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GENERAL INTRODUCTION.

In this thesis one-dimensional propagation of waves with

finite amplitude is studied. Especially shock waves, in

mixtures of randomly distributed gas bubbles in a liquid,

We have limited ourselves to mixtures with ,air bubbles,,

almost all of the same size, with a radius of order of

10-3m and a gas volume fraction of a few percent. This type

of flow is characterised by Kosterin (1949) as froth flow

or strongly dispersed flow,. Therefore the experiments are

carried out in the range given in the right-hand side of

the diagram in Figure

I
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FIGURE F.Distribution of the gas-liquid flow regions with different topologies

for a 1"horizontal pipe, from Kozterin (1949).

To allow a tractable theoretical analysis we restrict our-

selves to circumstances where bubbles do not break up under

the influence of a pressure gradient. Also no mass-transfer

occurs between the two phases in time intervals in which
pertinent quantities such as pressure, density, etc., change-

Further the bubbles are assumed to remain spherical. From

an experimental point of view we restrict ourselves to weak

and moderate shacks with pressure ratio's across the shock

to about 6.

Even with these restrictions the flow of a heterogeneous
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mixture of liquid and bubbles remains complicated.! Therefore

we employ a model which makes it possible to predict theore-

tically those quantities which can be measured.

We consider, as described in Van Wijngaarden (1968) and

Batchelor (1969), wave propagation through a mixture of

bubbles and liquid from the point of view of continuum

theory and not as a multiple scattering problem (Foldy,1945).

In the continuum theory we start with averaging and intro-

duce average pressure, velocity and density. The averages

are over a volume element containing many bubbles, but of

linear dimensions small compared with the characteristic

length of motion. Thus changes in pertinent quantities

occur in distances large with respect to the inter-bubble

distance and bubble radius. We therefore describe wave

propagation in a fictitious, single phase compressible

medium.

The mixture is a compressible medium with compressibility

due to the gas phase and density due to the liquid. In most

cases a rather low sound speed, as defined later on, can

therefore be expected. Furthermore the mixture is considered,

in equilibrium state, as a uniform medium. This assumption

does not hold completely since in our experiments we are

faced with a space-wise density distribution following from

gravity. It will appear that this nom-uniformity does not

invalidate the analysis.

In the analysis of wave propagation through the mixture

several types of steady shocks are studied. Some of them

have been observed earlier by different investigators. For

these shocks, normal shock relations are formulated similar

to those in gasdynamics, socalled Rankine - Hugoniot re-

lations. It can be expected that the description of wave

propagation in a mixture is, to a large extent, similar to

wave propagation in single phase compressible fluids. How=

ever, the leading mechanism in formation of a shock wave,,

non-linear steepening, originates in the case of a mixture

for the greater part in the compression phenomenon, whereas

in gases this steepening follows from convection.
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The other effects which distinguish shocks in mixtures from

shocks in ordinary gases, are effects due to the relative

motion of the bubbles with respect to the surrounding liquid..

This relative motion consists of two types of motion: radial

motion of the liquid near an expanding or compressed bubble

and relative translational motion of the bubble with respect

to the liquid. Both types of flow cause dissipation.

Furthermore there is dispersion of waves caused by the

inertia of the radial flow associated with an oscillating

bubble.

In ordinary gases steepening of a compression wave by con-

vection can be balanced by viscous diffusion, leading to

a steady shock. The thickness of a shock in gases is there-

fore of the order of the mean molecular path (Lighthill,

11956).

For a mixture it is shown to be evident that the bubble

size determines the shock thickness. In mixtures several

types of shocks can be expected. One is based on the balance

of non-linear compression and dissipation due to radial

motion of a bubble. A second is based on the equilibrium

of non-linear compression, dispersion and the associated

dissipation. A third is based on the balance of non-linear

compression and dissipation due to relative translational

motion.

The first one was not encountered in our experiments. For

weak shocks, when the pressure ratio is below a certain

critical value, the third type of shock can appear. As
for the second type of shock it was noticed that the dis-

sipation associated with radial motion dominates the dis-

sipation associated with relative translational motion.

This is in the case of not too weak shocks in mixtures
with a volumetric gas content of a few precent. This leads

to shocks where the overall thickness is determined by the

dispersion effect. These shocks are governed by equations
of the same type as those for long gravity waves on water
of finite depth. Therefore the pressure profile in a steady
shock should look like the surface elevation in an undular



bore. This type of shock, a socalled SA shack, was fauna

in the experiments and shown in Figure 2.

FIGURE 2. A pressure profile typical for a SA shock, a, steep rise in

pressure at the front side and waves at the back side.

We observed a gradual change of the shock structure during

its passage through a tube of some length. These changes

are attributed to the mechanism of relative translational

(motion between the bubbles and liquid. Therefore we developed

a] theory, taking in account this relative motion. It will be

shown that its effect on the shock structure is similar to

the effects of thermal relaxation on gasdynamic waves. The

pertinent relaxation time in the present case is the time

it takes a bubble to adjust to the liquid velocity through

viscous forces. From the theory it follows that this relax-

ation affects the speed of the wave as well as its structure.

In the experiments no verification of this influence on

wave speed could be made, it being too small to be measured'

in dilute mixtures. Comparison of the experimental results

concerning the wave structure, with theory, supports our

conclusion that the observed changes are due to relative

motion indeed. In Figure 3 a pressure profile affected by

relaxation is presented.

-4-



'FIGURE 3. A SB shock..

there is still a steep pressure rise at the front part,, but,

the pressure does not no longer rise to equilibrium pressure

at the back side. This takes place in a region, which is

much thicker than the front shock, and in which the pressure

slowly oscillating reaches its final value. This type of

shock will be called a S shock.

For weak shocks and where dissipation due to radial motion

is smaller than dissipation due to relative translational

motion the shock thickness can be much larger than of a SA

shock. It is even possible, as already mentioned that a

steady shock appears, of which the structure follows from

a balance of non-linear steepening and resisted relative

translational motion. This we call a S shock.The front

shock as well as the oscillations have disappeared. The

pressure profile is almost completely smooth and covers a

region which is at least an order of magnitude larger than

the thickness of a SA shock. A typical pressure recording

is shown in Figure 4.

A
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FIGURE AL. A S shock.

Having discussed the topics of this thesis it is of inte-

rest to survey previous work on shock waves in liquid-

bubble mixtures.

One of the earliest theoretical and experimental investi-

gations on shock waves in two-phase flow were done by
Ackeret (1930) who studied cavitating water flow in Laval

nozzles. Ackeret formulated Hugoniot relations for the

mixture similar to the relations for shocks in gases. From

these normal shock relations he derived expressions between

the pertinent quantities far in front and far behind the

shock. The structure of the shock and especially the shock

thickness, was estimated from dynamic bubble behaviour.

An extension of the experimental work of Ackeret was re-

ported by Campbell & Pitcher (1958). They illustrated their

theoretical discussion on the Hugoniot relations with ex-

periments on a short gas-liquid shocktube. The bubble beha-

viour of the gas phase was left out of account in their

analysis and accordingly the structure of the shock was not

discussed. They found that the temperature rise accross the

shock was very small for a very large range of conditions.

-6-
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This reads to simple relations for the shock wave propa-

gation speed. Campbell & Pitcher showed from entropy con-

siderations, that a rarefaction wave cannot propagate with-

out change of form and they argued that a compression wave

can be expected to steepen into a shock wave. Their measured

shock velocities come close to the predicted values. The

bubbles in these experiments have a radius of about 10-4m,

an order of magnitude smaller than the bubbles in our expe-

riments. As will be discussed later on the magnitude of the

bubble size is important from a thermal point of view.

Bubbles of the size of 10-4m are assumed to be in thermal

equilibrium with the liquid, whereas larger bubbles can be

regarded as thermally insulated. More theoretical work on

shock waves in bubbly fluid was reported by Parkin, e.a.

(1961). They formulated Hugoniot relations for normal shock

waves in cases where the bubbles can be considered as ther-

mally insulated. Also other aspects of air-water mixtures

were discussed. They payed attention to' dissolving of air

bubbles, effects of surface tension and heat conduction

between the bubbles and the liquid. Parkin e.a. also pointed

to the importance of the inertia effects following from

radial motion on the structure of the shock. Their qualita-

tively predicted shock structure is not supported by our

theory, because their discussion on the SB shock was based

on thermal relaxation. They did not present experiments.

Eddington (1970) also performed experiments on normal shocks

and concluded that there is a good correspondence between

the experiments and the results following from Hugoniot re-

lations. The shock structure, as found in his experiments

may be quite different from the shock in bubble-liquid

mixtures, because the topology of the air-water mixture

varied during these experiments. More detailed investigations

on the structure of shock waves were reported by Crespo

(1969) and Van Wijngaarderi (1970). Crespo discussed propagai,

tion of a plane shock wave through a mixture with equal

temperatures on both sides of the shock. He found a structure

which is similar to the profile of Figure 2_ However the

-7-
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waves behind the shock were stronger attenuated than one

might conclude from the attenuation in our experiments.

This was due to the fact that Crespo assumed that the heat

flow, through which attenuation is largely determined, is

dominated by the heat resistance at the liquid side of the

bubble. Noordzij (1971) showed with experimental results

that heat flow from bubble to liquid is dominated by heat

resistance at the gas side and the contribution to attenua-

tion was found large enough to account for the experimen-

tally observed attenuation. Van Wijngaarden (1970) indepen-

dently formulated the equation describing the structure of

the shock. He dropped relative translational motion and

found an estimate for the shock thickness and the wave length

of the waves behind the shock. Experiments on SA type of

shocks are reported in Noordzij (1971) and Van Wijngaarden

(1972b). Theory and experiments on the SA-SC shocks and espe-

cially theory concerning relaxation is reported by Noordzij

and Van Wijngaarden (1973).

The theory for the SA-Sc shocks is presented together with

a large number of experimental results. For this we first

discuss, in chapter 1, the dynamic behaviour of an indivi-

dual bubble immersed in a liquid. In chapter 2 general

properties and the equations of motion for a liquid-bubble

mixture are discussed. In chapters 3-5 different types of

shock profiles will be analysed.

The influence of relative motion on the development of the

shock is discussed in chapter 6 in terms of relaxation,

introduced in the complete set of equations.

Gravity plays a role in our experiments according to the

experimental set up, resulting in a small relative velocity

of the bubbles. But this velocity can be neglected with re-

spect to the shock induced velocity. Due to gravity there

is a pressure and a density distribution in the equilibrium

state. Actually when we are discussing shocks, we consider

shocks propagating through a non-uniform medium. It will

appear, as discussed in chapter 7, that effects following

from this non-uniformity are sufficiently accounted for,
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if we introduce local quantities for describing the struc-

ture of the shock. As a matter of fact this non-uniform

medium enables us to study propagation of waves through

mixtures where density is a slowly changing function of

the space-wise coordinate. Using the socalled Whitham rule

as described in Whitham (1958), we are able to present the

change in propagation velocity as a function of the equili-

brium quantities.

In chapter 8 the experimental set up is described and the

experiments are compared with theory.

For the sake of simplicity we assuwed isothermal behaviour

of the gas phase. Where necessary corresponding relations

following from adiabatic behaviour were summarized.

1.



CRAFTER 1.

THE MOTION OF A SINGLE BUBBLE IMMERSED IN AN INFINITE

INCOMPRESSIBLE LIQUID.

INTRODUCTION.

For describing wave propagation in a liquid-bubble mixture

it is necessary to know the equations governing the motion

of an individual bubble relative to the liquid.

Two types of bubble motion are of importance for our model

of the mixture flow. The first one is radial motion of the

bubble surface. Due to liquid inertia and gas compressibi-

lity an individual bubble is capable to execute radially

symmetrical oscillations. In a mixture this inertia causes

a dispersion effect on waves. The other motion is the rela-

tive translational motion of a bubble. Viscous friction

associated with relative motion causes a relaxation effect

on a wave. We assume in our theoretical model that this

relative motion does not disturb the spherical symmetry of

the bubble.

RADIAL MOTION OF THE BUBBLE SURFACE.

In this section we describe briefly the motion of liquid

surrounding a contracting or expanding bubble. An equation

will be derived for the bubble radius R=R(t), t denoting

time. This equation describing volume oscillations of a

bubble is well-known in literature, see a.o. Lamb (1932).

The liquid is assumed to be incompressible and the gas in

the bubble homogeneous. From a velocity potential 0

dR/dt
0 = - R2 (1.1)

by applying Bernoulli's law between a point on the bubble

surface and a point far away in the liquid, we find that

the compression or expansion of the bubble is governed by

-10-
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Surface tension, vapour pressure and effects of the radial

viscous stress are left out of account. The various quan-

tities in (1.2) are given in Figure el is the density

of the liquid.

d2R 3 dR
Pg Pco -= Pt IR( 121:

dt2 2 dt

FIGURE 5. An individual bubble in 0 mixture. At the 'bubble radius

r = R the pressure is pg. Far away, Kr r.) the pressure is 'Ia..;

A physical interpretation of (2.2) iS that the difference

between p and p. is brought about by the inertia of the

liquid being accelerated with respect to the interface in

radial direction. This inertia is the cause of a dispersion

effect on pressure waves through bubbly mixtures.

Assuming the gas to be isothermal we find for the angular

frequency w3 of free volume oscillations (with small ampli-

tude) cut the equilibrium radius Ro, fr;m (1.2)

2 3p.
w = A

..1? p

(1-2)

0.3.14



For our experimental circumstances with R=10 -3m, p0=105 N/m2

and o =103kg/m3'B is of order 104. It can be expected that

for waves at frequencies (13 below 103 sec. a bubbly fluid

can be treated as a homogeneous medium in which the bubbly

character of the gas phase may be ignored., When the gas

phase behaves adiabatically u3 becomes, as derived by

Minnaert (1,933).,

1 3yp
=

- Ro

y is the ratio between the specific heat at constant pres-

sure and the specific heat at constant density. Whether

the gas phase behaves either isothermally or adiabatically

has been investigated by Plesset (1964) for bubble oscil-

lations at arbitrary frequencies. Plesset discussed results

in terms of the characteristic lengths Ro' Dg/wRo' the scale

associated with the heat penetration depth in the bubble,

and the acoustic wave length in the gas phase ig. As long

as the latter is large with respect to the bubble radius

Ro
and D /(wRo), pressure and temperature within the

bubble are uniform and the bubble oscillations are isother-

mal when D /w»Ro2 and adiabatic when D /to«Ro2. At very

high frequencies with Ag<Ro the oscillations are again iso-

thermal; the surrounding liquid is no longer significant

for the bubble interior. In general the oscillations of a

bubble are therefore isothermal both for low and high fre-

quencies and adiabatic in an intermediate range. A complete,

description of the heat processes would require an energy

equation both for the liquid and the gas phase with proper

boundary conditions. However, for our analysis the following

approximations are sufficient. In our experiments for the

air bubbles, having a radius of order 10-1m, the typical

frequencies are just in the intermediate range. This is.

shown as follows:

Consider the case for shock waves with velocity of order

202m/sec and thickness of order 10-2m. This leads to frequ-

encies typical for our experiments of order 104.

-12-
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The associated wave length A9 in air Is of order 19r2m

which is an order of magnitude larger than the bubble

size. hence acoustical variations of temperature and pres-.

sure within a bubble may be neglected. The thermal pene-

tration depth in the bubble is of order ,(0 /w)4. With a,

frequency of order 104sec-1 and a thermal diffusivity

D =18)(10-6m2/sec for air, the penetration depth becomes
6-4
10 m, which is negligible, small with respect to the bubble

size. Adiabatic behaviour of the air bubble during the, pas-

sage of the shock is therefore a, realistic assumption.

(Of course ultimately the bubble adjusts to the temperature

of the liquid).

Hitherto/ we left out of account in' equation (1.2) effects,

of viscosity, surface tension etc.

The full equation incorparating the, various effects, reads:

2a d2R 3 dR dR
pg÷ 17v- = pco+ priR + (--)2+ 6w2,31? ) (1%5)

dt2 2 dt

with a the coefficient of surface tension, pv the vapour

pressure, 6 a damping constant incorporating effects follo-

wing from normal viscous stress etc. and wh defined by (1.4).

In the next sectiOn, we discuss the damping coefficient 6.

Equation (1.5) applies to bubbles .noving with the liquid.

Actually the liquid velocity differs from the bubble velo-

city. The contribution of this to (1.5) is u. order oily-1442,,

with (v-u) the relative velocity of the bubblt,with respect

to the liquid).This quantity is of order 103N/m2,and can

therefore be neglected.

For our experimental circumstances we can further neglect

the influence of vapour pressure with respect to p .N.10 N/m

pv 64 193 N/m2

The influence of s?...rface tension as of no importance:

a

102 N/m2
2R

-1 3-
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The equation to be used, describing damped volume oscil-

lations of a bubble, reduces to

d2R 3 dR dR
P - P. = pl IR + (--)2+ 6w/R __ 1

dt2 2 dt dt

Later on equation (1.6) will be substituted in the equations

describing the hydrodynamics of a liquid-bubble mixture.

It is reasonable to suppose (Van Wijngaarden, 1964), when

the bubbles are sufficiently far apart, that the ambient

pressure for one bubble p the local pressure in the

continuum theory, as will be discussed in the following

chapter.

§3. THE ATTENUATION OF THE VOLUME OSCILLATIONS; 6.

There are various mechanisms which cause attenuation of

the volume oscillations of a bubble. If the liquid sur-

rounding a bubble were incompressible and the gas phase

behaved purely isothermally or adibatically the most im-

portant contribution to attenuation would follow from vis-

cous dissipation associated with the radial motion near an

expanding or contracting bubble. In this case the last term

in the right-hand side of equation (1.6) is determined by

normal viscous stress and equals

;24)

2p
1 ar2

with p the dynamic viscosity of the liquid.

The equation for the bubble oscillations becomes, using (1.1)

Pg- P0,

-14-

d2R 3 dR 4v, dR
= P/iR +

c __I
f

dt2 2 dt R dt

with v the kinematic viscosity of the liquid.

However the liquid is not purely incompressible and a

bubble executing volume oscillations expends a portion

(1.6)

(1.7)

is



of its energy by radiating spherical sound waves. Also

the gas does not behave purely isothermally or adiabati-

cally. It will appear that the most important damping

mechanism stems from this thermal process in the gas phase-.

During expansion and compression heat is conducted from

the liquid to the bubble and visa versa, causing a phase

difference between the pressure in the bubble and the

external pressure. This can be described in terms of a

damping coefficient. Several authors discussed the attenu-

ation associated both with acoustical radiation and ther-

mal conduction. For this the reader is referred to a survey

in Van Wijngaarden (1972a).

In equation (1.6) the term including the factor 6' repre-

sents the various damping effects in a formal way, since

only for small amplitude oscillations and small values of

4 the various effects can simply be added. However for our

purposes we find a sufficiently satisfactory damping constant

if we assume 6 to be the sum of the different effects:

A = 'fry? ac' 6* t St 8)

-15-

with 4 the contribution due to normal viscous stressvr
6 the contribution due to acoustic radiationac
6th, the contribution due to thermal conduction.

4 has been discussed already and becomesyr

4v w'Z B
6 =vr 3TP.

or

4vZ=
w'R2Be

'The contribution. 6ac becomes (Devin,1959)

(2.S1

w'RB o (3.10)6ac =
ci

with ci the sound velocity in the liquid. In general
6ac

is a function of the forced frequency (Meyer&Skudrzyk,1953).,

:

6
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We assume Sac to be constant and take its value at reso-

nance as a first approximation. (Sac is found from calcula-

tions in which the bubble is treated as a simple sound source

and the bubble radius is considered small with respect to

the wave length of the radiated sound.

An expression for oth can be approximated from calculations

of Pfriem (1940) and becomes

3(y-I) 2D
(__1)4

th
-

2Ro
wi

Also we took 6th under resonance conditions. For air bubbles

this expression is

-4
6th = x 10 (tali')

KJ.,11)1

(1.12)

'These approximations of the thermal contribution are based

on linearizations of the dynamic equation for the bubble

and of its heat equation, using proper boundary conditions.

Due to its great heat capacity the liquid is assumed to be

isothermal in this approximation.

In most of our experiments thermal dissipation dominates

other dissipation mechanisms discussed so far. Other

mechanisms leading to thermal adjustment are: forced and

free convection in the bubble. These effects and also those;

following from vaporization and condensation are left out

of account because they are beyond the scope of this thesis.

§4.. THE RELATIVE TRANSLATIONAL MOTION OF A BUBBLE.

In general there is no evidence that a body immersed in a

liquid will move at the same local liquid velocity under

the influence of a pressure gradient in the liquid. There-

fore the equation of motion describing relative trans-

lational motion is of interest. With an ultimately vanishing

pressure gradient the bubble velocity equals eventually the

liquid velocity, because of viscocity.

Batchelor (P969) has shown the importance of dissipation

1.7



associated with relative motion for pressure waves in bubble-

liquid mixtures. Crespo (1969) and Van Wijngaarden (1970)

introduced the equation of motion in the context of basic

equations from which the structure of the shock can be found.

For derivation of this equation it is necessary to know the

different forces on a bubble.

Due to the negligible inertia of the gas, the gas in the

bubble can freely move about so there is hardly no constraint

on the tangential velocity of the liquid at the boundary

of a bubble (Levich, 1962). There are only the constraints

of continuity of tangential stress and the vanishing of

relative normal velocity in this case. The only boundary

layer of importance is a boundary layer for the velocity

gradient, the neglect of which is, in a first approximation,

legitimate (see e.g. Levich, 1962). Therefore the motion

of a bubble can be determined from potential theory.

Knowing the potential of translational motion of a sphere

the dissipation associated with this motion can be calcu-

lated. Since velocity gradients are not of larger order

of magnitude within the boundary layer than outside of it,

the rate of energy dissipation per unit volume is of the

same order throughout the liquid. So the total rate of dis-

sipation is dominated by the contribution of the considerable

larger region of irrotational flow outside the layer in

contrast with a rigid body. From the dissipation through

the whole of the liquid coupled with relative motion we can

find an expression for the frictional force exerted on

the bubble.

By equating the rate of dissipation in the liquid to a

frictional force times the relative velocity, we find for

the frictional force F,

F = 127p1R(v-u) (1.13)

where v is the velocity of the bubble and u of the sur-

rounding liquid (Levich, 1949).

11171-
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Note that this force is just twice the Stokes resistance

for a solid sphere at small Reynolds numbers. Here, in

contrast with Stokes flow, the Reynolds number must be

large enough for inertia forces to dominate over viscous

forces.

The validity of (1.13) is according to Levich (1962) res-

tricted to Reynolds numbers of about 800, because at larger

numbers the bubbles are significantly deformed. It is of

interest for a discussion of the experimental results to

give for these oblate bubbles an approximate resistance

based on Levich's model.

According to Levich (1962) this drag becomes:

F' = 127p, (v-u) (1.14)
71

where S is the area and h the thickness of the deformed

bubble in the direction of motion. In the following theo-

retical analysis we assume the bubble to remain spherical.

When the liquid contains surface active agents and contains

only a few bubbles Levich's model ceases to be valid. The

presence of surface active agents leads to an apparent no

slip condition at the interface. In suspensions as we will

use, Levich's model for a bubble is realistic (Levich 1962,

p.448), because for not too low gas concentrations the con-

centration of agents divided by the total gas-liquid inter-

face is low enough.

The other force on the bubble follows from the ambient

pressure gradient ap/ax and equals -V ap/ax. Associated

with this each bubble represents an impulse as defined by

Kelvin (Lamb 1932, 019). This is the impulse of the system

bubble and liquid. Kelvin introduced this impulse to solve

the problem connected with the momentum of the liquid. The

momentum of the liquid depends on the shape of the surface

at infinity and is therefore indeterminate. The socalled

Kelvin impulse for a bubble is, relative to the liquid, of

magnitude

P V(V-U) , (1.15)
2

,

1



corresponding with the inertia of the mass of the liquid

occupying a volume half that of the bubble, usually called

the added or virtual mass, times the relative velocity.

Since the bubble is considered as massless, the rate of

Change of its Kelvin impulse equals the external forces,

which are the force due to the ambient pressure gradient.

and the friction exerted by the liquid.

The equation of motion for the bubble is, taking these.

forces together,

T d' ap
- pl --071(v-u)1 + I2wv1R(v -a) X.' -4'-
2 dt ax

Initially the volume of the bubble can be taken as constant

(Woo & Paslay, 1967). In that case and for low viscosity

V1.16) reduces, using the equation of motion for the liquid

du ap
p + = g y

dt ax

to du dv
3 ("2.. 17)

dt dt

Th a situation where u and v are initially 'zeros as in our

experimental circumstances when a shock wave propagates in

a mixture at rest, we find

:g.) it.-- 3'; -

Of course the viscosity is not zero and with a vanishing

pressure gradient the bubble velocity ultimately equals

the liquid velocity. We describe this process in a mix-

ture in more detail in the chapters $ and 6.

Associated with the relative motion of the bubble there

appears liquid motion which is called drift. Darwin (1953).

showed that in potential flow associated with the motion

of a sphere through a liquid at rest, a mass of liquid is

displaced equal to the hydrodynamic or virtual mass

-1'9-
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of the sphere. This displacement, drift, equal to 1/2 pill

is in the direction of motion. We must account for this

effect in the equations of motion and mass conservation

in mixtures of liquid and bubbles.

