

Delft University of Technology

Fixing Continuous Integration Tests From Within the IDE With Contextual Information

Boone, Casper; Brandt, Carolin; Zaidman, Andy

DOI
10.1145/3524610.3527908
Publication date
2022
Document Version
Final published version
Published in
Proceedings - 30th IEEE/ACM International Conference on Program Comprehension, ICPC 2022

Citation (APA)
Boone, C., Brandt, C., & Zaidman, A. (2022). Fixing Continuous Integration Tests From Within the IDE With
Contextual Information. In Proceedings - 30th IEEE/ACM International Conference on Program
Comprehension, ICPC 2022: Proceedings (pp. 287-297). Article 9796168 (IEEE International Conference
on Program Comprehension; Vol. 2022-March). IEEE. https://doi.org/10.1145/3524610.3527908
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3524610.3527908
https://doi.org/10.1145/3524610.3527908

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Fixing Continuous Integration Tests FromWithin the IDE With
Contextual Information

Casper Boone
Delft University of Technology

The Netherlands

mail@casperboone.nl

Carolin Brandt
Delft University of Technology

The Netherlands

c.e.brandt@tudelft.nl

Andy Zaidman
Delft University of Technology

The Netherlands

a.e.zaidman@tudelft.nl

ABSTRACT

The most common reason for Continuous Integration (CI) builds to

break is failing tests. When a build breaks, a developer often has

to scroll through hundreds to thousands of log lines to find which

test is failing and why. Finding the issue is a tedious process that

relies on a developer’s experience and increases the cost of software

testing. We investigate how presenting different kinds of contex-

tual information about CI builds in the Integrated Development

Environment (IDE) impacts the time developers take to fix a broken

build. Our IntelliJ plugin TestAxis surfaces additional information

such as a unique view of the code under test that was changed

leading up to the build failure. We conduct a user experiment and

show that TestAxis helps developers fix failing tests 13.4% to 48.6%

faster. The participants found the features of TestAxis useful and

would incorporate it in their development workflow to save time.

With TestAxis we set an important step towards removing the

need to manually inspect build logs and bringing CI build results

to the IDE, ultimately saving developers time.

KEYWORDS

Software Testing, Continuous Integration, Developer Assistance,

IDE Plugin, User Experiment

ACM Reference Format:

Casper Boone, Carolin Brandt, and Andy Zaidman. 2022. Fixing Continuous

Integration Tests From Within the IDE With Contextual Information. In

30th International Conference on Program Comprehension (ICPC ’22), May

16–17, 2022, Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3524610.3527908

1 INTRODUCTION

Continuous Integration (CI) is a wide-spread practice in both in-

dustry and open-source projects [20, 32, 43]. Its goal is to detect

issues as soon as possible by providing feedback before a change

makes it to production. This avoids defects but also increases devel-

oper productivity [24], accelerates release frequency [18, 20], and,

improves communication of changes [16].

A typical CI build comprises building the application to en-

sure the code compiles, executing the tests to check whether the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC ’22, May 16–17, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3527908

application still works as expected, and running static analysis

tools [4, 35, 36] to safeguard the quality of the codebase [17]. If

any of these steps fail, the whole CI build is considered to be

“broken”. Failing tests are the most common reason for build fail-

ures [8, 26, 38].

When a build breaks, the developer has to find and investigate

the cause of the build failure. The typical steps for a developer en-

countering a build failure are: inspecting the build log, developing

a hypothesis about why the build is failing [41], confirming this

hypothesis in their local development environment, and finally im-

plementing a fix [37]. CI build logs typically consist of hundreds to

thousands of lines and contain a lot of irrelevant information [13],

which leads to developers feeling overwhelmed by the amount of

detail [2], and through the verbosity it becomes hard to pinpoint

bugs and their causes [40]. This makes finding the root cause of

the failure a tedious and challenging process that relies on a devel-

oper’s experience and intuition [19, 37] which increases the cost of

software testing [33].

CI platforms offer limited inspection and debugging function-

ality compared to a local development environment [20]. After

developing an intuition with the build log on the CI platform, the

developers have to switch to the context of their integrated devel-

opment environment (IDE) for further investigation. Debugging

assistance that obviates the need for manual build log inspection

would support developers in the build-fixing process [19].

We conjecture that developers could fix broken builds faster if we

provide richer, contextual information about their CI builds directly

in their IDE. One advantage is that this can combine the information

available to the CI server with the local information and presen-

tation in the Integrated Development Environment (IDE) to give

powerful insights about the test failures to developers. In this paper,

we investigate three different types of contextual information and

measure how they influence the developer’s failure-fixing behavior.

In particular we look at three kinds of contextual information:

(1) Test Outcomes and MetadataWe investigate showing in

the IDE which CI tests failed.

(2) Test CodeWe study showing the code of the test that failed.

(3) Changed Code Under Test Lastly, we explore showing the

production code targeted by the test that changed since the last

successful test run.

These three types of contextual information lead to these analo-

gous research questions:

RQ1

What is the influence of presenting the test outcomes and

metadata on the time a developer needs to fix a failing test?

287

30th IEEE/ACM International Conference on Program Comprehension

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Boone et al.

RQ2

What is the influence of presenting the test code on the time a

developer needs to fix a failing test?

RQ3

What is the influence of presenting the code under test, where

the changed code is highlighted, on the time a developer

needs to fix a failing test?

Apart from the impact on failure fixing time, we study how useful

developers rate the different kinds of contextual information with

the following research question:

RQ4

To what extent do developers consider contextual CI informa-

tion in the IDE useful?

We develop TestAxis, a plugin for the IntelliJ IDE that presents

CI build and test results. During CI builds, TestAxis captures in-

formation about test executions and coverage. The plugin notifies

the developer about the build outcome, shows all failing tests with

the name of the test, the failure message, and the corresponding

stack trace, obviating the need to look at the build log (RQ1). We

show the test code to help the developer understand the intent of

the failing test (RQ2). TestAxis also features an overview of the

relevant code under test (RQ3) by combining information about

which code was executed by a test and which code was changed

leading up to the build failure. We create a proof-of-concept imple-

mentation of TestAxis that we use to evaluate its effectiveness and

perceived usefulness. A demonstration of the plugin is available at

https://youtu.be/4sfnKsvqwKw.

