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Abstract

Soil exhibits hysteretic damping. A commonly used implementation of
this type of damping are the Masing rules. They consist of a loading and an
unloading branch, defined as a piecewise function and having a nonsmooth
character. This paper presents a framework how steady-state solutions of the
motion of a soil column, with nonlinear hysteretic damping, can be obtained
by using a variant of the Harmonic Balance Method (HBM), the Alternat-
ing Frequency/Time Harmonic Balance Method (AFTHBM), applied on a
discretised soil column (a lattice system). The theoretical background of the
method is presented, as well as its application to a soil column with both shear
strain-dependent stiffness and damping. Results show that the AFTHBM is
an efficient method for obtaining steady-state results for nonsmooth nonlin-
ear behaviour, which is in this paper presented by simulations for nonlinear
media. The results of the AFTHBM are sensitive to time sampling and con-
vergence tolerances; nonetheless, if these parameters are properly chosen, the
application of AFTHBM leads to good results.
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1. Introduction

In this section, a small literature review is presented about the behaviour
of the soil and the methods to calculate the response of the soil column.

1.1. Nonlinear hysteretic damping & Masing rules

Soil behaviour, which is often described by nonlinear constitutive models,
contains strain dependent stiffness and damping. Under cyclic loading, the
damping is hysteretic, so in case of strain-dependent damping, also the hys-
teretic damping becomes nonlinear. Hysteretic damping consists of a loading
and an unloading branch, which shape depends on the backbone curve, gov-
erned by the applied material model [1]. The hysteretic damping exhibited
by the soil, when the motion is in the steady-state, can be described by the
Masing rules. They state that the hysteresis loops can be obtained by scal-
ing the backbone curve with a factor two and move it to its reversal points,
provided that the loadings are regular and with constant amplitude, which
is the case in this paper [1, 2]. The Masing rules can be extended to non-
steady responses, as done in the work of Jayakumar [3], but this is not in the
scope of this paper. The Masing rules are widely applied in geomechanics
and are, in this paper, based on the hyperbolic soil model, a relatively simple
soil model, which is capable to describe nonlinear elastic behaviour proposed
by Hardin and Drnevich [4, 5]. Other simple soil models, like the Davi-
denkov model, can exhibit unstable behaviour at very large strains [6], and
are therefore not considered to prevent unnecessary convergence problems in
the simulations. The backbone of the material model, which represents the
relation between the shear strain and the shear stress, can only incorporate
gradual stiffness changes, no stiffness jumps. However, when incorporating
the Masing rules, the gradual changes dissappear at the transition points,
these are points at where the loading branch turns into the unloading branch
and vice versa. By applying the Masing rules on the hyperbolic soil model,
the transition between those branches is nonsmooth due to C0 continuity [7],
which follows from the formulation of the nonlinear force (see Section 2). C0

continuity requires special calculation procedures, as discussed in Subsection
1.4. In reality, the transition between the loading and the unloading branches
is more smooth [8, 9], expecially for coarse-grained soils, because the shear
stiffness related to the loading branch is not completely changed into the
shear stiffness related to the unloading branch in an infinitesimal amount
of time. Nonetheless, experiments show that the complete hysteresis loop
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can be accurately descibed by the Masing rules, thus including C0 continuity
[2, 10].

1.2. Computational methods for obtaining the response

The motion of a nonlinear soil column is described by one nonlinear Par-
tial Differential Equation (PDE) or a coupled system of nonlinear ODEs. To
solve such systems of equations, multiple methods exist. Frequently applied
methods are time-integration methods, such as the Newmark-Beta method,
capable of solving both the transient state as well as the steady-state re-
sponse. They are combined with a discretisation in space, which can be
solved with a boundary value problem solver. For low damping, it takes rel-
atively more time before the steady-state has been reached with respect to
systems with a high amount of damping. Although time-integration meth-
ods can solve a large variety of problems, if one is interested only in the
steady-state response, then the time-integration methods present drawbacks
in perspective of the required computational time. Other common methods
are equivalent linear methods [11], in which the nonlinear soil is approximated
by a system of linear layers, thus yielding a system of linear PDEs. Each layer
then contains a shear modulus and damping ratio which is independent of
the shear strain. The applied value of the shear modulus and damping ratio
are dependent on predefined reduction curves and are iterated until a certain
accuracy has been reached. However, the nonlinear behaviour inside one soil
layer is linearised which is not the case in reality. To circumvent the com-
putation of the response in the time domain, approximation methods can be
applied. Frequently applied methods for solving nonlinear problems are the
method of multiple scales, the method of averaging and the Harmonic Bal-
ance Method (HBM) [12], in literature often referred to as the classical HBM
[7]. The advantage of the HBM is that, in general, the steady-state solution
can be obtained faster than with the other methods because the behaviour of
the solution can be chosen a priori. In fact, HBM can be up to 10 times faster
than conventional time-integration methods [13]. The principle of the HBM
is that a truncated Fourier Series is substituted into the governing equations
of motion. This leads to a system of nonlinear algebraic equations which can
be solved for the unknown Fourier coefficients. Another advantage of HBM
with respect to time-integration methods is that unstable solution branches
of Frequency Response Curves (FRCs) in the steady-state can be detected,
which is extremely difficult with time-integration methods. The Frequency
Response Function (FRF) describes the relation between the amplitude of

2



motion and the forcing frequency. However, for nonlinear systems, multiple
branches exist. They are sets of functions, and not a single function itself.
Hence, for the Frequenc Response of nonlinear systems, is referred to the
Frequency Response Curves (FRCs) [14, 15]. FRCs of nonlinear oscillators
consist of multiple branches. This implies that the steady-state solutions of
nonlinear systems are dependent on initial values which is not the case for
purely linear systems. In some cases, the FRC can contain one or more un-
stable branches or even isolated branches [7, 16]. Like stated earlier, unstable
branches are extremely difficult to detect with time-integration methods [17]
but can be detected with the HBM in combination of path-continuation meth-
ods, like arc-length methods (methods of Riks, Chrisfield or Ritto-Correa
Camotim [18, 19, 20, 21]) or amplitude-controlled algorithms which solves
the system of nonlinear equations [17]. Besides unstable branches, even iso-
lated branches can occur. A method to detect branching points, which are
a type of a bifurcation point, is by making use of Floquet multipliers [7, 16],
to characterise the bifurcation points. Although isolated branches can pro-
vide useful information about the state of the system, the treatment of those
branches is not in the scope of this paper since they can occur in practice
by slowly varying the excitation levels. This is not the type of excitation
applied to the problem in this paper.

1.3. Harmonic Balance Method

In the previous paragraphs it has been stated why the HBM is an effi-
cient tool to obtain the steady-state response for nonlinear vibration or wave
propagation problems. The HBM is also often applied in the study of the
behaviour of nonlinear oscillators. However, according to a paper, published
in 1996 by Capecchi et al., which studied responses of hysteretic systems,
the incorporation of hysteretic damping is much less addressed, especially in
N-degree of freedom (NDOF) systems [22]. Some papers, which discuss the
HBM incorporated with hysteretic damping in NDOF systems, are papers by
Iwan [23]. These papers address hysteretic behaviour as both Masing rules
as well as the Bouc-Wen model (for a method how this can be implemented
is referred to Appendix B). For the last decades, more studies have been
performed regarding single degree of freedom (SDOF) or NDOF hysteretic
oscillators, especially from the contribution of Capecchi, Lacarbonara and
Vestroni [24, 25, 26]. However, these papers do not deal with systems with
more than two DOFs in combination of the HBM applied to Masing rules
for the description applied to soil dynamics. Another and very recent paper
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is that of Zhang et al. [27], which discusses the application of the HBM on
finite and semi-infinite nonlinear dissipative continua which partly focuses
on the study of the application of HBM to a continuous soil column. How-
ever, the damping model is not strain-dependent and the incorporated linear
hysteretic damping is based on equivalent viscous damping [1], being related
only to the dominant frequency which is not fully consistent. The current
paper provides a framework on how nonlinear hysteretic damping can be in-
corporated in the HBM to obtain the response of soil with nonlinear elastic
constitutive relations, based on the hyperbolic soil model which allows for
a straightforward implementation [28]. Although the Masing rules overesti-
mate the hysteretic damping at large strains (≈> 10−4 − 5 · 10−4) [29, 2], or
at high excitation frequencies at small strains (< 10−5) [4], the Masing rules
are adopted because they allow for a general description and thus implemen-
tation of the soil behaviour in the nonlinear elastic regime, which is the goal
of this paper. Besides, those large shear strains are in the upper range or
even above the cyclic treshold strain γc

t for which above the the assumption
of soil being nonlinear elastic is no longer valid [4], implying that by applying
the Masing rules the overestimation of the damping is limited.

