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Abstract. Profiled side-channel analysis based on deep learning, and more precisely
Convolutional Neural Networks, is a paradigm showing significant potential. The
results, although scarce for now, suggest that such techniques are even able to break
cryptographic implementations protected with countermeasures. In this paper, we
start by proposing a new Convolutional Neural Network instance able to reach high
performance for a number of considered datasets. We compare our neural network
with the one designed for a particular dataset with masking countermeasure and we
show that both are good designs but also that neither can be considered as a superior
to the other one.

Next, we address how the addition of artificial noise to the input signal can be actually
beneficial to the performance of the neural network. Such noise addition is equivalent
to the regularization term in the objective function. By using this technique, we
are able to reduce the number of measurements needed to reveal the secret key by
orders of magnitude for both neural networks. Our new convolutional neural network
instance with added noise is able to break the implementation protected with the
random delay countermeasure by using only 3 traces in the attack phase. To further
strengthen our experimental results, we investigate the performance with a varying
number of training samples, noise levels, and epochs. Our findings show that adding
noise is beneficial throughout all training set sizes and epochs.

Keywords: Side-channel analysis, Convolutional Neural Networks, Machine learning,
Gaussian noise

1 Introduction

Profiled side-channel analysis (SCA), especially machine learning-based techniques received
a significant amount of attention in the SCA community lately. Such attention seems to be
well-deserved since results show a number of situations where machine learning techniques
perform (extremely) well and even surpass, for instance, the template attack [LBM14,
PHG17,CDP17]. More recently, deep learning techniques (specifically, Convolutional
Neural Networks — CNNs) emerged as a powerful alternative to more standard machine
learning techniques when conducting side-channel analysis [MPP16, CDP17]. Due to a
limited number of published works, it is not clear when deep learning is actually needed in
practice and how to effectively use CNNs for SCA.
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CNNs have shown great performance across different domains, like image classification,
where it can work with thousands of features and classes and millions of examples [KSH12].
Still, there is one scenario usually not encountered in other domains but SCA: coun-
termeasures. While it is normal (although undesired) to have noise in measurements
coming from the environment, countermeasures are deliberately crafted in order to (ideally)
prevent attacks by noise addition. Naturally, machine learning techniques, as well as
traditional profiling methods, degrade in performance when dealing with implementations
with countermeasures. Interestingly, some results indicate that deep learning is able to
cope with countermeasures straightforwardly, which is a behavior not observed with other
machine learning techniques, to the best of our knowledge. This holds for additional
randomness [MPP16] (i.e., masking countermeasure) as well as additional noise [CDP17]
(i.e., random delays). Still, deep learning architectures suitable for SCA, and particularly
against practical countermeasures, are not well explored.

One important drawback of machine learning techniques and particularly deep learning
is the problem of overfitting. Overfitting occurs when the profiling is done “too well”, such
that the model is predicting the training data very precisely but performs poorly on unseen
measurements in the attacking phase. Even though overfitting has a huge influence on the
attack efficiency, to the best of our knowledge this problem received limited attention in
the SCA community so far.

In this paper, we propose two approaches to achieve high performance with neural
networks in SCA where the end goal is to be able to break cryptographic implementations
protected with countermeasures. We start with a proposal for a new CNN instance that is
able to reach high performance. Next, to boost even further that performance, we show how
the addition of noise to the original measurements, without adding new artificial instances
by precomputation and using domain-specific knowledge, can improve the behavior of
CNN significantly as it prevents overfitting. To the best of our knowledge, this has not
been done before in side-channel analysis and it represents a powerful option when using
machine learning techniques in SCA. This is particularly interesting since usually, noise is
a limiting factor and actually, many types of countermeasures could be regarded as the
noise. Finally, we discuss what a new deep learning architecture actually is and why it
is important to differentiate it from a new instantiation of a known architecture. Since
deep learning in SCA is a relatively novel research direction, we believe such discussion
is a necessity that has pedagogical value and will keep future work more inline with the
terminology in other domains.

1.1 Related Work

When considering profiled SCA, the template attack (TA) is the best (optimal) technique
from an information theoretic point of view if the attacker has an unbounded number of
traces [HRG14,LPB*15]. After the template attack, the stochastic attack emerged using
linear regression in the profiling phase [SLP05]. In years to follow, researchers recognized
certain shortcomings of template attacks and tried to modify them in order to deal better
with the complexity and portability issues. One example of such an approach is the pooled
template attack where only one pooled covariance matrix is used in order to cope with
statistical difficulties [CK13].

Alongside such techniques, the SCA community recognized the similarity between
profiling and supervised machine learning. Consequently, some researchers started ex-
perimenting with different machine learning techniques and evaluating their effective-
ness in the SCA context. As a consequence, there exists an abundance of works con-
sidering profiled machine learning-based attacks and block ciphers. There, the most
common denominator is the target of attacks — AES. Next, we can divide machine
learning-based attacks on those that investigate regular machine learning techniques
and those that also use deep learning (in this category, it is still common to compare
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with regular machine learning techniques.) For the examples of the first category, see
e.g., [HZ12,HGDM*11,LBM14,LPB*15,LBM15,PHG17, PHJL17, PHJ*17]. When con-
sidering deep learning, the common examples in SCA are multilayer perceptron and
Convolutional Neural Networks [GHO15, HPGM17,MPP16,CDP17, PSK*18,PSB118].

1.2 Qur Contributions

This paper investigates the limits of CNNs’ performance when considering side-channel
analysis. To that end, we consider the AES algorithm and investigate 4 datasets that
encompass the main types of measurements as detailed in Section 4. Our main contributions
are:

1. a new CNN instance derived from the neural network proposed in the audio domain,
which is the 1-dimensional analog to the VGG architecture (Section 3.1). We
experimentally show that the proposed CNN instance is able to efficiently find the
secret key (Section 5). This indicates that CNN architectures developed for other
domains (but where the input signal shares commonalities with the SCA domain)
can be successfully applied to the SCA domain.

2. investigation how additional, non-task-specific noise can significantly improve the
performance of CNNs in SCA (Section 3.2). While adding noise to fight overfitting is
a well-known technique in machine learning, we show it also helps in the specific case
— SCA. In related works, the authors used domain-specific information when adding
noise, but we show that a simple Gaussian noise not only works but can surpass the
effect of domain-specific noise. With our new CNN instance and added noise, we
are able to break the dataset with the random delay in only a few measurements.
More specifically, we need 1 trace to reach guessing entropy less than 10, 2 traces
for guessing entropy less than 5, and 3 traces for guessing entropy of 1. To the best
of our knowledge, these results surpass by far any in related literature. Moreover,
we conduct an in-depth study of the effects of samples in the training dataset, noise
level, and epochs. Interestingly, noise addition has a positive effect on all noise levels
and epochs.

Besides these contributions, we also show how random splitting of training data results
in a drastically different behavior for both TA and neural networks. Finally, we discuss
the difference between CNN architectures and instances (Section 6.2). We consider this to
be of high importance in order to facilitate future research and comparisons.

2 Background

In this section, we start by introducing the notation we use and then we discuss the profiled
side-channel analysis. Afterward, we give details about template attack and convolutional
neural networks. Finally, we briefly describe the CNN instance introduced in [PSBT18].