In order to provide an answer to our research questions, we

perform a within-subjects experiment. After opening questions, we

ask participants to fix eight failing tests with and without the help

of TestAxis. The closing questionnaire asks participants about

the aspects they found most useful (RQ4). Our results show that

TestAxis helps developers fix tests failing on CI 13.4% to 48.6%

faster. The participants found the features of TestAxis useful and

would incorporate it in their development workflow to save time.

In summary, we contribute:

• An evaluation of the effect of providing CI test results with ad-

ditional context (such as the test code or the code under test) in

the IDE on the failure-fixing time performance.

• TestAxis: An IDE plugin for IntelliJ Platform IDEs that presents

and visualizes build and tests results with additional context to

the developer1.

• A publicly available dataset containing the data collected during

the experiments [10].

2 TESTAXIS

In this section, we lay out the design of TestAxis and illustrate

how it presents contextual information about the CI build and its

tests directly in the developer’s IDE.

1Available at https://github.com/testaxis/testaxis-intellij-plugin

Figure 1: An example of a build notification in TestAxis.

Figure 2: An example of the presentation of CI build test

results in the IDE implementation of TestAxis.

2.1 Build Notifications

When a CI build finishes, TestAxis pings the developer with a noti-

fication inside their IDE, eliminating the need for a context switch

to the CI platform and back. From the notification messages, the

developer is immediately guided to the other features of TestAxis

that may help solve the build failure. Figure 1 shows an example of

a build notification in TestAxis.

2.2 Presentation of Test Results

A core feature of TestAxis is presenting the CI test results in a

more accessible format than raw build logs, obviating the need to

inspect the build log manually. Figure 2 shows an example of how

TestAxis displays the test case executions grouped by their class,

similar to the IDE’s built-in test runner. This provides a familiar

experience and structure to the results, making it easier to identify

where in the system the failure occurs. For builds that fail due to

something other than tests, TestAxis indicates that the build has

failed due to a reason outside the scope of the tool.

2.3 Test Outcomes, Metadata and Test Code

When a developer inspects a failing test, TestAxis shows the test

name, whether the test passed, the run time, and the execution date.

As presented in Figure 3, TestAxis also shows the failure message

and the stack trace. The stack trace includes links to the mentioned

files or classes, which allows for quick navigation to the code which

is not available from a CI build log.

TestAxis presents the source code of the test, obviating the

need for manual search and navigation. Reading the test code may

help developers understand the intent of the test or spot obvious

mistakes quickly. Figure 4 shows an example of what this looks

like.

288

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

Fixing Continuous Integration Tests From Within the IDE With Contextual Information ICPC ’22, May 16–17, 2022, Virtual Event, USA

Figure 3: An example of the presentation of test failure details

in the IDE implementation of TestAxis.

Figure 4: An example of the presentation of test source code

in the IDE implementation of TestAxis.

/**
 * Creates a new pellet.
 *
 * @return The new pellet.
 */
public Pellet createPellet(int points) {
 return new Pellet(
 PELLET_VALUE,
 sprites.getPelletSprite()
);
}

/**
 * Creates a new pellet.
 *
 * @return The new pellet.
 */
public Pellet createPellet(int points) {
 return new Pellet(
 PELLET_VALUE,
 sprites.getPelletSprite()
);
}

/**
 * Creates a new pellet.
 *
 * @return The new pellet.
 */
public Pellet createPellet(int points) {
 return new Pellet(
 PELLET_VALUE,
 sprites.getPelletSprite()
);
}

A) Covered B) Changed C) Covered and Changed

Figure 5: An example of how combining coverage and change

information leads to more focused potential issues that re-

quire attention.

2.4 Changed Code Under Test

The goal of the changed code under test feature is to highlight the

parts of the production code that are likely to contain the issue

causing the test to fail. For each test, TestAxis separately collects

code coverage information during the CI build, a rather cheap

operation since most CI builds run the whole test suite already.

As most tests interact with multiple parts of a codebase [34], the

amount of covered code could still be too large for a developer to

investigate. Assuming that the test fails due to an intrinsic issue in

the code [27, 28], it is likely that the issue is located in a part of the

production code that was changed in the commits leading up to the

build failure. Since CI builds are commonly triggered after pushing

new commits, TestAxis makes use of the full change information

that is available through the version control system. Figure 5 shows

how TestAxis intersects code coverage and change information to

identify locations of interest to the developer. See Figure 6 to see

how these locations are presented within TestAxis.

Figure 6: An example of the changed code under test feature

in the IDE implementation of TestAxis.

Communicate
Build Results

Backend

Upload
Build Reports

CI Build Provider
Inspect

Build Results

IDE Plugin

User

1 2 31

Figure 7: System Overview of TestAxis.

2.5 Implementation

We created a prototype of TestAxis which we use as part of our ex-

periment. TestAxis consists of two main parts: the backend and the

IDE plugin, see Figure 7. TestAxis receives, processes and stores the

CI build results in the backend application and provides the results

to the IDE plugin that presents the results to the user. A demonstra-

tion of the plugin is available at https://youtu.be/4sfnKsvqwKw.

A developer can set up TestAxis by installing the IntelliJ IDE

plugin and signing in through GitHub or a TestAxis account. They

configure the provided build result upload script to be run as the

last step of their CI build. The upload script collects the test results

and coverage results of individual tests and uploads them to the

backend. By providing such a script, TestAxis does not depend

on particular CI build providers. The IDE plugin presents the user

with an access token that they can include in the new build step.

Both the backend and the IDE plugin are available open-source

on GitHub2.

3 STUDY DESIGN

TestAxis attempts to improve the time needed to fix broken builds

by presenting contextual information about the CI build in the de-

veloper’s IDE. We conduct a within-subjects experiment in which

developers try out TestAxis. Our goal is to measure how the time

needed to fix a failing test in a CI build is influenced by presenting

different kinds of contextual information in the IDE: the test result

RQ1, the test code RQ2, and the changed code under test RQ3. Fur-

thermore, we elicit whether developers consider TestAxis useful

RQ4.

3.1 Experiment Overview

Before the participants start the assignments, we ask them about

their demographics and show two instruction videos. One presents

the architecture and structure of the codebase of our example

project JPacman and the other one explains the functionality of

2Available at https://github.com/testaxis

289

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Boone et al.