§5. THE RATE OF DISSIPATION ASSOCIATED WITH BOTH RELATIVE

TRANSLATIONAL AND RADIAL MOTION OF THE BUBBLE.

It is of interest to find the leading mechanism of wave

attenuation in mixtures. For this we compare the rate of

dissipation associated with relative translational and

radial motion.

The rate of dissipation associated with translational motion

of a bubble with a socalled free boundary is found to be,

(Batchelor, 1967),

Et = 127rp R(v-u)2 . ( 1.18)

The rate of dissipation associated with radial motion is

found from the attenuation term in (1.5)

dR
co (5co'R .

1 B
dt

The rate of dissipation becomes, (Batchclor,1967),

dR

Er = pZ
6w1R4rR2(--)2 .

B at

Er
'R2 dR

( )2

Et
v (v-u)2 dt

(1.19)

This is of course an approximation because S contains con-

tributions from linearized equations.

The ratio between Er and Et is

(1.20)

To find the magnitude of this ratio we introduce a time

scale relevant for the change in pertinent quantities.

This scale is based on the shock propagation velocity U,

which is of order 102m/sec and the shock thickness d,



which is of order 10-2m.

The scale is

w-1 = = O(104)sec .

Accordingly dR/dt is approximated by wR.

Also we need an estimate for v-u. For that we use a re-

lation which will be derived later on in this thesis. v-u

becomes approximately for not too weak shocks

v-u = US

with a the gas volume fraction of the mixture. 6=0(10-2).

Using the just derived expressions, the ratio Er/Et becomes

(Sw'R2 R2

v $d2

For the moderate shocks in our experiments, this quantity

is of order 103. So dissipation is largely governed by

radial motion. Only in the case of weak shocks this no

longer holds and the ratio becomes of order unity. Then

the suggestion of Batchelor (1969), that relative trans-

lational motion is important, is supported.

§6. CONCLUSIONS.

In this chapter we discussed the motion of a single bubble

immersed in a liquid. As will appear later on the different

aspects of this motion, radial as well as translational,

will be of importance in analysing waves of small and finite

amplitude through mixtures.

We conclude that dissipation associated with radial motion

plays an important rale in attenuation of waves. Further-

more radial motion will be important for dispersion effects

on waves in these mixtures.

In this chapter we adopted Levich's model for the frictional

force. From experiments discussed in chapter 8 we will

verify the reliability of this model.

-21-



CHAPTER 2.

GENERAL PROPERTIES AND EQUATIONS OF MOTION FOR A MIXTURE

OF LIQUID AND GAS BUBBLES.

ri. INTRODUCTION.

In Lhis chapter we consider wave propagation through mixtures

of bubbles and liquid. For many purposes it is sufficient

to consider the mixture as a homogeneous fluid. Provided

the length scale of motion is sufficiently large compared

with the average distance between the randomly distributed

bubbles. In this the simplest model the pressure in the

bubble equals the pressure in the liquid. For low frequen-

cies this .aodel is supported by experiments (Silberman,1957).

At higher frequencies wave propagation becomes more and

more complicated, because of bubble oscillations. One

approach is to adopt a model where wave propagation is

considered -s a multiple scattering problem. However this

approach is beyond the scope of this thesis. For a review

on this subject the reader is referred to Van Wijngaarden

(1972a).

In this thesis we adopt the model in which a continuum

theory can be constructed. In this theory we start by intro-

ducing average quantities. These are average pressure,

velocity and density, where the averaging is over a volume

element of the mixture containing many bubble, but of

linear dimensions small with respect to the characteristic

length of motion.

At higher frequencies the bubble behaviour of the gas phase

becomes important and the equality of the pressure in the

bubble and the pressure in the liquid is lost. We assume

that the relation between the local pressure in the liquid

p and the pressure in the bubble pg is the same as for an

isolated bubble as given in the foregoing chapter where p.

is replaced by p.

This model enables us to write down simple equations for

-22-
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wave propagations in mixtures of bubbles and liquid.

For convenience some assumptions for these mixtures are

repeated. We assume that the bubbles are all of the same

size and they execute volume oscillations. Further the

bubbles are considered as gas filled cavities, which do

not break up or cluster together. Mass transfer between

the two phases is let out of account, because desolution

times are much larger than a characteristic time related

with wave motion (Parkin e.a., 1961). As already mentioned

in the general introduction gravity plays a retie in our

experiments. However its influence on wave propagation is

discussed elsewhere in this thesis. Also induced relative

translational motion is left out of account in the analysis

of this chapter.

In the following section we derive the equation of state of

the mixture.

§2. THE EQUATION OF STATE.

Throughout the analysis the liquid is assumed to be incom-

pressible except for the damping effect associated with

sound radiation from a bubble.

A modification of the equations caused by compressibility

can be found in Batchelor (1969). In the following we de-

note quantities belonging to the gas phase with subscript

g; those belonging to the liquid with 1. In most of the

practical cases and also in our experiments the gas volume

fraction 6 is not larger than a few percent. It is defined

as the volume occupied by the gas in a unit volume of the

mixture,

4

= n 7/0 = nV (2.1)
3

where n is the number density of the bubbles.

The mass density p of the mixture follows from the density

of the liquid, (az, and the density of the gas, p . For small

values of 6 we may neglect the contribution of the gas, p (3,



and we find for p

p = P1
(/ - s) . (2.2)

When the bubbles move with the liquid the mass of the gas

in a unit mass of the mixture is constant

d F p1,76

dtLo1(1-a)

= constant .

p,a
(2.3)

1-13

In a homogeneous mixture where p = pe and for isothermal

circumstances (2.3) changes into

Pa
= constant (2.4)

2a

and for adiabatic circumstances

a

p(---)Y = constant . (2.5)
1-B

(2.4) and (2.5) are the equations of state.

§3. THE SOUND VELOCITY.

For the isothermal sound velocity c=(dp/dp)4 we find from

(2.2) and (2.4)

c2= (2.6)

za(2-B)

The adiabatic speed of sound becomes, with (2.2) and (2.6)

VP
c2= (2.7)

plcia)

We see from (2.6) and (2.7) that for -4-(9 we have to account

for the compressibility of the liquid and for 13,2 the con-

-24-
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tribution of the density of the gas phase to the density

of the mixture.

In most of the practical cases we are dealing with a neither

very close to zero nor to unity. So the relations (2.6) and

(2.7) are used throughout this thesis. In our experiments

c is of order 102m/sec.

The results for the speed of sound waves of low frequency

were already found by Mallock (1910).

For a survey on sound velocities in a bubbly fluid the reader

is referred to Van Wijngaarden (1972a).

In the case of a homogeneous theory with disappearing bubble

radius or large wave length, Hsieh & Plesset (1961) found

that wave propagation is isothermal. This is also supported

by the experiments of Silberman (1957).

As follows from the investigations in the foregoing chapter

the adiabatic speed of propagation is of importance for

short wave length. In that case we are also dealing with

effects following from dispersion.,

14. EQUATIONS OF MOTION'.

In this section we pay attention to the hydrodynamics of

the mixture for the homogeneous case.

The homogeneous theory is defined through stating p=p

However, in our theory we allow for a difference between

p and p which is associated with radial viscous stress

near the bubble.

Using (1.7), the relation between p and p becomes

40 dRp = -- 4Pg
R 4t

The equation of mass conservation becomes

ap/at + a(pu)/ax = 0 ,) 1(2.9)

where t is the time-wise variable,. = the space-wise variable

and it the mixture velocity.

The equation of motion for the mixture, Is

pdu/dt = -p/3x (2.10)

(2.8)

.
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The equation of continuity for the number density n is

an a

(nu) = 0 (2.11)
at ax

or with Vp =constant and (2.1)

a

--(ap )÷ --(at u)= 0 .

at ax g

With (2.9) and the fact that the mass of the bubble is

constant we find from (2.11)

nVp
g = constant ,

Bp

--I = constant ,

1-9

as already presented in eqation (2.3).

With Vp =constant we obtain

= constant .

1-13

With (2.1) and (2.12), (2.8) yields

4PP = - Lit Zn
3 1-8

Substitution of p from (2.2) into (2.13) gives

4 pi dp
p p

3 pa dt

From the equations (2.9), (2.10) and (2.14) we finally

obtain the equation of motion which will be subject of

further discussion in the next section

au au 1 ap 1 4y1 au
+ u = - - + - .

at ax p ax p ax 3B ax

(2.12)

(2.13)

(2.14)

(2.15)

+

a

9

-



The last term in the right-hand side of (2.15) describes

the effect of radial viscous stress near the bubbles in a

mixture. This term can be interpreted as the contribution

of the socalled volume viscosity 4111/3B. The derivation of

volume viscosity for a suspension of bubbles in liquid based

on dissipation in the mixture is already given by Taylor

(1954). The term shows that effects of shear stress in the

liquid can be neglected safely when B=0(20-2).This being

so in our experiments.

55. WAVE PROPAGATION IN A MIXTURE OF GAS BUBBLES AND LIQUID.

in this section we discuss acoustical wave propagation. The

equations are completely similar to those in gasdynamics.

For this the reader is referred to a survey in Lighthill

(1956). First we drop the term representing dissipation

in (2.15). Using c2=(dp/dp), we find from a linearization,

of (2.9)' and (2.15) the well-known wave equation for waves,

of small amplitude

a2U ,a2U

atz 0 2 -ax

where subscript o refers to equilibrium circumstances.

c2 is defined through (2.6).

If we consider the infuence of viscosity as, represented

in the last term of the right-hand side of (2.15), the

equation describing waves of small amplitude becomes

a2u a2u
4111-

23u
- 0,2 = c2

at2 ° ax,2 3p0 atBx?

The term in the right-hand side represents attenuation of

the sound wave by diffusion. The factor (441/3p0)c is

usually called the diffusivity and we denote this factor

with r. We. now briefly illustrate the diffusion. Looking

for solutions proportional to expliwt1 (2.17) changes

into:

(2.16)

-27-

=

(2.17)



-28-

a2u

1C2 + liW)--- +W2I4 =. 0

2x2

From equation 12.18) we see that a progressive wave is of

the form

u a emplixtt
dc2+rics)

(2_19)

With c2»re, d2.18.2 becomes

rw2
u expf- expr

oiwdt-x/c2c3

The first factor shows that an initial sinusoidal wave is

unaltered by diffusion. Now we consider a general signal

with a given frequency spectrum U(W) for x=0,

U = uoftj = f eiwtu(w)trwi (2,21)

and for x/O we, find with (2.209

wi rm2

expj-
exp ((t-x/0 )}u(w)du i r2.22)

2o3

Using the transform of emp(-1w2m/20:2 we find from inverse

transformation of (2.,221,

(t-s-x/e )2
is =

Co
o(s)

extol (2° , .23)

d2nrx/co)
'ft 2rx/e2

u is the time mean of u(s) weighted according to a Gaus-

sion distribution centred on s=t-x/co with standard devi-

ation (rm/co)/co This accentuates the reason for calling

r the diffusivity of sound since the wave spreads out with

increasing m. For example an initial step function changes

into an error function. Ultimately a wave disappears. We

will show further on that this spreading of the wave by

diffusion can be altered by non-linearity.

42;20)

(2.18)

u =f .

ds

0
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It

and
a

+ = 0
at ax

where J+ and J are the Riemann invaaants

and
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L46 NONLINEAR WAVE PROPAGATION;

In this section we discuss plane waves of finite amplitude

travelling in an undisturbed region of the mixture and use

the simple wave analysis of gasdynamics. In particular we

are interested in those cases where non-linearity leads to'

formation of a steady shock wave.

In gasdynamics shock waves are formed as a result of a be-.

lance between steepening, by convection and the tendency to,

spread out by diffusion.

In the case of a bubbly liquid the term producing diffusion

is already discussed and we therefore pay attention to the

process of steepening. For this we use the general approach

of Riemann (1859).

The equations (2.9) and (2020) can be written in the follo-

wing form, using (2.6).

a.r-- ru+c)--)J, = 4
at at r

J = it + S(dp/pc)

a_ - =.1(dp/po),

From (2.24) it follows that J+ and J remain constant

along each characteristic, respectively

and
C+ = dx/dt = 24+0

= dx/dt = u-ci .

The socalled characteristic directions are well-known

quantities in discussing wave 'propagation as a result of

hyperbolic differential equations. (Courant & Friedrichs,

11948).

If the waves travel from the Deft to the right into the

undisturbed region indicated with subscript o we have on

(2. 24)

(2.25)

a

a

(-- (u-c))J_

u
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a "left" characteristic C_, with u=0

f(dp/pc) = constant,
or with (2.6)

Pdp/oc) = coaoLn(ao/a) = constant,
where we neglect 13 in comparison with unity and used, from

(2.4) and (2.6)

c = c (a /13).o o

From the undisturbed region, where 6=$0, we find therefore

u - f(dp/pc) = 0.

For a C_ characteristic we finally obtain

u = f(dp/pc).
Using the results from a C_ characteristic the speed u+c
in the positive direction is found to be

sna ao
u+c = Pdp/pc) + c = co(1 + + (2.26)

a

From (2.26) it follows that any acoustic wave form will

continually change. This can be seen as follows: the com-

pressed part of the wave, (3<50, travels faster than the

expanding part, 6>60.

We see from (2.26) that the excess in speed stems from two

effects. The first,

o

Co

follows from the fact that the sound velocity is larger

in the compressed part than in the expanding part. The

second from a positive value of is in the compressed part

and a negative one in the expanding part. From (2.26) we

see that the latter effect is relatively unimportant in

contrast with a simple wave in ordinary gas.

For a mixture the ratio between the first and the second

effect is:

soln--).

r
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s 10/s
tn(ao/9)

With Bo only a few percent the second effect, usually called

the convective part, is unimportant. Then the change in

wave form stems from the compression part. This process is

called steepening by compression. As already mentioned this

is in contrast with a simple wave in an ordinary gas. In

that case the speed of the wave is, Lighthill (1956),

c-co 2 c-c
u+c = c0(1 + --- o)

co
y-1

co

and the ratio between the compression part and the convectiv,

part becomes (y-1)/2. From this we see that the steepening

in an ordinary gas is governed by convection.

From gasdynamics it is known that this steepening eventually

leads to the formation of a shock wave when the steepening

is balanced by diffusion. Analogous with the theory for

gases we may attempt to predict the structure of the shock

and especially the shock thickness in a mixture of bubbles

and liquid.

For weak shocks in gases the profile of the shock is a

tanh, with argument equal to the running coordinate along

the wave times the ratio of the excess in wave velocity

and the dissipation coefficient resulting from shear vis-

cosity, volume viscosity and heat conduction (see e.g.

Lighthill, 1956). Using this for the mixture, we find that

for a mean compression (a0-131)/23 the excess in wave velo-

city becomes

0-13/

261

whereo is the gas volume fraction for the low pressure

side and
B1

for the high pressure side.

Using (2.6) and (2.27) we find for the dissipation coef-

ficient

(411 /3p )c2 (4/3)(v/13) .
1 0 0

+



-32-

In terms of B the profile of the shock becomes

8o-81
3 c (5 -8 )0

o+81
8 = tanhioolo(x Lit)),

2 2 8
13Iv

-81)Uo(1 +

(2.27)

where U is the velocity of the shock which is intermediate

between u+c before and behind the shock. So we find for U

2a/

This relation is also found later on where we discuss diffe-

rent types of steady shock waves.

(2.27) can be found by substitution of (a/at)=U(a/ax) in

the equations (2.4), (2.9)-(2.11) and (2.14) when seeking

a wave of steady form which propagates with velocity U.

This solution is given by Van Wijngaarden (1970).

For an estimate of the shock thickness we use for comple-

teness the total damping constant instead of the partial

contribution ov27-,(4vi/wp). Using (1.8) and (2.6) the equa-

tion for the shock profile becomes:

;f

a+a1 8-61 (3yB ) B

B -
0 o tanh[

o ( o
1)(x-Ut)].

2 2 2R6 B
o 1

The thickness of the shock is defined as twice the value of

x-Ut for which the tanh in (2.28) assumes the value 0,99.

The argument of the tank, is about 3 in this case. So the

thickness of the shock wave d becomes:

Rd 81

d = 2 o ---; (2.29)

no) 50-61

Under the conditions for our experiments, with weak shocks,

defined by (130$1)/v0(10 ), 8o-o(10-2), R0.0(10-3m) and

6=0(10-1), d is

d 10-2m .

If we assume that (2.29) also holds for moderate shocks

with (0 -0 )/13 =0(1) and other quantities equal we find

(2.28)

°



for d

d 10-3m

In our experiments the measured thicknesses are of order

10-1m and 10-2m for weak and moderate shocks respectively.

This. suggests that shock waves in a bubbly fluid with R04.1073m

and
Bo

rt. 10-2, are structured by a different mechanism.

For this we introduce in the governing equation the inertia

of the liquid near the bubble. This will be discussed in

the following section.

U. 'WAVES INCLUDING THE INERTIA OF THE LIQUID NEAR THE

BUBBLES.

Again we start by discussing waves of small amplitude. For

this we introduce the difference between p and pe from

(1.6) in the basic set of equations.

By linearization of the equations (1.6), (2.9)-(2.11)) and

with 6=0 we obtain

a2p a2p 9r 9124o l(2.30);--- = C2+
o

at2 ax2 (w5)2 ax2at2

where co and us are sound velocity and resonance frequency

for isothermal circumstances.

Seeking solutions of (2.30) in the form of a progressive

wave,

expTi(kx-wt); N

we obtain by substituting this in the equation (2.30)1 a

relation between to and the wave number k. The relation is

known as the dispersion equation (Van Wijngaarden, 1968),

-33-
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=r:

k

'
02,311)

(iczo/q31

c J1-41)2
°

wB

p

=

(1+



From this we see that the Phase velocity w/k depends on

the wave number and accordingly each wave travels with its

own velocity, which is large for small values of co and be-

comes zero for w»id . Only for long waves (k.4-0) the wave

propagation is non-dispersive. Otherwise dispersion leads

to a continuous change of waves of general (non-sinusoidal)

form. This type of dispersion is usually called frequency

dispersion and its effect is a spreading of the wave. This

spreading can be altered by non-linear steepening.

For a dispersive system as represented by (2.31) the group

velocity dw/dk is smaller than the phase velocity.

When dissipation, characterized by IS, is included in equation.

(2.30) the dispersion relation becomes

iW
.- = co

I-(--) - y(y) --o11 (E.,32)
w w

This equation is also given in van Wijngaarden (1972a),

who mentioned that (2.32) is identical witha similar rela-

tion following from scattering theory.Silberman (1957)

showed for this relation good agreement with experiments.

We therefore conclude that our approach of the hydrody-

namics of the mixture through a continuum theory is sup--

ported by these. results.,

§4. SHOCK WAVES IN A DISPERSIVE MEDIUM.

The non-linear or compression effect,discussed in 56, leads

to steepening of a given wave profile. This effect is also

called amplitude dispersion. Frequency dispersion however

leads to spreading of this profile. In the case of waves

with moderate amplitude, Van Wijngaarden (1968) showed that

the two effects can be combined in one hydrodynamic equa-

tion. For this we consider a pressure disturbance of mode-,

rate strength propagating through the mixture at rest. In

the undisturbed state all quantities have the subscript o.

Moderate strength means in this case that we use an approxim-

ation one order beyond the linear approximation.

-34-
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We take the effects following from non-linear steepening,

dissipation and dispersion together, and write p=p004-ep'/,
S=So(1-0-E07),p =p (.7+Ep'),u=ceooul, e-t.c. with E a small

quantity. This is introduced in the equations (1.6), (2.1)

and (2.9)-(2.11). Terms of order c2 and lower are retained,

terms however of order c280 are discarded.We omit further

details, for this the reader is referred to the Appendix 2,,

and give directly, dropping the primes, for a wave propa-

gating in positive direction:

ap ap ap c3 alp (y)4e26 a2P'
+ co + c6op-- + L..: 0 . 1(2-33)

at am as 2w2 Dx3ax2
2wB

In (2.33) C(3/4 and c42,15/e3 are small quantities.

For c=0,6=0 and era, we have an acoustic wave again. When

6=0 we have an equation of the type of the Korteweg-De

Vries equation describing the propagation of long gravity

waves on liquid of finite depth. Van Wijngaarden (1968)

discussed this equation for a mixture of gas bubbles and

liquid, where we have

21) OF Dp c3 a'''po-- + c -- + CC p- + = 0 .
3x.at o

ax' 2w4 ax3
(2,-34A

The third and the fourth term represent amplitude and fre-

quency dispersion respectively. Solutions in which both

tendencies balance each other are well known. One of these

solutions is the solitary wave on which we come back in

the following chapter- We are interested in shock wave

type of solutions of (2.33). Solutions starting at a given

pressure level and asymptotically reaching a higher pres-

sure. Without frequency dispersion we have the case as dis=

cussed in one of the foregoing sections: Solutions where

non-linear steepening is balanced by diffusion. As mentioned

this leads to a shock thickness which is an order of magni-

tude too small in comparison with experimental results for

both weak and moderate shocks. On the other hand, neglecting
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diffusion, no steady shock wave solutions of (2.34) are

known (Van Wijngaarden, 1972a). However, several investi-

gators showed that in the case of water waves unsteady

solutions in the form of a bore, or shock wave as given in

Figure 2, appear in finite time intervals. Here the model

equation without dissipation ((5=0) is (2.34).

Peregrine (1966) presented numerical solutions, but whether

or not these solutions become steady for t tending to infi-

nity was not shown. Benjamin e.a. (1972) proved that for

any finite time the equation has a solution with the cha-

racter as shown in Figure 2. However the existence of a

steady profile was not proven.

Steady solutions representing shock waves following from

the balance of non-linear steepening and frequency dis-

persion can not be expected therefore from (2.34).

Looking for steady solutions in the form of a shock wave

we return to the equation (2.33) with 6/0. This equation,

a combination of the Korteweg-De Vries equation and Burger's

equation (Lick, 1970) has solutions of the type of a shock

wave. Several investigators such as Grad & Hu (1967),

Johnson (1970) and Pfrisch & Sudan (1971) discussed an

equation of the type of (2.33).Theyshowed the existence

of steady shock-like solutions of the Korteweg-De Vries

equation with dissipation.

§9. CONCLUSIONS.

In this chapter we considered wave propagation through a

mixture of bubbles and liquid. The mixture was considered

as a continuum and we used results following from conti-

nuum mechanics. The various contributions of the liquid

and the gas phase were accounted for. Especially the bubble

behaviour of the gas phase and the associated radial motion

of the liquid near the bubbles are important for investi-

gation of waves of high frequencies. This motion leads to

socalled frequency dispersion. Another important effect

associated with wave propagation in mixtures is, that the
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steepening of the wave is governed by compression in stead

of convection.

We found in contrast to what happens in gases, that shock

waves in liquid-bubble mixtures can be structured by the

three mechanisms, steepening by compression,frequency dis-

persion and dissipation associated with radial motion. In

the next chapter we discuss a steady shock wave following

from these effects.



CHAPTER 3.

STRUCTURE OF A STEADY SHOCK WAVE WHEN THE SPEED OF THE GAS

PHASE EQUALS THE SPEED OF THE LIQUID.

INTRODUCTION.

In this chapter we look at steady shock waves structured

by non-linear steepening, dispersion and dissipation. To

get a first insight in the overall character of the shock

structure, we neglect relative translational motion of the

gas phase with respect to the liquid. For our experimental

circumstances this is unrealistic as will be shown later

on. However, the analysis of this chapter suits to serve

the discussion of some general properties of shock waves

in liquid-bubble mixtures.

Equations already discussed by various investigators such

as Ackeret (1930), Campbell & Pitcher (1958) and Parkin e.a.

(1961), relating quantities far in front and far behind

the shock, are derived. Investigations of Crespo (1969),

Noordzij (1971) and Van Wijngaarden (1972b) on the struc-

ture of the shock are summarized.

To compare this theory with the experiments, parameters

describing the shock structure are derived.

BASIC EQUATIONS.

We consider time dependent flow in x direction of a liquid-

bubble mixture. The mixture velocity averaged over a small

volume yet containing many bubbles is u. The mixture den-

sity is p. The contribution by the gas phase to p can be

safely neglected. p is therefore related to the liquid

density pt and the gas volume fraction a by

P = P (3. 1)

with Li«1.

The equation of mass conservation for the mixture is,
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:du 1 az)
- - ,

dt p ax
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pp ai

+ (pu)= 4 1(3.2)1
at ax

The equation of conservation of the number density n is

an a
+ --(nu)=

at ax

The equation. of motion for the mixture

--(p 10+ --(p eu)= 0 .

at g

From (3.2) and (3.7) we. find

p
_(_g-_\= 0
dt 2-0

(3.0

The pressure in the bubble pg and the local pressure in the

liquid p are related through

d2R 3 dR dR
pa- p = pi iR -()+

wedt2 2 dt dt

Assuming that the bubbles are spherical and have locally

all the same radius R,, we have

a = ITnR3 - r36,1
3

Using the fact that the mass of the bubble, pall, is an

invariant and for isothermal circumstances also paV, W3.3A

can also be written as

f3. 7);

(3.8)1

In the following section we summarize the steady equations

describing relations between quantities far in front and

far behind the shock, the socalled Hugoniot relations.'

0 (3.3)

is

4

a

d

(3.5)



§3. THE HUGONIOT RELATIONS.

We briefly summarize the known results and derive expres-

sions which are used throughout this thesis for describing

shocks.

