ)

]
·E0

(137)

We can now combine equation 136 and equation 137 to find a description of the charge density in the
volume.

ρq = ∇ϵ ·E0 + ϵ(∇ ·E1)

= ∇ϵ ·E0 −
[
iω∇ϵ+∇σ
(iωϵ+ σ)

]
·E0

=

(
iωϵ∇ϵ+ σ∇ϵ− iωϵ∇ϵ− ϵ∇σ

iωϵ+ σ

)
·E0

=

(
σ∇ϵ− ϵ∇σ
iωϵ+ σ

)
·E0

(138)

The gradient of the permittivity and the conductivity can be related to a linear change with respect
to the temperature. ∇ϵ = kϵϵ∇T and ∇σ = kσσ∇T where kϵ and kσ are empirically found constants
[160].

ρq =

(
ϵσ

iωϵ+ σ

)
(kϵ − kσ)∇T ·E0 (139)

We now have everything we need to compute the electrothermal force on the fluid per unit volume
from equation 134. Because the electrical field is alternating, we will need to take the time-average31 as
we did for the DEP force. We will also need only to use the real part of the volume force.

⟨fET ⟩ =
1

2
Re

[((
ϵσ

iωϵ+ σ

)
(kϵ − kσ)∇T ·E

)
E∗
]
− 1

4
|E2|ϵkϵ∇T (140)

Where we changed E0(r) to E. Because E ≈ E0, this fairly approximates the physics behind the
electrothermal phenomenon. An example of the flow due to the electrothermal effects is shown in figure
61. Because this force depends on the electrical field’s frequency, we can find the cross-over frequency for
when the ET effect changes signs [161].

fET,cross−over ≈
σ

2πϵ

√
2
| 1σ
(
∂σ
∂T

)
|

| 1ϵ
(
∂ϵ
∂T

)
|

(141)

31The time-average real part of the product of two vectors is given as Re [⟨A(r, t)B(r, t)⟩] = 1
2
Re (A(r)B∗(r)).
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Figure 61: Simulation of flow due to electrothermal effects. This simulation is from an OET setup with
a bias voltage of 20 Vpp and 100 kHz. The illumination power is 250 W/cm2 [160].

4.2.3 Thermal flow

When heating a medium, it will start to flow naturally. The density depends on temperature and will
decrease with increasing temperature in most cases. This means the buoyancy effects change locally,
causing the fluid to induce natural convection. This can happen without applying an electrical field but
only illuminating the surface with high enough energy [162]. This force, per unit volume, can replace the
buoyancy formula from equation 99 by changing the density to the temperature-dependent temperature.

fnc =
∂ρm
∂T

∇Tgẑ (142)

4.3 Situational forces

The last force we need to consider is the static friction force. The drag force is a friction force that works
against a moving system but has no effect when the particle is stationary. Moving the particle from
stationary can be challenging due to the fouling effects explained in section 3.3.1. The force due to the
surface energy is given in equation 96. The force must be greater than this adhesion force to get the
particle to move. This force can be modeled as a threshold, which is removed when the particle is not
stuck to the surface anymore [163].
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4.4 State space

If we want to create a working dynamical system of our particle in the OET chip, we need to combine all
discussed dynamics. Most forces that we discussed are only valid for spherical particles in a Newtonian
fluid due to all the assumptions we made. We will create the dynamical system by setting up the state
space. We want to find the acceleration of the particle’s center of mass ẍ. The speed of the particle’s
center of mass is given by ẋ. The angular acceleration of the particle is given by θ̈. The angular speed
is given by θ̇. The speed of the fluid is given as V(x), i.e., the velocity of the medium at the particle’s
location x. The temperature is also a state of the system and is given as T (x).

The dynamics of the particle are given by two equations, which consist of the already discussed forces.

mẍ = FDEP (x, f, V, P ) + Fgravity + Fbuoyancy(x, T ) + Fdrag(V∞) + Ffriction(ẋ) (143)

Iθ̈ = TDEP (r, f, V, P ) +Tdrag(ω∞) (144)

The velocity and the angular velocity of the medium that induces drag are the relative speeds between
the medium and the particle.

V∞ = Vm − ẋ− ẋBrownian(x, T ) (145)

ω∞ = r×Vm − θ̇ − θ̇Brownian(x, T ) (146)

The medium’s velocity consists of some body forces, as discussed, and some additional velocities.

∇2Vf =
1

µ
(fET (x, f, V, T, P ) + fnc(x, T )) (147)

Vm = Vf +VEP (x, f, V, P ) +Vext (148)

The dynamics of the temperature depend on the electrical field and the added heat energy.

∇T = −σ
k
⟨E2⟩ − 1

k
Pext (149)

This nonlinear set of equations describes all the states. The states are the location of the particle x,
the speed of the particle ẋ, the angle of the particle around its axis of rotation θ, the angular velocity
of the particle θ̇, the speed of the fluid Vm, and the temperature T . The inputs are the bias voltage of
the AC signal V , the frequency of the AC signal f , the optical power P (which influences the electric
field gradient), the external added fluid velocity Vext (e.g., due to a pump), and the external added heat
power Pext (e.g., due to illumination or heating).
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One important thing to keep in mind is that some forces dominate over others for specific frequency
regions. Figure 62 shows an example of this. These regimes are specific for each system but usually
follow the same order.

Figure 62: Regions in the frequency/optical power plot show where certain forces dominate. The particle
in this system is in a liquid solution with a conductivity of 1 mS/m. The applied AC frequency is 100
kHz. In (a), the applied voltage is 20 Vpp. In (b), the applied voltage is 10 Vpp [164].

The dynamics are pretty well defined if we have a spherical particle. We already saw that we will have
more complex dynamics for differently shaped particles. Therefore, to have a state space representation
of a more complicated system, we need to linearize the system such that dynamics are similar but include
correcting coefficients as is done similarly in the drag force formula in regions with a higher Reynolds
number. This system of equations gives a good understanding of the underlying physics but include many
assumptions and boundary conditions that limit the use for complex systems.

82



5
Optical setup

This section introduces the components of the optical setup for the optoelectronic tweezer. The optical
setup essentially functions as a light microscope, enhanced with pattern illumination to generate virtual
electrodes. We begin by explaining the physical principles behind light microscopy, including how light
interacts with various materials. Through this explanation, we clarify the concept of focal length and
identify the factors that limit image sharpness, such as aberrations. We derive the spatial resolution using
Fourier optics and explore the depth of focus from a geometrical perspective. These methods highlight
potential limitations of the optical system that should be considered in our setup design. We also discuss
the different light sources utilized in optoelectronic tweezer setups. The role of the digital micromirror
device in creating the illumination pattern for precise control is examined, focusing on optimal angling
within the optical setup. To observe the images produced by the optical system, we discuss the operating
principles of the necessary camera. Lastly, we present several detailed optical setups used in optoelectronic
tweezers, including various optical elements commonly incorporated into these systems.

The optical setup for ”Jip en Janneke”

Light always moves at the same speed depending on the material it is in. Light bends when it
passes from one material to another, like from air into glass. If we shape the glass into a curve,
all the bent light comes together at one point, which we call the focus point. This focus point is
super important for understanding how we see things.

If we have two lenses lined up and their focus points match up, we can make images look even
larger! This is how we can see things through binoculars, telescopes, and microscopes.

The optoelectronic tweezer also uses a microscope to see and manage tiny objects. However, we
can’t see infinitely small things because every microscope has a limit to how small it can see. In
this part, we will talk about how these limits work.

The light in the microscope can come from different types of sources, like regular lamps, LED
lamps, or lasers. We’ll also explain something called fluorescence, which is when objects glow in
the dark after being lit up for a while. This helps us take really sharp pictures of specific things
in the microscope.

To control where and how we look at tiny objects, we use a special kind of technology called a
digital micromirror device. It’s like a tiny TV screen made of lots of little mirrors. We can move
each mirror to shine light in just the right way. This lets us create images that we can then look
at more closely with the microscope.

Finally, to see the things we’re working with using the optoelectronic tweezer, we need a camera.
The camera helps us see, but it also has its own limits because of its size and the number of pixels
it has (which are tiny dots that capture the light). At the end of this section, we’ll show some
pictures of what the optical setup looks like when everything is put together.

