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1 Introduction 

 

 

 

 

 

 

 

 

 

 

Classification of sediments of river- and sea-beds is of high importance for a 

large number of applications. The applications are numerous, including e.g. 

navigation, marine geology, geophysics, marine biology, cable and pipeline laying 

and maintenance, and coastal engineering. Nowadays acoustic remote sensing systems 

are available for bathymetric measurements. These systems, however, can also be 

used for sediment classification, i.e., provide information about the way different 

types of sediment are distributed over an area. In this thesis focus is on the 

development of methods for the classification of riverbed sediments. Having available 

these methods is highly relevant for ensuring safe navigation on the Dutch rivers, as is 

further addressed in the next section.  This motivation is followed by a brief overview 

of the main systems for mapping the riverbeds, that is the side scan sonar, the single-

beam echo-sounder and the multi-beam echo-sounder. This latter system is the system 

used throughout this thesis. Then the research objectives are summarized, focusing on 

how the data collected from multi-beam echo-sounders can be used for mapping the 

sediment distribution on riverbeds. Finally, the outline of the thesis is presented. 
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1.1 Navigability of Dutch rivers – Motivation of the thesis 

 

The Netherlands are part of four international river basins: Rhine, Meuse, 

Scheldt and Ems. These rivers cross the Netherlands towards the Wadden Sea and the 

North Sea. The Dutch rivers are used for inland waterway transport inside the 

Netherlands but also between the Netherlands and their neighbouring countries. For 

example, the total freight between Rotterdam and Duisburg (Germany) amounted to 

165 million metric tons in 1996.
1
 Also, about every three minutes, a ship passes the 

Dutch-German border at Lobith, 24 hours a day and 7 days a week.
1
 Therefore the 

economic importance of the Dutch rivers is very high. 

Three factors can affect the water volume in a river: meltwater, precipitation 

and groundwater. The amounts of precipitation and meltwater are much smaller in the 

summer than in the winter. Therefore during this period the river stream is narrow, 

whereas especially during the winter the overflowing river can cover large flood 

plains.  

A minimum depth should be guaranteed to keep the rivers navigable but also to 

ensure that the ships can carry maximum cargo, as low water levels imply that ships 

can carry less cargo. For example, maximum cargo can be transported on the river 

Rhine only when the river’s discharge is higher than 1,250 m
3
/s.

1
 

Various measures have been taken by the Dutch authorities to control the 

distribution of water discharges over the branches of the Rhine Delta. The main tools 

are: the weir at Driel, to control the water flow from the Rhine to the IJssel, the 

Neder-Rijn and the Waal; the sluice gates in the Afsluitdijk, to regulate the water level 

in Lake IJsselmeer; and the Haringvliet and Volkerak sluice gates, to control through 

which ‘exit’ the water will flow into the sea.  

The Rhine river has been trained with groynes, originally with the purpose to 

reduce the risk of flooding, but in later stages also to improve navigability. In the 

1990s, the Waal Programme realized further improvements of navigability by the 

construction of groyne extensions, maintenance dredging and structural measures in 

river bends. The latter comprised bendway weirs, fixed layers and bottom vanes. 

Bottom vanes  are vortex generating devices that are mounted on the river bed at an 

angle to the prevailing flow direction. For the Rhine, the bendway weirs were realized 

in the bend at Erlecom and fixed layers were constructed in the outer-bend pools of 

the bends at Nijmegen and St Andries in the river Waal. 

The on-going overall bed degradation of the river Waal then arises as a 

problem, because the fixed layers in the outer-bend pools will not follow the 

degradation and hence become high obstacles. In general, bed degradation results 

mainly from a deficit in the sediment supply from upstream and from excessive 

dredging.  

An appropriate measure to arrest overall bed degradation is river bed 

nourishment by artificial sediment.
2
 By supplying coarser sediments than the 

sediments of the river bed, the amount of required sediment supply will eventually 

decrease. 
2
 

The success of the above mentioned measures on keeping the navigation in the 

Dutch rivers safe is assessed by continuously monitoring the depth of the rivers. This 

depth depends not only on water discharge but also on river bed topography that 

changes dynamically in response to discharge fluctuations. The river topography and 

its dynamics are affected by spatial variations in bed sediment composition. This 
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spatial sediment distribution, therefore, needs to be known, in order to understand and 

eventually predict the dynamic behaviour of the river topography. In addition the 

sediment distribution also needs to be monitored in order to assess the effectiveness of 

the measures and the long term behaviour of the suppletions.  

An attractive system for obtaining information about the riverbed bathymetry is 

the multi-beam echo-sounder (MBES).  The echo-sounder emits short pulses of sound 

towards the river bed to determine the depth for a large number of beams.  

Furthermore, different types of sediment (i.e. differing in grain size), can be 

discriminated based on their differences with regards to the interaction of sound with 

the sediments, reflected in the so called backscatter strength. Consequently, the 

echoes as received by the MBES in theory also allow for discriminating between 

different sediments. This issue has been extensively studied especially during the last 

decade when new MBES systems have been developed. This thesis falls within these 

research efforts to discover the full potential of backscatter measurements for 

sediment discrimination and characterisation in order to gradually replace the 

conventional way of mapping the sediment composition of the riverbed by taking a 

large number of physical grab samples. The MBES provides high spatial coverage of 

an area within a short time, while the conventional approach is time consuming and 

with limited coverage of the riverbed.   

 

 

 

1.2 Systems for mapping the riverbed 

 

The three main acoustic systems for remotely mapping the riverbed are the side 

scan sonar (SSS), the single-beam echo-sounder (SBES), and the multi-beam echo-

sounder (MBES).  

The SSS systems are in use since the 1960s.  The system (see Fig. 1.1) is towed 

behind the survey vessel at a short distance above the bottom that enables the system 

to work in good stability and noise conditions. A side scan sonar insonifies the 

sediment with two side antennas of narrow directivity in the towing direction (usually 

1° or less). The narrow sound beam is intercepting the sediment along a thin strip 

called swath. The instantaneously insonified area inside this beam footprint is very 

small due to the very short duration of the transmitted signal (typically 0.1 ms or less). 

For these systems only the amplitude of the returned echo is recorded as a function of 

time. Aligning the measurements from subsequent pings and correcting the 

amplitudes for e.g. propagation effects, an image of the underwater sediment is 

obtained. Due to the resulting lack of knowledge about the angle of the incoming 

sound, standard SSS systems cannot determine depths along the full swath. 
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FIG. 1.1. Sidescan sonar.3 

 

The SBES systems are in use since the 1920s. A single-beam echo-sounder 

transmits a short signal (duration 0.1 ms to 1 ms), vertically below the ship, in a beam 

with an angular aperture of typically 5°-15°. It measures the two-way travel time of 

the signal, which, if the sound speed is known, provides a single estimate for the 

water depth for each ping.  

The MBES is an extension of the SBES. Contrary to the single-beam echo-

sounder, the multi-beam echo-sounder sends out an acoustic pulse (ping) in a wide 

swath perpendicular to the sailing direction. Beam-steering at reception allows for 

determining the (two-way) travel-times of the received signals for a set of predefined 

beam angles. MBES systems measure both the travel time and the intensity of the 

received signal, which can be used to derive the backscatter strength. The first MBES 

systems were developed by the US Navy in the 1970s. The first non-military MBES 

was the Sea Beam, which was put in service in May 1977 on the Australian vessel 

HMS Cook.
4
 This system had an angular resolution of 2.7

o
 and maximum operating 

depth of 11.000 m.  

The technology of riverbed mapping systems was further developed during the 

last three decades. SSS and MBES systems were used in the past simultaneously 

during a survey to provide complementary information as SSSs were not recording 

bathymetry but the quality of their imagery was considered higher than the imagery 

obtained with MBES. Today, use is made of the interferometric SSS that provides a 

correct positioning of the image of the sediment. Furthermore, high-frequency MBES 

systems with a large number of beams exist that are suitable for high-resolution 

mapping in shallow water.  
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One of the main manufacturers of MBES systems is the Norwegian company 

Kongsberg (former Simrad). Kongsberg multi-beam echo-sounders were used for 

acquiring the data analysed in this thesis. The main specifications of the Kongsberg 

MBES systems that were developed during the last decade are shown in Table 1.1.  

For shallow surveys, like the surveys in the Dutch rivers of this thesis where the 

water depth was less than 20 m, the MBES used was the EM3002. EM3002 was the 

best – then available – model, since it has been specifically designed for shallow 

water – high resolution surveys.  

  

 
Table 1.1 Specifications of Kongsberg’s MBES systems.5 

 

Model-[year developed] Frequency Depth range Swath width 

(degrees) 

EM3002-[2004] 300 kHz 0.5 - 250 m 130-200  

EM710-[2005] 70-100 kHz 3 -  2000 m 140  

EM 302-[2007] 30 kHz 10 - 7000 m 150  

EM 122-[2007] 12 kHz 50 - 11000 m 150  

EM 2040-[2010] 200-400 kHz 0.5 - 500 m 140-200  

 

 

 

1.3 Research objectives 

 

In a previous study
6
, a new method was developed employing the backscatter 

strength data of the MBES for determining seafloor sediment distribution. This 

method was later used
7, 8

 to map the sediment distribution in two parts (Sint Andries 

and Nijmegen) of the River Waal in the Netherlands. The method gave promising 

results, but one important artificial riverbed feature, the fixed layer, consisting of 

large stones, was not identified by the method as a separate sediment type. This 

indicates that such coarse sediments as the fixed layer cannot be discriminated by the 

backscatter strength only and that additional measurements are required. 

The main objective of the thesis is to fully assess the potential of using the MBES 

for classification of the Dutch rivers’ sediments, leading to the following research 

objectives: 

 

1) It is well established that the amount of backscattering from the sediment, 

measured by the so called backscatter strength, depends on the sediment 

properties such as mean grain size. However a variety of methods can be used 

to employ these backscatter strengths for sediment classification. The 

objective is to identify the applicability and potential of the different 

approaches for the sediments encountered in the Dutch rivers. 

 

2) In principle, not only the backscatter strength but also bathymetric features 

contain information that can be used to discriminate between different 

sediments. Items that will be addressed are: 

 

- To identify which bathymetric features have classification potential 



6  

- To enhance the discrimination potential of the classification methods by using 

a combination of backscatter and bathymetric features 

 

3) Many of the classification methods discriminate the different sediment types 

that are present in an area as acoustic classes. However, in addition to the 

distribution of these acoustic classes, also insight in characteristics of the 

different acoustic classes is highly relevant, allowing for example to order the 

acoustic classes with respect to their mean grain size. Quantifying the extent 

to which this characterization is possible is an aim of this thesis research. 

 

In order to fulfil these aims, acoustic data from various Dutch rivers are 

investigated. 

 

 

 

1.4 Outline of the thesis 

The thesis is comprised of nine chapters. Five of them (Chapters 4-8) can be 

viewed as stand-alone entities written in the form of journal or conference papers. 

Chapter 2 presents the principles behind the measurement techniques that the 

MBES system is using. The theoretical background of the interaction of sound with 

sediments is also given. Moreover, the use of MBES for determining the sediment 

backscatter strengths is explained, and a model for predicting the backscatter strengths 

for a range of sediments is described. Finally, the main classification methods 

considered in this thesis are described.
 

In Chapter 3, details about the parts of the Dutch rivers that were surveyed are 

given. Moreover, the specifications of the MBES systems used in the surveys are 

mentioned. 

Chapter 4 presents sediment classification results derived from two different 

sources at the Dordtse Kil river in the Netherlands. The first source is an MBES. For 

the MBES data, two analysis methods are employed: one uses the average backscatter 

data per beam and the other matches the measured backscatter curves (i.e. the 

backscatter strength as a function of angle) to theoretical curves, predicted by a 

physics-based model. The second source is a gamma-ray scintillation detector, i.e., the 

multi-element detection system for underwater sediment activity (Medusa), which 

measures sediment natural radioactivity. The radionuclides (potassium, uranium, 

thorium, and cesium) are linked to sediment mean grain size, silt content and the 

presence of organic matter. Moreover, a hydrophone attached to the Medusa system 

and towed on the riverbed can provide information about the sediment roughness. 

This chapter presents an inter-comparison between the sediment classification results 

using the above-mentioned methods.  

In Chapter 5 two data sets (in Sint Andries and Nijmegen) are considered, both 

taken at the Waal River. A new classifier is introduced, that is the depth residuals. 

Statistical features are calculated for the depth residuals and the backscatter strength. 

A principal component analysis is used to identify depth residual and backscatter 

strength features that have classification potential. Clustering is then applied to assign 

a sediment class to each measurement. The chapter focuses on assessing the 
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classification potential of combining these two sets of features on providing 

complementary information on the composition of the riverbed. 

Chapter 6 investigates the behavior of the backscatter strength and the depth 

residuals in very coarse sediment environments. Whereas for the smaller mean grain 

sizes, in general an increase of backscatter strength with mean grain size is found, this 

is not the case for the very coarse river sediments. For the coarsest sediments a 

decrease in backscatter strength with increasing mean grain size is found. Knowing 

the transition point, i.e. the mean grain size value at which the behavior of the features 

is reversed, can reduce ambiguity in the classification. The transition point is 

determined in this chapter. 

In Chapter 7 an overview of the results of Chapters 4-6 is given. In the previous 

chapters two different classifiers and three different classification methods were used 

for sediment classification based on MBES data. All methods have advantages and 

limitations. This chapter acts as a guide to which classifier and method can be used 

when classifying the various sediment types existing in the surveyed Dutch rivers.  

Chapter 8 is an application of the experience gained from the previous 

classification approaches in order to determine the sediment distribution changes in a 

river that may occur after a period of time.  A small part of the Sint Andries area was 

re-surveyed in 2008 (approximately one year after the first survey). The small part of 

Sint Andries in 2008 as well as the corresponding part in 2007 are analysed in this 

chapter and an assessment is given on the observed riverbed morphology and 

sediment distribution differences.  

Finally, Chapter 9 concludes the thesis, restating the main results concerning the 

sediment classification methods used in Dutch rivers. An outlook on future research is 

also included.  
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2 Background 

 

 

 

 

 

 

 

 

 

 

 

In this chapter the background of the multi-beam echo-sounder (MBES) system 

and its measurements are presented. Section 2.1 describes the principles behind the 

measurement techniques employed by the MBES systems. Detailed information about 

the actual MBES system is given in Section 2.1.1. Subsequently, the methods that the 

MBES uses to determine bathymetry (Section 2.1.2), imagery (Section 2.1.3) and the 

corresponding resolution (Section 2.1.4) are provided. The second part of this chapter 

(Section 2.2) discusses the interaction of sound with sediments. First, the basic theory 

of the reflection of sound at the sediment interface is presented (Section 2.2.1), 

followed by the theory of scattering of sound at riverbeds (Section 2.2.2). In this 

section also a model for predicting the backscatter strengths for a range of sediments 

is described, which will be used for modelling the backscatter strengths in this thesis. 

The use of MBES for determining the sediment backscatter strengths, one of the main 

parameters used for sediment classification throughout this thesis, is presented in 

section 2.2.3. Finally, Section 2.3 of this chapter briefly describes the main ideas 

behind the classification methods considered in this thesis.
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2.1 Acoustic measurements using MBES 

 

2.1.1 General information 

 

The fan of beams provides, for each ping, a large number of simultaneous depth 

measurements along a swath of width L (see Fig. 2.1). For example, a total angular 

width of typically 150 covers up to L=7.5H, H being the water depth. 

 

 
 

FIG. 2.1. Schematic overview of the MBES measurements along a swath with width 
L in the across-track direction. Beams in the across-track direction are the result of 
beam-steering at reception. A depth measurement is taken for every beam. 

 

MBES systems can be divided into three main groups based on their operation 

frequency:
1
 

 

- Deep water systems operating at a frequency of typically 12 kHz. They can be used 

only on large vessels due to the large dimensions of their transducer arrays. 

- Shallow water systems operating at frequencies of typically 100-200 kHz, used for 

surveying the continental shelf. 

- High-resolution systems operating at frequencies of typically 300-500 kHz, 

designed for mapping local objects like shipwrecks. They can be installed on small 

ships, tow fishes or autonomous underwater vehicles (AUV). 

 

The transducer arrays for transmitting the acoustic pulses are designed such that 

the system has a narrow beam width in the along-track direction, i.e. the sailing 

direction. This requires a long transmission array along the sailing direction of the 

supporting platform. Also, a large transmission width is needed to cover as large a 

swath as possible, corresponding to transmission arrays that are narrow across-track. 

The along-track discrimination is thus determined by the directivity of the 

transmission array. The upper plots of Fig. 2.2 show a top and front view of a typical 

transmitted beam. 
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Across-track discrimination is accomplished by the reception array, which must be 

long in the across-track direction (see Fig. 2.2). Applying the principle of beam-

steering allows for discriminating between directions from which the sound impinges 

on the receiving array.  The receiver opening angle in the along-track direction is 

quite large to allow for changes in pitch between transmit and receive. However, this 

is not reflected in the fore-aft dimension of the individual receiving beams as this is 

already constrained by the transmission. The final resolution of the MBES is the 

product of the along-track and across-track resolutions (according to the so-called 

Mills cross principle
2
). 

 

 

 
 

FIG. 2.2. Transmission and reception for the MBES. The transducers are indicated 
by the thick orange lines. 

 

 

The shapes used for the reception arrays are simple horizontal linear, V-shaped 

(larger swathe widths possible) or U-shaped (see Fig. 2.3). 

 

 

 
 

FIG. 2.3. Possible shapes of reception arrays.  

 

 

The MBES provides two-way travel times as function of beam angle relative to the 

MBES location. Therefore, the ancillary systems of the MBES are significant in order 

to accurately determine the bathymetry in a required reference system. These are:
1
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- The positioning system which determines the exact geographical position of 

the ship (GPS, preferably in differential mode); 

- The attitude sensor unit providing heading, roll, pitch and heave measurements 

to compensate for: 1) orientation of the line of depth measurements relative to 

the ship’s axis (heading), 2) orientation of the beams (roll and pitch), and 3) 

vertical movements of the ship (heave); 

- Sound speed profiles to correct for refraction effects; 

- Sound speed measurements close to the transducers for correct beam-steering. 

 

 

2.1.2 Bathymetry 

 

The MBES calculates the bathymetry of a point by jointly estimating the two-way 

travel time t and beam angle θ. Each pair (t, θ) is used to determine the position of one 

depth measurement. When the sound speed profile is constant over the entire water 

column, the acoustic paths from and to each beam are linear. Then the coordinates 

(y,z) of the measurement point, with the origin at  the MBES position,  are  (see Fig. 

2.4)  

 

sin sin
2

cos cos
2

ct
y R

ct
z R

 

 

 

 

 (2.1) 

 

where R is the range between the MBES and the sediment (see Fig. 2.4). θ is the so 

called beam angle whereas φ is called the grazing angle of incidence. 

 

 
FIG. 2.4. Determining bathymetry from (t, θ) in the isovelocity situation.  
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In reality the sound speed profile varies with depth, inducing refraction effects, and 

therefore the acoustic path has to be reconstructed using geometric ray-tracing 

software. 

As mentioned before, the depth measurement is referenced to the MBES position. 

It is therefore mandatory to simultaneously know the position and attitude of the 

support platform, which enables the application of angle corrections (roll in 

particular) and to associate geographical coordinates with the depth measurements. 

Several techniques are being used to measure the couples (t, θ). The maximum 

amplitude instant (MAI) method was one of the first approaches used for estimating 

the time of arrival of the backscattered signal. This method of detection is accurate for 

angles close to normal, since at these angles the signal duration is short and sharp. For 

decreasing grazing angles of incidence, the time duration becomes larger and more 

affected by noise. Therefore, for these angles the estimation of arrival time from the 

MAI becomes troublesome. The commonly applied solution is to divide the receiving 

array in two sub-arrays and measure the phase difference between the signals as 

received on these two subarrays, i.e. an interferometric approach. Nowadays modern 

MBES are based on a combination of the interferometric phase detection approach 

and MAI time detection from the backscattered signal. 

 

 

2.1.3 Imaging 

 

In addition to the two-way travel times, the MBES also measures the intensity of 

the echo. These side-scan sonar like measurements are available for each beam. 

Whereas the side-scan sonar has no information about the location from which the 

intensities result the MBES does have this information. The MBES therefore 

combines the (t,θ) information with intensity measurements per beam to form a 

continuous image of the complete swath. To this end, for each beam, first its central 

point is placed on the swath, and then the image pixels are spread around it, until 

reaching the boundary of the next beam. 

 

 

2.1.4 Resolution 

 

The along-track resolution x for bathymetry and imaging is given as 

 

LRx    (2.2) 
 

with L  the  beam width of the transducer in the along-track direction, and R  the 

range between MBES and the sediment (see Fig. 2.4). For example, for beam angle 

45
o
, depth 5 m, and beam width 1.5

o
, the along-track resolution is 10 cm. 

The across-track resolution for backscatter imaging is dependent on the pulse 

length τ as 

 

2sin

c
y





  (2.3) 
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with   the beam angle, and c the sound speed. For example, for beam angle 45
o
, 

sound speed 1500 m/s, and pulse length 150 μs the along-track resolution is 16 cm. 

At the vertical ( 0   ) the across-track resolution for imaging becomes 

 

y Hc   (2.4) 

 

where H is the distance between the MBES and the sediment. 

The resolution for bathymetry is determined by the across-track beam width 
T  as: 

 






2cos

TH
y   (2.5) 

 

In practice y  will be in between a value according to this equation and Eq. (2.3), 

depending on the processing details.  

Most MBES systems allow for selecting either an equi-angular or an equi-distant 

measurement mode. The equi-angular mode corresponds to beam pointing angles at 

equal angular distances, resulting in a decrease of the sounding density towards the 

end of the swath. The equi-distant mode selects its beam pointing angles such that the 

intersection of the individual beams with the ground is at equal distances, resulting in 

an increasing sounding density towards the end of the swath compared to the equi-

angular mode, but also in a decreased sounding density at nadir.
3
 In order to obtain 

the increased sounding density at the outer ends of the swath in the equi-distant mode 

use is made of interferometry. 

 

 

 

 

2.2 Interaction of sound with sediments 

 

2.2.1 Reflection of sound at interface 

 

For a perfectly flat sediment, use can be made of the reflection and transmission 

coefficients for describing the interaction of sound with the sediment. Figure 2.5 

shows the reflection of sound at an interface that separates two homogeneous fluid 

media. Changes in sound speed between the media causes reflection and refraction of 

the signal.  
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FIG. 2.5. Reflection of sound at an interface of two different media. 

 

By applying the continuity conditions at the interface (for pressure and normal 

velocity) we have Snell’s law for determining 2 , i.e., the angle of the transmitted 

signal: 

 

2 1

2 1

cos cos

c c

 
  (2.6) 

 

and the expressions for the reflection ( eR )  and transmission ( rT ) coefficients: 

 

2 2 1 1 1 2

2 2 1 1 1 2

sin sin

sin sin
e

c c
R

c c

   

   





 (2.7) 

 

2 2 1

2 2 1 1 1 2

2 sin
1

sin sin
r e

c
T R

c c

 

   
  


 (2.8) 

 

If 2 1c c , there exists a critical angle given by 

 

1

2

arccosc

c

c


 
  

 
 (2.9) 

 

For 1 c   no compressional wave can propagate inside medium 2: Re becomes 

complex with unit modulus independent of 1  (‘total reflection’). When 1  increases 

while crossing the critical angle, Re will suddenly decrease and then varies smoothly 

with 1 . At normal incidence ( 1  = 90) 

 

2 2 1 1

2 2 1 1

e

c c
R

c c

 

 





 (2.10) 
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To illustrate the effect of the sediment sound speed on the reflection coefficient, 

Fig. 2.6 shows the modulus of Re versus 1  where 2c  was varied independently and 

1c was kept constant at 1500 m/s. The thick black line indicates the reflection 

coefficient for a gravelly muddy sand bottom (see Table 2.1), with a sound speed of 

1809 m/s. For illustration purposes the absorption in the sediment is assumed to be 

zero. The grey lines show the effects of having smaller or larger values for the 

sediment  sound speed, 2c . 

 

 
 
FIG. 2.6. Absolute value of the reflection coefficient as a function of grazing angle for 
a gravelly muddy sand bottom (thick black line). The thin grey lines indicate the 
absolute reflection coefficients for the same gravelly muddy sand bottom, but now 
with the sediment sound speed values varied. For all sediments considered the 

absorption coefficient is taken as 0 dB/. 

 

 

In practice however, absorption is not zero. Absorption in the second medium is 

accounted for by making the wave number k2, and hence the sound speed c2, complex. 

Let 2 be the absorption coefficient in medium 2 expressed in units of dB/ (because 

often 2 is considered to be proportional with frequency). The absorption coefficient 

in nepers/m is then given by
4
 

 

e

a
a

log202

2
2


  (2.11) 
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Here the factor 20loge  converts units nepers/m to dB/m. 2a is equal to the imaginary 

part of the wave number k2 in the second medium as
4
 222 akk  . 

The imaginary part of the sound speed in the second medium then becomes: 

 

e

ac
c

log40
)Im( 22
2




  (2.12) 

 

The expressions for the reflection and transmission coefficients (Eq. 2.7 and Eq. 

2.8) are still valid provided the complex expression for c2 is used. The implication of 

absorption in the second medium is that an attenuated wave can always be transmitted 

and propagate through medium 2, even below the critical angle. Total reflection does 

not occur below the critical angle; |R| is slightly below unity, see Fig. 2.7. 

 

 

 
 

FIG. 2.7. Absolute value of the reflection coefficient as a function of grazing angle for 

a gravelly muddy sand bottom (thick black line, 86.02 a  dB/.). The thin grey lines 

indicate the absolute reflection coefficients for the same gravelly muddy sand bottom, 
but now with the values for the absorption coefficient varied. 

 

 

Sediments parameters affecting the interaction of sound with the sediment are 

often denoted geo-acoustic parameters. It is well established that different sediments, 

e.g. sand or mud, correspond to certain values of these geo-acoustic parameters. Table 

2.1 provides an overview of the geo-acoustic parameters for many unconsolidated 
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sediments that are typically found on ocean and riverfloors. This table is actually 

illustrating the potential of using acoustic systems for sediment classification. 

 

 

 
Table 2.1 Typical values for parameters of various sediment types. 

 
Sediment 

type 

Bulk 

grain size 

Mz 

[phi] 

Density 

ratio 

ρ 

[-] 

Sound 

speed ratio 

ν 

[-] 

Loss 

parameter 

δ 

[-] 

Spectral 

exponent 

γ 

[-] 

Spectral 

strength 

2w  

[cm
4
] 

Volume 

parameter 

2  

[cm
4
] 

Sandy 

Gravel 
-1 2.492 1.337 0.0171 3.25 0.0129 0.002 

Muddy 

Sandy 

Gravel 

0 2.314 1.278 0.0163 3.25 0.0086 0.002 

Gravelly 

Muddy 

Sand 

1 2.151 1.224 0.0165 3.25 0.0056 0.002 

Muddy 

Gravel 
2 1.615 1.140 0.0161 3.25 0.0035 0.002 

Muddy 

Sand 
3 1.339 1.080 0.0173 3.25 0.0021 0.002 

Clayey 

Sand 
4 1.223 1.036 0.0202 3.25 0.0011 0.002 

Sandy Silt 

Gravelly 

Mud 

5 1.169 1.000 0.0126 3.25 0.0005 0.002 

Sandy 

Mud 
6 1.149 0.987 0.0039 3.25 0.0005 0.001 

Sandy 

Clay 
7 1.147 0.985 0.0024 3.25 0.0005 0.001 

Silty Clay 8 1.146 0.982 0.0016 3.25 0.0005 0.001 

Clay 9 1.145 0.980 0.0015 3.25 0.0005 0.001 

 

In this table, the mean grain size is given as Mz in phi units [ϕ] as  

2log ( )zM d   (2.13) 

 

with d the average grain diameter in mm. 