TestAxis. During the experiment, the participants solve four as-

signments with and four assignments without TestAxis. We design

assignments in four different categories that target the kinds of

contextual information we investigate in our study. Per category,

we divide the participants into two groups so that each participant

conducts one assignment per category without and one assign-

ment with TestAxis. For each assignment, we present a CI build

that failed due to failing tests. The participants have to find out

which tests fail and why. Then, they have to come up with a fix.

The researcher measures the time in seconds until the participant

successfully fix the failing test. After each assignment, they filled

out a post-assignment questionnaire where we asked about what

they felt they spent the most time on. After the experiment, the

participants filled out a questionnaire asking about the usefulness

of TestAxis and its features.

3.2 Example Project

The assignments of the experiment ask participants to fix failing test

cases that attempt to mimic test failures that occur while working

on real software projects. The simulation of realistic test failures

requires that the designed test cases are part of a software project

that is sufficiently complex and close to real-life projects. We picked

JPacman, a simple Pacman-style game implemented in Java that is

written for software testing education. The codebase of JPacman is

small enough to be easy to understand within a short time. However,

it does not have a trivial implementation to ensure that developers

do not deviate from their usual behavior. The project has a variety

of unit tests, integration tests, and system/end-to-end tests that are

of a quality level comparable to an industry project. The project is

available open-source on GitHub3.

3.3 Assignment Design

We designed eight assignments in four categories. The categories

evaluate different aspects of the feature set of TestAxis. To keep

the maximum length of each experiment session reasonable, the

first three categories have a time limit of five minutes, while the

last has a time limit of ten minutes. The participants execute all

eight assignments, for each category one with and one without

TestAxis. In the overall experiment, each assignment is executed

eight times with and eight times without TestAxis.

Category 1: Test Outcomes and Metadata. For the assignments

in this category, the reason for the failure can be spotted

from the test failure metadata (the name of the test and the

stack trace). Figure 3 shows how TestAxis presents this

information. Figure 8 illustrates how one assignment from

this category is presented in both GitHub and TestAxis.

Category 2: Test Code. For the assignments in this category, the

reason for the failure can be spotted in the test code (Fig-

ure 4).

Category 3: Code Under Test – Simple. For the assignments in

this category, the reason for the failure can be spotted in the

code under test (Figure 6). In Figure 9 we present how an

assignment from this category is presented in both GitHub

and TestAxis.

3Our JPacman fork is available at https://github.com/testaxis/jpacman

Category 4: Code Under Test – Advanced. For the assignments

in this category, the reason for the failure can also be spotted

in the code under test. However, these assignments are more

advanced.

To mitigate learning or order effects, we randomize the order in

which the participants solve the assignments. For each of the eight

assignments, we compare the performance of both groups (with

and without TestAxis). To prevent any effects of the randomized

group selection, we use a crossover design: For each category, we

only determine an overall trend if both assignments show the same

trend when comparing the times with and without TestAxis. The

complete assignments are available in our replication package [10].

3.4 Participants

To conduct the experiment and gain useful insights about the results,

we needed to recruit a large enough number of participants. We

required participants to have experience with Java and CI. This

ensures a somewhat equal baseline and the ability for participants

to reflect on their CI build-fixing workflows. At the same time, we

wanted a diverse group of participants and therefore used a phased

participant recruitment process with different target audiences per

step. We first reached out to acquaintances, which are mostly (PhD)

students. Then, we placed a message on the internal messaging

platform of Computer Science teaching assistants of our institution,

with a similar target audience. To target industry developers, we

posted a collection of tweets on Twitter illustrating the capabilities

of TestAxis and asking for a developer’s help to improve the

project. Finally, we also posted on LinkedIn with the same target

audience in mind. To thank the participants for their time and to

increase engagement, we raffled four 15 euro gift cards among the

participants.

In total, 16 participants signed up for the experiment. The most

experienced participants have programmed for 12 years. The other

participants are relatively equally distributed between 4 and 12

years. 31.3% of the participants work in industry as a software en-

gineer, while the main occupation of the remaining participants is

student or PhD student. All participants have an academic back-

ground. The current or highest education level of most participants

is MSc (56.3%). The other participants were either BSc (25%) or PhD

students (18.8%) at the time of the experiment.

The 16 participants consider themselves to be experienced soft-

ware developers (● 4.0 4). They are experienced with develop-

ing Java applications (● 3.8) in IntelliJ (● 3.9). Some of the

participants have experience developing software applications pro-

fessionally (● 3.4), whereas others do not have any experience

in this area.
The participants are less experiencedwith software testing (● 3.6).

We observe that some of the participants indicated to be very expe-

rienced in testing, while others indicated to not be experienced at

all. The results on the experience with CI show a different trend.

The participants rate themselves as highly experienced in using CI

build tools (like Travis CI, GitHub Actions, or Jenkins; ● 4.2)

and inspecting the output logs when a build fails (● 3.9).

4To present the Likert-scale results we show the average score indicated by the purple-
colored dot. The small bar chart gives a rough indication of the distribution of the
answers that the participants gave.

290

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

Fixing Continuous Integration Tests From Within the IDE With Contextual Information ICPC ’22, May 16–17, 2022, Virtual Event, USA

Figure 8: Illustration of Assignment 1b, where the issue to be found can be spotted from the stack trace of the failing test: The

invalid character “!” in the map definition. On the left, the long stacktrace on GitHub that points to the failing test, on the

bottom the failing tests and error messages as TestAxis presents them.

Figure 9: Illustration of Assignment 3a, where the issue to be found is in the code under test. On the left, the long unfiltered list

of changes as presented in GitHub, on the bottom the prioritized list of covered changes as presented in TestAxis.

A minority of the participants have some previous experience

with the software project (● 2.4).

3.5 Experiment Execution

The experiment is approved by the Human Research Ethics Com-

mittee of our university and follows the guidelines set by the com-

mittee. At the start of the experiment, participants read and sign

an informed consent form indicating that they understand what

data will be collected and how it will be used. Before we conducted

the experiment, we first ran a pilot to evaluate the design of the ex-

periment and improved several aspects of our design and the tools

we used. We conducted the experiment in March 2021 for three

weeks in multiple sessions per day. Due to the COVID-19 pandemic,

the experiment was fully remote. All sessions were individual and

guided by an observer. During a session, the observer took notes

of interesting things that happened or were said during the experi-

ment and timed the assignments. A session took about 90 minutes,

depending on the time needed to fill out the questionnaires or solve

the assignments.