The Jip and Janneke illustration is created by the renowned artist Fiep Westendorp.
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5.1 The light microscope

In Middelburg in the Netherlands, around 1590, Hans and Zacharias Janssen created the first microscope
based on lenses in a tube. Later, around 1740, Anthonie van Leeuwenhoek used this device to open the
world too small for our naked eyes by studying biological samples [165]. It is hard today to imagine the
world without microscopes, for they have become key biological, medical, and structural research devices.
The optoelectronic tweezer system uses this microscope as optical setup to manipulate very small objects.
To understand the physics of this optical setup, we need to start looking at the physics behind light in
materials.

5.1.1 Bending of light in a material

The speed of light is constant and has a value depending on the material it travels in. Light in a vacuum
travels with the speed of light that is defined as c = (ϵ0µ0)

− 1
2 with ϵ0 being the permittivity in a vacuum

and with µ0 being the permeability in a vacuum. When light travels through a material, it travels
with the speed v = (ϵµ)−

1
2 with again the permittivity and permeability but now in the medium. The

ratio between the speed of light in a vacuum and a medium is called the refractive index [166]. This is,
therefore, defined as

n :=
c

v
=

√
ϵµ

√
ϵ0µ0

(150)

Figure 63: A schematic travel path of light from a material with refractive index n1 to a material with
refractive index n2.

Consider a photon moving in a material with refractive index n1 from a certain point A to a point
B, which is on the interface between 2 materials. After traveling to point B, it travels to point C in a
material with refractive index n2. This traveling photon is schematically depicted in figure 63. We can
calculate the length of this travel path as

L =
√
y21 + x21 +

√
y22 + x22 (151)
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We know that the speed of light in the material with refractive index n1 is v1. At the material with
refractive index n2, it is v2. We can calculate the time it takes for a photon to travel from point A to
point B to point C.

T =

√
y21 + x21
v1

+

√
y22 + x22
v2

=

√
(h− y2)2 + x21

v1
+

√
y22 + x22
v2

(152)

We wrote T as a function of y2 using h = y1 + y2. Fermat’s principle tells us that light takes the
path that requires the least time compared to other possible paths [167]. In our case, this translates to
T being minimal for a specific y2. This means we can optimize T by setting the derivative to 0.

∂T

∂y2
= −2(h− y2)

1

2v1
√

(h− y2)2 + x21
+ 2y2

1

2v2
√
y22 + x22

=
y2

v2
√
y22 + x22

− h− y2

2v1
√
(h− y2)2 + x21

=
y2

v2
√
y22 + x22

− y1

v2
√
y21 + x21

=
sin(θ2)

v2
− sin(θ1)

v1

(153)

Where we used that, in a right triangle, the opposite side dived by the hypotenuse is equal to the sine
of the angle, sin(θ1) =

y1
AB .

∂T

∂y2
= 0

sin(θ2)

v2
=

sin(θ1)

v1
n2 sin(θ2)

c
=
n1 sin(θ1)

c
n2 sin(θ2) = n1 sin(θ1)

(154)

Using Fermat’s law and by implementing the definition of the refractive index, we derived Snell’s law,
which connects the angle of incidence θ1, the angle of refraction θ2 with the refractive indices of n1 and
n2 [168].
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5.1.2 Focusing light with a lens

As we saw in Snell’s law, light rays bend by a defined angle in a material with a homogeneous reflective
index. If we project a specific shape using illumination through a material, we would see the projection
shift due to Fermat’s principle, as shown in figure 64.

Figure 64: A schematic depiction of how an image can be shifted due to Fermat’s principle. The boat’s
captain sees a treasure chest on the bottom of the sea and thinks he can estimate the location just by
looking. He does not know that the light is shifted due to the refractive indices, making the chest appear
at a different angle.

If we shape the curvature of a transmitting material, we can force the incoming angle to be an angle
normal to the surface. For example, if we shape a glass with a spherical curvature, we can relate the
angle of incidence with the distance from the center of the spheroid. Figure 65 shows a schematic of this
shaped glass. The angle a is related to y by sin(a) = y

r . Using this we can define angle b if we know the
material’s refractive index na and the surrounding’s refractive index nb.

na sin(a) = nb sin(b)

na
y

r
= nb sin(b)

b = arcsin

(
na
nb

y

r

) (155)
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Figure 65: A schematic depiction of a spherical lens with radius r. A ray enters the lens at height y and
exits the lens at width x. The angle the incoming ray makes with the normal of the curved surface on
the right is called a. The angle the ray makes with the normal of the curved surface when exiting the
lens is called b. The angle that the ray makes with the optical axis (y=0) is called c and is at the focal
length called f .

We can see in figure 65 that the light rays cross at a certain distance. We call this distance the focal
length of the lens. Every material has a certain angle at which no light is transmitted. The transmitted
light would make an angle of π/2 rad (90 degrees) or more, which is impossible. This is called the critical
angle and can be calculated by the refractive indices.

na sin(a) ≤ nb sin(pi/2)

sin(a) ≤ nb
na

× 1
(156)

We can see that the maximum distance a light ray can be distanced from the radius in a spherical
lens, like in figure 65, is defined by the critical angle as

ycritical = r sin(acritical) = r
nb
na

(157)

If we add more rays with distances ranging between 0 and ycritical, we can see the relation of the focal
length depending on the distance from the center of the lens.

x = r cos(a)

c =
π

2
+ a− b

f = x+ y tan(c)

= r cos
(
arcsin

(y
r

))
+ y tan

(
π

2
+ arcsin

(y
r

)
− arcsin

(
nay

nbr

)) (158)

This relation is shown in figure 66.
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As can be seen, the bigger the distance the incoming light ray makes with the optical axis, the smaller
the focal length. This change in focal lengths is also depicted in figure 67. We can see here that for a
spherical lens with a refractive index of 1.5, the focal lengths differ for each incoming ray at a different
height. This means that we cannot say there is only one focal length for the spherical lens.

Figure 66: The ray diagram of a spherical lens with a refractive index of 1.5 and with a radius of 4 cm
with incoming rays ranging between 0 cm and 2.4 cm.

Figure 67: The relation of the focal length in a spherical lens with a refractive index of 1.5 depending on
the relative distance y/r. On the right side is the percentage f/fmax shown to show the error in focal
length scales with increasing relative distance y/r.

When imaging a pattern in the spherical lens, we can better understand the meaning of the different
focal points by looking at the output pattern after all the focal points. One thing that can already be
seen in figure 66 is that the projected image will be upside down after the focal points. If you follow the
ray coming in most on top on the left, you will see that this same ray turns into the ray most on the
bottom on the right. Another thing that happens is the image getting distorted. It spreads out more
the farther the input ray is from the optical axis. This can be seen in figure 68 and figure 69. The input
pattern consists of evenly spaced red and blue rings. After passing through the spherical lens, the outer
rings are wider than all the inner rings. This type of deformation is called an aberration which can come
in many shapes.
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Figure 68: A pattern put through the spherical lens
described in figure 66.

Figure 69: The pattern output at 15 cm distance
from the left side of the lens, after passing all focal
points.

This type of aberration is called a spherical aberration. More specifically, the shift in focal lengths
is called longitudinal spherical aberration, while the shift in the pattern is called transverse spherical
aberration [169]. In optics, we often want to prevent aberrations as much as possible, which can be done
in multiple ways. Firstly, the lens can be shaped with an aspherical surface. A comparison between an
aspherical lens and a spherical lens can be seen in figure 70. Aspherical lenses are, on the other hand,
more challenging to make and will therefore also be more expensive than the simpler spherical lenses
[170]. Another way to prevent the aberration is by decreasing its effect by only taking small angles and,
therefore, only taking small distances from the optical axis. This is called paraxial approximation and
can be done with angle c≪ 1 rad, with angle c as described in figure 65 [171]. As we also can see in figure
67, the focal lengths lie very closely to each other when we would only take a distance of 0.2r from the
optical axis. Most lenses that are spherical and are in use for optics do not use half spheres as lenses but
take even smaller parts of this spherical surface to remove the greater angles from the spherical surface
to prevent aberrations [172].

Figure 70: A comparison between a spherical lens and an aspherical lens. The aspherical lens converges
the longitudinal spherical aberration [173].
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5.1.3 Magnifying an image using lenses

If we had two lenses in series, we could use their focal lengths to change the size of a collimated light
beam. When light rays enter a lens parallel to the optical axis, they all meet at a certain point called
the focal point. When another lens is distanced from this focal point with its focal length, the rays come
out of the second lens again parallel to the optical axis. The rays continue at the same angle to the
optical axis after the focal point between the lenses, making the beam widths linked to each other. This
phenomenon is depicted in figure 71. If we would name the distance of the blue line from the optical
axis y1, we can calculate its positions after the 2-lens system, which we will call y2, using the ratio of the
focal lengths [174].

y1
f1

= tan(a)

y2
f2

= tan(b) = tan(−a) = − tan(a)

y1
f1

= −y2
f2

y2
y1

=M = −f2
f1

(159)

Figure 71: A schematic depiction of a telescope with two lenses. The left lens has a focal length f1, and
the second lens has a focal length f2. On the left side, the captain from figure 64 stands at f1 distance
from the first lens. This object, the captain, is imaged, translated, and demagnified on the right side.

