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ABSTRACT
This paper discusses the practical aspects of working with high-dimensional shrink-
age portfolios. It presents the R package HDShOP which provides a comprehensive
framework for such work. In particular, we cover the construction of portfolios using
shrinkage-based estimators for the mean vector, covariance matrix, and precision
matrix of asset returns, as well as the shrinkage estimators derived directly for the
weights of optimal portfolios. Moreover, shrinkage-based tests on the mean-variance
efficiency of a given portfolio are discussed. Aspects related to programming, such as
classes and methods used in the construction of optimal portfolios, are described. The
description of the software is preceded by underlying theory and it is accompanied by
several empirical illustrations based on the data consisting of returns on stocks from
the S&P 500 index.

ARTICLE HISTORY
Received 29 July 2024
Accepted 29 April 2025

KEYWORDS
High-dimensional portfolio
theory; shrinkage estimation;
shrinkage-based test;
high-dimensional statistical
inference; quantitative
finance

1. Introduction

The mean-variance approach of Markowitz is a well-established and very popular tool for optimal portfolio
selection in financial literature (see, e.g. Adcock 2014; Adcock, Eling, and Loperfido 2015; Bodnar et al. 2021;
Bodnar, Parolya, and Thorsén 2024; Britten-Jones 1999; Ding, Li, and Zheng 2021; Lassance, Vanderveken, and
Vrins 2024; Markowitz 1952). The idea behind the approach is to invest in the portfolio that has the smallest
variance for a given level of the expected return. In case of no restriction on the expected portfolio return, the so-
called global minimum variance (GMV) portfolio is selected. The latter portfolio possesses the smallest variance
among all mean-variance optimal portfolios and lies on the vertex of the efficient frontier which is a parabola
in the mean-variance space (see Bodnar, Hautsch, et al. 2025; Bodnar and Schmid 2009; Kan and Smith 2008;
Merton 1972).

However, when theMarkowitz theory is implemented in practice, one of the important challenges ariseswhen
unknown parameters of the data-generating process are replaced by their sample counterparts in the expressions
of the optimal portfolio weights (see Adcock 2015; Bodnar, Bodnar, and Parolya 2022; Bodnar, Okhrin, and
Parolya 2023; Cai et al. 2020; El Karoui 2010; Okhrin and Schmid 2006). The impact of the estimation error on
the performance of optimal portfolio weights is sometimes even larger than the uncertainty that is present in the
data-generating model of the asset returns. Moreover, it seems that the errors in the sample mean vector have
even a larger influence on the performance of optimal portfolios than the errors related to the estimation of the
covariance matrix (see, e.g. Best and Grauer 1991; Chopra and Ziemba 1993; Merton 1980). These two types of
uncertainty should usually be taken into account simultaneously when an optimal portfolio is constructed in
practice, see, e.g. Bodnar, Bodnar, and Parolya (2022) andBodnar, Dette, et al. (2022). Other important aspects of

CONTACT Taras Bodnar taras.bodnar@liu.se

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow
the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/1351847X.2025.2501637&domain=pdf&date_stamp=2025-05-12
http://orcid.org/0000-0001-7855-8221
http://orcid.org/0000-0003-1855-3044
http://orcid.org/0000-0003-4704-5233
http://orcid.org/0000-0002-4700-7221
http://orcid.org/0000-0003-2147-2288
mailto:taras.bodnar@liu.se
http://creativecommons.org/licenses/by/4.0/


2 T. BODNAR ET AL.

modern portfolio theory are discussed inAlexander andBaptista (2002), Alexander andBaptista (2004), Bodnar,
Parolya, and Schmid (2015), Garcia et al. (2019), Bodnar, Lindholm, et al. (2022),Huang andMa (2023), X.Wang
et al. (2023), Bodnar, Bodnar, and Niklasson (2025) among others.

The estimation problem is even more severe in the case of high-dimensionality is present. If the portfo-
lio dimension is considerably small compared to the sample size, then the traditional sample covariance matrix
consistently estimates the population counterpart underweak conditions imposed on the data-generatingmodel
of the asset returns and, consequently, the traditional portfolio provides a good approximation of the popula-
tion one. The situation is completely different in the high-dimensional setting when the portfolio dimension is
comparable to the sample size (see Bai and Silverstein 2010; Bodnar, Dette, and Parolya 2019). In this case, the
sample covariance matrix is no longer a consistent estimator for the true covariance matrix. As a result, the tra-
ditional portfolio weights might deviate considerably from the population ones. To ensure a good performance
of the holding portfolio, the weights of the traditional portfolio have to be adjusted by taking the parameter
uncertainty into account (see, e.g. Ao, Yingying, and Zheng 2019; Bodnar, Dmytriv, et al. 2019; Bodnar, Parolya,
and Thorsén 2024; Cai et al. 2020; Ding, Li, and Zheng 2021; Glombek 2014; Jagannathan and Ma 2003).

In theHDShOP package (see Bodnar,Dmytriv, et al. 2024), we present a framework that is based on two strate-
gies for the construction of shrinkage portfolios in the high-dimensional setting: (i) direct shrinkage estimation
of the optimal portfolio weights; (ii) shrinkage estimation of the mean vector and the covariance/precision
matrix. Also, we introduce numerical implementations of the recent results related to those techniques. In par-
ticular, we include the methods for the shrinkage estimation of optimal portfolio weights developed in Bodnar,
Parolya, and Schmid (2018) and Bodnar, Okhrin, and Parolya (2023), as well as the routines for the shrinkage
estimation of the mean vector based on Jorion (1986), Bodnar, Okhrin, and Parolya (2019) and the covari-
ance matrix presented in Bodnar, Gupta, and Parolya (2014), Bodnar, Gupta, and Parolya (2016), Ledoit and
Wolf (2017) and Ledoit and Wolf (2020). Also, the package provides the mechanisms for analyzing and test-
ing the efficiency of a given portfolio in a high-dimensional setting. The suggested workflow is based on the
means of object-oriented programming: Optimal portfolios are represented by S3 classes for which methods are
defined.