2.1 Notation

Let k* be the fixed secret cryptographic key (byte), k any possible key hypothesis, and ¢ a
plaintext or ciphertext byte of the cryptographic algorithm, which is uniformly chosen. We
denote the measured multivariate leakage as X=X 1,--.,Xp, with D being the number of
time samples or points-of-interest (i.e., features as called in the machine learning domain).
To guess the secret key, the attacker first needs to choose a leakage model Y (T, k) (i.e.,
label as called in the machine learning domain) depending on the key guess k and on some
known text 7', which relates to the deterministic part of the leakage. When there is no
ambiguity, we write Y instead of Y (T, k).
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2.2 Profiled Side-channel Analysis

We consider a scenario where a powerful attacker has a device with knowledge about
the secret key implemented and is able to obtain a set of profiling traces in order to
characterize the leakage. Once this phase is done, the attacker measures additional traces
from the device under attack in order to break the unknown secret key k*. Although it is
usually considered that the attacker has an unlimited number of traces available during
the profiling phase, this is of course always bounded, due to practical limitations.

When profiling the leakage, one must choose the number of classes. The Hamming
weight (HW) or distance (HD) of sensitive intermediate value are often used as the basis
for choosing a number of classes, which has its own advantages and disadvantages. The
advantage of choosing HW/HD is a reduced number of classes, which results in reduced
training complexity. Unfortunately, HW/HD classes are inherently imbalanced which
can seriously hamper the performance of machine learning/deep learning [PHJT18]. The
alternative is to profile directly on the intermediate value which requires a bigger profiling
set but does not suffer from imbalance. When considering AES, HW results in 9 classes
and intermediate value results in 256 classes as the attack is computed byte-wise. Since
256 classes can still be considered small as compared to the usual application of deep
neural networks, we use 256 classes to avoid the imbalance problem.

To assess the performance of the classifiers, we use Guessing entropy (GE) [SMY09]. GE
states the average number of key candidates an adversary needs to test to reveal the secret
key after conducting a side-channel analysis. In particular, given T, amount of samples
in the attacking phase, an attack outputs a key guessing vector g = [g1, 92, ..., 9g|x|] in
decreasing order of probability with |K| being the size of the keyspace. So, g; is the most
likely and g|| the least likely key candidate. The guessing entropy is the average position
of k¥ in g over multiple experiments. Note that we consider leakage models Y'(-) which
are bijective functions (see Section 4 for definitions regarding each dataset), and thus each
output probability calculated from the classifiers for Y (k) directly relates to one single key
candidate k. Further, to calculate the key guessing vector g over T, amount of samples,
we use the log-likelihood principle, i.e.,

Ta
g =3 log(py), (1)
j=1

where p;; is the estimated probability for key candidate ¢ = {1,...,|K|} using sample

2.3 Convolutional Neural Networks — CNNs

CNNs represent a type of neural networks which were first designed for 2-dimensional
convolutions as it was inspired by the biological processes of animals’ visual cortex [LBT95].
They are primarily used for image classification but lately, they have proven to be powerful
classifiers for time series data such as music and speech [ODZ"16]. From the operational
perspective, CNNs are similar to ordinary neural networks (e.g., multilayer perceptron):
they consist of a number of layers where each layer is made up of neurons. CNNs use three
main types of layers: convolutional layers, pooling layers, and fully-connected layers.

Convolutional layers are linear layers that share weights across space, where the core
operation is the convolution between the filter bank and signal as follows:

oo

(Pxa)(t)= D z()é(t—a) (2)

a=—00
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where t indicates each time step, and ¢ € R?*°%S refers a filter bank with i input

channels and o output channels, and s filter length respectively. Pooling layers are non-
linear layers that reduce the spatial size in order to limit the number of neurons, typically
by applying various types of down-sampling the given input over spatial axes. Finally,
fully-connected layers are layers where every neuron is connected with all the neurons
in the neighborhood layer, which usually is realized by dot product between the weight
matrix and the input vector. For additional information about CNNs, we refer interested
readers to [GBC16].

The first results in the SCA domain have shown a significant promise [MPP16, CDP17].
Considering the signal given in SCA is the 1-dimensional signal that shares a substantial
amount of characteristics with other 1-dimensional signals such as audio, it implies that if
a certain architecture yields a reasonable performance in one field, it might be transferable
to the other. To our knowledge, most prominent CNN architectures reported in side-
channel analysis domain can be seen as the variants of a specific design principle, which is
derived from the particular design strategy introduced in [SZ14], which is often referred
as VGG-like. The main difference compared to the original architecture is the spatial
dimensionality on each convolution and pooling operation, since the model is developed
for the image classification tasks where the input signal has 2 spatial dimensions, while
the signal given in SCA has only 1 spatial dimension. Still, the core design principle is
identical, where the network net can be formalized as a following:

P Q Rq
net = fC9,softmax o H fCGI",ReLU o H (POOlMaX o H ConV¢T,ReLU)7 (3)
p=1 qg=1 r=1

where P, (), R, represent the number of fully-connected layers fc, convolution blocks, and
convolution layers conv in ¢** convolution block, respectively. The “convolution block”
refers to the set of chained operations within the parenthesis in Eq. (3) that consists of
R, convolution layers convy , and one or less pooling layer pool. pool, indicates the
pooling function that sub-samples the signal in its spatial axes in specific pooling strategy
t. Typically, maz pooling that sub-samples the maximum value within the sliding pooling
window is applied for many applications [GBC16]. convy , and fcy , are convolution and
fully-connected layers, respectively, which are followed by the non-linear transformation
given as follows:

convy o (X) = o(¢* X),and (4)
fepo(z) = 0(672), (5)

where X € R**? is the input signal that has i channels and length d. = € R/ denotes
the input vector and # € Rf*" is the projection matrix that transforms f dimensional
input to h dimensional output space. Note that we omit the bias terms for simplicity. o is
the non-linearity function applied after the output of affine transformation, including the
activation functions such as rectified linear unit (ReLU) or softmax, which are formalized
as follows, respectively:

UReLU(Z)j = max(O, Zj), (6)
Osoftmax(2); = Feij for j=1,2,...,F, (7)

with F' being the hidden or output dimensionality of the given layer. Commonly, ReLU
is used for the hidden layers, and softmax is used for the final layer to represent the
posterior distribution over each class labels.
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2.4 ASCAD Neural Network

To serve as a baseline in our experiments, we use the CNN model introduced in [PSBT18].
For brevity, we refer this model as the ASCAD model in the rest of the paper. This model
is developed on the dataset which is also introduced in the paper, by grid search on a
number of important model hyper-parameters. One of the biggest difference between this
model and the CNN model we present it this paper is the size and depth of the network.

2.5 Template Attack

The template attack [CRR02], which is classical profiling based side-channel attack, relies
on the Bayes theorem and considers dependence among the features. In the state-of-
the-art, it is mostly assumed that the noise follows a multivariate normal distribution.
Accordingly, for each class y an attacker only needs to estimate one mean vector and
a covariance matrix to define the distribution of the leakage per class y. The authors
of [CK13] propose to use only one pooled covariance matrix averaged over all classes Y to
cope with statistical difficulties and thus a lower efficiency. As a comparison to attacks
based on neural networks, we use the pooled template attack for all datasets which do
not include a masking countermeasure. In the case of masking, we apply the standard
version of the template attack as each covariance matrix may not only include noise but
also information about the class y and therefore the secret key.