As we can see, the magnification is defined by the two focal lengths. The length of the full system is
4 focal lengths long. Therefore, this is also known as a 4f system. If we wanted to magnify the image
back without inverting it, we could use a more complex optical system which would, for example, change
the second lens into a diverging lens32 and by moving it before the first focal length. The ray diagram of
this system is shown in figure 72.

32A lens that converges the light is also known as a convex lens. A lens that diverges the light is also known as a concave
lens.
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Figure 72: A schematic depiction of a binocular system where the first lens is convex and the second lens
is concave. This lens system does not invert the image [175].

5.2 Resolution

One of the most important properties of our optical setup is its resolution. Optical resolution is the
smallest sized feature the optical system can resolve [176]. The obvious limitations are to be caused by
defective optical elements due to, e.g., dirtiness or damage. Therefore, we will assume in this section that
all optical elements are working optimally and set up optimally at their proper focal lengths. The first
thing that limits the optical setup is the critical angle as described in equation 157. Each optical element
has its own critical angle, but the smallest critical angle in the full setup is the limiting one, as a chain
is as strong as its weakest link. This critical angle is related to the numerical aperture (NA), which is
defined as the smallest critical angle.

NA = n sin(θcritical) (160)

with n being the refractive index of the medium that the light transmits outside the objectives.

5.2.1 Diffraction of light

When we let light pass through an aperture, like a spherical hole, we get a phenomenon that Fransesco
Maria Grimaldi first called diffraction in 1665 [177]. The interference of waves creates diffraction and
can be explained by the Huygens-Fresnel principle named after Christian Huygens and Augustin-Jean
Fresnel [178]. This principle tells us that every wavefront, e.g., a long ocean wave, can be seen as an
infinite amount of spherical waves next to each other. Because the waves are infinitely long by a classical
physics approximation, the spherical boundary effects cannot be seen, and the waves are seen as straight
wavefronts. After passing an aperture, this wave cannot be approximated similarly, making the spherical
end of the wavefront visible. This phenomenon is schematically shown in figure 73. This can be easily
demonstrated using water as is depicted in figure 74.
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Figure 73: A schematic depiction of the Huygens-Fresnel principle, which says that a wavefront can be
modeled as an infinite amount of spherical waves. In this figure, a limited number of spherical waves are
shown to display the effect of this principle before and after an aperture.

Figure 74: Diffraction seen in water waves after passing an opening in a dam [179].

Light behaves as a wave with an electric and magnetic field and can, therefore, also be diffracted. This
diffraction is modeled in 3 different versions: the Kirchhoff diffraction, Fresnel diffraction, and Fraunhofer
diffraction. The first is true when the waves are moved more than half of their wavelength away from the
aperture. The second is true when the distance from the aperture is much bigger than the width of the
aperture, and the last is true in the far field [180]. These diffraction models are shown in figure 75.

Figure 75: Comparison of the diffraction regions and the area of their accuracy. The wavelength of the
light is given by λ, the width of the aperture is given by w, and the distance from the aperture is denoted
by z [180].
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Assuming coherent monochromatic waves, we can look at the incoming waves as all in phase and with
the same wavelength. After the aperture, these waves spread out in a circular manner, making the zeros
of the wave be patterned when projected again on a flat plane. This can be seen in figure 76. The light
intensity is related to the squared norm of the electrical field, which means that the zeros of the waves
will create dark spots in the pattern [180]. Therefore, we can see for diffraction as in figure 76 that the
pattern will peak in the center due to the parallel beam but will have a dark spot at a distance x for the
sloped wave.

Figure 76: Spread of the sinusoidal peaks due to diffraction. The wave parallel to the z-axis peaks at the
blue surface, while the sloped wave has a zero on the same parallel surface.

The image after diffraction is therefore depending on the frequency of the waves, which is defined as
fx = nx

λz = kx
2πz in the x direction[180]. This frequency relation made it possible to rewrite the diffraction

pattern to a Fourier transform of the incoming wave multiplied by the aperture function. This specific
Fourier transform is also known as the Fraunhofer diffraction integral.

E(fx, fy) = C

ˆ ∞

−∞

ˆ ∞

−∞
tm(x0, y0)e

−2πi(fxx0+fyy0)dx0dy0

= C

ˆ ∞

−∞

ˆ ∞

−∞
tm(x0, y0)e

−ki( x
z x0+

y
z y0)dx0dy0

(161)

with C being a constant that corrects for the electrical field amplitude. tm(x0, y0) is the aperture
function that tells which light is transmitted in the aperture plane described by x0 and y0. x and y are
coordinates on the imaging plane. In a general setup, the incoming monochromatic coherent light wave
must go through a lens that cuts a circle out of the wavefront. This circle will be the only transmitted
light. We can also see this lens as a circular aperture that transmits a part of the light. By rewriting the
light waves to a Fourier form, we are working in a field called Fourier optics.
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5.2.2 The Airy pattern

If we had a 4f system to image a spot such as the green line in figure 71, we could translate this ray path
to Fourier optics. The system’s numerical aperture limits the biggest angle that this ray can make. The
aperture plane for a lens is actually buried inside the lens and has a spherical shape. This redefines our
frequency to be depending on the angle of diffraction.

fx =
nx

λz
= k

n sin(θ)

2πn
(162)

We already saw a maximum angle at which the lens could produce images. This limits the frequencies
that can pass the aperture to be smaller to kNA

2πn . This information defines the Fourier transform of our
circular aperture function Tm(fx, fy).

Tm(fx, fy) =

1,
√
f2x + f2y ≤ kNA

2πn

0,
√
f2x + f2y >

kNA
2πn

(163)

where we redefined the circular aperture to be limited by the circle with the frequency kNA
2πn . We can

define a point in the lens’s entrance as P with coordinates fx and fy and a point on the imaging plane
P0 with coordinates x0 and y0. We can rewrite both these points to spherical coordinates.

x0 = ρ cos(ϕ)

y0 = ρ sin(ϕ)
x

z
= w cos(ψ) = η

y

z
= w sin(ψ) = ξ

(164)

Using these changes in coordinates, we can also change the aperture function.

Tm(η, ξ) =

{
1,

√
η2 + ξ2 ≤ NA

n

0,
√
η2 + ξ2 > NA

n

The electrical field in the image plane is given by the inverse of the Fraunhofer diffraction integral,
the inverse Fourier transform. This derivation shows the same ideas as in the book of Max Born and
Emil Wolf [181].

E(x0, y0) = F−1[Tm(fx, fy)]
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0

ekiwρ cos(ϕ−ψ)wdψdw

(165)

We rewrote the constant before the integral to include the λ2

n2 . We also combined the two cosines and
sinuses into one cosine. Also, we changed the integral into spherical coordinates dηdξ = wdψdw. A big
part of this integral can be recognized as the zeroth order Bessel function [181].

Jn(x) =
i−n

2π

ˆ 2π

0

eix cos(α)einαdα (166)
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It is important to note that, due to the goniometric properties, a shift in α would not result in a different
integral solution and would still be equal to the zeroth order Bessel function. Therefore, the ϕ−ψ can be
taken to only depend on ψ. Another important property of this Bessel function is how each order relates
to each other by a recurrence relation.

d

dx
[xn+1Jn+1(x)] = xn+1Jn(x)

xJ1(x) =

ˆ x

0

yJ0(y)dy
(167)

Using these mathematical tricks, we can make more steps in solving equation 168.
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ˆ NA
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(168)

With C3 = C2π
(
NA
n

)2
. Sir George Bidell Airy first derived this form and is therefore also known as

the Airy disk [182]. As we already discussed, the intensity of the light depends on the squared norm of
the electrical field.

I(x0, y0) = |E(x0, y0)|2 = I0

(
2J1

(
kρNAn

)
kρNAn

)2

(169)

This normalized function, i.e., I(x0, y0)/I0, is also known as the point spread function (PSF) and
is shown in figure 77. This is the image we will get from imaging a point through a 4f system due to
diffraction. If we have two points, they will both create an Airy pattern. If we want to distinguish the
points from each other, we must make sure we can distinguish both spots. This is possible when the spots
are at least separated from each other with 1 radius length, as shown in figure 78. This requirement is
also known as the Rayleigh criterion, named after Lord Rayleigh [183] [184].