Density ρ and sound speed ν ratio in the table are measures of the ratio of 

sediment density and sound speed relative to the water column sound speed. The 

dimensionless loss parameter δ is related to the absorption coefficient 2  in dB per 

wavelength. Parameter δ is defined as  

2

'

2 2 2

2

2

20log

2 40 log

e

k e



  


 



    (2.14) 

The spectral exponent γ, the spectral strength 2w and the volume parameter 2  are 

parameters related to the scattering process and will be treated later on in section 

2.2.2.6. 
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Figure 2.8 gives the reflection coefficient as a function of grazing angle for the 

sediment types with Mz = -1,0,1,2,3,4 and 5 ϕ given in Table 2.1. 

 

 
 
FIG. 2.8. Reflection coefficient vs. angle for the Table 2.1 sediment types, 

corresponding to Mz = -1,0,1,2,3,4 and 5 ϕ. 

 

It should be noted that if reflection was the sole mechanism affecting the 

interaction of sound with the sediment, no MBES measurements would be possible, 

since all sound would be reflected away and no echoes would arrive at the MBES. 

The fact that echoes are received by the MBES results from the sediments never being 

perfectly flat. Consequently, in addition to reflection, also scattering is affecting the 

interaction of sound with the sediment as discussed in the next section. 
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2.2.2 Scattering of sound  

 

2.2.2.1 The physics of scattering 

 

As mentioned above, sediments are usually not ideal plane surfaces. 

Consequently, the interaction of sound with the sediments will be much more 

complex and considering only reflection and transmission of sound is not sufficient.  

As a whole, the sediment surface can still be considered plane. Deviations from 

this plane surface are represented by the so-called sediment relief.  

As the incident wave meets the sediment, a part of it (coherent part) will be 

reflected in the specular direction. The rest of the energy will be scattered in all 

directions, included back towards the source (backscattered signal). Figure 2.9 

presents some typical patterns for the angular spread of the coherent and scattered part 

for different combinations of relief characteristics and sediment impedance (equal to 

ρc). As shown in the figure, low interface roughness, i.e., a smooth bottom, results in 

a large specular component and the scattering at angles away from the specular 

direction will be low, while for high interface roughness the specular component will 

be strongly attenuated. 

 

 

 
FIG. 2.9: Directional echo patterns for different conditions of bottom roughness and 
impedance contrast.5 

 

It should be noted that the effect of the sediment relief is strongly dependent on 

the sound frequency. Surfaces which appear rough to short acoustic wavelengths can 

appear smooth to long acoustic wavelengths. 

 

2.2.2.2 The spatial roughness spectrum 

 

The sediment’s relief is the result of various processes. These processes give rise 

to the presence of a wide scale of amplitudes coexisting on the same surface. 



21 

 

 

This situation can be captured through the concept of the spatial spectrum of the 

relief. This spectrum quantifies the amplitude distribution of the surface and is 

obtained by Fourier transforming the relief. The spatial wavelengths w then define 

the different spatial components. For a situation where the relief is completely 

random, the spectrum is continuous. In contrast however, the presence of regular sand 

ripples will result in peaks in the spectrum.  

In general it is assumed that the two-dimensional relief spectrum is isotropic and 

that it can be described by the following expression
6,7

 

 

 2 0( )S w h


 


  (2.15) 

 

Here,  is the wave number of the relief κ=2π/w, h0  is a reference length (1 cm) and 

w2 is the spectral strength (see Table 2.1).  Parameter  is the spectral exponent and 

typically has a value of 3.25.  

The expression for the spatial spectrum, equation (2.15) is normalised according 

to 

 

  2)( hdS   (2.16) 

 

with h the standard deviation of the relief amplitudes. Assuming a value of 3.25 for 

parameter  the following relation between h and w2 can be derived
6,7

 

 
2

0

2

2 00207.0 hhw   (2.17) 

 

 

2.2.2.3 Reflection revisited – the Rayleigh parameter 

 

Since for a rough surface, part of the sound is scattered in all directions, the 

reflection coefficient for rough sediments will be lower compared to that of a mirror 

like surface (Eq. (2.7)). The effect can be addressed through the use of the Rayleigh 

parameter: 

 
2 sinP kh   (2.18) 

 

with 2 /k    the acoustic wave number, h the standard deviation of the relief 

amplitudes and φ the grazing angle of incidence. Now, the following expression 

quantifies the reflection coefficient for rough surfaces 

 
2 2 2 2/2 2 sin( ) ( ) ( )P k h

c e eR R e R e       (2.19) 

 

with eR  the reflection coefficient for the interface without relief. This ‘model’ is valid 

when P is small, / 2P  . For larger values of P the concept of reflection no longer 

holds and expressions for scattering of sound are required to describe the interaction 

for sound with the sediment. Figure 2.10 illustrates the effect of interface roughness 

for a gravelly muddy sand sediment (see Table 2.1 for the parameters) for various 

frequencies. At 20 kHz the ‘Rayleigh parameter model’ is not valid at all angles (as 

indicated by the dashed line in the figure). 
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FIG. 2.10. Effect of frequency on the reflection coefficient for a gravelly muddy sand 
sediment (see Table 2.1). 

 

 

2.2.2.4 The backscattering strength 

 

For MBES measurements, mainly backscattering is of interest. We refer to 

‘backscattering’ for the sound scattered in the direction of the source. The 

corresponding quantity is the so-called backscattering strength defined as 

 

1010log s

i

I
BS

I
  (2.20) 

 

i.e., the ratio in dB’s of the intensity sI  of the scattered sound from a unit area of 1 m
2
 

at a distance of 1 m from this unit area in the direction of the source, and the intensity 

iI  of the incoming plane wave (see Fig. 2.11).  
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FIG. 2.11. Scematic representation of defining the backscatter strength. 

 

The backscatter strength BS depends on sediment type (roughness), frequency f 

and the grazing angle of incidence φ. In general, it increases with increasing φ. 

Frequency dependence and sediment type dependence is much more complicated. For 

some types of sediments BS increases with increasing f, while other sediment types 

exhibit hardly any frequency dependence (e.g. when the scale of roughness is large 

compared to the acoustic wavelength). Apart from sediment roughness, also 

inhomogeneities in the bottom can contribute to the scattering of sound and hence the 

backscatter strength.  

 

2.2.2.5 Lambert’s rule 

 

A frequently used formula for the backscattering strength is the so-called 

‘Lambert’s rule’. This rule provides a specific angular-dependence according to 

which many rough surfaces behave.  

We consider the situation as depicted in Fig. 2.12. 

 

 

FIG. 2.12. Scattering of sound impinging on area dA with intensity iI and angle  . 

Angle  and intensity sI denote the angle and intensity of the scattered sound. 

 

iI  is the intensity of a plane wave impinging on a rough sediment at a grazing 

angle of incidence  . The power intercepted by the bottom surface dA  is equal to 
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siniI dA . Lambert’s rule assumes this power to be scattered proportional to the sine 

of the angle of scattering  . The intensity sI  in the direction   at a distance of 1 m 

from dA  is then given by 

 

 sin sins iI I dA    (2.21) 

 

where  is a proportionality constant. For a unit area dA  of 1 m
2
 we can write 

 

 1010 log 10log 10log sin sins

i

I

I
     (2.22) 

 

The backscattering strength, for which ζ = 180 -  , then becomes 

 

 210log 10log sinBS     (2.23) 

 

In principle, the frequency and sediment type dependence can be put in the 

parameter . Practically observed values of 10log range between –40 dB and –10 

dB. At high frequencies there is evidence that 10log increases with grain size. A 

useful starting value for 10log  for all types of seafloor is –27 dB. Figure 2.13 

presents BS as function of  for this value of . 

 
 

 
FIG. 2.13. Backscatter strength as a function of grazing angle as predicted by 

Lambert’s rule, with 10log  equal to –27 dB. 
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2.2.2.6 Sophisticated backscatter strength modelling 

Lambert’s rule yields relatively good agreement with measurements for very 

rough surfaces such as rocky sediments. For less rough surfaces, the agreement with 

measurements strongly deteriorates for angles near normal. Therefore, more complex 

models have been developed. The model described in Ref. 6 is used in Chapter 4. We 

hereby assume that the model, although developed for frequencies between 10 and 

100 kHz, is still applicable for the frequency of 300 kHz, which is the operating 

frequency of the MBES used for acquiring the data analysed in this thesis. This 

assumption is based on the research results in Ref. 8, where the model was used for 

the frequency of 300 kHz. In Ref. 8 there is agreement between modeled and 

measured backscatter strength. 

Τhe total backscatter strength is expressed as a combination of the interface 

roughness scattering and volume scattering
6
 

 

 10( ) 10log ( ) ( )r vBS        (2.24) 

with r  and   the backscattering cross sections due to the interface roughness and 

volume scattering, respectively.  

r  is derived by an appropriate interpolation between three approximations
6
: 

- The Kirchhoff approximation valid for fine to slightly coarse sediments and at 

grazing angles close to nadir; 

- The composite roughness approximation appropriate for all other angles; 

- For rough bottoms (e.g., gravel and rock) use is made of an empirical 

expression. 

All three contributions are a function of the sediment roughness spectrum. Α  

relief spectrum that conforms Eq (2.15) is assumed.
6
 Additionally, r is determined 

by the sediment density, attenuation coefficient, and sound speed. 

The following expression for the sediment volume backscattering cross section 

v is 

 

 

2 2

2

2

5 |1 ( ) | sin

ln10 | ( ) | Im ( )

e
p

R

P P


  


  


  (2.25) 

Here, 2  is the ratio of sediment volume scattering cross section to attenuation 

coefficient, and 2 2( ) ((1 ) / ) cosP i      . In addition to  , eR  is also a function 

of the sediment parameters  ,   and  . v  is determined from p accounting for 

shadowing and bottom slopes.
6
  

Empirical expressions exist that relate 2 , 2w ,  ,  , and   to mean grain size 

zM .
6
 However, values encountered for 2w  and 2  are known to often deviate 

significantly from the values obtained by these empirical expressions. 

As an illustration, Figure 2.14 shows the typical backscatter curves, i.e., 

backscatter as a function of angle, for a number of sediment types listed in Table 2.1.  
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From Fig. 2.14 a number of observations can be made: 

- The backscatter strength increases when moving from smaller to larger 

grazing angles;  

- Sediments with large mean grain sizes have higher backscatter strength 

values than sediment with small mean grain sizes. This is due to the fact that 

larger grains correspond to rougher surfaces so the returned signals are 

stronger than those in smoother surfaces where a large part of the signal is 

attenuated in the sediments; 

- From 5 ϕ to 9 ϕ the difference in backscatter strengths is less pronounced so 

the potential of discrimination between the sediment types based on 

backscatter strengths is also less pronounced; 

- There is an overlap in the backscatter curves of the different sediment types 

in the grazing angle ranges [0
o
 20

o
] and [70

o
 90

o
].  

 

 
 

FIG. 2.14. Backscatter curves vs. grazing angle for the sediment types of Table 2.1. 
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2.2.3 The use of MBES for determining sediment backscatter 

strength 

 

As mentioned in Section 2.1.3 the MBES measures, in addition to the two-way 

travel times per beam, also the intensities of the echo for each beam. By correcting for 

propagation and footprint effects, the sediment backscatter strengths can be derived. 

The echo level (EL in dB) of the signal backscattered at the riverbed is: 

EL = SL -2TL + BTS  

 

(2.26) 

where SL in [dB re 1 μPa] is the source level of the MBES, 2TL is the transmission 

loss (two-way) in dB, and BTS is the bottom “target strength” in dB.  

The transmission loss in the water column is the result of two sources: one due to 

spherical spreading of the signal (first term of Eq. 2.27), and the other due to the 

energy absorbed by the water (second term of Eq. 2.27):  

2TL = 40 log R + 2αR  

 
(2.27) 

The bottom target strength (BTS) depends both on properties of the riverbed, but 

also on the ensonified area. The effect of the sediment properties is reflected by the 

backscattering coefficient, BS in dB/m
2
. The ensonified area is dependent on the 

resolution of the measurements as presented in Section 2.1.4. For angles away from 

nadir it depends on the alongtrack beam width ( L ) and the transmit pulse length (τ),
9
  

 

)
2sin

cτ
10log(BS)log(10 Lxy RBSBTS 


   (2.28) 

For angles close to nadir an expression similar to Eq. (2.4) for the footprint in the 

across-track direction is used. 

Using the expressions (2.26) to (2.28), the backscatter value BS can be 

determined from the echo levels as received by the MBES. Filtering is used to reduce 

the noise contained in the echo. The simplest filter is the moving average filter. For 

this, short averaging lengths are used and the maximum average level within a beam 

is chosen to represent the beam BS.
9
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2.3 Classification using MBES measurements 

In literature a variety of classification techniques can be found. Significant efforts 

have been put in using the imaging capabilities of the MBES for discriminating 

between different sediment types, e.g., using image processing techniques (e.g. Ref. 

10). For the current thesis, the backscatter strength is selected as the parameter to be 

used for sediment classification. Reason is that this parameter is a physical property of 

the sediment and models such as the one presented in the section 2.2.2.6 are available, 

predicting backscatter values as a function of sediment type. Practice, however, is 

cumbersome and imperfections in the MBES measurements result in imperfect 

measurements of the backscatter strengths. To deal with these imperfections, several 

classification approaches are considered in this thesis. These MBES classification 

methods can be divided into phenomenological (or empirical) and model-based (or 

physical). The model-based methods discriminate between sediment types by 

matching modelled and measured signals or signal features. These approaches require 

additional steps to account for the possible imperfections of the backscatter 

measurements. The empirical approaches, on the other hand, mainly base the 

classification on the variations in backscatter strengths within the areas surveyed, i.e., 

they are based on differences instead of absolute values for the backscatter strengths. 

These methods divide the area into small regions and use statistical features of the 

bathymetry or the backscatter for identifying the existing sediment classes. 

The model-based approaches result directly in sediment types, since the measured 

signals are related to signals that are expected for different sediment types from 

experimental knowledge but their implementation is not straightforward. The 

empirical approaches are easier to implement but their outcome is in general a series 

of acoustic classes in an area, so ground truth is required for associating the 

classification results to physical parameters of the sediments (e.g. mean grain size).  

Three methods are used in the current thesis; two are model based, and one is 

empirical: 

 

 

 Classification based on backscatter strength 

A classification approach that is based on the assumption that the backscatter 

measurements per angle are distributed according to a Gaussian distribution is used in 

this thesis. The approach that has been developed in Refs. 11, 12 fits a number of 

Gaussian probability density functions (PDFs) to the histogram of measured 

backscatter data per beam. The pre-requirement is that the number of measurements 

used for determining the averaged backscatter strength per beam is large enough to 

ensure gaussianity. Each PDF corresponds to a different sediment type. More details 

about this method are given in Chapters 4 and 5 and an example of its application is 

given in Chapter 4. 

 

 Classification based on bathymetry and backscatter features 

The MBES provides the backscatter strengths and the bathymetry of the area. 

Therefore it is of interest to investigate the potential of using the bathymetry data for 

classifying riverbed sediments. Moreover, the discrimination performance of the 

classification methods can be enhanced by combining bathymetric and backscatter 

data. These cases are investigated in Chapter 5.  

 



29 

 

 

 

 Classification based on acoustic backscatter angular dependence functions 

This method makes use of physical models that predict the backscatter strength as 

a function of angle, i.e., the backscatter curve, for different sediment types. The aim is 

to maximize the match between modelled and measured backscatter curves. Those 

model input parameters, corresponding to the maximum match, are taken as being 

representative for the sediment type. In this thesis such a model-based approach is 

presented in Chapter 4, where the model described in section 2.2.2.6 is used. 
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3 Surveyed rivers and equipment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter the location in the Netherlands and the bathymetry of the various 

parts of Dutch rivers that were surveyed with MBES systems are presented. 

Furthermore, the specifications of the MBES systems used in the surveys are given. 
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3.1 Surveyed rivers 

The MBES surveys were performed in the Rhine river and the Meuse river 

between 2007 and 2010. The Rhine river flows through Germany to the Netherlands 

while Meuse runs through Belgium to the Netherlands. Five parts of the Rhine river 

were surveyed: Sint Andries, where a large survey was carried out in 2007 with a re-

survey of a smaller part of this area in 2008, Nijmegen (2008), Bovenrijn (2008), and 

the Dordtse Kil (2009). A part of the Meuse river was surveyed in 2010. The location 

of the rivers on the map of the Netherlands as well as their bathymetry as measured by 

MBES is shown in Fig. 3.1. All rivers are shallow having similar depth ranges from 1 

m to 10 m, except for the Dordtse Kil, which is deeper with depths ranging between 1 

m to 19 m. 

Grab samples were collected from all surveyed areas. The grab samples were taken 

from the top 3 to 4 cm of the sediment surface. The reason is that, the acoustic signal 

of the MBES is sensing only the upper few cm of the sediment. 

For obtaining the sediment composition, the grab samples are analysed in a 

dedicated laboratory. The grab samples are first dried and then are sieved. From this 

process, gravel and shells are separated from finer material. Then the gravel and shell 

weight percentage is determined. The grain size distribution of the finer material is 

determined by optical microscopy.  

Figure 3.2 provides an overview of the grab samples’ mean grain size per area. It 

can be seen that there is a gradual shift from fine sediments in Dordtse Kil to coarse 

sediments in Sint Andries and Nijmegen, and finally to very coarse sediments in 

Bovenrijn and Meuse. This is also the order that the thesis will follow: from Dortse 

Kil (Chapter 4) to Sint Andries and Nijmegen (Chapter 5), and finally Bovenrijn and 

Meuse (Chapter 6). 

Video images and still photographs were taken underwater at each grab sample 

position. This was done for assisting the interpretation of the classification results in 

the cases where the laboratory was not able to determine the sediment mean grain 

sizes (e.g. Meuse, Chapter 6). 

Further details about the morphological characteristics of each area can be found in 

the following chapters of the thesis where the classification results of each area are 

presented. 
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FIG. 3.1. Location of the surveyed rivers on the map of the Netherlands and their 
bathymetry derived from MBES measurements(D.K.=Dordtse Kil, S.A.=Sint Andries, 
N.=Nijmegen, B.=Bovenrijn, and M.=Meuse). 
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FIG. 3.2. Mean grain size of the grab samples taken from the surveyed areas. 

 

 

 

3.2 Equipment  

All the measurements were performed using EM3002 Kongsberg MBES systems. 

It is a high resolution riverbed mapping and inspection system with minimum 

operating depth from less than 1 m below its transducers. EM3002 has a very high 

ping rate of up to 40 Hz, a large number of measurements per ping (up to 254 per 

sonar head), 1.5
o
 beam-widths, and electronic pitch and roll stabilisation. The pulse 

length is 150 μs and the sampling frequency of the incoming echo, also denoted range 

sampling frequency, is 14 kHz. In shallow waters it is possible to achieve 100% 

coverage of the bottom at vessel speeds of about 10 knots (5.14 m/s) with across-track 

coverage of up to four times the water depth.
1 

 

Instead of a single transducer as used for the majority of the measurements, the 

EM3002 may be also be configured to use two sets of transducers (see Fig. 3.3). This 

dual configuration was used in the measurements of the Dordtse Kil. This 

configuration increases the coverage to up to ten times the depth for shallow waters 

and the number of measurements per ping up to 508.  

 The system sonar frequency is nominally 300 kHz. Acoustical interference 

between the two sonar heads of EM3002D (D=dual head) is eliminated by using two 

different operating frequencies (293 and 307 kHz). 

All surveys were performed with equi-distant measurement mode. The average 

distance between pings per area is given in Table 3.1. 
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Table 3.1 Average distance between pings per surveyed area. 

 

Surveyed Area Ping distance (cm) 

Dordtse Kil 21.5 

Sint Andries 8.5 

part of Sint Andries in 2008 9.7 

Nijmegen 9.8 

Bovenrijn 8.5 

Meuse 8.2 

 

 

 
 

 
FIG. 3.3. Retractable dual head. 2 
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4 An inter-comparison of sediment 

classification methods based on multi-

beam echo-sounder backscatter and 

sediment natural radioactivity data1 

 

 

This chapter presents sediment classification results derived from different 

sources of data collected at the Dordtse Kil River, the Netherlands. The first source is 

a multi-beam echo sounder (MBES). The second source are measurements taken with 

a gamma-ray scintillation detector, i.e., the Multi-element detection system for 

underwater sediment activity (Medusa), towed over the sediments and measuring 

sediment natural radioactivity. Two analysis methods are employed for sediment 

classification based on the MBES data. The first is a Bayesian estimation method that 

uses the average backscatter data per beam and, therefore, is independent of the 

quality of the MBES calibration. The second is a model-based method that matches 

the measured backscatter curves to theoretical curves, predicted by a physics-based 

model. Medusa provides estimates for the concentrations of potassium, uranium, 

thorium, and cesium, known to be indicative for sediment properties, viz. mean grain 

size, silt content and the presence of organic matter. In addition, a hydrophone 

attached to the Medusa system provides information regarding the sediment 

roughness. This paper presents an inter-comparison between the sediment 

classification results using the above-mentioned methods. It is shown that although 

originating from completely different sources, the MBES and Medusa provide similar 

information, revealing the same sediment distribution. 

                                                 
1
 This chapter has been  published as journal paper: M.Snellen, D. Eleftherakis, A. Amiri Simkooei, R.L. 

Koomans, and D.G. Simons, “An inter-comparison of sediment classification methods based on multi-

beam echo-sounder backscatter and sediment natural radioactivity data”, Journal of the Acoustical 

Society of America 134(2), 959-970 (2013). 
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4.1 Introduction 

Reliable information about the seafloor or riverbed sediment composition is of 

high interest for a large number of applications such as marine geology, marine 

biology, off-shore construction projects, and cable and pipeline route planning. 

Traditionally, obtaining information about the sediment distribution in an area 

requires an extensive set of grab samples of the sediments and subsequent laboratory 

analysis, which can be costly and time consuming. Alternatively, acoustic remote 

sensing techniques can be used for classifying the sediments. Since single- and multi-

beam echo-sounders (SBES, MBES) are already in common use for depth 

measurements, an attractive approach is to use the signals measured by these systems 

also for sediment classification purposes. Sediment classification potential using the 

MBES and SBES systems has proven to be high.
 1-7 

In general, sediment classification methods using SBES and MBES can be 

divided into phenomenological (or empirical) and model-based (or physical) methods. 

In the phenomenological methods, features that are indicative for sediment type (e.g. 

backscatter strength or features derived from the bathymetric measurements) are used 

for classification. These methods discriminate the sediments as belonging to different 

acoustic classes, each with its own acoustic features. These acoustic classes represent 

the different sediment types that are present in the survey area. However, independent 

information, e.g. from grab samples taken in the area, is usually needed to assign 

sediment type, such as mud, sand or gravel, or sediment parameters, such as mean 

grain size, to the acoustic classes.
6-9

 On the contrary, the model-based methods
10-13

 

determine the sediment type by maximizing the match between modelled and 

measured signals or signal features, where sediment type, or parameters indicative for 

sediment type, are input into the model. In principle, no independent information is 

required for model-based methods, since they provide the sediment type, or properties 

indicative for sediment type, instead of acoustic classes. 

This paper examines two methods for riverbed sediment classification using the 

MBES. First, a statistical method is applied that utilizes the backscatter strength 

measurements of an MBES. It uses the backscatter data at a certain angle to obtain the 

number of sediment classes and to discriminate between them by applying the Bayes 

decision rule to multiple hypotheses.
14,15

 Although this method can be considered as 

model-based, employing a model for the backscatter histogram, it classifies the 

sediments as a number of acoustic classes. Second, a method is employed that 

matches backscatter versus grazing angle as measured by the MBES to model 

predictions, thereby providing sediment properties. 

However, not only acoustic characteristics are indicative for the sediment type, 

also natural radioactivity levels differ for different sediment types and can as such be 

used to discriminate between sediments. In this paper, radioactivity levels taken with 

the Multi-element detection system for underwater sediment activity (Medusa),
16,17 

which takes measurements with a gamma-ray scintillation detector, are considered. 

The system measures gamma-rays being emitted from very low concentrations of a 

number of radionuclides in the sediment, viz. 
137

Cs, 
40

K, and radionuclides from the 

decay series of 
238

U and 
232

Th. It is towed over the sediment bed behind the vessel. 

Due to the attenuation of gamma radiation in the sediment, the measured 

concentrations are characteristic for the top 30 to 50 cm of the sediment. In addition to 

the radionuclide concentration measurements, Medusa also takes measurements with 

a hydrophone towed over the sediment. These resulting noise levels can be used to 
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determine whether or not the system is in contact with the sediment, but are also 

indicative for the sediment roughness. The measurements taken with the Medusa 

system and the corresponding data analysis are presented. 

The aim of the research presented in this paper is two-fold. (1) In general, the 

MBES sediment classification methods that classify sediments as a series of acoustic 

classes are relatively easy to implement and require limited computational efforts. 

This holds for the phenomenological approaches, but also for the Bayesian method of 

Ref. 14. The drawback of these methods is that it is not always straightforward to 

assign sediment type or sediment parameters to the different acoustic classes. Still, 

this knowledge is considered of high importance for many applications. Therefore, in 

this paper, the results obtained by applying a model-based method are compared to 

those obtained with the method of Ref. 14 to investigate the relation between acoustic 

classes and sediment properties. The results illustrate that although the mean grain 

size is the most important parameter, the correlation coefficient between mean grain 

size and acoustic classes is limited impeding a direct conversion of acoustic class to 

mean grain size. (2) Classification methods based on MBES data can discriminate 

only sediments that show acoustically distinct behaviour. In this contribution, the 

acoustic classification results are compared with results of the completely independent 

Medusa method. The aim is to investigate if there is increased classification potential 

by using the data of these two independent data sources. The results show that the 

Medusa measurements and MBES measurements reveal a similar distribution of the 

different sediment types, thus providing confidence in the reliability of both 

independent methods. The low correlation between the acoustic classification results 

(classes and sediment parameters obtained from the model-based method) and 

concentration of 
137

Cs indicates that complimentary information can be derived from 

this radionuclide which is known to be a proxy for the fraction of organic matter. 

This paper is organized as follows. In Section 4.2, details about the experiment 

are given. Section 4.3 provides a brief description of the acoustic classification 

methods and the Medusa method. The classification results of each of the methods are 

presented in Section 4.4. Section 4.5 gives a comparison between the methods and 

discusses their similarities and differences. Finally, the main conclusions of the paper 

are summarized in section 4.6.  

 

 

 

4.2 A description of the measurements taken in the area 

The Dordtse Kil is a river in The Netherlands (South Holland) and is an important 

link and transport axis. The water depths in the Dordtse Kil as acquired by the MBES 

are presented in Fig. 4.1.  

The river area was surveyed in October 2009 over a length of ~10 km and its 

almost full width of 260 m, using the EM3002D Kongsberg dual head MBES. The 

total number of beams is 320 (160 per head). The operation frequency was 300 kHz, 

the pulse length was 150 μs, and the maximum ping rate was 40 Hz. The beam width 

was 1.5
o
   1.5

o
. All beams were electronically stabilized for pitch and roll. For each 

beam and each ping a single backscatter value is given. This value is the result of first 

applying a moving average over the time series of amplitude values and then selecting 

the maximum average level of each beam.
18 
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During the survey, measurements were taken with the Medusa system measuring 

the sediment natural radioactivity. This system is towed behind the vessel. For these 

measurements, contact between the sensor and the sediment is essential. To validate if 

indeed the sensor was located on the sediment, it is equipped also with a hydrophone. 

High noise levels indicate good contact between the sensor and the sediment, whereas 

low noise indicates that the sensor is floating in the water. 

In addition, bottom grab samples were collected along the river. For each bottom 

grab sample the grain size distribution was determined. These results are shown in 

Fig. 4.2(a), illustrating unimodal behaviour for all grab samples. The grab samples 

indicate mainly fine-grained sediments with mean grain sizes zM  ranging from -0.15 

to 5 in phi units [ϕ], with zM  = -log2(d) and d the mean grain size in mm, see Fig. 

4.2(b). 