3 CNN & Artificial Noise

In this section, we first present details about our convolutional neural network instance.
Afterward, we detail our approach to add noise to the measurement data in order to avoid
overfitting and achieve generalization.

3.1 The Design Principle: Sample-level CNN

We adopted the more specific design strategy introduced in [KLN18]. This strategy
is the 1-dimensional analog to the VGG architecture, characterized by the use of the
minimal filter size and highly stacked convolution layers followed by several fully-connected
layers. The CNN based on this strategy exhibits better performance in the music-related
classification tasks [KLN18]. Surprisingly, by grid search and cross-validation, the authors
in [PSBT18] reach a very similar architecture setup compared to our work, while this
network is developed on the side-channel analysis dataset. It implies that this design is
potentially suitable for a various range of problem domains where the input signal is given
as the 1-dimensional signal.

Considering evidence given in the literature, we choose this design to build network
architecture. One detailed example of our architecture can be found in Figure 1. The key
principles of the applied design strategies are

e a minimal filter size (3),

e the convolution block continues until the spatial dimension is reduced to 1,

e the number of channels starts from a small number and keeps increasing (similarly

to VGG).

In addition to the above standard architecture, we applied two additional components
to improve the model: batch normalization [IS15] and dropout [SHK'14]. The batch
normalization is the layer-wise normalization followed by the parametric re-adjustment,
which is known to be helpful for faster learning by stabilizing internal covariate shifts [IS15].
Dropout is a simple but powerful technique for the regularization of the model, which
simply introduces randomly generated masks on the activation of neurons. Dropout intends
to reduce the influence of the data in the training dataset on the model and therefore
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8
16 256 256 O
32 64 128 18 O
@)
@)
— @—
EE BN Flatten (O
BN BN Q
BN O
BN Dropout Dropout

Figure 1: An example schema of the CNN architecture. This particular configuration
is used for the AES HD dataset. The model encodes a trace into latent representation
such that the final layer can output the posterior probability for each label. The blue
tensors indicate the activation after the convolution layer convgm gery. The number on
top of each block indicates the number of channels used for the corresponding convolution
layer. ‘BN’ indicates that the batch normalization is applied to the corresponding layer,
and ‘Dropout’ is used in a similar manner referring to the dropout layer. The gray box
with green circles refers to the fully-connected layer fcgn pery. Finally, the rightmost
component in the pipeline is the output of the final fully-connected layer fcg softmax that
outputs the probability for each 256 label. As it can be seen, a convolutional neural
network is a sequence of layers, and every layer of a network transforms one volume of
activation functions to another through a differentiable function. Input holds the raw
features. Convolution layer computes the output of neurons that are connected to local
regions in the input, each computing a dot product between their weights and a small
region they are connected to in the input volume. ReLU layer will apply an element-wise
activation function, such as the max(0,x) thresholding at zero. Max Pooling performs a
down-sampling operation along the spatial dimensions. The fully-connected layer computes
either the hidden activations or the class scores. Batch normalization is used to normalize
the input layer by adjusting and scaling the activations after applying standard scaling
using running mean and standard deviation. To convert the output of a convolution part
of CNN (which is 2-dimensional) into a 1-dimensional feature vector that is used in the
fully-connected layer, we use the flatten operation. Dropout is a regularization technique
for reducing overfitting by preventing complex co-adaptations on training data. The term
refers to dropping out units (both hidden and visible) in a neural network.
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also helps to prevent overfitting [SHKT14]. We applied the batch normalization for every
odd-numbered layers and the input channels, to standardize the input signal channel-wise.
The dropout is only applied after the fully-connected layers since convolution layer already
has a relatively smaller number of parameters. Finally, we employed the L2 regularization
on all of the weight with a small coefficient (10~7) for all models. In order to allow easier
notation and comparison, we denote this neural network as the RD network.

Note that the ASCAD network has approximately 130 times larger number of parameters
than the RD network, mostly due to the fully-connected layers with large dimensionality
in its hidden units. Still, in terms of depth, the RD model is deeper, which means that
more abstractions can be conducted by the convolution blocks.

3.2 Adding Artificial Noise to the Input

To reduce the overfitting of the model against the noise (additionally to dropout), we apply
a further regularization technique by introducing noise to the traces in the training phase.
It is known that adding noise in the input data is equivalent to adding a regularization
term to the objective function [Bis95, RGBV11]. Generally speaking, it can be seen as
“blurring” high-frequency patterns that are more frequently appearing in the data, which
will eventually help the model to concentrate more on low-frequency patterns that are
often the more important ones for a given task. Since in our case, the input normalization
is also learned during the training process via the batch normalization layer, we added the
noise tensor W after the first batch normalization as follows:

X*=BNo(X)+ U, ¥~ N0, a) (8)

where BNj indicates the batch normalization applied on the input X. After tuning, we
draw a noise tensor ¥ following a normal distribution, i.e., with zero mean and standard
deviation « € [0,1]. The noise tensor is added to the output of the batch normalization.
The noise addition for the ASCAD network follows similarly.

Different values for the weight « in Eq. (8) are further discussed and evaluated in
Section 5. After the noise injection, deformed signal X* is processed by upper layers of
net.

Note, in the related works [CDP17, PYW 18], the authors use the notion of ‘data
augmentation’ to describe the procedure where new measurements are constructed from the
original measurements by some data transformation. Then, both original and transformed
data are used in the ‘augmented’ profiling set. Differing from that, we transform our
dataset by adding noise where we only use the transformed data in the profiling phase.
Additionally, the noise is dynamically applied to every random batch during the training,
since the generation of Gaussian noise is fast enough to be included in the training iteration.

Consequently, our technique is a regularization technique and can be seen as 1) a noisy
training such as ‘dropout’ or ‘stochastic optimization’, and 2) ‘data augmentation’ In
our opinion, it is closer to the noisy training (i.e., regularization using noisy training).
Data augmentation typically applies domain knowledge to deform the original signal into
more “plausible” way (as also used in [CDP17,PYW18]), and uses both the original and
transformed measurements in the training phase. In our work we use neither: 1) we do
not add transformed measurements and 2) do not use domain-specific knowledge (e.g.,
knowledge about countermeasures).

3.3 Training procedure

The CNN model is trained in an iterative manner, which is illustrated in Algorithm 1.
The outer training loop runs to the fixed number of iterations or ‘epochs’ I, where an
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epoch is finished when all data points in the training set have been visited in the inner
loop. To update the model such that the accuracy is maximized, we choose to minimize
the cross-entropy as the main objective function:

N C
CrossEntropy(y, ) Z Z Yn,cl0g(Gn,c) 9)

where ¢, . = net(X,,) is the predicted posterior distribution obtained from the network
net given trace X,,, and y, . = 1(X,,;c) denotes the binary indicator for corresponding
ground truth of given trace X, that belongs to the class ¢. N denotes the number of
samples in the training dataset and C' denotes the number of classes, which is || in SCA
context. The parameters are updated in a direction of minimizing the loss function, by
the stochastic gradient descent method with a given learning rate e.