Although HDShOP has a unique functionality, packages with related tools exist. There are packages imple-
menting shrinkage estimators for the covariance matrices. For example, ShrinkCovMat contains methods
developed in Touloumis (2015), while CovTools (Lee and You 2021) provides the functions based on the
approaches developed in Ledoit and Wolf (2003, 2004) as well as the oracle approximating shrinkage estima-
tor and the Rao-Blackwell Ledoit-Wolf estimator (Chen et al. 2010). Moreover, nlshrink (Ramprasad 2016)
provides the methods from Ledoit and Wolf (2004, 2015). There are several packages devoted to portfolio
management. Among these, fPortfolio (Wuertz et al. 2023) seems to be one of the most used R pack-
ages. An important task of this package is the construction of optimal portfolios by minimizing the portfolio
variance while constraining the portfolio return and asset allocation. To achieve this, relatively simple estima-
tors of the mean vector and the covariance matrix of the asset returns are used, and then a quadratic solver
performs optimization to find the portfolio weights. Numerical solvers allow for different kinds of constraints
such as the prohibition of short sells or group and box constraints. Another approach included in the pack-
age fixes the portfolio variance and maximizes the portfolio return leading to the so-called minimum risk
efficient portfolio. Apart from the construction of optimal portfolios, fPortfolio also provides means for
backtesting and various plotting functions. The other R packages dealing with the optimal portfolio construc-
tion are parma (Galanos and Pfaff 2022), MarkowitzR (Pav 2023), PortfolioOptim (Palczewski 2019),
epo (Reckziegel 2023). MarkowitzR presents a collection of methods to analyze the significance of optimal
portfolios, while PortfolioOptim determines portfolios that have smallest distance to the benchmark port-
folio. The contribution of HDShOP package to the existing package ecosystem is twofold: (i) It implements
the popular shrinkage approach for constructing optimal portfolios following the recently published papers
of Bodnar, Gupta, and Parolya (2014), Bodnar, Gupta, and Parolya (2016), Bodnar, Parolya, and Schmid (2018),
Bodnar, Dmytriv, et al. (2019), Bodnar, Okhrin, and Parolya (2019), Bodnar et al. (2021), Bodnar, Bodnar, and
Parolya (2022), Bodnar, Dette, et al. (2022) and Bodnar, Okhrin, and Parolya (2023) written by the authors of the
package; (ii) It is the only R package dealing with the construction of optimal portfolios in the high-dimensional
setting. In this paper, we contribute to the literature by
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• presenting a detailed review of shinkage estimators for the mean vector, covariance matrix, and precision
matrix derived in the high-dimensional settings;

• providing the analytical formulae of the direct shrinkage estimators for both the global minimum variance
and the mean-variance optimal portfolios;

• describing a high-dimensional test on the mean-variance efficiency of a given portfolio;
• highlighting the main features of the R package HDShOP designed for the practical implementation of

high-dimensional portfolio theory;
• applying the presented approaches to the data consisting of returns on stocks from the S&P 500 index for

the period from 2005 to 2025;
• documenting a good performance of the shrinkage approaches, especially during the COVID period.

The rest of the paper is structured as follows. In the next section, we review the classical results of portfolio
theory together with the sample estimators of the optimal portfolios and the efficient frontier, the set of optimal
portfolios in the mean-variance space. Section 3 presents the improved shrinkage estimators of optimal port-
folio weights and discusses the shrinkage method for creating optimal portfolios. The package architecture is
described and examples of its usage are provided in Section 4. This is followed by the results of the empirical
illustration in Section 5 where the functionality of the package is demonstrated in the construction of optimal
portfolios based on real data of returns on the stocks included in the S&P 500 index. Concluding remarks are
summarized in Section 6.

2. Classical mean-variance analysis

In 1952 Harry Markowitz (Markowitz 1952) established a new approach for constructing optimal portfolios
which is still known in the literature as modern portfolio theory. In the derivation of an optimal portfolio, the
tradeoff between the expected portfolio return and portfolio variance is taken into account and the optimal
portfolios are obtained by minimizing the portfolio variance given that the expected portfolio return is equal to
a certain value.

Let x = (x1, . . . , xp)� be the p-dimensional vector of the asset returns and let w = (w1, . . . ,wp)
� be the p-

dimensional vector of portfolio weights. Then the expected return and the variance of the portfolio with weights
w are given by

μp = w�μ and Vp = w��w, (1)

respectively, where μ = E(x) is the mean vector and � = Cov(x) is the covariance matrix of the asset returns.
Themean-variance (MV) optimal portfolios obtained by following theMarkowitz approach can also be deduced
as the solutions of the expected utility optimization problem (e.g. Bodnar, Parolya, and Schmid 2013) expressed
as

w�μ − γ

2
w��w → max subject to w�1p = 1, (2)

where 1p is the p-dimensional vector of size p and γ > 0 is the coefficient of risk aversion that measures the
investor’s attitude towards risk. The solution of (2) is given by

wMV = �−11p
1�
p �−11p

+ γ −1Qμ withQ = �−1 − �−11p1�
p �−1

1�
p �−11p

. (3)

In the special case of a fully risk-averse investor, i.e. γ = ∞, the optimization problem (2) becomes

w��w → min subject to w�1p = 1, (4)

whose solution is expressed as

wGMV = �−11p
1�
p �−11p

. (5)
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The portfolio with the weights (5) is the optimal portfolio with the smallest variance and thus it is known as the
global minimum variance (GMV) portfolio.

Varying the coefficient of risk aversion γ from 0 to∞, we get all mean-variance optimal portfolios that lie on
the parabola in the mean-variance space, known as the efficient frontier. The equation of the efficient frontier
was first derived by Merton (1972). Following Kan and Smith (2008) and Bodnar and Schmid (2009), it is given
by

(R − RGMV)2 = s(V − VGMV), (6)

where

RGMV = μ��−11p
1�
p �−11p

, VGMV = 1
1�
p �−11p

, s = μ�Qμ (7)

are the expected return of the GMV portfolio, the variance of the GMV portfolio, and the slope parameter of
the efficient frontier, respectively.

2.1. Traditional sample estimators of optimal portfolios

In practice, however, the formulas (3) and (5) cannot be directly implemented due to the presence of unobserv-
able quantities μ and �. The traditional approach suggests replacing μ and � with their sample counterparts
computed by using the historical data of asset returns. Let Xn = (x1, . . . , xn) be the p × n observation matrix.
Then, the traditional sample estimators of μ and � are given by

x̄n = 1
n

n∑
i=1

xi = 1
n
Xn1n and

Sn = 1
n − 1

n∑
i=1

(xi − x̄n)(xi − x̄n)� = 1
n − 1

Xn

(
In − 1

n
1n1�

n

)
X�
n ,

(8)

where In denotes the identity matrix of size n.
Replacing μ and � by x̄n and Sn, we get the traditional (sample) MV and GMV portfolios expressed as

ŵMV ;S = ŵGMV ;S + γ −1Q̂nx̄n (9)

with

ŵGMV ;S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S−1
n 1p

1�
p S−1

n 1p
if p < n

S+
n 1p

1�
p S+

n 1p
if p > n

(10)

and

Q̂n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
S−1
n − S−1

n 1p1�
p S−1

n

1�
p S−1

n 1p
if p < n

S+
n − S+

n 1p1�
p S+

n

1�
p S+

n 1p
if p > n

, (11)

where S+
n is the Moore-Penrose inverse of Sn (see Ben-Israel and Greville 2003; Bodnar and Parolya 2024;

Harville 1997; Meyer 1973; Penrose 1955; G. Wang et al. 2018).
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Similarly, the sample estimator of the efficient frontier is obtained and it is given by

(R − R̂GMV)2 = ŝ(V − V̂GMV), (12)

where

R̂GMV =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x̄�
n S−1

n 1p
1�
p S−1

n 1p
if p < n

x̄�
n S+

n 1p
1�
p S+

n 1p
if p > n

, V̂GMV =

⎧⎪⎪⎨
⎪⎪⎩

1
1�
p S−1

n 1p
if p < n

1
1�
p S+

n 1p
if p > n

, ŝ = x̄�
n Q̂nx̄n. (13)

The exact and asymptotic distributional properties of the estimators (9) to (13) under the classical and the high-
dimensional asymptotic regimes are derived by Okhrin and Schmid (2006), Bodnar and Schmid (2009), Bodnar
et al. (2021) and Bodnar, Dette, et al. (2022).