Figure 77: The intensity due to a circular aperture. This shape is called the Airy disk and consists of
multiple circles. Each circle is separated due to the minima in the Airy disk function [185].
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If we implement this theorem in equation 169, we can see that the disk’s radius is at the first zero of the
PSF. We know that this zero is located at kρNAn = 3.833 [181].

kρ
NA

n
= 3.833

2πn

λ
ρ
NA

n
= 3.833

ρ =
3.833

2π

λ

NA
= 0.61

λ

NA

(170)

As equation 164 shows, ρ is the radius at the image plane where the Airy disk is projected. Also,
the NA is related to the conic angle at which the light is limited. Therefore, we can say that this is the
minimal spot due to a circular aperture, given the NA and the wavelength of the light. This limit is the
resolution in the image plane.

Figure 78: The effects of separation of the Airy disks are shown. If we separate the spots with a distance
of at least 1 radius, the spot centers can be distinguished as two separate spots. When the separation is
less than a distance of 1 radius, it is impossible to recognize individual spots anymore [186].
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5.2.3 Depth of Focus

In the previous section, we described the spatial resolution using the Airy disk. We are also interested in
how far a spot can be out of focus in ẑ before it cannot be recognized anymore. As we already discussed,
a light ray is a wave with peaks and zeros. The spots in the interference patterns are spaced by the zeros
in the intensity. We can also look at this in the z-axis. If we take a wavefront that is in focus with focal
length R and take a wavefront that is out-of-focus with focal length R + ∆Z, we can derive the limit
of this extra distance. This is shown in figure 79. We can limit the distance W because it cannot be
more than a quarter wavelength of the incoming light rays, i.e., W ≤ λ

4n . If we have a monochromatic
wavefront with a given maximum amplitude A and shift it with a quarter wavelength, i.e., with sin π

2 , we
would have this same wavefront with zero amplitude.

Figure 79: A schematic depiction of a wavefront compared to an out-of-focus wavefront. The wavefronts
are distanced with a distance W as seen from the focal point of the focused wavefront [187].

If we assign angles and distances to the schematic of figure 79, we approach the limit of W from
another perspective using the law of cosines [187].

Figure 80: The same schematic figure as in figure 79 but with more assigned distances. These variables
are used in equation 171.
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R+∆Z =
√
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In this derivation, we used that R ≫ ∆Z such that we could use the Taylor expansion around 0 to
approximate

√
1 + 2x+ cos(α)x2 ≈ 1 + x. We also used that W cannot be negative to ensure ∆Z to be

only positive.

λ

4n
≥ ∆Z(1− cos(α)) = ∆Z −∆Z

√
cos2(α) = ∆Z −∆Z

√
1− sin2(α)

≥ ∆Z −∆Z

√
1−

(
NA

n

)2

= ∆Z

1−

√
1−

(
NA

n

)2


∆Z ≤ λ

4n

(
1−

√
1−

(
NA
n

)2)
(172)

So here we see that we can be out of focus for a distance ∆Z to distinguish spots in a diffraction-
limited optical setup. In research, an asymptotic version of this formula, with NA taken small, is often
used to describe the depth of focus [181].

∆Z =
λn

2NA2
(173)

When comparing these resolutions, we can find that the DOF is, on average, more forgiving. Therefore,
we can conclude that, for low NA, the system is mainly limited by the spatial resolution from equation 170.
At high NA, we can see that the difference between the DOF and its approximation show a difference,
limited by a factor 2. The three different resolutions, the detailed DoF, the simplified DoF, and the
spatial resolution, are compared and shown in figure 81 and figure 82.

Figure 81: The resolutions from equations 170, 172, and 173 compared to each other with the same
optical setup and light source.
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Figure 82: The scaling between the resolutions from equations 170, 172, and 173 compared to each other
with the same optical setup and light source.

5.3 Light source

We already discussed how the light beams behave in the optical setup due to lenses and apertures. We
have not discussed yet where those light beams originate from. In general, an optical setup for OET uses
three types of light sources.

1. Light Emitting Diodes (LED)

2. Light Amplification by Stimulating Emission of Radiation (LASER)

3. Incandescent lamps

The light in the optical setup can serve multiple purposes. One needs to be used to create the pattern
for the OET. Another can be used to illuminate the entire chip for imaging purposes. Another purpose
we want to highlight is fluorescence imaging.

5.3.1 Different lamps

Approximately 45 years before Thomas Edison became known for inventing the light bulb, researchers in
Britain demonstrated that light could be created by running an electric current through a filament, such
as tungsten, which then heats it by Joule heating [188]. This radiation effect is called incandescence. In
1879, Thomas Edison added a gas-filled glass bulb to this setup to prevent the filament from burning up
due to oxygen [189]. A more advanced form of this light bulb is the halogen-filled lamp. When tungsten
is heated, it evaporates, burning up the filament, and, in time, stops working as a light source. Halogen
gas is reactive with the tungsten vapor, re-depositing it back on the filament. This way, the filament is
self-repairing, elongating the lifetime significantly [190].

Another variant of this principle is found in ultra-high-pressure lamps, often used in projectors. These
lamps use a gas at high pressure instead of a filament. When a voltage is applied to this gas, it discharges
and emits light. Both halogen lamps as UHP reach high temperatures (>1000 °C). Due to this heat and
its thermal effects, these lights are limited to how useable they are in OET.

Since 2019, the main light source shifted from incandescent lamps to LED lights. A Light Emitting
Diode (LED) has been shown to work in 1927 by Oleg Lesev [191]. An LED works similarly to a diode, the
p-n junction briefly discussed in section 3.4.3. When the p-n junction is not made from the same material
but from a compound, the electrons in the n-material could have a higher energy than the holes in the
p-material. When the electrons and holes recombine, this extra amount of energy needs to be dissipated,
which an LED does by emitting photons with energy equal to the excess energy. This phenomenon is
called electroluminescence [192]. A schematic of an LED can be seen in figure 83. This structure is finite,
meaning that the output light of the LED is not a point source but must be seen as an object. Due to
this, it is hard to create a collimated light beam.
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Figure 83: The schematic of an LED showing the compound layers. The battery depicts the external
power that initiates the electroluminescence [193].

To collimate an LED beam as well as possible, we must look at the expected beam divergence. If we
have an LED with a size d, distance from a lens with diameter D distanced at the focal length f , we can
calculate the ”collimated” beam width after a distance L. This expected beam divergence can be seen in
figure 84. The divergence angle is related to the focal length and the size of the LED [194].

Φ

2
= tan−1

(
d

2f

)
(174)

Figure 84: The expected beam divergence of an LED with size d after a distance L [194].

The last type of light source that we want to discuss is a laser. Similarly to the energy levels dis-
crepancy in the LED creating photons with a specific energy, laser light comes from excited electrons in
atoms. A typical laser setup exists of a tube with a crystal core that is encapsulated by two mirrors.
Around this crystal, a tube is wired called the flash tube. This is encapsulated fully with another tube
with a small aperture for the laser light to exit. This schematic is shown in figure 85.
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Figure 85: A schematic of a basic laser. The red tube is the crystal that emits and amplifies the photons.
This crystal has a mirror on each end and is surrounded by a flash tube depicted in blue [195].

When an electric potential is applied, a light burst is emitted from the flash tube. This principle is
similar to the gas-discharge lamps. When a photon from the flash tube hits an electron in the crystal, it
can, if it has enough energy, move up to a higher orbital, similar to what happens in the photoconductor
as discussed in section 3.2. The electron excitation can only happen when the photon’s energy is higher
than the gap energy between the two energy states. This is why the flash tube is also known as the laser
pump; it activates the laser. An electron does not stay in this excited state forever and will relax, making
it fall back into its original energy state. The extra energy this electron had is then emitted as a photon
with the energy equal to the gap energy. This phenomenon is called spontaneous emission. A specific
wavelength can be emitted by choosing a specific crystal. This specifically allowed amount of energy,
which is why lasers are monochromatic; only photons with the same wavelength are created in the laser.