1.4. Alternating Frequency/Time Harmonic Balance Method

In the classical HBM [7], which is a frequency-based method, the integrals
which are needed to obtain the set of governing equations need to be in closed
form. However, the magnitude of the internal nonlinear force, which results
from the nonlinear constitutive model, is not of a polynomial type, which
makes it cumbersome or even impossible to determine the transition times a
prori, especially in the case of higher harmonics, so an iterative solution pro-
cedure is required. Moreover, because the nonlinear forces are nonsmooth,
they cannot be directly evaluated in the frequency domain, so a conver-
sion to the time domain is needed [30]. The Alternating Frequency/Time
Harmonic Balance Method (AFTHBM) incorporates these features and is
therefore applied in this paper. This method was first presented in 1989 by
Cameron et al. [7]. The main difference of the AFTHBM with respect to
the classical HBM is that the AFTHBM uses the Inverse Discrete Fourier
Transform (IDFT) to evaluate the nonlinear force in the time domain and
afterwards uses the Discrete Fourier Transform (DFT) to obtain the solu-
tion in the frequency domain, while the classical HBM directly evaluates the
projections due to the closed form integrals. Furthermore, the AFTHBM is
able to handle the unknown transition times, so it is not necessary to know
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these transition times a priori by using event-driven schemes [7]. Employing
these schemes can be a tedious task, because supplementary equations need
to be provided [31], especially when higher order harmonics are taken into
account since multiple loading and unloading phases can occur in a period
[24]. Moreover, these schemes can only be applied for polynomial nonlinear
and piecewise linear forces like dry-friction behaviour [7]. The AFTHBM is
more suitable for application to these problems [32, 33], is superior in eval-
uating the nonlinear forces and obtaining its frequency components and has
also proven its capacity for nonsmooth problems [34].

1.5. Outline of this paper

In this paper the AFTHBM is implemented in a soil column with non-
linear hysteretic behaviour. The applied constitutive model is the nonlinear
elastic hyperbolic soil model. To allow a more straightforward implementa-
tion of this constitutive model, the soil column is discretised into a lattice
system to obtain the governing equations of motions (EQMs). Displacements,
hysteresis loops, spectra and FRCs are checked with a linear reference case
and a Runge-Kutta method for time-integration with variable time steps [35].

2. Problem statement

In Section 1 a small literature study was provided. In this section the
governing equations are derived, based on a 1D soil column on which the
AFTHBM will be applied to obtain the steady-state response.

2.1. The description of the continuous soil column

The governing nonlinear PDE for a continuous soil column, with nonlinear
constitutive behaviour (Figure 1), reads

ρ
∂2u (z, t)

∂t2
=

∂

∂z
(τ (z, t)) , (1)

with ρ the mass density in kg · m−3, z the depth, u the motion as a function
of both z, all in m, γ = ∂u/∂u the shear strain, t the time in seconds and τ
is the shear stress, expressed in N · m−2, and is given by

τ (z, t) = G (γ) γ, (2)
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Figure 1: Continuous soil column. At the bottom z = H the column is subjected to a
prescribed stress τ = τ0 cos (Ωt) and at the top z = 0 the column is stress-free. The figure
has been rotated 90 degrees clockwise.

where G (γ) denotes the strain-dependent shear stiffness in N · m−2. Eq. (1)
is subjected to a prescribed stress at the bottom z = H and is stress free at
the surface z = 0. Hence the boundary conditions read

τ (z, t)
∣∣
z=H

= τ0 cos (Ωt) , τ (z, t)
∣∣
z=0

= 0, (3)

with H the height of the soil column, τ0 the amplitude of the prescribed
stress in N · m−2 and Ω the forcing frequency in radians per second (rad/s).
G (γ) is defined by a nonlinear constitutive law that describes the nonlinear
elastic behaviour of the soil, according to

G (γ) =
G0

1 +

(
|γ|
γref

)β , (4)

where G0 is the shear modulus at zero shear strain, β a curvature parameter
[36, 37] and γref the reference shear strain, often defined as the shear strain
at G (γ) /G0 = 0.5 [38], which influences the magnitude of the non-linearity
[36]. The nonlinear elastic range for soil is approximately in the range of
γ = 10−5 − 10−4 which represents a G (γ) /G0 = 0.85 at the cyclic treshold
strain γct according to Eq. (4) [4].

2.2. Derivation of the hysteresis loops

The Masing rules are then obtained by scaling the backbone curve fbb =
G (γ) γ with a factor two and shift it towards its reversal points [1], thus

τ −∆τ

2
= fbb

(
γ −∆γ

2

)
, (5)

6



where ∆γ and ∆τ are the amplitudes of the cyclic shear strain and stress,
respectively. The Masing rules can then be represented as

τ =



G0 (γ + ∆γ)

1 +

(
|γ + ∆γ|

2γref

)β −∆τ if γ̇ > 0,

G0 (γ −∆γ)

1 +

(
|γ −∆γ|

2γref

)β + ∆τ if γ̇ < 0,
(6)

where γ̇ is the shear strain rate and the cyclic stress amplitude equals

∆τ =
G0∆γ

1 +

(
|∆γ|
γref

)β . (7)

The transition from the loading to the unloading branch is defined as the
point where the sign of γ̇ changes. Hence, Eq. (6) can be written in a more
compact form like

τ =
G0 (γ + sgn (γ̇) ∆γ)

1 +

(
|γ + sgn (γ̇) ∆γ|

2γref

)β − G0 sgn (γ̇) ∆γ

1 +

(
∆γ

γref

)β . (8)

Eq. (8) describes the nonlinear constitutive behaviour of the soil and ex-
hibits C0 continuity due to the appearance of the signum function. This
implies there is a nonsmooth transition between the loading and the unload-
ing branches. A typical hysteresis loop, described by Eq. (8), is depicted in
Figure 2.

2.3. Governing system of equations

To obtain the response to the system, as described by Eqs. (1)-(4), the
soil column is discretised into a NDOF system, see Figure 3. The governing
equations of motion can then be readily obtained and are given by

Mü + fnl = fext, (9)

with M the mass matrix and ü, fext and fnl the acceleration, external force
and nonlinear force vectors, respectively. Eq. (9) is discretised in space by
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Figure 2: Hysteresis loop based on the hyperbolic soil model. loading branch, γ̇ > 0.
unloading branch, γ̇ < 0. These branches are described by Eq. (6). backbone

curve, described by Eq. (4). Used parameters: γref = 1 · 10−3, ∆γ = 6 · 10−3, β = 0.91,
G0 = 111.86 · 106 N · m−2. The transition between the loading and unloading branch is
nonsmooth (C0 continuity).

lumping the continuous soil column. For the lumping procedure the reader
is referred to Section 3. M is given by

M =


m1 0 · · · 0
0 m2 0
...

...
. . .

...
0 0 · · · mN

 , (10)

and fnl is obtained by using the displacement method. f
(i)
nl contains a contri-

bution from the internal forces fnl,int from the left side and right side of DOF
(i), denoted as (α) and (α+1), respectively. Applying a positive displacement
of DOF (i) will lead to a negative force contribution from the left and a
positive force contribution from the right. Hence each component f inl in fnl
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can be described by

f
(i)
nl = f

(α)
nl,int − f

(α+1)
nl,int , (11)

f
(α)
nl,int =

G0

(
γ(α) + sgn

(
γ̇(α)

)
∆γ(α)

)
1 +

(
|γ(α) + sgn

(
γ̇(α)

)
∆γ(α)|

2γref

)β
−
G0 sgn

(
γ̇(α)

)
∆γ(α)

1 +

(
∆γ(α)

γref

)β ,

with γ(α) and γ̇(α) defined as the shear strain and shear strain rate at the
internal point α = 1..N − 1 between DOFs i = α and i = α+ 1, respectively.
Therefore,

γ(α) =
u(i+1) − u(i)

∆z
, γ̇(α) =

u̇(i+1) − u̇(i)

∆z
, ∆γ(α) = max

p=0..M−1

(
γ(α)
p

)
,

(12)

with ∆z the equidistant vertical spacing between the DOFs which is equal
to

∆z =
H

N − 1
. (13)

To be able to apply the DFT and IDFT, the continuous time is discretised as
well. p = 1..M−1 denotes the index of the considered time sample and M the
number of applied time samples inside one period of oscillation. Assembling
yields fnl, given by

fnl =



−f (1)
nl,int

f
(1)
nl,int − f

(2)
nl,int

...

f
(N−2)
nl,int − f

(N−1)
nl,int

f
(N−1)
nl,int


=



f
(1)
nl

f
(2)
nl

...

f
(N−1)
nl

f
(N)
nl


. (14)

fnl contains the complete constitutive behaviour, so no additional linear stiff-
ness or damping has been provided like in the work of Wong et al. [17, 39].
The last vector in Eq. (9), fext, contains the components of the applied ex-
ternal forcing. For the soil column considered in this paper, all elements
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inside fext are zero, except for DOF 1 which is subjected to a harmonic force
according to Figure 3. Hence fext is given by

fext =
[
f

(1)
ext 0 · · · 0 0

]T

. (15)

3. Solution procedure

In Section 2 the governing equations of the problem were presented. In
this section the solution procedure is highlighted. First the lumping proce-
dure, which is required to obtain the governing set of equations, is explained,
afterwards the approach of the AFTHBM is discussed in order to solve the
governing equations. The section closes with the derivation of the transfer
function for a soil column with prescribed forces to be able to interpret the
results from the FRCs as presented in Section 4.