We consider a shock wave moving with constant speed U in

negative x direction. The situation is illustrated in

Figure 6.
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00
0

DO0
0

FIGURE 6. Shock wave in a mixture, travelling with speed U from x=o.
(side 1) to x.= (side 0).

The equations (3.1)-(3.8) are written in independent vari-

ables x and t. We transform these into x',t, where x'=x+ut.

In the new frame the shock wave is steady and so

is zero. Carrying out this transformation on (3.2), we

obtain, omitting the prime on x',

0:0 00 00
0 O o 0 0:00o 0 0

0:0 o o 0:0 00 0
00 o o o 0,.. o

o 0 0 .0
0 0 0 .o 0 o

--(e (.2-0(U+u)) = 0 .

Dx

Integration gives

P(1-$) U = p(1-B)(U+u )
1 '

(3.9)

(3.10)

where upstream quantities are indicated with o and down-

stream quantities with 1.
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Transformation and integration of the' equation of motion,

using mass conservation, gives

p1r1-130)U2 + po = p1r2-81)(U+u1),2 + pi, (3.1.1)

in addition we deal with an energy equation for the mix-,

ture and accordingly two new variables are introduced:

the temperature of the liquid and that of the gas. Relative

to the huge heat capacity of the liquid, the temperature

rise of the liquid through the shock is small. This was

already suggested by Ackeret (1930) and proved by Campbell

and Pitcher (1958).

We briefly summarize the results of Campbell Pitcher.

For this we introduce the exact expression for the density

of the mixture

P *. Ogle(' t

and from the equation of state for a perfect gas we find,

using the expression for p

a p-pir/-811 - constant , (3.12)

with T the temperature of the gas which was assumed to be

equal to the liquid temperature..

We introduce the small quantity 11

p1(1-0),
t(3.13,

where Op in

p li-BJ. Now

is constant.

pa

To

the denominator

we rewrite

With

f1+0 1 II

3.13),

pi

1 T1,

(3.12).
(3.12)

1+.

is neglected

From

1
1

Pl

1

yields

with respect to

(2.3) it follows that

1749t

1 po PI

T

&

= P1(1-8)



The energy relation, which equates the work done on a unit

mass of the mixture to the increase of its internal and

kinetic energies, states that

PO h 1 Pi1+,(---)To + -- u2 = -- + (---)T1 +
fu+141i2 ' r3.15)

Po
1+sh P/ /+S 2

with
11=1:1+0hv9. h1

is the specific heat of the liquid and

hvg is the specific heat of the gas at constant density.

From (3.7)-(3.10) we find for the temperature rise AT=Ti-To

across the shock, assuming AT/T0«1

(p1/p)2-12p KT0 go _L22
2p1/p0

PZ
hi

where K is the gas constant, h, is replaced by hz. and is

neglected with respect to unity.

For our experimental Circumstances (3L.26) yields

-2AT<10

As Campbell & Pitcher indicated, the expressions relating

pressure, density and velocity on the two sides of the shock

assume a simple form when AT is neglected and the sacrifice

of accuracy in the process is very small indeed.

From (3.5) it follows that far in front and far behind the

shock the pressure in the bubble equals the pressure in

the liquid. (7.8) therefore gives a relation between the

pressure in the liquid and the gas volume fraction, far in

front and far behind the shock

P080 P181
rz.17)

,1-130
1-81

In the course of the analysis we will use besides also

the mass concentration. That is the volume of gas in a

unit mass of the mixture and is denoted by m/pi. The rela-

tion between. ,5 and 5 is

AT - (3.16)

0C



a011(1+Po)21- PoU pao /+ao ,

- P1a0r/2

for the pressure ratio pl/p.01

pi pili2ap

Po P0(1+a0)2

Using

Po2 -c -
0

we find for the Machriumber
Mo, defined as the ratio between

the shock speed U and the sound velocity in the undisturbed
state co from 13.20) and (3.21)

U21 p,m2 = =
C

or with (3..17) and (3.1S,)

a
a (3%18A

1-8

From (3.10),(3.71).0(3,170 and (3,10 the following relations.

are deri;ed:

for
u/
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p a (1-a )z o 0

or in terms of cv,p

Poc2 =0 (//cal)2
Pia°

(Note that from (3.20 and 13..23) we get for weak shocks;

q co (1+ ya1)
2c1

(.3.19)

0.20)

13.211,

(3.201

ao
',(3.23)

,c4

0

,

=
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giving the excess wave velocity as found in chapter 2, §5).

Now we consider the entropy change across the shock. Since

a shock wave is a spontaneous process, any change in entropy

of a unit mass of the mixture on crossing the shock is an

increase. Therefore the temperature rise across the shock

cannot be neglected.

The entropy change follows from integration of

h, a

dS = dT -(--(1/p )) dp
aT

where the contribution of the gas phase to h is neglected.

With p=pgKgT, (3.16) and (3.22) the entropy change AS

becomes

A

p _I

S = 0 0 0

p1To
2M

1nM2) . (3.24)

This is a positive quantity for Mo>/.

The relations derived so far do not deal with the interior

of the shock. In the next section the equation describing

the interior region of the shock will be derived.

§4. THE EQUATION DESCRIBING THE STRUCTURE OF THE SHOCK.

Again we consider a shock wave propagating at constant speed

U in negative x direction. We use the transformation given

in §3 of this chapter.

Carrying out this transformation on (3.2), we find

a

Ip(1-0(u+u)1= o .

3x

Integration gives, upstream condition indicated with o,

pl(1-8)(114-u) = p1(1-B0) U (3.25)

Integration of the equation of motion gives, with (3.2)

p1(7-13)(U+u)2 + p = p1(/-60) U2 + po . (3.26)

--



Substitution of (3.22) into d3'..260,7 gives with (3.18),

(3.22) and co from 1(3.21)

For describing the structure of the shock as a function]

of the running coordinate we eliminate either a or p from

(3.27). This can be done by using the relation between pg

and p as given by (3.5). To this end we integrate (3.8)

and find, with (3.18)'

a p ,Pg o o (3.28)

We) express R in, terms of a and use (3.28)s this yields

R3 a_a 0

Po R3 a

(3.5) becomes, with (3.291)

P =Pg

Pr a,

= m711 -
otk

Po a0'

osR(at
4

1d2 (a I a d a 2
° --)-

a idt a3 a
o

dt2
ao

d (a \I

dt\cgo11

(3.27)

(3.29)1

,3.30)

From transformation of (3.30), taking (a/at)x, zero and

'omitting the primes, we obtain with y-7(a/a0)

, 2'P R2 nr ey
.14.2ao(1-2y)(dy)Z 0- P= f142a. iy-1)) +Pg

3 y dx2 By kdx

Bw; dy

-11+a0. r(3.319
dx

In (3.31)' we neglect terms with coefficients of 0(ac2,) and

higher between the square brackets.

Substitution of p from (3.31) in (3.27), elimination of pg
through (3-28), using c as given by (3.21) and as

-
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p



given by (3.22), finally yields

2

d2y 1-4aoy dy
bv (14-2a y)

0 dn2 + 6Ap+ao(y+/)1dy_1
+

I 6y do do

(1-y)(y-M) = 0 , (3.32)

where o=x(3a)3/4/Ro and 6 -7(Sw'R /U(3ao).B o
A

In deriving (3.32) terms with coefficients of 0(cl.) and

higher between the square brackets were neglected.

Taking into account that for our experimental circumstances

y = 1 at maximum, a0=0(16-2) and 0=0(10-1), (3.32)

reduces to

old2ydr12
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21 (2) (0j
= 0

6ydn/I dr

From (3.33) or (3.32) the structure of the shock can be

derived in terms of y=a/a0 or, with help of (3.27), in

terms of the pressure ratio p/po.

g5. THE STRUCTURE OF THE SHOCK.

We investigate the structure of the shock as described by

(3.32) or (3.33). Different features of the structure are

already known. Crespo (1969) presented numerical solutions

of the full set of equations. He found for the shock struc-

ture an exponential steepening at the front part and waves

at the back side, as schemetically shown in Figure 7.

Crespo did not present explicit expressions for the shock

thickness d and the wave length A as illustrated in Figure 7.

Van Wijngaarden (1970, 1972b) and Noordzij (1971) discus-

sed a simplified version of (3.33). Shock thickness d and

wave length A were estimated. A reasonable agreement with

experimentally obtained results was found. Van Wijngaarden

(1970) considered the following simplified version of (3.33)

(3.33)+ (1-(y-M-2) =



d2y dy
A

+ + (1-y)(y-M_2) = 0,
dn2

rdn

where only the viscous contribution to SA was considered.

Non-linear derivatives are left out of account because the

outskirts of the shock were discussed. This equation des-

cribes the balance of dispersion and non-linear steepening

by compression. These are respectively the first and the

third term of (3.34). Sonic dissipation is needed for a

steady shock.
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11

FIGURE 7. In this Figure the profile of the shock is illustrated in

terms of y as a function of n.

When dispersion is left out of account in (3.34) a solution

in the form of a tanh, as discussed in chapter 2, is found.

The thickness of the shock is found to be of order

RAo vr
(ao) P2/po-1

This model for the shock wave, even in the case ofdinstead
A

of only holds for very small bubbles. This follows from6yr'
the following reasoning. During the passage of the shock a

bubble is compressed to a smaller radius. The time required

for this is of order
wB

1. On the other hand the time of

passage of a shock with thickness d is of order d/e0.

(3.34)

1



d > Ro

(6°)'
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Hence we have (d/co)>wB-2 or using (1.3) and (3.21)

Only for bubbles much smaller than in our experiments,

(3.35) exceeds d from (3.36).

If we omit the dissipation term in (3.34) we obtain

d2y - 2

(1-y)(y-Mo ) = 0 . (3.37)

This equation has the form to which the Korteweg - De Vries

equation, as discussed in chapter 2, reduces when we look

for steady solutions. The solution of (3.37) becomes

3

y = 1 - (1-M2o ) 8ech2(n(1-M0 ) /2) ,

2

(3.36)

(3.38)

the well-known solitary wave, which is no shock wave type

solution.

Now we consider the outskirts of (3.34), closely following

the analysis of Van Wijngaarden (1970).

From linearization of (3.34) for y near 1 we obtain

A
1 - y expl-d r

n/2 + nid62/4 + (1-M-2)14] . (3.39)
v vr

For our experiments, with 0 =O(101)and M2-1>10-1 this

means that the front part of the shock is mainly deter-

mined by the balance of non-linear steepening and disper-

sion. Van Wijngaarden approximated the shock thickness,

on the basis of (3.39)3 by

constant
-2

(1-Mo
)

or in dimensional form

Ro
constant

(3a0) (1-Mo2 )

(3.40)

(3.41)
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Noordzij (1971) presented, using this approximation, an

estimate for the constant. This was done as follows, see
Figure 8:

The solution for y from (3.39) which is only valid near

y=1, was continued up till y=yi.

1

y=2-. 0.5(1-y1)

Y=Yi

FIGURE 8. The construction of the shock thickness d.

When we define d as the distance between the points where
y=yi and, of course arbitrary, y=1-.05(1-y1' ) we obtain

Ro Zn20
d =

(3ao)(1-M-2)I5
(3.42)

This estimate was in good agreement with the experiments

reported by Noordzij (1971) and Van Wijngaarden (1972b).

Another estimate for the shock thickness can be found,

Noordzij (1971), from an investigation of an equation of

the type of (3.34) by Johnson (1970). Johns^n showed that

the front part of the shock closely follows the asymptotic
solution for 66 -4-0. This solution is the solitary wave asvr
given by (3.38). Again defining d as the distance between

the points where y=yi and y=1-.05(1-y1), we obtain for the

shock thickness d :



Ro
2.7

d =

(3ao (1-M-2)4
0

This is illustrated in Figure 9.

SOLITARY WAVE

EXACT SOLUTION

FIGURE 9. Estimate of the shock thickness from thc solitary wave.

d from (3.43) is also in good agreement with the experi-

mental results in Noordzij (1971), considering the ob-

tained experimental accuracy of about 10%.

For weak shocks the dissipation term becomes important.

From a perturbation of the solitary wave (Johnson, 1970),

a rather complicated expression arises including 6A.

However, linearization near the front part leads to a

simple expression for the modified shock thickness

ln20
d =

(3ao) -6/2

(3.43)

(3.44)

In this thesis we therefore base the discussion of the

shock structure on the method of analysing the outskirts.

The choice of the latter approximation method is also based

on the fact that we want to find out the influence of ao

and non-linear effects on both the shock thickness and at

the back side of the shock later on.

3
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So far we discussed a linearized version of (3.32). Now we

pay attention to the equations (3.32) and (3.33) because

we want to investigate the influence of the quantities

(1+2ao) and y24.

From linearization of (3.,32) near the front part of the

shock, the shock thickness is found to he

Ro (1# )1n20
d (3-.45)

(3ao) (2-M-2).1-611/2

In our experiments, a=0(10-2) and reduces to (3.44).

Therefore we discuss further details of' the shock, struc.,-

ture from (3.33).

We summarize the results for the back side of the shock.

As shown in Figure 7, waves appear at the back side of the

shock. They have the equilibrium value yry1=M;2, which

follows from (3.33) with disappearing derivatives for

To analyse the back side of the shock we linearize (3.33)

for y near yr and obtain for y-Mc-,2

Y - eXpi-1101./2' + 00)2/4 - (1-m-o02)14j3 r3.461
1

with s6Am-1.I co
From this expression some important features are obtained.

When W6A/2)»(1-51-02)i, (3.46) reduces to
1

(1-M-2)14
-? expt n

o

611"

This also results from the expression for a profile where

dissipation balances compression as shown in chapter 2 by

equation (2.28). However for most of our experiments

and the expression under the square root in (3.46) is ne-

gative. Waves appear at the back side of the shock.
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d

y - . (3.47)

(6A)2/4 <<



This wavy behaviour was experimentally verified in Noordzij

(1971) and Van Wijngaarden (1972b).

The associated wave length A becomes

2rM 3

From this we find a frequency w=2-ITU/A. Inserting A from

(3.48) and using (3.21) and the relation U2/qp1/p0, we

can write w as

The expression for wB at the high pressure side (cf. 1.3)

is

1 (3p1 \
53 =

R1
p )

w becomes with this

U = wB(1-a1/a)

For weak shocks to is always rather below For strong

shocks, ao/al.w, to approaches w8 and wave propagation is

no longer possible as follows from the discussion in §7

of chapter 2.

The damping of the waves is found from the factor
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3p1 (1°2/)

PL

A

exp
'1 (3ao)

2o
Van Wijngaarden (1970) showed similar equations as (3.48)

A Aand (3.49) with (5 instead of 66. This leads to a too
yr

small amount of attenuation of the waves behind the shock,

Grasp° (1969), who also found a relation for the wave

length, introduced a too large amount of attenuation, because

he suggested heat conduction in the liquid near the bubble

(3.49)

A = 0 0
(3.48)

(3ao)
(M2-1)

1

1

=
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to be the leading mechanism.

Noordzij (1971) showed that the contribution of 6A to attenu-

ation was large enough to account for the damping observed

in his experiments.

To facilitate the experiments we introduce the number of

waves, N, in which the amplitude decreases by a factor

say. From (3.48)' and (3.49) we find for this number

(M2-1)4

ii
-

mi
o 1

Before summarizing some conclusions on the shock wave rela-

tions we present in the following section relations resul-

ting from adiabatic theory.

i6. THE ADIABATIC RELATIONS FOR THE SHOCK.

As already mentioned the gas phase in our experiments does

not behave isothermal. We therefore derive the pertinent

expressions for adiabatic circumstances. First we pay atten-

tion to the Hugoniot relations.

In §2 of this chapter we found that when the bubbles move

with the liquid the mass of the gas in a unit mass of the

mixture is constant:.

. (3..5r)
dt

Using the adiabatic relation, ,pg.pgli (3.51)

a
p (---) 4= constant
9 1-0

p al = constant yor

From (3.531/1 we find the relation for the isentropic sound
seed ,cad, with pg+p,

°LI = dp/dp = ypo(1+co),2/picto (3.541

(3..52)

n3,53Y

d

yields

(3.50)



and the speed of sound in the adiabatic theory exceeds the

isothermal speed of sound by a factor ('y).

From (3.53) it follows that the relation between the pres-

sure and a far in front and far behind the shock becomes

Y -
P a - Pia/0 0

For a steady flow field the transition relations concerning

mass and momentum are

p1(1-60) U = (31(1-61)(U-ru1) (3.56)

and

P1(1-f30) U2 + 1)0 = p1(1-91)(U4-u1)2121 (3.57)

From (3.55)-(3.57) we find:

for
u/

ao
p I

= 11- (la) (2+0o)1
u/

/+a0 P/

for the pressure ratio p1/p0

-54-

1-(Po/191) Y P0(1+a0)2

In terms of the Machnumber Mo=U/co, where co is defined by

(3.21)3(3.59) is rewritten as

(3.55)

(3.58)

M2 =
P1/p0 -1

1-(P°/P1PY

(1o/a1)-1
OT

Y
M2 =

101/0

(3.(3.60)

(3.61)

Besides the conservation of mass and momentum we have an

energy equation. When the gas phase follows the isentropic

P1/po -1 piy2a0
(3.59)

0

0



-55-

law, the temperature rise across the shock can simply be

deduced for a given pressure ratio. If we assume no tem-

perature rise for the liquid there will be no increase of

entropy across the shock. However a shock is a spontaneous

process and we therefore expect AS to be larger than zero.

The energy equation for the mixture becomes

h1 .h 1
P1

T11
+ T + (U+u1 )2 +

2
=

1+. g11+. Pi

cbh Pnh 1

Tlo + Tao + ; U2 +
1+. 1+0o

with T
lo =Tgo.

Using the relation Tg1=Tgo(P1/po)1-'IY we find from (3.14),

(3.56) and (3.62) for the temperature increase AT=Til-T10

AT = Po. IP1+1 11-(Po)71
poro2hz po

P1

Using (I) defined by (3.13), AT becomes

AT= 6)1)c) 1P2 1111-(p°)11
2p1h po Pl

This is again a negligible quantity.

The increase in entropy is

AS =
h

.T11,
In( ---) .

1+0 Tzo

With AT/T1o«1, (3.65) changes into

AS = p Poo I/ P4.1112_(o)71

2P1T10 Po Pi

where (I) is neglected with respect to unity.

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)
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With the adiabatic relations known, we describe the shock

structure.

For a steady shock we find from the momentum equation

m2(1-y) P/p -1
0 0

Substitution of p from (3.31), the relation between p and

pg'
in (3.67), using (3.53) and the expression for c2 as

given by (3.21), equation (3.67) finally yields

d2Y0 (/+2a y)
1

o dn2

1-4a0y(dy)2 dy

6y cln

+ dAi1+ao(y+1)1__1 +
cin

y(1-y) + MZ,2y(1-y-1) = 0 . (3.68)

An estimate for the shock thickness is found from line-

arization of (3.68) near y=1. The differential equation

for 1-y=y'(«1) is

d2y' dy'
A+6--

dn2 dn
y'(1-yM-2) = 00

where
no

is neglected with respect to unity.

The shock thickness is

Ro
Zn20

d -
(3a)

d2y" yfl
A " 2+ 6 --+ (yM--y1 -y1) = 01 odn2 dn yi

(3.67)

(3.69)

(3.70)

Linearization of (3.68) at the back side of the shock, for

y is near yi, yields, using (3.61),

with

From (3.71) a wavy behaviour appears for y-y1 with wave

length Ad

(3.71)
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B0 2nyl,
Ad -

413a0) (yM-o2y- 1Y-Y )1

(3.72)

The number of waves, N, in which the amplitude of these

waves decreases by a factor e-1, is

(ym-2y-fly )4
o / /

A1
ff61Y1

S.7. CONCLUSIONS.

As suggested at the end of chapter. Z we found in this chapter

a shock wave structured by compression, dispersion and

dissipation. The front part of the shock is mainly deter-

mined by the balance of compression and dispersion. Only

for very weak shocks dissipation becomes important. However

for weak shocks another mechanism needs to be included as

we will see in the fallowing chapters. At the back side of

the shock waves appear., which are damped in 10 wave lengths

at most.

We conclude further that for strung shocks, Mfr., the fre-

quency of the waves approaches the resonant frequency of

the bubbles W. From the analysis of chapter 2 it follows

that these waves are no longer possible. Other effects such

as breaking up of the bubbles become important.! However

this type of shocks are beyond the scope of this thesis.

In this chapter we discussed shock waves in mixtures where

the bubbles are assumed to move with the liquid everywhere.

In terms of the equation of motion of a bubble (1.17) this

means that the viscosity of the liquid is very high. For

our experiments this is unrealistic. We therefore discuss

in the following chapter the other extreme, where the bubble

translation with respect to the liquid is not resisted by

a, viscous force.

f3.73)

4
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CHAPTER 4.

STRUCTURE OF A STEADY SHOCK WAVE IN THE CASE WHERE THE

BUBBLE TRANSLATION WITH RESPECT TO THE LIQUID IS NOT

RESISTED BY VISCOSITY.

VT, INTRODUCTION,

We now include the relative translational velocity of the

bubble in the discussion of steady shock waves. The extreme,,

where the bubble velocity is not resisted by viscosity,

is considered.

From the equations of motion describing this flow, diffe-

rent important expressions are derived such as sound velo-

city, etc. From the governing equations it will appear that

the shock structure is completely similar to the structure

as found in the foregoing chapter. However, the structure

will be based on an other sound velocity and consequently

onan other Machnumber. When the gas volume fraction is

sufficiently sma11,80=0(10-2), there is practically no dif-

ference between the relations derived in this and those of

the foregoing chapter.

We derive Hugoniot relations, shock thickness, etc- At the

end of this chapter the corresponding adiabatic relations

are. summarized.

EQUATIONS OF MOTION INCLUDING RELATIVE TRANSLATIONAL

VELOCITY OF THE BUBBLE.

In this section some already known relations are repeated

for convenience. We consider time dependent flow in x

direction. The liquid velocity, averaged over a small volume

of the mixture containing many bubbles, is un the gas velo-

city v and the mixture density is o.

The density is found from

= 01(1-8) . 14.1)

0

Parts of the results of this chapter and the following chapters will

be published in Noordzij, Van Wijngaarden (1973).

-58-
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The concentration by mass, a/pi, is given by

a
(4.2)

1-13

Now we include relative translational velocity v-u in the

governing equations.

As described in chapter 1 we adopt Levich's model for the

bubble translation. Darwin (1953) showed that in potential

flow of a sphere through a liquid at rest, a mass of liquid

is displaced equal to the virtual or hydrodynamic mass,

of the sphere. V is the volume of the sphere. This

is sometimes called drift (Darwin). The liquid displace-

ment is in the direction of the spheres motion. We will

understand by u the liquid velocity which locally exists

at large distance from a bubble.

The number of bubbles passing through a surface at right

angles with u and moving with u is n(v-u). Therefore the

displaced mass is, using Darwin's results, p1yn(v-u)/2,

or with (2.1),

P 13(v-u)/2 . (4.3)

Therefore the equation of mass conservation becomes,

ap

at as
P1$(Vu)/21 = 0 . (4.4)

The equation of conservation of the number density n is

an a(fly) = 0 . (4.5)at ax

Associated with the motion of the bubble in potential flow,

each bubble represents an impulse, as defined by Kelvin

(Lamb 1932, §119), relative to the liquid of magnitude

p V(v-u)/2 .

+

==



The number of bubbles passing through a unit surface at

rest, normal to the flow, is nv. The associated Kelvin

impulse is, (Van Wijngaarden, U970),

Oiv-u)

The momentum equation for the mixture is, including this

Kelvin impulse,aa
--lpu+p Orvu)/2',+ p+Pu2+p1av(vu)/21 = a .
at ax

The equation describing unresisted bubble translation is

found from (1.1t) with p1=0,,

3p

--V(vu) = V-- I( 4'. 7)1.

" dt ax

The equation relating the pressure in the bubble to the

pressure in the liquid is

D2R 3 DR' DR

PP Py{R (--)2+ Zw'R ,

Dt2 2 Pt Pt

with

= + v
Dt at ax

(4.8)

The effect of relative translational motion in $4.8) is

neglected. This would give an extra term of other Arly-u/2

which can be ignored as shown in chapter 1..

In the following section we derive equations relating the

quantities far in front and far behind the shock.

g3 THE HUGONZOT RELATIONS,

We consider a shock wave moving with constant speed in

negative x direction. The equations (4.1)-(4.8) are trans-

formed from the xt frame into the x.,t frame,with x'=x+Ut.

(4.6)

+ --I

a a

-60-
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In this new frame the shock is assumed to be steady and

therefore (a/at)x, is zero. Transformation of (4.4) and

(4.6) and integration of the resulting relations gives:

for the mass conservation

)ll = p (2-62P(U+u + P 0 WV -74
Z. o (4,.9)

for the momentum equation

poi Pr"- 00)112 =. Fib 4" P1d1-01M+U112 +

ylU(OITUI)1 , 14.10)

The constant of integration follows from the assumption

v=u=0 ahead of the shock (x4.-.). Because we have u /U=0(8o
1

it follows from (4.6) and (4.7) that (v1-u)/U=0(13o). We
will use approximate forms of the equations, in which terms

of order 63 are left out of account. Therefore
U+v1 is

taken equal to U in the third term of the right-hand side

of (4.10).