291

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Boone et al.

1a 1b 2a 2b 3a 3b 4a 4b

0

50

100

150

200

250

300

350

400

450

500

550

600 Assignment Variant
Without TestAxis
With TestAxis

Assignment

D
ur

at
io

n
(s

)

Figure 10: The failure-fixing time in seconds of both the

without and with variant of all assignments. The first six

assignments have a time limit of 5 minutes. For the last two

assignments, the limit is 10 minutes.

4 RESULTS

In this section, we present the results of our within-subjects experi-

ment.

4.1 Time to fix failing tests

Each of the 16 participants conducted one with/without TestAxis

variant of all eight assignments. Each variant was thus solved by 8

participants. The observer measured the time between starting an

assignment variant and fixing the issue. Figure 10 shows the results

per assignment per variant. In all cases except 4a, we see that the

median time to fix the issue is lower for the with variant than the

without variant. For the assignments in the second and the fourth

category, we observe a high variability in the results. For category

one, where the issue can be spot in the test metadata (Figure 3), we

see an overall improvement of 13.4%. For category two, with the

issue in the test code (Figure 4), this is 13.8%. The assignments in

category three (simple issue in code under test, Figure 6) show the

greatest performance improvement, on average 48.6%. Although

the first assignment of category four (advanced issue in code under

test) shows a performance decrease, on average, the performance

difference of category four is 12.1%. Because of our crossover design,

we cannot determine that there is an improvement in the failure-

fixing time for the assignments of category four. Overall, the four

assignment variants with TestAxis are conducted 22.0% faster.

The participants did not manage to solve all assignments within

the time limit. When a participant hit the limit, we consider their

failure-fixing time to be the maximum time of 5 minutes for cate-

gories one-three and 10 minutes for category four. We observe a

high number of hit time limits for category two. In general, we see

a lower number of hit time limits for the with TestAxis assignment

variants, except for assignment 4a.

After each assignment, we conducted the post-assignment eval-

uation questionnaire. Overall, an interesting result is a decrease in

the average score of having to run the test locally to get more in-

formation from 3.4 to 1.6. Also, the perceived time spent on finding

out which test(s) failed dropped from 2.1 to 1.2, on average.

4.2 Usefulness of The Tool

After our experiments, we asked the participants how useful they

found the different informational elements of TestAxis. The ma-

jority of the participants find that the information provided by

TestAxis in the various features helps them understand a failure

better and fix it more quickly (● 4.4). The participants consider

the details tab containing meta-information such as the test name

and the interactive stack trace (shown in Figure 3), as well as the

changed code under test tab (as shown in Figure 6) most useful

(● 4.2 and● 4.4 , respectively). Participant 5 even indicates

that they “already like just having the overview of failed tests a lot

over a build log where I can see the name of the [failing] test but not

much more”. However, the participants rate the usefulness of the

test code feature slightly lower (● 3.9). Participant 8 mentioned

that the test code tab may be unnecessary since there is already

an “Open Test” button that opens the test in the main window of

the IDE. The participants signal the value of highlighting changes

in the code under test tab and consider it a very important part

of the code under test feature (● 4.6). Participant 13 explained

why they think this feature is relevant: “The highlights of the code

under test are very important since that’s what you would normally

do manually by thinking about what changed and what the test could

have covered. And this shows you everything automatically without

any margin for error.”

5 ANALYSIS AND DISCUSSION

The goal of our investigation is to gauge whether providing context

about test failures in the local IDE helps developers fix broken CI

builds faster. We implemented TestAxis and conducted an experi-

ment where we asked developers to solve test failures that require

different kinds of contextual information. In this section, we analyze

the results of our experiment, such as whether the performance

improvements are statistically significant, discuss the implications

of our results and propose answers to our research questions.

5.1 What is the influence of presenting the test
outcomes and metadata on the time a
developer needs to fix a failing test?

We designed the assignments of the first category to be solvable

with only the meta-information (the name and stack trace of the

failing test) presented in TestAxis (see Figure 3). The first category

contains simple test failures where the issue can be spotted in

the stack trace alone. We found that the average time participants

needed to solve the two assignments decreased by 13.4%when using

TestAxis. Also, the participants indicated they spent considerably

less time figuring out which tests failed with the help of TestAxis.

Moreover, TestAxis reduced the need to run the failing tests locally

to get more feedback. We thus see indications that presenting a test

failure in the IDE over a CI build log has a positive influence on the

failure-fixing time.

292

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

Fixing Continuous Integration Tests From Within the IDE With Contextual Information ICPC ’22, May 16–17, 2022, Virtual Event, USA

RQ1

What is the influence of presenting the test outcomes and

metadata on the time a developer needs to fix a failing test?

• Developers solve test failures faster when the failure infor-

mation is presented in the IDE over a CI build log. In the

experiment, we saw an average performance increase of 13.4%.

• Developers indicate they need less time to find which test is

failing using TestAxis.

5.2 What is the influence of presenting the test
code on the time a developer needs to fix a
failing test?

The second assignment category featured test failures due to issues

in the test code. Figure 4 demonstrates how TestAxis presents

the test code. Many participants hit the time limit in this category,

10 participants for the assignments without TestAxis and 5 for

the assignments with. This could be caused by the participants

focusing more on the code under test than on the test code, which

they indicated in the post-assignment survey. The results show an

average improvement of the failure-fixing time of 13.8%. We see

clear indications that TestAxis helps to solve assignments where

the issue is in the test code more quickly.

RQ2

What is the influence of presenting the test code on the time a

developer needs to fix a failing test?

• Developers solve test failures more quickly when they have

quick access to the test code as part of the failure information.

In the experiment, we saw an average performance increase

of 13.8%.

5.3 What is the influence of presenting the code
under test, where the changed code is
highlighted, on the time a developer needs
to fix a failing test?

We evaluate the effect of showing changed code under test (RQ3,

Figure 6) in both the third and fourth category. In the third category,

we observe an average improvement in the failure-fixing time of

48.6%. The test cases in this category are straightforward, and the

issues are in one of the few highlighted code fragments of the

changed and covered code shown by TestAxis. The suggestions of

potential locations of the issue cut down the number of lines of code

to inspect drastically compared to inspecting the full code change

diff, which is likely the explanation for the significant increase in

failure-fixing performance. The participants have also indicated

that they spent the most time on the code under test while figuring

out the cause of the failure.