To obtain the model that optimally minimizes the generalization error, we adopted a
simple algorithm that keeps and returns the best model throughout the training. It can be
achieved by monitoring the model at the end of every inner training loop by computing the
‘validation error’ using the held-out dataset. The best model is updated if the validation
error is decreased at the corresponding iteration, or maintained if the error is increased or
the same as in the previous iteration. In our experiments, we set the validation accuracy
as the monitoring metric.

Algorithm 1: Training a CNN

1 Initialize ©: {6, 6P, ¢"} randomly;

2 Initialize A < O to store best model;

3 for epoch in 1...I do

4 while not all training traces are visited do
5 Pick next batch of samples (X, y);
6

7

8

9

Forward-pass:;

L(y,X,0) = CrossEntropy(y,net(X; 0));
Backward-pass: V(0);

Update model: © «+~ ADAM(0,V(©),¢);

end
10 Calculate accuracy with held-out data;
11 if improved then
12 ‘ A+ O;
end
end

3.4 Experimental Details

As already introduced in Section 3.1, the detailed configuration can differ across datasets
since it depends on the spatial shape of the input signal. The detailed configuration of
the models dedicated for each dataset can be found in Appendix A, Table 2. We initialize
the weights to small random values and we use the “ADAM?” optimizer. We choose to
use ADAM because it is shown in practice that gives good results while being robust to
hyper-parameter settings [KB14]. In this work, we ran the experiment with computation
nodes equipped with 32 NVIDIA GTX 1080 Ti graphics processing units (GPUs). Each of
it has 11 Gigabytes of GPU memory and 3584 GPU cores. Specifically, we implement the
experiment with the PyTorch [PGC'17] computing framework in order to leverage the
GPU computation.
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4 Datasets

We consider four datasets covering the main types of SCA scenarios. The first dataset
considered has no countermeasures and a small level of noise. This dataset represents
an ideal attack target (and one not seen often in reality) and is a good indicator of the
best possible behavior of the attack technique. The second dataset again does not have
any countermeasures but has a high level of noise. Consequently, it represents a difficult
target for profiled techniques since the high level of noise makes the boundaries among
classes fuzzy. The third dataset implements a random delay countermeasure, which makes
it a realistic example of a dataset one could encounter in actual implementations. Finally,
the last dataset has a masking countermeasure, which is probably the most widespread
technique of SCA protection nowadays.

4.1 DPAcontest v4 Dataset

DPAcontest v4 provides measurements of a masked AES software implementation [TEL14].
As the masking is found to leak first-order information [MGH14], we consider the mask
to be known and thus turn the implementation into an unprotected scenario. It is a
software implementation with most leaking operation not being the register writing but
the processing of the S-box operation and we attack the first round. Accordingly, the
leakage model changes to

Y(k*) =Sbox[P,® kK |® M (10)

known mask

where P; is a plaintext byte and we choose i = 1. The measured signal to noise ratio
(SNR) attains a high maximum value of 5.8577. The measurements consist of 4000
features around the S-box part of the algorithm execution. This dataset is available at
http://www.dpacontest.org/v4/.

4.2 Unprotected AES-128 on FPGA (AES_HD) Dataset

Next, we target an unprotected hardware implementation of AES-128. AES-128 core
was written in VHDL in a round based architecture, which takes 11 clock cycles for each
encryption. The AES-128 core is wrapped around by a UART module to enable external
communication. It is designed to allow accelerated measurements to avoid any DC shift
due to environmental variation over prolonged measurements. The total area footprint
of the design contains 1850 LUT and 742 flip-flops. The design was implemented on
Xilinx Virtex-5 FPGA of a SASEBO GII evaluation board. Side-channel traces were
measured using a high sensitivity near-field EM probe, placed over a decoupling capacitor
on the power line. Measurements were sampled on the Teledyne LeCroy Waverunner 610zi
oscilloscope. A suitable and commonly used distance leakage model when attacking the
last round of an unprotected hardware implementation is the register writing in the last
round [TEL14], i.e.,

Y(k*) = sbox[Ci@ k] & O (11)

previous register value ciphertext byte

where C; and C; are two ciphertext bytes, and the relation between 7 and j is given through
the inverse ShiftRows operation of AES. We choose i = 12 resulting in j = 8 as it is one

of the easiest bytes to attack. These measurements are relatively noisy and the resulting
var(signal) _ wvar(y(t,k*))
’ war(noise) — wvar(xz—y(t,k*))

value of 0.0096. In total, 1 000 000 traces were captured corresponding to 1 000 000 randomly
generated plaintexts, each trace with 1250 features. As this implementation leaks in HD

model-based SNR (signal-to-noise ratio), i.e. , with a maximum
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model, we denote this implementation as AES__HD. This trace set is publicly available at
https://github.com/AESHD/AES HD_Dataset.

4.3 Random Delay Countermeasure (AES_RD) Dataset

As a use case for countermeasures, we use protected (i.e., with a countermeasure) software
implementation of AES. The target smartcard is an 8-bit Atmel AVR microcontroller. The
protection uses random delay countermeasure as described by Coron and Kizhvatov [CK09).
Adding random delays to the normal operation of a cryptographic algorithm has as an
effect on the misalignment of important features, which in turns makes the attack more
difficult to conduct. As a result, the overall SNR is reduced. We mounted our attacks
against the first AES key byte, targeting the first S-box operation, i.e.,

Y (k*) = Sbox[P; & k*], (12)

with ¢ = 1. The dataset consists of 50000 traces of 3 500 features each. For this dataset,
the SNR has a maximum value of 0.0556. Recently, this countermeasure was shown to
be prone to deep learning based side-channel [CDP17]. However, since its quite often
used countermeasure in the commercial products, while not modifying the leakage order
(like masking), we use it as a target case study. The trace set is publicly available at
https://github.com/ikizhvatov/randomdelays-traces. In the rest of the paper, we denote
this dataset as the AES RD dataset.

4.4 ASCAD Dataset

Finally, we test our architecture on the recently available ASCAD database [PSBT18].
The target platform is an 8-bit AVR microcontroller (ATmega8515) running a masked
AES-128 implementation and measurements are made using electromagnetic emanation.

The dataset follows the MNIST database and provides 60 000 traces, where originally
50000 traces were used for profiling/training and 10000 for testing. We use the raw traces
and use the pre-selected window of 700 relevant samples per trace corresponding to masked
S-box for i = 3. As a leakage model we use the unprotected S-box output, i.e.,

Y (k*) = Sbox[P; & k*]. (13)

Interested readers can find more information about this dataset at [PSB*18]. This dataset
is available at https://github.com/ANSSI-FR/ASCAD. Note that, the model in Eq. (13)
does not leak information directly as it is first-order protected and we, therefore, do not
state a model-based SNR. The SNR for the ASCAD dataset is ~ 0.8 under the assumption
we know the mask while it is almost 0 with the unknown mask.