Transformation and integration of (4c5) gives using the
constancy of mass of a bubble,

$p (U+v)=8p U.ago

/Using the isothermal relation pgapg, r4,11) yields

P0 U v-u
= -12 - I o(d2)

PO
a U+u

Considering the order of approximation in ../§), (J/(U+01
can be replaced through (1-6)1(1-00) as can be seen from

i(4..9)L Then, with (4.2), (4.12) becomes

_apa ( v-u)0

Po a
(4.13)

(4.11)

(4. 22)

-61-
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Using (4.fl):, the pressure ratio p1/'p0 isfl

0011 Vr-Ul[

lao
U I

An expression for the relative velocity v-u is found from

transformation and integration of (4.7). First we formu-

late (4.7) in terms of 13. With (4.5), (4.7) yields

o 2a ap at
i4.150

Dt pl ax ax

Substitution of ap/ax from (4.6)! into (4.151, transforma-

tion and integration finally gives, with help of (4.1) and

2
V1-al a01(a/)1 11

'U
0

a1 '\a0

pl/pa, from (4.,14) changes with (4.16) into

ti = - a 11 - 19- !II.

Po al \a11

This relation indicates the difference with the case where

the bubbles move with the liquid. In the latter case the

pressure ratio is found to be

aor
Pc al'

With a0=0(10 ), the difference' between this and pl/po

from (4.17) is small.

Substitution of ,(4..9) into f(410)' gives

PI aoal112 (,a1)
4.4.181

Po po(14-ao ao

Using the definition of 742 from (5.22)' we find from (4.18)

(4'.14)

(4.16)

0.171

-62-
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--19(v-u)1= -

(4.4),

1

1



and (3.20)

P 1 1

O

PO
a /

0

or with (4.17)

M2
14.a(14. 1)

Po Po

So far we did not introduce the sound velocity in the re-

lations between quantities far in front and far behind the

shock. For later purposes we derive the sound velocity for

a mixture in which the bubble is free to move with respect

to the liquid.

§4. THE SOUND VELOCITY.

The sound velocity for a mixture in which bubble motion is

not resisted by viscosity, is given by Crespo (1969). This

velocity, cf, is

2
- -

Po
(/+4ao)cf

lo

OT C2 = c2(1+2a) . (4.21)
0 o

The relation for
co is found from an equation of state.

(chapter 2). We investigate whether such an equation can

be derived for the unresisted case.

First we derive the relation for
cf

in a steady frame of

motion. From p =p, (4.13) and (4.16), omitting subscript /,

we obtain for p

a a 2
o

Po ct a [\a 0

(4.19)

(4.20)

(4.22)

is assumed to be small with respect to unity in

the case of acoustical wave propagation.

With c2=(dp/dp) and cc-o.ao, we find from (4.22)
f-

a
-
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c2 = c2(1+2a) .f o o

The speed of sound cf. in a mixture, in which relative motion

is not resisted by viscous forces, is larger by a factor

1+a0 or 1+00
than in a mixture in which the bubbles move

with the liquid. The physical reason is that due to relative

motion the gas concentration is locally less than it would

have been with bubbles moving with the liquid. This gives

the mixture a greater stiffness and accordingly a higher

sound velocity.

Secondly, for small disturbances, an equation for
cf

can

be derived from instationary theory.From (4.5) we find,

using p =p, the homogeneous theory,

Note that

au
--(pa)+ pa + --(ps(vu)).= 0 .
dt ax ax

a
= + u .

dt at ax

(4.4) changes, with help of (4.25), into

au 1 3

__(1-13) + (1s)-- + --(B(VU))= 0 .

dt ax 2 ax

From a combination of (4.24) and (4.26) we find

pe d a

--(pal- --(1-13) + --(pR(v-u))-
dt 1-13 dt ax

PO 3

--(a(VU)) = 0.
2(1-0) ax

(4.23)

(4.24)

In the following we omit the last term in the left-hand

side of (4.27), which is 0(0) times the third term.

From (4.5) and (4.25), (4.7) becomes

(4.25)

(4.26)

(4.27)

a

a

--

-

---
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al)

1
(I3 (yu)) =

2 dt ax

(4.6) becomes

du I d pp
+ p1 ((vu)) = --

dt 2 dt ax

Combination of (4.28) and (4.29) gives

du
--(a(vu))= 2a --
dt dt

Using Ole fact that small quantities are considered, (4.30)
can be integrated to

6(v-u) = 2au

Or pa(vu) = 2p6u . (4.31)

From substitution of (4.31) into (4.27),we obtain

pa d
--(1 -5) + --(2pau)= 0 . (4.32)

dt 1-a dt ax

When small disturbances are considered, (4.26) reduces to

da au= (1-8)
dt ax

or da a

= --(2pau). (4.33)
1-B dt as

Substitution of (4.33) into (4.32) finally yields

pa
- 0

dt (pi(1-a)3)1-

(4.28)

(4.29)

(4.30)

-

-

a

d



M2 = (1-2a 0)M2 .0

With (4.36), (4.19) becomes

P,
M2 =

Pi
(1-

Po P1

(4.36)

(4.37)

For a given pressure ratio p1/p0 and given mo, (4.19) or

(4.37) specifies the speed of propagation of the wave.

Note that for values of p1/p0 near unity, (4.37) reduces

to

u2p,
= _L

c,. Po

Comparison with (U/c0)2=p1/p0 shows that weak shock waves

propagate at a velocity near cf, when relative motion is

not resisted by friction, and at a velocity near co when

resisted.

§5. THE EQUATIONS DESCRIBING THE STRUCTURE OF THE SHOCK.

We consider a shock wave which propagates at constant speed

U in negative x direction. Transformation of equation (4.4)

-66-

or P3
- constant . (4.34)

pl

from this we find for the sound velocity cf,

c2 = (1+23) . (4.35)
p a(iB)

Using a=3/(1-B), (4.35) changes into (4.20). A simple rela-

tion between p and 8, as given by (4.34), could not be found

for the general case.

Now we return to the Hugoniot relations as given in 52.

Defining m21,u2/cf 2 we find for the relation between mf andf' 3

mo , using (4.2) and (4.35),

(1-8).3
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from the =,t into the xrt frame yields, omitting the pri-
me on x',

Ll ,SHii-U+u) + p 13(v-u1/2;11 = 0 .ax

integration gives, upstream quantities, indicated with sub-

script o

fl-B)(u+u)' p BYP-uln = pZ (1-8 o0u . (4.39)

This equation can be written down directly by formulating

the constancy of mass flow in the moving frame of reference.

The complication, caused by relative motion, makes a for-

mal derivation useful. The shock induced velocity is is,

as follows from (4.39).,

14 = s-so
(v u)

1-8 2(1-s)

Here the use of a as defined by (4-2) gives a simpler expres-

sion. u becomes

a

is =oU(-- -1) - a(v-u)/2
a

1(4.40)

The momentum gaIned by mass floW az,(1-130)U during the pas-
sage of the shock is, at station x, p1(2-00)ilu. The Kelvin

impulse of the bubbles, to order s3, is piOU(v-u). Whence

the momentum equation is

Po = P + p1(2-6o + p10U(v-u)/2 j4.41)

This equation results also from a transformation in =1,t
of equation (4.8) thereby using (4.39). (Writing down the

equation of conservation of momentum directly, one might

be inclined ta put

d4.38)

.

.
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--iP 4- p(1-8)(0+u)2 + p13U(v-u)/2 L- 0
dx

counting p1(1-(3)(U+u)2 as the momentum of the mean flow

and adding the Kelvin impulse. This is erroneous because

the mass flow in the moving frame is not p1(1-13)(U+u) but

larger than this by p0(v-u)/2 .

The correct form is

--IP P (1-13)(U+u)2 + pBU(v-u)I = 0

dx

from which (4.41) follows upon using (4.39)).

Substitution of (4.40) into (4.41) gives, with help of

(4.2), (3.20) and (3.22),

-- -1 = M2(1-y) (4.42)
Po

where y=a/ao.

In order to find the shock structure we eliminate p or y

For estimating the order of approximation the derivative

d/dx is replaced by (a0/R), which is connected with the
o

length scale on which pertinent quantities change, as found

in the foregoing chapter. Substitution of p from (4.8) in

(4.22), using (4.13) and the relation for M2, equation (4.42)

from (4.42). For this we use (4.13) and the relation between

p and p from (4.8). First we transform (4.8). From the

isothermal relation pgV=poVo and (4.13) it follows that

R3 V v-u
(4.43)= y(i#

R3
Vo

Using (4.43),

DR

the transformation of DR/Dt

R(U+v) V d (

from

+ O(3)

(4.8)

.

gives

(4.44)la

Pt 3 V dx ao
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finally yields, emitting non-linear derivatives such as

(dy/d02,

Ydv-u)/(7 = a fy2-2), .

For m-2 we obtain,, using (4.17" and (4.19)!
o

m-2 _
o YT ao"+Y/)'

where yl=al/ao.

With (4.46) and (4.47)i 14,4'5.1 yields

v-u
C2 = 0
oil (4.454

with n=x(3ao)3g/Ro

In (4.45) we presented an approximative term including'

y(v-u)/U. Actually the term would appear to be more com-.

plicated. However, we discuss the shock structure with help

of an analysis of the outskirts. Therefore the approximation

does not sacrify the accuracy.

From (4.16) it follows that

d2y
A Y (1-y)(yi-y)(y+ao)

yil(1+4aoy)--- + 6- -

I dn2 dn

This second order differential equation describes the shock

structure in the case where bubble translation is not resis-

ted by viscous forces. This equation differs only slightly

from (3.33) because the factor (y+a0)1/y does not make much

difference in the region of interest, yilyflhe features

of the solution of (4.45)' are the same as those of (3.33):

a sharp decrease of y from 1 to yl, followed by damped

oscillations around nil.
Again from linearization near the outskirts of the shock,

the structure will be determined.. For the front part we

(4.,46)

r4.,.4

yi(1+4a
o

d2y Ady

6a--
dn

;
+

dn2
y)

,

(4.48)



linearize (4.48) near y=1 and look for solutions which

disappear for With y=1-y' and y'«2, .(4.48) changes

into

d2y' Adyr
(1+4a + - y'' (1-y1 1(.1+ao = 0

dn',2 °dni

Or with 1446) and (4.46)

d2y' dy'
.(1+4a 1--- + AA-- - y'(1-M7) = d

0 dn,2 adn

From this we obtain for y

0
1

1-y .=E_ expt
2

1+2ao

(4.497

it 50)

Accordingly in the expression for the shock thickness as

given by (3.42), Mf will enter in the place of Mo. However,

the difference between these expressions for the shock

thickness (the one with m-2 and the one with M-2)1 is within

the error of the experimentally obtained values.. The shock

thickness becomes

11+2ao11n20 Ro
in20

dA= n---1-c
-

u) f1-111'-'214-6/2 Ina" 1(1-M;0-0/2

with M2=pli/po.

The front part of the. shock follows, from a balance of dis-

persion and compression.

For the back side of the shock we linearize (4.48) with

respect to the small quantity y-y2 and find for y

y-y1 m exp( 61n)
2

exp n

11-1:

(1-y1)(y1+ao) 14.53),

A

1,41(1+4a0y1) I

The wave length AA is found to be

r4.521

-70-
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(4.51)



AA

(M2_1)4
N = ° 1

-IT6Am3
10

-71-

i
(1+2a y )y32rR0 o I 1

AA = i'
(3a0)15 [1-Mi2+a0(1-y1)2/y1l

Within the experimental error, AA is

1

Ro
r2M3

(3u0

This is equal to the wave length derived in the foregoing

chapter.

The number of waves,N, in which the amplitude decreases by
-/ .

a factor e is, using (4.53) and (4.54),

In all our experiments, this quantity is smaller than 10.

With shock thickness, wave length and attenuation of the

waves known, we are able to describe the shocks. These

shocks are called SA shocks. A pressure recording of the

shock profile is shown in Figure 10.

FIGURE 10. A pressure recording typical for flow with unresisted

bubble velocity. A SA shock.

(4.54)

(4.55)

(4.66)

=

(M2-1)'
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6. THE ADIABATIC RELATIONS FOR THE SHOCK.

From (4.11) and the relation p ccpY we find for the relation

between the pressure in the bubble and the pressure far in

front of the shock

and

v-u

=((:11)Y (1"
Po

a

YP,
c2fad = (1+4a o)

pao

or c2fad - icf - Y(1+2a )c2
o o

Po
P(2-$o)U2 = p + pli-s )(u+u/)2

+

pU(v-u1) . (4.62)

The pressure ratio across the shock, p1/p0, becomes

Po a1

P1 =a0 Y(1_1, v1-241 (4.63)

Using (4.58), p2/p0 is

(4.57)

(4.59)

(4.60)

For a steady flow field the relations concerning mass and

momentum are

The relation for (v-u)/U is

y(v-u)/U = a(y2-1) . (4.58)

For the homogeneous theory with p+pg, we find from (4.57)

and (4.58) for the sound velocity cfad

P (1-6o)U = p (1-$1)(U+u ) + p/51(v1-u1)/2 (4.61)

)u

U

,

*
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aoy- I
al

I

From (4.62)1 and (4-62) we find for the pressure ratio

P2 p2aoU2 ( a1)
14.65.,

Po po(1+ao) ao

'With help of X4-64) the ratio alai becomes

ao =IfP/yir ,moil_rjiYi
d4,66fi

t1 kPoi I Po

Substitution of ao/a, into 1(4.65) gives, using. MW/c,

P1/120-1 , PlYil
M2 -

2#a 11+(-- r (tin)
4 1-(P0/p rl °I P1 1

For convenience we summarize some other relations between

liq), y1=a2/a0 and pl/po

P1' ynIty !En-141
4.68)

Po Y2,

YIY-2
m2 +

yao(1+y V ty+1$

yl
o Y

With help of the foregoing relations the structure of the

shock can be described.

For a steady shock wave we have,,, from, the momentum equation

=
Po

Substitution of p, from. (4.8), the relation describing the

volume oscillations of the bubble, into (4.68), using (4.57fi

and (4.58) finally yields

rt. 64)

(4.. 691

P1 ro)Y IC
/-ya (--

0
Po \all 00

-1 M2(1-y) (4.70)
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d2y
y23 I(1+4a y)--- + 6' --I + y(1-y) + y(1-y)M2 +

° dn2 dn

yaoy-Y(y2-1)m-2 = o .

From linearization near the front part we find for the

shock thickness, using MiL=(/+2a0)yM-0-2,

dA
Ro (1+2a0)ln20

(3a)4 (1-M-2 )k-0/2
o fad

Within the experimental error dA becomes

(4.71)

(4.72)

2? 1n20
dA

17220
=

(3ao)11 (1-yM-2)-0/2

In (4.73) M2 is defined through (3.60) .

Within the experimental error the relations for A and N

are identical to (3.72) and (3.73) respectively.

17. CONCLUSIONS.

In this chapter we discussed shock waves, socalled SA shocks,

in mixtures where bubble translational velocity is not re-

sisted by viscous forces. A shock profile is found, prac-

tically identical to that found in chapter 3: a steep front

followed by damped waves at the back side. We did not com-

pute the temperature rise and entropy change across the

shock. The relations (3.16) and (3.24) are hardly affected

by relative velocity.

In this and the foregoing chapter we analysed shock struc-

tures for two extreme circumstances. The first extreme is

that the bubbles move with the liquid. This means that the

viscosity is assumed to be very large. The other extreme

is based on a negligibly small viscosity. Bubble velocity

differs from the liquid velocity.

In the following chapter we discuss the more realistic case

where initially generated relative translation is ultimately

resisted by viscous forces.

(4.73)

=



CHAPTER 5.

STRUCTURE OF A STEADY SHOCK WAVE WHEN THE SPEED OF THE GAS

PHASE ULTIMATELY EQUALS THE SPEED OF THE LIQUID.

§1. INTRODUCTION.

In this chapter we discuss steady shock waves with ultimately

zero relative translational velocity of the bubble. So the

relations between quantities far in front and far behind the

shock, the Hugoniot relations, are equal to those discussed

in chapter 3. However, the shock structure will be signi-

ficantly modified by viscous effects associated with relative

motion. A typical profile is shown in Figure 11.
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FIGURE 11. A pressure recording typical for flow with resisted

bubble velocity. A SB shock.

The shock structure, as shown in Figure 11, depends on both

the gas volume fraction and the pressure ratio. Below a

critical value of the pressure ratio, the steep front of the

SB shock disappears. The pressure profile is almost entirely

smooth. This we call a S shock.

In this chapter we summarize the Hugoniot relations. From

the equations of motion, including viscous forces, the rela-

tions which determine the shock structure are derived. At



the end of this chapter the corresponding adiabatic relations

are summarized.

§2. EQUATIONS OF MOTION.

Most of the equations were already derived in the foregoing

chapters. For convenience we briefly summarize the known

relations. Furthermore we include viscosity in the equation

of motion of a bubble.

We consider time dependent flow. The liquid velocity is u

and the gas velocity is v. Both quantities averaged over a

small volume of the mixture containing many bubbles. The

density of the mixture is defined by

p = pi(/-13), (5.1)

and the mass concentration, a/pis by

6

a =
2-6

The relation between B and the bubble radius R is

4

6 = 7nR3
3
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In the mixture the equation of mass conservation is, inclu-

ding drift effects (chapter 4),

ap a
+ --{pu + p18(V-u)/2} = 0 .

at ax

The equation of conservation of the number density n is

an a

+ --(nv) = 0.
at ax

The momentum equation is, including Kelvin impulse

(chapter 4),

(5.2)

(5.3)

(5.4)

(5.5)

-



a
--ipu+pfi(v-u)/2+ 6v(v-u)/2 = 0 . (5.6)
at ax

Now the equation describing the translational velocity of

the bubble includes the friction force and is (c.f. 1.16)

2

- P 127p R(v-u) = -V-- . (5.7)
2 dt ax

Furthermore we have the equation for bubble pressure pg
and liquid pressure p

D2R 3 DR DR
pg7 P = p,{R + -(--)2+ owire --} 3

` Dt2 2 Dt Dt

with
a

= + v. (5.9)
Dt at ax

§3. THE HUGONIOT RELATIONS.

The relations between quantities far in front and those

far behind the shock become rather simple. Far in front

and far behind the shock the velocity of the gas phase

equals the liquid velocity. Therefore the Hugoniot rela-

tions are equal to those derived in chapter 3. We summarize

these for convenience. The expression for the liquid velo-

city ul behind the shock is, using (3.21),
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U/ a 02
o-

.

/+ao U2

For the Machnumber Mo we have

P
M E = (-2)

0
co Po

( 5. 8)

(5.10)

(5.11)

or M2 = 00/a
/ (5.12)

a

--Ip+pu2+p

d

a

0
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Praoo[12
=

Po p0(1+a0)2

4.. THE EQUATIONS DESCRIBING THE SHOCK STRUCTURE.

We consider a shock wave moving with constant speed U in

negative x direction. The equations (5.1)-(5.8) are trans-

formed from the x.t-frame into the x',t-frame with x'=x+Ut.

In this new frame the shock is steady and so (Vat)x, is
zero. Carrying out this transformation on (5.4), we obtain,,

omitting the prime on x',

--ioid;-0(U+u) + olpto-u)/al = 0 .

ax

Integration gives,

p1)(1-0HU+u) + P18(12-0/2' = P1(1-50)'U k(5.161

where upstream quantities are indicated with subscript o.

The shock induced velocity it follows from (5.2) and (5.16),

a

u 11(-- ai(v-u)/2
o

ao

ti5 . T71

From transformation and integration 'of (5.6) we find for

the momentum equation in the moving frame of reference

Po Pz(2-60)112 = P o1(1-8.)'(U+u)2+ o16U(o-u)

Substitution of (5.17) into' (5-18), use of the equations

(5.12)-15.14),1 gives for the momentum equation

and ,accordingly
P1' (5.13)

Po t./
We also use the equation

=

=

(5.14)

(5.15)

,

. (5.18)
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-- = m211-y) + OW) J. (5.19V
po

with yra/co.
From (5.19) we want to find the equation describing the

shack structure in terms of either p or y. We follow the

method given in §5 of chapter 4. Transformation of (5.8)

by use of (4.44), substitution of p from this new equation

into (5_19), use of the isothermal relation peV=p0110,
finally gives for 1(5.19), with help of (4_43),

d2y dyIy3 (1+4aoy) + ISA --I * (1-0(y-M-2) +
dn' dn

0-u
M-2 = a (15-20).o -

U

with n=x(3a0)/R0

Non-linear derivatives' are neglected because the outskirts

will be discussed.

For determining the shock structure we need an expression

for (v-id/U. Therefore we consider the equation of motion

of a single bubble (5.7). With the help of (5.3), (5.5)

and (5.91a (5.7) is changed into

28 ap av,
+ 247ru1azR(v-u) = - - 13(o-u)-- (5.211

D- t qi ax ax

Substitution of ap/ax from (5.6) into (5.21) and trans-
formation of (5.21) finally yields,, with, help of (5-17),

d v-u a v-u dy

-(Y ---) + -I- Y
- 2aoy -- + 0(0.2) =- 0

dn Ti ' y3 U dn

with

a = 18vZ
1

d(5.,23,1

URo (Sc)o

(5.22)

In some cases y3, in the term containing a,1 can be taken

-1

0

.

,



v-u
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equal to unity. Upon Integration of f5.22), we obtain omit-

ting terms of order a2

in dy2
exp Fat( n-n )10)

In determining the constant of integration it is assumed

that ahead of the shock (a+-) v=u=0. Actually there is a

small relative velocity caused by buoyancy. Thanks to the

addition of glycerine to the liquid this velocity is only

a few cm/sec. The shock induced velocity is of order aU

and therefore much larger in most of the experiments.

The basic set of equations is given by the system of equations

(5.201 and (5.22) as well by the system (5.20) and '(5.24).

With the help of both systems we discuss the outskirts of

the shock. For a4-0, shocks as discussed in chapter 4 are

derived and so are shocks, as discussed in chapter 3, for

Before starting the discussion of the shock structure

we make some remarks regarding to the equation describing

relative motion; (5.22). For most of our experiments a is

of order 10-2 and at maximum of order /0 in some of the

experiments. On the scale of e=0(1), that is on the scale

of the shock thickness dA as defined by (4.52), the term

representing the viscous force in (5.22) is unimportant,

because (v-u)/U=0(a). However on the scale an=0(11, vis-

cous effects associated with relative motion plays a domi-

nant role. These features will largely determine the shock

structure.

For sake of completeness we combine equations (5.202 and

(5.24) to an integro-differential equation

2
d2y Ady

y3 (1+4a 1--- + 6 + (y-M-2) +
o da2

dn I

M-2 ni dy2
o I expfro(n-IY)Idn' =

-o y Lm da'

(5.24)1

r5..251

---
V

0 .
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In the next section, where we analyse the shock structure,

we will use the system of equations (5.20) and (5.22) as

well equation (5.25)

55. THE SHOCK STRUCTURE.

We substitute y(v-u)/U from (5.20) into (5.22) and find a

third order differential equation. Following the procedure

of the foregoing chapters, this equation will be linearized
in order to analyse the shock structure from the outskirts

of the shock.

To investigate the front part of the shock we linearize the

differential equation in this region, where y'(=1-y) is the

small quantity. The resulting equation is

t5d3y' ( 4.a)day' 1-M-2-2a M-2 dy'00
dn3 1+4a0 dn2dn1+4ao

a
----- (1-M-2)y ' = 0 . (5.26)

1+4ao

For the front part we seek solutions which disappear when

114-.. To find the solutions we have to solve the third order

differential equation (5.26). To this end a general method

is summarized in Appendix 1. In this section the results

are presented.

In general there are three solutions of (5.26).1-Iowever, not

all are useful. This depends on the condition that the solu-

tion needs to vanish when As follows from the analysis

in Appendix 1, there arc two important cases which lead to

different solutions. So we will properly distinguish these

two cases. Their appearance depends on the pressure ratio

across the shock. The first is represented through

m2 <
1+2,o

Po

From Appendix 1 it follows, under this condition, that the

solution for y is

+

=



-y exp
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fan(M-11 .

[1+2a -M2Io

(.5.27,)/

This solution, which describes the front part, disappears

when From (5.27)' a shock thickness d" can be defined

1+2a 2-M
0 0 0 in20

(8ct0 a(M2,-1
45.28M

This is at least an order of magnitude larger than the shock

thickness derived in the foregoing chapters. In this case

the front part follows from a balance of non-linear compres-

sion with dissipation associated with relative motion. (5.2?)'

represents the front part of a smooth profile, the Sc shock.,

The second case is represented by the condition

W2 > 1+2ao0

Tinder this condition the solution for y iS;

AIi"ra/-M-2-2a oM-2)o o_o
1-y At

nt5
exp - + .

2 1+2a0

The shock thickness dA
becomes

Ao
d1+2a)1n2a

dA =(5,.30)1-ii,77 (1-M-2-2a M-2)11-0/2
0 o

With the help of the definition of 142/.., 14.37, (IA can also

be presented in terms of Mf

-1? (1+2a )1n20
dA =

o o 1(5-31),
13a)15 (2-M12))4-SY2

For most of our experiments this is the same as the shock

thickness derived in chapter 4. We already mentioned, on

the scale of dA
that in the front of the shock viscous

effects are unimportant.