3.1. Lumping procedure

To obtain the correct mass at each DOF, a simple lumping model is
applied, given by

mi = ρai. (16)

This implies that the mass is lumped proportional to the associated height
ai of the element, where ai is defined as the spacing between each element,
given by

ai =


H

2 (N − 1)
if i = {1, N} ,

H

N − 1
otherwise,

(17)

with N the number of DOFs.

3.2. AFTHBM procedure

To determine the steady-state response of the soil column, which is as-
sumed to be periodic, the AFTHBM is employed. As already mentioned,
important to note is that the amplitude of the cyclic shear strain ∆γ(α) and
the transition times from the loading to the unloading branch and vice versa
are unknown a priori, see Eq. (8). To be able to solve this problem, an
iterative procedure is required. In each iteration the nonlinear force vector
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Figure 3: Lattice model of a soil column with hysteretic soil behaviour and prescribed
forcing. The masses related to the DOFs are obtained by lumping. Note that the con-
nection between each DOF only consist of a nonlinear element, so no additional linear

stiffness or damping is provided. F0 is the amplitude of the harmonic excitation, F
(α)
nl,int

the nonlinear force between DOF (i) and (i+1) with i = α+1. ai is the associated height
to element (i). z indicates the depth and u the response. The figure has been rotated 90
degrees clockwise.

fnl, which contains ∆γ(α), is updated [40]. In this paper the procedure of Van
Til et al. [34] has been followed and is summarized in Figure 4.

The procedure starts in the frequency domain, with the guess of an initial
state vector ũ

ũ = [a0 a1 b1 · · · · · · aj bj · · · · · · aJ bJ ]T , (18)

which describes the Fourier coefficients for the response at each DOF. In
Eq. (18), j = 1...J denotes the harmonic order, J the number of applied
harmonics and

a0 =
[
a

(1)
0 · · · a(i)

0 · · · a(N)
0

]T

, (19)

aj =
[
a

(1)
j · · · a(i)

j · · · a
(N)
j

]T

,

bj =
[
b

(1)
j · · · b(i)

j · · · b
(N)
j

]T

,

are vectors which denote the Fourier coefficients associated to each degree of
freedom i = 1...N (a0, aj and bj are related to the constants, cosines and
sines, respectively).

After assuming an initial state vector, they are transformed to the time
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(𝑁−1)Figure 4: Principle of the AFTHBM. The procedure starts with assuming an initial (L = 0)

state vector ũ, see upper left, and ends when the tolerances are satisfied (bottom center).
The scheme is borrowed and extended from the work of van Til [34] et al.

domain by the IDFT. The IDFT is given by

up = a0 +

Nh∑
j=1

[aj cos (jΩtp) + bj sin (jΩtp)] , tp =
2πp

M
. (20)

Also, in the time domain, the nonlinear force (see Eq. (14)) is evaluated,
which allows to handle the nonsmooth nonlinear force fnl. Since fnl is also
dependent on the velocities u̇, they need to be computed as well and can
be readily obtained by forward, central and backward difference regarding
the time samples p. Based on u and u̇, and by using Eq. (12), the shear
strain vectors γ, γ̇ and ∆γ can be evaluated. The force is evaluated by
substituting the obtained responses in the time domain according to Eq.
(20) and substituting them into Eq. (14). The result is the nonlinear force
evaluated in the time domain, denoted as fpnl. Also, in the time domain, the
partial derivatives ∂fnl/∂ũ are computed. An overview of these derivatives
are presented in Appendix A.

Next, the nonlinear force is transformed back to the frequency domain by
using the DFT and denoted by its Fourier coefficients c0, cj and dj which
denotes the 0-th harmonic, harmonics related to the cosines and sines, re-
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spectively. They are given by

c0 =
1

M

M−1∑
p=0

fpnl, (21)

cj =
2

M

M−1∑
p=0

[
fpnl cos

(
2πpj

M

)]
,

dj =
2

M

M−1∑
p=0

[
fpnl cos

(
2πpj

M

)]
.

Simultaneously, the Jacobian J̃ is computed in the frequency domain, re-
quiring ∂fnl/∂ũ. J̃ is required to perform the iterative procedure to solve
the system of nonlinear equations. This procedure is formed by using the
Newton-Raphson method, given by

ũL+1 = ũL −
(
J̃L
)−1

r̃L, (22)

where L denotes the number of the iteration, J̃L the Jacobian and r̃ the
residual in the frequency domain, all evaluated at iteration L. The iterations
are continued until

|r̃| ≤ ε, (23)

where ε is a tolerance, depending on J , M and N . Next, J̃ is defined as

J̃ = J̃L + J̃nl, (24)

where J̃L describes the inertial part of the Jacobian and J̃nl the Jacobian
related to the nonlinear force of Eq. (9). They can be calculated as

J̃L =


0 0 · · · 0

0 J̃
(1)
L · · · 0

...
...

. . .
...

0 0 · · · J̃
(J)
L

 , J̃
(j)
L =

[
−j2Ω2M 0

0 −j2Ω2M

]
, (25)

J̃nl =

[
∂c0

∂ũ

∂c1

∂ũ

∂d1

∂ũ
· · · · · · ∂cj

∂ũ

∂dj
∂ũ
· · · · · · ∂cJ

∂ũ

∂dJ
∂ũ

]T

,
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where c and d were presented in Eq. (21). The elements of J̃nl can be
calculated by using the DFT, hence

∂c0

∂ũ
=

1

M

M−1∑
p=0

∂fnl

∂ũ
, (26)

∂cj
∂ũ

=
2

M

M−1∑
p=0

[
∂fnl

∂ũ
cos

(
2πpj

M

)]
,

∂dj
∂ũ

=
2

M

M−1∑
p=0

[
∂fnl

∂ũ
sin

(
2πpj

M

)]
.

The partial derivatives of the nonlinear force with respect to its state vector,
∂fnl/∂ũ in Eq. (26), are computed by means of the chain rule

∂fnl (u, u̇)

∂ũ
=
∂fnl

∂u

∂u

∂ũ
+
∂fnl

∂u̇

∂u̇

∂ũ
. (27)

Eq. (27) contains partial derivatives with respect to both u and u̇ since the
state vector depends on these quantities. Important to note is that these
derivatives are evaluated in the time domain and derived analytically using
MAPLE and are presented in Appendix A. Computing them analytically
instead of numerically lowers the computational costs [33]. Besides, com-
putation of the derivatives numerically would reduce accuracy, especially in
regions where the nonlinear force is nonsmooth.

The last step inside one iteration is the formulation of the residual func-
tions to be able to solve the system iteratively. They consist of N (2J + 1)
equations and are formulated by balancing the Fourier coefficients for both
constants, cosines and sines, respectively, and are given by

r̃0 = c0 − f0
ext = 0, (28)

r̃cos
j = −j2Ω2Maj + cj − f cos

ext = 0,

r̃sin
j = −j2Ω2Mbj + dj − f sin

ext = 0.

Now the steady-state motion of the system is fully determined. An overview
of the procedure is presented in Figure 4.
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3.3. Handling the transition points

Due to the nonsmooth transition from the loading to the unloading branch,
signum functions occur in fnl, see Eq. (8). By taking partial derivatives of
these signum functions, Dirac delta functions δ (u) appear since

∂

∂t
sgn (u) = 2δ (u) . (29)

Due to sampling, a sampling point p is exactly evaluated at this transition
point, leading to singularities in the implementation, which is not physical.
For resolving this problem, multiple solutions exist.