4.5 Feature Importance

In Figure 2, we depict the most important features for all considered dataset. To investigate
the feature relevance, we use the Random Forest (RF) classifier [Bre01]. Random Forest
algorithm enables easy measuring of the relative importance of each feature on prediction.
Random Forest (RF) is an ensemble decision tree learner composed of a number of decision
trees [Bre01]. A decision tree is a classifier expressed as a recursive partition of the
instance space. The decision tree consists of a number of internal nodes. An internal node
represents a feature, a branch is the outcome of a condition tested on a node, and a leaf is
a node without children. A leaf represents the class label, i.e., the decision taken after
computing all features. Decision trees choose their splitting features from a random subset
of k features at each internal node. The best split is taken among these randomly chosen
features and the trees are built without pruning. Random Forest is a stochastic algorithm
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because of its two sources of randomness: bootstrap sampling and feature selection at
node splitting. Note, RF classifier is often used in the SCA context with very good results,
see e.g., [MPP16,PHJ*18]. For this experiment, we use 500 trees, with no limit to the
tree size. Note that on the y-axis, we depict the Gini importance. Gini Importance (Mean
Decrease in Impurity) calculates each feature importance as the sum over the number of
splits and across all trees that include the feature, proportionally to the number of samples
it splits.

For DPAcontest v4, there is a region containing all the relevant features. For the
ASCAD dataset, we still observe some regions with more important features while for the
AES_HD and AES_RD datasets, there appears to be no single region where important
features are concentrated. This means that for the DPAcontest v4 dataset, one could easily
preselect only the most important features. For other datasets, such step is much more
difficult and for simpler machine learning techniques (or pooled TA) it is problematic to
cope with a large number of features. Since CNNs work with raw features, they are able
to use the wide-spread information much better. Note, one option to reduce the number
of features and yet use the information from the whole trace is to use PCA.
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Figure 2: The feature importance derived from the Random Forest classifier. A higher
value indicates corresponding feature dimension is relatively more important than the
others. The values are normalized such that the sum of all the importance equals 1.

In Table 1, we sum up the details about the datasets as used in our experiments. Note
that, while the CNN architectures take as input the complete measurement trace and
therefore all features, TA (pooled) needs a pre-selection. For the datasets of DPAcontest
v4, AES _HD, and AES_RD we select 50 features with the highest absolute correlation
coefficient between the measurement traces and the corresponding leakage model Y (k*). As
for the ASCAD database the leakage model is not directly correlated with the measurement
traces, we follow the approach in [PSB'18] and perform a PCA and select the 15 most
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Table 1: Statistical information for all considered datasets. Note, for ASCAD, we show
two values for SNR where the first one is for the scenario if the mask is known while the
second value is for the unknown mask.

Dataset Nr measurements Nr features SNR Countermeasure
DPAcontest v4 100000 4000 5.8577 -
AES HD 100000 1250 0.0096 -
AES_RD 50000 3500 0.0556 Random delay
ASCAD 60000 700 ~ 0.8/0 Masking

relevant components.

4.6 Data Preparation

When considering machine learning techniques, we divide the dataset into training, valida-
tion, and testing parts. The testing set in our experiments has 25000 measurements while
the training set equals 0.8 - (T' — 25000), where T is the total size of the dataset. The
validation set equals 0.2 (T'—25000). We use the 10 randomized splits for the experiments.
For every trial, we randomly choose validation and training traces out of the entire trace
pool except the held-out test traces. The obtained results are then averaged to produce
the final estimation.

This particular splitting method often called as repeated random subsampling or Monte
Carlo cross-validation [Sim07], has an advantage that the number of samples in the
validation set is not dependent on the number of trials since in this case, the training and
validations sets across the trials are not disjoint as the k-fold cross-validation. Compared
to the relatively large number of classes we need to deal with, a number of our benchmark
datasets contain limited training sets after holding out 25000 testing traces. This makes
the number of validation traces even smaller to the point where we have only approximately
10 traces per class if 10-fold cross-validation is applied. To reduce the instability occurring
by a small validation set, we decided to increase the validation ratio to 20%, which again
limits the number of folds to 5 when k-fold cross-validation is applied. By applying the
repeated random sampling strategy, we could test our model with a larger number of
validation traces per class with 10 folds, which is suggested in [Sim07], where the variability
across the folds is sufficiently reduced. Since for TA we do not require a validation set, the
training set simply equals T" — 25 000.

5 Experiments

In this section, we start by providing results for our RD neural network, ASCAD neural
network, and template attack (pooled) for two noise levels: @ = 0 and « = 0.5. Afterward,
we give additional experiments with different levels of noise in order to explore its limitations.
As for the training, we run both of the neural networks for 75 epochs per each dataset,
except the AES_HD dataset, where the networks are trained for 300 epochs. For every
training, we monitor the validation accuracy to keep the best model in terms of validation
performance during the training even for the case when the validation performance is
decreased due to the overfitting. Finally, we explore the influence of the level of noise, the
number of epochs, and the profiling dataset size on the performance of the attack.

5.1 Results

When presenting the results, we adopt the following setting: we present the results for
each fold as well as the averaged results. Note, the averaged results are what we usually
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use in SCA to assess the performance of a machine learning-based classifier. We believe
this not to be a requirement and we discuss in Section 6.3 how the results of each fold
could be used in a practical attack.

5.1.1 DPAcontest v4 Dataset

The results on the first dataset we consider are given in Figure 3 and represent DPAcontest
v4, which is the easiest dataset since we consider it without countermeasure and the
measurements have a small level of noise. The RD network is able to reach very good
behavior where it requires only a few traces to break this implementation. Next, we see
that the behavior after noise addition improved significantly. More precisely, GE results for
RD network with noise addition improve by almost double when compared to the results
without artificial noise addition. When looking at each fold separately, we see that most of
the folds with noise are better than the folds without noise. Interestingly, there is one fold
that is several times better than the average behavior with noise. For the ASCAD network,
we see that DPAcontest v4 is not an easy dataset. In fact, we do not see any decrease in
GE with the increase in the number of traces. Differing from the RD network, here we see
that adding noise actually even slightly decreases the performance. When considering each
fold, we see a number of folds improving with the increase in the number of traces and
added noise but we also see opposite behavior for certain folds. For the pooled TA, we
see that the addition of noise helps and actually we are able to break this implementation
with only 2 traces. Finally, we see that the TA behavior per fold is consistent with the
averaged results and that all folds with added noise perform better when compared to the
scenario without noise.

5.1.2 AES_HD Dataset

In Figure 4, we give the results for AES__HD, which exhibits quite a different behavior from
DPAcontest v4. Still, this is not unexpected due to a much higher level of environmental
and algorithmic noise. For the RD network, we see for a number of folds very good behavior
but unfortunately, there are some folds that actually deteriorate with the increase in the
number of traces. Note that, this behavior might be still exploitable (similar to ghost
peaks for correlation [BCOO04]) or even be preventable. When averaged, we see a slow
improvement with the increase in the number of traces but GE stays quite high even for
the complete test set. The addition of noise helps only when the number of traces is small
and there is a point around 15000 traces where the behavior is the same for the network
with and without noise. A very different behavior is seen for the ASCAD network. Here,
we see that for all folds GE reduces with the increase in the number of traces and that
artificial noise is beneficial for breaking this dataset. When comparing the behaviors of the
ASCAD network and the RD network, we see that the ASCAD network outperforms the
RD network. For TA, we see that added noise does not help but both scenarios improve
with the increase in the number of traces. For the behavior per fold, we observe that the
best behavior is for several folds without noise. Still, there are folds with added noise that
exhibit better performance than a number of folds without noise. Note, the behavior of
TA is superior when compared with the RD network but much worse when compared with
the ASCAD network.