291
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Now we pay attention to the back side of the shock. We

linearize the third order differential equation in this

region, where y"(=y-y1) is the small quantity. The resul-

ting differential equation for y" is

d3y" A d2y"
M2-1#2co -2dy"+ (d +GMI M- .0-

dn3 1 dn2 1+4a M-2 do00
a(M2-1)

1+4a M-2
y" = 0 . (5.32)

00
For the backside we seek solutions disappearing when n-,-....

To this end we use the analysis of Appendix 1. The solution

for y consists of two parts. The first part is proportional

to

exp
I naM,3(M-1) 1

(5.33a)

M-1+2ao

This term originates in the viscous effects associated with

relative translational motion. The pressure changes on the

scale on.

The second part is proportional to

a

expl-
a2a M3 II (M2-1+2a )M

A+ 00
exp ±in

1 11
o o

.(5.33b)
2

1

M2-1+2ao M2+4a
o o

This represents damped pressure oscillations. This wavy

behaviour was already found in the foregoing chapter, but

with a slightly different attenuation factor. In this term

the expression containing the factor a becomes important

when M-1--O(i) and accordingly M3 can be taken unity. We

see that the solution for y,or for the pressure ratio, at

the back side of the shock consists of a profile slowly

changing to equilibrium, (5.33a), with damped oscillations

superimposed, (5.33b).

Thus we found two types of shock structure, the appearance

of which depends on a critical value of the pressure ratio.

One type is described by the system of equations (5.27),

0

n
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(5.33a) and (5.33b). This we call a S shock. This shock

will receive more attention in the following section. The

other type is represented through the system of equations

(5.31), (5.33a) and (5.33b). We call this a SB shock, with

which the present section is concerned. A pressure recor-

ding for a SB shock is shown in Figure 12.

FIGURE 12. A pressure recording typical for a SB shock.

In this Figure we see a profile that considerably differs

from that of a SA shock (c.f. Figure 10). In the SB shock

there is still a steep rise at the front, but the pressure

does no longer rise to its equilibrium value at the back

side. This takes place in a region which is much larger than

that of the front shock. In this region at the back side

the pressure reaches its final value slowly oscillating.

The wave length A follows from (5.33b) and yields, with
A -2a=0(10-2), 6 =0(10-1) and 0=0(102) in most of our expe-

riments,

2nRo
0

A = 7-377 M-1+2a0

There is no essential difference with the wave length

represented by (4.55).

(5.34)
I M3



The number of waves, N, in which the amplitude decreases

by a factor e is found from (5.331,) and (5.34) and is

1 IM20-1+2aoli M-1+2aoN- (535)
w I Mt I (M2-1+2a )0+2G

o I

Besides by the shock thickness dA and wave length A, a SE

shock is also characterised by two other quantities.

The first is the length of the region where the pressure

slowly reaches its equilibrium value as shown in Figure 12.

The second is the pressure p* located at the point of inter-

section of the steep front part and the smooth back side

of the shock. The different quantities for a
SB

shock are

once more illustrated in Figure 13.

Pf

PI

A

as

(5.22) becomes
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.T1

FIGURE MS. In this Figure the pressure profile of the shock wave is
shown. Important quantities such as dA, A, p* and are marked.

The region of length dB is determined by viscous effects,
as can be seen from (5.33a). By stretching the n scale
through the factor CT, to

E = an (5.36)
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d' (v-u
v-u dy

----) y
- 2a = 0 .

de U odC

For the investigations of the back side of the shock, pi

-in (5.37) can be taken equal to unity. Then we obtain from

4(5.24) and (5.36)

v-u fe dy2

= m ---
de'

To find p* and dB the following approach is' chosen:

On scale the front shock can be considered as a discon-

tinuity. In front of this discontinuity the pressure is poi

and behind it p*. At the back side, a region where steepen-

ing is balanced by dispersion goes over into a region where,

it is balanced by viscous effects. In the transition region

therefore, the three mechanisms, non-linear compression,

dispersion and viscous effects are of equal importance. A

detailed study can only be made by analysis of the full

equation (5.20). An estimate for p*however, can be made

in various ways. One of them is the following:

In the front shock, on n scale, viscous effects associated

with relative motion are small and the propagation velocity

must obey 1(4.19)

U2 p*
= --12+a (1+clo, *c2 '

Po
p

However, Ii2/q, follows from conservation of mass and of

momentum in the whole wave and is, (eq.5.11),

U2
p2

whence

I I*1 r 1+12.1
I p*

PO PO

15,. 3?)

381"

(5.39)

2



2ao Zn20
(2+

=

UT m2-2 m=0 0
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The pressure recordings from the experiments give p-p0
relative to the pressure jump pi-pa. For this we introduce

F. which is defined through

P /Po-1F. =tspi/p_I

From this and 4L...3.9) we have at p=p*

Pl/p +1
= 1 _

ao p
o

to-
1/po-1

It is easily verified that p* becomes equal to zero,, to,

order a2, when

Pl/po = 1+2a

Which is the threshold for the existence of a smooth pro=

file, the Sc shock. For strong shocks p* is practically

equal to pl.

The value of y associated with. p7 y* is, using (5./2?,
(5.28) and (5.40),

Y* = Y ao(i+yyl (5.4,r)

From this value of y* or with p* and the relation for the

smooth profile at the back side of the shock, (5_33a), the

length of the smooth region, da, can be estimated. dB follows

from the distance in which y changes from y* to y2+.05(y*-y2j,,

say. From (5.33a) and 15.41) we obtain

with R2
.0

18vi

Li Experimentally, it is 'beyond the accuracy of the measured

profile, for us to locate the distance where y-y2 is a small

fraction, 5%, say, of y*-y1. It is only possible to indicate

0

(5.40)

=

(5.42)

(5.43)



y-y1 as a small fraction of p1-p0.
With the help of (5.33a), (5.40) and (5.41) we find for dB

do
(1+ °)m-71ni20(1-F. )1ss.

M °UT

The equation for the thickness of the front shock, dA, also

needs some modification. Actually dA follows from the dis-

tance in which y changes from 1 to y* instead of to yi.The

latter value gives (5.29). For dA we have the same comment

on the accuracy of the approximation as we had for dB. From

(5.28) and (5.40) we find for dA' the distance in which y

changes from 1-.05(1-y1) to y*,

So far we discussed the structure of a SB shock, which will

appear for Pl/po>1+2a0. Before starting the discussion of

steady shocks with P2/po<1+2a0, we first analyse a SB shock

in a slightly different way. This may serve the insight of

the SB shock.

In the region y*<yl relative motion is not resisted by

viscous friction and we may take here a=0 in the system of

equations (5.20) and (5.22) and equation (5.25). From these

equations we find, using (5.41),

(1-y)(y*-y)(y+ao)
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Ro
+a(120)1n(20F. )

dA =
Is

4- A
(3

0)3/4 (1-m-2)1-do/2

d2y dy
= yS1(14.4a y) 4" 66--1 -

° drip dn

(5.44)

(5.45)

(5.46)

This equation is similar to equation (4.48) with y* instead

of yi, valid for a SA shock, as could be expected. This

shock is discussed in chapter 4 and (5.46) needs no further

discussion here. The equilibrium points are at y=1 and at

y=y*. Linearization at the front, near y=1, gives

A

6o ni/-y1(/+2ao)n

I

1-y cc expr- (5.47)

2 1+2a
o

=

0
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Since here y1=Po/p1=M;2 and c=c2f(1-2a0)3 this may be writ-

ten as (4.51), which emphasizes that both the front part

of a SA shock and that of a S shock are of the same type.

At the beginning of this section we already discussed the

front part of a SB shock as represented by equation (5.28).

This equation shows the influence of viscous friction by

the factor G. The neglect of a is justified for most of

our experiments and accordingly this results in equation

(5.47).

The back side, excluding the oscillations, is governed by

the balance between non-linear steepening and the effects

following from viscous friction connected with relative

translational motion. For this purpose the n scale of the

equation (5.25) is stretched by the factor a. We obtain

M2 dy2
(1-0(M-2-y) - a f exp[-(C-c')]d' =

0

0[02(1+4a

with c=an.

The pertinent equation for the back side is (5.48) with

cs-)-0. On scale the front shock is a discontinuity and

taking .7.() at this discontinuity, we write

y = 1 +f(y1-1)-1-f(OH(c) (5.49)

where H is Heaviside's unit step function.

With a view on (5.41) f(C) is of order ao. When we neglect,

in inserting (5.49) into (5.48), terms of order ct, the inte-

gral reduces to

f(y-1)(5(C)exp[-(C-E1)1dC

where (S() is the Dirac delta function.

The integral equals

d2y
) +

dy
A

cra --]
dC

(5.48)
dC2

---

---



-90-

(y1-1)exp= .

From (5%45) we obtain for f

= ,m011+y21.exp-c.

Together with (5.49) this gives for c40'

= + a(1+y )exp-c-
o 1

This relation for y-y2 is similar to (5.33). The latter

represents the smooth profile at the back side of the shock

when

M4(M2 -1)
o

Mg -1+2mo

is taken unity,.

At C=0, the location of the discontinuity, 15.,,,50) gives

= Y1* a0(1+111)

which supports, the independently obtained estimate (5.411

for y*. With help of (5.11) and (5.19), we deduce from

(5.50) that the pressure profile at the tack side is

P/Po-I P1/p0+1
= a exp-C .

Plipo
o _1

'ro

At Pis as given by (5.40)) is recovered,

16% THE STRUCTURE OF A SMOOTH SHOCK; A Sc. SHOCK,

(5.5o

(5..51),

In this section we investigate shocks without the steep

front part. This occurs when the pressure ratio is below

a certain critical value. A pressure recording of a Sc

shock is shown in Figure 14.

f

y

y*

1



FIGURE. It A pressure recording typical 'Fort a Sc shock.

In the foregoing section we described already the front

part and the backside of this profile. For a Sc shock the

viscous forces are important throughout the profile. The

scale on which quantities change is the scale instead

of the n scale. The pertinent equation describing Sc shocks,

is equation (5.48). For 0+0 the right-hand side vanishes

and the equation describes a transition in which non-linear

steepening is resisted by effects connected with relative

motion- In 55 we found that this is only possible for

'Since y lies between unity and m;2,, 1-y and M;2-y are of

order
ao in these waves. Them, to order a30 (5.48) can be

simplified to

4 dy
(1-0(M-2-y) - 2a ---expl-rc-c/)]d0 =

dV

When. we introduce tire quantities 0 and X by

(5.52)
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M2
PI/po < 1+2a0



P/Po-1

Pl/Po-1
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y = 2) + 4)(1-m 2)1/2 (5.53)

2ao
A = (5.54)

M2.1

and require that 41=0, half way between y=1 and y=M;2, is

at c=0, we obtain

(1-)1-A (1+)1+X = (5.55)

For 1-A<O, which amounts to P1/p0<14-2a0, as follows from

(5.54), this represents a wave profile in which * decreases

smoothly from 1 to -1, y accordingly from 1 to M;2. The

dimensionless pressure p/po is related with ty, from (5.19)

and (5.53), by

P/Po = f(1+1'4) tp(1-M)1/2 , (5.56)

or, with M2=P1/pa by
a

- (1-0/2 . (5.57)

From (5.55) and (5.56) it follows that the dimensionless

pressure rises from 1 to (M(2).+1)/2 over a distance which is,

in terms of &, a few times, 3 say, A-/. Using (5.54) and

remembering that 2a0 can be written as (c.f.4.21) (cf/c0)2-1

we derive

3(A-1)= 3 .

The rise of (M2+1)/2 to M2 takes place over a distance

3(A4-/) or

c24.u2...2c23f
U2-c2
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This shows that the front part of the shock is much thin-

ner than the back side. The overall shock thickness is

found from the distance in which 0 changes from +1 to

Using the expressions for 0, x and we find from (5.55)

for the thickness d

4a
dC =0

1n20 .

UT M2-1

For convenience we give the profile for a Sc shock once

more in terms of y,

y(1-y)1-X (y-M02)1+A = exp-c . (5.59)

§7. THE ADIABATIC THEORY.

The Hugoniot relations are already given in chapter 3.

For the pressure ratio we have

P1/po = (00/01)1 .

The Machnumber is related with P1/po by

P1/po-1M2=
1-(Po/p

11

The sound velocity, cad, is

c2 --ad YP0 4.(1a0)2/(pZao) .

(ay
v-u

--e-) (.7 - I---) .
pa "ci\ U )

(5.58)

(5.60)

(5.61)

(5.62)

Furthermore we summarize the quantities such as shock

thickness, wave length and the length of the smooth pro-

file. The relation between the pressure in the bubble and

the pressure far in front of the shock is, (c.f.4.57),

(5.63)
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For a steady shock wave the momentum equation is

P/p0-1 = M2(1-y) . (5.64)

Transformation of (5.8) by use of (4.44), substitution of

p from the resulting equation into (5.64) and use of (5.63),

gives

day Ady]
yil(i#4a y) + 5 -- +y(1y) + M-2y(1yY) +

o dn2 dn

1)-14
y .04-2yY 0

0

With the equation for y(v-u)/U, (5.22), we find for the

equation describing the front part of the shock

d3y' day' 2--M-2-2a yM-2 die
(6A4.0)

' 0 oo
0

dn3 dna 1+4a dn
o

a(1-yM,-02)

1+4cto

with y'=1y.

(1+2a )yM-2 can be taken equal to M-2 .

o o fad
Using the results of Appendix 1, we obtain from (5.66),

when P1/po is smaller than the critical value

1 +
4yao (5.67)
1+y

for y

y' = 0 , (5.66)

ion(M2-y)
1y exp 0

2aoy+y-M2

(5.65)

(5.68)

This represents the front part of a Sc shock.

For

P1/po > 1 + 4yao/(y+1) (5.69)

0



or
m2 > y(1+2ao)

the solution for y becomes

I

11(1-M 2 /fad1-y cc exp -n0/2 + .

o

1+2ao

With help of '5.22) and (5.65) we find for y*

1-y3
Y* = Y1

+ y
v_m2,Y+1

o'1
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(5.70)

(5.71)

To express this in terms of the pressure ratio p*/po, we

introduce Fad which is defined through

P*/po-1Fad
p1/190-1

From this and (5.71) we have at flit

P1/p0r1+(P0/p1) II
F - 1 -ye (5.72)

ad
yPi/po-ro/p1)7YM2

The thickness of the front shock dA' based on y* and using

the comment on the experimental accuracy, is estimated from

the distance in which y changes from 1-.05(1-y1) to y*.From

(5.70) we obtain

R (1+2e)1n(20Fad)
dA

= o o (5.73)
(3ao (1-m-2 )-(36/2fad

The profile at the back side is found from a linearization

of the equations (5.22) and (5.65). The resulting differen-

tial equation for y"(=y-y1) is

d3yu I a Id2y" G dy"
crG2y"+ +-- 1

+ =0, (5.74)
dn3 1 2,5

dn2
7

y3(1+4a0y1) dn yl(1+4a0y1)y1

=

o



with

and

G = G2 + 2a yM-2y1-1
o o 1 '

vm-2
,

G2 = Y/

From (5.74) it follows that the function describing the

smooth profile in this region is proportional to

-96-

7 I -

2exp
Cl yl

1

The thickness of this region, dB, is found to be

The expression for the wave length is

27R yY(/+2ay)
1 01A =

(3a )4
G1

The attenuation of the waves is found from the factor

expl-n(01+G3)/21 (5.80)

with

2aoya
G3 = y-Im2G 3

0 1'1

(5.75)

(5.76)

(5.77)

(5.79)

(5.81)

The number of waves in which the amplitude decreases by a
-1 .

factor e IS

N = ,

G1 (5.82)

YPT(61*G3)

Now we return to the smooth profile or Sc shock. There'

suiting equation is found from (5.65) and is

UT

ul
2

inf200 -Fad )t (5.78)
=

-



-97-

v-u
y(1-01 + M-2y(1-y"A y yM-2y" o40

From this equation and (5.22), we find for y

-t 1+Ryll-yfil (y-y2) = exp-

2ay
with 2. -

142-y

For RC, which amounts to the critical value for the pres-

sure ratio, (5.84) represents the profile of a Sc shock

for adiabatic circumstances.

The expression for the thickness of the Sc shock is found
to be

dr
-= = 2A1n20 ,(5, 857
UT

CONCLUSIONS.

In this chapter we investigated shock waves, where, in,

contrast to chapter 4, relative velocity of the bubbles

is resisted by viscous friction. These are SE and Sc shocks.

We found that the profiles are considerably modified by

these viscous effects. The modification was found in two
ways:

The first is that the pressure oscillations at the back

side of the shock no longer take place around the equili-

brium value pl. The oscillations start already near p*,

which is between pi and po. This modification is very small

for large pressure ratio's as follows from (5.40). For weak

shocks however p* clearly differs from pi as will be shown

in the experiments. The front part of this SE shock is

similar, to that of a SA shock.

The second is that when the pressure ratio is smaller than

a certain critical value the profile is entirely smooth,

p5.83.11.

(5-84)

+

S8.
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The steep front part as well as the oscillations no longer

appear. This, we called A Sc shock.

II I
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CHAPTER 6.

RELAXATION EFFECTS ON SHOCK WAVES IN LIQUID-BUBBLE MIXTURES.

§1. INTRODUCTION.

In the foregoing chapters several shocks, such as SA, SB

and S shocks were investigated. In experiments by Noordzij

(1971) and Van Wijngaarden (1972b) SA shocks were observed.

These experiments were carried out in a shock tube of one

meter length. After a longer distance viscous forces con-

nected with relative translational motion become effective.

Then the profiles of SB and Sc shocks as discussed in chap-

ter 5 can be observed. The shock tube, in which these shocks

arc observed, is schematically drawn in Figure 15.

'pressure transducer

section for photographing
the bubbles

FIGURE 15. Experimental setup for measurements on shock waves.

(A description will be given in chapter 8).

During its passage along the tube the profile of a pres-

sure wave was recorded at three stations marked A, B and

C in Figure 15. A is about .2m from the top of the tube,

B at 2.5m and C is at 4m. At A a SA shock appears, at B

a SB shock and finally at C a S shock. To illustrate the

changing form, the pressure recordings are shown in

Pair supply



A

FIGURE 16. Several shock profiles recorded at the stations A, B and

C along the tube as indicated in Figure 15.

This change in profile cannot be explained with the sta-

tionary theory in the foregoing chapters. To gain insight

in the change in profile of the wave we consider the com-

plete set of unsteady equations in this chapter.

§2. EQUATIONS OF MOTION.

We consider time dependent flow. The liquid velocity is u

and the gas velocity is v, both quantities averaged over

a small volume.

The mixture density p is defined through

P = P(1B) . (6.1)

The mass concentration, a/oi, is defined through

a
(6.2)

1-8

In the following we will take advantage of the fact that

in our experiments 8 and a are small, of order /0-2.

-100-

Figure 16.



Thrther we have'

0 = 4rnR3/2 (6.S1

The equation of mass conservation is

apl a
+ --tpy + p1Vv-u)/21 = 0

at ax

The momentum equation is

a a

--fpy+ple(v-u)/21111 + --1p+p1t2+pi8vi(v-u)/21 .

at ax,

the equation of motion for a bubble is

d ap- pi --Wvu4+ 1271,1Rry-7.4 .v-- -
2 dt 2x

To express this in terms of 0, we note that

Dn av
= = n

Pt as

Where a a
= + v

Dt at ax

We combine this with ILO to

ap
pi --f0dv-u)/2A1 + 12,11,081(1)-u)' -8 -

Dt ax

PZ
Dv

10,89
2' at

From 10.41 it follows that u, is

show also that v-u and "ap/ax are

terms in (6.8) are of order 02 a

right-hand side, is of order O.,

f6.49

of order. 0. 1(6.5) and (6.6)

of order 0. The leading

nd the last term on the

Since 0 is small we discard

.

0

1

.

=

-101-

(6.5)

(6.6)

(6.7)
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this term, which, reduces (8.8) to

1 18wEi 28 ap
--fa() -u)1 4- ---- 6(V =
at R2 pi ax

Ri 18v, au
--10(vu)1 + ---= $(vu/ = 28 .

(6.9)

where we reduced the material derivative to the local deri-

vative a/at, since u(au/ax) and v(au/ax) are of order 82.

To the order of approximation in 8, considered here, it is.

permitted to take R in the coefficient of the viscous term

in (6.8) constant. We, choose, for this the value Ro in the

undisturbed state.

Since, with a view on (6.5), -ap/ax in 'the right-hand side

of (6.9) may be replaced by p(au/at) in the present 'approxIii-

ation, an alternative form of (6.9) is

(6.10)
R2 at

10

This equation describes a relaxation process with charac-

teristic time T, given by

.1 8v

For times t<.ct relative motion is not resisted by friction.

Friction becomes effective at large times and, provided

au/at tends to zero at large time, relative motion ceases

eventually. Similar "rate" processes occur in gasdynamic

shocks. Their socalled relaxation effects on shocks are

well understood in gasdynamics (Lighthill 1956, Whitham

1959, Ockendon&Spence 1969). Once the analogy is recognized,

the application of this theory to shocks in bubbly suspen-

sions can be made.

For most of our experiments, with bubbles of radius 10-3m

and v =10-5m2/sec, T is about 10-2 sec.

For isothermal circumstances we have, with p V as an

invariant of the. motion,.

-

0= (6.11)



A difference between p and p is brought about by both the

inertia of the liquid and various damping mechanisms,. In

an expression for p-pg all these effects are represented

by strongly non-linear terms. However, both the coefficients

involved and the bubble radii are small. So, as shown in

the foregoing chapters (c.f.3.34), the leading contributions

in the difference between! p and p are represented by the

right-hand side of

'Terms neglected in the right-hand side of r6.13Y are of

0(a) and of higher order.

In the dispersion equation (6.13) we also neglect the small

effect of relative motion. When v-u=0, the mass of the gas

in a unit mass of the mixture is constant_ Since p ccp this
9 9

means that pa is constant and equal to pa. Together with
o o

p R3=p R3 and the expression for the speed of sound
2 0

O.2 =
po(1+2a)

(6.14)
PiCtio

we write for (6.13)!

P -PR2 32a aa_a__ - 0 +
Po 3,32c2tart2 at0 0

For convenience we summarize the equations here obtained,

thereby slightly rearranging the terms in (6.4) and (6.5),

and neglecting in (6.5) terms of order al

p = Pt(1-6) 16.1'6.1

= = cari+81 u. 1(6.17')
1t3

a
--(p BY + --(p By)' = 0 .
at ax

p, -D a2 R a R=6wr---(--) 4- --(--)at2 R at R
131 o

(6.12)

66.13)

--
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a

(6.15)

a
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§3. THE EFFECTS OF RELATIVE TRANSLATIONAL MOTION ON WAVE

PROPAGATION.

The new aspect, we wish to investigate, is the relative

motion. To obtain some insight, we first disregard all

other effects and consider small amplitude waves with

ap ap au a

+ u
at

au

+ p = --ip
ax ax ax

au ap a

13(v-u)/2} (6.18)

p + pu
at

+ = - _{p 1v-u)/2},
ax ax at

(6.19)

a a av

--(p 6) + v --(p BY +p = 0 . (6.20)

at ax ax

a

( +
at

26 al,

T 1) is( v-u) ---7

pt ax

(6.21)

P -P R2 a2a
o + 6to

3a

--/
atpo 3a2,21at200

° (1+2a )C2 = . (6.23)
o

Pg = P

Linearization of (6.18)-(6.21) leads to:

a au 63
--(1 + (1a ) = --(vu) (6.24)

at ax 2 ax

au a; 'On a

+ 6 c2 = - --(v-u) (6.25)
o 0

at :x 2 at

BP, 3p a au

+ a I-- + --(vu) +
0

at at ax ax
= 0 (6.26)

-

-- --

,

Plao

-



3

--(v-u) T1(V-u) = -
at

au ap- - =
ax at 2 ax
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3Bo --(V-u) .

3p 3i) @P. Dp
c ) 1 ( __+_I= 0

0at ( f ax at ax at

(6.27)

For times t«T the solutions of (6.30) are waves propaga-

ting with speed
cf

as defined by (6.29). Eventually the

waves given by (6.30) travel with velocity co. We find for

a wave travelling to the right, c.f. Appendix 2,

(6.31)

This equation, resembling relaxation, is extensively studied

by Whitham (1959).

In the following sections we discuss general aspects of

this equation. Much is based on investigations by Lighthill

(1956) and Whitham (1959). They discussed relaxation in

Elimination of u between this equation and (6.25)
with use of (6.27)

gives

a D2)
--(v-u) = - T(c2 (6.28)

(6.29)

ax f ax2

where
02 02(1+213) .

0 o

at2

0f
is discussed in chapter 4.

Substitution of (6.28) into (6.27) yields finally

32p a p a2i1"c 32.11",)

c2 - ---) 4. T-1(02 -
aX 2

(6.30)
(

at f 2 at2 oax
____) = 0

3t2

where
P-Po

P =

Po

Addition of (6.24) and (6.26) gives

a

+

a
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gasdynamics and magneto-hydrodynamics respectively.

§4. A GENERAL DISCUSSION ON RELAXATION.

Our main attention will be given to linear wave propaga-

tion because non-linear wave propagation can be inferred

from the corresponding linear equations. The equation of

interest is (6.31).

First we present some general properties of the solutions

of (6.31). A more detailed analysis is given in the fol-

lowing section.

How the solutions of these approximate equations are matched

to the boundary conditions is extensively discussed in a

survey by Whitham (1959).

The question to be answered is, how do the lower order terms

modify the solution of (6.32) and how do the higher order

terms modify (6.33).