 

 
 

FIG. 4.1. The bathymetry of the Dordtse Kil superimposed upon a view of The 
Netherlands. 
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FIG. 4.2. a) Grab sample grain size distribution; b) grab sample mean grain sizes. 

 

 

 

4.3 Sediment Classification Methods 

 

4.3.1 The Bayesian classification method using MBES backscatter 

data 

In Ref. 14 a method is presented for sediment classification using MBES 

backscatter measurements. The method carries out the classification per angle, which 

makes it insensitive to variations in sediment type along the swath and to imperfect 

sonar calibration. It fits a number of Gaussian probability density functions (PDFs) to 

the histogram of the backscatter strength (BS) data at a given angle, i.e., 
 

2

1

~ ( ) ( ; , )
r

BS i i i

i

BS f BS c N BS  


  (4.1) 

where i  and 2

i  are the mean and variance of the i
th

 Gaussian distribution N, 

respectively, and ic  is the contribution of the individual Gaussian functions to the 

total PDF. BSf  is the fitted histogram.  The number of PDFs is increased until the chi-

square distributed test-statistic of the residuals becomes less than a critical value. 

Based on the resulting r Gaussian PDFs, the Bayes decision rule is applied to 

determine the r regions of backscatter values corresponding to the r acoustic classes. 

The method is based on the assumption that the backscatter values for a single 

sediment type follow a Gaussian distribution for a sufficiently large number of scatter 
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pixels in the beam footprint. For shallow river areas, Gaussianity of the distribution is 

ensured by averaging the measured backscatter values over surface patches, 

consisting of a small number of beams in the across-track direction and a few pings in 

the along-track direction.
15

 Bottom slopes are accounted for according to the method 

presented in Ref. 15. 

 

 

4.3.2 A model-based approach for sediment classification 

Whereas the Bayesian method makes use of the backscatter values per angle, 

alternatively use can be made of the complete backscatter curve, i.e., the backscatter 

as a function of angle. Models exist that predict these backscatter curves as a function 

of sediment properties and frequency. By searching for those sediment properties that 

result in an optimal agreement between modelled and measured backscatter curve, the 

sediments can be classified. In this case, the classification results consist of real 

sediment properties instead of acoustic classes. For the work presented in this paper, 

the model described in Ref. 19 and Chapter 2.2.2.6 is employed for predicting the 

backscatter curve.  

As a first step in assessing the agreement between model predictions and 

measured backscatter curves, backscatter curves measured close to locations of the 

grab samples are considered. The model is run for mean grain size values as 

determined from the grab samples, and values for all other model input parameters are 

derived from the empirical expressions relating them to the mean grain size. 

Differences (not shown here) between the resulting model predictions and 

measurements can be attributed to: 

 

1) sediment types that change along the swaths; 

2) values for the 2 , 2w ,  ,  , and   that deviate from those obtained from 

the empirical expressions; 

3) imperfect calibration of the MBES backscatter measurements. 

 

To solve for these effects the following procedure is applied. An objective 

function is defined that quantifies the difference between the modeled and measured 

backscatter strength: 
 

( ) ( ) ( ; )me mo

i if b b


  x x  (4.2) 

 

where me

ib  and mo

ib  are the measured and modeled backscatter strength, respectively. 

The use of Eq. (4.2), providing a measure for the absolute discrepancies between the 

measured and modeled backscatter curves based on the L1 norm, is motivated due to 

its robustness property compared to the ordinary least-squares (L2) norm.
20

 In 

general, 2  and 2w  are known to show the largest deviations from the empirical 

predictions and, therefore, these parameters are considered as unknowns, contained in 

vector x. An estimate for the mean grain size is available from the grab samples, but 

still this parameter is allowed to vary slightly. Consequently, x contains three 
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unknowns, i.e., 2, zM and w2.  For minimizing Eq. (4.2) use is made of the 

differential evolution method as described in Refs. 21 and 22.  

Due to the imperfect calibration of the MBES and the noise of the measurements, 

the objective function will not become zero. The average curve of the differences 

(between measured and modeled curves) for all grab samples can be considered as the 

calibration curve. However, as mentioned in item 1 above, measurements can also be 

affected by variations in sediment types along the swath. Accounting for these 

measurements will result in differences between modeled and measured backscatter 

curves that differ significantly from the average, i.e., the calibration curve. 

Therefore, an iterative procedure is followed to establish the final calibration 

curve. In each iteration the measurements are corrected using the calibration curve of 

the previous iteration. The measurement with maximum discrepancy with the mean 

curve is masked as an outlier. A new calibration curve is then determined, based on 

the remaining measurements, as the sum of the old curve and a correction to this 

curve. After removing more and more outliers, at some iteration the discrepancies 

become negligible and no further corrections on the calibration curve are required.  

The final calibration curve is then applied to all measured backscatter curves, 

allowing for determination of the three parameters zM , 2w , and 2  over the entire 

area. 

 

 

4.3.3 Medusa method 

The Medusa system takes measurements with scintillator-based gamma-ray 

detectors, towed over the sediment. These measurements allow for: a) measurement 

of natural background radiation, and b) absolute measurement of radionuclide 

concentrations in the sediment through deconvolution of the measured signal’s 

spectrum.
23

 The deconvolution focuses on estimating concentrations of the 

radionuclides 
238

U, 
232

Th, 
40

K, and 
137

Cs, since these are known to be indicative for 

the sediment properties clay content, organic matter content and mean grain size. 

 

Measuring clay content 

The 
238

U uranium occurs naturally in trace amounts in sediments by its 

incorporation in silt, sand and in some heavy minerals. In the Netherlands, typical 

concentrations in silt are higher than in sand. The 
232

Th thorium isotope is also present 

in sediments in approximately similar concentrations in silt and sand.
16

 This makes 

uranium and thorium suited proxies for mapping silt and sand ratio’s in the sediment. 

The correlation between uranium, thorium and silt varies on the scale of a 

sedimentary basin. Grab sample investigations have shown that these correlations are 

similar for a delta system as large as the Netherlands.
17 

 

Measuring organic matter content 

There is a distinct difference between the natural radionuclides (
40

K, 
238

U, 
232

Th) 

and 
137

Cs in the way they are distributed in sediments. The natural radionuclides will 

at least initially be a more or less integral part of the minerals comprising the 

sediment while 
137

Cs is a later surface addition that has been distributed in the 

environment by atmospheric testing of nuclear weapons in the 1960s and by the 

Chernobyl accident. The 
137

Cs from Chernobyl has been preferentially deposited 
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along a 150 km broad strip in northwest–southeast direction passing over the centre of 

the Netherlands. The initially mobile 
137

Cs is absorbed by silt and organic matter.
17

 

This makes 
137

Cs a proxy for the organic matter content of the sediments. The 

correlation between 
137

Cs and organic matter depends strongly on the trends in 

deposition of 
137

Cs during the Chernobyl fallout. 

 

Measuring grain size 

Coarse-grained sediments consist of a mixture of quartz and potassium feldspar. 

In the process of weathering, feldspars tend to be reduced in size during abrasion, 

whilst quartz tends to be fragmented and destroyed.
24

 This process will cause an 

increased concentration of feldspar in finer sediments and, consequently, a correlation 

between the concentration of feldspar and grain size. The Potassium feldspar minerals 

contain 
40

K. Hence, the 
40

K concentration can be used as grain size indicator. The 

exact relation between the 
40

K concentration and mean grain size depends on the 

location. 

The concentration of radio-active nuclides in a specific type of sediment is called 

the radiometric fingerprint of that sediment. To derive a fingerprint for the sediments 

in a certain area use is made of grab samples taken in the area. These grab samples are 

analysed both with respect to their sediment properties and the radionuclide 

concentrations. Based on the resulting relations between the sediment properties and 

radionuclide concentrations, the radio-active emissions measured by Medusa over the 

area can be converted to maps of the sediment properties. 

In addition to the radiometric measurements, the Medusa system is also equipped 

with a hydrophone. This hydrophone is towed over the sediment surface with the 

primary purpose to check whether the Medusa system touches the sediment, resulting 

in high noise levels, or is floating freely in the water, corresponding to much lower 

measured noise levels. From experience, it is found that these hydrophone 

measurements can also be used to assess sediment roughness and the presence of 

features, such as shells, on the sediment. 
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4.4 Classification Results 

 

4.4.1  Bayesian results  

Surface patches were created by averaging over approximately eight beams and 

five pings. The average distance between two consecutive beams is 15 cm and 

between two pings is approximately 25 cm, and consequently each surface patch is 

approximately of size 120 cm x 125 cm.  After applying corrections for the bottom 

slope, the average backscatter strength was determined for each of the patches. The 

assumption of a Gaussian distribution for the backscatter PDFs was tested for areas 

with a single sediment type and was found to be valid. 

From the test statistic, it is observed that the optimal value for the number of 

classes amounts to five, as illustrated in the left frame of Fig. 4.3, since more classes 

do not result in a significantly better agreement between model and measurements. 

The obtained model contains sufficient detail for describing the measurements. The 

right frame shows the histogram and the Gaussian fit for the averaged backscatter 

values at the grazing angle of 30 for the left transducer. A similar approach, fitting 

the histogram with a number of Gaussians, is taken for all other angles, providing for 

each angle the range of backscatter values corresponding to each of the classes. 

However, since the discriminative performance is best for the most grazing angles, 

~30 in this case, due to their large beam footprint, the number of classes as derived 

for this angle, i.e., five, is used for the fitting procedure for the other angles.  The 

classification map of the area obtained by accounting for the full range of usable 

angles (26-70 grazing angles) is presented in Fig. 4.4. 

 

 
 

FIG. 4.3. Normalized chi-square distributed test statistic versus number of classes 
(left frame). The right frame presents the histograms of the measured BS data, i.e., 
number of measurements nj as a function of BS, over the entire area (bars), the five 
Gaussians (solid lines), and its best fit (dashed line) at a grazing angle of 30o (right 
frame). 
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FIG. 4.4: Classification of the Dordtse Kil river obtained by applying the Bayesian 
acoustic classification method. 

 

 

4.4.2 Model-based results 

The strategy explained in section 4.3.2 is now applied to the MBES data acquired 

in the Dordtse Kil. For all MBES tracks that were sailed over the 38 grab sample 

positions, mean backscatter curves are obtained over a few consecutive pings. This 

resulted in 73 combinations of grab samples and mean backscatter curves, as grab 

sample locations were crossed multiple times while taken the MBES measurements. 

These curves and the zM  values of the corresponding grab samples are used to derive 

the calibration curve. The results are illustrated in Fig. 4.5. The bottom sub-frame at 

the left shows the (minimized) differences between modelled and observed 

backscatter curves when accounting for all grab samples. In an ideal case the 

differences are identical and hence represent the final calibration curve. However, due 

to variations in sediment type along the swathes and measurement noise, an ideal 

curve can never be obtained. Therefore the median curve of the differences is 
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considered to be a first estimate for the calibration curve (thick black line in the left 

bottom frame of Fig. 4.5). Due to the robustness of the L1 norm minimization, the 

results presented are not affected by possible outliers. Still, the quality of the 

estimated calibration curve can be improved by removing some of the outliers. 

Therefore, the iterative approach of Section 4.3.2 is applied. The approach was 

stopped after nine iterations after which the L1 norm has decreased from over 80 dB 

to ~5 dB. Additional iterations did not result in a further decrease. It was found that 

for three grab samples, with mean grain sizes of 1.3, 1.5 and 5.0 ϕ, all combinations 

of these grab samples and backscatter curves were identified as outlier. This can be 

caused by errors in the measurements, for example due to uncertainties in the exact 

grab sample locations or backscatter curves that are affected by variations of sediment 

type along the swath, but can also be due to the backscatter model output not being 

representative for the sediment at the locations of the grab samples. 

The results from the iterative approach are presented in the right frame of Fig. 

4.5.  
 

 
 

FIG. 4.5. Measured backscatter as a function of beam angle  at grab sample 

positions (top sub-frames), corresponding modelled backscatter versus  (middle 

sub-frames) and difference between modelled and measured backscatter versus  
(bottom sub-frame). The left frames show the result at the first iteration, with all grab 
samples accounted for. The thick black line in the left bottom sub-frame is the mean 
of the differences between modelled and measured backscatter, representing the 
initial calibration curve. The right frames show the result at the final iteration. The 
measurements (top sub-frame) have been corrected using the calibration curve 
corresponding to the ninth iteration. The thick black line in the right bottom sub-frame 
indicates the corrections that would be applied in the next iteration. Colours indicate 
mean grain sizes in phi unit. 

 

In the next step, the calibration curve is used to correct all measured backscatter 

curves, obtained by averaging over a few consecutive pings. These are then fed into 

the optimization process where a search is performed to determine values for 2, zM , 

and w2 that provide a maximum agreement between modelled and measured 

backscatter curve from Eq. (4.2). The search bounds were selected as 1 9zM   , 
5 2

25x10 2x10w   , and 5 3

25x10 5x10   . Figure 4.6 shows two typical 

examples where this inversion has been applied. The modelled curves fit the 
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measured curves quite well indicating a reliable optimization method and processing 

strategy. 

  

 
 

FIG. 4.6. Two examples of the optimization problem where the three parameters Mz, 
w2, and σ2 are searched for. In each frame the top sub-frame is the calibration curve 
(thick dashed line) and the observed backscatter curve (thin solid line). The bottom 
sub-frame is the corrected (thick solid line) and modelled (thick dashed-dotted line) 
backscatter curve. Indicated in the plots are the estimated parameters for each 
inversion. 

 

Empirical relations between zM , 2w , and 2  are provided in Ref. 19. For 

1 5,zM    the relation between zM  and 2w  is  
 

2

2

2.03846 0.26923
0.00207   with  

1 0.076923

z

z

M
w h h

M


 


 (4.3) 

For 5 9zM   the interface roughness parameter is 2

2 0.00207w h , where 

0.5h  . With regard to 2 , Ref. 19 indicates a value of 2 0.002   for 1 5.5zM    

and 2 0.001   for 5.5 9zM  , respectively. 

Figure 4.7 presents both the estimates for 2w  and 2  versus zM  as obtained from 

the inversions and predicted from the empirical expressions. It can be seen that, in 

general, the 2w  values obtained from the inversions are a factor of 2 higher than those 

predicted by the empirical model. A reverse situation holds for 2 , where values of 

2  determined from the inversions are a factor 2 lower that those predicted by the 

empirical expressions for 1 5.5zM   . However, the estimates for 2  show a large 

spread, indicating limited sensitivity of the problem to this parameter. This is at least 

partly due to the high frequencies considered. Another observation is that a 

discontinuity exists in the behaviour of the estimates for 2  at 5.3zM  . At 5.3zM 

the empirical relations expressing  , i.e., the ratio of sediment to water sound speed, 

and  , which is the ratio of sediment to water mass density, as a function of zM , 

change. This might indicate that these relations require corrections when used for the 

frequency of 300 kHz as considered here. 
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FIG 4.7. Estimated (dots) w2 versus Mz 
 (top) and σ2 versus Mz, (bottom). The two 

frames also show respectively the values of w2 and σ2 predicted by empirical models 
(squares), their moving averages (smoothed), and third-order polynomial best fit. In 
each subplot colours indicate the third estimated parameter, i.e. σ2 (top) and w2 
(bottom).  

 
  

Finally, Fig. 4.8 presents the estimated values for zM , 2w  and 2  as a function 

of position, where for illustrative purposes logarithm scales are used to present 2w  

and 2 . The three maps clearly show areas differencing in sediment types. In general, 

the three parameters reveal similar spatial patterns. The zM  values indicate that the 

softest sediment belongs to the southern part of the Dordtse Kil river. Values for the 

inverted parameters are found to be at the search bounds for certain areas in the 

southern part. These results are not included in Fig. 4.8 as the inversion is considered 

not successful. Since these results are found in distinct regions, i.e. the gaps in the Fig. 

4.8 maps as indicated by arrows, we hypothesize that for these regions the backscatter 

model output is not representative for the sediments of those areas. 

  

http://en.wikipedia.org/wiki/Dordtsche_Kil
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FIG. 4.8. Maps of inverted mean grain size Mz, (left frame), spectral strength w2 
(middle frame), and volume scattering parameter σ2 (right frame). Arrows indicate the 
regions for which the inversions converged to values for Mz, w2, or σ2 that are at the 
bound of the search regions.  

 

 

 

4.4.3 Medusa results 

The total activity of the nuclides was determined by spectrum deconvolution on 

the measured signal.
23

 The activity concentrations in the samples were then 

determined by the measured activity divided by the mass of the grab sample and the 

dry matter percentage. The dry matter percentage was determined by the moisture loss 

in 6 hours at a temperature of 130
o
C. The silt fraction and organic matter content as 

determined from the grab samples were compared to the concentrations of 
232

Th, 
40

K, 
238

U and 
137

Cs. It was found that the 
232

Th and 
40

K concentrations show positive 

correlation with the silt fraction. No significant correlation was found with 
238

U. 

Furthermore, a significant correlation exists between 
137

Cs and the fraction of organic 

matter in the grab samples. Both are illustrated in Fig. 4.9. The resulting maps for the 

silt fraction, as derived from the 
232

Th and 
40

K concentrations, and organic matter 

(from 
137

Cs concentrations) are presented in Fig. 4.11 (right and centre frames). 
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FIG. 4.9: 40K and 232Th versus silt fraction and 137Cs versus the fraction of organic 
matter. The grab samples with low correlation are indicated with grey dots. 

 

Since the 
40

K concentrations were found to show the strongest correlation with 

the mean grain size (80 %), for the current study this parameter was finally used as a 

predictor of the grain size, d50, denoting the grain size at which 50 % of the sediments 

in the grab sample are smaller. This strong correlation is illustrated in Fig. 4.10. 

 

 
 

FIG. 4.10. 40K concentration versus d50 for the grab samples taken in the area. The 
numbers indicate numbers of the grab samples. The grab samples with low 
correlation are indicated with grey dots. 

 

The following relation between 
40

K concentration K and mean grain size d50 was 

established by linear regression: 
 

50 0.54 425.5d K    (4.4) 

with a coefficient of determination (R
2
) of 0.8. The grab samples indicated as grey 

dots in Fig. 4.10 were not accounted for in deriving the above relation as they contain 

some peat, shells or wood that were removed when determining the radio nuclide 

concentrations, but were accounted for in the mean grain size determination. 

By using Eq. (4.4), a mean grain size map of the full area was derived based on 

the 
40

K concentrations that were measured during the survey, the results of which are 

presented in Fig. 4.11 (left frame). Note that since the grab sample positions are not 



52 

coincident with the Medusa tracks, the range of mean grain sizes encountered in the 

grab samples differs from the range derived with the Medusa system towed over the 

sediment. Especially the grab samples corresponding to the smallest mean grain sizes 

were taken at locations where no measurements were taken with the towed Medusa 

sensor. All plots contained in Fig. 4.11 have been obtained by Kriging interpolation
25

 

of the data as acquired along the tracks.  

The results of the measurements as taken by the Medusa hydrophone that is 

towed over the sediment surface, are presented in Fig. 4.12. Their primary use is to 

indicate whether the Medusa system touches the sediment, or floats freely in the 

water. However, these measurements are also indicative of the roughness of the 

sediment, where high noise is associated with rough boundaries and low noise is 

associated with smooth boundaries. Since the hydrophone is not calibrated, the 

measured noise intensities can only be used in a relative manner to assess variations in 

roughness over an area. 

 

 

 
 

FIG 4.11. Maps of the d50 (left) values (in phi units), organic matter (middle), and silt 
fraction (right) in Dordtse Kil using the Medusa method. 
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4.5 Comparison and Discussion 

In Fig. 4.12 an overview of the results of applying the methods for sediment 

classification described in the previous sections is presented, partly repeating the plots 

presented in Section 4.4. To allow for comparison, this figure presents only those 

results that are directly related to the sediment mean grain size. Therefore, the 

estimates of silt fraction and organic matter are not included. To ease the comparison, 

similar colormaps are used for all five maps, where blue corresponds to the finer 

sediment and red to the coarsest sediment. It should be noted that the Medusa 

measurements were taken only along six lines in the middle of the river with an 

average distance of 40 m between lines; no measurements are taken at the border of 

the river, resulting in a low spatial resolution compared to the MBES results.(Note 

that for the unimodal sediment grain size distribution encountered (Fig. 4.2), 

differences between Mz based on d50 (obtained from the Medusa measurements 

through Eq. (4.4)) and Mz based on d (grab samples and model-based method) are 

negligible (<0.3 ϕ)). 

Despite the differences in the range of mean grain size values as obtained for the 

different methods, with, for example, the model-based results showing an 

overestimation of zM compared to the grab samples, we do observe a similar spatial 

pattern in the sediment distribution as revealed by all methods. Grain sizes are 

decreasing towards the southern part of the river, indicated both by the MBES model-

based results and the grab sample analysis. Also the zM  values derived from the 
40

K 

concentrations indicate finer sediments than on the remainder of the river. The 

Bayesian classification indicates the presence of the first two classes in the areas, 

corresponding to the lower backscatter strength values. It can also be seen that the 

noise levels measured with the Medusa hydrophone are low, indicating a smooth 

sediment surface as expected for these fine-grained sediments. 

For the area north of this small grain size region, the Bayesian and model-based 

MBES results along with the Medusa noise measurements reveal that the middle of 

the river is mainly fine-grained, interspaced with areas containing coarser sediments. 

These results indicate coarser sediments also for the border of the river. The grab 

samples also indicate coarser sediments compared to the southern area, but their 

limited spatial sampling prevents derivation of more details regarding the sediment 

distribution. Although the 
40

K concentrations indicate coarser sediments compared to 

the south, these results differ from the other methods as the map based on the 
40

K 

concentration indicates areas will smaller grain sizes in the west of the middle part of 

the river which is not confirmed by any of the other methods.    
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FIG. 4.12. Classification maps of Dordtse Kil River using different methods; acoustic 
classes of the Bayesian method (a), mean grain sizes in phi unit of the model based 
method (b), mean grain sizes in phi unit of the grab samples (c), noise received by 
the Medusa hydrophone (logarithmic scale) (d), and the mean grain size in phi unit 
using the Medusa method (e). 

 

In order to quantitatively assess the correspondence between all measured 

parameters, Fig. 4.13 presents the cross correlation matrix, where colours indicate the 

absolute values of the correlation coefficients between the classifiers obtained for all 

methods considered. All correlation coefficients, except those with the mean grain 

size from the grab samples, are based on at least 5000 locations, resulting in high 

confidence levels (100%) for the correlation coefficients. Due to the limited amount 

of grab samples, correlation coefficients with the grab sample mean grain sizes are 

subject to lower confidence levels. Only those correlation coefficients with 

confidence levels exceeding 90 % are presented in Fig. 4.13. (A confidence level of 

90 % means that there is a 10 % probability that this correlation coefficient occurs 

fully by chance.) 
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FIG. 4.13. Correlation coefficients (the colours indicate the absolute values) between 
Bayesian classes, the parameters obtained from the model-based method (Mz, w2 
and σ2), the parameters measured by the Medusa system (Noise, 40K concentration, 
232Th concentration and 137Cs concentration) and the grab sample mean grain sizes. 
Only correlation coefficients with confidence levels exceeding 90 % are indicated. 

 

From the correlations presented, it can be concluded that when considering the 

Bayesian classes, the highest correlation (-0.56) is found between classes and the 

mean grain sizes as estimated from the model-based method. This limited correlation 

coefficient can be caused by a non-linear relation between mean grain size and 

acoustic classes, but can also be due to the fact that, in addition to sediment mean 

grain size, also parameters such as the volume scattering parameter and the sediment 

roughness contribute to the measured backscatter strengths. This impedes the use of a 

linear relation between acoustic classes and mean grain sizes, for example to convert a 

map presenting acoustic classes to a map of mean grain sizes. This is also 

demonstrated by the limited correlation coefficient between the Bayesian classes and 

the Mz values of the grab samples (-0.31). 

From the Medusa measurements, the noise level is found to have the highest 

correlation with the Bayesian classes. The concentration of  
137

Cs shows the lowest 

correlations. From Section 4.4.3 it is known that 
137

Cs is highly correlated to the 

concentration of organic matter. Hence, the low correlation between 
137

Cs and the 

acoustic classes is an indication that the presence of organic matter is not revealed by 

the Bayesian approach. The limited correlation with 
40

K and 
232

Th with all other 

parameters, reflects the previous observation (based on Fig. 4.12) that in part of the 

area, the Medusa mean grain sizes show a spatial pattern that is not conformed by the 

other methods. 

The substantial correlation of 0.43 between the noise levels measured by the 

Medusa hydrophone and the model-based parameter w2 results from the fact that both 

parameters are representative for the sediment surface roughness. 
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4.6 Summary and conclusions 

In this chapter three methods for classification of sediments in the Dordtse Kil 

river in the Netherlands are presented. Two methods base the classification on MBES 

backscatter data, whereas the third method bases the classification on natural 

radioactivity. The first method uses the MBES backscatter data collected at a certain 

angle to obtain the number of acoustic classes and to discriminate between them by 

applying the Bayes decision rule for multiple hypotheses. The second method is 

model-based and matches the full measured backscatter versus angle curve of the 

MBES to the predicted backscatter curve using the model of Ref. 19. The third 

method, Medusa, bases the classification on measurements of gamma-ray radiation 

being emitted from very low concentrations of a number of radionuclides in the 

sediment, i.e., 
137

Cs, 
40

K, 
238

U and 
232

Th. 

The Bayesian method provides acoustic classes, and is considered to be simple in 

principle and easy and fast to implement. For the Dordtse Kil area, the Bayesian 

method identified five acoustic classes. The model-based method provided the 

sediment parameters mean grain size (Mz), spectral strength of sediment surface 

roughness (w2) and volume scattering parameter (σ2). By comparing the classes 

derived from the Bayesian method and the model-based results, it is found that the 

model-based mean grain size shows the highest correlation with the acoustic classes. 

However, this correlation is limited to -0.56. This is an important result, as it indicates 

the limitations in the potential of using only (grab sample-based) mean grain size for 

assigning sediment parameters to the acoustic classes. The latter is also illustrated by 

the limited correlation coefficient (-0.31) between the acoustic classes and the mean 

grain sizes obtained from grab samples. 

The use of model-based methods would eliminate the above-mentioned 

limitations in converting acoustic class to sediment parameters. However, the model-

based results indicate an overestimation of the Mz values, i.e. too small mean grain 

size values. This can be due to a still imperfect calibration of the measured 

backscatter values, caused by a limited number of grab samples available for the 

calibration. In addition, imperfect modelling of the backscatter curve can play a role. 

These effects hamper the use of model-based methods for sediment classification. 

Analysis of the data taken by the Medusa system provided estimates of the mean 

grain size based on the concentrations of 
40

K and estimates for the silt fraction based 

on 
40

K and 
232

Th. Furthermore, concentrations of 
137

Cs were used as a predictor for 

the fraction of organic matter. In addition, noise levels were measured by a 

hydrophone towed over the sediments. The significant correlation  between the 

Medusa noise level and w2 indicate that the Medusa noise levels contains information 

about the sediment roughness. The low correlation between the 
137

Cs concentrations 

and the Bayesian classification results indicates that backscatter measurements do not 

reveal the presence of organic matter. The Medusa system, however, can provide this 

information based on the 
137

Cs measurements. 
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5 Improving riverbed sediment 
classification using backscatter and 
depth residual features of multi-beam 
echo-sounder systems2 

 

 

Riverbed and seafloor sediment classification using acoustic remote sensing 

techniques is of high interest due to their high coverage capabilities at limited cost. 

This chapter presents the results of riverbed sediment classification using multi-beam 

echo-sounder data based on an empirical method. Two data sets are considered, both 

taken at the Waal River, namely Sint Andries and Nijmegen. This work is a follow-up 

to the work carried out by Amiri-Simkooei et al.,[ J. Acoust. Soc. Amer., 126 (4): 

1724–1738 (2009)]. The empirical method bases the classification on features of the 

backscatter strength and depth residuals. A principal component analysis is used to 

identify the most appropriate and informative features. Clustering is then applied to 

the principal components resulting from this set of features to assign a sediment class 

to each measurement. The results show that  the backscatter strength features 

discriminate between different classes based on the sediment properties,  whereas the 

depth residual features discriminate classes based on  riverbed forms such as the 

‘fixed layer’ (stone having riprap structure) and riverbed ripples. Combination of 

these two sets of features is highly recommended because they provide 

complementary information on both the composition and the structure of the riverbed.  