3. Improved shrinkage estimators

Traditional sample estimators perform usually poorly in practice, especially when the portfolio size is rela-
tively large with respect to the sample size (see, e.g. Bodnar, Okhrin, and Parolya 2023; Bodnar, Parolya, and
Schmid 2018). To improve the performance of the sample optimal portfolios, several approaches have been pro-
posed in the literature. One of them suggests replacing the unknown mean vector μ and covariance matrix �
in (3) and (5) by improved estimators of themean vector and covariancematrix, e.g. by their shrinkage estimators
(cf., Kourtis, Dotsis, and Markellos 2012; Ledoit and Wolf 2004).

The shrinkage-type estimators were originally suggested by Stein (1956) for the estimation of themean vector
of a multivariate normal distribution and since that time the approach has become widely used in different
fields of statistics, for example for estimating the covariance and precisionmatrices (see, e.g. Bodnar, Gupta, and
Parolya 2014, 2016; Ledoit and Wolf 2020).

3.1. Shrinkage estimators for themean vector

In package HDShOP (High-Dimensional Shrinkage Optimal Portfolio, see Bodnar, Dmytriv, et al. 2024) the
following shrinkage estimators for the mean vector are available:

• James-Stein shrinkage estimator (Jorion 1986):

μ̂n,JS = (1 − α̂m,JS)x̄n + α̂m,JSx01p, (14)

where x0 is the shrinkage target and

α̂m,JS = min

{
1,

(p − 2)/n
(x̄n − x01p)�S−1

n (x̄n − x01p)

}
. (15)

• Bayes-Stein shrinkage estimator (Jorion 1986):

μ̂n,BS = (1 − α̂m,BS)x̄n + α̂m,BSx̂01p, (16)

where

α̂m,BS = p + 2
p + 2 + n(x̄n − x̂01p)�S−1

n (x̄n − x̂01p)
and x̂0 = x̄�

n S−1
n 1p

1�
p S−1

n 1p
= R̂GMV . (17)

Moreover, Jorion (1986) suggests the application of n−1
n−p−2Sn instead of Sn in the above formulas.
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• Optimal linear shrinkage estimator (Bodnar, Okhrin, and Parolya 2019):

μ̂n,BOP = α̂m,BOPx̄n + β̂m,BOPμ0 , (18)

where

α̂m,BOP =
(
x̄�
n S−1

n x̄n − p/n
1−p/n

)
μ�
0 S

−1
n μ0 − (x̄�

n S−1
n μ0)

2

x̄�
n S

−1
n x̄nμ�

0 S
−1
n μ0 − (x̄�

n S
−1
n μ0)

2
(19)

and

β̂m,BOP = (1 − α̂m,BOP)
x̄�
n S−1

n μ0

μ�
0 S

−1
n μ0

. (20)

3.2. Shrinkage estimators for the covariance and precisionmatrices

A linear shrinkage estimator for the covariance matrix is given by (see, Bodnar, Gupta, and Parolya 2014)

�̂n;BGP = α̂covSn + β̂cov�0, (21)

with

α̂cov = 1 −
1
n ||Sn||2tr||�0||2F

||Sn||2F||�0||2F − (tr(Sn�0))
2 (22)

and

β̂cov = tr(Sn�0)

||�0||2F
(
1 − α̂cov

)
, (23)

where ||A||tr = tr[(AA�)1/2] denotes for the trace norm and�0 is assumed to possess the bounded trace norm.
Recently, a non-linear shrinkage estimator of the covariance matrix has been suggested in the literature

by Ledoit and Wolf (2017, 2020). Following Ledoit and Wolf (2020) it is given by

�̂n,LWnonlin = Hdiag(dor1 , . . . , d
or
p )H�,

dori =

⎧⎪⎪⎨
⎪⎪⎩

di
|1 − p/n − p/ndim̆F(di)|2 , if di > 0,

1
(p/n − 1)m̆F(0)

, if di = 0,
for i ∈ {1, . . . , p},

(24)

where H is the matrix with the sample eigenvectors of Sn, d1, . . . dp are the sample eigenvalues of Sn,
m̆F(x) = limz→x mF(z) = limz→x(

c−1
z + cmF(z)) and m̆F(x) = limz→x mF(z) withmF(z) the limiting Stieltjes

transform, which for a distribution function G : R → R it is defined by

mG(z) =
∫ +∞

−∞
1

λ − z
dG(λ); z ∈ C+ ≡ {z ∈ C : �z > 0}.

Finally, a linear shrinkage estimator for the precision matrix (inverse covariance matrix) is given by

�̂n,BGP = α̂precS−1
n + β̂prec�0, (25)

with

α̂prec = 1 − p/n −
1
n ||S−1

n ||2tr||�0||2F
||S−1

n ||2F||�0||2F − (
tr(S−1

n �0)
)2 (26)
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and

β̂prec = tr(S−1
n �0)

||�0||2F
(
1 − p/n − α̂prec

)
, (27)

where 1/p�0 is assumed to have the bounded trace norm.
Other types of shrinkage estimators for the mean vector, covariance matrix, and precision matrix can be

found in the review paper of Bodnar, Bodnar, and Parolya (2022).

3.3. Optimal shrinkage estimators

Another possibility to construct the shrinkage estimators of optimal portfolios is to define them directly for
portfolio weights instead of using the shrinkage estimators of the mean vector and covariance matrix. The
motivation behind this approach is twofold: (i) the application of the improved estimators for the mean vec-
tor and the covariance (precision) matrix does not necessarily lead to optimal estimators of optimal portfolios;
(ii) constructing improved estimators for the mean vector and the covariance matrix requires accounting for
the estimation error present in p + p(p + 1)/2 parameters, while the aim is to obtain an estimator for a p−1
dimensional vector of portfolio weights.

Recently, optimal shrinkage estimators for the weights of the MV portfolio and GMV portfolio were
constructed in Bodnar, Parolya, and Schmid (2018) and Bodnar, Okhrin, and Parolya (2023), obtained by min-
imizing the out-of-sample variance and the out-of-sample utility functions. The resulting shrinkage estimator
for the MV portfolio is given by

ŵMV ;oSh = α̂n;MV ŵMV ;S + (1 − α̂n;MV)b (28)

with

α̂n;MV =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γ −1(R̂GMV − R̂b)
(
1 + 1

1−p/n

)
+ (V̂b − V̂GMV ;c) + γ −2

1−p/n ŝc
V̂GMV ;c
1−p/n − 2

(
V̂GMV ;c + γ −1

1−p/n (R̂b − R̂GMV)
)

+ γ −2
(

ŝc+p/n
(1−p/n)3

)
+ V̂b

if p < n

γ −1(R̂GMV − R̂b)
(
1 + 1

p/n(p/n−1)

)
+ (V̂b − V̂GMV ;c) + γ −2

p/n(p/n−1) ŝc
(p/n)2V̂GMV ;c

p/n−1 − 2
(
V̂GMV ;c + γ −1

p/n(p/n−1) (R̂b − R̂GMV)
)