For 7-1>0 and cf>c0>o,
the effects of the lower order terms

on the waves given by (6.32) produce an exponential decay

of amplitude. Therefore the main part of the wave moves

ultimately according to (6.33). The higher order terms pro-

duce a diffusion of this wave. So, for long enough time,

the signal diffuses ultimately. For a non-linear problem

where
co

itselfs depends on p, this diffusion can be balan-

ced by non-linear effects leading to a steady shock pro-

file.

If T-1<0, 'Po increases indefinitely. If T-1>0, the solution

remains finite when co lies between cf and 0.

For T/t»/, (6.31) can be reduced to

a (a

at at
+ cf --)

ax
= o (6.32)

and for lit«/ to

a(a

at
C

ax--)
= 0 . (6.33)



SS. EXACT SOLUTIONS OF THE LINEARIZED EQUATIONS.,

In this section we present a more detailed discussion on
the effects mentioned in the foregoing section.

The conditions for solutions which remain finite, are de-

rived from periodic solutions of the linearized equation

1(6.31)- The solutions periodic in x are

re N. e=p(ikx-ot)

Substitution of this into, (0.31) gives

dikere)2 T-14(ikco--0 = 0 ,4

For kcfr»21, relatively short waves,, we find for 0

C -ci

= ikcf + T-1 f--a

a
and

and

=

cf

These solutions increase indefinitely unless r-I>0 and

f>co>0.
Further we see that the short waves correspond

to the higher order wave speed cf and they are exponent-
ially damped.

For kcjer«/, relatively long waves we find

03 = ikco + k2-ri(cf-c )0 ta.
o o

4
= T-1' +

f-c0 '

(6.34)

(6'. 37)h

The solution given by (6.3?) corresponds to the lower order
waves with speed co; the k2-factor in the real part indi-

cates diffusion (c.f. 55, chapter 2). The solution given

by (6.38) rapidly damps out through the factor exp(-t/T).
Solutions periodic in t give similar results (Whitham,

1959) which will not be discussed here.

-107-

-

0
2 (6.36)

(6.38)

(6.35)
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Now we investigate the more general signalling problem,

for the linear case, starting from zero initial disturbance

with data prescribed on x=0. Then all possible types of

waves occur and the development in dependence on X and t
is discussed.

The boundary conditions are

ap
p = = 0 , t=0, x>0

at
(6.39)

p = p (t) x=0, t>0

We use Laplace transformation defined by

-St
p- (s,x) =I e pdt.

0

Inserting this in (6.31), we obtain

I s(s+T-1)
p = poexp xl

s+cf oT-1

with
-et

po- = e podt .
0

The solution for p is found to be

1- 8(s+r-1)
p = I p expist xlds , (6.42)

2 L cfs+coT-1wi

where L is the path, Re p =constant, to the right of all

singularities.

With help of tables of Laplace transforms (Erdelyi, 1954)

we obtain from (6.42)

AT -1 c I dpo c

P = exp - 1- -a)x I (---+-°- T-q50)11(t-E-
)Xcfcf 0 cf cf

-1 ( c

expl- ---(t-E- --)11-0[21-11(t-C-
x

1- -9xrid
cf cf cf C\

(6.40)

(6.41)

--

,

---

°



where I is the modified Bessel function of the second

kind.

However, relevant properties of the solution can be shown

in a more direct and clear way by using approximative

methods. For this we return to (6.41).

Near the wave front x=cft, we use for (6.41) an expansion

for large values of s. This changes (6.41) into

-T1 c, ax
p(s) = expl- XVo expr- --] .

cf cf cf
The solution for p is

This just represents the higher order wave which is exponent-

ially damped near the wave front. Thus the main part of the

disturbance is away from the wave front. Therefore we use

an approximation for large values of t. An asymptotic ex-

pansion for large t is found by using the method of the

steepest descents (Morse & Feshbach, 1953). We write the

exponent in (6.42) as

The main contribution to the integral in (6.42) stems from
the region where

df
= 0, (6.46)

ds
with

s(s+T-1) x
f= s

cfs+cT-1 t
s - -

f1
. (6.47)

T-1 CC
p = expi- _f_sax 1%

po --)
cf cf

s(s+T-1) xi
tis

f8+00T-1
ti

-109-

(6.43)

(6.44)

(6.45)

The saddle point, at s=si, is determined by (6.46), which

becomes, with help of (6.47),

t



and

where
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231+T1 x s 1(s1+T-1)c, x
1 = 0 . (6.48)

C18 +c T-1 t (c s #c ,-1)2 t
/ o f / o

The zeros of (6.48) are

c c -
0 cf co_x

x,,,)71

cf of /t

_t_i coll+6_ of co- /71
1 cf co cf-x/t I

(6.49)

This represents two saddle points.

The path in (6.42) is completed to a closed contour with

a path through the saddle points. We assume that T90 possesses

no singularities within the contour.

From the method of the steepest descents it can be found

that the main contribution to the integral becomes

expit(s2-f1(82)x/t)]
po- (s1) '

(6.50)
(2ntid2f/ds216=31)

(d2f\
= 2

x T-2c (c -c )
o f o

\ds2L=s1 t cfs1+coT-1

From comparison with (6.49) it follows that the exponential

in (6.50) takes its maximum from the saddle point at

as represented by the first line in (6.49). Evaluation of

this expression yields that this maximum occurs when s=0

and we see from (6.48) or (6.49) that

(47x(c1-c0)/(c2T-1))

(6.51)

Therefore the maximum in the disturbance moves with the

speed of the lower order waves, co.

Using sire!, (6.50),which represents the maximum, becomes

p- (0)
(6.52)

(2_



or
CO

{4,t(cf_c0).}
. 0(t)dt , (6.53)

where we assume the integral to be finite.

We see that the maximum value decreases with x, which
is typical for diffusion. Thus the diffusive effect of the
higher order derivatives is demonstrated.

In the following section we will discuss the foregoing
effects once more from a direct approximation of (6.31).

§6. APPROXIMATE SOLUTIONS OF THE LINEARIZED EQUATION.

For t/T«/ we use the approximation

a a

=__C _c.at ax

c.f. Appendix 2.

With this, (6.31) can be approximated by

(a Cl
cf-co a?)

= o .
at f ax)ax cf ax

The solution of which is

X T-1 C, -C
'11') = 91(t- --) expl- xl.

of of
cf

This result is similar to (6.44).

For the lower order waves corresponding to co, (6.31)
may be approximated by using

a a

0at ax

for the higher order derivatives.

This gives

(6.54)

(6.55)

-3/4

a

---



c -c a2.115

f o
Co

The left-hand side represents diffusion of the waves propa-

gating with speed co. This can be examined by Laplace trans-

formation of (6.56). Using the definition (6.40) and the

boundary conditions (6.39) for (6.56), we obtain for T

ap
a,

at ax

12c(cf-c0)x14

2
co
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Expanding the square root for small s, p becomes

sx c -c
p = poexpl- --I exp[s2 f ° xl

C2T-1
co

With help of tables of Laplace transforms (Campbell &

Forster, 1948) ?) becomes

co (t-C-5/c0)2
1

P = 4 po(E)expi- cl . (6.58)

14nT(cf-co)xl- 0 4(cf-co)Tx/c2o

This represents a time mean value of i3O weighted according

to a Gaussian distribution centred on =t,--x/co, with

standard deviation

(6.56)

re.. 57)

(6.59)

Here the diffusion effect is once more indicated. Since

the effect of diffusion is to smear out a wave according

to a spatial standard deviation as given by (6.59). As

extreme case, a "step-function" wave would with this theory

become an error integral wave form as the wave progresses.

When 14(cf -c )Tx/c2}% is much smaller than a typical time
, 0 0

scale in po(t), (6.58) is approximated by

po(t-/co)
.

p = poexp
ST-1 4s(cf-co)

I

d
2(c -cf 0

)
+

-1C T0

= +
ax2

- -

=



This is only possible for finite t and On the other
hand, when 14(cf-co)TX/C21d is much larger than that time

scale, (6.58) is approximated by (6.53).

§7. NON-LINEAR WAVE PROPAGATION; SHOCK WAVES.

The non-linear equation, now including the effects of dis-

persion and dissipation, is, c.f. Appendix 2,

a

--IsA (cf )1 + T-IsA(co) = 0tat

where

ai, 335
% ai" c3 a3i, (y)6c2 a2i5

SA(c) a c -- + -- + op -- +2 .(6.61)
ax at ax

2wB @x3
2w8 ax2

The non-linear contribution is represented by cP(a/q5/3x).
First some general remarks about (6.60) are made.
For times t«T the second term in (6.60) can be left out

of account and the wave is governed by

SA(c) = 0 . (6.62)

This equation is the same as (2.33) with cf instead of co.

As mentioned in chapter 2, this equation has a stationary

solution in which the pressure profile has the form as

shown in Figure 16-A. The results for these steady solutions

are summarized in chapter 3 for T4-0 and in chapter 4 for

To this class of solutions belongs the profile obser-

ved in section A of the shock tube. This shock, a
SA

shock,

is determined by the highest order derivatives. The non-

linear term must be balanced with the dispersion term,

which gives for the shock thickness dA

dA

-113-

(6.60)

Ro 1

p Ji

( //po -2)

KI %,63)

dA amounts to a few centimeters for not too weak shocks.
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Since T is of order 10 in most of our experiments and

cf
of order 102m/sec, the relaxation process becomes effec-

tive after the wave has travelled the distance of the order

of one meter. Numerical computations on equation (6.62)

showed that the solution does not change appreciably after

travelling a couple of centimeters. Therefore we may assume

that the wave form as observed at station A, represents the

steady solution of (6.62).

For times t>T, after the wave has propagated over a distance

the relaxation mechanism becomes important. Its effect

on a wave is, as we have seen, diffusive. In an acoustic

wave this diffusion is not resisted and the wave diffuses

out ultimately. In a non-linear wave however, this dif-

fusion is resisted by non-linear steepening. Thus a steady

profile is possible in which the mechanisms are balanced.

This only occurs when the shock strength is less than a

certain critical value. To find these shocks we return to

equation (6.60) and present a more detailed discussion on

this equation.

The lowest order approximation of (6.60) is given by

or more precisely when t/T»1. This approximation is

ap Dp ap
C + c p = 0 . (6.64)

ax at 3x

When the continuous solutions of this equation break down,

the solutions contain discontinuities in pressure and ve-

locity. This is what we usually call a shock. To find the

structure of the shock, or the continuous solution, higher

order terms need to be introduced in (6.64). This leads to

Dp Dp ap

,/cf
+ + c,40 --I +

at ax at ax

Dp aP.

T-lic +
co

--I = 0.
ax at as

(6.65)

+

+
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The highest order derivatives represent the diffusion effect

on the lower order ones. Stationary solutions from (6.65)

were discussed in chapter 5; we call the resulting profile

a S shock. The appearance of such a shock can be expected

when the disturbance velocity U satisfies the condition

Co
< u <

cf
(6.66)

because for a smooth profile, the wavelets at the front

travel at maximum at the speed
cf,

related to co by

cf = co(1+13o) . (6.67)

Furthermore the wave travels at the speed which is, for

our waves (c.f. chapter 5), related to
co by

Pi
= (=)'1. .

co Po

Since the wave is steady, the speed of the front equals its

whence

1 , 1+2(3
(6.68)

Po

This critical value for the pressure ratio was also given
in chapter 5, where steady shock profiles are investigated.

To the class of profiles, which appear under the condition
as given in (6.68), belongs the one observed at station C

of the shock tube. It is shown in Figure 16.

The threshold for adiabatic circumstances is

4y
<

Po
y+1

The thickness d of a S shock can be estimated with help

of the non-linear term cop(ap/ax) and the diffusion term

TCo(Cf-co)(2P'/ax2) from (6.56), which must be of equal
magnitude in these waves. It follows that



PM

which, with a view on (6.67) and (6.68), is of order of a

meter. d as given by (6.69) is of the same order as d

given by (5.58).

When the speed of a Sc shock, V, exceeds the wave front

speed, cf, of the higher order terms in (6.65), a new dis-

continuity appears, since the only disturbance which can

move with a velocity larger than cf is an other shock wave.

To find the structure of this shock, higher order terms

need to be introduced in (6.65). The equation describing

these shocks is represented by (6.60). So when P//po ex-

ceeds 1+280 no entirely smooth profile or Sc shock is

possible and the diffusion resisted wave is preceeded by

a thin shock of the SA type. The strength of this front

shock, p*/po, is given in chapter S. This is the type of

wave shown in Figure 16, a socalled SB shock, where the

thin region of order of magnitude given by (6.63) is fol-

lowed by a much thicker region with thickness' as given in

(6.69).

When t«r, the structure of the shock is, as we have shown,

described by the highest order derivatives in (6.60). This

solution, a SA shock, occurs only in a finite time interval,.

Ultimately the shock is described by the second term in

(6.60) and smeared out by diffusion following from the

highest 'order derivatives.

In this section we discussed the types of shocks and the

influence of relaxation qualitatively. Quantitave results

incorporating effects from relaxation can be found from the

steady solutions. For this the reader is referred to the

chapters 4 and S.

18. DISCUSSION ON RELAXATION.

The theory predicts effects of relaxation on the speed of

propagation of the wave and the form of the pressure profile.

V6.

0.2

TOoC-f/c2-.0a
d

rl/p0-1
re .69 )'
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In our opinion the change in pressure profile as demonstra-

ted in Figure 16 and amply discussed in chapter 8 is caused

by relaxation. It might be asked whether this relaxation

must be necessarily due to the dynamics of the relative

motion, and not due to a gradual transition from adiabatic

to isothermal behaviour. There is a strong argument against

this.! Without a complete theory at hand, it is clear that

the two velocities of sound occuring in a thermal relaxation

theory are the isothermal sound speed co and the adiabatic

sound speed lyIkco. The argument is:

When a steady state of the shock has been reached, involving

no further steepening,. the weak sound wavelets in the front

of the shock travel at the same speed as the main part of

the shock. The wavelets at the front travel at maximum at

the speed Jyjoa. So the condition is

U < fy)ic

For the whale wave we have

Pr U2=
c2Po

So the condition becomes

< y = 1.4

Po

This was noticed also by Crespo (1969)_

Our measurements clearly show as will be demonstrated later

on, that smooth profiles do appear only at a much smaller

pressure ratio, corresponding with:

P".2 4yao<

Po
1+y

following from relaxation of relative motion as given in
chapter 5. Another, though weaker, argument is that the
time necessary for thermal adjustment of the bubble, about
0.3R20/D

Dg being thermal diffusivity in air, is conside-g'
11

. (6.70)

1 +
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rably larger than the relaxation time associated with

resisted relative motion. The latter is estimated, as we

have shown, as R2/18v, which is with v=10-5m2/sec and
0

D =18x10-6m2/sec one third of the thermal relaxation time.

In the following we present, as an illustration, thermal

relaxation in the same way as we did for relative motion.

For this we have to introduce the energy equation for a

bubble and the gas in the bubble can no longer be treated

as homogeneous (Chapman & Plesset, 1971). When we consider

wave propagation the connected set of equations, including

the energy equation can not be rearranged easily into a

relaxation equation. To discuss this relaxation we there-

fore use a rather rough approximation based on a mean heat

transfer coefficient. This coefficient depends on the gas

properties and we consider the gas in the bubble to be

homogeneous.From a heat balance for the bubble and the

penetration thickness we find for the transfer coefficient K

K = 3
D

710phvg (6.71)
R2 31R2

where hvg is the specific heat at constant density. The

factor 3 before D /R2 is of course arbitary. This approximate
g o

heat transfer coefficient is used in the energy equation

for a bubble to estimate the heat flow.

We first disregard effects following from dispersion, atte-

nuation and relative motion of the bubble. We use the system

of equations as given at the end of section 2, completed

with the energy equation for the bubble

411.R3o 1 dp
gl --E -47rR2K(T0-T) =

ype dpel

3(y-1)I p dt p2 dt
(6.72)

To is the temperature of the liquid, which is assumed to

behave isothermal, as long as no entropy changes are consi-

dered. Using p=p and v=u, then linearization of (6.18),

(6.17)-(6.19) and (6.20) leads to, omitting details,

0
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32?) 3D1 32i13 3225

4- __E ,2 _ __d , 0.
;t2 R2 0 3x2 at2

0

(6.73)

The linearization scheme for finding (6.73) is completely
similar to that used for deriving (6.31).

For times t«R2/3D the solutions of (6.73) are waves propa-o g
gating with speed (y) a, the speed for insulated bubbles.

Ultimately the waves given by (6.73) travel with co, the
speed for which the bubbles are in thermal equilibrium

with the liquid. As already mentioned the time necassary

for thermal adjustment exceeds the time connected with re-
lative motion by a factor 3.

(6.74) will not further be discussed.

The argument for the appearance of a thermal relaxation shock
profile can also be illustrated from the stationary solution.
Using continuity and momentum equations for the mixture and
continuity for the gas phase, completed with the energy
equation, we find in a frame moving with the shock velocity
U for y=a/a0

y(M-24-1) - y (14-y) dy3D
= _

(6.75)(1-y) (y-M;2) dz uR2

The solution for y becomes

Merely

32

at2

th
at

with

ation mechanisms

lyC2

for curiosity

32?;

-

T

are

---}
3t2

we give the equation where

combined in one equation:

a aq, a2.?

0

both relax-

, (6.74)

f ax2

32r15

c2

+ T-I --lye!
at

0
3x2 at2

aq a 2 rp

f Ds2 at2

R2

ilc2 - =0
ax/' at2

R2= --- andTth=
18v 3D

-

a -- +
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3D
(1-y)T(y-M;2)=. = ex4- xi , (6.76)

UR2

where m2_y

T = 3

M2+1

For M2<y, or U<(y)co, this represents a wave profile in

which y decreases smoothly from 1 to M;2.

When M2>y a discontinuity appears and higher order deri-

vatives need to be involved. The equation describing a

steady shock wave becomes, including effects of dispersion

and dissipation, omitting non-linear derivatives:

day d2y 1-y M-2 dy
60 y ° +

dn3 dn2 dn

M-2 d2y dy

th11...y+m-2_
_ +60 __I= 0

dn2 dn
(6.77)

where 3D
Ro

th
= __E

UR2 (3ao)31.

0=66 +0 . The solution for the front part of the shock
vr ac

becomes for

1-y m exp[n(1-M)41

with M2d =M2/y. In the front part the gas phase behaves
a o

adiabatically.

For M2<y the smooth profile represented by (6.76) is re-

covered and approximated through

1-y = exp lathn
_m2.1

Micyy

*
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The back side of the shock is governed by the balance of

non-linear steepening and thermal relaxation. By stretching
n with ath the smooth profile at the back side can be found.

On this new scale the front shock can be treated as a dis-

continuity. In front of the discontinuity (c.f. Figure 17)

the pressure is po, at the back side p72d, say.

U2 Pad/p0-1
=

c2 1-(190/PL)"

However for the whole wave U2/c2 must obey the isothermal

relation (3.22)

Cou2/ 2 = P1/PO -

-Ti

FIGURE IL A shock profile typical for thermal relaxation.

An estimate for the value of p:d can be found from the

same argument as that for the estimate of p* in §5 of chap-
ter 5. In the front shock, on n scale, thermal effects are

unimportant and the bubbles behave insulated. From the adia-
batic theory it follows that the propagation velocity must
obey equation (3.60), so

(6.78)
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From this relation and (6.78) , pad is found to be

P1

,*
o-1- (6.79)

Po ad

and we see that Pad/po only depends on Pl/po. For relax-

ation connected with relative motion, p*/po depends on the

gas fraction so and on P1/ would appear to be the

correct relation. This is again an argument against thermal

relaxation.

Of course a weakness in the analysis on thermal relaxation

is the rather rough approximation for the heat exchange

between the bubble and the liquid. However, a more complete

analysis is beyond the scope of this thesis.

For completeness we present the system of equations with

thermal relaxation, without relative motion:

The continuity equation

ap 3

+ --(pu) 0 .

at ax

The momentum equation

au, au ap
p + pu = .

at ax ax

Conservation of the number density

an
+ --(nu) = 0

at ax

The equations for the gas in the bubble, allowing radial

motion in the bubble, in terms of a radial coordinate r,

with r=R at the bubble surface, are:

Continuity

1 a
--E + --(pgr2v) = 0
at r2 ar

r

which

=

-
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Energy

Furthermore we have
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3yr Dvr
1 ap

_#
at ar p Dr

k a aT aT v a p a
__12,2 =ph 1.E

vg
+ _21 __(r21, )1 __(r2v )

g ( g
r2 ar 3r at r2 ar r2 Br

with k as the coefficient of thermal conductivity of the

gas. The gas is assumed to be perfect

pg = pgTgc/m

where
1(c

is the universal gas constant and m its molecular
weight.

The boundary conditions are

for r=0 : vr=0 and T remains finite,

for r=R : p(x,t)=p (R,x,t)
where we assumed dispersion effects to be small, otherwise

for r=R

d2R dR
p (R,x,t)-p(x,t) = p iR + 6'w .it dt2 dt

is compounded of effects following from viscous dissi-

pation and acoustic radiation associated with radial motion.

The condition for the temperature can be simplified by the

assumption that the liquid remains at the equilibrium tem-

perature. This approximation is justified by the fact that

the liquid has a much higher conductivity and a much lower

diffusivity than the gas. The condition for the temperature

becomes therefore

T (R,x,t) = To = constant.
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I41Tr2p dr = constant
0

and 3'3

n =
47r R3

§9. CONCLUSIONS.

Finally we conclude that a theory is developed which takes

into account the relative motion between bubbles and liquid.

The theory predicts effects both on wave speed and wave

profile. The effect on wave speed is small, (cf-c0)/c0=0(30).
This effect could hardly be measured as will be shown in

chapter 8, where the experiments are discussed. The effects

on the profile could be measured as shown at the beginning

of this chapter in Figure 16. It will be demonstrated later

on, from comparison of the experiments with theory, that

there is a fair support for stating that the observed changes

in wave profile are caused by the relaxation mechanism con-

nected with relative translational motion.
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CHAPTER 7.

ONE DIMENSIONAL WAVE PROPAGATION THROUGH A NON-UNIFORM
MEDIUM.

INTRODUCTION.

This chapter deals with wave propagation through a non-

uniform mixture of bubbles and liquid. In the foregoing

chapters we treated this mixture as a uniform medium.

However, in our experiments we are faced with non-uni-

formity due to gravity.

In this chapter we want to investigate the influence of

gravity on the relations describing several types of shocks.

To get some insight we first discuss the propagation of

small amplitude waves. From this analysis we investigate
how an initial disturbance is distorted through the non-
uniformity.

Propagation of finite amplitude waves can be inferred from

the linear theory. It will be shown that no significant
modification of the shock structure needs to be carried

through. The propagation velocity of these waves depends

on the space-wise coordinate. To find how Machnumber and

pressure ratio change along this coordinate we use the

analysis of Whitham (1958).

LINEAR THEORY; WAVES OF SMALL AMPLITUDE.

We omit dispersion, dissipation and relaxation effects.

We describe wave propagation in terms of the small pressure
disturbance 'P. This disturbance propagates into an undis-

turbed region with a hydrostatic pressure distribution.

The disturbance is defined as the difference between the

actual local pressure and the undisturbed one

p = p-p0, where Ppo .

We assume the gas phase to behave isothermally. For con-

§2.



venience we recapitulate the continuity equation:

ap a

--(pu) = 0 ,

at ax

the momentum equation:

au au ap
p pu _ _ pig

at ax ax

where g is the acceleration of gravity.

Continuity of the gas phase gives

a a

--(pB) 1 --(p$u) = 0 .

at ax

When Bo«1, convective terms such as pu(au/ax) in (7.2)

can be neglected (c.f. chapter 2).

From (7.2) and (7.3) we find

d p$ PB
--(---)= 0, Or = constant
dt 1 -12,

The sound velocity cE(dp/dp)4 is found from (7.4)

c2 = (7.5)
VLB(/-0

From (7.4) and (7.5) it follows that

Pa
(c02 = = constant

PL(1-P,)

throughout the region of interest.

Combining (7.1), (7.2) and (7.5) we obtain

--(--)

1 ;219 ap a 1 nf_

2 -t2
r! at at c2 ax2

(7.1)

(7.2)

(7.3)

(7.4)

(7.6)

(7.7)
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Introducing the small disturbance in (7.7), using

dpo/dx=-plg, the hydrostatic pressure distribution,

linearization of (7.7) with respect to finally yields

a p 2?,

= c2(x) (7.8)
ax2

where

From (7.8) we see that the signal which propagates is the

difference between the actual and the undisturbed pressure.

For not too large wave length a socalled short wave ap-

proximation for can be found, when the disturbance is

periodic in t.

The equation for becomes with

= exp(iwt)
11.1

d24, w2

= 0 (7.9)
dx2 c2(x)

Using the W.K.B.J. approximation (Morse & Fesbach, 1953)

with the condition that

dco <<

co dx co

we find for

co(x)pexp(iwt)1 I expki =9dx1 . (7.10)

To a sufficient level of accuracy (7.6) can also be written

as

cap .

c2 Po
0

Pi130(1 )

at2
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With this we see that the amplitude of p changes with pa

as

Po

and the wave number as po.

For a characteristic length of about 2m these variations

are negligible.

§3% NON-LINEAR WAVE PROPAGATION..

Using 12.=p-p0 and, c2mqt2+61/20), t7.7) becomes

3215 2 a 1,ap 92?
_ --p __) = c2

at2 pep at' at/ 0 ax2,

p = po(/+cp'), with pop' = ?b.)

a = $0(14-cari1,, with csos' = W

U = CC 80u ay.