                                                 
2
 This chapter has been published as journal paper: D. Eleftherakis, A.R. Amiri-Simkooei, M. Snellen, 

and D.G. Simons, “Improving riverbed sediment classification using backscatter and depth residual 

features of multi-beam echo-sounder systems”, Journal of the Acoustical Society of America 131(5), 

3710-3725 (2012).   
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5.1 Introduction 

The morphology and sediment composition of the sea/river bed is of high 

importance to a large number of offshore activities such as oil and gas exploration, the 

installation of offshore windmill farms, and the study of marine biology. Furthermore, 

in countries like the Netherlands, where a great number of rivers are used for 

navigation, insight into the river morphology and its dynamic behaviour, and 

sediment composition is essential. An attractive system for obtaining information both 

for the sea/river bed bathymetry and sediment composition is the multi-beam echo-

sounder (MBES).  The sonar emits short pulses of sound towards the sea/river floor to 

determine the depth and the backscatter strength for a large number of beams. The 

MBES provides high spatial coverage of an area at moderate costs and within a short 

time. Therefore, it appears as a good alternative to the conventional, expensive and 

time-consuming approach of mapping the sea/river floor composition by taking a 

large number of physical sediment grab samples. A brief overview of the techniques 

used for determining sediment properties in shallow waters is given in Ref. 1.  

The MBES classification methods can be divided into phenomenological (or 

empirical) and model-based (or physical). Model-based approaches make use of 

physical models and determine the sediments type by maximizing the match between 

modelled and measured signals or signal features, where sediments type or parameters 

indicative of sediment floor type, are input into the model. These approaches allow 

for direct coupling between the acoustic classes and sediment characteristics if the 

MBES sensitivity is known. On the other hand, the empirical approaches base the 

classification on features of the data, after dividing the area into small regions. This 

approach is considered in the present work. The outcome of this approach is a 

qualitative description of the sediment distribution of an area (e.g. finer, fine, coarse, 

coarser), but ground truth is required for associating the classification results to 

physical parameters of the sediments (e.g. mean grain size). The advantage of the 

empirical methods is their ease of implementation and use.  

The main information provided by an MBES is the backscatter strength and the 

bathymetry of the area. Both can be treated as individual values or as images by 

plotting their spatial distributions over an area.
2
 The potential of the backscatter for 

empirical sediment characterization has been highlighted in previous work.
3,4

 

Significant work in this field has been done by Quester Tangent Corporation (QTC) 

where 132 features are calculated and processed both from the backscatter amplitude 

and backscatter texture. Detailed information about QTC can be found in Refs. 5-11. 

During the last few years, research considered the potential of the information 

contained in the bathymetry for classification
12,13

 and now the interest has focused on 

how to combine a broader range of information that may include backscatter and 

bathymetry features in many forms into the clustering models.
14

 An extensive review 

of the different classification approaches can be found in Ref.  15. 

In two previous studies
16,17

 a new model-based method employing backscatter, 

denoted as the Bayesian classification methodology (BCM), for deriving the sediment 

distribution in two parts (Sint Andries and Nijmegen) of the River Waal in the 

Netherland gave promising results. However, one important artificial riverbed feature, 

the fixed layer, was not identified by the method as a separate bottom type. This fixed 

layer consists of big stones with rip rap structure and is applied for fixation of the 

sediment. In this chapter a combination of backscatter and a bathymetric feature, 

namely the residuals of depth, is successfully used to identify the different sediment 
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classes, including the fixed layer. Principal components analysis (PCA) is used for 

data reduction and the common K-means method for clustering the data. The 

importance of the present chapter is twofold: 1) it clearly demonstrates the advantage 

of the combination of features on capturing the range of different formations on 

riverbeds, and 2) it provides a physical explanation of the contribution of each feature. 

The chapter is organized as follows. Section 5.2 gives information both about the 

surveyed areas and the details of the surveys. This section also provides a brief 

description of the methodology of Refs. 16 and 17, and results obtained from the 

previous studies on the same areas. Section 5.3 provides details on the methodology 

(PCA and K-means clustering) used for identifying the different sediment types. 

Section 5.4 describes the data preparation procedures. Section 5.5 presents and 

discusses the results from the PCA and K-means clustering analysis. Finally, the main 

conclusions are summarized in Section 5.6. 

 

 

 

5.2 Experiments and previous results 

 

5.2.1 A description of the surveyed areas 

The MBES data was collected from parts of the Waal River in the Netherlands 

during surveys conducted by the Directorate General for public works and water 

management. The Waal River is one of the branches of the Rhine River and the main 

inland waterway transport artery between the port of Rotterdam and urban and 

industrial areas of Germany. The Waal River has prominent bends at Nijmegen and 

Sint Andries. The interplay of water and sediment in these bends had produced 

characteristic bed topography of deep outer-bend pools and shallow inner-bend point 

bars. The latter formed obstacles for navigation, despite the large depth available in 

the pools, because they reduced the space for two-way traffic with possibilities to 

overtake other ships. The problem has been addressed using three strategies: 1) by 

dredging in order to remove the shoals, 2) by constructing groynes in order to change 

the alignment of the river, and 3) by constructing non-erodible layers in order to lower 

the point bar and increase the navigation width. Therefore the deep pools have been 

filled and covered with riprap to form a fixed, non-erodible layer in the outer bend. 

The resulting scour in the inner-bend made the river sufficiently deep over a larger 

width.  

The first fixed layer is located between Sint Andries and Zuilichem (km 925-

928). It is 140 m wide and 3.1 km long, and was constructed in the years 1997-1999. 

It lies 3.5 m below the Dutch river low water reference level (OLR).
18

 The bathymetry 

(not referenced to OLR) of the river at Sint Andries as produced from an October 

2007 multi-beam survey is presented in Fig. 5.1 (top).  It shows the general pattern of 

shallow inner bends and deeper outer bends, but also the more detailed forms of 

underwater dunes as well as local scour holes at the tips of transverse river training 

structures called “groynes”.  

The second fixed layer is located in the Waal river bend at Nijmegen (km 883-

885). This fixed layer has a width of 150 m, a length of 2 km and a depth of 3.5 m 

below the OLR.
18

 It was constructed in the years 1986-1988. Figure 5.1 (bottom) 
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presents the bathymetry of the river in this area as produced from a May 2008 multi-

beam survey, again not referenced to OLR.  

 

 

FIG. 5.1. Bathymetry of the Waal River at Sint Andries (top) and Nijmegen (bottom). 
Indicative positions of scour holes behind the fixed layer, scour holes at the tips of 
groynes, and bed foms (ripples and dunes) are shown in the figure.  

 

Grab samples were collected from both areas, using a bottom grab. Figure 5.2 

shows the histograms of the distribution of the mean grain size of the grab samples 

collected at Sint Andries (left frame) and at Nijmegen (right frame).  
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FIG. 5.2. Histograms of the mean grain size distribution of the grab samples collected 
at Sint Andries (left frame), and at Nijmegen (right frame). 

 

 

5.2.2 Details of the surveys 

The sonars used in both surveys were of the same type: a Kongsberg EM3002 

single-head multi-beam echo-sounder. This sonar is well suited for shallow water 

depths as its high frequency ensures narrow beams with small physical dimensions. 

The operational frequency was 300 kHz and the maximum number of beams (of 

equidistant pattern) per ping was 254. The swath width was 130
o
, the pulse length 150 

μs, and the maximum ping rate 40 Hz. The beam width was 1.5
o
   1.5

o
 at nadir. All 

beams were electronically stabilized for pitch and roll. For each beam and each ping a 

single backscatter value is given. This value is the result of first applying a moving 

average over the time series of amplitude values and then selecting the maximum 

average level of each beam.
19

  

 

5.2.3 A summary of applying the BCM to the areas 

The method in Refs. 16, 17 and 20 employs the backscatter strength collected at a 

certain beam angle instead of studying the angular behaviour of the backscatter 

strength. The classification is performed per angle separately from other angles and 

hence is considered to be angle-independent. The method is based on the assumption 

that the backscatter values are an average value of the sample amplitude values. 

Therefore, according to the central limit theorem -for independent random values- the 

averaged backscatter value for a single sediment type follows a Gaussian distribution 

for a sufficiently large number of scatter pixels. Figure 5.3 illustrates this principle. In 

this figure θ is the beam angle and φ the grazing angle of incidence. The required 

large number of scatter pixels is achieved for shallow waters
16

 by averaging the 

backscatter values over small surface patches, which consist of a small number of 

beams in the across-track direction and a few pings in the along-track direction. The 

creation of surface patches, apart from ensuring Gaussianity, has the additional 

advantage that it allows for two kinds of corrections of the backscatter data due to the 

presence of slopes: one correction to account for changes of the signal footprint’s 
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area, and a second correction to account for the slope effect on the beam grazing 

angle.  

The method fits a number of Gaussian Probability Density Functions (PDFs) to 

the histogram of the backscatter data at a given beam angle. The optimum number of 

PDFs is found by consecutively increasing the number of PDFs until a chi-square 

distributed test statistic becomes less than a critical value. The number of Gaussians 

then represents the maximum number of classes that can be discriminated based upon 

the backscatter values, and the borders of the classes are the intersections of each 

Gaussian with its neighbour. The backscatter data at a few low grazing angles are 

processed in order to estimate the mean backscatter strength, the variance and its 

coefficient per class. These parameters are used as guidance for the statistical 

processing of all other angles. The surface patches in Refs. 16 and 17 were of size 0.5 

m   0.5 m, but the final maps resulted after using weighted moving average for 

surface patches of 2 m   2 m. 

Three classes were identified for each area. The plots can be seen in Refs. 16 and 

17. The areas of the fixed layer could not be discerned from the other parts of the 

river. 

 

 

 
FIG. 5.3. Across-track cross setion (y-z plane) for signal footprint of an oblique beam 
for three configurations: (a) shallow water, (b) non-flat bottom, and (c) deep water. θ 
denotes the beam angle and φ the grazing angle. The figure has been taken from 
Ref. 16. 
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5.3 Methodology 

In this section we briefly explain basic concepts of the PCA and the K-means 

clustering approach. Though the methods are well established, many variations of 

them exist in the literature, depending on the nature of different investigations. 

Therefore, the scope of this section is to provide only the necessary details of the 

methodology followed in this Chapter for creating the sediment distribution maps of 

the Sint Andries and Nijmegen areas.  

 

5.3.1 Principal component analysis 

The PCA was first described by Refs. 21 and 22. The aim of the PCA is to reduce 

a multivariate dataset into a small set of variables called principal components (PCs) 

that can adequately describe the variability of the whole dataset. The reduction can be 

achieved if the original variables are at least moderately correlated.
23

 Unlike the initial 

features, the PCs are independent, thus each PC represents a different dimension in 

the data. Furthermore, they are sorted in descending importance order from the first 

PC, which explains the largest amount of the data variation to the last one 

representing the smallest variation. Therefore, 1 2var( )  var( )  var( )pY Y Y   , 

where iY  is the i-th principal component. 

Considering the (nxp) matrix F containing all n measurements of the p features, a 

principal component iY  is a linear combination of the p original features (variables) 

1 2, ,..., pF F F  (Fi denoting the ith column of F) as  

 

pipiii FaFaFaY  ...2211  
(5.1) 

with the condition that its variance, var( )iY , is maximum, subject to the constraint 

that
23

 2 2 2

1 2 ... 1i i ipa a a    , and that iY  is uncorrelated to the other principal 

components, thus having zero covariance, i.e. cov( , ) 0i kY Y   for i k . The 

calculation of the principal components is performed in four steps: 

First, the original features fij, where 1,2,...,i p  (number of features) and 

1,2,...,j n  (size of data) are standardised. This step is necessary when the variables 

have different scales or common scale with significantly different ranges. The 

standardization is performed as follows
24

: 
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where 
if

  and 
if

  are the sample mean and standard deviation of the feature i, 

respectively, 

Second, the covariance matrix R of the standardised data Z is determined as
24
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where  

 

 

 

The diagonal elements of R are the variances of the features, all having a value of 

1 due to standardization, while the non-diagonal elements of R are the correlation 

coefficients among the features. 

Third, the eigenvalue decomposition of the matrix R is obtained as 

 
TR E E  (5.4) 

 

where E is the square matrix of the eigenvectors of R and Λ is the diagonal matrix 

of the corresponding eigenvalues (each column of E corresponds to one element of Λ).  

Finally, the PC matrix Y is calculated by multiplying the original data matrix F 

with the eigenvectors matrix E as 

 

FEY   (5.5) 

After obtaining the Y matrix, the optimum subset of PCs has to be determined. 

The subset must consist of the minimum number of PCs that contain most of the 

original data’s information. A large number of tools exist for deciding the optimum 

number of PCs. An extensive comparison between various tools can be found in Ref. 

25.  

In the current research we consider one of the simplest but still acceptable tools
26

 

available for selecting the number of principal components. The criterion is to choose 

adequate PCs to explain a specific percentage of the total variability in the data. The 

percentage of the standardised data variance due to the first m ( m p ) PCs is given as 
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(5.6) 

where λ is the variance explained by each principle component. The threshold 

percentage varies (70-90%)
26

 and frequently depends on the specific details of a data 

set. 

Our application of PCA in this contribution is twofold: 1) PCA was used to 

determine the most  appropriate features among all features, thus reducing the number 

of the original variables to only the necessary ones, and 2) the  optimum set of PCs 

are grouped into different classes by using K-means clustering. 
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5.3.2 K-means clustering 

The K-means
27

 unsupervised algorithm partitions n observations into k mutually 

exclusive subsets Sj (clusters) so as to minimize the sum of point to centroid (point 

whose parameter values are the average of the parameter values of all points in a 

cluster) squared Euclidean distances: 
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j Sn

jn

j

xJ
1

2

  (5.7) 

where nx  is the nth data point and j  is the geometric centroid of the data points in 

Sj. Detailed information about the algorithm of the K-means clustering can be found 

in Ref. 28.  

In this contribution, two tools are considered in conjunction for determining 

whether the preselected number of clusters is acceptable or not: 1) the total sum of 

distances, and 2) the silhouette plot. 

The total sum of distances has to decrease for successive ascending values of k in 

order to successfully partition the dataset into clusters. However, this sum always 

decreases with an increasing number of clusters. Therefore, we have selected the 

relative reduction in the sum, expressed as the percentage reduction. A second tool for 

determining the quality of the separation between clusters is the silhouette plot, which 

is mainly a visual measure. One may also define the silhouette coefficient for an 

individual point as
29
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  (5.8) 

 

where ia  is the average distance (dissimilarity) of the point i to all other points of its 

cluster, and ib  gives the minimum average distance (dissimilarity) of i to all points of 

other clusters. Values for si for each cluster fall in the range from -1 to 1. A negative 

value is undesirable because it corresponds to the case that ia is greater than ib . A 

desirable case occurs, in general, when the silhouette coefficient is positive indicating 

that i ia b , and, in particular, when it is close to one. Therefore, 1is   indicates that 

there is a high probability for the points to be successfully clustered. The average 

silhouette coefficient (aSC) of all the clusters can be used as a quantitative criterion. 

A proposed (see Table 5.1) interpretation is described in Ref. 29. 

In general, a definite selection of an optimal number of clusters is ambiguous. 

Therefore in this contribution the number of clusters in most of the cases is predefined 

based on the knowledge gained from Refs. 16 and 17 and the two tools described 

above are used to determine whether the separation of the selected number of clusters 

is within the acceptable range or not. 
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TABLE 5.1. Proposed interpretation of the average Silhouette Coefficient (aSC).29 

 

aSC Proposed Interpretation 

0.71-1.00 A strong structure has been found 

0.51-0.70 A reasonable structure has been found 

0.26-0.50 The structure is weak and could be 

artificial; please try additional methods on 

this data set 

< 0.26 No substantial structure has been found 

 

 

 

5.4 Data preparation 

 

5.4.1 Extracting the features from the surface patches 

The data were grouped per beam, in small surface patches, where each surface 

patch consisted of the mean data values over a few beams in the across-track direction 

and a few pings in the along-track direction. The typical size of each surface patch 

was approximately 0.5 m x 0.5 m and all the features were determined for this surface 

size.  This procedure was the same data grouping procedure followed in Refs. 16 and 

17. For this contribution, the data size was, at the last stage, further reduced by 

constructing boxes of 10 m x 10 m in order to be able to process effectively the whole 

dataset and significantly reduce the fluctuations of the features extracted.  For 

example, the standard deviation of the residuals was calculated for each one of the 0.5 

m x 0.5 m boxes and then these values were averaged over 10 m x 10 m boxes to give 

the final values of the standard deviation of the residuals. For the approach of Refs. 16 

and 17 the larger boxes could not be made, because it would result in combining 

backscatter values over a range interval where the angle dependence cannot be 

neglected. 

For each surface patch the average, the standard deviation, and higher-order 

statistical moments were determined for both the backscatter strength and the least-

squares depth residuals. In addition, the slopes of the surface patches were considered. 

The backscatter value is an important classification parameter of the sediments on 

river/sea beds
3,4

 and should be accounted for in the classification. The residuals 

represent the difference between the observed depth values and the fitted surface 

patch estimated by the least squares method. In fact, they contain information about 

the sediments size variations in a ‘purer’ way than the depth itself because they take 

the slopes of the patches into account. 
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A comment on the estimation of the least squares (LS) depth residuals is in order. 

The along-track (x) and across-track (y) slopes of each surface patch were calculated 

based on the method described in Ref. 16. The polynomial used for fitting a surface to 

each patch has the form:  

 

xyayaxayaxaayxfz o 5

2

4

2

321),( 
 

(5.9) 

 

The LS method, details of which can be found in Ref. 30, was used to solve the 

over-determined system of equations. According to LS, the estimate of a linear model 

( )E z Aa  is determined as 1 1 1ˆ ( )T T

z za A Q A A Q z   , where A is the design matrix, z is 

the vector of depth measurements, and zQ  is the covariance matrix of z. The residual 

vector is calculated as ˆ ˆe Aa z  . 

The first four statistical moments, namely, mean, standard deviation, skewness, 

and flatness (kurtosis) of the backscatter and depth residuals were computed. The 

arithmetic mean is the most widely-used statistical parameter. The standard deviation 

is also an important parameter since it gives a measure of the variability of the data. 

Skewness is a measure of the asymmetry of the distribution. Kurtosis is the measure 

of flatness of the data relative to a normal distribution. Skewness and kurtosis were 

selected because the K-distribution is a potential sediment classification tool based on 

results from previous research
16

 as it can describe the backscatter distribution. 

In addition, the median, mode, minimum, maximum, and mean absolute values 

were used as new features. In cases where the distribution of the backscatter and/or 

the residuals is not purely symmetric, the median is different from the mean, and can 

provide the middle point of the distribution. Mode is the value that has the most 

frequent occurrence within the data set. It shows the main tendency of the features 

within a surface patch. The minimum and maximum values were included as 

indicators of the data extremes.  

For the residuals of the bathymetry, the mean absolute error (MAE) was 

calculated instead of the mean. Since the values of the residuals are small and can be 

positive and negative, the mean value could be each time close to zero. The mean 

absolute error is an average value for the absolute errors, given by the equation

1
iMAE e

n
  . Therefore it provides a measure of closeness between the predicted 

and measured values.  

The 17 features that were taken into account for classification are summarised in 

Table 5.2. 
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TABLE 5.2. Features calculated for surface patches including statistical moments of 
backscatter values and least-squares depth residuals (16 features). The 17th feature 
is the total slope of each surface patch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.2 Correcting for slopes and angular effect in backscatter data 

Standard corrections to account for slopes were applied. In the present paper the 

same procedure and equations as those described in Ref. 16 were used for applying 

the corrections.  

Standardisation of the data was applied to account for the angular effect on the 

backscatter strength, as in performing the K-means clustering method, the data from 

all angles had to be gathered and processed at the same time. In fact, also the 

statistical distributions of the backscatter data are angular dependent. To account for 

this, the data of each angle was first standardised according to Eq. (5.2), allowing 

simultaneously processing the data corresponding to angles from 20
o
-70

o
. This 

standardization concerns the first and second statistical moments. Standardization of 

the higher-order moments might also be applied.  

The effect of the standardisation procedure followed in this contribution can be 

seen in Fig. 5.4. The backscatter values versus angles for the complete dataset of 

Nijmegen have been plotted before standardisation (Fig. 5.4, left), and after 

standardisation (Fig. 5.4, right). Figure 5.4 (left) shows that there is an angular 

dependence of the backscatter values. This dependence is eliminated after 

standardisation, resulting in the mean value of the backscatter measurements for all 

angles to be zero and the standard deviation to be one (Figure 5.4).  The same was 

done for Sint Andries. 

 

  

# 

 

BS 

 

# 

 

Depth  residuals 

Mean (MAE) 1 9  

Std. dev. 2 10  

Skewness 3 11  

Kurtosis 4 12  

Median  5 13  

Mode 6 14  

Minimum 7 15  

Maximum 8 16  

 SLOPES 
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FIG. 5.4. Backscatter values versus grazing angles for Nijmegen before 
standardization (left), and after standardization (right). 

 

 

5.4.3 Determining the optimum set of features 

An important step before the classification is to determine those features among 

the 17 features presented in Table 5.2 that are representative of the river floor 

sediment. PCA was applied to the available features and the first 3 principal 

components that expressed most of the variability of the data (around 75%) were 

obtained using Eq. (5.6). The features were then correlated to these principal 

components.  

Figure 5.5 presents the results obtained following this strategy for Sint Andries 

(Fig. 5.5, left) and Nijmegen (Fig. 5.5, right) for all the 17 features. From these it can 

be seen that the most informative features include the mean, median, minimum and 

mode of the backscatter and the mean absolute error, standard deviation, minimum 

and maximum of the least-squares depth residuals (Table 5.3). This approach where 

the number of features is decreased, in this case from 17 to 8, is a relatively standard 

approach and a variation of it is described in Ref. 26. It, in general reduces the 

number of PCs needed and consequently eases the interpretation of the results. In fact, 

using only one feature from each of the two parameters, i.e. reducing the number of 

features to 2, is found to result in the same map as when using more features (see 

Sect. 5.5). The balance between the two different sources (backscatter and LS 

residuals of depth) of information about the sediments was considered to be the 

optimum for providing reliable and highly discriminative classification results. It has 

to be noted that the threshold value has been selected in both cases as the value that 

satisfies three conditions: 1) it is close to the mean value of the ratio of correlations, 

2) a sufficient number of features is included for the analysis (in this case 50%), and 

3) gives consistent results for both areas. 
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FIG. 5.5. Ratio of sum of absolute correlations for the first 3 principal components to 
sum of absolute correlations for the remaining components; (left) Sint Andries and 
(right) Nijmegen. 

 

 

 
TABLE 5.3. Final remaining features; four backscatter features and four LS depth 
residuals features 

 

# of feature Backscatter # of feature LS depth residuals 

1 Mean  5 Mean absolute error  

2 Median  6 Standard deviation  

3 Minimum  7 Minimum  

4 Mode  8 Maximum  

 

 

 

5.5 Results and discussions 

This section is divided into four subsections. The first subsection presents the 

classification results for the two areas using the PCA and K-means clustering applied 

to the four extracted features of the backscatter strength. The second subsection 

presents the classification results based on the LS depth residual features. The third 

subsection gives the results based on all of the features extracted using the given 

backscatter and bathymetry data (Table 5.3). Finally the last subsection presents a 

discussion of the results. 
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5.5.1 Classification based on backscatter strength 

The first investigation is to use the four backscatter features only and apply the 

PCA and K-means clustering to create classification maps of these two areas with 

three different sediment classes. We hence aim to directly compare the results of the 

Bayesian classification methodology
16

 and the K-means clustering method.  

The results in Sint Andries area indicate that the first and second principal 

components accounts for 96.4% and 2.4% (using Eq. (5.6)) of the variability of the 

data, respectively. These numbers are 96% and 2.5% for Nijmegen. Because the first 

PC carries most of the variability, it is an indication for the presence of high 

correlation among the four backscatter features. Therefore if one tries to obtain the 

classification map based on each of these features separately the results should be 

very similar.  

The first two PCs are fed to the K-means clustering method. As a first step the 

clustering is carried out for three clusters equal to the number of sediment types that 

could be discriminated with the BCM. Figure 5.6 shows the scatter plots of the first 

PC versus the second PC of the clustered data. We can see that the “cuts” between the 

clusters are more or less parallel to the second PC.  This explains that the first PC has 

the largest contribution to the clustering, and that the second PC has no significant 

effect; very similar results can thus be obtained using only the first PC. This supports 

our remarks made above about the significant correlation among the features.  

In general empirical classification approaches provide acoustic classes only. For 

the situation considered here however the relation between the PCs and a physical 

parameter, namely backscatter, can be established. Based on this relation, colours 

have been added to Fig. 5.6, indicating higher backscatter values for lower values of 

the first PC. Here, green corresponds to fine material (low BS), yellow to intermediate 

(intermediate BS), and red to coarse (higher BS). This is based on the fact that highest 

values of the backscatter strength are expected for coarsest grains whereas as the 

grains become finer as the backscatter strength decreases. 

The correspondent sediment distribution maps of Sint Andries and Nijmegen are 

shown in Fig. 5.7. In the Sint Andries area, the percentage of each class that resulted 

from the classification procedure is 28.9%, 42.2%, and 28.9% for the fine, 

intermediate, and coarse sediments, respectively. These numbers change to 12.8% 

43.4% 43.8% for Nijmegen. The percentages are different from those obtained using 

the Bayesian method in Refs. 16 and 17, which were 5% (fine), 40% (intermediate), 

and 55% (coarse) for Sint Andries, and 5% (fine), 30% (intermediate), and 

65%(coarse) for Nijmegen. An important difference between the two methods is the 

number of measurements over which averaging is performed. For the approach of 

Refs. 16 and 17 the number of beams which can be averaged is limited due to the 

angular dependence of the backscatter data. In Ref. 16 a significant overlap existed 

between the three classes. Here due to the standardisation, averaging was carried out 

over a much larger number of measurements, improving the discrimination 

performance. 
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FIG. 5.6. Scatter plot of PC1 versus PC2. The colours indicate different clusters 

resulting from four backscatter features ( 3k  ); (left) Sint Andries and (right) 

Nijmegen. 

 

 

FIG. 5.7. Classification map based on the first two PCs and K-means methods 
applied to only the backscatter features in which the number of clusters was set to

3k  ; (top) Sint Andries, and (bottom) Nijmegen. 
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As a second step, it is investigated whether it is possible to further increase the 

number of clusters. To this end, Fig. 5.8 presents the % reduction (left y-axis) and the 

average silhouette coefficient (right y-axis) against the number of clusters from 2 to 8 

for Sint Andries (Fig. 5.8, left) and Nijmegen (Fig. 5.8, right). It is observed that the 

maximum % reduction in distances and the largest average silhouette coefficient is 

achieved for the case of 2 clusters but the value of aSC is still high for 3 clusters (0.66 

and 0.63 for Sint Andries and Nijmegen respectively) showing that the separation of 

the 3 clusters is “almost strong” according to Table 5.1. When increasing the number 

of clusters to more than 3, the two parameters gradually drop, indicating that further 

discrimination will be accompanied with less good separated clusters.  Therefore, for 

the current paper the investigation stops at k=3. 

 

 

FIG. 5.8. Reduction percentage in the sum of distances (left y-axis, grey line) and 
average silhouette coefficient (right y-axis, black line) versus number of clusters 
(from 2 to 8) for (left) Sint Andries and (right) Nijmegen, when classifying using 
backscatter. 