+ γ −2
(
ŝc+(p/n)2
(p/n−1)3

)
+ V̂b

if p > n

, (29)

where R̂b and V̂b are consistent estimators for the expected return Rb = μ�b and the variance Vb = b��b of
the target portfolio b given by

R̂b = μ̂
�b, and V̂b = b�Snb, (30)

while V̂GMV ;c and ŝc are consistent estimator for VGMV and s expressed as

V̂GMV ;c =

⎧⎪⎨
⎪⎩

1
1 − p/n

V̂GMV if p < n
1

p/n(p/n − 1)
V̂GMV if p > n

and ŝc =
{(

1 − p/n
)
ŝ − p/n if p < n

p/n
(
p/n − 1

)
ŝ − p/n if p > n

. (31)

For the GMV portfolio we get

ŵGMV ;oSh = α̂n;GMV ŵGMV ;S + (1 − α̂n;GMV)b (32)

with

α̂n;GMV =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V̂b − V̂GMV ;c
V̂GMV ;c
1−p/n − 2V̂GMV ;c + V̂b

if p < n

V̂b − V̂GMV ;c
(p/n)2V̂GMV ;c

p/n−1 − 2V̂GMV ;c + V̂b

if p > n
. (33)
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Remark 3.1: One of the important questions is the choice of the target vector/weights b. It should bementioned
that every shrinkagemethod is, of course, sensitive to this choice to some extent. Still, there are some ’safe’ targets
which would never make your estimator worse than the traditional one, i.e. ŵMV ;S given in (9). Let us consider
the GMV portfolio (5) for simplicity. It is evident that the variance of this portfolio is of order O(1/p) in case
the population covariance matrix � has the maximum eigenvalue bounded away from infinity for increasing p.
Indeed, using Ruhe’s trace inequality (see, Ruhe 1970) we get

VGMV = 1
1�
p �−11p

≤ λmax(�)

1�
p 1p

= O(1/p),

where λmax(�) is the maximum eigenvalue of �. Now, taking the naive portfolio as a target, i.e. b = 1p/p, is a
safe option since using again the same trace inequality one gets

Vb = 1�
p �1p
p2

≤ 1�
p 1p
p2

λmax(�) = λmax(�)

p
= O(1/p),

where the latter expression is bounded for a bounded λmax(�), but even if λmax(�) is unbounded and of order
O(p) (factormodel), the variance of the target portfoliowill still be bounded for increasing dimensions. Similarly,
one can show that the target portfolios constructed from an equicorrelation target matrix of the form � =
(1 − ρ)I + ρ1p1�

p for some suitable ρ also obey the variance of order O(1/p).
The aforementioned discussion also implies that one should choose the target portfolio with a bounded vari-

ance; otherwise, the shrinkage estimation technique could fail. Indeed, due to (33) the shrinking coefficient
α̂n;GMV will tend to one if Vb (and consequently V̂b) is tending to infinity; and the shrinkage will have no effect.
But this is also very natural since nobody would shrink the sample portfolio to a target with (asymptotically)
infinite variance. Otherwise, for finite Vb, the shrinkage intensity α̂n;GMV will be positive and utilize the best
combination of two portfolios: sample and target ones. Thus, one should be careful with the data-driven target
portfolios, especially if the behavior of their asymptotic variance is unknown.

3.4. High-dimensional test theory based on the shrinkage approach

Bodnar, Dmytriv, et al. (2019) and Bodnar et al. (2021) derived the high-dimensional asymptotic distributions
of α̂n;MV and α̂n;GMV , and utilized these distributions to develop high-dimensional tests assessing the optimality
of a given portfolio with weights w0.

In the case of the MV portfolio, we aim to test the hypotheses

H0 : wMV = w0 vs. H1 : wMV 	= w0. (34)

Bodnar et al. (2021) suggested the application of the following test statistics

TMV(w0) = √
n
α̂n;MV(w0)B̂n(w0)√

d′
0�̂(w0)d0

, (35)
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where α̂n;MV(w0) is the optimal shrinkage intensity as defined in (29) with b = w0,

B̂n(w0) = V̂GMV ;c

1 − c
− 2

(
V̂GMV ;c + γ −1

1 − c
(R̂w0 − R̂GMV)

)
+ γ −2

(
ŝc + c

(1 − c)3

)
+ V̂w0 ,

d0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ −1 + γ −1

1 − c−1
γ −2

1 − c

−γ −1 − γ −1

1 − c
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

�̂(w0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V̂GMV ;c(ŝc + 1)
1 − c

0 0 V̂GMV ;c −2V̂GMV ;c(R̂w0 − R̂GMV)

0 2
V̂2
GMV ;c
1 − c

0 0 2V̂2
GMV ;c

0 0 2
((ŝc + 1)2 + c − 1)

1 − c
2(R̂w0 − R̂GMV) −2(R̂w0 − R̂GMV)2

V̂GMV ;c 0 2(R̂w0 − R̂GMV) V̂w0 0
−2V̂GMV ;c(R̂w0 − R̂GMV) 2V̂2

GMV ;c −2(R̂w0 − R̂GMV)2 0 2V̂2
w0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(36)

Under the null hypothesis in (34) it holds that (see, Bodnar et al. 2021)

TMV(w0)
d−→ N (0, 1) for p/n → c ∈ [0, 1) as n → ∞.

Hence, the hypothesis that w0 are the weights of the MV optimal portfolio is rejected if |TMV(w0)| > z1−δ/2,
where z1−δ/2 is the (1 − δ/2) quantile of the standard normal distribution.

Similarly, for the GMV portfolio, we aim to check whether the portfolio with weights w0 can be equal to the
optimal portfolio with the smallest variance, that is

H0 : wGMV = w0 vs. H1 : wGMV 	= w0. (37)

To test (37), Bodnar, Dmytriv, et al. (2019) derived the following test statistic

TGMV(w0) = √
n

(1 − c) L̂w0

c + (1 − c) L̂w0

, (38)

where

L̂w0 = (1 − c)w�
0 Snw01�

p S
−1
n 1p − 1.

Under the null hypothesis in (37) we get

TGMV(w0)
d−→ N

(
0, 2

1 − c
c

)
for p/n → c ∈ [0, 1) as n → ∞ and the null hypothesis in (37) is rejected as soon as

|TGMV(w0)| >

√
2
1 − c
c

z1−δ/2.

To this end, we note that the above two approaches are used to test the efficiency of a given portfolio, i.e. they
are the tests on the whole vector of portfolio weights. Additionally to these two tests, Bodnar, Dette, et al. (2022)
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developed a high-dimensional test for each element of the target vector w0, i.e. a test on the weight of each asset
separately.