Krack et al. [41] showed a method to make use of a high-order harmonic
balance method in combination with direct calculation of the transition time
moments for prevention of singularities or using a mixed-shooting HBM.
However, this is not implemented in this paper since the goal is to formulate
a straightforward implementation and give the reader insight in this method.
Another and more straightforward method is to recognize that when the
partial derivatives are derived according to Eq. (A.2), the DFT is applied to
obtain J̃, see Eq. (26). By putting an additional condition that the partial
derivatives are zero at the reversal points, the singularity is circumvented.
However, this is not exactly the case and leads to some errors. A way to
overcome this is to recognize that the DFT is a discretised version of the
Fourier Transform (FT), so one could make use of the Sifting property [42]
to evaluate the FT at the reversal points.

It is also possible to use regularisation or smoothing in the formulation
of the nonlinear force [7]. Joannin et al. makes use of this principle by
using a regularization parameter ε, applied on a system with Coulomb dry
friction, leading to a more smooth description of the nonlinear force [33, 43].
By applying regularisation the signum function is approximated with a tanh
function which yields the signum function only in the limit case

lim
ε−→0

[
tanh

(u
ε

)]
= sgn (u) . (30)
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Applying Eq. (30) to Eq. (11) yields

f
(i)
nl = f

(α)
nl,int − f

(α+1)
nl,int , (31)

f
(α)
nl,int =

G0

(
γ(α) + tanh

(
γ̇(α)/ε

)
∆γ(α)

)
1 +

(
|γ(α) + tanh

(
γ̇(α)/ε

)
∆γ(α)|

2γref

)β
−
G0 tanh

(
γ̇(α)/ε

)
∆γ(α)

1 +

(
∆γ(α)

γref

)β .

The advantage of regularisation is that it directly can be implemented with-
out any additional computational effort and therefore this method is applied
in this paper. However, the choice of ε is not arbitrary, choosing it too large
will drift the solution away from the results as obtained with signum func-
tions. On the other hand, a small ε will cease the smoothing effect because
the signum function is better approximated.

3.4. Derivation of the transfer function for prescribed forces

To get more insight in the behaviour of the system, and to be able to
compare the nonlinear system with the linear reference case, the transfer
function for the linear soil column with prescribed forces is derived. Applying
the Fourier Transform (FT) on the linear version of Eq. (1), and solving for
the magnitude of the motion in the frequency domain, U (z, ω), yields

U (z, ω) = Ae−iksz +Beiksz, (32)

where ks = ω/cs denotes the wave number in rad/m, ω the radial frequency
in rad/s, cs =

√
G0/ρ the propagation speed of the shear waves in m/s and

i =
√
−1 the imaginary unit. Applying the boundary conditions (see Eq.

(3)) on Eq. (32) yields

U (z, ω) =
cos (ksz)

sin (ksH)
Fb (ω) . (33)

with Fb the prescribed force of the soil column at the base, which equals τ
in Eq. (3) in case of a unit square area A = 1 m2. The transfer function

cos (ksz)

sin (ksH)
(34)
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Figure 5: Transfer functions plotted at the free surface, z = 0. Transfer function in
case of prescribed forces. Transfer function in case of prescribed displacements. Note
that for ω = 0 an infinite displacement is imposed in case of prescribed forces. Used
parameters in this analysis: H = 100 m, G0 = 111.86 · 106 N · m−2, ρ = 2009.8 kg · m −2,
z = 0 m.

is plotted at the free surface, and compared with the transfer function for a
prescribed displacement in Figure 5. Resonance occurs if the denominator
equals 0, hence the eigenfrequencies of the n−th mode can be calculated
according to

ωn = nπ

√
G0/ρ

H
. (35)

This property is used in Subsections 4.1 and 4.2, where the analysis are
performed close to the first eigenfrequency (n = 1) of the linear system.
According to the parameters of the analysis, see the caption of Figure 6 and
Eq. (35), the first two eigenfrequencies n = 1, 2 are

ω1 = 7.41 rad/s , ω2 = 14.82 rad/s. (36)

4. Results

In this section the results of the simulations are presented, based both
on a soil column with linear constitutive behaviour and nonlinear constitu-
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tive behaviour, i.e. nonlinear hysteretic damping, subjected to a prescribed
force. Both cases are checked by a time-integration method (ODE45 from
MATLAB).

4.1. Results based on the linear soil column

For validation purposes, first a soil column is analysed but based on linear
behaviour, subjected to harmonic excitation close to the first eigenfrequency
(Ω = 8 rad/s vs. ω1 = 7.41 rad/s), but not exactly at the first eigenfre-
quency, to guarantee convergence. This makes the validation process more
robust since discrepancies in the model becomes more apparent due to the
magnifying character of the response in this region. Regarding a soil col-
umn with linear elastic behaviour, the hyperbolic soil model exhibits linear
behaviour when

lim
γref−→∞

 G0

1 +

(
|γ|
γref

)β
 = G0, (37)

so a γref = 100 has been applied. The validity of this number has been
checked by considering a normalised secant shear stiffness Gsec, defined as

Gsec =
Gsec

G0

, Gsec =
∆τ

∆γ
. (38)

For the linear limit case, Gsec is presented in Figure 6. Its value over the
whole height of the soil column is close to 1, proving the validity of the
chosen γref. The motion u of the converged linear column (for which the
same parameters are applied as in Figure 6) are compared with the linear
soil model where G = G0. The results coincide, confirming the validity of the
model in the linear limit case. Moreover, the motion has been additionally
checked with a time-integration method, ODE45 in MATLAB, which also
coincides with the results as obtained by the AFTHBM. The results for the
motions are plotted for DOF 30, because in a later stage it will appear that in
the neighbourhood of this DOF the highest shear strain (thus nonlinearity)
in the soil column occur, demonstrating the capability of the model to deal
with large nonlinearities.
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(a) Displacements in the soil column at DOF 30, z = 40.82 m, zb = 59.18 m.
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Figure 6: Analysis of the linear limit case. (a) Motion at DOF 30. (b) Stiffness reduction
along the soil column, expressed in terms of Gsec. Motion computed by AFTHBM.

motion of the linear system. Time-integration results by using ODE45 in MATLAB.
Used parameters in this simulation: H = 100 m, N = 50, Ω = 8 rad/s, J = 1, γref = 100,
β = 0.91, G0 = 111.86 · 106 N · m−2, ρ = 2, 009.8 kg ·m−3, M = 29, F0 = 10, 000 N,
ε = 10−9.
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4.2. Results based on the nonlinear soil column
Besides considering the linear limit case, the soil column has also been

checked with the aforementioned time-integration method. For this simula-
tion the same parameters as for the linear limit case have been used, except
for γref = 8.7 · 10−4, see Figure 7. With time-integration methods, both the
transient as well as the steady-state regime of the response are computed.
Considering fnl, as derived in Eq. (11), implies that the nonlinear force is
dependent on ∆γ, which is obtained from a previous simulation. Hence,
to obtain the steady-state solution by applying time-integration, multiple
simulations need to be performed, where ∆γ forms the input of the next
simulation, provided that the steady-state has been reached. In other words,
the steady-state solution needs to be sought in an iterative way with the time-
integration method. This is a very computational demanding procedure or
even impossible. To still be able to get results for a time-integration method
with relatively small computational times, the vectors u and u̇ from the AF-
THBM simulations are used as initial conditions for the time-integration to
suppress the transient phase. Approximating these initial conditions as best
as possible, the initial conditions with respect to the time derivatives of u are
obtained with central difference of the AFTHBM results. Even then, there
are some differences in the amplitude of motion since the time-stepping from
ODE45 is considerably smaller, leading to possible evaluations of the nonlin-
ear force at the other branch than AFTHBM. Moreover, the nonlinear force
definition of the time-integration contains still the ∆γ values obtained in the
AFTHBM method. Combined, this can drift the solution based on the time-
integration away when the steady-state is not perfectly reached from t = 0
s, hence the time-integration results are very sensitive to the applied initial
conditions.