 

 

5.5.2 Classification based on LS depth residuals 

The first step is to determine a suitable number of classes that could be obtained 

by using the four statistical features determined from the LS depth residuals. In Sint 

Andries, application of the PCA indicates that the first and second PCs account for 

99.7% and 0.2% of the variability of the data, respectively. These numbers are 99.4% 

and 0.38% for Nijmegen. Again it can be concluded that high correlation exists 

among the four features. Figure 5.9 shows the combined plot of the % reduction in the 

distances (left y-axis) and the average silhouette coefficient (right y-axis) against the 

number of clusters for Sint Andries (Fig. 5.9, left) and Nijmegen (Fig. 5.9, right). It is 

apparent that the case of 4 clusters appears to provide good separated clusters since 

both the values of the % reduction and the aSC are high (more than 0.7). Therefore, 

the suitable number of clusters was selected as 4. 
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FIG. 5.9. Reduction percentage in the sum of distances (left y-axis, grey line) and 
average silhouette coefficient (right y-axis, black line) versus number of clusters 
(from 2 to 8) for (left)  Sint Andries and (right) Nijmegen, when classifying using LS 
depth residuals. 

 

 

For the clustered data, again a “parallel cut” to the second PC appears, indicating 

that if one uses only the first PC very similar results can be obtained. The sediment 

distribution maps of Sint Andries and Nijmegen, are shown in Fig. 5.10. Here the first 

class (blue) has the lowest variations in depth residuals, indicating that the data points 

can best fit to the surface patch, and class 4 (red) has the highest variations in depth 

residuals.  

We would intuitively expect that coarser sediment gives the highest variations 

(e.g. highest standard deviations). This however seems not to be the case, because 

highest variations belong to the finer sediment. That is likely due to the fact that in 

finer sediment ‘ripples’ can be formed, while coarse sediments will usually form 

‘dunes’. Ripples, which are small triangular sand waves, usually are shorter than 

about 60 cm and not higher than about 60 mm. Ripples typically being about 1 order 

of magnitude shorter than dunes. Also dunes generally form at larger flow and 

sediment transport rates, while ripples often form on the upstream slopes of dunes at 

smaller rates of flow.  

The highest depth variations belong to the fixed layer, which is due to the riprap 

structure. It can therefore be clearly discriminated from the rest of the river. Moreover 

the northern part of the right-hand side of the fixed layer has been identified as a 

different class.  We hypothesize that this part has been covered by sediments due to 

the river flow and the resulting sediment transport processes. This leads to lower 

depth variations with respect to the original fixed layer but higher variations 

compared to the entire river.   
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FIG. 5.10. Classification map in terms of degree of depth variations based on the first 
two PCs and K-means methods applied to only the depth residual features in which 

the number of clusters was set to 4k  ; (top) Sint Andries, and (bottom) Nijmegen.   
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5.5.3 Classification using all features 

This subsection considers all eight features presented in Table 5.3. The objective 

of this subsection is: 1) to further investigate the nature of all final features considered 

using the PCA process, 2) to assess the potential of using all features in order to 

identify the fixed layer, 3) to evaluate the maximum number of classes resulting from 

all features, 4) to apply this number of classes to both areas and make the 

classification maps; and 5) to correlate the classification results with the grab samples 

taken. 

The four backscatter features are highly correlated to each other. This holds also 

for the four residuals features. There is however no significant correlation among the 

backscatter features and the depth residual features; the average absolute correlation 

among them for the two areas is around 0.25.  This indicates that these two sources of 

information are independent to a large extent, and hence can provide complementary 

tools for classification. Therefore any attempt for applying the PCA process on the 

combined features is expected to give the first two principal components as a 

combination of backscatter features and a combination of the residual features. This 

means that any pair of the features of the kind (BS, LS Residuals) can also be used for 

providing the classification map of the areas that is visually similar to what is 

presented in this subsection. 

Again the PCA is used to combine the information provided from all the features.  

In Sint Andries, the first, second, and third PCs account for 68.9%, 29.4%, and 1.2% 

of the variability of the data, respectively. These numbers change to 53.8%, 44.4%, 

and 0.9% for Nijmegen. Together the first two PCs account for about 98% of the 

variability and hence will be used for further analysis. The results indicate that the 

first PC is influenced slightly more by the depth residual features than the backscatter 

features. The opposite holds for the second PC. 

We set the number of classes to 4 based on the results of previous subsections. 

The first two PCs are fed to the K-means clustering. Figure 5.11 presents the 

separation of the clusters versus the first and second PCs. A clear distinction between 

the clusters can be seen for both areas. The sediment distribution maps of Sint 

Andries and Nijmegen with a fixed number of four classes is given in Fig. 5.12. These 

results are in fact similar to those with three classes using only the backscatter 

features (Fig. 5.7) plus the fixed layer. The first three classes are mainly due to the 

backscatter effect. The fourth class is the fixed layer, which can only be detected if 

the LS depth residual features are used (cf. Fig. 5.10 with four classes). This implies 

that the fixed layer has on average a similar backscatter property to the other parts of 

the river, but it definitely behaves differently on the LS depth residual features. 
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FIG. 5.11. Scatter plot of PC1 versus PC2 when K-means clustering is applied to the 

first two PCs obtained from all features of backscatter and depth residuals ( 4k  ); 

(left) Sint Andries and  (right) Nijmegen.  

 

FIG. 5.12. Classification maps based on the first two PCs and K-means clustering 

when all features from backscatter and depth residuals are used ( 4k  ); (top) Sint 

Andries and (bottom) Nijmegen.  
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The next step is to assess the possibility of further discrimination. The combined 

plot of the % reduction in the distances (left y-axis) and the average silhouette 

coefficient (right y-axis) against the number of clusters for Sint Andries (Fig. 5.13, 

left) and Nijmegen (Fig. 5.13, right) is given in Figure 5.13. Although there is a drop 

for 5 clusters, there is another peak for 6 clusters before the values start to gradually 

drop with increasing clusters number. Therefore the case of six clusters will be further 

investigated. 

 

FIG. 5.13. Reduction percentage in the sum of distances (left y-axis, grey line) and 
average silhouette coefficient (right y-axis, black line) versus number of clusters 
(from 2 to 8) for (left) Sint Andries and (right) Nijmegen, when classifying using both 
backscatter and LS depth residuals. 

 

Figure 5.14 presents the separation of the clusters versus the first and second PCs 

for 6 classes. A clear distinction between the clusters can be seen for both areas. The 

resulting sediment distribution maps of Sint Andries and Nijmegen are shown in Fig. 

5.15. These results are in fact similar to those with four classes using only the 

backscatter features plus two fixed layers given by the depth residual features. 

Therefore, the first four classes are mainly due to the backscatter effect, and the fifth 

and sixth classes are mainly due to the depth residual features. This can also be seen 

in the scatter plots of the first and second PCs in Fig. 5.14. Classes 1 to 4 correspond 

to the finest to coarsest sediments respectively (as will become clear later in this 

section where the classification results are compared with the samples). The fixed 

layer can also be identified here. In addition, for both rivers, on the northern part of 

the right-hand side of the fixed layer, a separate class can be identified. The degree of 

depth variations is lower compared with the original fixed layers and probably they 

(for both rivers) have been covered by sediments. This leads to lower depth variations 

with respect to the original fixed layer but higher variations compared to the entire 

river. 
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FIG. 5.14. Scatter plot of PC1 versus PC2 when K-means clustering is applied to the 

first two PCs obtained from all features of backscatter and depth residuals ( 6k  ); 

(left) Sint Andries and  (right) Nijmegen.  

 

FIG. 5.15. Classification maps based on the first two PCs and K-means clustering 

when all features from backscatter and depth residuals are used ( 6k  ); (top) Sint 

Andries and (bottom) Nijmegen.  
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To assess the potential of converting the acoustic classes to riverfloor sediment 

properties such as mean grain size the classification results are compared with the 

grab samples.  

To make the comparison easier we correlate the mean grain sizes to the acoustic 

classes 1, 2, 3, and 4; classes 5 and 6 were excluded because they belong to the fixed 

layer where no grab sample is available. Figure 5.16 shows the best linear fit, using 

the least squares method, between the classification results (classes) and the mean 

grain sizes expressed as 2logzM d   in phi units, where d is the diameter of grain in 

millimeters. A sample is located in an area where surface patches of various classes 

are present. Each sample took the average class number of the surface patches within 

a radius of 10 metres from it. The samples without any surface patches within this 

radius were not used for comparison. The corresponding estimated Pearson 

correlation coefficients are -0.84 and -0.71 for Sint Andries and Nijmegen, 

respectively. The same procedure was applied to the three first classes in Fig. 5.12. 

The correlation coefficients change to -0.84 and -0.75 for these two areas.  

 

 

 

FIG. 5.16. Mean grain size of individual grab samples versus classification results of 
Fig. 5.15, where class numbers 1, 2, 3, 4 belong to the finest, fine, coarse, and 
coarsest sediment; (left) Sint Andries, (right) Nijmegen.  

 

 

5.5.4 Discussion of results 

The main contribution of this chapter is that it shows that the combination of 

features can provide insights to the sediment distribution on a riverbed otherwise 

hidden when only one of the features (backscatter or depth residuals) is used. The 

fixed layer is clearly visible and clearly highlighted in all maps, when the LS depth 

residuals or a combination of the LS depth residuals and backscatter were used. This 

however, is not the case when considering backscatter only. The inadequacy of 

detecting the fixed layer by using only the backscatter strength has raised many 

assumptions.
31

 The most probable explanation is that the blank areas between the 

stones and also a thin top layer of the fixed layer is filled with sand, due to transport 

processes in the outer bend of the rivers, up to a point that this finer layer dominates 
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the discriminative performance of the sonar.  By combining backscatter and 

bathymetry information it was possible to preserve the main patterns of the 

classification with 3 classes provided by the backscatter but also adds one more class: 

the fixed layer. 

The depth residual features and the combination of all features gave rise to 

possible artifacts in the maps. Small areas, at the borders of the river have been 

classified with the same colour as the fixed layer (brown). This is hypothesized to be 

the effect of scour holes, resulting in high backscatter values and irregular 

bathymetry. Because the standard deviations of the depth residuals were larger in the 

finer sediment than the coarser sediment, we hypothesize that this is due to the 

riverbed ripples.  

The final features used were a combination of 4 backscatter and 4 residual 

features. Though the final results presented were based on all 8 features, the high 

correlation among the backscatter features as well as the high correlation among the 

depth residual features suggested that one can obtain very similar results if for 

example use is made of only the mean backscatter and the standard deviation of the 

depth residual.  

 

 

 

5.6 Summary and conclusions 

In this chapter, PCA and K-means clustering were used for the sediment 

classification of two parts with similar characteristics (groynes, fixed layer) of the 

river Waal, in the Netherlands. Three cases were investigated: 1) classification with 

only the backscatter features, 2) classification with only the LS depth residual 

features, and 3) classification with all backscatter and LS depth residual features. In 

the first case, the results were compared with previous work,
16,17

 where a Bayesian 

classification methodology was used for the classification process. The results 

between the two methods are similar: three classes seem to be appropriate for both 

methods for these particular areas. Deviations in the classification results can be 

attributed to the different averaging procedures. When averaging, a limited number of 

beams was used in classification in Ref. 16 due to the angular dependence, whereas in 

the present contribution, the averaging was performed over a much larger number of 

measurement, which was made possible due to the standardisation. For the second 

case, use was made of the LS depth residual features only. It was shown that these 

features can clearly discriminate between the fixed layer and the remainder of the 

area. The third case, with all features, could even further discriminate within the fixed 

layer and within the sediment classes; six classes in total were included. The 

conclusion here is that the fixed layer can be detected for both areas when use is made 

of the depth residual features. Using only the backscatter one cannot classify the fixed 

layer. The following aspects of the research can also be highlighted: 

1) The depth residual features could detect further than only the fixed layer. 

Other bottom structures such as the fixed layer covered by sediments and 

the riverbed ripples can also be identified.  

2) Due to the high correlation among the features, one can conclude that the 

combination of only one backscatter feature with only one depth residual 
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feature can provide results that are very similar to those obtained based on 

all the features. 

3) Significant correlation coefficient between the classification results and 

the mean grain sizes along with the significant slope of the best linear fit 

(Fig. 5.16) indicate high potential capability of the proposed method for 

riverbed sediment classification.  
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6 Potential of multi-beam echo-sounder 

backscatter strength and depth residuals 

as classifying parameters for very coarse 

riverbed sediments 

 

 

 

 

 

This chapter investigates the behavior of two important riverbed sediment 

classifiers, derived from multi-beam echo-sounder (MBES) data, in very coarse 

sediment environments. These are the backscatter strength and the depth residuals. 

Four MBES data sets collected at different parts of rivers in the Netherlands are 

employed. From previous research the backscatter strength was found to increase for 

increasing mean grain sizes. Depth residuals, however, are often found to have lower 

values for coarser sediments. Investigation of the four data sets indicates that these 

statements are valid only for moderately coarse sediment such as sand. For very 

coarse sediments (e.g. coarse gravel) the backscatter strength is found to decrease and 

the depth residuals increase for increasing mean grain sizes. Knowing the transition 

point, i.e. the mean grain size value at which the behavior of the features is reversed, 

is of high importance when using these features for sediment classification purposes 

as the transition in behavior can induce ambiguity in the classification. 
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6.1 Introduction 

The Netherlands form the delta for some of the major river systems of Europe, 

comprising the Rhine, the Meuse, the Scheldt and the Eems. These rivers are valuable 

parts of national and international ecological networks and are of high economic 

importance. A minimum depth should be guaranteed to keep the rivers navigable. 

This depth depends not only on water discharge but also on river bed topography that 

changes dynamically in response to discharge fluctuations. The river topography and 

its dynamics are affected by spatial variations in bed sediment composition. This 

spatial sediment distribution, therefore, needs to be known, in order to understand and 

eventually predict the dynamic behaviour of the river topography, thereby improving 

the efficiency of the efforts to ensure safe navigation. 

An attractive system to be used for obtaining information on both the river bed 

bathymetry and sediment composition is the multi-beam echo-sounder (MBES). This 

sonar emits short pulses of sound towards the river bed to determine the depth and the 

backscatter strength for a large number of closely-spaced beams. The MBES provides 

high spatial coverage of an area at moderate costs and within short time. The 

backscatter strengths are known to be indicative for the sediment types, and 

consequently have potential with regard to sediment classification (Refs. 1—8). 

Therefore, the MBES system appears as a good alternative to the conventional, 

expensive and time-consuming, approach of mapping the river bed composition by 

taking a large number of grab samples. A brief overview of the techniques used for 

determining sediment properties in shallow waters is given in Ref. 9.  

During the last few years, research considered the potential of the information 

contained in the bathymetry for classification (e.g. Refs. 10, 11), since only the 

backscatter cannot be used to predict all sediment characteristics (e.g. Ref. 12), and 

the use of this additional information might provide improved classification potential. 

An extensive review of the different classification approaches can be found in Ref. 

13. 

The work carried out in this contribution is a follow-up to two previous studies 

(Refs. 14, 15). In Ref. 15, the backscatter and depth residuals, which are the variations 

in bathymetry relative to a plane fitted through the MBES measured bathymetry, have 

been used as features for classifying the sediment distribution in two parts of the 

River Waal in the Netherland, viz. Sint Andries and Nijmegen. The finer sediments in 

the areas were identified from the backscatter strength. The very coarse sediments, 

like the fixed layer which consists of rip-rap deposited on top of the original 

sediments to prevent erosion, could be discriminated from the other sediments only by 

considering the depth residuals.  

This indicates, as also reported in many studies, that coarse sediments do not 

always correspond to high backscatter strengths.
16-19

 In Ref. 20 it is mentioned that 

the scattering regime can be sub-divided into a number of different zones with respect 

to the sediment mean grain size. For example, when the grain sizes are smaller (e.g. 

Ref. 5) or of the same order of magnitude as the acoustic wavelength, the 

backscattering strength is well understood and models like e.g. Ref. 21 predict the 

measurements often well. This is not the case when the grain size is much larger than 

the wavelength since in this case acoustic scattering is determined by facets rather 

than grains.
20

 

 To further investigate this, in the present chapter the behaviour of the backscatter 

strength as well as the depth residuals is assessed over four different datasets collected 
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in Dutch rivers using a 300 kHz MBES, with sediment types ranging from sandy 

gravel (0 ϕ) to very coarse gravel and pebbles (-6 ϕ). The mean grain sizes (Mz) of 

each area are derived from the grab samples, where Mz = -log2(d) in phi [ϕ] units and 

d the mean grain size in mm. The importance of the present Chapter is that it clearly 

illustrates the change in the behaviour of the backscatter and depth residuals for the 

mean grain size (MGS) range from 0 ϕ to -6 ϕ.  

The chapter is organized as follows. Section 6.2 gives information both about the 

surveyed areas and the survey settings.  Section 6.3 describes briefly the classification 

methodology using principal component analysis and K-means clustering and gives 

the classification results based on the backscatter, and classification results based on 

the depth residuals.  The transition point, i.e., the mean grain size at which the 

behaviour of MBES measured backscatter and depth residuals reverses is determined 

in Section 6.4. Finally, the main conclusions are summarized in Section 6.5. 

 

 

 

6.2 Description of surveys 

Four areas of two different rivers running through the Netherlands were surveyed 

during a period of four years (2007-2010). Three surveys involved parts of the Rhine 

river, and one part of the Meuse river. The positions of the rivers, superimposed on 

the map of the Netherlands, are shown in Fig. 6.1.  

 The Rhine river originates in the Alps and flows through Switzerland and 

Germany to the Netherlands. In the Netherlands, the Rhine is relatively straight with a 

bifurcation point (Pannerdensche Kop) that divides the flow into the Waal River to 

the west and the Pannerdensch Kanaal to the north. An MBES survey was performed 

approximately 1 km upstream of the bifurcation in 2008. This part, known as 

Bovenrijn, is relatively shallow with an average depth of 3.4 m. After the completion 

of the Bovenrijn survey, a part of the Waal close to the area of Sint Andries was 

surveyed with exactly the same MBES and MBES settings as those used in Bovenrijn. 

The average water depth at Sint Andries is about 3.8 m and its main characteristic 

is the presence of deep outer-bend pools and shallow inner-bend point bars (piles of 

sand and gravel on the inside of sinuous river bends), which form potential obstacles 

for two-way traffic. Mitigation measures usually involve dredging for removing the 

shoals, building groynes (artificial structure vertically positioned to the river bank in 

order to change the direction of the water flow) to avoid lateral erosion, and placing 

non-erodible layers (fixed layers) comprising of large stone blocks to lower the point 

bars. A larger part of Sint Andries had been previously surveyed in 2007.  

Finally a part of the Meuse river was surveyed in 2010. The river mainly runs 

close to the Belgian-Dutch border, where it continues its course inside the 

Netherlands from Maastricht northwards through Venlo closely along the border to 

Germany. It then turns towards the west, where it joins the Waal river and forms part 

of the extensive Rhine–Meuse–Scheldt delta. The surveyed part was shallow with 

mean depth 3.6 m. 

For assisting the interpretation of the classification results, grab samples were 

taken from all surveyed areas. Figure 6.2 presents the resulting mean grain sizes (Mz) 

of each area. As an illustration, Fig. 6.3 shows pictures of some of the grab samples. 

These figures clearly demonstrate the various ranges of sediment types that are 

http://en.wikipedia.org/wiki/Venlo
http://en.wikipedia.org/wiki/Germany
http://en.wikipedia.org/wiki/Waal_river
http://en.wikipedia.org/wiki/Rhine%E2%80%93Meuse%E2%80%93Scheldt_delta
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encountered in the surveyed areas. They include sediments ranging from coarse sand 

and fine gravel in Sint Andries, to fine gravel and coarse gravel in Bovenrijn, and 

finally coarse gravel and large stones in Meuse. We note that a number of grab 

samples in Meuse were so coarse that it was not possible for the laboratory to 

determine their mean grain sizes. 

The sonars used in all surveys were single-head Kongsberg EM3002 multi-beam 

echo-sounders, a sonar type appropriate for shallow water depths due to the formation 

of narrow beams (1.5
o
 x 1.5

o
). The MBESs used for Bovenrijn and the part of Sint 

Andries that was surveyed in 2008 were exactly the same. However, different MBESs 

were used in the 2007 survey of Sint Andries and the survey of the Meuse. The 

frequency of the sonars was 300 kHz. All beams were electronically stabilized for 

pitch and roll. The backscatter values used in the current work are the backscatter 

values that resulted of first applying a moving average over the time series of 

amplitude values and then selecting the maximum average level of each beam. For the 

details of this processing see Ref. 22. 

 

 

FIG. 6.1. Locations of the surveyed rivers in the Netherlands (modified map of Ref. 
23). 
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FIG. 6.2. Mean grain size of the grab samples taken from the surveyed areas. 
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FIG. 6.3. Pictures of grab samples taken from the surveyed areas. 
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6.3 Classification results 

The classification method employed in this contribution is that of Chapter 5 (Ref. 

15). In this section, only a short description of the method is presented. For detailed 

information the reader is referred to Chapter 5 (Ref. 15). Note that classification is 

done for each area separately. 

 

 

6.3.1 Classification methodology 

The pre-processing data procedure can be divided into five phases. In the first 

phase the sonar data is collected during the survey. In the second phase the data are 

grouped into small surface patches by averaging over a number of  pings and beams. 

The reason for this is twofold. Not only the noise is reduced, but also the number of 

measurements inside each surface patch is large enough (minimum ten, typically fifty) 

for the averaged backscatter values to follow the normal distribution.
14

 Since the 

variation in beam angle over the surface patches is small (approximately 2
o
), 

backscatter angular dependence can be neglected. In this phase 17 statistical features 

are calculated for each surface patch: eight  extracted from the backscatter strength 

(mean, standard deviation, skewness, kurtosis, median, mode, minimum and 

maximum), eight extracted from the least-squares (LS) depth residuals (mean absolute 

error, standard deviation, skewness, kurtosis, median, mode, minimum and 

maximum), and one is the total slope of the surface patch. The third phase is to use 

the slopes to account for standard data corrections.
14

 Only the data from the beam 

angle range ~ [-60
o
 to -20

o
] and ~ [20

o
 to 60

o
] is used because in this range the 

backscatter has the highest discriminating power; backscatter curves, i.e. backscatter 

strength as a function of angle, of different sediment types for angles close to nadir in 

general overlap.
21

 

The concept behind the use of the depth residuals is illustrated in Figure 6.4. The 

measured depth values are modelled by fitting a 2-D second order polynomial using 

the least squares principle. The actual measured depths (represented by dots) deviate, 

however, from the modelled surface. These deviations (vertical lines in Fig. 6.4) are 

called the depth residuals. They provide measures as to which degree the actual river 

bottom is smooth. The larger the residuals are, the rougher the bottom will be. Smooth 

bottoms have small residuals. The mean grain size of the sediments (as very coarse 

sediments induce a rougher surface) and bottom structures (e.g. riverbed ripples) are 

two contributing factors to the values of the residuals.  

Since the backscatter strengths not only vary as a function of sediment type, but 

also as a function of angle, the angular dependence needs to be corrected before 

combining the features of all surface patches into a single dataset. Whereas no angular 

variation in the depth residual values is expected, still inaccuracies in supporting 

positioning systems (e.g. attitude sensors) and misregistration between different 

sensor time series, can induce angular variations.
24

 Therefore, the angular correction 

as applied to the backscatter measurements is also applied to the depth residual 

values. In phase four, this issue is addressed by standardising the dataset using the 

method of Ref. 15.  
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FIG. 6.4. Depth residuals (lines) between the measured depth by the sonar (dots) 
and the fitted surface with second order polynomial (curve). 

 

In the last pre-processing phase a principal component analysis (PCA) is applied 

to the above-mentioned 17 features. The idea behind PCA is that it converts the set of 

features to a set of principal components, which are linear functions of the original 

features that are independent of each other. In general, it is found that a large 

percentage of the variations found in the original features are represented by a few 

principal components only. By investigating the correlation between the first three 

principal components and the original features it was found that for the MBES data 

considered, 8 out of the 17 features actually contain information. These are: a) the 

mean, median, mode and minimum of the backscatter data and b) the mean absolute 

error, standard deviation, minimum and maximum of the depth residuals. 

 For the subsequent analysis the backscatter and depth residuals are processed 

separately. Applying PCA to the four backscatter features showed that the first two 

principal components capture more than 95% of the data variation. Finally, the K-

means clustering method was used to partition the first two principal components into 

different subsets. The optimum number of classes was determined by checking the 

percentage in the reduction of the distances of the clusters when a new class is added 

and by the average silhouette coefficient.
15

 The same procedure, also indicating the 

first two principal components to capture more than 95% of the data variation, was 

applied to the four depth residual features. 
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6.3.2 Classification maps 

Using the methodology described in the Section 6.3.1 we obtain two different 

classification maps: one is based on the 4 backscatter features and the other is based 

on the 4 depth residuals features. It has to be noted that similar backscatter maps can 

be obtained using anyone of the backscatter features or the depth residual features 

separately.
15

 The maps are presented in Fig. 6.5. Each class represents a gradual 

transition from lower to higher backscatter and depth residual values without 

indicating the exact values. For the ease of comparison the backscatter and depth 

residuals maps for each area are presented in the same plot. In general these two 

independent parameters, namely backscatter and depth residuals, provide 

classification maps that have similar spatial patterns but sometimes with reversed 

values. For example, the fixed layer in Sint Andries has the largest depth residuals 

(classification based on depth residuals - red colour) but with lower backscatter values 

(classification based on backscatter - green colour).  

 

 

6.3.3 Correlation with grabs 

To investigate the potential of converting the acoustic classes to riverbed 

sediment properties such as the mean grain size, the classification results are 

correlated to the mean grain size values of the grab samples taken from the areas. 

Figure 6.6 shows linear fits, using the least squares method, between the classification 

results (classes) and the MGS in ϕ units, for the backscatter and the depth residuals. 

The correlation coefficients (ρ) between the classes (obtained from the backscatter 

and depth residuals) and the grab samples’ mean grain sizes and the corresponding  p-

values are shown in Table 6.1. A p-value of 6.4 x 10
-2

 (Meuse results) means that 

there is 6.4% probability that this correlation coefficient (0.50) occurs fully by 

chance. 

A few issues are to be noted: 1) the average of all classes found in a radius of 20 

m around each grab sample was used (this averaging will generally result in a 

fractional class), 2) no outlier removal was used during the fitting process, and 3) in 

the case of Meuse, there were extremely coarse grab samples for which no mean grain 

size values were assigned by the laboratory, so these grab samples were not used in 

the correlations. They however, belong to areas with the highest depth residual values. 

 

 

 



96 

 

 
FIG. 6.5. Classification maps of (top) Sint Andries, i.e. based on the 2007 survey, 
and part of Sint Andries 08, (middle) Bovenrijn, and (bottom) Meuse. 
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FIG. 6.6. Classes based on backscatter and depth residuals versus mean grain size 
of grab samples (dots). The solid line shows the relation obtained by applying a linear 
fit. As the class number increases from 1 to 3 (or 4) both the backscatter and depth 
residual values increase from lower to higher values. 
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TABLE 6.1. Correlation coefficients (ρ) and p-values between the classification 
results (based on backscatter and depth residual features) and mean grain size of 
grab samples  

 

Area 
Backscatter Depth Residuals 

ρ p ρ p 

Sint Andries -0.78 2.2 x 10
-6 0.66 2.2 x 10

-4 

part Sint Andries 08 -0.93 9.1 x 10
-6 0.88 1.2 x 10

-4 

Bovenrijn 0.55 1.6 x 10
-4 -0.64 5.6 x 10

-6 

Meuse 0.50 6.4 x 10
-2 -0.46 9.6 x 10

-2 

 

 

 

6.4 Discussion of results 

 

6.4.1 Observations on the behaviour of backscatter and depth 

residuals as a function of mean grain size 

Based on the results of the previous section, a number of observations can be 

made. 