When a photon emitted from an excited electron hits the excited electron of another atom, this
electron is stimulated to relax and emit a photon with the same wavelength and the same phase. This
is, therefore, also known as stimulated emission. The photon inducing the stimulated emission is copied
exactly, making two photons exit the atom with both the same wavelength and phase. This is why
laser light is coherent,i.e., in phase. When those two photons hit another excited electron, they induce
stimulated emission, creating even more identical photons. Because mirrors enclose the crystal, the
photons bounce multiple times in it, multiplying itself more and more. The mirror close to the opening of
the laser is slightly transmitting, making the photons exit the laser light partly at that side. This entire
principle explains why lasers are called lasers. It is the abbreviation of Light Amplification by Stimulating
Emission Radiation. One last important characteristic of a laser is the small divergence angle. Because
the diameter D of the hole where the laser emits the light is very small, the radiation is coherent and
monochromatic, and we can approximate the laser to have a divergence angle of θ = λ/D. Due to this,
laser sources can almost reach the diffraction-convergence and are a highly collimated optical source [174].

5.3.2 Fluorescence microscopy

When creating an OET, we often use the wavelengths that excite carriers the most, e.g., blue light for
a-Si:H as discussed in section 3.2.2. If we only use this light for illumination, we will only be able to see
the illuminated pattern and not, for example, the cells we want to image and actuate. To compensate
for this, we could add a red lamp that illuminates the entire chip but does not induce such a strong pho-
toelectric effect. This simple but effective method to see and actuate the particles also has a downside,
for it induces some electroconductivity, which decreases the dielectrophoretic force. Therefore, one has
to be careful to find the right trade-off.

One could also include fluorescence microscopy in the optical setup for increased imaging quality of
biological cells. This could be of great added value when using the OET for, e.g. medical research.
Fluorescence microscopy found its way into the world with help from Sir Frederick William Herschel,
who, in 1845, found that tonic water exhibits a blue glow when illuminated with UV light [196]. The way
fluorescence imaging works is very similar to the spontaneous emission in a laser. In this situation, we will
look at the material we want to fluoresce as having an absorption spectrum and an emission spectrum.
Figure 86 shows a typical fluorescent spectrum. When the electrons in the material’s atoms are excited,
they enter one of the allowed energy levels. Those levels are visualized in the Jablonski diagram, named
after Aleksander Jablonski [197].
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When a photon with an amount of energy that is more than the difference between the energy of the
electron in the ground state and the lowest state of a higher energy level33 is absorbed by the electron,
it can cross the energy gap. The duration of this excitation is in the order of femtoseconds. When the
electron relaxes, it returns to an energy state in S0. This does not necessarily mean it goes to the ground
state but can exist in a higher vibrational level in the same singlet state. The electron needs to release
excess energy, which it does in the form of a photon. Due to this, how well specific photon energies
are absorbed is shown in a corresponding absorption spectrum. The way photons are most likely to
be emitted is shown in the emission spectrum. These spectra usually are shifted with respect to each
other, called Stokes shift and is named after George Gabriel Stokes [198]. This shift makes it possible to
distinguish the fluorescent light by filtering for these wavelengths before measurement [199]. When an
electron is moved to a higher energy level, it is possible that the electron first crosses to a triplet state,
where the total spin momentum number is 1. The energy will be lower when the electron returns to the
ground singlet state, where the total spin momentum is 0. This phenomenon is called phosphorescence
and has a longer relaxation time in the order of microseconds, whereas the relaxation time of fluorescence
is in the order of nanoseconds. This delay in photon emission can disrupt the accuracy of imaging [200].

Figure 86: The absorption and emission spectrum of the fluorophore FITC shown with corresponding
Jablonski diagram [201].

When a fluorophore, a particle exhibiting fluorescence, is excited too many times, the fluorescence
effect will fade. This phenomenon is called bleaching and will stop the system from working properly.
Often, 10000-40000 cycles are considered the limit of a good fluorophore before bleaching occurs. One
should use as little intensity as is needed for imaging to counter this effect. An ideal fluorescence micro-
scope has an objective with a high NA such that as many fluorescence photons can be captured. The
light’s intensity area is proportional to (NA)2. Therefore, the amount of exciting photons is proportional
to (NA)2, as is the amount of fluorescent photons. The excited light is therefore observed to be propor-
tional to (NA)4 [201].

33For example, from the 0 line of S0 to the 0 line S1.
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Figure 87: A human macrophage under the microscope with three different fluorescence wavelengths.
Due to the different absorption- and emission spectra of the different parts in the cell, the different parts
of the cell can be better recognized [202].

Figure 87 shows a good example of the useability of fluorescence microscopy. A human macrophage
under a regular light microscope will look like a blob, making it hard to recognize very specific parts of
the cell. Due to each part having different fluorescent characteristics, it is possible to excite the electrons
in each part individually and capture the result from its fluorescence. When we have separate images of
the parts as seen by a fluorescent microscope, we can combine those images to create one image with the
combined information.

5.4 Digital Micromirror Device

We have discussed what kind of light sources we can use for the OET and what their pros and cons are.
We did not discuss how we could get specific illumination patterns to actuate the tweezer. We do not
want to use only the airy pattern as a tweezer but could need squares, rings, or more complex patterns. In
literature, often consumer-grade projectors34 or digital micromirror devices (DMD) are used. A DMD is
a grid of tiny mirrors that can flip at a certain angle when powered. Light transmitted through a material
will get an angle due to the refractive index as shown in equation 154. When the same material reflects
light, it will not change its angle but will flip the same angle to the normal as a mirror does. Therefore,
if we can control the angle of the normal of the mirror, we can control the light’s direction. If we have
multiple mirrors, we can decide the output direction of each light ray that enters a single mirror. Figure
88 shows a typical DMD chip. Each mirror flips a certain angle diagonally by micro torsion hinges when
turned on [203]. Due to this, the full DMD needs to rotate so that the direction of the mirror flipping is
in the same plane as the light path in the optical setup.

34Many consumer-grade projectors make use of a DMD themselves.
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Figure 88: A digital micromirror device with a part of the array schematically shown [204].

If we take a DMD in the same configuration as in figure 89, we can see that the rays that fall on the
mirrors that are switched on are reflected with 2θt to the right relative to the incoming angle. When the
mirrors are switched off, the rays are reflected 2θt to the left. The DMD can be seen as a pixel array,
which is numerically a matrix of 0 and 1 [205]. This matrix can be created, adjusted, and sent to the
DMD at a certain speed using, e.g., python [206]. In general, DMD chips are around 2 cm2 with a number
of mirrors around 1 to 2 million, with a size of around 100 µm2. The mirrors in the DMD are slightly
separated from each other, which means that each mirror behaves as its own aperture. As we saw in
equation 169, this limits our resolution. For square apertures, we have a more simple resolution35[207].

σxy =
fλ

d
(175)

with σxy being spot size and, therefore, the minimal needed distance between spots. f is the focal
length of the imaging lens, and d is the side length of a mirror in the DMD. Due to not all mirrors being
turned on and due to the spaces between the mirrors, we have diffraction and, therefore, some loss of
photons, which need to be taken into account. A DMD’s efficiency is between 64-72% depending on the
wavelength [208].

Figure 89: A schematic depiction of a DMD showing the on and off state. Light reflects on the DMD
with 2θt in the on state and with −2θt in the off state [209].

35We will not discuss the Fraunhofer integral here of the square aperture, but it follows a similar line of thought.
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5.5 Camera

Only one important thing is missing if we have the full setup with lenses, DMD, and light sources. To see
and analyze the results of the optical setup, we will be using a camera. Cameras have been around since
400 B.C. as camera obscuras but were first shown by Joseph Nicephore Niepce to capture images in 1826
[210]. In optical setups, digital cameras that have sensors consisting of multiple photodiodes are used.
In each photodiode/pixel, the energy of photons is converged to free electrons using the photoelectric
effect. The amount of charge in each pixel is then translated to the intensity of light, which can then be
imaged into a computer [211]. How well a camera sensor is depends on the quantum efficiency (charge
per photon), which depends on the wavelength. A very important characteristic of the camera is the
number and size of the pixels. This is the grid in which we can distinguish light spots. The more pixels
we have, the smaller the spots we can distinguish. The size of the sensor determines our field of view.
The bigger the sensor, the larger the FoV. One last important quality of a camera is the framerate, the
speed at which shots are taken. If we have, e.g., a camera framerate of 1 Hz, it captures the light once
per second. If the DMD flips on and off 2 times per second, we would not see this flipping on the camera.
The framerate must, therefore, be fast enough to sample everything correctly. This can be chosen to be
on the Nyquist frequency, which is two times the highest frequency in the system [212]. In this example,
that would mean a framerate of at least 4 Hz is needed.