The fourth category consists of two assignments where the same

high-level end-to-end test fails, and the participants must find out

why. These assignments are more complex than the third category

and require a deeper investigation by the developer. Even though

we saw an average performance improvement of 12.1%, the results

for the two assignments in this category show different trends.

Assignment 4b showed an improvement in performance while as-

signment 4a showed a decrease in performance. By the design of

the study, we can thus not conclude anything about the results for

this category. We found that the more experienced developers that

perform the assignment with TestAxis need more time to solve

the assignment than the less experienced developers, contrary to

the other assignments. A possible explanation could be that the

less experienced participants find it easier to adopt new features,

such as the changed code under test feature, into their workflow,

whereas for more experienced developers it may be difficult to fit a

new type of feature in their existing tool belt.

We see clear indications that showing the changed code under

test positively influences the failure-fixing time for simple cases.

Our results are inconclusive about more complex cases.

RQ3

What is the influence of presenting the code under test, where

the changed code is highlighted, on the time a developer

needs to fix a failing test?

• Developers solve simple test failures more quickly when they

have an overview of the changed code under test. In the ex-

periment, we saw an average performance increase of 48.6%.

This improvement is statistically significant.

• The results cannot tell us whether there is a performance im-

pact when using the changed code under test failure for more

complicated tests, such as end-to-end tests. In the experiment,

we saw an average performance increase of 12.1% but cannot

rule out the effect of the participant distribution per category.

• More experienced developers are less efficient than less expe-

rienced developers when using the code under test feature.

5.4 Statistical Significance of the Measured
Performance Improvements

In Section 4.1, we present the performance results of all assignment

variants. For all assignments except one, we observe an improve-

ment of the average failure-fixing time when using TestAxis. We

use the two-tailed Mann-Whitney 𝑈 test [22] to analyze whether

these improvements are statistically significant. We reject our null

hypothesis “there is no difference between performing an assign-

ment without or with TestAxis” when 𝑝-𝑣𝑎𝑙𝑢𝑒 ≤ 0.05.
Table 1 shows the 𝑈 values per assignment. It also shows 𝑝-

values using a normal approximation. For assignment 3a and 3b we

can reject our null hypothesis and conclude that the improvements

are statistically significant. For all other assignments, we cannot

conclude that the performance improvements are statistically sig-

nificant.

Table 1: Statistical significance of the observed performance

improvements.

𝑈 𝑝 Reject 𝐻0

1a 24.0 0.215

1b 19.0 0.095

2a 20.0 0.092

2b 22.0 0.255

𝑈 𝑝 Reject 𝐻0

3a 12.5 0.022 �
3b 4.0 0.002 �
4a 28.0 0.355

4b 17.0 0.059

293

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Boone et al.

5.5 Impact of Running Tests Locally and
Determining Which Test Failed

In all assignments with TestAxis, the participants rarely had to

run a failing test locally in the IDE to get more information. Also,

the time needed to find out which tests failed dropped significantly

in the assignments with TestAxis compared to the ones without.

These two general findings contributed in almost all assignments

to an improvement of the failure-fixing time when using TestAxis.

Insight

Developers using TestAxis almost never run tests locally when

to gain more details.

5.6 To what extent do developers consider
contextual CI information in the IDE
useful?

After the assignments, we asked the participants about the useful-

ness of TestAxis and the different features they used. The partic-

ipants consider all three kinds of contextual information useful,

with the changed code under test feature being the most useful.

The participants think that TestAxis solves a real problem and that

it would save them time. Most participants would make TestAxis

part of their workflow, one of the participants indicated that they

would consider implementing it in their workflow “as is” and that

they would “not add much info further as I think its strength lies

in the clean and concise overview”. Overall, the participants find

TestAxis useful in helping them understand test failures better

and fix them more quickly. One of the participants described their

experience as “I thought it was super useful during the experiments.

I much rather preferred using TestAxis over the traditional CI logs

on GitHub. What TestAxis does, in my opinion, is recreate the steps I

manually take on a GitHub pull request to identify a failing test, and

it does so in the IDE so I don’t have to switch tabs and interrupt my

workflow.”

RQ4

To what extent do developers consider contextual CI informa-

tion in the IDE useful?

• The participants find TestAxis useful in helping them under-

stand a test failure better and fix it more quickly.

• The participants consider all three main features of TestAxis

(failure details, test code, and code under test) to be useful.

The (changed) code under test feature is considered to be most

useful.

• The participants believe that TestAxis solves a real problem.

• The usage of TestAxis would save the participants time and

they would make it part of their workflow.

• The participants strongly agree that TestAxis provides bene-

fits over inspecting CI build logs manually.

6 THREATS TO VALIDITY

To support the credibility of our results, we outline the threats to

the validity of our user experiment.

6.1 Internal Validity

Internal validity indicates the reliability of the cause-and-effect re-

lationship between the introduction of TestAxis and the observed

effects in the results.

While analyzing our results, we observed a learning effect. Our

participants were able to solve assignments quicker at the end of the

experiment. We expected this while designing the experiment and

mitigated the impact by randomizing the order of the assignments.

We base the results for each assignment on both early and late

executions in the experiment. Half the participants got the without

TestAxis variant of a category first, and the other half got the with

variant of the category first.

Creating two assignments that are similar enough to directly

compare is very complex (see Section 3.3). To mitigate this, we

compare the results of the without variant of a specific assignment

against the with variant, executed by another group. As then the

group composition could influence the results, we only consider

there to be an effect of using TestAxis when the results show the

same trend for both assignments of a category.

Another threat is whether the participants felt comfortable giv-

ing their honest opinions. The participants knew that their activity

was observed while conducting the assignments and filling out the

questionnaires. This could cause a Hawthorne effect, participants

answering questions more positively [1]. While it is not possible to

show that this was not the case, we do observe negative answers

to some of the questions. This suggests that the participants felt at

ease and comfortable sharing their opinions.