1) The coupling between features and mean grain sizes is not unique 

     When considering the behavior of the backscatter as a function of sediment mean 

grain size, it is observed that for the finer grains as present in Sint Andries backscatter 

increases with increasing mean grain size, whereas it decreases with increasing mean 

grain size for the coarser sediments of Meuse and Bovenrijn. The opposite holds for 

the residuals of depth. The resulting ambiguity where similar values for the features 

can be found for different sediments, i.e., fine and coarse, can severely hamper an 

ordering of the classes, where, for example, it is assumed that low class values 

correspond to finer grains and high class values to coarser grains.  

 

2) The backscatter and depth residuals reflect different sediment physical properties 

     For all areas the behavior of the backscatter and depth residuals as a function of 

mean grain size is opposite. For example, in Sint Andries the backscatter strength 

increases (from class 1 to class 3) with increasing mean grain size, while the depth 

residual value decreases (from class 3 to class 1). For these fine grain sediments we 

theoretically expect (e.g. Ref. 21) that an increase in backscatter strength with 

increasing mean grain sizes is the result of the increase in bottom roughness, sediment 



99 

 

 

sound speed and density with mean grain size. The corresponding decrease in depth 

residuals indicates that these residuals are not reflecting the sediment roughness 

resulting from the grain sizes itself, but rather from the sediment topography. For the 

Meuse and Bovenrijn the situation is different. Here the increase in the bottom 

roughness for increasing mean grain sizes does no longer result in an increase of the 

backscatter values. The increased roughness is, however, contrary to Sint Andries, 

reflected in increased values for the depth residuals. 

 

3) Both features have classification performance 

     From the classification maps it is seen that both features have sediment 

classification potential. However, for the areas considered in this paper they contain 

only limited complementary information, since they reveal a similar distribution of 

classes. The only exception is the fixed layer in Sint Andries which can be 

discriminated from the other sediment types only through the use of the depth 

residuals. Apparently the backscatter values at the fixed layer are such that this very 

coarse grained area has backscatter values that correspond to the one but lowest class.  

 

 

6.4.2 A quantitative assessment of backscatter and depth residuals 

as a function of mean grain size 

From the above observations it can be concluded that, for the areas considered, 

both features contain information that allows for discriminating between different 

sediments. However, it is also noted that it is not straightforward, for example by 

using mean grain sizes as derived from grab samples, to order the classes with respect 

to sediment parameters such as mean grain size. Reason is that the classification 

results indicate that there is a value of the mean grain size, where a reversal in the 

relation between features and mean grain size occurs. Knowledge regarding this 

transition point is of high importance for sediment classification purposes. Taking 

measurements in an area where sediment mean grain sizes are below and above the 

transition point will result in an ambiguous classification, since fine and coarse 

sediments will be attributed to the same acoustic class. 

To determine this transition point, the classification results of all areas need to be 

combined. This is not possible in the current form of Figs. 6.5 and 6.6 because the 

classes shown do not represent a physical parameter. To this end, values of the 

features upon which the classification is based need to be used. For this the 

backscatter (mean over a surface patch) and the depth residuals (mean of the absolute 

depth residual values over a surface patch) are considered. In the following, for the 

sake of brevity, we will refer to these features as the backscatter and depth residuals.   

Since the backscatter measurements are acquired with different MBES systems 

for the different surveys, the backscatter measurements cannot be combined directly. 

Reason is that the MBES calibration is often imperfect, thus requiring an additional 

calibration. In principle, no calibration is required for the depth residual values since 

they are derived from the bathymetry measurements, which are independent of the 

sonar types and sonar settings.  
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6.4.2.1 Calibration of backscatter strengths  

The first step is to determine the backscatter curves (backscatter values versus 

beam angle) that correspond to each one of the classes of Fig. 6.5 for each area. The 

backscatter values used are the values before removing angular dependence and 

averaging (over pings and beams). The procedure is as follows. For each of the 

classes of Fig. 6.5, 50 random locations were selected on the classification maps. An 

example (Bovenrijn) is shown in Fig. 6.7. The backscatter curves of all 50 locations 

per class were then averaged for determining the mean backscatter curve per class. 

These curves are shown in Fig. 6.8 as solid lines for Bovenrijn and part of Sint 

Andries 08 and with dashed lines for Sint Andries and Meuse. The standard deviation 

of these 50 curves (as a function of angle) was also computed for later use (results are 

not shown in Fig 6.8).  

A closer inspection of the plots in Fig. 6.8 reveals that the backscatter curves 

show similar angular behaviour for the three classes in an area but that this behaviour 

differs significantly among different areas. This is due to the imperfect calibration of 

the MBES, which is different for different areas.  

To correct for the imperfect calibration, thereby allowing for combining the 

backscatter data as obtained from the different surveys, the Bovenrijn data set is 

considered as a reference. We then aim to make the other data sets consistent as if all 

data sets have been measured with the same sonar and sonar settings. This process is 

called the calibration procedure and it is based on the use of grab samples from the 

Bovenrijn that indicate a sediment mean grain size also found at either the Sint 

Andries (2007) area or the Meuse area. These “similar grab samples” are taken as the 

grab samples that have an absolute maximum difference of 0.1 ϕ in their mean grain 

size values. The grab samples of Sint Andries (2007) were compared to the grab 

samples of Bovenrijn and 14 cases of “similar grab samples” between the two areas 

were found. Moreover, 7 “similar grab samples” were identified for the Bovenrijn and 

Meuse. For each set of similar grab samples the backscatter curves for the two areas 

are determined from the backscatter curves measured close to the grab samples. The 

difference between the curves is then determined as a function of angle. Figure 6.9 

shows both (top) the mean grain sizes of the “similar grab samples” that were used for 

the two calibrations and (bottom) the calibration curves that result after averaging the 

difference curves for all “similar grab samples” per area. The backscatter curves 

(dashed lines) of Sint Andries and Meuse in Fig. 6.8 were corrected using the 

corresponding calibration curves of Fig. 6.9 and their corrected backscatter curves are 

shown in Fig. 6.8 with solid lines. The final appearance of the backscatter curves of 

Sint Andries and Meuse are now similar to that of the Boverijn area. Bovenrijn and 

part of Sint Andries 08 surveys were carried out with exactly the same setups (same 

sonar and same sonar settings); therefore they can be directly combined without any 

calibration. 
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FIG. 6.7. Locations from which 50 points (black dots) were selected per class in 
Bovenrijn. 

 

 

 

 

 

 
FIG. 6.8. Mean backscatter curves for the classes identified in the different areas.  
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FIG. 6.9. (top) Mean grain size values of “similar grab samples” used for calibrating 
backscatter values between (top left) Sint Andries and Bovenrijn and (top right) 
between Bovenrijn and Meuse. (bottom) Obtained calibration curves for (bottom left ) 
Sint Andries and (bottom right) Meuse.  

 

6.4.2.2 A closer inspection of the depth residual values 

For the depth residuals again for each of the classes 50 points are selected, but 

this time on the classification map based on the depth residuals (Fig. 6.5). The 

averages of the selected measurements are shown in Fig. 6.10. As for the backscatter 

values, the values for the depth residuals are given as a function of angle. The 

standard deviation of the 50 points (as a function of angle) was also computed for 

later use (results are not shown in Fig. 6.10). We observe that the depth residual 

values vary per angle. This, at first sight unexpected, result has also been reported in 

previous works (e.g. Ref 25) and is due to the bathymetric uncertainty of the sonar 

systems.
24,25

 We note that the classification is not hampered by this effect as the  

angular change in the depth residual values has been accounted for in the 

standardization procedure of Section 6.3.1. Still this behavior prevents straightforward 

combination of the depth residual values from the different areas.  

Careful inspection of Fig. 6.10 indicates angle ranges with relative constant 

values for the depth residuals. For the remaining steps we therefore restrict the 

analysis to these angle ranges ([-44
o
 -28

o
] and [28

o
 44

o
]) assuming that these range 

allows for combining the measurements from the different areas. 
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FIG. 6.10. Depth residual values for the classes of the depth residual classification 
maps of Fig. 6.5.  

 

6.4.2.3 Combining features from all surveys 

By applying the calibration, differences in the calibrated backscatter curves of 

Fig. 6.8 should be due mainly to variations in the sediment type. To assess this 

relation between backscatter curve and sediment type, the grab samples that belong 

almost exclusively to one class (of the backscatter classification maps of Fig. 6.5) are 

determined per area. The criterion selected is that at least 70% of the surface patches 

within a radius of 15 m around each grab sample must belong to one class only. The 

resulting grab samples are then grouped per class and the mean and standard deviation 

of the mean grain sizes associated to each class are computed. This makes 12 (4 areas 

x 3 classes) means and 12 standard deviations for the MGS values. Figure 6.11  shows 

for a number of angles the backscatter (from Fig. 6.8) and standard deviation as a 

function of this MGS, with the standard deviations in mean grain sizes as error bars in 

the horizontal axis. For Class 1 (green) in the Meuse area no grab samples were 

available that met the 70% criterion, resulting in eleven (11) data points (blue dots) in 

Fig. 6.11 out of the potential 12. The angles are selected in the range [-58
o
 -20

o
] and 

[20
o
 58

o
] where the backscatter curves of the different sediment types do not overlap. 

The same procedure was used for the depth residuals. First, the grab samples that 

belong almost exclusively (70% criterion) to one class (of the depth residuals 

classification maps of Fig. 6.5) are determined per area. Then the average depth 

residual value for each of the classes in all areas was determined from Fig. 6.10 for 

the angle range [-44
o
 -28

o
] and [28

o
 44

o
]. Also these results are depicted in Fig. 6.11, 
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now as red dots. For the depth residuals, only 9 data points (out of the potential 13) 

are shown due to the fact that some of the data points did not meet the 70% criterion.  

For example no grabs samples were taken from the fixed layer of Sint Andries, so the 

red points of Fig. 6.10 for both Sint Andries surveys are not shown in Fig. 6.11. 

The results confirm the existence of a transition point, i.e., a mean grain size 

value at which the slope of the relation between the features and mean grain size 

changes sign. To further assess this point, a 2
nd

 order polynomial is fitted to the data 

shown in Fig. 6.11. There are uncertainties (shown by errorbars) in both x (mean 

grain size) and y (backscatter or depth residuals) axes, which have been taken into 

account using the weighted total least squares method (see Ref. 26). The resulting fits 

are also presented in Fig. 6.11 as the solid lines.  

All fits show similar appearance.  As we move from 0 ϕ to -3.5 ϕ the backscatter 

values increase while the depth residual values decrease. Around the transition point 

at -3.5 ϕ the values are relatively constant. When moving to very coarse values up to  

-6 ϕ the backscatter values decrease while the depth residuals increase. Fig. 6.12 

shows estimates for the transition point (MGS at maximum values of backscatter 

fitting curves and minimum values of depth residuals fitting curves) for a large 

number of angles. For the majority of the cases the transition point is found at Mz 

values around  -3.5 ϕ (equal to 11 mm) with uncertainty  0.5 ϕ.  

The above phenomena can be explained as follows. For the current study on 

riverbed sediment classification, the depth residuals have larger variations in the finer 

sediment than the coarser sediment for the range [0 ϕ to -3.5 ϕ]. We hypothesize that 

this is due to the riverbed ripples that can be formed in finer sediment.
15

  In this zone 

(i.e. 0 ϕ to -3.5 ϕ) the backscatter increases with increasing mean grain size, as 

expected. For very coarse sediment when the mean grain size is larger than the 

acoustic wavelength of the sonar (i.e. λ= -2.3 ϕ, equal to 5 mm) the backscatter values 

decrease while the depth residuals increase with mean grain size. In this zone, we 

would intuitively expect that coarser sediments give the highest variations for the 

depth residuals. For the backscatter, however, the concept of grain size is no longer 

valid, because the acoustic scattering is mainly determined by facets rather than the 

mean grain sizes. When the wavelength is much smaller than the grain size the 

concept of grain size dependence for the backscatter breaks down. This is also in 

accordance with the observation of Ref. 20.  
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FIG. 6.11. Combined plots of (blue dots) backscatter and (red dots) depth residual 
values vs mean grain size at the grab samples for various beam angles. The fitted 
curves are shown as solid lines  for the backscatter (blue) and the depth residuals 
(red). 
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FIG. 6.12. Mean grain size values at maximum values of backscatter fitting curves 
and minimum values of depth residuals fitting curves of Fig. 6.11 for all studied 
angles. 

 

 

 

6.5 Conclusions 

In this chapter, the behavior of two extracted parameters from MBES 

measurements, namely the backscatter strength (directly measured) and the depth 

residuals (calculated from the depth measurements), was investigated for very coarse 

riverbed sediment in different Dutch rivers. The sediment types range from sandy 

gravel to very coarse gravel including large stones (fixed layer). The behavior was 

assessed in two different ways. First, a general assessment was given where the 

classification results from the backscatter and depth residual maps were correlated to 

the grab samples in the areas. This indicated that the backscatter and depth residuals 

show opposite behavior for variations in the mean grain size, but also that their 

behavior changes when moving from sandy to very coarse gravel sediments. To 

further assess this behavior, the classes obtained for all surveys were converted into 

backscatter and depth residual values. This required the backscatter values of the four 

different river-areas to be calibrated (to eliminate possible effects of imperfect MBES 

calibrations). For this use was made of grab samples with similar mean grain sizes. 

The transition point, i.e. the mean grain size at which the dependency of the features 

on mean grain size changes sign, was estimated to be around -3.5 ϕ (with uncertainty 
 0.5 ϕ), that is twice the acoustic wavelength of the MBES used. The results 
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indicated that the backscatter strengths increase and the depth residuals decrease when 

the mean grain size increases up to this point, around which the values of both 

parameters remain relatively constant. Their behavior is then reversed when moving 

to very coarse sediments. In this zone the backscatter strengths decrease and the depth 

residuals increase when the mean grain size increases. This knowledge is of high 

importance when using these features for sediment classification purposes as the 

transition in behavior can induce ambiguity in the classification. 
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7 Overview of methodologies for the 
acoustic classification of sediment 
distribution in Dutch rivers using 
multi-beam echo-sounder data3 

 

 

 

 

Maintaining the Dutch rivers on a sufficient depth is essential for safe navigation. 

Various measures such as coarse sediment suppletions are taken to ensure these 

depths. In order to assess the effectiveness of these measures, knowledge on riverbed 

sediment composition is of high importance. At current, using acoustic remote 

sensing techniques, together with grab samples, is an accepted approach for mapping 

the distribution of sediment types over an area. A range of methods exist for 

extracting the required information from the acoustic measurements. All methods 

have advantages and limitations. To assess these advantages and limitations, six parts 

of various Dutch rivers, spanning a large range of sediment types, were surveyed 

during a period of 4 years using multi-beam echo-sounder (MBES) sonars operating 

at 300 kHz. Physical grab samples were also taken from the rivers to assist the 

classification. The mean grain size of the grab samples of the rivers vary from 

relatively fine (~5 ϕ) to extremely coarse (<-6 ϕ). This chapter presents an overview 

of the different classification methods and their results that were applied to determine 

the distribution of sediment types on the river beds. 

                                                 
3
This chapter has been published as conference paper: D. Eleftherakis, M. Snellen, A.R. Amiri-

Simkooei, and D.G. Simons, “Overview of methodologies for the acoustic classification of sediment 

distribution in Dutch rivers using multi-beam echo-sounder data”, In Proceedings of 1
st
 International 

Conference and Exhibition on Underwater Acoustics, 23-28 June, Corfu, Greece, 1407-1414 (2013)   
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7.1 Introduction 

Knowledge about the composition of the sea- or river floor is essential to a large 

number of applications such as off-shore construction projects, marine geology, and 

cable route planning. Especially in the Netherlands monitoring changes in the river 

floor, both in bathymetry and composition, is extremely important since most of the 

rivers are used for navigation. At current, the use of acoustic remote sensing systems, 

such as multi-beam echo-sounders (MBES), in addition to collecting grab samples of 

the sediment, is an accepted approach.  

In general, sediment classification techniques using acoustic remote systems can be 

divided into phenomenological (or empirical), where information of features 

indicative of sediment types (e.g. backscatter strength, bathymetry) are combined and 

used for classification, and model-based (or physical), where the sediment type is 

determined by maximizing the match between modelled and measured signals. In the 

first approach ground truth is needed to convert the sediment classes to sediment 

types, whereas, in principle, no independent measurements are needed for the model 

based methods. 

Over the last years various sediment classification methods were developed and 

applied to classify the sediments present on Dutch river beds. Six different areas were 

surveyed using MBES. The sediment types were ranging from slightly gravelly sandy 

mud (5 ϕ) to very coarse gravel (-6 ϕ). The mean grain size was determined from grab 

samples taken from the areas. For the classification two riverbed sediment classifiers 

were employed, the backscatter strength and the depth residuals. Furthermore three 

different methodologies were used; two model based and one empirical. One of the 

model based methods, however, provides classes instead of sediment parameters. 

The present work gives an overview of the methods and classifiers used for 

sediment classification and assesses the applicability of each method and classifier 

over the sediment mean grain size encountered, i.e., from approximately 5 ϕ to -6 ϕ. 

 

 

 

7.2 Description of the surveys 

Six MBES surveys took place between 2007 and 2010 mainly involving parts of 

the Rhine river in the Netherlands. The Rhine river flows through Switzerland and 

Germany to the Netherlands. In the Netherlands, the Rhine River is relatively straight 

with a bifurcation that divides the flow into the Waal River to the west and the 

Pannerdensch Kanaal to the north. The first survey was performed in 2007 when a 

part of the Waal close to the area of Sint Andries was surveyed. It was followed by 

another survey in 2008 in Nijmegen (also part of Waal). The third MBES survey was 

performed approximately 1 km upstream of the bifurcation of Rhine, viz. the 

Bovenrijn, in 2008. Subsequently, a small part of Sint Andries was re-surveyed with 

exactly the same MBES and MBES settings as those used in Bovenrijn. In 2009 the 

Dordtse Kil river survey took place. Dordtse Kil is a tidal and very busy river that 

connects the Hoeksche Waard and the Hollandse Diep. Finally, the Meuse river was 

surveyed in 2010. It mainly runs close to the Belgian-Dutch border, but turns to the 

west at Maastricht from where it continues its course inside the Netherlands 

northwards through Venlo closely along the border to Germany. Figure 7.1 shows the 

http://en.wikipedia.org/wiki/Venlo
http://en.wikipedia.org/wiki/Germany
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position of the rivers in the Netherlands. Table 7.1 gives an overview of the specifics 

of the surveyed areas. 

For assisting the interpretation of the classification results physical samples were 

taken from all the surveyed areas. Figure 7.2 illustrates the mean grain sizes (Mz) as 

derived from the samples in phi [ϕ] units, with Mz = -log2(d) and d the mean grain 

size in mm.  

The sonars used in all surveys were single- and dual-head Kongsberg EM3002 

multi-beam echo-sounders, a sonar type appropriate for shallow water depths due to 

the formation of narrow beams with small physical dimensions. All beams were 

electronically stabilized for pitch and roll. The backscatter values used in all cases are 

the backscatter values resulting of first applying a moving average over the time 

series of amplitude values and then selecting the maximum average level of each 

beam. 

 
TABLE 7.1. Overview of the specifics of the surveyed areas. 

 

Area Area specifics Measurement specifics 

1. Sint Andries Fixed layer present; Mean 

water depth 3.8 m. 

Surveyed in 2007. Sonar: 

EM3002S @ 300 kHz. 

2. Nijmegen Fixed layer present; Mean 

water depth 4.2 m. 

Surveyed in 2008. Sonar: 

EM3002S @ 300 kHz. 

3. Bovenrijn Mean water depth 3.4 m. Surveyed in 2008. Sonar: 

EM3002S @ 300 kHz. 

4. Sint Andries 

      (part)      

Mean water depth 4.3 m. Surveyed in 2008; same sonar as 

in Bovenrijn. Sonar: EM3002S 

@ 300 kHz. 

5. Dordtse Kil Part of the river has 

irregular surface due to the 

presence of deep holes  

(~ 16 m deep).  

Mean water depth 8.6 m. 

Surveyed in 2009. Sonar: 

EM3002D @ 300 kHz. 

Additional measurements with 

device measuring sediments’ 

radioactivity were taken. 

6. Meuse Very coarse riverbed. 

Mean water depth 3.6 m. 

Surveyed in 2010. Sonar: 

EM3002S @ 300 kHz. 
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FIG. 7.1. Locations of the surveyed rivers in the Netherlands. 

 

 

FIG. 7.2. Mean grain sizes of the physical samples present in the areas. 
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7.3 Classifiers 

The research work investigated the behavior of two important riverbed sediment 

classifiers, one directly and one indirectly derived from multi-beam echo-sounder 

(MBES) measurements. These are the backscatter strength (direct), which is derived 

from the intensity of the received signal, and the depth residuals (indirect), which are 

the variations in bathymetry relative to a plane fitted through the MBES measured 

bathymetry. 

Backscatter: The scattering process of an acoustic wave when it comes in contact 

with unirregular interface (like the riverbed) is shown in Fig. 7.3. As the incident 

wave meets the sediment on the riverbed, a part of it (coherent part) will be reflected 

in the specular direction. The rest of the energy will be scattered in all directions, 

included back towards the source (backscattered signal). It is known that the 

backscatter strength is different for different sediment types.
2
 As an illustration, Fig. 

7.4 presents modelled backscatter strength curves for part of sediment types 

encountered in the Dutch rivers. 

Depth Residuals: The depth residuals concept is presented in Fig. 7.5. The 

measured depth values are modelled by fitting a 2-D second order polynomial using 

the least squares principle. The actual measured depth variations (represented by dots) 

deviate, however, from the modelled surface patch. These variations (lines in Fig. 7.5) 

are denoted as ‘depth residuals’. They provide measures as to which degree the actual 

river bottom can be represented by the second order polynomial. The larger the 

residuals are, the larger the variation around the fit, indicating roughness on spatial 

scales smaller than the surface patch. Smooth bottoms have small residuals as all 

bathymetric variations are well described by the fit. The mean grain size of the 

sediments (for very coarse sediments which induce a rougher surface) and the bottom 

structure (e.g. riverbed ripples) are two factors contributing to the values of the 

residuals. 

 

 

 

FIG. 7.3. Scattering process.1 
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FIG. 7.4. Mean backscatter curves vs grazing angle for mean grain sizes from -1 ϕ to 

6 ϕ. 

 

 

FIG. 7.5. Depth residuals (lines) between the measured depth by the sonar (dots) 

and the fitted surface with second order polynomial (curve). 
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7.4 Methods 

Three methods were used for processing the classifiers in order to get maps of the 

spatial distribution of sediments on the various riverbeds. The first two methods are 

model based, while the other is empirical. 

 

A. Model-based (APL) 

The method makes use of the model in Ref. 2. It uses the complete backscatter 

curve, i.e., the backscatter as a function of angle. The total backscatter strength is 

expressed as a combination of the interface roughness scattering and volume 

scattering. By searching for those sediment properties that result in an optimal 

agreement between modelled and measured backscatter curve, the sediments can be 

classified. In this case, the classification results consist of real sediment properties 

instead of acoustic classes. The model can be applied to mean grain sizes ranging 

from -1 ϕ to 9 ϕ. As, often, the MBES calibration for backscatter is imperfect, a 

calibration step is needed to eliminate MBES induced effects on the backscatter 

measurements. To this end, backscatter curves measured close to locations of the grab 

samples are considered. The model is run for mean grain size values as determined 

from the grabs, and values for all other model input parameters are derived from the 

empirical expressions relating them to the mean grain size. The average curve of the 

differences (between measured and modelled curves) for all grab samples is taken as 

the calibration curve. The calibration curve is then applied to correct all measured 

backscatter curves, allowing for determination of the three parameters, that is the 

mean grain size, the spectral strength and the volume scattering strength, over the 

entire area. The differential evolution method is used for finding those parameters that 

minimize the differences between modelled and measured curves. 

 

B. Bayesian Classification Methodology (BCM) 

The Bayesian Classification Methodology (BCM) was developed in Ref. 3 and 

carries out the classification per angle, which makes it insensitive to variations in 

sediment type along the swath. The method is based on the fact that the backscatter 

values are an average value of the sample amplitude values. Therefore, according to 

the central limit theorem –for independent random values– the averaged backscatter 

value follows a Gaussian distribution for a sufficiently large number of scatter pixels 

in the beam footprint. The method then fits a number of Gaussian probability density 

functions (PDFs) to the histogram of the backscatter strength data at a given angle 

until the chi-square distributed test-statistic of the residuals becomes less than a 

critical value. Based on the resulting Gaussian PDFs, the Bayes decision rule is 

applied to determine the regions of backscatter values corresponding to the acoustic 

classes. The number of Gaussians is then the number of classes, and the borders of the 

classes are the intersections of each Gaussian with its neighbour. For shallow river 

areas, the central limit theorem is violated since small beam footprints result in a 

limited number of scatter pixels per beam. To overcome this problem, the method was 

extended in Ref. 4. The Gaussianity of the distribution is now ensured by averaging 

the measured backscatter values over surface patches, consisting of a small number of 

beams in the across-track direction and a few pings in the along-track direction.  
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C. PCA and K-means clustering 

This empirical method was applied in Chapter 5 (Ref. 4). The backscatter and 

depth residual data are grouped into small surface patches and for each surface patch 

17 statistical features are calculated: eight (mean, standard deviation, skewness, 

kurtosis, median, mode, minimum and maximum) extracted from the backscatter 

strength, eight (mean average error, standard deviation, skewness, kurtosis, median, 

mode, minimum and maximum) extracted from the least-squares depth residuals, and 

one is the total slope of the surface patch. Since the backscatter strength is angle 

dependent it has to be corrected. This is addressed by standardising the dataset using 

the method in Ref. 5. After this correction the measurements from all angles can be 

combined. A principal component analysis (PCA) is then applied to the above-

mentioned 17 features. The idea behind PCA is that not only does it convert the set of 

features to a set of principal components but it can also be used to identify the most 

informative features among the original seventeen. By correlating the principle 

components to the original features it was found that for the MBES data considered, 8 

out of the 17 features contain most information. These are: a) the mean, median, mode 

and minimum of the backscatter data and b) the mean absolute error, standard 

deviation, minimum and maximum of the depth residuals. The final step is to apply 

the K-means clustering method to partition the first two principal components (which 

capture more than 95% of data variability) into different subsets. The optimum 

number of classes is determined by calculating both the percentage in the reduction of 

the clusters’ distance and the average silhouette coefficient when adding a new class. 

The K-means clustering can be applied: a) only to the backscatter features, b) only to 

the depth residual features, and c) to the combination of backscatter and depth 

residual features. 

 

 

 

7.5 Results 

In this section, the plot of Figure 7.2 is used as a guide to describe the 

classification results across the sediment mean grain size range present in the Dutch 

rivers. 

First, we consider the results of the area with the finest sediments that is the 

Dordtse Kil (Chapter 4),
6
 with mean grain sizes from ~ 5 ϕ το ~ 0 ϕ. The appropriate 

classifier was found to be the backscatter strength, since it can discriminate 

successfully the sediments types present on the riverbed. All three methods were used, 

that is the APL based, the Bayesian, and the K-means for the backscatter, all revealing 

a similar distribution of sediments. On the other hand, the depth residuals were found 

to be not a good classifier (see Appendix B), indicating that for these fine sediments, 

differences in mean grain sizes are not reflected in this feature.  

The areas considered next are Sint Andries, Nijmegen (Chapter 5),
5
 and the small 

part of Sint Andries that was resurveyed (Chapter 6).
7
 These areas are similar with 

sediment mean grain sizes in the range ~ [0 ϕ to -5 ϕ]. This range is outside the 

capability of the APL model, so the model based method was not used. The Bayesian 

method and the K-means for the backscatter were found to capture successfully the 

sediment distribution in the area, except for an artificial structure in the river; the 
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fixed layer was not identified from the backscatter. This was achieved by using the 

depth residuals. Moreover when the two classifiers were combined using PCA and K-

means clustering (Chapter 5),
5
 the resulting map captures successfully the complete 

sediment distribution in the areas, where three sediment classes were identified from 

the backscatter strength and the fixed layer was shown from the depth residuals. This 

clearly demonstrates the increased discrimination performance by combining the two 

classifiers. 