For the MV portfolio, the hypotheses on the i-th weight are formulated as

H0 : wMV ,i = w0,i vs. H1 : wMV ,i 	= w0,i. (39)

Let ei = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0)�. Then the test statistic is given by (see Bodnar, Dette, et al. 2022)

TMV ;i = (n − p)
(ŵMV ,i;c − w0,i)

2

vi
, (40)

where

ŵMV ,i;c = ŵGMV ;S,i + γ −1 (1 − cn) e�i Q̂nx̄n, with ŵGMV ;S,i = e�i S−1
n 1p

1�
p S−1

n 1p
(41)

and

vi =
(
γ −2(ŝc + 1) + V̂GMV ;c

)
(1 − cn)e�i Q̂nei + γ −2(1 − cn)2(e�i Q̂nx̄n)2, (42)

where cn = p/n, and ŵGMV ;S,i denotes the i-th element of ŵGMV ;S as defined in (10).
Under the null hypothesis in (39), it holds that

TMV ;i
d−→ χ2

1

for p/n → c ∈ [0, 1) as n → ∞ and, consequently, the null hypothesis in (39) is rejected if TMV ;i > q1−δ , where
q1−δ is the (1 − δ) quantile of the χ2-distribution with one degree of freedom.

Using the duality between the test theory and the interval estimation (see, e.g. Aitchison 1964), the (1 − δ)
confidence interval for the i-th weight of the MV portfolio is obtained and it is given by[

ŵMV ,i;c − z1−δ/2

√
vi√

n − p
, ŵMV ,i;c + z1−δ/2

√
vi√

n − p

]
. (43)

Finally, it is noted that testing the i-th weight of the GMV portfolio and deriving a confidence interval can be
accomplished, as demonstrated in (40) to (43), by setting γ = ∞.

4. Package structure

In this section, we discuss the internal structure of the package, explain how it works, and provide some exam-
ples. We begin with a description of S3 classes, which form the foundation of the package. We then proceed to
the creation of portfolios with shrunk weights. The section concludes with the creation of custom portfolios,
particularly those based on shrinkage estimators of mean vectors and covariance matrices. The following setup
will be used throughout all the examples in this section:

1 R> library(HDShOP)
2 R> n <- 3e2 # number of realizations
3 R> p <- 0.5*n # number of assets
4 R> gamma <- 1
5 R> # the target for covariance shrinkage
6 R> TM <- matrix(0, p, p)
7 R> diag(TM) <- 1
8 R> # the target for shrinkage of the mean vector
9 R> mu_0 <- rep(0, p)
10 R> mu_0[1:10] <- 10:1
11 R> b <- rep(1/p,p)
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All data matrices in the package are handled in a way that the variables are in rows and observations – in
columns.

1 R> set.seed(5)
2 R> x <- t(SP_daily_asset_returns[1:n,2:(p+1)])
3 R> x <- as.matrix(x)

4.1. S3 classes forMean-Variance portfolios

Traditional, weight-shrunk, and custom mean-variance portfolios are returned as objects of the class
MeanVar_portfolio. A portfolio with shrunk weights has a subclass inheriting from it: the MV shrink-
age portfolio (28) has subclass MV_portfolio_weights_BDOPS21 and the GMV portfolio (32) –
GMV_portfolio_weights_BDPS19. All objects of classMeanVar_portfolio carry at least eight slots.

• Slot call contains the function call that creates the portfolio object.
• cov_mtrx and means store the final estimates of the covariance matrix and the mean vector of the asset

returns.
• inv_cov_mtrx is the inverse of the covariance matrix.
• weights is the final estimate of the portfolio weights.
• Port_Var and Port_mean_return are the portfolio variance and the expected portfolio return,

respectively.
• Sharpe is the Sharpe ratio computed by using Port_Var and Port_mean_return.

The structure of the class is depicted in Figure 1. For example, in the case of the traditional portfolio, slot
weights contains the weights computed according to formula (9), while in the case of the MV shrinkage
portfolio, this slot contains the shrunk weights. In both cases, cov_mtrx and means are correspondingly
the sample covariance matrix and the sample mean vector of the asset returns. When considering a mean-
variance portfolio based on shrunk mean vector and covariance matrix, slots cov_mtrx and means contain
the corresponding shrinkage estimates.

In the case p<n, it is possible to perform the test on the marginal significance of each weight
for the MV and the GMV shrinkage portfolios (39)–(42), and to construct univariate confidence inter-
vals for each weight at the specified confidence level as given in (43). To enable this, objects of classes
MV_portfolio_weights_BDOPS21 and GMV_portfolio_weights_BDPS19 are returned with an
additional slot – weight_intervals. It is a dataframe, in which column weight contains estimates of
individual weights (41), columns low_bound and upp_bound are the boundaries of confidence intervals
from (43) corresponding to those weights, T statistics is defined in formula (40), and p_value is the column
of p-values of those individual tests.

For MeanVar_portfoliomethods summary and plot are available.

1 R> portfolio_BDPS19 <- MVShrinkPortfolio(x=x, gamma=10, type=’traditional’)
2 R> summary(portfolio_BDPS19)

1 $call
2 MVShrinkPortfolio(x = x, gamma = 10, type = "traditional")
3 $Port_Var
4 [1] 0.09841004
5 $Port_mean_return
6 [1] 0.06524613
7
8 $Sharpe
9 [1] 0.2079865

1 R> plot(portfolio_BDPS19)

The results of the plot function are depicted in Figures 2 and 3.
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Figure 1. Structure of S3 classes for portfolio objects.

4.2. Mean-variance portfolios with shrunkweights

The main function performing the creation of shrinkage portfolios is MVShrinkPortfolio. Essentially, it
serves as a function dispatcher, selecting a method based on the arguments type, gamma, and the ratio p/n of
the original data. The argument type is a switch indicating whether a shrinkage or traditional portfolio is to
be returned.

The function returns either a portfolio in the form of S3 class MeanVar_portfolio or a human-readable
error message. Generally, MVShrinkPortfolio should be used in interactive programming as it is more
user-friendly and slower thanunderlyingmethods,while themethods themselves should be exploited forwriting
more complicated but at the same time time-efficient code (Table 1).

Weight-shrunk MV portfolios (28) from Bodnar, Okhrin, and Parolya (2023) are constructed by setting
type=’shrinkage’ and gamma being equal to a non-infinite real number. For the values of p and n,
set in the beginning of this section, the result of execution of

1 R> portfolio_BDOPS21 <-
2 + MVShrinkPortfolio(x=x, gamma=gamma, type=’shrinkage’, b=b, beta = 0.05)

is the same as that of new_MV_portfolio_weights_BDOPS21 which was eventually dispatched by
MVShrinkPortfolio:

1 R> portfolio_BDOPS21 <-
2 + new_MV_portfolio_weights_BDOPS21(x=x, gamma=gamma, b=b, beta = 0.05)

Table 1. Functions dispatched by MVShrinkPortfolio based on the arguments type, gamma, and the p/n ratio of the input data x.