X = X'001

t = it .

Q.,22E)

The second term in the left-hand side is the leading non-

linear term of the steepening of the wave by compression

(c-f. chapter 2). 1'7.12) once more shows that the signal

which propagates is the difference between the actual and

the undisturbed pressure. However we want to find out in

what way a disturbance, propagating in one direction, is

distorted' by gravity.

Fox this, we write

C7.13)

pc, and Bo are given functions of x connected with the undis-

turbed hydrostatic pressure distribution.

From (7_13) it follows that

a 1 x ac

axoT1 Co
ax ax'

a
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Du' Du'
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DO' au'oo_ =
aa aa
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With help of (7.6), this can be written as

3Pg(1-2$ )xl a-- ---i1+
Dx

coT Po

Further we define

Pg(1-2130 )x Ia a
1+

Po as' ae

(7.13), (7.14a) and (7.14b) are introduced in the equations
(7.1)-(7.3). Terms of order E2 and lower are retained,
terms of order(30E2 are discarded. The transformed set of
equations becomes,

Du' D297 324'130 aUr
= 00

30 at' DO DO

apf2
E

at'

DP' aP'_ 0($2 c2 )05 3 0Die at'

Substituting (7.19) into (7.16) and (7.18) we obtain

(7.14a)

(7.14b)

(7.15)

(7.16)

From (7.17) we see that p'+$1-70(e,00) and with this we find
from (7.15) and (7.17)

(7.18)

The right-hand side of (7.16) is assumed to be small, of

From Appendix 2 it follows that

(7.19)

9p' ae' Du' Dp
,8t

= +c (7.17)at' at' a0 at'

---

0(c,60).

+ - =
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PZgcoi
apt

_

2p0 ae

(7.20) becomes in the laboratorium frame

aP pgco
+ c + c + p = 0 .

at ax po ax 2p0

The influence of gravity on the signal is given by a co

dependent on x and the last term in the left-hand side of

(7.21). The ratio of this term and the non-linear term is

pig (7.22)
2(ap/ax)

the ratio between the acceleration due to gravity and the

local acceleration. When we use as a characteristic length

the thickness of a S shock, (7.22) becomes

pigdc
(7.23)

2(p1-pc,)

With dc,A,LIT, the magnitude of (7.23), for our experimental

circumstances, is one third at maximum. Thus (7.21) reduces

to

(7.20)

(7.21)

aPj- + C c = o .
0 0at ax po ax

(7.24)

As mentioned before, this equation shows that the signal

which propagates is the difference between the actual and

undisturbed pressure. Addition of a diffusion term in the

right-hand side of (7.24) would permit a steady solution,

a 5c shock, if co and po were constants, as in the equations

of chapter 6 (c.f. equation 6.64). Our analysis of shock

waves sofar was based on the existence of steady profiles

propagating with velocity LI not dependent on x. In our ex-

periments we measured as a function of time. With the

a p
-- -- --



transformation txx/V, where 0 is the 'propagation velocity

averaged over a couple of centimeters, we were able to
interprete the time depen:ent profile in terms of shock
thickness and wave length. However, as can be seen from

1.7.211, the propagation velocity depends on x and in fact
steady solutions can no longer be found. So the question
is raised: when using the transformation t=x/U for inter-
pretation of the experiments, how large is the introduced
in accuracy? For this we return to equation (7.20). When

we neglect the first term in the right-hand side, we have

;p' ap ap
___ ___ = 0 it 7.25)0
'at' 'De 00

Adding a diffusion term 'of' the type dd(3'2p7002) to. r7.,25
gives

ap' ap' ap' a2py
___ El,' = 6

at' ae De 362

Steady shock-type solutions of (7.26Y can be found in a
frame (X,t'1,, where

i
(1+X)t"

x is a constant which follows from the conditions ahead
and behind the shock.

With this a profile measured in terms. of t' can be trans-,

formed in the 8-plane by

de
=

A (7.27)'
1+x

e is a known function of x (c.f. 7.14a and 7.14b). So, with
tJ=t/r, a time-wise measured profile can be transformed in
a space-wise dependent profile.

Using c10=dx/c0+, we obtain from 17.27)

1(7.'26)i,
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= 0 -

dti



t=

-132-

where quantities with subscript oo are defined at x=0,

located at the back side of the shock.

Substitution of (7.29) into (7.28) gives

Plgx11Poo id/ (7.30)

(1+x)co[ Pigr p J1
oo -

Thus the accuracy of the transformation t=x/U, with U=

constant, can be approximated by the magnitude of the

quantity between the square brackets in (7.30). For values

of x of the order of the thickness of a S shock this

quantity can be approximated by

(7.28)

(7.29)

pigx)

2Poo

(7.31)

(7.31) represents the correction factor of the transform-

ation t=x/U. This correction would lead to a slightly

stretching of a x-dependent profile for a constant value

of U. Neglecting this stretching or taking (7.31) equal

to unity we introduce an error which is not larger than

the accuracy obtained in the experiments. From this we

conclude that no correction for gravity on the structure

of the shock needs to be carried through. For comparison

with the experiments it is sufficient to use local values

for po and f30.

Due to the length of the shock tube we were able to measure

U as a function of x. From the Whitham rule we will derive

equations describing the dependence of the propagation

velocity on x.

t=
f dx

(1+x)c

From cap, the dependence of co on x is given by
0 0

c =c i1
o

P xoo,
Poo
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g4. THE WHITHAM RULE.

In this section we investigate the dependence of the shock

wave velocity U on the coordinate along the shock tube.

Shock wave propagation through a non-uniform medium is

recently studied by Strachan c.a. (1970) and Nunzatio &

Walsh (1972), who extent the theory of Whitham. However,

with a view to the accuracy of our experiments we base our

analysis on the rather simple relations following from the

Whitham rule. This rule gives U as a function of x. In the

present theory we are not dealing with the structure of

the shock. Effects of relative translational motion on the

propagation velocity are small. Thus relative translational

motion is left out of account in the pertinent equations.

For convenience we recapitulate these equations, which

will be written in the characteristic form.

The equations are

ap
* --(Pu)= 0 (7.32)

at ax

aU Du Dp
P + pu = - Pgat as ax

ap 3p ap ap
+ u -- = 0 ,

at ax at ax

(7.33) and (7.34) are taken together to

ap ap au 3u
(u±c) ±pc { + (u±c) --I ±pcg = 0 ,

at ax at ax

or
jap/at apj au/at au1 peg

+ ±pc + ± = 0 .

u±c ax u±c ax u±c

And in characteristic form

peg dx
dp + pcdu + ds = 0 on = u+c

u+c dt

(7.34)

(7.35)

(7.36)

(7.37a)

a

I
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peg dx
dp - pcdu - dx = 0 on -- = u-c . (7.37b)

u-c dt

The Whitham rule states that when the relevant equations

are written first in the characteristic form, the different-

ial relations, which must be satisfied along a characteristic,

can be applied to the flow quantities just behind the shock

wave. Together with the shock relations this rule determines

the motion of the shock wave. The shock is treated as a dis-

continuity in this theory. For SA and SR shocks this is a

reasonable approximation because pertinent quantities changes

on a scale, dA, which is much smaller than the scale where

undisturbed quantities change due to gravity. So the Hugoniot

relations, relating quantities far in front and far behind

the shock, still apply. For a Sc shock, being much thicker,

we assume the Hugoniot relations to hold, of course within

the order of approximation determined by a constant value

of U.

The differential equation of interest is, (7.37b),

p1 c1gdpi - picidul = dx
ul-c1

where subscript 1 indicates quantities just behind the shock.

With the Whitham rule we apply the differential relation

(7.38) along a characteristic just behind the shock wave.

Together with the Hugoniot relations we are able to describe

U or related quantities in terms of the equilibrium quanti-

ties po and Ro. First we present the analysis for isothermal

circumstances and summarize afterwards the relations for

the adiabatic theory. We use the relations as derived in

chapter 3.

For u1' as given in (3.19)

U2 = -U(1-M-2) . (7.39)

For pl., as given in (3.22)

(7.38)
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P a m2

p1 = po)lq, = _a (1... 1

'o'
1-B a0 0

where p080/(2-130) can be treated as a constant. For small

enough values of So, p080 is approximately a constant.

Using (2.6), (3.23) and (7.40) we find for pici

dp
= p1(1-61)( --) =

P1

dp
Pial(1-I31)

p c
1 1

PoS 1-B
i

om2P

01(1-B0) ao

With the help of (3.21) and (3.22), U becomes

U =M c =Mol
0

o o = Mol poSo 1419

p180(1-S0)0 P(1-0)

Substitution of (7.39)-(7.42) in (7.38) gives, using

ao=Bo/(1-13o)3

M2 m2,) o, o ,p a ) p a -- a (Mo- --) = -o o o o aao

M +a (M2+M -1)/M2o o o o

where porta is a constant and ao is a known function of x.

With a0<<1 and dpo/dx=-pig (7.43) reduces to

M+1 dMo o a o pig = 0
Mo-1 dx P a00

We obtain for the relation between
Mo

and po

1

(M0-1)2 expiM « ,

Po

(7.40)

(7.41)

(7.42)

(7.44)

(7.45)

Mop1gdx
(7.43)

0 0



and for M2-1«0(10-1).

With
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(7.46) is similar to Chisnell's result for a weak shock

To find relations for adiabatic circumstances we use

equations, which can be found at the end of chapter 3:

P1 "1 Pact('

-(y+1)/2 .roaoT
plot = pt al

Pi

U1 = -1a0-(11(1+0.0)1

(ao/a1)Y-/ _(y#2)/21lPoaolr
ao

1- ao/a1
I p1

Substitution of (7.49) into (7.38) gives, using p0a0Y=

constant, a first-order equation for ao/0.1(x). The solution

of which will require a numerical integration.

However in the case of weak shocks, ao/0.1-1-70(10-1), we

finally obtain

y/2
0.o/a1 - 1 mo

(ao/a )Y-1
MT =

1- ao/a1

(7.50) can also be written as

(7.46)

(7.49)

(7.50)

moving

Using

and

in a duct with

M00 defined at t=o,

r0-1 12 M

changing

)
oo

(7.45)

area

and

=1i

p1gs1_4

(Chisnell,

(7.46)

PO's} -1

1955).

become

(7.47)

(7.48)

exp(M
o

tM -1
oo

M2-1

oo

2_1
oo

f
oo

11

if

1

1



§5. CONCLUSIONS.

In this chapter we investigated wave propagation in a non-

uniform mixture of liquid and bubbles. We found that the

quantity which propagates is the difference between the

actual and equilibrium pressure. Effects of gravity on the

shock structure are sufficiently incorporated by using

local quantities determined by the equilibrium pressure

distribution. By using a steady frame of reference we in-

troduced an error, the neglect of which is justified with

a view at the experimental accuracy.

From the Whitham rule we found the dependence of the shock

propagation velocity on the coordinate along the shock

tube.

1142-y

ity 2_y
00
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M2° -1
kp

(7.51)

Using M00 defined at x=o, (7.51) becomes

= 11

Poo

(7.52)-



CHAPTER a
EXPERIMENTS; COMPARISON WITH THEORY.

INTRODUCTION.

In this chapter we present experimental results and compare

these with theoretical predictions; First a description of

the experimental set up is given; Then, the shock propagation

velocity is investigated. The various shock structures such

as SA' SR and S shocks are compared with theory. Finally

the relations following from the Whitham rule are discussed.

EXPERIMENTAL SET UP.

The experiments were carried out in a vertically mounted

cilindrical shock tube with an inner diameter of 5.5x10-2m

and an outer diameter of 6.5x10-2m. Two types of these shock

tubes are used. One has a length of about 4.5m and consists

of a stainless steel part in which the pressure transducers

rare mounted. The upper part of the tube consists of perspex

for determining the gas fraction. The lower part also con-

sists of perspex for photographing the bubbles. The choice

of the stainless steel part was done for minor purposes

such as a reliably mounting of the pressure transducers. The

other shock tube has a length of about 2.5m and consists com-

pletely of perspex. Both shock tubes are shown in Figure IBA

air region
diaphragm

o vacuum pump

oak tube

;41317:

'Fp-taxa-electric

pressure transducer

section for photo-

graphing the bubbLes

FIGURE V8- A-Experimental set up. 8-Photograph of the short shock tube,.



I.

GJ

-139-

A

where the important dimensions are given. The distance

from the top of the mixture to the first pressure trans-

ducer is only approximative, it serves to indicate where

the different stations are located. The exact values will

be given later on. In Figure 18B a photograph of the short

shock tube is shown.

The experiments were done as follows. The tube is almost

completely filled with an aqueous solution of glycerine

leaving a small air occupied region at the top. An aqueous

solution was used to keep effects from buoyancy as small

AS possible. The bulk of the experiments was carried out

with an aqueous solution of 50% glycerine with a kinematic

viscosity of .7x10-5m2/sec and a density of 1126 kg/m3. In

such a solution the velocity of a free rising bubble with
-/'a radius of 103m is about 10 m/see (See also Haberman &

Morton 1953). Subsequently the tube is sealed at the top

with a diaphragm as shown in Figure 19A.

FIGURE 19. A- The top of the tube sealed with m diaphragm. B- Equip-

ment for puncturing the diaphragm by a hot wire.

A plastic diaphragm with a thickness of about 2.5x10-6m

is used.. The pressure below the diaphragm is, by evacu-

ating the air occupied region, decreased below atmosphe-

ric pressure. Bubbles are supplied through a system of

many capillary tubes at the bottom of the shock tube as

,k1

u n\ A '10n
Ori

`-lroi



shown in Figure 20,

_ -.. I.r ..,

A
FIGURE 20. A- The bottom

ting of the bottom plate

of the bottom plate. The

10 m, an outer diameter

L

c

I
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of the shock tube. The cone enabLes the noun-

with a number of capillary tubes. B- Detail

capillary tubes have an inner diameter of

of 5x10-3m and a length of 2.5x10-2m.

The device by which the bubbles are supplied guarantees

that in one experiment the bubbles have locally almost all

the same size. When the mixture is stationary the mean volu-

metric gas content is determined by measuring the increase

in length of the liquid column as a result of the air supply.

From this mean gas content, IL, the local value of 0o can

be determined from the equilibrium hydrostatic pressure

distributione. Also a photograph of the mixture is taken

at a station marked in Figure 14, From this photograph the

bubble size is determined

The gas phase is assumed to behave isothermal. With 80«2 we have p000

is constant. The equilibrium pressure po, as a function of x, is:

P0=P001POx'
where x(0 and poo is at x=0, the top of the mixture. Then,

the mean gas content io becomes

po6o 92941
o Int2+

POO

where L is the length of the mixture column.

The local value of Ro follows from the isothermal relation

= If2A2_1221
1 " I

1

1 4

1

cs -

...w

...If

-'71 t I ii II

I

1 I
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In Figure 21 such a photograph is shown.

FIGURE 21. Photograph of a liquid-bubble mixture before the passage of

a shock wave. Rphoto=1.06x10 mo=3.2%.

After determination of the gas content and the bubble size,

a shock wave is produced by puncturing the diaphragm covering

the top of the tube there by admitting air of atmospheric

pressure. The device for puncturing the diaphragm is shown

in Figure 19B. The profile of the shock wave was at its

passage along the tube recorded at several stations as indi-

cated in Figure 18. The pressure was recorded by means of

piezo-electric pressure transducers. Two of them, mounted

in the shock tube wall, are shown in Figure 22.

FIGURE 22. Piezo-electric pressure transducers, 5"2O-2m apart, mounted

in the wall of the shock tube.
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The sensitivity of a pressure transducer is about 150x10712

Coulomb/atm with a resolution of 2x10-4 atm and an accele-

ration sensitivity of 2x10-3 atm/g. The natural frequency

of the transducers is about 5x104 sec. The signal from

the transducers was amplified in an adapted charge ampli-

fier and afterwards visualized on a storage oscilloscope.

Typical pressure recordings were shown in foregoing chapters,

To find out which part of the signal was due to the accele-

ration of the tube wall, we measured the tube wall accele-

ration by means of an accelerometer with a sensitivity of

20x10-12 Coulomb/g. A typical acceleration recording is

shown in Figure 23.

FIGURE 23. An acceleration recording of thetube wall.. The peak-peak

value represents 80x10-12 Coulomb.

From the recorded peak-peak value and the known acceleration

sensivity of the pressure transducers it follows that for

pressure ratio's smaller than 5, effects from acceleration

can be neglected.

To investigate the influence of relaxation associated with

resisted translational motion the viscosity of the liquid

is changed by using different aqueous solutions. Besides

the mentioned solution we used tap water with v1=10-6m2/sec

and (51=1000kg/m3, a solution of 70% glycerine with v1=3x10-5

m2/.sec and o1=1170kg/m3 and a solution of 85% glycerine

with v1=1.1x10-4m2/sec and p1=22/5kg/m3.

During the experiments it was noticed using the 70% and
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8.5% solutions, that in the tube with a length of 4.5m the

free rising bubbles clustered together after a distance of

about 3m. This is the reason for using also a short shock

tube with a length of about 2.5m. The socalled high vis-

cosity experiments were carried out in the shorter tube.

g3. PROPAGATION VELOCITY; U.

This velocity is detected at the various stations along

the tube. U is determined from the time interval between

the passage of the first and the second transducer as shown

in Figure 22. These transducers are 5x10-2m apart. In some

experiments the distance between these transducers was

.25m. As follows from the analysis in chapter 7 variation

of U within this distance can be neglected.

From the theory it was found that relaxation predicts ef-

fects on the speed of the shock wave and on its structure.

The effects on the structure will be discussed in following

sections. In this section we pay attention to relaxation

effects on the propagation velocity. Because of this it is

of interest with which relation for U2/cc2, the experiments

agree.

The theoretical expressions for U2/q, are, c.f. chapters

4 and 5,

isothermal

not resisted

U2 p / ti po
o 3

c2 Po p1

resisted

U2191=

C2

adiabatic

not resisted

(8.1)

(8.2)



resisted

u2 Pl/p0-1

cg 1-(Po/p1)"

The Value for do is given by

po(i+ao)2
C2 =

144-
I

1

U2' P1/170-2 d

= " 11"0(14.(P0/p/h91
f8.31

cg 1-(Po/p22

The different theoretical and experimental values for

U2/cg are collected in Figure 24, for the isothermal and

adiabatic theory respectively.

I' 8.

(8.5)

R-Inothermal (U2/opth 11-Adiabatic (112/cc2.)

FIGURE 24. In this Figure the different theoretical and experimen-

tal values for U2/cg are collected for region A. When either the

isothermal (resisted, not resisted) or adiabatic (resisted, not

resisted) theory fits reasonably in with the experiments, the marks

representing that theory would be close to the solid line.

not resisted, o exp - resisted.

The experimental values were obtained in region A of the

shock tube (Figure 18) where, for not too large values of

the viscosity, x is sufficiently small with respect to cr.:
This is the distance, as indicated in chapter 6, in which

=

1.5 2.5 3 3.5 1.5 2 2.5 3 3.5
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relaxation becomes effective. In Table A-5, Appendix 3, the
values for Pl/p pa' a0 and U are given. The distance from

the top of the mixture to the station where these quantities

and the pressure profile were obtained is indicated by x.

For each experiment the measured value of U2, divided by
c2 is found as (U2/c2) along the vertical axis. The twoo' o exp
different values for the quantity U2/c2, as given by (8.1)
and (8.2) or by (8.3) and (8.4) are registered along the

horizontal axis in Figure 24-I and Figure 24-II respecti-
vely. When either the isothermal(resisted, not resisted)

or adiabatic(resisted, not resisted) theory would fit in

with the experiments the marks representing the pertinent
theory would be close to the solid line. The conclusion we

draw from Figure 24 is that the adiabatic marks are defi-

nitely more close to the solid line than the isothermal

ones. The difference between the values for U2/c2 of waves

resisted by friction and waves not resisted by friction

is, as follows from inspection of Figure 24, of the order

of magnitude of the scatter. Thus in this respect the ex-
periments provide no verification.

§4. THE STRUCTURE OF SA SHOCKS.

In Figure 25 a typical pressure recording for region A is
shown.

FIGURE 25. A pressure recording typical for region A. '1/p01.79._200=3.21%, R0=1.33a10-3m, U=66m/8ec, dA=3.3a10-2m and A=3.3a10 m.
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This record, and other records to be shown as well, repre-

sent the pressure as a function of time at a given station.

Comparison with theory, where the pressure is given in

terms of a space-wise variable, is possible by the trans-

formation t=x/U. U is for each record the propagation velo-

city. From records as shown in Figure 25 shock thickness

dA'
wave length A, attenuation of the waves and the shock

strength P1/po are determined. Here the expressions for

these quantities are summarized. With a view to the dis-

cussion of the foregoing section, the expressions for re-

sisted bubble velocity are presented.

The expression for the shock thickness is

where

For the wave length A we have

2/3

Ro 2flY1
A =

(3a (yM-2y-Y-y1 )3/4
o 1

where

Ro
Zn20

dA =
(3a o) (1-yM-2)-(5A/2

Pl/po-1M2 =
0 /-el/p flY

iPolY
Y1 \--)

P/

(8.6)

(8.7)

(8.8)

The number of waves, N, after which the amplitude of the

waves decreases by a factor e-1 is

N

(ym-2y-Y_y )If
0 1 1

=

"1 61

(8.9)

)
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The shock strength Pl/po follows from the sum of the pres-

sure jump across the shock and po, divided by po.

The chaise of expressions following from the adiabatic

theory is based on the fact that for region A the propa-

gation velocity is close to the one following from adiabatic

theory. Further we define

and

ci(3a ), 35

WI : 1(1-yM-2)-6A/2/
Ro

A(3 )4
o (yM-2Y-Y-Yo / /

W2
-

2/3

Y1

(8.10)

(8.11)

It follows from (8.6) and (8.8) that W1 and W2 must be con-

stants. In Appendix 3, Table A-S, the experimental values

forio' R' dA" P1/po, W1 and W2 are given. The valueso' o o
of W1 and W2 averaged over all experiments are 3.8 and 5.8

respectively. The standard deviation in both quatities is

about 1. The magnitude of this deviation is for the greater

part restricted to the error in the determination of Ro.
This error is about 20%. In the Figures A3-1 and A3-2,

Appendix 3, the distribution functions for WI and W2 are

given respectively. The mean values are indicated. The

theoretical value for W1 is 1n20 (c.f. eq. 8.6). This value

follows from the definition of dA. dA is defined as the

distance between the points where the pressure starts to

rise, p=p0+.05(pl-p0), and the equilibrium pressure p=p1

at the back side of the shock. In the experiments the point

where the pressure starts to rise was taken more close to

po.
So the mean value of W1 exceeds 1n20. The experimental

values of N agree reasonably well with the theoretical pre-

dicted values.

To test the influence of some parameters in (8.6) we selec-

ted some experiments for which Ro is constant.



In Figbi-e, 26 dAr3 ) is 'drawn as ,a function of

WI

(1-Vm5,2).1-6Y2

Lot constant values of Ho.

21.5 E 2.5 3.W 4__ 3. 8R0/10_ym;.2)4_ A/ 2

FIGURE 26. d(3a0)3/4 is given as a function of 3. 8/1(2-yM;2)4-5A/ 21o
as parameter.

theory; exp: R0=1.10m10-3117L
- theory; o exp: R0=2.53,410-3m..

For 4/2 we took the experimentally obtained value of W1,1

which is about 3.8. In this Figure the experimentally

obtained values for dA (3mo ) are plotted against
A

3.8R0/i(1-yM-2)4-6"/21. Considering the inaccuracy in Ro
it follows from Figure 26 that the experimental points

fit reasonably in with the theoretical curve. The constant

values for Ro
are taken from Table A-5 allowing, for a

spreading of 5%.

c.

h Ro
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In Figure 27 the lines for 1/R0 as a function of 1/(8a0)3/4.

are drawn.

1 T .3 4 5 6 (3001-4

FIGURE 2.7. d/Ro is given as a function of (3e014 with pi/po as a para-
meter.

theory; o exp: p1/p0=1.9.
theory; Grp: pi/p0=/.12.

This is done for different constant values. of

3.8/ E(1-yM;2)4-62/21 .

rn most of the experiments we have 6Y2<<(1yM;2)ji, so the

curves are drawn for constant values ofM2 or with (8.7),o'
for constant values of pl/po., The experimentally obtained
values are also given.

Considering the inaccuracy in the experimental results it

follows from Figure 27 that the experimental points follow

the theoretical curve quite satisfactory. In conclusion we

may say that equation (8.6) is by the experiments confirmed'

within the experimental accuracy.

Now the experimental results for the back side of the shock,,

especially the wavy behaviour of the pressure, are investi-

gated. To test the influence of different quantities on the

wave length A, as given in (8.8), some experiments for which

10- 0



Ro is a constant are selected. In Figure 28 we draw A(3eto)
as a function of W2y2

oA/(yM-2y-Y-y1 )4.
1 1

30

A(3a0)4.

;03 20

20
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3
1.-5.8-V3R /(-51"2- -Y- )4

'`.7 0' u/ Y/

FIGURE 28. 8(3a0)4 is given as a function of 5.014'/(yM;2yY-y2) with

Ro as parameter.

theory; asp: R0=1.16x10-3m.- theory; o esp. R0=2.5 x10-3m.

For W2 the mean experimental value of W2, which equals 5.8,

is used instead of the theoretical value 2w. However, the

difference is small.