For all areas considered above the backscatter and the depth residuals showed 

consistent behaviour: with increasing mean grain size, the backscatter increases and 

the depth residuals decrease. When moving to the coarser areas of Bovenrijn and 

Meuse this behaviour reversed: the depth residuals increase and the backscatter 

decreases with increasing mean grain size (Chapter 6).
7
  

 

 

 

7.6 Conclusions 

The conclusions on the classification potential of the two classifiers as well as the 

applicability of each method for the range of sediment types encountered in the 

current work is presented in Figure 7.6. From 5 ϕ to -1 ϕ the appropriate classifier is 

the backscatter strength and all the three methods can be used. From -1 ϕ to ~ -3.5 ϕ 

the backscatter can still be used but the depth residuals start to have discriminative 

potential. As the sediments become coarser the backscatter can still discriminate but 

its behaviour becomes unpredictable so the depth residuals are the most appropriate 

classifier. This is due to the fact that the mean grain size becomes gradually larger 

than the acoustic wavelength of the MBES (= -2.3 ϕ for 300 kHz, indicated by λ in 

Fig. 7.6) so in this case acoustic scattering is determined by facets rather than grains. 

 

 

 

FIG. 7.6. Overview plot of appropriate classifier(s) and method(s) for the different 
mean grain size ranges. 
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8 Identifying changes in riverbed 
morphology and sediment 
composition using multi-beam echo-
sounder measurements4 

 

 

 

 

 

 

 

Riverbed topography and sediment composition respond to natural changes and 

human interventions. For the river Waal in the Netherlands, these changes affect 

safety against flooding, navigability and river habitat. In a part of the river Waal, 

close to St. Andries, multi-beam echo-sounder (MBES) measurements have been 

taken at two different moments in time, approximately one year apart. Two different 

MBES systems (still of the same type) were used for these measurements. For both 

datasets, grab samples are available. We present and discuss the bathymetry and 

sediment classification maps that have been produced after processing the two-way 

travel time and backscatter strength data. Only minor differences in riverbed 

morphology between the two different surveys are observed. Two approaches are 

used for assessing the presence of differences in sediment composition.  

                                                 
4
 This chapter is an updated version of the conference paper: D. Eleftherakis, E. Mosselman, A.R. 

Amiri-Simkooei, S. Giri, M. Snellen, and D.G. Simons. “Identifying changes in river bed morphology 

and bed sediment composition using multi-beam echo-sounder measurements”, In: Proc. of the 10th 

European conference on Underwater Acoustics, July 5-9, Istanbul, Turkey, 1365-1373 (2010). 
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8.1 Introduction 

Insight in the instantaneous river morphology and its dynamic behaviour is 

important for understanding how river channels are changing over time. This is 

especially true for countries like the Netherlands, where a great number of rivers are 

used for navigation. Therefore there is an imperative need for monitoring the 

morphological changes occurring in these rivers. Multi-beam echo-sounder (MBES) 

systems are a very promising solution to this requirement due to their high spatial 

coverage at limited cost. These systems have already been successfully used to 

measure the bathymetry of the rivers but moreover their backscatter data can be 

employed to obtain information about the physical properties of the riverbed.  

It has been proven that both backscatter strength and bathymetric features have the 

potential to characterize the sediment types present on river/sea beds.
1,7

 A special 

research case is when an area is revisited in order to assess changes in the morphology 

but also in the sediment distribution that occurred in the time interval between the 

surveys. Since the MBES provides high resolution bathymetry the first task is 

relatively straightforward and differences in morphology can be accurately 

determined (e.g. see Ref. 8). Using the MBES backscatter data for assessing 

differences in sediment distribution is in general more cumbersome. This is especially 

the case when the classification method discriminates between the different sediment 

types as acoustic classes since relating classes with sediment types pre-requires very 

good knowledge of the sediments present in an area. The uncertainty is reduced only 

if a large number of samples, or/and photographs,
9
 and/or divers are used to assist the 

interpretation. 

In this chapter the riverbed morphology and sediment distribution differences of a 

part of the Waal river (close to Sint Andries) surveyed in October 2007 and re-

surveyed in November 2008 are assessed. The classification maps were constructed 

using the method described in Chapter 5 (Ref. 10). A combination of backscatter 

strength and depth residuals is used to identify the different sediment classes, 

including the fixed layer. Principal components analysis (PCA) is used for data 

reduction and the common K-means method for clustering the data. The importance 

of the present chapter is twofold: a) it highlights the difficulties of accurately 

determining changes in the sediment distribution of riverbeds when assigning 

sediment parameters to acoustic classes based on limited number of grab samples, and 

b) it provides an alternative approach for assessing the differences with more 

confidence.  

The chapter is organized as follows. Section 8.2 gives information about the 

surveyed areas and the details of the surveys. In Section 8.3 the changes in the 

riverbed morphology are determined. Section 8.4 briefly describes the classification 

methodology (PCA and K-means clustering) used and presents the resulting 

classification maps. The different approaches for assessing the differences in sediment 

distribution between 2007 and 2008 are also given in Section 8.4. Finally, the main 

conclusions are summarized in Section 8.5. 
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8.2 A description of the surveyed area 

The surveyed area is a part of the Waal River, close to Sint Andries, the 

Netherlands. This river carries 65% of the total flow of the Rhine and flows through 

the central Netherlands for about 80 km before joining a former branch of the Meuse 

near Woudrichem to form the Boven Merwede. It is the main transport artery between 

major urban and industrial areas of Germany and the port of Rotterdam. The river has 

a right bend at Sint Andries (km 920-930, km 0 refers to a bridge in Constance, 

Switzerland
11

).  A fixed layer was constructed here in the period of January 1997 to 

February 1999 to improve the navigability of the river. The fixed layer has a width of 

140 m and a length of 3100 m. Its 0.8 m thick top layer consists of stones with sizes 

from 70 to 260 mm. The surveyed area involved the part of St. Andries from km 927 

to km 930, as shown in Fig. 8.1. The fixed layer is indicated with the blue rectangle. 

 

 

 
FIG. 8.1. Aerial photo of the surveyed part of the Waal river close to Sint Andries. 
The fixed layer is indicated with the blue rectangle. 

 

The second survey took place on 10 and 12 November 2008, when the part 

between km 927 to 930 was resurveyed. The first survey took place in October 2007 

when the whole area of the Waal river, close to St. Andries (km 920 – 930), was 

surveyed. The part corresponding to the second survey was surveyed in 22 October 

2007.  For both measurements a Kongsberg EM3002 single-head multi-beam echo-

sounder was used. All beams were electronically stabilized for pitch and roll. The 

operation frequency was 300 KHz and the maximum number of beams (of equidistant 

pattern) per ping was 254. The difference between the two surveys was on the 

maximum angular coverage. It was 130
o
 (from -65

o
 to 65

o
) in 2007, and 120

o
 (from -

60
o
 to 60

o
) in 2008.  



124 

For assisting the interpretation of the classification results, physical grab samples 

were taken from the surveyed areas. The number of grab samples in 2007 was limited 

to only five. Figure 8.2 shows the histogram of mean grain sizes for 2007 and 2008 as 

derived from the grab samples in phi [ϕ] units. The location of the grab samples on 

the map of the area is presented in Fig. 8.3. It can be seen that the grab samples were 

taken in different locations in 2007 and 2008. Furthermore, the grab samples in 2008 

are per three located very close to each other with three of them located inside the 

scour hole behind the fixed layer (see Figure 8.4). 

 

 

 

FIG. 8.2. Histogram of grab samples mean grain sizes in 2007 (green) and 2008 
(blue).  
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FIG. 8.3. Location of the grab samples taken in 2007 (stars) and 2008 (squares) on 
the map of the area. Colours indicate the grab samples’ mean grain size. 
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8.3 Determining changes in riverbed morphology  

The two bathymetry maps derived from the MBES measurements are shown in 

Figure 8.4. The resolution of the maps is 20 cm x 20 cm. A first comparison might 

suggest that the area was different in 2008. However, this conclusion would be 

unfounded without checking the water level during the two periods, since the sonar 

provides depth values with respect to the water surface rather than elevation values 

with respect to a predefined datum. 

 

 

FIG. 8.4.  Bathymetry maps in 2007 (07) and 2008 (08-original), where depths are 
relative to the water surface. The map indicated by “08-corrected” provides the 
depths of the 2008 survey relative to the 2007 water level. 

We used water level data from the Tiel gauge station at a distance of about 12 km 

upstream. The water level (averaged value) was 330 cm NAP on 22 October 2007 and 

413 cm on 10 and 12 November 2008. Subsequently, we used the calibrated 1D 

Sobek model of the Rhine branches to deduce the corresponding water levels at St. 

Andries. The Sobek runs were made for the flow conditions observed during the two 

surveys. A constant discharge at the upstream boundary and tidal-averaged water 

levels at downstream boundaries were imposed (based on observation data).  The 

water level for the two years is presented in Fig. 8.5. 
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FIG. 8.5. Water level of lower Waal for 2007 and 2008. 

 

From Fig. 8.5 it was calculated that the water level at Tiel was 55 cm higher in 

2008, while the water level at St. Andries was 52 cm higher in 2008. By extrapolating 

the information for the water levels from the gauge station at Tiel and the Sobek 

model (at Tiel and at St. Andries) it was calculated that the water level at St. Andries 

was higher in 2008 by approximately 78 cm.  

Therefore, for proper comparison of the bathymetry maps of 2007 and 2008, we 

subtract 78 cm from the depth measurements of 2008 and the “corrected” map is also 

presented in Fig. 8.4. The new comparison reveals that the morphology of the 

riverbed in 2007 and 2008 is very similar, with small differences that can be ascribed 

to moving bedforms on the riverbed.  
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8.4 Determining changes in the sediment distribution  

The classification methodology applied is the method of Chapter 5 (Ref. 10) 

where the whole area of Sint Andries was analysed. In the current chapter only part of 

the Sint Andries data, acquired in 2007, and all data of 2008 is analysed.  

The data was first grouped in small surface patches of approximately 0.5 m x 0.5 

m by averaging 7 pings by 8 beams together in order to reduce the noise in the data. 

For each surface patch 8 statistical features (mean, standard deviation, skewness, 

kurtosis, median, mode, minimum and maximum) were calculated for the backscatter 

strength and 8 (mean absolute error, standard deviation, skewness, kurtosis, median, 

mode, minimum and maximum) for the depth residuals. Also the slope of the patches 

is used as a feature, resulting in 17 features in total. Since the backscatter is angle 

dependent and the range of values of the features is different it was necessary to 

standardise the data according to the method as described in Chapter 5. 

For all features their potential in discriminating between the different sediments 

was assessed. Hereto a principal component analysis was applied on the standardised 

features. Then each one of the features was correlated to the first three principal 

components that account for 75% of the data variability. From this correlation 4 

backscatter and 4 depth residual features were identified as the most informative ones. 

These are: a) the mean, median, mode and minimum of the backscatter data and b) the 

mean absolute error, standard deviation, minimum and maximum of the depth 

residuals. 

 The top frame of Fig. 8.6 shows the maps based only on the 4 backscatter 

features. The bottom frame shows the classification maps resulting after combining 

the 4 backscatter with the 4 depth residual features. In both cases the first two 

principal components were used and the different classes (sediment types) were 

determined using the K-means clustering method. The optimum number of classes 

was determined by checking the percentage in the reduction of the distances of the 

clusters, and the average silhouette coefficient. (For the classification based on depth 

residuals only two classes are found in the area outside the fixed layer. This lower 

discrimination performance is expected from Chapter 6 for this area with intermediate 

mean grain sizes. Therefore these results are not considered further in this chapter). 

From Fig. 8.6 it can be seen that the maps derived from backscatter and from 

combining backscatter and depth residuals are almost identical except the region 

where the fixed layer is located. The fixed layer in the combined plots results from the 

contribution of the depth residual features on the classification. 

By comparing the classification maps for 2007 with those for 2008 it seems that 

the sediments in the area remained almost unchanged. This conclusion can be 

misleading since the maps are referring to classes which do not constitute common 

ground for comparison. For example class 1 in 2007 can belong to a different 

sediment type than class 1 in 2008. Therefore, classification maps that present classes 

cannot be compared directly. In the following two sub-sections two approaches are 

used for overcoming this problem.  
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FIG. 8.6. Classification maps for Sint Andries 07 & 08 from only the backscatter 
features (top), and the combination of backscatter and depth residual features 
(bottom). 
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8.4.1 Changes based on grab samples 

The first approach is to assign mean grain size values to each of the classes using 

the availability of the grab samples. This can be achieved by correlating the classes 

derived from the MBES classification to mean grain sizes from the grab samples and 

then determine the best linear fit using the least squares method. 

A sample is usually located in an area where surface patches of various classes 

are present. The approach taken is to assign to each grab sample the average class of 

all surface patches located within a radius of 50 metres from it. The results for 2007 

and 2008 are presented in Figure 8.7. The estimated Pearson correlation coefficients 

are -0.66 and -0.94 for 2007 and 2008, respectively.  

The relations found between classes and mean grain sizes are as follows: 

 

1.0405

0.2990

y
x


  in (2007) (8.1) 

1.2440

0.6844

y
x


  in (2008) (8.2) 

with x the mean grain size in ϕ units, and y the class. 

By applying these relations, the mean grain size values that correspond to classes 

one to three of Figure 8.6 are presented in Table 8.1.  By comparing the values it can 

be concluded that the river in 2008 has substantially finer sediments in 2008 

compared to 2007. The difference is so large that it could be explained only if an 

extraordinary event had happened in 2008, e.g. a flood. However, from investigating 

the river flow conditions no indication for such an event is found. It is concluded that 

the large difference is likely to result from the limited number of samples used for the 

correlations, inducing large uncertainties in the coefficients of Equations (8.1) and 

(8.2).  
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FIG. 8.7. Mean grain size of individual samples versus classification results for (left) 
2007 and (right) 2008. 

 

 

 

 

TABLE 8.1. Mean grain for the sediment classes of 2007 and 2008 as derived from 
Equation (8.1) and (8.2) respectively. 

 

 

Sint Andries 2007 

(phi) 

Sint Andries 2008 

(phi) 

Class 1  0.13 0.35 

Class 2  -3.20 -1.10 

Class 3  -6.55 -2.56 
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8.4.2 Changes based on backscatter values 

As a second approach the potential differences between the sediments present in 

the two subsequent years are assessed without making use of the grab samples. 

Instead, differences are assessed by looking at the measured backscatter values, since 

these values are known to be indicative for the sediment types. The approach taken is 

to determine for each of the classes the backscatter curve i.e. backscatter strength as a 

function of angle. 

These are determined as follows: 50 locations were selected for each of the 

classes on the classification maps of Figure 8.6. For each of the 50 locations, the 

backscatter strength per angle i.e. the backscatter curve was determined. These 50 

curves per class were then averaged. The procedure is the same as the calibration 

procedure of Chapter 6.  

By comparing the backscatter curves for 2007 (Fig. 8.8a) and 2008 (Fig. 8.8b) it 

can be seen that not only there is a difference in the backscatter values between 2007 

and 2008 but also the shape of the curves is different.  This is due to the imperfect 

calibration of the MBES used for the surveys with respect to the backscatter strength. 

To counteract this, the measured backscatter strength needs to be calibrated. For this, 

use is made of the backscatter measurements taken on the fixed layer, where it is 

assumed that no changes in sediment type have taken place from 2007 to 2008. The 

backscatter curves on the fixed layer for 2007 and 2008 are shown in Fig. 8.8c. Then 

their difference is calculated and it is used as a calibration curve to shift the 2007 

backscatter values, allowing for comparing them with the values in 2008. The 

calibration curve (magenta) is presented in Fig. 8.8d, where also the calibration curve 

(black) of Chapter 6 is plotted for comparison. The calibration curve of Chapter 6 

resulted from a completely different approach as it is based on the use of “similar grab 

samples” between Sint Andries and Bovenrijn. The two calibration curves are very 

close, giving confidence in their applicability. 

Figure 8.8e presents the calibrated backscatter curves of 2007 and the original 

backscatter curves of 2008. We conclude that the classes of 2007 and 2008 

correspond to similar sediments, since the calibrated backscatter curves of 2007 and 

the original backscatter curves of 2008 are very close. Therefore, the classification 

maps in Fig. 8.6 of 2007 and 2008 can be directly compared. It is apparent that the 

maps are very similar so the area remained almost unchanged except small changes 

that can be ascribed to moving bedforms. 
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FIG. 8.8. (a) Mean backscatter curves of the three classes identified in Sint Andries 
in 2007, (b) Mean backscatter curves of the three classes identified in Sint Andries in 
2008, (c) Mean backscatter curves on the fixed layer of the area in 2007 and 2008, 
(d) Calibration curves from (black) Chapter 6 and (magenta) present procedure, (e) 
Combined plot of the mean backscatter curves in (solid line) 2007 and (dashed line) 
2008 after calibration. 

 

 

 

8.5 Conclusions 

In this chapter the differences in a river that was surveyed twice, using MBES 

systems were evaluated both regarding the riverbed morphology and the sediment 

distribution. The time interval between the surveys was one year.  

Regarding the riverbed morphology the critical point was to correct the 

bathymetry for the different water levels in the two periods since MBES systems 

provide depth measurements with respect to the water level. The final bathymetry 

maps after the correction revealed minor morphological differences between 2007 and 

2008.  

The classification method of Chapter 5 was used for classifying sediments in the 

area based on: a) the backscatter strength, and b) the combination of backscatter and 

depth residuals. The method provides acoustic classes, hampering a direct comparison 

between the sediments present in the area in 2007 and 2008, respectively. To 

overcome this problem two approaches were used. The first was to correlate the 

classification results with the mean grain size of the grab samples taken during the 

surveys and use the resulting relations to convert classes to mean grain size values. 
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This approach indicated that the area has become significantly finer in 2008. Since the 

flow conditions both in 2007 and 2008 were similar and no extreme events had 

happened, the difference in sediment mean grain sizes between the two years is 

attributed to the limited number of available grab samples.  The second approach was 

to determine the backscatter curves for the classes 1 to 3. For this, the backscatter 

values were calibrated based on the fixture present in the area that is expected to 

remain unchanged with time, the fixed layer. The results of this approach showed that 

the area in 2007 and 2008 remained almost unchanged.  
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9 Conclusions and outlook 

 

 

The Dutch rivers are heavily used for navigation. For safe navigation a minimum 

river depth has to be ensured by taking measures such as suppletions of coarse 

sediment. For monitoring the effectiveness of these measures, regular measuring 

campaigns are carried out. Multi-beam echo-sounder (MBES) systems are used for 

determining the bathymetry in the areas. Grab samples of the sediments are taken to 

assess the spatial distribution of sediment types. The efficiency of these monitoring 

surveys can be highly increased if, in addition to bathymetry, the MBES system can 

also be used for classifying the river bed sediments.  In this thesis methods have been 

developed that allow for classifying the river sediments using the MBES 

measurements. The methods employ the sediment backscatter strength, derived from 

the measured echo intensities, supported by the MBES bathymetric measurements, i.e. 

the depth residuals. The depth residuals are the variations in bathymetry relative to a 

plane fitted through the MBES measured bathymetry and are a measure for the 

sediment roughness. To assess the advantages and limitations of the classifiers, i.e. 

backscatter and depth residuals, six parts of various Dutch rivers, spanning a large 

range of sediment types, were surveyed during a period of 4 years, using multi-beam 

echo-sounder (MBES) sonars operating at 300 kHz. Physical grab samples were also 

taken from the rivers to assist the classification. This work has demonstrated the 

applicability of acoustic remote sensing methods using MBES measurements for 

classifying Dutch rivers’ sediments. It has identified the strengths and limitations of 

the various acoustic classification methods, given the characteristics of the area of 

interest. Employing this knowledge allows for selecting for each area the optimal 

acoustic classification method. In the remainder of this chapter conclusions are 

presented for each of the chapters separately, ending with recommendations for future 

work. 
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9.1 Conclusions 

 

9.1.1 Conclusions from Chapter 4, the finer sediments 

The measurements considered in this chapter were taken in the Dordtse Kil area, 

which has the finer sediments (see Fig. 9.1). The fine grained sediments allow for 

applying a model-based approach where the measured backscattered curves (i.e. 

backscatter strength vs. angle) are compared with modelled backscatter curves. Model 

input parameters that provide a maximum match between modelled and measured 

curves are considered as the true sediment parameters. The other MBES classification 

method (called Bayesian) is also model based and also makes use of the measured 

backscatter strengths. However, here the backscatter strengths are considered per 

MBES beam and are modelled as a Gaussian distributed random variable per 

sediment type. The MBES measurements were supported not only with grab samples 

but also with measurements taken from the Medusa system. The Medusa system 

measures sediment radioactivity, known to be indicative for sediment properties. 

 

 
 

FIG 9.1: Range of mean grain size values at Dordtse Kil river (black line). The grey 
line indicates the full range of sediment mean grain sizes encountered during all 
surveys considered in this thesis. 

 

The main conclusions are: 

- The Bayesian method provides acoustic classes, and its implementation is 

relatively straightforward. On the other hand grab samples are necessary to 

assign sediment parameters to the acoustic classes. The limit of this 

conversion is demonstrated by comparing the Bayesian classes with the model 

based results, i.e., mean grain size ( zM ), spectral strength ( 2w ) and volume 

scattering parameter ( 2 ). It is shown that the mean grain size is the most 

important parameter that can be attributed to the different classes. However, 

also the other parameters 2w  and 2  affect the acoustic classes. This indicates 

the limitations of using only grab sample-based mean grain size for assigning 

sediment parameters to the acoustic classes. 

-  Implementation of the model-based method requires calibration of the 

measured backscatter curves, i.e. accounting for the imperfect calibration of 

the MBES with respect to backscatter strength. The advantage of this method 

is that the results are physical parameters of the sediments.  An overestimation 

of Mz values is found, indicating imperfect calibration of the backscatter 
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values due to the limited number of grab samples. In addition, imperfect 

modelling of the backscatter curve can play a role. Current understanding of 

the backscattering process at sediments with grain sizes > -1 ϕ is well 

developed, reflected in well validated models.  

- The Medusa system provided estimates of the mean grain size based on the 

concentrations of 
40

K and estimates for the silt content based on 
40

K and 
232

Th. Furthermore, concentrations of 
137

Cs were used as a predictor for the 

fraction of organic matter. The noise levels measured with a hydrophone 

attached to the Medusa system and towed on the riverbed provided a measure 

for the roughness of sediments. The Medusa system and the MBES are partly 

complementary where Medusa can quantify the presence of organic matter 

based on the 
137

Cs measurements. 

 

 

 

9.1.2 Conclusions from Chapter 5, intermediate grain size sediments 

For the Sint Andries and Nijmegen areas, which have intermediate sediments (see 

Fig. 9.2), a combination of backscatter and depth residuals features was used for 

discriminating between the different sediments.  

 

 
 

FIG 9.2: Range of mean grain size values at Sint Andries and Nijmegen (black line). 
The grey line indicates the full range of sediment mean grain sizes encountered 
during all surveys considered in this thesis. 

 

The main conclusions are: 

- The Bayesian method can be applied and is capable of discriminating between 

three different sediment types.  

- The other method used for classifying the sediments in the area bases the 

classification both on measurements of the backscatter strength, but also on 

the depth residuals.  The combination of backscatter strength and depth 

residuals is achieved by using principal component analysis (PCA) to remove 

feature inter-dependency and the K-means clustering method to assign feature 

ranges to the different sediment types. 

- Only when the two classifiers were combined (backscatter and depth 

residuals) using PCA and K-means clustering the resulting map captures 

successfully the complete sediment distribution in the areas. That is the three 

sediment types plus the fixed layer, a man-made structure consisting of large 
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stones. This clearly demonstrates the increased discrimination performance by 

combining the two classifiers. 

- The three sediment classes (finer material) were identified from the 

backscatter strength, whereas the fixed layer (coarser material) was identified 

from the depth residuals. 

 

 

9.1.3 Conclusions from Chapter 6, the coarsest sediments  

For the Bovenrijn and Meuse areas, which have coarse and very coarse sediments 

(see Fig. 9.3), the backscatter and depth residuals features were used separately for 

classifying the sediments in the areas. 

 

 

 

 
 

FIG 9.3: Range of mean grain size values at Bovenrijn and Meuse (black line). The 
grey line indicates the full range of sediment mean grain sizes encountered during all 
surveys considered in this thesis. 

 

The main conclusions are: 

- Both the backscatter strength and the depth residuals have the potential to 

discriminate the different sediment types in these very coarse areas. 

- For the areas with finer and intermediate sediments, the backscatter and the 

depth residuals showed consistent behaviour: with increasing mean grain size, 

the backscatter strength increases and the depth residuals decrease. When 

moving to the coarser areas this behaviour reversed. The depth residuals 

increase and the backscatter strength decreases with increasing mean grain 

size.  

 

The classification results from Sint Andries, part of Sint Andries 08, Bovenrijn, 

and Meuse were combined to determine the value of the mean grain size point at 

which the behaviour of the backscatter strength and depth residuals start to change. 

Since different MBES systems, although of the same type, were used for the surveys a 

calibration step is needed to account for the imperfect MBES calibration. The 

classification results based on the backscatter features were combined after calibrating 

the backscatter values of the areas.  
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The main conclusion is: 

- The transition point is determined to be approximately -3.5 ϕ. There, the mean 

grain size becomes gradually larger than the acoustic wavelength of the sonar 

(λ=5 mm, corresponding to -2.3 ϕ for 300 kHz). In this case acoustic 

scattering is determined by facets rather than grains.  

 

 

 

9.1.4 Conclusions from Chapter 7, overview of classifiers and 

methods  

In this chapter, all research outcomes of the previous chapters are combined in 

order to establish an overview of the applicability of the methods to the various river 

environments encountered. The classifiers are the backscatter strength and the depth 

residuals. The methods are: the Bayesian, the model-based, and the PCA & K-means. 

The result is displayed in Fig. 9.4. This schematic can be used for selecting for 

each river environment the most suitable classification approach. 

 

 

FIG 9.4: Overview plot of appropriate classifier(s) and method(s) for the different 

mean grain size ranges. 
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9.1.5 Conclusions from Chapter 8, application of classification 

methods 

In this chapter the sediment distribution differences in a part of Sint Andries that 

was surveyed in 2007 and re-surveyed in 2008 are assessed. For this area the 

classification methods that can be used are the Bayesian classification method and the 

method using PCA and K-means clustering. Both methods provide results as classes. 

Classes do not have a physical meaning so they cannot be used for directly comparing 

the sediment distribution maps in 2007 and 2008.  Two approaches are used to assess 

the differences in the sediment distribution between the two surveys: a) to use the 

grab samples’ mean grain size for deriving the relation between class and mean grain 

size, and b) to convert the classes into backscatter values. The latter, however, 

requires correcting for the imperfect calibration of the MBES with respect to 

backscatter. 

 

The main conclusions is: 

- The two different approaches used for assessing the differences in the 

sediment distribution of the area between 2007 and 2008 lead to different 

conclusions regarding the changes in sediment types present in the area. The 

mean grain size maps (based on the grab samples) showed that the area 

became substantially finer in 2008 compared to 2007. On the other hand, 

when using the calibrated backscatter curves of the areas, the differences are 

estimated to be very small. The first approach employed a very limited 

number of grab samples for converting acoustic classes to sediment mean 

grain size, and consequently the relation between them is subject to 

uncertainty. In addition, as mentioned in 9.1.1, care has to be taken when 

using grab samples to assign mean grain size values to the acoustic classes, as 

also other parameters affect these acoustic classes. The second approach 

shows that the area remained relatively unchanged during this one year. Since 

no exceptional flow phenomenon (e.g. flood) occurred in the area during this 

one year most probably the results of the second approach are closer to the 

truth.  
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9.2 Outlook 

The methods for sediment classification using MBES data, as developed in this 

thesis, have been applied to various river environments, demonstrating their 

applicability. Compared to the traditional methods of using grab samples to map the 

river sediment distribution, the use of acoustic classification methods provides a huge 

increase in the detail with which this information is obtained. Use of the classification 

methods, and the resulting highly detailed maps, is expected to assist strongly in a 

further understanding of the river dynamics. This insight will, if incorporated in the 

morpho-dynamic models, add to the current capabilities of predicting the river 

dynamics. Useful insights on appropriate methods to assess differences on the 

sediment distribution of areas over a period of time can be gained when planning 

regular surveys of the same area using the same MBES systems.  