In the experiment, TestAxis is used for a short time. A longer

study of teams working with the tool in real projects is needed

to measure its true impact. The short time is not long enough

to incorporate a new feature such as the changed code under test

feature into one’s workflow. Participant 14 confirmed this by saying

“For the best experience, requires a user to learn the intuitions of the

tool”.

6.2 Construct Validity

Construct validity is concerned with the degree to which a test

actually measures the construct(s) it claims to be testing. The per-

formance results are based on quantitative data, the duration of

assignment executions. The timing results may be influenced by dif-

ferent behavior induced by the experiment environment. However,

the participants agree with the statement that they used the same

tactics during the assignments without TestAxis as they would

have done outside the experiment. In a follow-up study, a more ob-

jective approach that monitors IDE usage, such as WatchDog [5],

could be considered to get a better indication of which tasks are

most influenced by the usage of TestAxis.

6.3 External Validity

The external validity is concerned with the generalizability of the

results. As shown in Section 3.4, the participants are a diverse group

withmixed backgrounds. However, the group size is relatively small,

which may cause individual differences in their background to have

a greater effect on the results than in a larger group of participants.

How similar the test failures in the assignments are to real test

failures is an important factor for the generalizability of our results.

294

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

Fixing Continuous Integration Tests From Within the IDE With Contextual Information ICPC ’22, May 16–17, 2022, Virtual Event, USA

While the example project JPacman is smaller than most applica-

tions, it does feature an extensive test suite, modern build pipeline,

and design practices such as dependency injection. The short dura-

tion of the experiment requires a project that can be understood

quickly. The participants agree that JPacman allowed for interest-

ing cases that were suitable to answer the questions. The cases

we designed mimic test failures that could happen in any type of

software project. The participants neither agree nor disagree that

the assignments are similar to the ones they encounter in their own

projects, indicating that the generalizability of the assignments is a

threat to the validity of the results.

7 RELATEDWORK

CI builds and test failures are well-explored topics. This section

discusses a selection of the research done in these areas that is

related to our work.

7.1 Assistance in Fixing Failing Tests

Beller et al. monitor the behavior of developers after observing a

test failure [6]. Their results show that in more than 60% of the cases,

a developer starts reading the code under test. Another 17% reads

the test code first. However, after 5 seconds, a significant number

of users switch focus from the IDE to another window. A possible

explanation is that developers reach out to external resources to

help solve the issue.

The need for such external resources could be fulfilled by pro-

viding more context around the test failure. Zhang et al. proposed

an approach that explains the reasons for test failures through

comments in the test code [42]. For example, it adds comments

indicating which exception is thrown by a specific line. It also

suggests fixes by mutating the failing tests to see if it can find a

variant that would pass. Using a statistical algorithm, they deter-

mine and comment the production code most suspicious of causing

the failure.

ReAssert also mutates test code to try to make the test pass [15].

The tool suggests mutations that result in a passing test as repair

options. It can, for example, replace literals and change assertions.

This method only works if the test code is no longer in line with the

production code. If the failure is caused by a regression, mutating

the test code would capture the wrong behavior of the production

code.

7.2 CI Build Results in the IDE

There exist several IDE extensions that show the status of CI builds,

sometimes with additional information. The plugins have different

characteristics. Table 2 shows all IDE plugins displaying CI builds

that we identified in the JetBrains and Eclipse Marketplace. Three of

the plugins notify the developers of build status updates [9, 30, 31].

Half of the plugins only show raw information of the builds (like

the status or the logs) [3, 23, 31], while the others also interpret the

builds and show the test results [9, 30, 39].

Moreover, the TeamCity [30] plugin and the Hudson/Jenkins My-

lyn Builds Connector [39] also provide additional insights. Table 3

shows a comparison between the test insights features of these two

plugins and TestAxis. TeamCity displays which tests failed and

highlights stack traces. It also offers the ability to easily rerun a

test locally. The Hudson/Jenkins Mylyn Builds Connector plugin

shows the test results but also provides insights on execution times

and code changes made for this build.

TestAxis also gives these insights. It shows an interactive stack

trace together with execution details such as the run time. While

Hudson/JenkinsMylyn Builds Connector only shows a list of changes,

TestAxis incorporates these changes in the changed code under

test feature that both shows which code fragments were changed

and touched by the test. Furthermore, TestAxis also provides easy

access to the test code to understand the intent of the test or to spot

mistakes in the test itself. TestAxis is not limited to a specific CI

service and can be included in the build process of any CI tool.

One might expect that showing CI test results in the IDE is not

needed because developers can just execute the tests in their IDE

that shows a good interface to review and inspect failing tests. How-

ever, it turns out that developers actually do not often execute tests

in their IDE [6, 7]. Beller et al. also mention that “Despite the tool

overhead and a possibly slower reaction time, our low results on test

executions in the IDE suggest that developers increasingly prefer such

more complex setups [in which tests are run on CI servers] to manually

executing their tests in the IDE.” and continue by recommending

that IDE developers should improve CI integration [6].

7.3 The Augmented IDE

Our work also lies in the context of integrating additional sources of

information within the IDE. A key goal here is to improve software

understanding and development, and also reducing the context

switches between tools that software engineers typically use. A

notable examples is the work of Holmes and Begel: Deep Intel-

lisense [21], an IDE plugin that links bug reports, emails, code

changes to source code entities. Furthermore, the Eclipse plugin

Hipikat [14], tries to assist newcomers by recommending problem

reports, newsgroup articles, etc. related to the task at hand.

Other tools tackle the challenge of reducing the context switch-

ing from IDE to web browser. For example, Ponzanelli et al. bring

Stack Overflow into the IDE [25]. Another Eclipse plugin, Fish-

tail [29] harnesses programmer’s interactions history to bring rele-

vant web resources into the IDE. Similarly, TestKnight is a plug-in

for IntelliJ that helps developers engineer developer tests by (1)

providing suggestions on which parts should still be tested, of-

fering boilerplate test code solutions, and (3) adding support for

copying and pasting test cases with suggestions on which parts to

change [12].

8 CONCLUSION AND FUTUREWORK

Inspecting the results of a failing test in a CI build is a tedious

process. It often requires developers to manually inspect and scroll

through hundreds to thousands of lines of log output, while running

tests inside an IDE offers specific, detailed, and interactive feedback

on the test results. TestAxis brings CI test results to the IDE and

offers a similar experience to running a test locally. Moreover, it

exploits the change and coverage information available on the CI to

offer additional support while inspecting test failures. In this paper,

we explored how three different kinds of contextual information

reduce the time needed to fix a test failing on CI.