5.6 Typical optical setups for optoelectronic tweezers

We have now discussed the elements needed for the optical setup for the OET. To put these elements
together, we need to put them at the right focal lengths to get the images as sharp as possible. This can
be adjusted and optimized by including moving stages. The lenses used must correspond to the needed
magnification such that the pattern from the DMD is small enough to actuate small particles accurately.
If we want to use a single objective for both projecting the DMD pattern and imaging the chip using
the camera, we will need a beam splitter, which is essentially a mirror that partly transmits the light.
If we want to reduce the intensity, we can use filters that transmit some wavelengths better than other
frequencies. This way, we can even out the light in the camera so that it does not oversaturate from
certain wavelengths. One last thing we could use if needed, is a dichroic mirror, which is a combination
of a beam splitter and a filter. Some wavelengths are mostly transmitted, and some are mostly reflected.
Some typical OET setups found in literature are shown in figure 90, figure 91, and figure 92.

Figure 90: A typical OET setup with a consumer-grade projector focused on the OET chip on a moving
stage. An LED images the full chip using a beam splitter to have a complete view [34].
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Figure 91: A typical OET setup with a DMD projector focused on the OET chip on a moving stage. The
wavelength used for illumination is filtered using a dichroic mirror [119].

Figure 92: A typical OET setup where a DMD projector and a fluorescent light source are put in the
same objective using beam splitters [28].
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6
Instrumentation

In this section, we introduce the methods utilized for practically creating an optoelectronic tweezer device.
We employ a Plasma Enhanced Chemical Vapor Deposition (PECVD) device to form a photoconductive
layer on conductive glasses. This device applies a specific thickness of amorphous hydrogenated silicon.
We explain the working principles of this device to demonstrate how it can impact the consistency of
the photoconductive layer. The fabrication process for manipulating dielectric particles is also covered.
To achieve particles of specific sizes and shapes, we use a Nanoscribe machine, which creates small 3D
objects through photolithography. Additionally, we outline how to clean the glasses thoroughly using
acetone and isopropanol. Lastly, we detail other instruments employed in the operation of optoelectronic
tweezers.

Instrumentation for ”Jip en Janneke”

In this section, we talk about some machines needed to create the full optoelectronic tweezer. It’s
not very easy to put the photoconductive layer on the glass. To do this, we use an instrument
called a Plasma Enhanced Chemical Vapor Deposition machine. This machine changes gas into
plasma. Plasma is a special state of matter, like solid, liquid, and gas. What makes plasma
special is that it helps the tiny pieces in the gas come apart. This happens during a lightning
bolt and the northern lights. The plasma from this machine is layered on the glass to make the
photoconductive layer we need. With this machine, we can create a very thin layer.

The objects we want to use also need to be made. We can easily buy very small balls for the
optoelectronic tweezer. If we want more complicated shapes, we need to use a Nanoscribe. This
Nanoscribe uses light to carve out tiny objects from a material, kind of like ice sculpting but
about 1000 times smaller.

It’s very important to work with clean materials so we don’t get smudges on the glass. We can
clean the glasses using special chemicals. At the end of this section, we talk about other tools we
need for the optoelectronic tweezers, such as a waveform generator to create the electrical signals,
a computer to control everything, and a power meter to take measurements.

The Jip and Janneke illustration is created by the renowned artist Fiep Westendorp.

6.1 Fabrication of the photoconductive layer

It is impossible to easily paste a photoconductive layer with a certain height on the conductive glasses.
For that, different methods of thin film deposition exist. We will focus on Plasma Enhanced Chemical
Vapor Deposition (PECVD). In a vacuum chamber, two gasses are deposited, silane (SiH4) and hydrogen
(H2) at a certain pressure. Two electrodes are positioned in this chamber, with the bottom one grounded.
On this bottom electrode, a substrate is put on which the a-Si:H will be deposited. When a high enough
AC voltage is applied on the top electrode, the gasses’ electrons will separate from the atoms. This state
of matter is called a plasma [213]. The electrons are much smaller than the ions, which makes them more
mobile in the plasma. When the AC voltage on the top electrode has a positive peak, the electrons are
attracted to it, and the ions are attracted to the grounded electrode, and vice versa when the AC voltage
has a negative peak. Because the electrons move more quickly, an increase in the overall voltage in the
plasma is created. Due to this, the ions are attracted to the substrate on the bottom electrode, creating
a thin film of a-Si:H.
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A typical PECVD reactor is schematically shown in figure 93. In this case, the typical frequency range
of the PECVD’s AC voltage is in the radio-frequency (RF) range. By heating the elements, changing the
pressure or consistency of the gasses, and controlling the input voltage, the deposited sheet characteristics
can be fine-tuned [214] [215]. This explanation of the PECVD is schematic and needs specific recipes for
specific photoconductive layers.

Figure 93: A schematic depiction of a typical PECVD reactor [214].

In general, the PECVD deposits a set amount of thickness per set amount of time. Different materials
can be deposited on each other to make different, more complex multilayer configurations as discussed in
section 3.4.3.

108



6.2 Fabrication of the dielectric particles

When calibrating the OET system, a polystyrene spherical bead is often taken as a dielectric particle.
These beads consist of a single material with a specific diameter. These beads can be store-bought with
a specific fluorescence wavelength and size [216]. If we want to use more complex particles in the OET
setup, we can use a Nanoscribe to create specifically shaped microparticles. To make these microparticles,
a substrate, on which the microparticles will be created, is first covered in photoresist. This photoresist
is hardened at the point where the Nanoscribe laser is in focus. This way, a structure can be built from
the bottom up by scanning all the parts of the photoresist that need to harden with the Nanoscribe
[217]. This method can be used to create the microrobots discussed in section 1.8. An example of the
possibilities of the Nanoscribe is shown in figure 94. After the print, the remaining photoresist must be
removed to uncover the created structures.

Figure 94: A Benchy, a typical calibration print used in 3D printing, to show the accuracy of a Nanoscribe
[218].

Similarly, the grid from section 3.4.3 can be created by etching in the grid holes and filling them up
with a conductive material. Like the PECVD, the lithography process described above is schematic, and
a specific recipe must be created for particular materials.

6.3 Preparation of conductive glass

When we buy cover glasses for the microfluidic chips, we need to make sure that they are clean before
putting on the ITO layer, the photoconductive layer, and before assembling the entire chip. A certain
thickness of ITO on the glasses can be created by sputtering it on a clean glass with two silver contact
strips [219]. The easier and more accurate solution is to buy the conductive glasses at a specialized store.
When the (ITO) glasses are smudged and dirty, they can be cleaned by spraying them with acetone and
isopropanol before drying them with pressurized air. This should make the glasses clean enough for each
step in the fabrication process. The chemicals can impact the surface of the glass. Therefore, keeping
the glasses stored clean and only touching them with gloves on is better to avoid making them dirty.
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6.4 Other instrumentation

If we want to measure the DEP force on a particle, we can look at the fluid velocity at which the light
pattern cannot hold the particle stationary anymore. At this point, the DEP force is overruled by the
fluid force described by Stokes law as discussed in section 4.1.4. We can use a pump with enough accuracy
to create a specific fluid flow. Different types of pumps that are often used in microfluidics are syringe
pumps and piezoelectric pumps [220] [221].

We need to use a waveform generator to control the specific AC input voltage and frequency. The
voltage amplitude can be increased by using a waveform amplifier. We can put an oscilloscope parallel
to the system to monitor the exact waveform input in the chip. Figure 95 shows an example of this
circuit. We can use Python or MATLAB to create a GUI to control the illumination lamp, the DMD, the
waveform generator, the pump, the camera, and, if we are using electrically moving stages in the optical
setup, the focus of the illumination. Using these, more sophisticated control inputs can be created to
automatically control and move the particles in the OET setup [222].

We can use a spectrometer to measure the optical spectrum of the light used in the system, an optical
power meter to measure the intensities at all points in the system, a multimeter or an oscilloscope to
measure the electrical current and voltage in the system, and a stage micrometer to measure the resolution
of the setup.

Figure 95: A typical waveform generator setup to create a specific AC voltage in a sample [223].
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[155] A. Castellanos, A. Ramos, A. González, N. Green, and H. Morgan, “Electrohydrodynamics and
dielectrophoresis in microsystems: Scaling laws,” Journal of Physics D: Applied Physics, vol. 36,
10 2003.