Function Paper type gamma p/n

new_MV_portfolio_weights_BDOPS21 Bodnar, Okhrin, and Parolya (2023) shrinkage < Inf < 1
new_MV_portfolio_weights_BDOPS21_pgn Bodnar, Okhrin, and Parolya (2023) shrinkage < Inf > 1
new_GMV_portfolio_weights_BDPS19 Bodnar, Parolya, and Schmid (2018) shrinkage Inf < 1
new_GMV_portfolio_weights_BDPS19_pgn Bodnar, Parolya, and Schmid (2018) shrinkage Inf > 1
new_MV_portfolio_traditional traditional < Inf < 1
new_MV_portfolio_traditional_pgn traditional < Inf > 1
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Figure 2. Asset mean returns and portfolio weights

If p>n,MVShrinkPortfolio dispatches the functionnew_MV_portfolio_weights_BDOPS21_
pgn. Similarly, for the global minimum variance portfolio (32), setting gamma=Inf will dispatch either
new_GMV_portfolio_weights_BDPS19 or new_GMV_portfolio_weights_BDPS19_pgn,
depending on the p/n ratio:

1 R> portfolio_BDPS19 <-
2 + MVShrinkPortfolio(x=x, gamma=Inf, type=’shrinkage’, b=b, beta = 0.05)

4.3. Custommean-variance portfolios

Custom mean-variance portfolios can be created with prespecified mean vector and covariance matrix of
asset returns. HDShOP includes three functions related to this purpose, namely new_MeanVar_portfolio
which is a constructor of objects of class MeanVar_portfolio, validation function for such objects
validate_MeanVar_portfolio, and helper MeanVar_portfolio. Conventionally, the construc-
tor acts as a basic creator of class objects, the validator performs checks to confirm the legitimacy
of the class object, and the helper function combines these functionalities. Following this concept,
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Figure 3. Asset covariance matrix.

new_MeanVar_portfolio takes arguments mean_vec, cov_mtrx, gamma and computes the weights
accordingly to (3) where the population mean vector and covariance matrix are replaced by their estimators.
Currently, validate_MeanVar_portfolio checks if all the necessary slots are present in the object, its
weight and mean vectors have the same length as the number of rows in the covariance matrix, and that the
covariance matrix is square.

Below is an example demonstrating how to use the constructor and validator to create a portfolio using
shrinkage estimators for the mean vector and covariance matrix.

1 R> # Defining a target matrix
2 R> TM <- matrix(0, nrow=p, ncol=p)
3 R> diag(TM) <- 1/p
4 R> # Computing the covariance matrix of x
5 R> Sigma_shr <- CovarEstim(x, type="BGP14", TM=TM)
6 R> # Computing the means of x
7 R> means <- MeanEstim(x, type="BOP19", mu_0=mu_0)
8 R> # Portfolio constructor
9 R> cust_port_BS_LW <- new_MeanVar_portfolio(mean_vec=means,
10 + cov_mtrx=Sigma_shr, gamma=2)
11 R> # Validator
12 R> cust_port_BS_LW <- validate_MeanVar_portfolio(cust_port_BS_LW)

The last two lines are equivalent to the following.
1 R> cust_port_BS_LW_2 <- MeanVar_portfolio(mean_vec=means,
2 + cov_mtrx=Sigma_shr, gamma=2)

The following example of an improperly designed portfolio, created by modifying the previous one, will
trigger the validator to report an error:

1 R> SCM <- matrix(0, nrow=p, ncol=2*p)
2 R> diag(SCM) <- 1/p
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3 R> cust_port_BS_LW_3 <- cust_port_BS_LW_2
4 R> cust_port_BS_LW_3$cov_mtrx <- SCM
5 R> tools::assertError(
6 + validate_MeanVar_portfolio(cust_port_BS_LW_3),
7 + classes = "error", verbose = TRUE
8 + )

1 ## Asserted error: The covariance matrix is not square

To simplify the creation of portfolios with custommean vectors and covariance matrices, two dispatchers are
provided: MeanEstim and CovarEstim.

1 R> Mtrx_naive <- CovarEstim(x, type="trad")
2 R> Mtrx_bgp <- CovarEstim(x, type="BGP14", TM=TM, SCM=Mtrx_naive)
3 R> Mean_BOP <- MeanEstim(x, type="BOP19", mu_0=mu_0)
4 R> Mean_BOP <- MeanEstim(x, type="bs")

5. Empirical illustration

In this section, we illustrate the methods of the package on real data. For this purpose, we analyze daily log-
returns of S&P 500 constituents from January 2005 to January 2025 (5230 observations). The data were obtained
from Thomson Reuters Eikon. This time period is characterized by significant financial turbulence, covering
multiple periods of crises. Since not all 500 assets were tradable over the whole period, we chose 300 stocks with
the longest history.

To emphasize the importance of various estimation techniques, we start with a full sample analysis. Figure 4
shows the individual assets (as dots) in the mean-standard deviation space with the parameters estimated in the
traditional way. The optimal portfolio weights depend on the mean vector and the covariance matrix of asset
returns. These can be estimated either traditionally or by relying on robust alternatives described above. The
corresponding efficient frontiers for different pairs of such estimators are visualized in the figure. The legend
indicates first the estimator for the mean and then the estimator for the covariance matrix. For the shrinkage-
based estimators, we choose the vector proportional to the vector with ones as the target for expected returns
and the identity matrix as the target for the covariance matrix. Naturally, other choices, such as zero-correlation
or equal-correlation covariance matrices, can also be considered.

From a financial perspective, the most desirable efficient frontier is the highest and leftmost frontier, as it
contains portfolios with the highest returns for a given level of risk. However, for empirical data, this frontier
may be affected by biases and noise, leading to extremely poor out-of-sample performance. In contrast, with
simulated data, we can compare the estimated efficient frontiers to the true frontier based on known parameters

Figure 4. Efficient frontiers based on various estimators, utilizing daily returns from 300 stocks between January 2005 and January 2025.
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Figure 5. KDE of traditional and shrinkage estimators of the portfolio weights for MVwith γ = 5 (left) and γ = 50 (right). The equally weighted
portfolio serves as a target. Daily returns for 300 stocks for the full sample are used.

– an approach that is not possible with real data. To address this issue, we compare the various frontiers to
a consistent estimator of the frontier. The black solid line shows the consistent Bayesian estimator suggested
in Bauder et al. (2021). Given that the curves produced by the same mean estimator appear highly similar, it is
evident that the shape of the efficient frontier is predominantly influenced by the mean estimator rather than
the covariance estimator. Furthermore, some estimators lead to a substantial bias in the frontier, for example,
the James-Stein estimator. The traditional estimator, however, shows a good performance leading to a frontier
that is very close to the Bayesian one.

Next, we consider the shrinkage type estimators for the portfolio weights with the equally weighted portfolio
(with weights 1/p = 0.0033) as the target. It is well known, that the shrinkage approach stabilizes the portfolio
weights. To visualize this effect, we plot the KDEs (kernel density estimators) of the traditional and shrinkage
estimated portfolio weights of the 300 assets in Figure 5. The KDE is defined at point y by

f̂h(y) = 1
nh

n∑
i=1

K
(
y − yn

h

)

for a given sample y1, . . . , yn whereK(·) is a kernel, i.e.K(·) is a density symmetric around zero. The quantity h is
the bandwidth parameter and is usually chosen via cross-validation in practice. Further details about the kernel
density estimation can be found in Wasserman (2006). The left hand-side plot in Figure 5 depicts the KDEs
for the minimum-variance portfolio for γ = 5, whereas the right figure is for the portfolio with γ = 50. The
KDEs for the shrinkage estimator are noticeably narrower, demonstrating the stabilizing impact of the shrinkage
technique.