295

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Boone et al.

Table 2: IDE plugins that show CI build statuses and/or results.

Name IDE Users CI Service Build
Status

Build
Logs

Notifi-
cations

Test
Results

Test
Insights

TeamCity [30] IntelliJ 778,6K TeamCity � � � � �
Jenkins Control Plugin [9] IntelliJ 204,7K Jenkins � � � �
IntelliJ GitLab Pipeline Viewer [31] IntelliJ 7,2K GitLab � �
Github Tools [23] IntelliJ 6,3K Travis CI / CircleCI �
GitHub Actions [3] IntelliJ 3,1K GitHub Actions � �
Hudson/Jenkins Mylyn Builds Connector [39] Eclipse Not reported Jenkins � � � �
TestAxis IntelliJ - All � � � � �

Table 3: Comparison of IDE plugins with test insights.

Feature TeamCity [30] Hudson/Jenkins Mylyn Builds Connector [39] TestAxis

Interactive Stack Traces � Indirectly through JUnit view �
Display of Test Code Link only Link only �
Code Under Test �
Code Changes � � �
Changed Code Under test �
Raw Build Log Inspection � �
Rerun Test � Indirectly through JUnit view Indirectly by opening test code in main window

Supported CI Providers TeamCity Jenkins All

Our results show that it is helpful to present the test results

and the test code in the environment of the developer. For simple

failures, we saw a statistically significant improvement in failure

fixing time when presenting the code under test which was changed

since the last successful build. For complex failures, our results were

diverging, possibly because more experienced developers tookmore

time to incorporate the new feature into their workflow, or because

the assignments were too difficult for our participants in the scope

of our experiment. Overall, the developers judged TestAxis as a

useful tool which they would integrate into their workflow and

emphasized the power of the unique presentation of changed code

under test. A central advantage of TestAxis is the combination of

information available on the CI and the familiar, local presentation

in the IDE. This enables us to give developers powerful insights

into their test failures.

While our study has shown that TestAxis can have a positive

effect on the type of cases we presented, more work is needed to

confirm its usefulness and performance improvement in real-life

projects. Due to the design of our study, we could only see indi-

cations that there is an effect after introducing TestAxis but not

that this effect is caused by TestAxis. Our experiment should be

repeated as a controlled experiment with a larger sample size or as

a longitudinal study on a real software project to achieve stronger

conclusions. Further, TestAxis could be extended to provide addi-

tional context for builds that fail for other reasons than tests, such

as dependency errors or static analysis warnings. A combination

with links to the code or automatic fixing suggestions could also

help leverage the unique combination of CI and IDE in these cases.

ACKNOWLEDGMENTS

This research was partially funded by the Dutch science foundation

NWO through the Vici “TestShift” grant (No. VI.C.182.032) and

conducted as part of Casper Boone’s master thesis [11].

REFERENCES
[1] J. G. Adair. 1984. The Hawthorne Effect: A Reconsideration of the Methodological

Artifact. Journal of Applied Psychology (1984), 69(2):334. https://doi.org/10.1037/
0021-9010.69.2.334

[2] Anunay Amar and Peter C. Rigby. 2019. Mining historical test logs to predict
bugs and localize faults in the test logs. In Proceedings of the 41st International
Conference on Software Engineering (ICSE ’19). IEEE Press, Montreal, Quebec,
Canada, 140–151. https://doi.org/10.1109/ICSE.2019.00031

[3] Andrey Artyukhov. 2020. GitHub Actions. https://plugins.jetbrains.com/plugin/
13793-github-actions

[4] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source
Software. In IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE Computer Society, 470–481. https://doi.org/10.
1109/SANER.2016.105

[5] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. 2019. Developer Testing in the IDE: Patterns, Beliefs,
and Behavior. IEEE Transactions on Software Engineering 45, 3 (March 2019),
261–284. http://doi.org/10.1109/TSE.2017.2776152

[6] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their IDEs. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2015). Association for Computing Machinery, New York, NY, USA, 179–190.
http://doi.org/10.1145/2786805.2786843

[7] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2015. How (Much) Do De-
velopers Test?. In 37th IEEE/ACM International Conference on Software Engineering
(ICSE). IEEE, 559–562. https://doi.org/10.1109/ICSE.2015.193

[8] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, My Tests Broke
the Build: An Explorative Analysis of Travis CI with GitHub. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). 356–367.
https://doi.org/10.1109/MSR.2017.62

[9] David Boissier, Yuri Novitsky, and Michael Suhr. 2011. Jenkins Control Plugin.
https://plugins.jetbrains.com/plugin/6110-jenkins-control-plugin

[10] Casper Boone. 2021. TestAxis Replication Package. Zenodo (Sept. 2021). https:
//zenodo.org/record/5526015

[11] Casper Boone. 2021. TestAxis: Save Time Fixing Broken CI Builds Without Leaving
Your IDE. Master’s thesis. Delft University of Technology. http://resolver.tudelft.
nl/uuid:f8375d5f-3bbd-4559-863b-6951e9d6bab0

[12] Cristian-Alexandru Botocan, Piyush Deshmukh, Pavlos Makridis, Jorge Romeu
Huidobro, Mathanrajan Sundarrajan, Mauricio Aniche, and Andy Zaidman. 2022.
TestKnight: An Interactive Assistant to Stimulate Test Engineering. In Proceedings
of the 44th International Conference on Software Engineering (ICSE Companion).
ACM. To appear.

[13] Carolin E. Brandt, Annibale Panichella, Andy Zaidman, and Moritz Beller. 2020.
LogChunks: A Data Set for Build Log Analysis. In MSR ’20: 17th International
Conference on Mining Software Repositories (MSR). ACM, 583–587. https://doi.
org/10.1145/3379597.3387485

296

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

Fixing Continuous Integration Tests From Within the IDE With Contextual Information ICPC ’22, May 16–17, 2022, Virtual Event, USA

[14] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth. 2004. Learning from
project history: a case study for software development. In Proceedings of the 19th
Conference on Computer Supported Cooperative Work (CSCW). 82—-91.