The results computed by the AFTHBM at DOF 30, as well as with the
time-integration and the linear limit case, are presented in Figure 7a. The
amplitude of the motion of the nonlinear case is much smaller compared to the
linear system, which is reasonable since hysteretic damping is incorporated
in the system and the forcing frequency Ω = 8 rad/s is located directly at
the right of a resonance peak. Additionally, due to the presence of damping,
the nonlinear system exhibits a phase shift compared to the linear system.
The amplitude of the motion along the height of the soil column is depicted
in Figure 7b. Since the applied Ω is larger than ω1 of the linear system,
the second mode is activated and recall that, to better distinguish the linear
solution from the nonlinear one, Ω ≈ ω1. The second mode can be observed
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from this figure due to the presence of almost a zero amplitude in the vicinity
of DOF 30. The ratio of softening is presented in Figure 7c and shows a
reduction in G (γ) with an increase in γ, which is indeed predicted by the
hyperbolic soil model (Eq. (4)) and is in accordance with experiments [4].
At the bottom of the soil column, and close to DOF 30, the value of ∆γ
is the largest, implying there is the largest reduction due to the presence of
the largest shear strains in the soil column. At the top G(N) = G0, hence
Gsec = 1. No reduction of the shear stiffness occur at this location, due to
the absence of shear strain, which is also necessary to satisfy the stress-free
boundary condition at the surface of the soil column.

Additional insight regarding softening behaviour can be obtained by com-
puting the FRCs of the system, see Figure 8. Directly at the right of the first
resonance peak of the linear system (ω1 = 7.41 rad/s), the amplitude of the
motion of the nonlinear system is smaller compared to the linear system, im-
plying softening behaviour. Hence, at the left of the second resonance peak
(ω2 = 14.82 rad/s), the amplitude of the motion of the nonlinear system is
larger compared to the linear system, confirming softening behaviour. To
check whether unstable branches occur, an upward and downward sweep has
been performed. Since no jump occurs, no unstable branches occur, which
can also be observed by the fact that the amplitude results of the upward en
downward sweep coincide.

For each DOF, the hysteresis loops are presented in Figure 9. The loops
reveal the nonlinear and softening character of the column since Gsec is not
equal to 1 except at the surface as presented in Figure 7. The decrease
in Gsec implies softening behaviour, which is confirmed by Figure 9. For
DOFs in regions at high shear strains, e.g. DOF 30, the hysteresis loops
are the largest, implying that the hysteretic damping at these DOFs is also
the largest. This is reasonable, since nonlinear hysteretic damping is strain-
dependent so larger shear strains will lead to larger hysteretic damping. This
is also observed in experiments which have been executed to establish damp-
ing curves [4]. Important to note is the nonsmooth transition (C0 continuity)
from the loading to the unloading branch, and vice versa, depicted in Figure
9c. This transition follows from the definition of the Masing rules but is not
observed in reality, in particular for course-grained soils. Figure 10, a scatter
plot, presents a hysteretic loop at DOF 30. In this figure, the hysteretic loop
is plotted as a function of time, in which each dot represents a time sample.
Also in this figure, the transition is nonsmooth, because at the transition
point there is only one time sample. This implies that a complete stiffness
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(a) Displacements in the soil column at DOF 30, z = 40.82 m, zb = 59.18 m.
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Figure 7: Displacements in the soil column with nonlinear soil behaviour. (a) Motion
at DOF 30. (b) Amplitude of the motion along the soil column. (c) Stiffness reduction
along the soil column, expressed in terms of Gsec. Motion computed by AFTHBM.

Motion of the linear system. Time-integration results by using ODE45 in MATLAB.
Used parameters in this simulation: H = 100 m, N = 50, Ω = 8 rad/s, J = 1, γref =
8.7 ·10−4, β = 0.91, G0 = 111.86 ·106 N · m−2, ρ = 2, 009.8 kg ·m−3, M = 29, F0 = 10, 000
N, ε = 10−9.
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(a) FRC of the nonlinear system at DOF 30, z = 40.82 m, zb = 59.18 m.
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(b) FRC of the nonlinear system at DOF 30, z = 40.82 m, zb = 59.18 m. Additional
linear viscous damping is applied.

Figure 8: FRCs of the nonlinear system at DOF 30. (a) FRC without additional linear
damping. This graph is plotted between the two resonance frequencies of the linear system
ω1 = 7.41 and ω2 = 14.82 rad/s. (b) FRC including additional linear damping to obtain
convergence. This graph is plotted including the second resonance frequency. Upward
frequency sweep. Downward frequency sweep. FRC of the linear system. In the
analysis the same parameters have been used as mentioned in Figure 7. In addition, for
case (b), a linear viscous damping of c = 1, 500, 000 is applied for all DOFs, on the onset
of convergence.
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change occurs instantly, which also follows from the Masing rules but is not
what is observed in reality.

The nonlinear response is characterised by the occurrence of higher har-
monics, which is in correspondence with findings of Zhang et al. [27]. Hence,
the simulations are performed again with the same parameters as in Figure 7,
but instead J = 3, which incorporates the first three harmonics. The single
sided spectrum at DOF 30 in Figure 11 contains the amplitude related to the
first three harmonics. The amplitude of all the even harmonics should be zero
because the result of an integration of an even function over one period yields
zero. The odd harmonics decreases when J increases which reveals that for
a large amount of harmonics the AFTHBM solution converges to the exact
solution, confirming the underlying principle of the HBM. The presence of
the higher order harmonics indicates that the behaviour of the soil is indeed
nonlinear. The amplitudes of the 0-th and even harmonics are almost zero
but not completely due to a limited sampling rate M or a less strict tolerance
ε. Satisfying a tighter tolerance ε is less computational demanding than an
increase M . To prevent aliasing, according to the Nyquist sampling theorem,
the minimum sampling frequency per period is 2J [44]. However, oversam-
pling is in this case better since it increases the accuracy of the solution and
will reduce the amplitude coefficients of a0 almost to zero which is required
since the excitation is purely harmonic. Absence of oversampling also causes
that even harmonics become more dominant, which is not the case in real-
ity. Moreover, oversampling might be even necessary to have convergence in
case of the nonsmooth nonlinear force and need to be considerably higher
when higher order harmonics are taken into account. Another reason why
oversampling can be necessary is the occurance of ripples in the harmonic
approximation of the nonlinear force [7] due to the slow decay of Fourier
coefficients, known as the Gibbs-phenomenon. This is especially the case for
nonsmooth forces with a low order of continuity. Increasing the number of
M will reduce the numerical oscillations causing problems for convergence of
the system.

The nonlinear force in the system leads to the introduction of set-valued
forces [7, 45], leading to problems in convergence of the system. To partly
overcome this problem, is to apply regularization. This implies that the jump
in the nonlinear force is smoothed by using a regularization parameter ε [33].
The simulations are repeated based on the regularised fnl, see Eq. (31). For a
small regularisation parameter (ε ≈ 10−5), the results almost coincides with
definition of fnl based on signum functions but converges closer to resonance
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(a) Overview of all the hysteresis loops in the soil column.
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(b) Detail at center of figure (a).

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

10-4

1

1.5

2

f in
t [

N
]

104

(c) Detail at top right of figure (a).

Figure 9: Hysteresis loops of the soil column with nonlinear behaviour. (a) Overview of
all the 49 hysteresis loops. (b) Zoom of the loops at small shear strains. (c) Zoom of
the loops at large positive shear strains. Backbone curve. For the used parameters is
referred to Figure 7. Note the degradation of Gsec.

25



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

10-4

-2

-1

0

1

2

f in
t [

N
]

104

0

0.2

0.4

0.6

T
im

e
 [

s
]

Figure 10: Scatter plot of internal force between DOF 30−31, which is a specific hysteresis
plot (no. 30) of Figure 9 (a). For the simulations the parameters are used as mentioned in
Figure 7. The duration of a period T is 2π/Ω = 0.79 s. After one period a full hysteresis
loop is obtained.

frequencies. However, as discussed earlier, the choice of ε is not arbitrary and
depends on the magnitude of the argument of tanh. For smaller arguments, a
smaller ε is required to let the solution not drift away from the results based
on signum functions and maintaining a sharp transition.

Besides the velocity jumps, the nonsmoothness itself of the nonlinear
force can pose difficulties for the Newton-Raphson scheme. Other solution
techniques, such as the Broyden method [46] or the Galerkin/Levenberg-
Marquardt (GLM) method [17] prove to have better convergence properties.

5. Conclusions and discussion

In this paper, a framework has been presented how nonlinear hysteretic
damping can be incorporated in the HBM to obtain the motion of nonlinear
soil behaviour, based on the hyperbolic soil model by using the AFTHBM.
The method has been applied on a soil column subjected to a prescribed
force and a stress-free boundary. In Section 4 multiple analysis have been
performed to test the performance of the method and get insight in the
nonlinear hysteretic behaviour.