5.1.3 AES_RD Dataset

The results for the AES RD dataset are given in Figure 5. This dataset contains a
countermeasure in the form of random delays and the behavior of the considered classifiers
is very interesting. First, we see that the RD network exhibits superior performance where
for all folds GE decreases with the increase in the number of traces and the results with
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Figure 3: Guessing entropy results for the DPAcontest v4 dataset.
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164 Unleashing the Power of Convolutional Neural Networks

——Averaged Folds noise added | |
- - -Averaged Folds original data

——Folds noise added | |
- - -Folds original data

Guessing entropy
Guessing entropy

1 2 3 a 5 10 1 2 3 a 5 6 7 8 9 10
Number of traces Number of traces
(a) RD network per fold. (b) RD network averaged.

—Folds noise added
- - -Folds original data

—— Averaged folds noise added

- - - Averaged folds original data

Guessing entropy
Guessing entropy

50 -eee

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500

(c) ASCAD network per fold. (d) ASCAD network averaged.

——Averaged folds noise added
- - - Averaged folds original data

Guessing entropy
Guessing entropy

. I I I . . I I . I . I
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Number of traces Number of traces

(e) Pooled template attack per fold. (f) Pooled template attack averaged.

Figure 5: Guessing entropy results for the AES_RD dataset.

artificial noise are much better than those without noise. When averaged, we see that we
require only up to 3 traces to break the random delay countermeasure implementation.
For the ASCAD network, the noise is beneficial since it reduces GE with the increase in
the number of traces for all folds, while for the scenario without noise, we see a number of
folds that do not improve with the increase in the number of traces. When considering
averaged results, to break this implementation we need around 300 traces, which is 100
times more than for the RD network. Finally, considering TA, we see that the results with
noise are somewhat better than the case without noise. For behavior per fold, we see that
the best performance is for two folds with noise while the worst performance is for two
folds without noise. We note that the required number of traces for TA to reach the same
performance as the RD network is more than 20 000.

5.1.4 ASCAD Dataset

Finally, we give results for the ASCAD dataset in Figure 6. Note that the results given
here slightly differ from those given in [PSBT18]. This is natural since we use fewer traces
in the training phase. When considering the RD network, we see that all folds improve
with the increase in the number of traces but for some folds that improvement is very slow.
It is difficult to say whether adding noise helps here since the results are very similar and
only after a few hundreds of traces we see that added noise behaves better than no noise.
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Figure 6: Guessing entropy results for the ASCAD dataset.

Next, we see that the ASCAD network shows slightly worse performance than the RD
network if we consider scenarios without added noise. This is somewhat surprising since
the ASCAD network was developed especially for the ASCAD dataset and intuitively one
would expect that a network which is thoroughly tuned for a certain dataset would perform
better than a network developed to perform well over a number of datasets. However, we
see a substantial increase in the performance of the ASCAD network once the noise is
added. Finally, since pooled TA cannot break this implementation, we depict the results
for template attack. For a small number of measurements, we see that TA is the most
successful method while if considering more than 300 traces, TA and ASCAD perform
similarly. TA performs significantly better without added noise for all folds as well as for
the averaged performance.

5.2 Noise Addition

In this section, we present results for the RD neural network and all datasets where we
investigate different levels of noise. We consider both the averaged behavior and the
behavior per folds. Besides considering the noise level a = 0.5 as in the previous section,
now we also experiment with @ = 0.25, @ = 0.75, and o = 1. Figure 7 depicts the
obtained results for the RD network and all datasets. For completeness, we also include the
results when a = 0 for averaged scenarios. For DPAcontest v4, we see that all considered
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noise levels result in the decrease of GE with the increase in the number of traces. The
best result for a fold is obtained with e = 0.5 but the best averaged result is for o = 1.
This result is somewhat expected as DPAcontest v4 is easy to classify when given enough
training samples, and adding extra noise simply makes the model even more distinguishable
among different classes. The noise level a = 0.75 shows a slight deviation from the other
experiments since the decrease in GE is slower when compared with the other noise levels.
Finally, when considering no added noise scenario, we can see that it works the worst in
the case of a very limited number of available traces.

The second scenario, AES__HD shows that a = 1 is too much noise when considering
the full training data and GE is actually increasing with the number of measurements.
Since AES__HD is a very noisy dataset, here the smaller level of noise a = 0.25 behaves
the best when considering the full training data where the model is approximately well
defined. The results for noise levels o = 0.5 and « = 0.75 are similar and they even overlap
at around 20000 measurements. Here, we see the best performance for the smallest noise
level and then for each higher noise level, we see a degradation in the results.

For AES_RD, a = 1 exhibits the worst mean behavior while the other noise levels
behave very similarly (notice that o = 0.25 and a = 0.75 behave almost the same). Still,
when considering averaged results, we see that a = 0.5 performs the best with a slight
advantage over o = 0.25 and o = 0.75. Similar to the DPAcontest v4 dataset, the scenario
with no added noise exhibits the worst performance when the number of available traces is
very limited.

For the ASCAD dataset, we observe that @ = 1 does not work well as it results in
most of the folds with an increased GE for an increased number of traces. The noise level
a = 0.25 gives the best results here with a small advantage over a = 0.5 and a = 0.75.
Similar as for the AES__HD dataset, we see here that the higher the noise, the worse are
the results. The scenario without added noise is positioned in the middle — better than
a =0.75 and a = 1 but worse than v = 0.25 and o = 0.5.

As it can be observed, various noise levels can be successfully applied in order to improve
the generalizations of a classifier. Additionally, we see that the classifier is sensitive to the
changes in the noise level only to a certain extent, which indicates that for most of the
applications, it is not needed to tune the noise level to high precision. The noise level
equal to o = 0.5 shows a stable behavior over all datasets and can be considered as a
good choice in our experiments. Naturally, taking o = 0.25 would be also a viable choice,
especially considering the AES__HD dataset. We will make a further conclusion in the
next subsection when additionally epoch size and the training sample size is varied.

5.3 On the Levels of Noise, Profiling Set Sizes, and Number of Epochs

In order to investigate the effect of important hyper-parameters regarding model se-
lection, we conducted a series of experiments with different setups of three different
hyper-parameters: 1) the number of training traces, 2) the number of epochs, and 3) the
effect of noise addition for each case. We ran 10 independent runs for each combination of
noise levels and the number of training traces, using stratified random split as discussed in
Section 4.6. As for the epoch, we measured the validation and testing accuracy for every
epoch and for each run. The results are illustrated in Figures 8 to 11, considering RD
Network for each dataset.

Each plot contains 6 subplots with respect to the number of traces used in the training,
which spans in the range of {1024,2048,4 096, 8 196,16 384, full}. Since we applied the
stratified random split approach, the selected number of cases explicitly contain the equal
number of traces {4, 8,16, 32,64} per class. For the case of full, 80% of the entire training
set is used. We also indicated the random guess based line with the dotted red horizontal
line for each subplot. Each curve in the subplots indicates the evolution of accuracy
during the training process per various noise levels. The solid line indicates the mean
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Figure 11: RD Network on ASCAD dataset
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accuracy over 10 random splits, and the transparent range around the mean curve is the
95% confidence interval of the averaged curve, which is obtained by 1000 times of the
bootstrap process. For each bootstrap, 10 accuracy values are randomly re-sampled out of
the observation of the actual result from 10 folds with replacement. The 97.5% percentile
and 2.5% percentile of the mean of each randomly sampled accuracy is picked as the
confidence interval.