The dynamics of the estimated shrinkage intensity are of great importance for the assessment of the estimation
risk. For this purpose, we estimate the shrinkage parameter as in (29) using a 750-daymoving estimationwindow
and setting the risk aversion coefficient to 50. Figure 6 shows the dynamics of the shrinkage intensity and allows
for additional financial insights. We see that the shrinkage intensity is high during the European debt crisis and
the COVID-19 pandemic. This seems to be surprising since the volatility of returns is high in these periods and
the equally weighted portfolio is believed to reduce the risk. However, the increase in the volatility is so high
that minimum-variance portfolios appear to be more stable and less risky compared to the equally weighted
portfolio.

The package offers a possibility to test the significance of the shrinkage intensity using the test in (34)–(35).
Utilizing the asymptotic distribution of the estimator, we construct and illustrate pointwise confidence intervals
in Figure 6. Despite of a short estimation window and large portfolio, the confidence intervals are relatively
narrow.
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Figure 6. Movingwindow estimator of optimal shrinkage intensity for the shrinkage portfolio with corresponding 95% confidence intervals. The
estimation window is set to 750 days and the risk aversion coefficient is 100.

Figure 7. p-values of the test in (34) for different portfolio sizes and risk aversion coefficients. The estimation window is set to 750 days and the
risk aversion coefficient to 50.

The significance of the difference between the mean-variance portfolio and the equally weighted portfolio
over time is shown in Figure 7. Here, we plot the p-value of the significance test for different portfolio sizes and a
risk aversion coefficient of γ = 50. As above, we use an estimation window of 750 days. Note that changing the
portfolio size results in a completely different portfolio, and the shrinkage intensities are not directly compara-
ble. Nevertheless, the figure provides interesting insights into the sensitivity of shrinkage estimation to market
volatility and portfolio size.

First, the intensities are highly significant for all portfolio sizes during crisis periods. This implies that mini-
mizing variance is crucial for all portfolio sizes in turbulent times. Second, in calm phases, the equally weighted
portfolio leads to lower variance and can be preferred or is equivalent to large minimum-variance portfolios,
while small portfolios remain significantly different. Third, the results heavily depend on the choice of stocks.
As seen in the period 2016-2017, portfolios with 50 or 200 assets are significantly different from the equally
weighted portfolio, whereas the portfolio with 100 stocks is not. This suggests that it is not possible to make a
uniform recommendation regarding the optimal portfolio size.

To assess the out-of-sample economic performance of different estimators, we consider a dynamic portfolio
strategy. We consider two holding periods of 5 or 25 days. At the end of every holding period the parameters
are reestimated using the last 750 observations. The returns at the end of every holding period are use to cal-
culate various performance and risk measures summarized in Tables 2 and 3 for holding periods of 5 and 25
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Table 2. Out-of-sample performance measures of different estimation techniques for portfolio selection with 300 assets and estimation window of 750 trading days.

trad/trad trad/BGP14 trad/LW20 bs/trad bs/BGP14 bs/LW20 js/trad js/BGP14 js/LW20 BOP19/trad BOP19/BGP14 BOP19/LW20

γ = 20
mean 1e-04 2e-04 4e-04 3e-04 3e-04 3e-04 1e-04 2e-04 4e-04 0.0011 0.001 6e-04
sd 0.0456 0.0432 0.0356 0.0175 0.0167 0.0143 0.0456 0.0432 0.0356 0.0475 0.0448 0.0364
VaR 0.95 −0.0629 −0.0611 −0.0535 −0.0263 −0.0253 −0.022 −0.0629 −0.0611 −0.0535 −0.0719 −0.0681 −0.0561
VaR 0.99 −0.2121 −0.193 −0.141 −0.0756 −0.0706 −0.0585 −0.2121 −0.193 −0.141 −0.2319 −0.2007 −0.1283
ES 0.95 −0.0629 −0.0703 −0.0829 −0.0429 −0.0422 −0.0384 −0.0629 −0.0703 −0.0829 −0.1302 −0.12 −0.089
ES 0.99 −0.2121 −0.193 −0.141 −0.0756 −0.0706 −0.0585 −0.2121 −0.193 −0.141 −0.2319 −0.2007 −0.1283
Sharpe 0.0029 0.0042 0.0104 0.0161 0.0177 0.0242 0.0029 0.0042 0.0104 0.0232 0.0226 0.0172
Sortino 0.0041 0.0059 0.0146 0.0225 0.0248 0.0338 0.0041 0.0059 0.0146 0.0335 0.0328 0.025

γ = 50
mean 2e-04 2e-04 3e-04 3e-04 3e-04 3e-04 2e-04 2e-04 3e-04 6e-04 6e-04 4e-04
sd 0.0197 0.0188 0.0159 0.0104 0.0101 0.0092 0.0197 0.0188 0.0159 0.0206 0.0195 0.0163
VaR 0.95 −0.0293 −0.0283 −0.0247 −0.0164 −0.0159 −0.0145 −0.0293 −0.0283 −0.0247 −0.0319 −0.0304 −0.0258
VaR 0.99 −0.0828 −0.0762 −0.0613 −0.0438 −0.0428 −0.0417 −0.0828 −0.0762 −0.0613 −0.103 −0.0925 −0.0679
ES 0.95 −0.0443 −0.0451 −0.0423 −0.0313 −0.0306 −0.0294 −0.0443 −0.0451 −0.0423 −0.0651 −0.0608 −0.0488
ES 0.99 −0.0828 −0.0762 −0.0613 −0.0438 −0.0428 −0.0417 −0.0828 −0.0762 −0.0613 −0.103 −0.0925 −0.0679
Sharpe 0.0109 0.0125 0.0198 0.0265 0.0278 0.0332 0.0109 0.0125 0.0198 0.0293 0.029 0.0256
Sortino 0.0152 0.0174 0.0276 0.0369 0.0388 0.0461 0.0152 0.0174 0.0276 0.0418 0.0415 0.0365

γ = 100
mean 2e-04 3e-04 3e-04 3e-04 3e-04 3e-04 2e-04 3e-04 3e-04 4e-04 4e-04 3e-04
sd 0.0197 0.0118 0.0104 0.0089 0.0087 0.0082 0.0122 0.0118 0.0104 0.0126 0.0122 0.0106
VaR 0.95 −0.0293 −0.0184 −0.0165 −0.0143 −0.014 −0.013 −0.0191 −0.0184 −0.0165 −0.0201 −0.0193 −0.0169
VaR 0.99 −0.0828 −0.047 −0.0432 −0.0416 −0.0419 −0.0437 −0.0492 −0.047 −0.0432 −0.0669 −0.0644 −0.0577
ES 0.95 −0.0443 −0.0331 −0.0312 −0.0302 −0.0301 −0.0297 −0.0339 −0.0331 −0.0312 −0.0461 −0.0444 −0.0396
ES 0.99 −0.0828 −0.047 −0.0432 −0.0416 −0.0419 −0.0437 −0.0492 −0.047 −0.0432 −0.0669 −0.0644 −0.0577
Sharpe 0.0109 0.0214 0.0283 0.0304 0.0314 0.0354 0.0198 0.0214 0.0283 0.0344 0.0344 0.0325
Sortino 0.0152 0.0299 0.0394 0.0422 0.0435 0.0487 0.0276 0.0299 0.0394 0.0484 0.0483 0.0454