[15] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. 2009. ReAssert:
Suggesting Repairs for Broken Unit Tests. In 2009 IEEE/ACM International Con-
ference on Automated Software Engineering. 433–444. https://doi.org/10.1109/
ASE.2009.17 ISSN: 1938-4300.

[16] John Downs, Beryl Plimmer, and John G. Hosking. 2012. Ambient awareness of
build status in collocated software teams. In 2012 34th International Conference on
Software Engineering (ICSE). 507–517. https://doi.org/10.1109/ICSE.2012.6227165
ISSN: 1558-1225.

[17] Thomas Durieux, Rui Abreu, Martin Monperrus, Tegawendé F. Bissyandé, and
Luís Cruz. 2019. An Analysis of 35+ Million Jobs of Travis CI. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
291–295. https://doi.org/10.1109/ICSME.2019.00044

[18] D. Goodman and M. Elbaz. 2008. "It’s Not the Pants, it’s the People in the
Pants" Learnings from the Gap Agile Transformation What Worked, How We
Did it, and What Still Puzzles Us. In Agile 2008 Conference. 112–115. https:
//doi.org/10.1109/Agile.2008.87

[19] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexibility.
In Proceedings of the 2017 11th JointMeeting on Foundations of Software Engineering
(ESEC/FSE 2017). Association for Computing Machinery, New York, NY, USA,
197–207. http://doi.org/10.1145/3106237.3106270

[20] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2016). Association for Computing Machinery, New York,
NY, USA, 426–437. http://doi.org/10.1145/2970276.2970358

[21] Reid Holmes and Andy Begel. 2008. Deep Intellisense: a tool for rehydrating
evaporated information. In Proceedings of the International working conference on
Mining software repositories (MSR). ACM, 23––26.

[22] Henry B. Mann and Donald R. Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60. ISBN: 0003-4851 Publisher: JSTOR.

[23] Diego Marcher. 2019. Github Tools. https://plugins.jetbrains.com/plugin/13366-
github-tools

[24] Ade Miller. 2008. A Hundred Days of Continuous Integration. In Agile 2008
Conference. 289–293. https://doi.org/10.1109/Agile.2008.8

[25] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: stack
overflow in the IDE. In Proceedings of the International Conference on Software
Engineering (ICSE). IEEE, 1295–1298.

[26] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.
An Empirical Analysis of Build Failures in the Continuous Integration Work-
flows of Java-Based Open-Source Software. In 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR). 345–355. https:
//doi.org/10.1109/MSR.2017.54

[27] Gema Rodríguez-Pérez, Andy Zaidman, Alexander Serebrenik, Gregorio Robles,
and Jesús M. González-Barahona. 2018. What if a bug has a different origin?:
making sense of bugs without an explicit bug introducing change. In Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). ACM, 52:1–52:4. https://doi.org/10.1145/3239235.
3267436

[28] Gema Rodríguez-Pérez, Gregorio Robles, Alexander Serebrenik, Andy Zaidman,
Daniel M. Germán, and Jesus M. Gonzalez-Barahona. 2020. How bugs are born:
a model to identify how bugs are introduced in software components. Empirical
Software Engineering 25, 2 (March 2020), 1294–1340. https://doi.org/10.1007/
s10664-019-09781-y

[29] Nicholas Sawadsky and Gail C Murphy. 2011. Fishtail: from task context to source
code examples. In Proceedings of the 1st Workshop on Developing Tools as Plug-ins.
48–51.

[30] JetBrains s.r.o. 2007. TeamCity IntelliJ Plugin. https://plugins.jetbrains.com/
plugin/1820-teamcity

[31] Simon Stratmann. 2020. IntelliJ GitLab Pipeline Viewer. https://plugins.jetbrains.
com/plugin/13799-intellij-gitlab-pipeline-viewer

[32] Daniel Ståhl and Jan Bosch. 2014. Modeling continuous integration practice
differences in industry software development. Journal of Systems and Software
87 (Jan. 2014), 48–59. https://doi.org/10.1016/j.jss.2013.08.032

[33] G. Tassey. 2002. The economic impacts of inadequate infrastructure for software
testing. National Institute of Standards and Technology.

[34] Fabian Trautsch, Steffen Herbold, and Jens Grabowski. 2020. Are unit and
integration test definitions still valid for modern Java projects? An empirical
study on open-source projects. Journal of Systems and Software 159 (Jan. 2020),
110421. https://doi.org/10.1016/j.jss.2019.110421

[35] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch,
Harald C. Gall, and Andy Zaidman. 2020. How developers engage with static
analysis tools in different contexts. Empir. Softw. Eng. 25, 2 (2020), 1419–1457.
https://doi.org/10.1007/s10664-019-09750-5

[36] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C. Gall. 2018. Context is king: The developer perspective
on the usage of static analysis tools. In 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE Computer Society, 38–49.
https://doi.org/10.1109/SANER.2018.8330195

[37] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall. 2020.
Every build you break: developer-oriented assistance for build failure resolution.
Empirical Software Engineering 25, 3 (May 2020), 2218–2257. https://doi.org/10.
1007/s10664-019-09765-y

[38] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A Tale of CI Build Failures: An Open Source and a Financial Organization Perspec-
tive. In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 183–193. https://doi.org/10.1109/ICSME.2017.67

[39] Paul Verest. 2013. Hudson/Jenkins Mylyn Builds Connector. https://marketplace.
eclipse.org/content/hudsonjenkins-mylyn-builds-connector

[40] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu.
2019. A Conceptual Replication of Continuous Integration Pain Points in the
Context of Travis CI. In Proceedings of the 2019 27th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Comput-
ing Machinery, New York, NY, USA, 647–658.

[41] Andreas Zeller. 2005. Why Programs Fail: A Guide to Systematic Debugging.
Morgen Kaufmann.

[42] Sai Zhang, Cheng Zhang, and Michael D. Ernst. 2011. Automated documentation
inference to explain failed tests. In 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011). 63–72. https://doi.org/10.1109/
ASE.2011.6100145 ISSN: 1938-4300.

[43] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The impact of continuous integration on other software
development practices: A large-scale empirical study. In 32nd IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). IEEE, 60–71.
https://doi.org/10.1109/ASE.2017.8115619

297

Authorized licensed use limited to: TU Delft Library. Downloaded on June 24,2022 at 07:24:21 UTC from IEEE Xplore. Restrictions apply.