Although the methods are at a stage that they allow for practical use, the on-going 

developments of the multi-beam system technology will give rise to further 

developments of classification methodologies. First of all, if MBES systems become 

well-calibrated with respect to backscatter strengths, the potential of assigning 

sediment characteristics to acoustic classes will strongly increase. This is the case for 

the sediment range for which models, predicting the backscatter strengths, exist, but 

alternatively, for well-known areas, a database can be established that contains for 

each sediment type the expected backscatter curve. 

Another development in MBES systems that is of high interest for classification 

purposes is the possibility of registering for each beam the full incoming signal. This 

allows for applying model-based approaches, where the model used predicts the 

incoming signal per beam as a function of sediment characteristics. 

Also developments in the classification methods are ongoing. 

For the model-based approach in this thesis the theoretical model as developed by 

the Applied Physics Laboratory
1
 was used since it is currently the most reliable and 

validated model. Developing new models valid for predicting backscatter for larger 

mean grain sizes will allow for using the model-based approach for the full range of 

mean grain sizes encountered in the Dutch rivers.   

The Bayesian classification method fits Gaussian probability density functions on 

the histograms of the backscatter strength values per beam. Pre-requirement to this 

process is that the number of pixels in the beam footprint is large enough to ensure 

gaussianity.  However, this degrades resolution. If use would be made of the non-

averaged data, maximum resolution is kept, but another probability density function 

has to be assumed when fitting the histogram of the measured backscatter. 

The behaviour of both the backscatter strength and the depth residuals can be 

further investigated by surveying areas that cover a large range of sediments (e.g. 

from 9 ϕ to -9 ϕ). For this it would be advantageous to use the same MBES and 

MBES settings. 

 

 

 

 

 

 

 

 



144 

 

REFERENCES 

 
1  “APL-UW high-frequency ocean environmental acoustic models handbook”, 

Oct. 1994, technical report APL-UW TR9407AEAS 9501, Applied Physics 

Laboratory, University of Washington, pp. IV1-IV50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 

 

 

 

 

 

 

 

 

 

 

 

 

A. Maps of features combinations  

 

 

 

 

 

 

 

 

The classification maps created with the PCA and K-means method were based 

on eight statistical features; four from the backscatter values and four from the depth 

residual values. These features are: the mean, median, minimum and mode of the 

backscatter and the mean absolute error (maer), standard deviation, minimum and 

maximum of the least-squares depth residuals. In Chapter 5 it is stated that any pair of 

the features of the kind (BS, Residuals) can also be used for providing the 

classification map of the areas that is visually similar to maps created from all eight 

features. 

To illustrate this, in this section we use all possible combinations between one of 

the backscatter features (e.g. the mean backscatter) with each one of the four depth 

residual features in order to create the Sint Andries map (Fig. 5.15 top) with six 

different classes.  

The resulted four maps are shown in Fig. A.1. All four maps in Fig. A.1 and the 

map in Fig. 5.15 top are very similar justifying the validity of the statement that any 

combination between any backscatter and any depth residual feature can be used to 

create classification map of an area very similar to the map created by the 

combination of all features. 
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FIG. A.1. Classification map of Sint Andries based on the combination between (a) 
mean backscatter and mean absolute error of depth residuals, (b) mean backscatter 
and standard deviation of depth residuals, (c) mean backscatter and minimum of 
depth residuals, and (d) mean backscatter and maximum of depth residuals. In all 
plots also the clusters of the 6 different classes are shown.  
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B. Classification map of Dordtse kil based 

on Depth Residuals 

 

 

 

 

 

 

 

 

In Appendix B we will briefly give the results of the classification analysis of 

Dordtse Kil based on only the depth residuals. The analysis followed the PCA and K-

means method described in Chapter 5.  

Four statistical features of the depth residuals contain most of the data 

information. These are: the mean absolute error, the standard deviation, the minimum 

and the maximum. 

We select three classes as the optimum number of classes. For three classes both 

the percentage in the reduction of the distances of the clusters, and the average 

silhouette coefficient have maximum values.  

Figure B.1. presents the classification map of Dordtse Kil based on the four depth 

residual statistical features.  

Figure B.2. shows the correlation between the classification results (classes) and 

the mean grain sizes (MGS) of the grab samples collected at Dordtse Kil. Each grab 

sample took the average class number of the surface patches within a radius of 30 

metres from it. No outlier removal was performed. 

From Fig. B.2. it is obvious that there is no correlation between the classification 

results and the grab samples.  
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FIG. B.1. Classification map of Dordtse kil  based on the depth residual features.  
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FIG. B.2. Mean grain size of individual grab samples versus classification results of 
Fig. B.1., where class numbers 1, 2, 3 belong to the smaller, intermediate, and higher 
depth residual values. 
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C. Bathymetry maps of Bovenrijn and 

Meuse 

 

 

 

 

 

 

 

 

 

 

 

In Appendix C the bathymetry maps of Bovenrijn (Fig. C.1.) and Meuse (Fig. 

C.2.) are presented as reconstructed by MBES measurements. 
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FIG. C.1. Bathymetry map of Bovenrijn. 
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FIG. C.2. Bathymetry map of Meuse. 
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Summary 

The Netherlands are part of four international river basins: Rhine, Meuse, 

Scheldt and Ems. The economic importance of the Dutch rivers is very high as they 

are heavily used for inland waterway transport between the Netherlands and their 

neighbouring countries.  

A minimum depth must be guaranteed to keep the rivers navigable but also to 

ensure that the ships can carry maximum cargo. The Rhine river has been trained with 

groynes, originally with the purpose to reduce the risk of flooding, but in later stages 

also to improve navigability. In the 1990s, the Waal Programme realized further 

measures to ensure navigability e.g. by constructing fixed layers consisting of large 

stones on top of the sediment. For the Rhine, fixed layers were constructed in the 

outer-bend pools of the bends at Nijmegen and St Andries in the river Waal. 

The on-going overall bed degradation of the river Waal then arises as a 

problem, because the fixed layers in the outer-bend pools will not follow the 

degradation and hence become high obstacles. River bed nourishment by artificial 

sediment supply is considered as an appropriate measure to arrest overall bed 

degradation. The success of the measures on keeping the navigation in the Dutch 

rivers safe is assessed by continuously monitoring the depth of the rivers. In addition 

the sediment distribution also needs to be monitored in order to assess the long term 

behaviour of the suppletions. 

An attractive system for obtaining information about the riverbed bathymetry is 

the multi-beam echo-sounder (MBES).  Furthermore, the MBES received echoes due 

to acoustic backscatter from the sediments in theory also allow for discriminating 

between different sediments. This method gained significantly in potential especially 

during the last decade when new MBES systems have been developed. This thesis 

falls within these research efforts to discover the full potential of backscatter 

measurements for sediment discrimination and characterisation in order to gradually 

replace the conventional way of mapping the sediment composition of the riverbed by 

taking a large number of physical grab samples. The MBES provides high spatial 

coverage of an area within a short time, while the conventional approach is time 

consuming and provides information at the grab samples positions only.   

The aim of the research presented in this thesis was to develop methods for 

discriminating between different river sediments using MBES measurements. In order 

to fulfil this aim, MBES surveys were performed in the Rhine river and the Meuse 

river between 2007 and 2010. Five parts of the Rhine river were surveyed: Sint 

Andries, where a large survey was carried out in 2007 with a re-survey of a smaller 

part of this area in 2008, Nijmegen (2008), Bovenrijn (2008), and the Dordtse Kil 

(2009). A part of the Meuse river was surveyed in 2010. All rivers are shallow having 

similar depth ranges from 1 m to 10 m, except for the Dordtse Kil, which is deeper 

with depths ranging between 1 m to 19 m.  

Grab samples were collected from all surveyed areas. Based on the grab 

samples mean grain size there is a gradual shift from fine sediments in Dordtse Kil to 

coarse sediments in Sint Andries and Nijmegen, and finally to very coarse sediments 

in Bovenrijn and Meuse. Video images and still photographs were taken underwater 

at each grab sample position to assist interpretation of the results.  
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All the measurements were performed using EM3002 Kongsberg MBES 

systems. The system sonar frequency is nominally 300 kHz.  

The research shows that indeed the MBES system can be used for 

discriminating between the different sediments present in the river areas. In addition 

an important finding is that areas differing in sediment type require different 

classification approaches. The classification approaches employed in the thesis are 

 

1) The so-called Bayesian classification approach that uses the MBES 

backscatter data collected at a certain angle to obtain the number of acoustic 

classes and to discriminate between them by applying the Bayes decision rule 

for multiple hypotheses. This method is found to discriminate between 

different sediment types (Chapter 4). However, it is found that a transition 

point exists at which the behaviour of backscatter as a function of mean grain 

size reverses. For  small grain sizes backscatter increases with mean grain size 

whereas it is found to no longer increase with increasing mean grain size for 

sediment with mean grain sizes larger than this transition point. 

Discrimination between sediments is possible as long as the range of sediment 

types encountered in the area is below or above this transition point. For 

environments with sediment mean grain sizes both below and above the 

transition point, there is ambiguity, resulting in both finer and coarser 

sediments being assigned to a single acoustic class. 

 

2) The second method solves this ambiguity, at least partly. In addition to 

backscatter now also features of the bathymetric measurements are used for 

discriminating between the different sediments. These bathymetric features 

are derived from the so-called depth residuals. They are calculated by 

modelling the measured depths through a 2-D second order polynomial fit 

using the least squares (LS) principle. However, the actual measured depths 

deviate from the modelled surface. These deviations are the depth residuals. 

They provide measures as to which degree the actual river bottom is smooth. 

The combination of backscatter strength and depth residuals is achieved by 

using principal component analysis to remove feature inter-dependency and 

the K-means clustering method is used to assign feature ranges to the different 

sediment types. An example, showing the strength of adding these 

bathymetric features to the classification is given in Chapter 5. Three cases 

were investigated: i) classification with only the backscatter features, ii) 

classification with only the LS depth residual features, and iii) classification 

with both backscatter and LS depth residual features. When using only the 

backscatter strength three classes were identified but the fixed layer was not 

discriminated as a separate class. Adding the depth residual features, however, 

shows the fixed layer as a fourth class. 

 

3) The third method is model-based and matches the full curve of measured 

backscatter strength versus beam angle of the MBES to a predicted 

backscatter curve. The agreement between measured and modelled curves is 

maximised by searching for the unknown model input parameters, using the 

global optimisation method of differential evolution. The model-based 

method provides values for the unknown parameters, i.e. the sediment 

parameters mean grain size ( zM ), spectral strength of sediment surface 
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roughness ( 2w ) and a volume scattering parameter ( 2 ). At current however, 

the imperfect calibration of the MBES backscatter strengths measurements, 

prevents the direct application of this method. In this thesis calibration was 

performed based on grab samples and by using the data obtained at the fixed 

layer. Both calibration approaches show similar results. Still, applying the 

model based results to the Dordtse Kil area (Chapter 4) indicates offsets in the 

estimated Mz values compared to those derived from the grab samples. This 

can be due to a still imperfect calibration of the measured backscatter values, 

caused by a limited number of grab samples available for the calibration. In 

addition, imperfect modelling of the backscatter curve can play a role. 

 

Next to deriving the optimal classification strategy, another important topic 

investigated in this research is the potential of assigning characteristics of the 

sediments, such as mean grain size, to the different sediment classes. This item is of 

relevance mainly for the methods 1 and 2 as listed above. An obvious approach may 

be to use the grab samples and apply a linear fit to the acoustic classes vs. mean grain 

size from the grab samples. It is however demonstrated that this approach is hampered 

by several factors. The first is the fact that backscatter strengths are determined not 

only by mean grain size,  but also by other sediment parameters such as sediment 

roughness and volume inhomogeneities as shown in Chapter 4. Secondly,  there is a 

transition point at which the behaviour of backscatter vs. sediment mean grain size 

reverses, impeding an unambiguous relation (Chapter 6). Also for the depth residuals 

a transition point is found (Chapter 6). However, here depth residual values decrease 

with increasing mean grain size for the finer sediments and increase for the coarser 

sediments. Although from this research it is clearly shown that assuming a linear fit 

between mean grain size and acoustic class is subject to errors, still an ordering of 

classes with respect to mean grain size, for example finer, less fine, coarser, is 

possible. This is only the case if the sediments encountered in the surveyed area all 

fall below or above the transition point. Otherwise additional knowledge, e.g. 

knowing that there is a fixed layer present, is needed to make such an ordering.  

When applying the acoustic classification method to investigate changes in the 

spatial sediment distribution and sediment types, the ordering of classes in general 

will not suffice. A solution is presented in Chapter 8. In this chapter the differences in 

a river that was surveyed twice using MBES are evaluated both regarding the 

bathymetry and the sediment distribution. The time interval between the surveys is 

one year (2007 and 2008). For both surveys three classes were found in the area. The 

classes were compared using the backscatter curves per class. From this it is found 

that the backscatter curves for the classes of 2007 very closely resemble the classes of 

2008, indicating similar sediment types.  

Another classification method considered in this thesis (Chapter 4) is 

classification based upon the levels of gamma-ray radiation being emitted from very 

low concentrations of a number of radionuclides in the sediment, i.e., 
137

Cs, 
40

K, 
238

U 

and 
232

Th. The system used for taking these measurements is the ‘Multi-element 

detection system for underwater sediment activity’ (Medusa).  Also a hydrophone is 

towed over the sediments measuring noise levels. This measurement is used mainly 

for monitoring whether or not the Medusa system is in contact with the river bottom, 

but is found to also provide a measure for the roughness  of the sediment. It is found 

that the MBES and Medusa measurements show similar spatial distributions of 

different sediment types, but that Medusa can also reveal the presence of organic 

matter in the sediment based on the 
137

Cs measurements. 
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Samenvatting 

Nederland is onderdeel van vier internationale rivierbekkens: de Rijn, Maas, 

Schelde en Eems. Het economische belang van de Nederlandse rivieren is zeer groot, 

want ze worden intensief gebruikt voor vervoer over binnenwateren tussen Nederland 

en de naburige landen.  

Om de rivieren bevaarbaar te houden en ervoor te zorgen dat schepen de 

maximum lading kunnen vervoeren, moet er een minimum diepte worden 

gegarandeerd. In de Rijn zijn golfbrekers aangelegd, oorspronkelijk met de bedoeling 

om het risico van overstromingen te verkleinen, maar later ook om de bevaarbaarheid 

te verbeteren. In de jaren negentig werden in het kader van het Waal-programma 

verdere maatregelen genomen om de bevaarbaarheid te garanderen, bijvoorbeeld door 

een vaste laag aan te brengen in de vorm van grote stenen op het sediment. Voor de 

Rijn werden vaste lagen aangelegd in de diepe gedeelten van de bochten (in de 

buitenbocht) in de Waal bij Nijmegen en Sint Andries. 

De voortdurende erosie van de bedding van de Waal zorgt echter voor een 

probleem, want de vaste lagen in de diepe gedeelten in de buitenbocht eroderen niet 

en worden daardoor hoge obstakels. Het storten van kunstmatig sediment op de 

rivierbedding wordt als een adequate maatregel beschouwd om de erosie van de 

bedding tegen te gaan. Er wordt gecontroleerd of de maatregelen voor een veilige 

bevaarbaarheid van de Nederlandse rivieren succesvol zijn door continu de diepte van 

de rivieren te meten. De verdeling van het sediment moet ook worden gevolgd om te 

bepalen wat het gedrag van de suppleties op de lange termijn is. 

Een aantrekkelijk middel om informatie te verkrijgen over het diepteprofiel van 

de rivierbedding is het multibeam echolood.  Bovendien kunnen met de multibeam 

echo's t.g.v. akoestische verstrooiing aan het sediment in theorie ook verschillende 

sedimenten worden onderscheiden. Deze methode is met name in de laatste tien jaar 

steeds interessanter geworden door de nieuwe multibeam echoloodsystemen die 

werden ontwikkeld. Dit proefschrift valt binnen het kader van het onderzoek om het 

volledige potentieel te ontdekken van het meten van deze akoestische verstrooiing 

voor het onderscheiden en karakteriseren van sedimentlagen. Het doel is dat deze 

methode de conventionele methode geleidelijk gaat vervangen. Nu wordt de 

samenstelling van sedimenten van rivierbeddingen bepaald door een groot aantal 

fysieke monsters van de bodem te nemen. Met een multibeam echolood kan snel een 

nauwkeurig volledig dekkend beeld worden verkregen van een heel gebied, terwijl de 

conventionele methode tijdrovend is en alleen informatie oplevert over de posities 

waar de bodemmonsters zijn genomen.   

Het doel van het in dit proefschrift beschreven onderzoek was het ontwikkelen 

van methoden voor het onderscheiden van verschillende riviersedimenten met behulp 

van metingen met een multibeam echolood. Daarvoor is tussen 2007 en 2010 

onderzoek verricht met een multibeam echolood in de Rijn en de Maas. Vijf gedeelten 

van de Rijn zijn onderzocht: Sint Andries, waar in 2007 een groot onderzoek werd 

uitgevoerd en in 2008 een nieuw onderzoek plaatsvond van een kleiner gedeelte van 

dit gebied, Nijmegen (2008), Bovenrijn (2008) en de Dordtse Kil (2009). In 2010 

werd een gedeelte van de Maas onderzocht. Al deze rivieren zijn ondiep en hebben 

vergelijkbare diepten van 1 tot 10 meter, behalve de diepere Dordtse Kil, waar de 

diepte varieert van 1 tot 19 meter.  

In alle onderzochte gebieden werden bodemmonsters genomen. Uit de 

gemiddelde korrelgrootte van de bodemmonsters blijkt dat er een geleidelijke 
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overgang is van fijne sedimenten in de Dordtse Kil naar grove sedimenten bij Sint 

Andries en Nijmegen en uiteindelijk naar zeer grove sedimenten in de Bovenrijn en 

de Maas. Er werden onder water videobeelden en foto’s gemaakt van iedere plaats 

waar bodemmonsters werden genomen om de resultaten beter te kunnen interpreteren.  

Alle metingen werden verricht met het Kongsberg EM3002 multibeam 

echoloodsysteem. De sonarfrequentie van het systeem is nominaal 300 kHz.  

Uit het onderzoek bleek dat het multibeam echoloodsysteem inderdaad kan 

worden gebruikt om verschillende sedimenten in de riviergebieden te onderscheiden. 

Een andere belangrijk resultaat is dat gebieden met verschillende sedimenttypen 

verschillende classificatiemethoden vereisen. De volgende classificatiemethoden zijn 

voor dit proefschrift gebruikt: 

 

1) De zogenaamde Bayesiaanse classificatiemethode, waarbij gebruik wordt 

gemaakt van data van het terugverstrooide signaal die onder een bepaalde 

hoek zijn verzameld. Het aantal akoestische klassen en het onderscheid tussen 

die klassen kunnen worden bepaald met behulp van de beslissingsregel van 

Bayes voor meerdere hypothesen. We constateerden dat met deze methode 

verschillende sedimenttypen kunnen worden onderscheiden (hoofdstuk 4). Er 

is echter ook vastgesteld dat er een overgangspunt is waarbij de akoestische  

verstrooiingssterkte als functie van de gemiddelde korrelgrootte 

tegenovergesteld gedrag gaat vertonen. Bij kleine korrelgrootten neemt de 

verstrooiing toe met de gemiddelde korrelgrootte, terwijl dat niet het geval is 

voor sedimenten waarbij de gemiddelde korrelgrootte voorbij dit 

overgangspunt ligt. Er kunnen sedimenten worden onderscheiden zolang de 

korrelgrootte van de sedimenten in het onderzochte gebied zich onder of 

boven dit overgangspunt bevinden. In gebieden met sedimenten met 

gemiddelde korrelgrootten die zowel onder als boven het overgangspunt 

liggen, zijn de resultaten dubbelzinnig, want zowel fijnere als grovere 

sedimenten kunnen worden gekoppeld aan dezelfde akoestische klasse. 

 

2) De tweede methode biedt een oplossing voor deze dubbelzinnigheid, in ieder 

geval ten dele. Naast verstrooiingsgegevens worden ook kenmerken van de 

bathymetrische metingen gebruikt om verschillende sedimenten te 

onderscheiden. Deze bathymetrische kenmerken worden afgeleid van de 

zogenaamde diepteresiduen. Deze worden berekend door van de gemeten 

diepten een model te maken met behulp van een tweedimensionale tweede 

orde polynoomfit waarbij de kleinste-kwadratenmethode wordt toegepast. De 

werkelijk gemeten diepten wijken echter af van dit model. Deze afwijkingen 

zijn de diepteresiduen. Op grond daarvan kan worden bepaald in hoeverre de 

werkelijke rivierbodem glad is. De  verstrooiingssterkte en de diepteresiduen 

worden gecombineerd door met behulp van ‘principle component’ analyse de 

onderlinge afhankelijkheid van verschillende kenmerken te elimineren en 

door met de K-means clustermethode een bereik van kenmerken toe te kennen 

aan de verschillende sedimenttypen. Een voorbeeld in hoofdstuk 5 laat de 

kracht zien van het toevoegen van deze bathymetrische kenmerken aan de 

classificatie. Er werden drie gevallen onderzocht: i) classificatie met alleen de 

verstrooiingskenmerken, ii) classificatie met alleen de kenmerken van de 

diepteresiduen die met de kleinste-kwadratenmethode zijn verkregen, en iii) 

classificatie met zowel alle verstrooiingskenmerken als alle kenmerken van de 

diepteresiduen. Met gebruikmaking van alleen de verstrooiingssterkte werden 



163 

 

 

drie klassen geïdentificeerd, maar de vaste laag werd niet als een afzonderlijke 

klasse onderscheiden. Wanneer de kenmerken van de diepteresiduen werden 

toegevoegd, werd de vaste laag echter wel als een vierde klasse gevonden. 

 

3) Bij de derde, modelgebaseerde methode wordt de volledige curve van de 

gemeten verstrooiingssterkte als functie van de bundelhoek (t.o.v de normaal) 

gematcht aan een voorspelde verstrooiingscurve. De overeenstemming van de 

gemeten curven en de modelcurven wordt gemaximaliseerd door te zoeken 

naar de onbekende invoerparameters van het model, waarbij gebruik wordt 

gemaakt van een globale optimalisatiemethode,  genaamd ‘differentiële 

evolutie’. Met de modelgebaseerde methode kunnen waarden worden 

gevonden voor de onbekende parameters, dat wil zeggen de 

sedimentparameters gemiddelde korrelgrootte ( zM ), spectrale sterkte van de 

oppervlakteruwheid van het sediment ( 2w ) en een 

volumeverstrooiingsparameter ( 2 ). Op dit moment kan deze methode echter 

niet direct worden toegepast vanwege de niet perfecte ijking van de 

verstrooiingssterktemetingen met het multibeam echolood. Voor dit 

proefschrift werd geijkt door middel van bodemmonsters en door gebruik te 

maken van de vaste laag. Beide ijkingsmethoden leverden vergelijkbare 

resultaten op. Toepassing van het modelgebaseerde resultaat op het gebied 

van de Dordtse Kil (hoofdstuk 4) wijst echter op systematische verschillen 

tussen de met de modelgebaseerde methode geschatte Mz ten opzichte van de 

Mz waarden die zijn afgeleid uit de bodemmonsters. Dit kan het gevolg zijn 

van een nog steeds niet optimale ijking van de gemeten verstrooiingswaarden 

doordat maar een beperkt aantal bodemmonsters beschikbaar was voor de 

ijking. Daarnaast kan het model van de verstrooiingscurve niet precies genoeg 

zijn. 

 

Naast het bepalen van de optimale classificatiestrategie was een ander belangrijk 

onderwerp van dit onderzoek de mogelijkheid om kenmerken van de sedimenten 

zoals gemiddelde korrelgrootte toe te kennen aan de verschillende sedimentklassen. 

Dit onderwerp is voornamelijk van belang voor de hiervoor genoemde methode 1 en 

2. De voor de hand liggende methode is om bodemmonsters te gebruiken en een 

lineaire fit toe te passen op de akoestische klassen als functie van de gemiddelde 

korrelgrootte, maar er is aangetoond dat deze methode door verschillende factoren 

wordt belemmerd. Het eerste probleem is dat de verstrooiingssterkten niet alleen 

afhangen van de gemiddelde korrelgrootte, maar ook van andere sedimentparameters 

zoals de ruwheid van het sediment en de volume-inhomogeniteiten in het sediment, 

zoals in hoofdstuk 4 wordt aangetoond. Ten tweede is sprake van een overgangspunt 

waarbij het verstrooiingsgedrag als functie van de gemiddelde korrelgrootte omslaat, 

waardoor een ondubbelzinnige relatie niet mogelijk is (hoofdstuk 6). Ook voor de 

diepteresiduen is een overgangspunt gevonden (hoofdstuk 6). De diepteresiduwaarden 

nemen af met toenemende gemiddelde korrelgrootte voor de fijnere sedimenten en 

nemen toe voor de grovere sedimenten. Uit dit onderzoek blijkt duidelijk dat het 

uitgangspunt van een lineaire fit tussen gemiddelde korrelgrootte en akoestische 

klasse tot fouten leidt. Het is echter nog wel steeds mogelijk om klassen te ordenen op 

grond van de gemiddelde korrelgrootte, bijvoorbeeld fijner, minder fijn en grover. Dit 

is echter alleen het geval als de sedimenten die in het onderzochte gebied zijn 

gevonden allen onder of boven het overgangspunt zitten. Anders is aanvullende 
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kennis nodig om deze ordening uit te voeren, bijvoorbeeld weten dat er een vaste laag 

is.  

Wanneer de akoestische classificatiemethode wordt toegepast om veranderingen 

in de ruimtelijke sedimentverdeling en sedimenttypen te bestuderen, is het ordenen 

van klassen over het algemeen niet voldoende. Een oplossing voor dit probleem wordt 

besproken in hoofdstuk 8. In dat hoofdstuk worden de verschillen geëvalueerd die zijn 

geconstateerd bij resultaten van een rivier die tweemaal met een multibeam echolood 

is onderzocht, zowel wat betreft het diepteprofiel als de sedimentverdeling. De 

periode tussen de twee meetcampagnes is één jaar (2007 en 2008). Bij beide 

campagnes werden in het gebied drie klassen gevonden. De klassen werden 

vergeleken met behulp van de verstrooiingscurven per klasse. Op grond daarvan werd 

vastgesteld dat de verstrooiingscurven voor de klassen van 2007 in hoge mate lijken 

op die voor de klassen van 2008, hetgeen wijst op vergelijkbare sedimenttypen.  

In dit proefschrift wordt ook een classificatiemethode toegepast welke gebaseerd is op 

het meten van de niveaus van gammastraling afkomstig uit zeer lage concentraties van 

een aantal radionucliden in het sediment, namelijk 
137

Cs, 
40

K, 
238

U en 
232

Th 

(hoofdstuk 4). Deze metingen worden met het Medusa (Multi-element detection 

system for underwater sediment activity) systeem verricht. Er wordt ook een 

hydrofoon over de sedimenten gesleept die de geluidsniveaus meet. Deze meting 

wordt voornamelijk gebruikt om te controleren of het Medusa-systeem wel in contact 

is met de rivierbodem, maar uit deze meting bleek ook de ruwheid van het sediment te 

kunnen worden afgeleid. De multibeam metingen en de metingen met Medusa bleken 

vergelijkbare ruimtelijke verdelingen van verschillende sedimenttypen op te leveren, 

maar met Medusa kan ook de aanwezigheid van organisch materiaal in het sediment 

worden vastgesteld op grond van de 
137

Cs-metingen. 
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