In general, across all datasets, the results show that the noise addition helps the
training process to become more reliable, especially when both the number of training
traces (N > 4096) and the noise levels (a > 0.5) are higher. The accuracy of the model
without noise addition starts to degrade relatively early and the variance is increased, while
the models regularized by the noise addition are improved for the longer training period,
with less variance. This effect is especially visible on cases where the dataset is relatively
easy to predict, such as DPAcontest v4 or AES_ RD. For example, in Figure 10 we see that
for sample size N = 16 384 the accuracy without noise addition does not further increase
the value of 0.01 when using more than 50 epochs, however, when adding additional noise
with @ = 0.25 we observe a large increase in accuracy (from 0.025 to 0.175) between 50
and 150 epochs.

The results also show that the accuracy is improved with similar setups (levels of noise,
number of training traces). This is again observable more clearly in the easier datasets but
also shown for most of the cases except the ASCAD dataset. Here, the RD network shows
a short peak in the earlier part of the training even without noise, which is comparable to
the best performance of later improvement from the cases with noise.

Next, we observe that the number of training traces generally suggests a positive
effect on accuracy. It is surprising that datasets (especially the easier ones) show good
performance even with a small number of traces such as 1024, 2048, or 4096, where the
number of traces per class is only 4, 8, and 16. For DPAcontest v4 and AES__RD, the best
accuracy achieved with this setup reaches to {0.02,0.125,0.35} and {0.005,0.006,0.22},
respectively, which are substantially better than the random baseline. In the case where
the ASCAD model is used on the ASCAD dataset, while the performance is also both
getting more reliable and improved, it shows a boundary approximately at 0.5%, where
the model hardly shows better accuracy even at the best scenario we tried.

Finally, the results suggest that a higher regularization with a larger noise can be
helpful for obtaining the best model more reliably. As described in Section 3.3, one can
obtain a model with a minimal generalization error if the monitoring is ideal. However, the
reliability of such monitoring also depends on the stability of the training. If the variance
between the monitoring metric is high, there is less chance to obtain the best model. This
implies that the properly regularized training is not only advantageous for the distribution
of the best possible accuracy values but also helpful for reliably drawing the best model
out of such range.

When considering GE, we explore the influence of the levels of noise and profiling
dataset size. Since we run neural networks until the performance starts to deteriorate, we
have only one number of epochs for each experiment, which represents the best solution
for accuracy.

For DPAcontest v4, in Figure 12a we can observe that added noise improves the
performance when the profiling dataset size is small. Interestingly, for sample size N = 1024,
the best performance is achieved with o = 1, where we only need 1 trace to reach a GE
below 20. Without adding noise (i.e., « = 0.0), we require 40 traces. For larger sample
sizes N > 2048 the effect of adding noise does not depend significantly on the magnitude
of the noise, and for N > 8012, we cannot depict any difference between applying noise
addition and using original data. This effect may be surprising at first sight, but when
considering that for N = 1024 we only have 4 samples per class, it becomes intuitive
that adding a higher amount of noise helps to generalize. The more training samples are
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Figure 12: Guessing entropy results for different levels of noise and number of profiling
traces.

available to learn, the less the effect of noise addition.

Interestingly, similar effects are visible on the AES_HD dataset. In Figure 12b we can
see that for training sizes above 1024, a = 0.25 is able to reach GE < 50. This is inline
with our previous results (see Figure 7c). Again, for lower sample sizes, & = 1 achieves the
best results, whereas for N > 4096, o = 0.25 is the most efficient one. For N > 16 384 we
observe that oo = 0.75 reaches the best performance, whereas without noise addition the
results are worse than for all noise levels that are able to reach the GE threshold.

Figure 12c gives results for the RD Network on the AES RD dataset. Basically,
throughout all sizes of training samples, adding noise is more efficient than using the
original dataset. In particular, we see that o = 0.25 performs the best. For N = 4096 all
noise levels below 1 become nearly equivalent, where we need only three traces to reach a
GE of 20, whereas without adding noise we require 1600. For N = 8012 all noise level
perform similarly by requiring two traces, whereas without adding noise we still require
600 traces. For N = 16 384 and the full dataset, the difference becomes smaller. We would
like to emphasize that these results may not be intuitive for the SCA community, but they
show the requirement of generalization for deep learning architectures for SCA.

For the ASCAD dataset, we observe again that for N = 1024 adding noise with a =1
performs the best. For N = 4096, o = 0.5 and for the full dataset, o« = 0.25 performs
the most efficiently, however for N = 2048, 16 384 we see that the original dataset has an
advantage. This effect may be due to the general reduced performance of the RD network
on the ASCAD dataset as seen in Subsection 5.1.4.
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6 Discussion

In this section, we start by presenting several conclusions we consider to be relevant for
SCA with machine learning techniques. Next, we discuss the design principles of CNNs,
with a special emphasis on a difference between architecture and instance of an architecture.
Finally, we give several possible future research directions.

6.1 General Findings

1. It seems impossible to develop a single neural network that will show su-
perior performance over all SCA scenarios. When discussing the performance
of CNN classifiers, we observe that different neural networks perform well when
considered over a number of scenarios. Still, the “No Free Lunch” theorem states that
there cannot be a single best supervised classifier for all possible problems [Wol96].
Since the scenarios we need to consider in SCA are quite diverse with the respect to
the number of measurements and features, levels of noise, and applied countermea-
sures, we consider as the only viable option to develop a suite of classifiers that are
tuned to perform excellently for a specific problem. One example is the RD network
and its behavior for the Random Delay dataset. Finally, we note that although we
used different design principle for the RD network, the end result is similar to the
neural network designed in [PSB*18]. Interestingly, despite the similarities in the
design, those two neural networks show very different behavior for different datasets.

2. It is possible to enhance the robustness of the model against the noise
by adding Gaussian mean-free noise. We show how the addition of noise can
be actually beneficial in the process of classification since it enhances the robustness
of the model in the presence of noise. Although it might sound counter-intuitive to
add more noise in order to fight against noise, it is well-known that adding artificial
noise to the input data is equivalent to adding regularization term to the objective
function. Our results show that the added noise benefited both CNNs and even
in certain cases (pooled) template attack. We emphasize the case of the ASCAD
network that was tuned for the ASCAD dataset and yet, additional noise improved
the results significantly. Additionally, our results show that our findings hold for both
small training datasets as well as the larger ones. Even more, our results indicate
that for smaller datasets the amount of noise added should be higher than for larger
training datasets.

3. When conducting experiments with cross-validation, i.e., using a number
of folds, it is possible that the performance over folds will be extremely
varying. Our experiments show that a neural network with good performance
for a certain dataset can actually exhibit both good and poor performance when
considering separate folds. We hypothesize that the difficulty of a given classification
task is relatively high, which eventually forces the accuracy to stay very close to
the random guess. This means that the variability occurred by the other stochastic
components in the experimental framework, such as the random split in the cross-
validation can have a substantial magnitude of the variance. Such variability tends
to make the model tuning process difficult. Our empirical result suggests that in
general, the variability tends to decrease by applying a certain amount of the noise
to the input signal. We hypothesize that such results imply the regularization can
be used as one of the countermeasures to reduce such variability.