[156] R. Shah and A. London, “Chapter iii - dimensionless groups and generalized solutions,” in Laminar
Flow Forced Convection in Ducts (R. Shah and A. London, eds.), pp. 37–60, Academic Press, 1978.
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A
Upper ITO Glass overhang simulation results

A.1 COMSOL plots

A.1.1 Electric field in OET illuminated state

Figure 96: A COMSOL simulation of the electrical field in the OET chip due to two illuminated spots
with dmax

330 overhang in the top ITO glass.

Figure 97: A COMSOL simulation of the electrical field in the OET chip due to two illuminated spots
with dmax

4 overhang in the top ITO glass.
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Figure 98: A COMSOL simulation of the electrical field in the OET chip due to two illuminated spots
with dmax

2 overhang in the top ITO glass.

Figure 99: A COMSOL simulation of the electrical field in the OET chip due to two illuminated spots
with 3dmax

4 overhang in the top ITO glass.
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Figure 100: A COMSOL simulation of the electrical field in the OET chip due to two illuminated spots
with dmax overhang in the top ITO glass.

A.1.2 The gradient of the square of the norm of the electric field in OET illuminated state

Figure 101: A COMSOL simulation of ∇|E|2 in the OET chip due to two illuminated spots with dmax

330
overhang in the top ITO glass.
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Figure 102: A COMSOL simulation of ∇|E|2 in the OET chip due to two illuminated spots with dmax

4
overhang in the top ITO glass.

Figure 103: A COMSOL simulation of ∇|E|2 in the OET chip due to two illuminated spots with dmax

2
overhang in the top ITO glass.
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Figure 104: A COMSOL simulation of ∇|E|2 in the OET chip due to two illuminated spots with 3dmax

4
overhang in the top ITO glass.

Figure 105: A COMSOL simulation of ∇|E|2 in the OET chip due to two illuminated spots with dmax
overhang in the top ITO glass.

126



A.1.3 Electric field in OET off state

Figure 106: A COMSOL simulation of the electrical field in the OET chip without illumination with
dmax

330 overhang in the top ITO glass.

Figure 107: A COMSOL simulation of the electrical field in the OET chip without illumination with
dmax overhang in the top ITO glass.
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A.1.4 The gradient of the square of the norm of the electric field in OET off state

Figure 108: A COMSOL simulation of ∇|E|2 in the OET chip without illumination with dmax

330 overhang
in the top ITO glass.

Figure 109: A COMSOL simulation of ∇|E|2 in the OET chip without illumination with dmax overhang
in the top ITO glass.
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A.2 MATLAB plots

A.2.1 Electric field in OET illuminated state

The electrical field strength in x direction The electrical field strength in y direction

The partial derivative of |E|2 in x direction The partial derivative of |E|2 in y direction

Figure 110: The MATLAB plots of the electrical field using simulated data from COMSOL with dmax

330
overhang in the top ITO glass.
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the simulation with dmax

4

overhang and with dmax

330 overhang.

The difference in electrical field strength in y direction between the simulation with dmax

4

overhang and with dmax

330 overhang.

Figure 111: The MATLAB plots of the electrical field using simulated data from COMSOL with dmax

4
overhang in the top ITO glass.
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the simulation with dmax

2

overhang and with dmax

330 overhang.

The difference in electrical field strength in y direction between the simulation with dmax

2

overhang and with dmax

330 overhang.

Figure 112: The MATLAB plots of the electrical field using simulated data from COMSOL with dmax

2
overhang in the top ITO glass.
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the simulation with 3dmax

4

overhang and with dmax

330 overhang.

The difference in electrical field strength in y direction between the simulation with 3dmax

4

overhang and with dmax

330 overhang.

Figure 113: The MATLAB plots of the electrical field using simulated data from COMSOL with 3dmax

4
overhang in the top ITO glass.
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the simulation with dmax
overhang and with dmax

330 overhang.

The difference in electrical field strength in y direction between the simulation with dmax
overhang and with dmax

330 overhang.

Figure 114: The MATLAB plots of the electrical field using simulated data from COMSOL with dmax
overhang in the top ITO glass.
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A.2.2 The gradient of the square of the norm of the electric field in OET illuminated state

The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the simulation with
dmax

4 overhang and with dmax

330 overhang.

The difference in the partial derivative in y direction of |E|2 between the simulation with
dmax

4 overhang and with dmax

330 overhang.

Figure 115: The MATLAB plots of ∇|E|2 with illumination and with dmax

4 overhang in the top ITO
glass.
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the simulation with
dmax

2 overhang and with dmax

330 overhang.

The difference in the partial derivative in y direction of |E|2 between the simulation with
dmax

2 overhang and with dmax

330 overhang.

Figure 116: The MATLAB plots of ∇|E|2 with illumination and with dmax

2 overhang in the top ITO
glass.
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the simulation with
3dmax

4 overhang and with dmax

330 overhang.

The difference in the partial derivative in y direction of |E|2 between the simulation with
3dmax

4 overhang and with dmax

330 overhang.

Figure 117: The MATLAB plots of ∇|E|2 with illumination and with 3dmax

4 overhang in the top ITO
glass.
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the simulation with
dmax overhang and with dmax

330 overhang.

The difference in the partial derivative in y direction of |E|2 between the simulation with
dmax overhang and with dmax

330 overhang.

Figure 118: The MATLAB plots of ∇|E|2 with illumination and with dmax overhang in the top ITO
glass.
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A.2.3 Electric field in OET off state

The electrical field strength in x direction The electrical field strength in y direction

The partial derivative of |E|2 in x direction The partial derivative of |E|2 in y direction

Figure 119: The MATLAB plots of the electrical field without simulation using simulated data from
COMSOL with dmax

330 overhang in the top ITO glass.
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the simulation with dmax

4

overhang and with dmax

330 overhang.

The difference in electrical field strength in y direction between the simulation with dmax

4

overhang and with dmax

330 overhang.

Figure 120: The MATLAB plots of the electrical field without illumination using simulated data from
COMSOL with dmax

4 overhang in the top ITO glass.
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the simulation with dmax

2

overhang and with dmax

330 overhang.

The difference in electrical field strength in y direction between the simulation with dmax

2

overhang and with dmax

330 overhang.

Figure 121: The MATLAB plots of the electrical field without illumination using simulated data from
COMSOL with dmax

2 overhang in the top ITO glass.
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the simulation with 3dmax

4

overhang and with dmax

330 overhang.

The difference in electrical field strength in y direction between the simulation with 3dmax

4

overhang and with dmax

330 overhang.

Figure 122: The MATLAB plots of the electrical field without illumination using simulated data from
COMSOL with 3dmax

4 overhang in the top ITO glass.
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the simulation with dmax
overhang and with dmax

330 overhang.

The difference in electrical field strength in y direction between the simulation with dmax
overhang and with dmax

330 overhang.

Figure 123: The MATLAB plots of the electrical field without illumination using simulated data from
COMSOL with dmax overhang in the top ITO glass.
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A.2.4 The gradient of the square of the norm of the electric field in OET off state

The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the simulation with
dmax

4 overhang and with dmax

330 overhang.

The difference in the partial derivative in y direction of |E|2 between the simulation with
dmax

4 overhang and with dmax

330 overhang.

Figure 124: The MATLAB plots of ∇|E|2 without illumination and with dmax

4 overhang in the top ITO
glass.
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the simulation with
dmax

2 overhang and with dmax

330 overhang.

The difference in the partial derivative in y direction of |E|2 between the simulation with
dmax

2 overhang and with dmax

330 overhang.

Figure 125: The MATLAB plots of ∇|E|2 without illumination and with dmax

2 overhang in the top ITO
glass.
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the simulation with
3dmax

4 overhang and with dmax

330 overhang.

The difference in the partial derivative in y direction of |E|2 between the simulation with
3dmax

4 overhang and with dmax

330 overhang.

Figure 126: The MATLAB plots of ∇|E|2 without illumination and with 3dmax

4 overhang in the top ITO
glass.
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the simulation with
dmax overhang and with dmax

330 overhang.

The difference in the partial derivative in y direction of |E|2 between the simulation with
dmax overhang and with dmax

330 overhang.