Note: The holding period is 5 days.
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Table 3. Out-of-sample performance measures of different estimation techniques for portfolio selection with 300 assets and estimation window of 750 trading days.

trad/trad trad/BGP14 trad/LW20 bs/trad bs/BGP14 bs/LW20 js/trad js/BGP14 js/LW20 BOP19/trad BOP19/BGP14 BOP19/LW20

γ = 20
mean 6e-04 6e-04 6e-04 4e-04 4e-04 4e-04 6e-04 6e-04 6e-04 5e-04 4e-04 3e-04
sd 0.0465 0.0440 0.0362 0.0183 0.0175 0.0149 0.0465 0.0440 0.0362 0.0474 0.0448 0.0364
VaR 0.95 −0.0651 −0.0633 −0.0559 −0.0270 −0.0259 −0.0227 −0.0651 −0.0633 −0.0559 −0.0726 −0.0688 −0.0564
VaR 0.99 −0.2150 −0.1961 −0.1463 −0.0899 −0.0849 −0.0714 −0.2150 −0.1961 −0.1463 −0.2346 −0.2033 −0.1300
ES 0.95 −0.0721 −0.0841 −0.0961 −0.0433 −0.0430 −0.0428 −0.0721 −0.0841 −0.0961 −0.1330 −0.1224 −0.0898
ES 0.99 −0.215 −0.1961 −0.1463 −0.0899 −0.0849 −0.0714 −0.2150 −0.1961 −0.1463 −0.2346 −0.2033 −0.1300
Sharpe 0.0124 0.0135 0.0178 0.0230 0.0243 0.0289 0.0124 0.0135 0.0178 0.0102 0.0100 0.0071
Sortino 0.0174 0.0189 0.0248 0.0322 0.0340 0.0403 0.0174 0.0189 0.0248 0.0146 0.0143 0.0103

γ = 50
mean 4e-04 4e-04 4e-04 3e-04 3e-04 3e-04 4e-04 4e-04 4e-04 4e-04 3e-04 3e-04
sd 0.0204 0.0195 0.0164 0.0111 0.0108 0.0097 0.0204 0.0195 0.0164 0.0206 0.0196 0.0164
VaR 0.95 −0.0301 −0.0290 −0.0255 −0.0160 −0.0155 −0.0141 −0.0301 −0.0290 −0.0255 −0.0325 −0.0310 −0.0262
VaR 0.99 −0.0944 −0.0880 −0.0719 −0.0674 −0.0668 −0.0641 −0.0944 −0.088 −0.0719 −0.1046 −0.0948 −0.0719
ES 0.95 −0.0463 −0.0475 −0.0477 −0.0247 −0.0231 −0.0228 −0.0463 −0.0475 −0.0477 −0.0684 −0.0639 −0.0513
ES 0.99 −0.0944 −0.0880 −0.0719 −0.0674 −0.0668 −0.0641 −0.0944 −0.0880 −0.0719 −0.1046 −0.0948 −0.0719
Sharpe 0.0195 0.0208 0.0259 0.0304 0.0313 0.0349 0.0195 0.0208 0.0259 0.0175 0.0176 0.0165
Sortino 0.0273 0.0291 0.0361 0.0424 0.0437 0.0484 0.0273 0.0291 0.0361 0.0247 0.0249 0.0233

γ = 100
mean 4e-04 3e-04 4e-04 3e-04 3e-04 3e-04 3e-04 3e-04 4e-04 3e-04 3e-04 3e-04
sd 0.0204 0.0124 0.0110 0.0096 0.0094 0.0088 0.0129 0.0124 0.0110 0.0129 0.0124 0.0109
VaR 0.95 −0.0301 −0.0184 −0.0165 −0.0136 −0.0132 −0.0122 −0.0191 −0.0184 −0.0165 −0.0206 −0.0197 −0.0171
VaR 0.99 −0.0944 −0.0666 −0.0614 −0.0674 −0.0686 −0.069 −0.0684 −0.0666 −0.0614 −0.0715 −0.0707 −0.0678
ES 0.95 −0.0463 −0.0313 −0.0311 −0.0172 −0.0148 −0.0127 −0.0321 −0.0313 −0.0311 −0.0485 −0.0466 −0.0398
ES 0.99 −0.0944 −0.0666 −0.0614 −0.0674 −0.0686 −0.0690 −0.0684 −0.0666 −0.0614 −0.0715 −0.0707 −0.0678
Sharpe 0.0195 0.0275 0.0321 0.0321 0.0328 0.0354 0.0263 0.0275 0.0321 0.0249 0.0251 0.0252
Sortino 0.0273 0.0384 0.0446 0.0446 0.0454 0.0487 0.0368 0.0384 0.0446 0.0346 0.0349 0.0348

Note: The holding period is 25 days.
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days respectively. We conclude that the Bayesian estimator for the mean return and the Ledoit and Wolf (2020)
estimator for the covariance matrix lead to the best results. The second best model is the combination of the
mean estimator of Bodnar, Okhrin, and Parolya (2019) and the covariance estimator of Bodnar, Gupta, and
Parolya (2014). This evidence is consistent over different risk aversion coefficients and holding periods. How-
ever, as the risk aversion coefficient increases the the discrepancy between the models diminishes. Note that the
results and conclusions depend on the targets for the shrinkage estimators, but shrinkage estimators generally
improve the performance of portfolios compared to the traditional estimators.

6. Summary

Mean-variance analysis is a fundamental tool in portfolio theory, enriched by numerous applications and exten-
sions detailed in the literature. It has recently been acknowledged that estimation risk can equal or surpass
model risk when models are practically applied, and parameters necessary for constructing optimal portfolios
are estimated using historical asset return data. This issue intensifies in high-dimensional settings, i.e. when the
dimension of the holding portfolio is comparable to the sample size.

In this paper, we present theoretical results developed to determine the structure of high-dimensional optimal
portfolios. The approach outlined utilizes shrinkage estimation and shrinkage-based test theory.We explore var-
ious shrinkage estimators, including those derived for themean vector, covariancematrix, and precisionmatrix,
as well as those directly formulated for the weights of optimal portfolios. These findings are also instrumental
in constructing shrinkage-based tests on the mean-variance efficiency of a given portfolio.

The newly developed high-dimensional optimal portfolio theory is implemented in the R package HDShOP,
which is detailed in this paper. The HDShOP package leverages recent theoretical advancements to determine
high-dimensional optimal portfolios and provides quantitative tools needed to construct improved estimators of
optimal portfolio weights. Additionally, it includes statistical tests on themean-variance efficiency of the holding
portfolio. The application of theHDShOPpackage to real-life problems is demonstrated through several practical
examples based on data from returns on stocks included in the S&P 500 index.

The results of the paper can be extended in several directions. One of possible lines of future research deals
with introducing constraints on the structure of the weights of the high-dimensional mean-variance optimal
portfolios. For example, imposing linear constraints may significantly reduce the estimation error present in
the sample portfolio weights as documented in Jagannathan and Ma (2003). Another line of research may be
related to the construction of the high-dimensional dynamic shrinkage estimators generalizing the recent find-
ings of Bodnar, Parolya, and Thorsén (2023) which are derived for the weights of the high-dimensional global
minimum variance portfolio.
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