The nonlinear hysteretic damping can be incorporated by using the Mas-
ing rules. Hence, the constitutive model does not contain only strain-dependent
stiffness but also strain-dependent damping. However, the amplitudes of the
cyclic shear strains are unknown a priori and the forces are of a nonsmooth
type, requiring an iterative solution procedure which can be well incorporated
in the AFTHBM. The nonlinear force can be well treated in the AFTHBM
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(a) Non-strict tolerance, ε = 10−7.
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Figure 11: Spectrum of the first 3 harmonics with ε = 10−7 (a) and ε = 10−9 (b). The
amplitudes for each harmonic j are presented as a function for each harmonic j at DOF 30.

0-th harmonic which is nonzero due to a combination of a limited M and ε. Harmonics
1− 3. The odd harmonics and the 0−th harmonic, related to the rigid body motion, are
almost zero for case (b) but clearly nonzero for case (a), emphasizing the importance of
setting strict tolerances.
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because it is evaluated in the time domain and transformed back into the
frequency domain. Also, the iterative solution procedure can be straightfor-
wardly incorporated without the necessity to set up event-driven schemes.
To allow the use of AFTHBM, the soil column is discretised by means of a
lattice model to a NDOF system.

Results show that the AFTHBM proves to be a good substitute of time-
integration methods which take a lot of computational time, especially in
this case when the soil model is defined implicitly and thus an iterative
procedure is required, leading to incredible long computational times or even
when solutions based on time-integration cannot be obtained. To let time-
integration results coincide with AFTHBM results, the initial conditions of
the time-integration methods needs to be computed very accurately.

Limited sampling can easily lead to wrong results due to accumulated
inaccuracies inside the iterative procedure and failing of convergence of the
system. Numerical oscillations can be suppressed by increasing the sam-
pling rate. Detection of higher harmonics requires significantly more time
samples especially close to resonance frequencies of the system to guarantee
convergence of the system. The introduction of smoothing functions slightly
improves the performance of the convergence of the system but will not reveal
new results.

The nonlinear soil column exhibits softening behaviour, which is repre-
sented by smaller amplitudes of the nonlinear system with respect to the
linear system, directly at the right of the first resonance peak in the FRC
and the degradation of the secant shear stiffness with increasing shear strain,
confirming the behaviour as been observed in experiments. Also, for larger
shear strains, the hysteretic loops are larger, leading to more dissipated en-
ergy at those DOFs. In these hysteretic loops, the transition from the loading
to the unloading branch is nonsmooth, but this does not pose problems when
implementing the AFTHBM when proper convergence criteria and oversam-
pling is applied. The nonsmoothness is not observed in nature, but follows
from the definition of the Masing rules. Employing the AFTHBM on a more
smooth material law, like the Bouc-Wen model, would increase the rate of
convergence and the computational speed since oversampling is less needed.

To conclude, the AFTHBM is a powerful tool, capable to compute the
steady-state response of complex material models including nonlinear hys-
teretic damping. The models presented in this paper are useful for geotech-
nical applications but can be extended to other application areas.
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Appendix A. Derivation of the analytical derivatives of the hy-
perbolic soil model

Recall that the partial derivatives of the nonlinear force with respect to
the state vectors can be computed like

∂fnl

∂ũ
=
∂fnl

∂u

∂u

∂ũ
+
∂fnl

∂u̇

∂u̇

∂ũ
. (A.1)
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The derivatives can be expressed in matrix form as follows:
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Appendix A.1. Non-regularised nonlinear force definition

Appendix A.1.1. Terms of ∂fnl/∂u
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Appendix A.1.2. Terms of ∂u/∂ũ
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Where in (A.11)

δi,k =

{
1 if i = k

0 otherwise
(A.9)

is the Kronecker delta.
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Appendix A.1.3. Terms of ∂fnl/∂u̇
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Appendix A.1.4. Terms of ∂u̇/∂ũ
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Appendix A.2. Regularised nonlinear force definition

Appendix A.2.1. Terms of ∂fnl/∂u
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Appendix A.2.2. Terms of ∂u/∂ũ

For the partial derivatives ∂u/∂ũ is referred to subsection Appendix
A.1.2.

Appendix A.2.3. Terms of ∂fnl/∂u̇
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∆z
[
1 + (A(N−1))

β
]+

{
G0∆γ(N−1)

(
γ(N−1) +B(N−1)

) (
A(N−1)

)β
βC(N−1) sgn

(
γ(N−1) +B(N−1)

)}/
{[

1 +
(
A(N−1)

)β]2

∆z ε
∣∣γ(N−1) +B(N−1)

∣∣}+
G0∆γ(N−1)C(N−1)

∆z ε

[(
1 +

∆γ(N−1)

γref

)β]
∂f

(N)
nl

∂u̇(N)
= − ∂f

(N)
nl

∂u̇(N−1)
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A(α) =
γ(α) +B(α)

2γref

, B(α) = tanh
(
γ̇(α)/ε

)
∆γ(α) ,

C(α) = 1− tanh
(
γ̇(α)/ ε

)2

∂f
(i)
nl

∂u̇(i−1)
= − G0C

(α)∆γ(α)

∆z
[
1 + (A(α))

β
]+

{
G0∆γ(α)

(
γ(α) +B(α)

) (
A(α)

)β
βC(α) sgn

(
γ(α) +B(α)

)}/
{[

1 +
(
A(α)

)β]2

∆z ε
∣∣γ(α) +B(α)

∣∣}+
G0∆γ(α)C(α)

∆z ε

[(
1 +

∆γ(α)

γref

)β]

A(α) =
γ(α) +B(α)

2γref

, B(α) = tanh
(
γ̇(α)/ε

)
∆γ(α) ,

C(α) = 1− tanh
(
γ̇(α)/ ε

)2

∂f
(i)
nl

∂u̇(i+1)
= − G0C

(α)∆γ(α)

∆z
[
1 + (A(α))

β
]+

{
G0∆γ(α)

(
γ(α) +B(α)

) (
A(α)

)β
βC(α) sgn

(
γ(α) +B(α)

)}/
{[

1 +
(
A(α)

)β]2

∆z ε
∣∣γ(α) +B(α)

∣∣}+
G0∆γ(α)C(α)

∆z ε

[(
1 +

∆γ(α)

γref

)β]

∂f
(i)
nl

∂u̇(i)
= − ∂f

(i)
nl

∂u̇(i−1)
− ∂f

(i)
nl

∂u̇(i+1)
(A.15)

Appendix A.2.4. Terms of ∂u̇/∂ũ

For the partial derivatives ∂u̇/∂ũ is referred to subsection A.11.
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Appendix B. Implementation of the Bouc-Wen model of hystere-
sis

Appendix B.1. Introduction

The Bouc-Wen model of hysteresis is a nonlinear hysteretic material
model, often applied for modelling isolators, metals, magnetism, structures
and other applications [17, 39, 47]. On the contrary of Masing type hys-
teresis, the Bouc-Wen model is able to include a more smooth transition
between the loading and the unloading branch. The model is capable to
describe hysteretic behaviour based on the transition from the elastic to the
plastic branch, hence capable of capturing post-yielding behaviour. Likewise
the Masing rules, the AFTHBM is employed to solve the Bouc-Wen model
applied to a NDOF system.