Figure 127: The MATLAB plots of ∇|E|2 without illumination and with dmax overhang in the top ITO
glass.
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B
Surface roughness simulation results

B.1 COMSOL plots

B.1.1 Electric field in OET illuminated state

Figure 128: A COMSOL simulation of the electrical field in the OET chip due to two illuminated spots
with 0 randomness on the surface

Figure 129: A COMSOL simulation of the electrical field in the OET chip due to two illuminated spots
with 0.5 randomness on the surface
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Figure 130: A COMSOL simulation of the electrical field in the OET chip due to two illuminated spots
with 1 randomness on the surface

Figure 131: A COMSOL simulation of the electrical field in the OET chip due to two illuminated spots
with 1.5 randomness on the surface

Figure 132: A COMSOL simulation of the electrical field in the OET chip due to two illuminated spots
with 2 randomness on the surface
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Figure 133: A zoomed-in view of the COMSOL simulation of the electrical field in the OET chip due to
two illuminated spots with 0 randomness on the surface

Figure 134: A zoomed-in view of the COMSOL simulation of the electrical field in the OET chip due to
two illuminated spots with 0.5 randomness on the surface

Figure 135: A zoomed-in view of the COMSOL simulation of the electrical field in the OET chip due to
two illuminated spots with 1 randomness on the surface
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Figure 136: A zoomed-in view of the COMSOL simulation of the electrical field in the OET chip due to
two illuminated spots with 1.5 randomness on the surface

Figure 137: A zoomed-in view of the COMSOL simulation of the electrical field in the OET chip due to
two illuminated spots with 2 randomness on the surface
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B.1.2 The gradient of the square of the norm of the electric field in OET illuminated state

Figure 138: A COMSOL simulation of ∇|E|2 in the OET chip due to two illuminated spots with 0
randomness on the surface

Figure 139: A COMSOL simulation of ∇|E|2 in the OET chip due to two illuminated spots with 0.5
randomness on the surface
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Figure 140: A COMSOL simulation of∇|E|2 in the OET chip due to two illuminated spots with 1
randomness on the surface

Figure 141: A COMSOL simulation of ∇|E|2 in the OET chip due to two illuminated spots with 1.5
randomness on the surface

Figure 142: A COMSOL simulation of ∇|E|2 in the OET chip due to two illuminated spots with 2
randomness on the surface
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Figure 143: A zoomed-in view of the COMSOL simulation of ∇|E|2 in the OET chip due to two illumi-
nated spots with 0 randomness on the surface

Figure 144: A zoomed-in view of the COMSOL simulation of ∇|E|2 in the OET chip due to two illumi-
nated spots with 0.5 randomness on the surface

Figure 145: A zoomed-in view of the COMSOL simulation of ∇|E|2 in the OET chip due to two illumi-
nated spots with 1 randomness on the surface
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Figure 146: A zoomed-in view of the COMSOL simulation of ∇|E|2 in the OET chip due to two illumi-
nated spots with 1.5 randomness on the surface

Figure 147: A zoomed-in view of the COMSOL simulation of ∇|E|2 in the OET chip due to two illumi-
nated spots with 2 randomness on the surface
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B.1.3 The gradient of the square of the norm of the electric field in OET off state

Figure 148: A zoomed-in view of the COMSOL simulation of ∇|E|2 in the OET chip without illumination
with 0 randomness on the surface

Figure 149: A zoomed-in view of the COMSOL simulation of ∇|E|2 in the OET chip without illumination
with 0.5 randomness on the surface
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Figure 150: A zoomed-in view of the COMSOL simulation of ∇|E|2 in the OET chip without illumination
with 1 randomness on the surface

Figure 151: A zoomed-in view of the COMSOL simulation of ∇|E|2 in the OET chip without illumination
with 1.5 randomness on the surface
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Figure 152: A zoomed-in view of the COMSOL simulation of ∇|E|2 in the OET chip without illumination
with 2 randomness on the surface
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B.2 MATLAB plots

B.2.1 Electric field in OET illuminated state

The electrical field strength in x direction The electrical field strength in y direction

The partial derivative of |E|2 in x direction The partial derivative of |E|2 in y direction

Figure 153: The MATLAB plots of the electrical field using simulated data from COMSOL using a surface
randomness of 0
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the rough surface simulation
and the smooth surface simulation

The difference in electrical field strength in y direction between the rough surface simulation
and the smooth surface simulation

Figure 154: The MATLAB plots of the electrical field using simulated data from COMSOL using a surface
randomness of 0.5
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the rough surface simulation
and the smooth surface simulation

The difference in electrical field strength in y direction between the rough surface simulation
and the smooth surface simulation

Figure 155: The MATLAB plots of the electrical field using simulated data from COMSOL using a surface
randomness of 1
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the rough surface simulation
and the smooth surface simulation

The difference in electrical field strength in y direction between the rough surface simulation
and the smooth surface simulation

Figure 156: The MATLAB plots of the electrical field using simulated data from COMSOL using a surface
randomness of 1.5
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the rough surface simulation
and the smooth surface simulation

The difference in electrical field strength in y direction between the rough surface simulation
and the smooth surface simulation

Figure 157: The MATLAB plots of the electrical field using simulated data from COMSOL using a surface
randomness of 2
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B.2.2 The gradient of the square of the norm of the electric field in OET illuminated state

The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the rough surface
simulation and the smooth surface simulation

The difference in the partial derivative in y direction of |E|2 between the rough surface
simulation and the smooth surface simulation

Figure 158: The MATLAB plots of∇|E|2 using simulated data from COMSOL using a surface randomness
of 0.5
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the rough surface
simulation and the smooth surface simulation

The difference in the partial derivative in y direction of |E|2 between the rough surface
simulation and the smooth surface simulation

Figure 159: The MATLAB plots of∇|E|2 using simulated data from COMSOL using a surface randomness
of 1
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the rough surface
simulation and the smooth surface simulation

The difference in the partial derivative in y direction of |E|2 between the rough surface
simulation and the smooth surface simulation

Figure 160: The MATLAB plots of∇|E|2 using simulated data from COMSOL using a surface randomness
of 1.5
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the rough surface
simulation and the smooth surface simulation

The difference in the partial derivative in y direction of |E|2 between the rough surface
simulation and the smooth surface simulation

Figure 161: The MATLAB plots of∇|E|2 using simulated data from COMSOL using a surface randomness
of 2
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B.2.3 Electric field in OET off state

The electrical field strength in x direction The electrical field strength in y direction

The partial derivative of |E|2 in x direction The partial derivative of |E|2 in y direction

Figure 162: The MATLAB plots of the electrical field without illumination using simulated data from
COMSOL using a surface randomness of 0
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the rough surface simulation
and the smooth surface simulation

The difference in electrical field strength in y direction between the rough surface simulation
and the smooth surface simulation

Figure 163: The MATLAB plots of the electrical field without illumination using simulated data from
COMSOL using a surface randomness of 0.5
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B.2.4 The gradient of the square of the norm of the electric field in OET off state

The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the rough surface
simulation and the smooth surface simulation

The difference in the partial derivative in y direction of |E|2 between the rough surface
simulation and the smooth surface simulation

Figure 167: The MATLAB plots of ∇|E|2 without illumination using simulated data from COMSOL
using a surface randomness of 0.5
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the rough surface
simulation and the smooth surface simulation

The difference in the partial derivative in y direction of |E|2 between the rough surface
simulation and the smooth surface simulation

Figure 168: The MATLAB plots of ∇|E|2 without illumination using simulated data from COMSOL
using a surface randomness of 1
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the rough surface
simulation and the smooth surface simulation

The difference in the partial derivative in y direction of |E|2 between the rough surface
simulation and the smooth surface simulation

Figure 169: The MATLAB plots of ∇|E|2 without illumination using simulated data from COMSOL
using a surface randomness of 1.5
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The partial derivative in x direction of |E|2 The partial derivative in y direction of |E|2

The difference in the partial derivative in x direction of |E|2 between the rough surface
simulation and the smooth surface simulation

The difference in the partial derivative in y direction of |E|2 between the rough surface
simulation and the smooth surface simulation

Figure 170: The MATLAB plots of ∇|E|2 without illumination using simulated data from COMSOL
using a surface randomness of 2
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the rough surface simulation
and the smooth surface simulation

The difference in electrical field strength in y direction between the rough surface simulation
and the smooth surface simulation

Figure 164: The MATLAB plots of the electrical field without illumination using simulated data from
COMSOL using a surface randomness of 1
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the rough surface simulation
and the smooth surface simulation

The difference in electrical field strength in y direction between the rough surface simulation
and the smooth surface simulation

Figure 165: The MATLAB plots of the electrical field without illumination using simulated data from
COMSOL using a surface randomness of 1.5
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The electrical field strength in x direction The electrical field strength in y direction

The difference in electrical field strength in x direction between the rough surface simulation
and the smooth surface simulation

The difference in electrical field strength in y direction between the rough surface simulation
and the smooth surface simulation

Figure 166: The MATLAB plots of the electrical field without illumination using simulated data from
COMSOL using a surface randomness of 2
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