We also applied cross-validation when using TA/TA pooled, where different folds
as well show varying behaviors. We therefore believe that in future works on the
evaluation of side-channel attacks the concept of cross-validation should be applied
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to machine-learning and deep learning algorithms as well as classical side-channel
attacks.

4. Attacking a dataset with a countermeasure (AES__ RD) can be easier than
attacking unprotected dataset (DPAcontest v4). In the SCA community, the
DPAv4 dataset (assuming the mask is known) is considered as one of the easiest
targets known. Adding countermeasures such as the random delay is expected to
improve the resistance against SCA. Interestingly, with our new network, we are
able to reveal the secret key in the AES_RD dataset with fewer traces than for the
DPAcontest v4 dataset. This could imply that the addition of a countermeasure may
even help to reveal sensitive information for CNNs.

6.2 CNN - Architectures, Design Principles, and Instances

One of the fundamental differences between the traditional Machine Learning (ML) algo-
rithms and Deep Neural Network (DNN) is the degree of freedom on the parametrization.
While many classical machine learning algorithms have relatively small freedom on struc-
turing the parametric model, DNN, on the other hand, can be defined in much more
diverse parametrization due to the non-linearity. The non-linearity applied after affine
transformation allows the cascading learning layers to have increasingly expressive power as
the network getting “deeper”. It ultimately allows one to “design” a parametric structure
to optimize the expressive power to effectively encode the complex, non-linear input signal.

Consecutively, due to the exponentially increasing number of parameters, it is a common
practice to start the architecture from the existing design principles that usually have
been developed from the machine learning domain. As we introduced already, VGG is one
of the most successful architectures adopted for a number of other application domains
including speech, video, and music. Even though one starts their model configuration
from such a “template”, there is still a substantial amount of freedom to reach the optimal
architecture according to the given task and dataset. The common practice is the heuristic
search on the hyper-parameters of interest such as the previous works already introduced
in the side-channel analysis domain [PSK*18, PSBT18]. On the other hand, one can also
find a more specific “instance” that is proven as prominent in other domains especially if
there is a considerable commonality on the characteristics of the signal between the two
domains.

Such instantiation is necessary especially for CNNs, since the details regarding the
configurations often depend on the shape of the input signal. Consequentially, it is not
trivial to find a single CNN configuration that works optimally on multiple datasets,
unless the CNN is designed specifically to have the time-invariance by applying causal
convolution [ODZT16].

Hence, every instantiation from a certain design principle can be seen as a “new” archi-
tecture unless they have used the exact same architecture that was developed previously,
since an architecture may be a merely another perspective of “parametrization”. Likewise,
it does not necessarily mean that another instantiation is always “novel” if the design does
not have genuine novelty. On the other hand, such novelty is again possibly irrelevant to
the practical performance. Our empirical results show that the two models used here are
essentially instantiated from a very similar design principle, which means they might not
be novel architectures while their performance varies significantly across the datasets.

6.3 Future Work

When considering noise addition, one could envision it as a form of adversarial learning
where we add noise to make the classifier more robust, i.e., resilient against perturbations
in the input. This adversarial learning could be considered relatively weak since the noise
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is a random Gaussian and not specifically crafted to make the classification process as
difficult as possible. Naturally, if the attacker on the machine learning system (which
would be in this case an SCA countermeasure) would use a random Gaussian noise, then
our noise addition could be considered as adversarial learning. But we can extend this
line of thought further to what we believe to be even more interesting perspectives. It is
well-known that TA is the most powerful attack in the information theoretic way but in
practice, we see that is often not the case. Consequently, for many difficult (and hence)
realistic scenarios we see that machine learning techniques are actually the most powerful
attacks. Then, a countermeasure specifically designed against machine learning attacks
could be a very powerful option although already random delay or masking could be
considered as forms of adversarial examples. As a future work, we plan to investigate how
to use more advanced types of adversarial examples as countermeasures in SCA.

As mentioned in Section 5, we observe an interesting behavior when considering folds.
More precisely, for certain scenarios, some folds exhibit extremely good behavior while
other folds even deteriorate with the increase in the number of measurements. When
averaged, the behavior improves with the increase in the number of traces but much less
than for the best fold. The question is whether it would be possible to use separate folds
information for a successful attack. Since in realistic scenarios we do not know the correct
labels for the test traces, the only way to test the performance of the model is to try
to obtain the secret key. The same setting can be used for each fold (thus, in a way,
considering a smaller profiling dataset). There are two variations how to conduct such
experiment: 1) after each fold is constructed, try to break the implementation by using
the model for that fold, or 2) obtain all folds and use the best one to try to break the
implementation. The first technique could improve on computational complexity since less
calculation is needed. The second scenario could improve on attack performance since one
could decide not to use the fold that exhibits poor performance.

Finally, as Figure 9 shows, an extremely unoptimized model might result in a perfor-
mance level near random guess. This leads the model’s predictive power in a random way
so that guessing entropy is not improved regardless of the number of traces that are used
during the attack phase. For the future work, more in-depth investigation of the condition
where such underfitting happens seems required.

7 Conclusions

In this paper, we concentrate on one type of deep learning that showed potential in the
context of profiled SCA — Convolutional Neural Networks. We adapt a CNN design
principle successfully applied in a different domain but to the same type of signal, i.e.,
1-dimensional signal. With this CNN, we are able to reach high performance over 4
considered datasets where we emphasize the behavior on the dataset with the random delay
countermeasure. There, to break it, we require only 3 traces, which is, to the best of our
knowledge, a result surpassing anything that can be found in the literature. At the same
time, we experiment with another CNN that has a similar design but exhibits significantly
different behavior for the investigated dataset. We believe that in the SCA context, we
can discuss general design principles that will work well over a number of datasets but
still the specific instantiations need to be tuned for specific scenarios. Consequently, there
is a need for a suite of high performing CNN instances (and possibly other types of deep
learning and design principles) that will cover relevant scenarios in SCA.

Besides considering different CNN architectures/instances, we also explore how to
make such designs more robust, i.e., how to enable them to better generalize to previously
unseen data. There, we see that adding the Gaussian noise can help significantly in the
classification process. In this context, we especially mention two scenarios, the Random
Delay dataset with the RD neural network where after the addition of noise we require
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only 3 traces to break the cryptographic implementation. The second case is the ASCAD
neural network and the ASCAD dataset. There, despite the fact that the ASCAD network
was designed for the ASCAD dataset, we still see a significant boost in the performance
obtained if we add noise. We conduct additional experiments with the RD network and
differing levels of noise, number of epochs, and training dataset sizes to show the validity
of our approach for a wide variety of settings.

To conclude, we propose to consider noise addition as a standard technique in the SCA
evaluation for deep learning techniques. Besides that, we believe there is a need to build a
suite of CNN-based side-channel analysis. We consider the RD neural network and the
ASCAD neural network to be good choices to be included in such a suite.
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