Appendix B.2. Equations of motion

For a SDOF system, the constitutive model can be described by the
nonlinear differential equation [17]

ż = u̇{κ− [γb + βb sgn (u̇) sgn (z)] |z|n}, (B.1)

where z denotes the nonlinear hysteretic displacement in m, u the response
of the system in m and κ, γb, βb and n are dimensionless parameters which
determine the shape of the hysteresis loops [25, 48]. All the parameters
are positive, except for γb which can be either positive or negative [49].
Higher values of n increases the sharpness of the transition zones between
the branches and higher values of βb produces fatter loops, controls the stiff-
ness change when the sign of u̇ is changing, and κ governs the slope of the
hysteresis loops at zero hysteretic displacement [17, 39]. Softening of the
system occurs if γb + βb > 0, hardening if γb + βb < 0. Incorporating the
Bouc-Wen element in the system, the governing equation of motion turns
into

mü+ krαu+ kr (1− α) z = Fext, (B.2)

where m is the mass of the system, α the stiffness ratio [39] and kr the
restoring spring stiffness, all excited by an external force Fext. α is given by

α =
kp

kr

, (B.3)
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where kp is the post-yield stiffness and kr the pre-yield stiffness. The non-
linear force in Eq. (B.2), which is the hysteretic component of the restoring
force, is given by

kr (1− α) z. (B.4)

Important to note is that neither viscous damping nor additional linear stiff-
ness is present, all the damping is assumed to be hysteretic and incorporated
in the Bouc-Wen model. For a NDOF system, the governing set of equations
in the time domain is given by

Mü + Kelasu + Khystz = Fext, (B.5)

where M, C and K are the mass, damping and spring matrices respectively,
Kelas the matrix containing the elastic restoring force, Khyst the matrix con-
taining the matrix with the hysteretic restoring force and Fext a vector con-
taining the external forces. The motion and its derivatives are given by

u = a0 +
J∑
j=1

[aj cos (jΩt) + bj sin (jΩt)] , (B.6)

u̇ =
J∑
j=1

[−ajjΩ sin (jΩt) + bjjΩ cos (jΩt)] , (B.7)

ü =
J∑
j=1

[
−ajj2Ω2 cos (jΩt)− bjj

2Ω2 sin (jΩt)
]
. (B.8)

Since the Bouc-Wen model is described by a nonlinear differential equation,
it is not possible to write the nonlinear hysteretic displacement z explictly
as a function of u. Hence, one has two unknown vectors, namely ũ and z̃, in
which the latter contains the unknown Fourier expansion coefficients of the
hysteretic force. Expressing z̃ in terms of q̃ and applying a Galerkin proce-
dure [17], the system can be solved. Rewriting Eq. (B.5) in the frequency
domain yields

M̂D̂D̂ũ + K̂elasũ + K̂hystz̃ = F̂ext, (B.9)
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where theˆdenotes the partitioned matrix of either M, C or K. Hence M̂,
K̂elas, K̂hyst and F̂ext are given by

M̂ =

M
(0)

. . .

M(2J+1)

 , M(a) =


m1 0 0 · · · 0
0 m2 0 0

0
. . . . . . . . .

...
...

. . .
...

0 0 · · · · · · mN

 ,
(B.10)

K̂elas =

K
(0)
elas

. . .

K
(2J+1)
elas

 , K
(a)
elas = krα


2 −1 0 · · · 0
−1 2 −1 0

0
. . . . . . . . .

...
...

. . . −1
0 0 · · · −1 1

 ,

K̂hyst =

K
(0)
hyst

. . .

K
(2J+1)
hyst

 , K
(a)
hyst = kr (1− α)


2 −1 0 · · · 0
−1 2 −1 0

0
. . . . . . . . .

...
...

. . . −1
0 0 · · · −1 1

 ,

F̂nl =
[
Fnl

(0) Fnl
(1) · · · Fnl

(2J+1)
]T

, Fnl
(a) =

[
f

(1)
nl f

(2)
nl · · · f

(N)
nl

]T

,

F̂ext =
[
Fext

(0) Fext
(1) · · · Fext

(2J+1)
]T

, Fext
(a) =

[
f

(1)
ext f

(2)
ext · · · f

(N)
ext

]T

,

a = 1...2J + 1 (B.11)

The derivatives of each harmonic are computed by the derivative matrix D̂,
which is given by
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D̂ =


0 0 · · · 0
0 D(1) · · · 0
...

...
. . .

...
0 0 · · · D(J)

 , D(j) =



0 0 · · · 0 jΩ 0 · · · 0
0 0 · · · 0 0 jΩ · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · jΩ
−jΩ 0 · · · 0 0 0 · · · 0

0 −jΩ · · · 0 0 0 · · · 0
...

...
. . .

...
...

... · · · ...
0 0 · · · −jΩ 0 0 · · · 0


.

(B.12)

Then, from Eq. (B.9), z̃ can be expressed in terms of ũ according to

z̃ =
(
K̂hyst

)−1 (
F̂ext − M̂D̂D̂ũ− K̂restũ

)
. (B.13)

The formulation now contains only a single unknown vector ũ. Next, by
using the IDFT, as presented in Eq. (20), the response is transformed from
the frequency to the time domain. To solve ũ, residual functions are used to
solve the system in an iterative manner. The residuals are chosen based on
the satisfaction of Eq. (B.1), so for an NDOF system the residual functions
become

r(1) = ż(1) − u̇(1)
{
κ−

[
γb + βb sgn

(
u̇(1)
)

sgn
(
z(1)
)]
|z(1)|n

}
, (B.14)

...,

r(N) = ż(N) − u̇(N)
{
κ−

[
γb + βb sgn

(
u̇(N)

)
sgn

(
z(N)

)]
|z(N)|n

}
,

shortly denoted as r, written as

r =
[
r(1) · · · r(N)

]T
. (B.15)

For solving the system, an iterative procedure is required as stated in Eq.
(22), with J̃ defined as

J̃ =
∂r̃

∂ũ
, (B.16)

which implies that for each residual function the partial derivatives with
respect to the state vector needs to be determined. The partial derivatives
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of the residual in the time domain r with respect to the state vectors ũ are
given by the Jacobian in the time domain J,

J =
∂r (u̇, z, ż)

∂ũ
=
∂r

∂u̇

∂u̇

∂ũ
+
∂r

∂z

∂z

∂ũ
+
∂r

∂ż

∂ż

∂ũ
. (B.17)

For the sake of brevity, the partial derivatives can be found in Appendix
C. Once the partial derivatives are derived, J is computed according to Eq.
(B.17) and transformed back to the frequency domain by using the DFT, see
Eq. (26). Together they form J̃, according to the partitioned form

J̃ =

[
∂a0

ũ

∂aj
ũ

∂bj
ũ

]T

. (B.18)

Finally, the residual vector r is also converted to the frequency domain by
using the DFT, hence

r̃(0)
a =

1

M

M−1∑
p=0

rp, (B.19)

r̃(j)
a =

2

M

M−1∑
p=0

[
rp cos

(
2πpj

M

)]
,

r̃
(j)
b =

2

M

M−1∑
p=0

[
rp sin

(
2πpj

M

)]
.

This process is repeated until convergence is reached according to Eq. (23)
and summarized in Figure B.12.

Appendix B.3. Case study

To show the performance of the AFTHBM, applied on an NDOF Bouc-
Wen model, a case study is performed on a concrete shear beam with a unit
square area, subjected by a harmonic force at the first DOF as presented in
Figure B.13. For validation purposes, the influence of the nonlinearity in the
model is put to almost zero (not exactly to prevention singularities of J̃) and
the motion at the tip of the beam (z = 0) is compared with the equivalent
linear system, see Figure B.14. The total material behaviour is governed
by the elastic and hysteretic stiffness, so no additional stiffness or viscous
damping is present. The system is subjected to a forcing frequency which
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Figure B.12: Principle of the AFTHBM, applied on shear beam. The procedure starts
with assuming an initial (L = 0) state vector ũ, see upper left and ends when the tolerances
are satisfied (bottom center). The scheme is borrowed and extended from the work of van
Til [34] and Wong [17, 39] et al.

is close to the first resonance frequency. The behaviour of the hysteretic
properties of the system become more dominant in this highly nonlinear
regime. This results in the appearance of higher order harmonics. The
results for the nonlinear case are presented in Figure B.15. The influence
of higher order harmonics can be made more clear by using a spectrum, see
figure B.16. As can be observed in Figure B.16, due to limited sampling or
non-strict tolerances, the harmonic of order J = 0, is not exactly zero. The
higher the order of the considered harmonic, the lower the amplitude. All
the even harmonics are almost zero. The system with the Bouc-wen model
can easier reach convergence due to the smooth transition from the loading
to the unloading branches. This indicates that computations can be faster
performed because less time samples are required in comparision with Masing
hysteresis. However, not to lose much accuracy, M cannot be too low. This
is especially the case when the system reacts very stiff. A higher sampling
rate is then required to guarantee convergence and prevent ill-conditioning
of the Jacobian. The system exhibits softening behaviour which is depicted
in Figure B.17. This can be observed by the shift of the peaks in the FRCs
to the left. To reduce the computation time, the input for the next forcing
frequency is based on the previous result. Consequently, less iterations are
needed in order to obtain convergence.
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Figure B.13: Model description of a concrete shear beam with hysteretic damping and
unit square area subjected to harmonic excitation at the first DOF. The beam is clamped
at z = H an has a free boundary condition at z = 0. (a) Represents the continuous
description, (b) the discretised system (lattice model). Used parameters are: H = 20m,
ρ = 2, 500 kg · m−3, G0 = 11, 500 · 106 N · m−2, F0 = 900, 000 N, N = 10. The figure has
been rotated 90 degrees clockwise.
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Figure B.14: Motion at the tip of the beam z = 0 m for the linear case. Motion
computed by AFTHBM. Motion of the linear system. Time-integration results by
ODE45 in MATLAB. Used parameters of the model (in addition to figure B.13): κ = 1,
γb = −1, βb = 2, n = 2, α = 0.99, M = 27, Ω = 150.8 rad/s, J = 1, ε = 10−10.

Appendix C. Derivation of the analytical derivatives of the Bouc-
Wen model

∂r

∂u̇
=



∂r(1)

∂u̇(1)

∂r(1)

∂u̇(2)
· · · ∂r(1)

∂u̇(N)

∂r(2)

∂u̇(1)

∂r(2)

∂u̇(2)
· · · ∂r(2)

∂u̇(N)

...
...

. . .
...

∂r(N)

∂u̇(1)

∂r(N)

∂u̇(2)
· · · ∂r(N)

∂u̇(N)


(C.1)

Where from Eq. (C.1)

∂r(d)

∂u̇(a)
= δd,a {[γb + βb sgn (u̇a) sgn (zd)] |zd|n + u̇aβb2δ (u̇a) sgn (zd) |zd|n − κ}

(C.2)

and δd,a denotes the Kronecker delta, defined as{
1 if d = a,

0 otherwise,
(C.3)

49



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

-0.02

-0.01

0

0.01

0.02

(a) Response with J = 1.
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(b) Response with J = 5.
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(c) Response with J = 9.

Figure B.15: Motion at the tip of the beam z = 0 m for the nonlinear case for different
amounts of harmonics. (a) J = 1, (b) J = 5, (c) J = 9. Motion computed by
AFTHBM. Motion of the linear system. Time-integration results by ODE45 in
MATLAB. Used parameters of the model (in addition to Figure B.13): κ = 1, γb = 150,
βb = 151, n = 2, α = 0.1, M = 27, Ω = 150.8 rad/s, ε = 10−10.
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Figure B.16: Spectrum for DOF i = N at the tip of the beam z = 0 m for the nonlinear
case. 0-th harmonic, nonzero due to limited sampling and nonstrict tolerances. Har-
monics 1− 9. Note that higher order harmonics have a lower magnitude. For the analysis
the same parameters have been used as presented in Figure B.15.

and δ the Dirac-Delta function.

∂u̇

∂ũ
=



∂u̇(1)

∂a
(1)
0

· · · ∂u̇(1)

∂a
(N)
0

∂u̇(1)

∂a
(1)
j

· · · ∂u̇(1)

∂a
(N)
j

∂u̇(1)

∂b
(1)
j

· · · ∂u̇(1)

∂b
(N)
j

∂u̇(2)

∂a
(1)
0

· · · ∂u̇(2)

∂a
(N)
0

∂u̇(2)

∂a
(1)
j

· · · ∂u̇(2)

∂a
(N)
j

∂u̇(2)

∂b
(1)
j

· · · ∂u̇(2)

∂b
(N)
j

...
. . .

...
...

. . .
...

...
. . .

...

∂u̇(N)

∂a
(1)
0

· · · ∂u̇(N)

∂a
(N)
0

∂u̇(N)

∂a
(1)
j

· · · ∂u̇(N)

∂a
(N)
j

∂u̇(N)

∂b
(1)
j

· · · ∂u̇(N)

∂b
(N)
j


(C.4)
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(a) FRC with J = 1.
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Figure B.17: FRCs at the tip of the beam z = 0 m for the nonlinear case for different
amounts of harmonics. (a) J = 1, (b) J = 5, (c) J = 9. Motion computed by
AFTHBM. Motion of the linear system. Used parameters of the model (in addition to
figure B.13): κ = 1, γb = 150, βb = 151, n = 2, α = 0.1, M = 27, Ω = 148 − 153 rad/s,
NΩ = 30, ε = 10−10.
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Where from Eq. (C.4)

∂u̇(a)

∂a
(e)
0

= 0 for a = 1, ..., N, e = 0, ..., N, (C.5)

∂u̇(a)

∂a
(e)
j

= −jδa,eΩ sin (Ωt) for j = 1, ..., J,

∂u̇(a)

∂b
(e)
j

= jδa,eΩ cos (Ωt) for j = 1, ..., J.

∂r

∂z
=



∂r(1)

∂z(1)

∂r(1)

∂z(2)
· · · ∂r(1)

∂z(N)

∂r(2)

∂z(1)

∂r(2)

∂z(2)
· · · ∂r(2)

∂z(N)

...
...

. . .
...

∂r(N)

∂z(1)

∂r(N)

∂z(2)
· · · ∂r(N)

∂z(N)


(C.6)

Where from Eq. (C.6)

∂r(d)

∂z(a)
= δd,a{u̇aβb sgn (u̇a) 2δ (zd) |zd|n+

u̇a [γb + βb sgn (u̇a) sgn (zd) |zd|nn sgn (zd)] /|zd|}
(C.7)
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∂z

∂ũ
=



∂z(1)

∂a
(1)
0

· · · ∂z(1)

∂a
(N)
0

∂z(1)

∂a
(1)
j

· · · ∂z(1)

∂a
(N)
j

∂z(1)

∂b
(1)
j

· · · ∂z(1)

∂b
(N)
j

∂z(2)

∂a
(1)
0

· · · ∂z(2)

∂a
(N)
0

∂z(2)

∂a
(1)
j

· · · ∂z(2)

∂a
(N)
j

∂z(2)

∂b
(1)
j

· · · ∂z(2)

∂b
(N)
j

...
. . .

...
...

. . .
...

...
. . .

...

∂z(N)

∂a
(1)
0

· · · ∂z(N)

∂a
(N)
0

∂z(N)

∂a
(1)
j

· · · ∂z(N)

∂a
(N)
j

∂z(N)

∂b
(1)
j

· · · ∂zN

∂b
(N)
j


(C.8)

Where from Eq. (C.8)

∂z(a)

∂a
(e)
0

=


αkr

(−1 + α) kr

if a = e,

0 otherwise,

(C.9)

∂z(a)

∂a
(e)
j

=


(−emeΩ

2j2 + αkr) cos (Ωt)

(−1 + α) kr

if a = e,

−eΩ
2j2me cos (Ωt)

(−1 + α) kr

otherwise,

∂z(a)

∂b
(e)
j

=


(−emeΩ

2j2 + αkr) sin (Ωt)

(−1 + α) kr

if a = e,

−eΩ
2j2me sin (Ωt)

(−1 + α) kr

otherwise.

(C.10)

∂r

∂ż
=



∂r(1)

∂ż(1)

∂r(1)

∂ż(2)
· · · ∂r(1)

∂ż(N)

∂r(2)

∂ż(1)

∂r(2)

∂ż(2)
· · · ∂r(2)

∂ż(N)

...
...

. . .
...

∂r(N)

∂ż(1)

∂r(N)

∂ż(2)
· · · ∂r(N)

∂ż(N)


(C.11)
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∂ż

∂ũ
=



∂ż(1)

∂a
(1)
0

· · · ∂ż(1)

∂a
(N)
0

∂ż(1)

∂a
(1)
j

· · · ∂ż(1)

∂a
(N)
j

∂ż(1)

∂b
(1)
j

· · · ∂ż(1)

∂b
(N)
j

∂ż(2)

∂a
(1)
0

· · · ∂ż(2)

∂a
(N)
0

∂ż(2)

∂a
(1)
j

· · · ∂ż(2)

∂a
(N)
j

∂ż(2)

∂b
(1)
j

· · · ∂ż(2)

∂b
(N)
j

...
. . .

...
...

. . .
...

...
. . .

...

∂ż(N)

∂a
(1)
0

· · · ∂ż(N)

∂a
(N)
0

∂ż(N)

∂a
(1)
j

· · · ∂żN

∂a
(N)
j

∂ż(N)

∂b
(1)
j

· · · ∂ż(N)

∂b
(N)
j


(C.12)

Where from Eq. (C.12)

∂ż(a)

∂a
(e)
0

= 0, (C.13)

∂ż(a)

∂a
(e)
j

=


− [(−eΩ2j2me + αkr) sin (Ωt)] jΩ

(−1 + α) kr

if a = e,

eΩ3j3me sin (Ωt)

(−1 + α) kr

otherwise,

∂ż(a)

∂b
(e)
j

=


− [(eΩ2j2me − αkr) cos (Ωt)] jΩ

(−1 + α) kr

if a = e,

−−eΩ
3j3me cos (Ωt)

(−1 + α) kr

otherwise.
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