Also the experimental values for A(Zao) are given. It

follows from Figure 28 that these values reasonably fit in

with the theoretical curve. In Figure 29 the lines for A/Ro

as a function of (3a0)-4 are drawn.

FIGURE 29. A/Ro is given as a function of (3a0)-41 with p3/p0 as

parameter.

theory; o asp: p2/p0=1.84

theory; asp: p1/p0=1.13.

A
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This is done for different constant values of the pressure
ratio. From Figure 29 we see a reasonable correspondence
between theory and experiment. We may say that equation

(8.8) is by the experiments confirmed within the experi-
mental accuracy.

Finally we conclude that the theoretical predicted depen-
dence of the shock thickness and the wave length on Re
Pl/po and ao is recovered in the experiments.

§5. THE STRUCTURE OF A Ss SHOCK.

In Figure 30 a typical pressure recording for region B is
shown.

and

FIGURE 30. A pressure recording typical for region B.
Pl/po=1.81, 5_=1.27%, R0=1.07x10-3m, U=108m/oec, dA=4.3x10-217?,

-2A=4.3x10 m, a =.54m and Fexp..61.

First we are interested in which relation for U2/c2 agrees

with the experiments. Resisted relations are considered

U2/q, = pl/po

21/190-1U2
=

1(PO/p1)"2
0

(8.12)

This is done because, as shown in Figure 24, the difference

between the resisted and not resisted results is of the

order of the scatter. On the other hand, following from the
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I-isothermal
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discussion in chapter 6, about region B, when x/cfT exceeds

unity, the theory in which non-linear steepening is resisted

by relaxation can be expected to hold. For these reasons in

Figure 31 the isothermal and adiabatic resisted values for

U2/c2 according to (8.12) are registered.

000
0 B and B2

0 0P x=2m
0

4

--.-(U2/c2)o th II-adiabatic

4 5

FIGURE 31. In this Figure the different theoretical and experimental

values for U2/q, as determined at different stations along the shock tube

(Figure 18) are collected for SB shocks. When either the isothermal or

adiabatic theory fits in with the experiments, the pertinent marks would

be close to the solid line.

o - experiments.

1 --"J(u2/th

8

2

8

2

2 3
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The experimental values arc detemined at the stations B

and C for the long shock tube and at B/ and B, for the

short tube. We presented the results for the different

stations seperately in Figure 31 to find out whether or

not thermal relaxation might become effective. This is

expected to occur after the shock wave has travelled a

distance about 3 times larger than that for translational

relaxation (chapter 6). When either the isothermal or adia-

batic theory would fit in with the experiments, the marks

representing the pertinent theory would fit in with the

experiments. However, from Figure 31 no clear conclusion

can be drawn which of both theories applies for the pro-

pagation velocity. From comparison with Figure 24 we

conclude that thermal relaxation is noticeable.

With a view to the disccussion in 58 of chapter 6 one

might ask whether the relaxation profile as shown in Figure

30 chiefly follows from thermal or translational relax-

ation. An important quantity for relaxation is p*, the

point of intersection between the steep front part and the

smooth back side of a SB shock. p is found from the follo-

wing relations, with FE(p*/p0-1)/(pl/p0-1),

translational relaxation:

isothermal

where the subscript ad for p* indicates the thermal relax-

ation profile.

P1/p0+1
(8.F. I-ao Pl/p0-1

adiabatic
Pl/p (1+(Po/p1)")

(8.14)Fad 1-Ya YP1/p0-(-po/p1)7ln

and

thermal relaxation

P*ad/Po-1 P1
(8.15)

1-
ad

=IS



In Figure 32 the theoretical values from (8.13) and (8.14)

are compared with the corresponding experimental data. The

experimental values are collected at B and C for the long

tube and at B1 and B2 for the short shock tube. The meaning

of the solid line is the same as in Figure 31.

exp

exp

0, x.4m
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Fasp

. 5

cock,

I-isothermal ' 5"Fth II-adiabatic ' 5...Fth 1

FIGURE 32. In this Figure the different theoretical and experimental

values for F,(p*/p0-)/(p2/p0-1) as determined at different stations along

the shock tube are given. When either the isothermal or adiabatic theory

fits in with the experiments, the pertinent marks would be close to the

solid line.

Oi - experiments.

-

Ferp!
C,x.4m
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The experimental values for F, Fexp, given in Table A-6,

Appendix 3, are registered along the vertical axis. The

two different values for the quantity F, as given in (8.13)
and (8.14), at given p1/p0 and me (Table A-6), are regis-

tered along the horizontal axis in Figure 31 I. and IL res-

pectively.

From comparison of the upper graphs in Figure 32 with the

others it follows that deep down the tube, at station C,

the marks clearly deviate from the solid line. This

cates that thermal relaxation becomes noticeably as will

be explained later on in this section. However, we conclude

from Figure 32 that the bulk of the experimental marks are

close to the solid line, which indicates translational re-

laxation. As a support for this conclusion another presen-

tation of P will be given. In Figure 33 F, as given in

i(8.14), is drawn as a function of pl/po at constant ao.

2.5 3' 1.5 2' 2.5 3

FIGURE 33. 5=(17.7190-1)/(p1/p0-1) from (8.14)(---) is given as a function
of pl/po with 50 as parameter. Also the curve for (pted/p0-1)/(5,1/po-1)

from 58.151(----) is given. exp: 0-x.lm, -x=2m and

For investigation of thermal relaxation we also draw in
this Figure (p *adlPo- 1)/(pl/p0-1) from (8.15) as a function

of p1/p. This represents the thermal relaxation curve. As
discussed in chapter 6, when x/ofr>/ translational relax-

ation can be expected. For the bulk of the experiments
with c1,-r=1, this type of relaxation occurs for x>1. Only

for tap water we have x>10. Thermal relaxation can be

indi-

1.5 2

-155-
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expected when x/cadt th>2.. From the calculations in chap-
ter 6 it follows that this occurs for x>3m. So it is rea-

sonable to suppose that deep down the tube the structure

of the shock is affected by thermal relaxation. This might

explain that in the Figures 32 and 33 the marks for region

C, x4m, are lower distributed with respect to the curves

following from translational relaxation theory. A further

support for this relaxation is found from the fact that

for p1/po<1.4, the threshold for thermal relaxation, Fexp

clearly differs from zero as follows from Figure 33. As

can be seen in this Figure both relaxation curves approach

each other with increasing pl/po and accordingly the ex-

perimental results are less conclusive. Considering the

deviation of the experiments from theory one should keep

in mind that F is based on a rough estimate, obtained by

matching a dispersion dominated shock with a relaxation

dominated one. In the transition region between these,

p* is located and the matching which ignores this transi-

tion region, necessarily provides only an approximate value

for 2* With a view to this, the experimental results may

be considered as a support for the theory. p* indicates

the transition between the dispersion dominated front shock

with unresisted bubble motion and the back side of the

shock determined by resisted relative translational motion.

So another quantity of interest is the length da of this

part of the shock. This part of the wave, is called the re-

laxation dominated part of the wave. The experimental values

of dB provide verification of the adopted resistance model

for a bubble. We will pay attention to this part of Ss shocks.

when S shocks will be investigated in the following section.

Further quantities which determine SB shocks are the thick-

ness dA and the wave length A. Though the difference be-

tween the results for the isothermal and for the adiabatic

theory is small we present results following from the

adiabatic theory since we assume no thermal relaxation,

The expression for the shock thickness dA is, c.f. chap-

ter 5,
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Ro 1n(20Fad)
(3a0) (1-yr72(1-0-2a00-61(1/2

where Fad is defined by (8.14).

For the wave length A we have

Ro 2TrY1A =
(3a0) (yM-2y-Y-Y1 #2ao YY1-YM-2)45ol l o

Further we define

i'd (3a )
w3

: A o
1(1-yM-2(14-2ao0-0/21 ,o o

Ro

-2 -Y yl-Ym-2)A(3a0) (YM0 Yl -Y124- aoY 1

W4 2
Y%

1

(8.16)

(8.17)

(8.18)

(8.19)

It follows from (8.16) that W3 is not a constant. We find

for
W3

W3 = in (20Fad) . (8.20)

W4' as follows from (8.19), must be a constant and equal
to 27. In Table A-6, Appendix 3, the experimental results

for Be,, Ro, p1/p0 dA, A, W3 and W4 are given. Also the

theoretical value for W3 and points along the tube where

the results were obtained are given. In the Figures A3-3

and A3-4, Appendix 3, the distribution functions for W3

and W4 are given respectively. The values of W3 are col-
lected for 172(20Fad) between 2.5 and 3. The mean values
of W3 and

W4 are also indicated. From these it follows

that with increasing s, W3/1n(20Fad) is an increasing

quantity. For large x(4m) the deviation is large. This

once more supports the conclusion that for large x thermal

relaxation becomes important. Especially when p1/p0<1.4
we should have, when thermal relaxation was completely ef-

fective, a smooth profile with a considerably larger thick-

ness. This qualitatively explains the larger values of W3

for large x. About the deviation of w4 with respect to 27,

0



158

for xn.4m, no conclusion can be drawn, since we have only a

few experiments. As for SA shocks we give a graphical pre-

sentation for dA and A. For this presentation we took those

experiments, considering the deviation of W3 from the theo-

retical value, for which x<4m. For dA we selected some ex-

periments for which p1/p0 is constant and in(20Fad) is
between 2.5 and 3. In Figure 34 dA/R0 is drawn as a func-

tion of (3a0) . This is done for different values of

W3/1(1yM-2(1+2a0))d/21. To draw these curves a mean

value for W3' from Figure A3-3, Appendix 3, is taken as

obtained from the stations located at xrulm and x"-'2m. We

used W3q4.5,

,4ftl 180

01 70

60

50

90

30

1

20

10

*

a.

o cc .0
a.

2 2 2' 4 5

FIGURE 34. d/Ro is given as a function of (Sa0)-4 with 19140 as parameter.
theory; o amp: ii1/p0=2.35.
.theory; amp: p1/p0rl.42.

in most of the experiments 611/2«(T-yM-2(1+2m0)ll. So the

curves are drawn for constant values of M-2(1+200), or,

for not too small Jalues of p1/p0 for a constant value of

p1/p0. It follows from Figure 34 that the experiments reaso-

nably fit in with the theory.

For investigation of the experimental results for the wave

-

0
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length A some experiments for a constant value of p1/p0 are

selected. In Figure 35 curves are drawn for
A/R°

as a func-
-ktion of (3ao) according to (8.17) with typo as parameter.

4 5 6 7
(3a )

FIGURE 35. A/R0 is given as a function of (3a0)- with typo as parameter.
theory; o exp: p1/p0=2.3.5.
theory; err p1/p0=1.42.

For W4 the mean value as obtained from the values at .1-1,1m

and x,,2m (Figure A3-4, Appendix 3) is used. From Figure 35
we see a good correspondence between theory and experiment.
Curves for dA and A with a constant value of Ro are not
presented since the variation in Ro is considerably less
than the variation in p1/p. Further the selected experi-

ments for graphical presentation are those for which W3
and W4 are within 20% of the mean value of both quantities.

Finally we conclude that the experiments for dA and A of

the SB shocks, given by (8.16) and (8.17) respectively,

confirm the theory quite satisfactory.

70-

Trot 60--

.50-

40- '4
30'

o'b.°
oo
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UR., THE STRUCTURE OF Sc SHOCKS AND THE LENGTH dB
OF SB SHOCKS.

In Figure 36 a typical pressure recording of a Sc shock is

shown.

where

FIGURE 36. A pressure recording typical for a Sc shock.
p1/p0=1.07, $0=4.17%, 111.15,00-3m, U=65m/seo, dc=2.1m and
1+ 4cloy/(y+1) .

The equation describing the structure of the shock is,

adiabatic theory,

)1+k = -y(1-y)ly-yi exp ,
UT

2aoy
=

m2_,
'

The thickness dc of the S shock is given by

dc
= 22,1n20 .

UT

Further we define

w5
a.

UTE

(8.21)

(8.22)

(8.23)

A SC shock occurs when the pressure ratio is below a cer-

tain critical value

P//po < 1+/(y+1)
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In Table A-7, Appendix 3, the experimental results for Sc

shocks are collected. There we also summarized the values
for

1+213o the corresponding isothermal threshold. If we

compare the isothermal as well as the adiabatic threshold

with the pressure ratio in Table A-7, it is found that the

appearance of Sc shocks answers to the adiabatic relation.

For some experiments the propagation velocity U is not given,

because the steepness of the profile was too small to permit

the measurement of U. One should notice that d /UT does not

depend on U; dc/U is directly measured, since the experiments
give the pressure as function of the time-wise variable x/U.
From (8.22) and (8.23) it follws that

W5
is a constant. The

values of
W5 are also given in Table A-7. In Figure A3-5,

Appendix 3, we give the distribution function for W5. In

this Figure we presented results for two viscosities:

v1=.7x10-5m2/sec and v1=1.1x10-4m2/sec. The results indica-
te a strong dependence of W5 on the viscosity. Since we

have only a few experiments for Sc shocks we will take a

close look to effects of viscosity on the length of the

relaxation profile when we investigate the back side of SB

shocks. First we want to inspect for Sc shocks whetherthe
measured profile is shaped in the way as predicted by the

relaxation theory. For this we draw in Figure 37 (dc/UT)x

(M2/y -1) as a function of ao. We selected those

.25-

d M2C( o -1)
UT y

2 2 3 4 5 6

FIGURE 37. (dc/uT)(114,?,/y -1) as a function of no with W5=.86.
0 - experiments.

1
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experiments with v1=.7x10-5m2/sec.(There are only two

experimental values for vi=/.1x10-4m2/sec). W5 is taken

equal to .88, the experimentally obtained mean value (see

Figure A3-5), which is about one third of the theoretical

value 1n20. From Figure 37 we conclude that the dependence

of
dC

(M2-y)/Ui on ao
is in the way as predicted by the theory.

o

In Figure 38 a pressure recording for a Sc shock (thick

line) is presented, the theoretical relation (thin line)

according to (8.21) is also given.

FIGURE 38. (p/p0-1)/(191/p0-1) as a function of t (thick line).

p1/p0=1.08, 80=3.7%, Ro=1.17.10-3m, dc=2.04m and 1+4yao/(y#1)=1.085.

The thin line is the theoretical curve with T=10-2ae0, according to the

adiabatic theory (8.22). Using the transformation t=x/U, (p/p0-1)"
(pl/po-/)L1 can be found as a function of the time wise variable and be

compared with the experiments. o-Theoretical values for the pressure if

is one third of the calculated one.

This theoretical relation is found from (8.21) using the

transformation t=x/U. We see that the theoretical change

in pressure takes place in aconsiderably longer distance

than the experimental change in pressure. However, from

changing the time wise variable in the theoretical obtained

pressure profile, this curve appears to fit in with the

experimental curve, though with a relaxation time T about

one third of the theoretical value R2/18v Thus the mea-

sured profile is shaped in a way predicted by relaxation

theory. Apparently the actual value of T is less than fol-

lows from the adopted theoretical model. Explanation of this

discrepancy is postponed to the discussion on the length

--'-01103 sec
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dB of SB shocks.

In Figure 39 another record of a smooth profile is shown..

FIGURE 39. A pressure recording (thick line) as in Figure 38. The

theoretical curve, thin line, turns back and therefore indicates the

occurence of a thin front shock. This could not be observed in

the experiments. p2/p0=1.13 and 14.4ya0/(y+2)=2.1.

According to the theory a thin front shock should appear

since the pressure ratio exceeds 1+ 4yao/(y+1). However,

here it is hard to decide from the Figure whether a front

shock is present or not.

Now we will pay attention to our model for the resistance

of a translating bubble. As indicated the length dc is a

measure for this. We found a discrepancy between theory and

experiment.The length dB of the back side of a SB shock is

also a measure for the bubble resistance. Since we have

much more experiments for SE shocks than for Sc shocks we

will, discuss relaxation from the experiments for SB shocks.

The theoretical expression for dB is, c.f. chapter S,

d
yM-2yY

-o
y +2a vul-Y4P-2

B o 1 1 o
lnft20C1-FadA (B.24)= Y1 vm-2,-1_,UT

o '1

Zor not tool' weak shocks (8.20 can be written as

dB 82P
{8. 85,

(IT lnE20(1 -Fad)]

.

= 1 .
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For comparison with W5 we multiply both sides of (8.25)
with 1n20 and we define

W6
as

w
dB

y Zn20

6 UT in 20(1-F )exp

(8.26)

In (8.26) Fexp in stead of Fad is taken. This is done since

we are faced with the inaccuracy in the estimate of p* re-

presented by Fad. In table A-8, Appendix 3, the experimental

results for the back side of SB
shocks are given. In Figure

A3-6 of this Appendix the different distribution functions

for
W6

are given for different values of the viscosity of

the liquid. Also the mean values are indicated. No distinc-

tion is made for the stations where the results are obtained.

From Figure A3-6 it follows that for vz=.7x/0-5m2/sec the

mean value of W6 is close to the corresponding value of
W5

(=.88) for S shocks. Further it can be seen that W6
changes

considerably when we change viscosity. This differs from

what the theory predicts in this respect. From the theory

we found that
W6

is a constant and approximately equal to

Zn(20). Only for a viscosity of 3x10-5m2/sec W6 is in the

neighbourhood of this constant. What could be the cause of

the discrepancy between theory and experiment?

Our theoretical model for the bubble resistance from which

we found the relaxation time T is based on Levich's resis-

tance for a bubble. This leads to a relaxation time

T=R2/18Z.y Only for viscosities of about 3x10-5m2/sec and

R0q,10-3m we get near this relaxation time. Levich's resis-

tance for a bubble applies when inertia forces exceed the

viscous forces, so for Reynolds numbers sufficiently larger

than unity. According to Levich (1962) the validity of his

model is restricted to Reynolds numbers up to 800, because

at larger numbers the bubbles are significantly deformed.

From our experiments we may conclude that Levich's model

applies for a small range of Reynolds numbers. In the

following we will base the discussion for the bubble re-

sistance on the Reynolds number. Of course the Reynolds

number is no where a constant in the relaxation profile
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because, except for a small resulting velocity following

from buoyancy, relative velocity ultimately vanishes. How-

ever, in the front part of the relaxation profile where

the pressure changes significantly, we assume in a certain

range of Reynolds numbers a typical resistance model to

hold. To explain the experimental results qualitatively,

we first investigate the range of Reynolds numbers asso-

ciated with the different viscosities. To find an estimate
for the magnitude of the Reynolds numbers we assume unre-

sisted bubble motion in the front part of the relaxation

profile. The relative velocity, v-u, is in this case ap-

proximated by, c.f. cl-apter 4,

v-u = 211130(1-p0/p1) . (8.27)
With So a few percent, U about 100m/sec and p1/p0 of the

order of unity in most of our experiments we find for the

various Reynolds numbers

From (8.28) we see that for tap water, v1=10-6m2/sec, the

Reynolds number largely exceeds the upper value of 800 as

indicated by Levich. The bubbles are strongly deformed and
behave as small discs. From Haberman & Morton (1953) we
can appro:-imate the bubble resistance with a constant value

for the drag coefficient CD of about 1.5. The drag corZfi-
cient based on Levich's model, Cv=48/Re, amounts to

in this case. Even for a free rising bubble in water Cv=48/Re
is unrealistic. From Appendix 4 it follows that for C0=1.5

the length of the smooth region is about /m. This is in

good correspondence with the experimental results for c15,

with v =10-5m2/sec as folio:is from Table 1-8. For this model

of the resistance the free boundary of the bubble surface is

of no importance. C0.1,1.5 is also found for a solid disc.

Though we cannot indicate a relaxation time for this resis-

vi

vi
Vi
vi

=

=

=

=

10-6m2/sec :

.7x10-5m2/8ec :

3x10-5m2/sec :

1.1x10-4m2/sec :

Re q,
Re q,

Re

Re

4000,
600,
200,

50.

(8.28)
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tance model, it explains the length of dB quite satisfactory.

For v1=. = 7x10-5m2/sec we found for S shocks a relaxation

time which is about one third of the theoretical one. From

Figure A3-6 and Table A-8 a relaxation time of this magnitude

for SB shocks can be found. (8.28) gives a Reynolds number

of about 600. If we suppose that Levich's model still holds,

a reasonable explanation for this lower relaxation time is

found in the bubble deformation. In our opion an important

effect in this connection is that during the acceleration,

relative to the liquid, the bubbles do not remain spherical

as assumed in the calculations. The bubbles adopt an oblate

shape, which increases the resistance in comparison with a

sphere as follows from equation (1.14) in chapter 1. We mea-

sured the velocity of bubbles of 1mm effective radius rising

in the mixture under the influence of gravity. We found a

resistance force which was about 1.5 times Levich's friction

force. Since during acceleration by the passing pressure

wave the bubbles are considerably more deformed than when

rising in a hydrostatic pressure field the actual value of

T could be easily 2 or 3 times smaller than the calculated

one based on a spherical shape. A larger drag coefficient

and accordingly a smaller value of dB can be found if we

assume solidification of the bubble surface by surface ac-

tive agents. However for gas fractions as in our experiments

a significant influence of surface active agents is not rea-

listic (Levich 1962, p.448).

For v1=3x/0-5m2/aec, which corresponds with Reynolds numbers

of about 200 we see from Figure A3-6 a good correspondence

with the theoretical value for W6(=1n20). This indicates

that for these Reynolds numbers Levich's model and the

connected relaxation time correspond with the experimen-

tal results.

For v1=1.1x10-4m2/sec, which corresponds with Reynolds num-

bers of about 50 we found, as can be seen from Figure A3-6,

a value for W6
which is about 3 times the theoretical value

R2//8v1' What could be the cause of this larger relaxation

time or a lower resistance? For Reynolds numbers smaller



than unity this factor 3 could be explained by using

Hadamard-Rybczynski (1911) formula for a fluid sphere.

This formula gives a drag coefficient equal to 16/Re or

exactly 1/3 of Levich's drag coefficient. However the

Reynolds number still exceeds unity even for this large

viscosity. A possible explanation for this lower resis-

tance can be found from an improved estimate of the drag
of a bubble with a free surface. This is given in Moore

(1963). Moore calculated also the dissipation of energy

in the boundary larger at the bubble surface and found
for the drag coefficient

For 1O<Re<100, the fraction between brackets varies from

.3 to .8. With this lower drag coefficient it can be ex-

pected that the length of the smooth back side will be

larger than dB from (8.25). In Figure 40 we illustrate

the different relations for CD as a function of the Reynolds
number.

-1 67-

48 2.2
CD = .

Re Re'

. 1

10 2 3 4 8 8 102 2 3 4 8 8 103 2 3 Re
FIGURE 40. CD for various models of a bubble as a function of the Reynolds
number.

(8.29)
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Tor low Reynolds number, or high viscosity, the length, of

the profile is explained by the CD as given in (8.29).

With increasing Reynolds numbers the bubble resistance

come close to Levich's model. For large Reynolds numbers

the bubble deformation becomes important and CD changes to

a constant value of

§7.. THE WRITHAM RULE.

We found in chapter 7 that the Machnumber changes along,

the shock tube as given by

1
1 Mo-112

1

14oo-11
2x174(M0-Moon 1-pigx/poo

for isothermal circumstances.

For adiabatic circumstances we have, for Mg/y-1=011071

°
Um 2_y

1-P1gx'P00oo

FIGURE 41. In this Figure we draw ii-pigx/E00A-j as a function of x for
different values of poi,.

theory ;. o exp - isothermal p0o=.034s1b5N/m2

x exp - adiabatic.

theory ; exp - isothermal p00=.392.105N/m2..ft theory ;I exp - isothermal p00=.203x10511/m2.

(8. 31)
2

-168-

1.5.

-4 -5

1

(8.30)
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In Figure 41 we draw
(/-p/gx/p00 )-/ as a function of x for

different values of
poo' Also the experimental values for

the left-hand side of (8.30) and (8.31) are given. Since

we only measured at three stations along the shock tube,

where one of them is at this Figure is less conclusive.

However it follows from this Figure that the few marks rea-

sonably fit in with the theoretical curve.

§8. CONCLUSIONS;

We found in the experiments shocks, structured as predicted

by the theory. A reasonably good agreement with theory was

found for the dispersion dominated shock, SA shocks, and

the dispersion dominated part of SB shocks. Especially with

respect to the thickness of the steep front shock and the

waves at the back side of the shocks.

Furthermore the relaxation theory for explaining the gradual

change in wave profile from SA into SB or Sc shocks, when a

shock passes a bubbly mixture is supported by the experiments.
The theory predicts effects both on wave speed and wave

profile. The effect on wave speed is so small that it was

not possible to measure this. The effect on the profile

could be measured. Comparison with theory shows, however

for a small range of viscosities that the observed changes

in profile are caused by the relaxation mechanism associ-

ated with, initially generated and finally resisted relative

motion between bubbles and liquid. We found Sc shocks shaped

in a way predicted by relaxation theory, for v1=.7x10-5m2/sec,

however with a smaller relaxation time. The length of the

smooth part of SE shocks fits in with the theory in a small

range of viscosities near v1=3x10-5m2/sec. Without a complete

theory at hand we indicated, qualitatively, that for much

smaller and larger values of the viscosity the experimental
profiles can be expected. A detailed discussion on i.e.the

influence of bubble deformation on the shock structure is

beyond the scope of this thesis.

Finally we conclude that the shock propagation velocity can

be predicted as a function of the coordinate along the shock



tube by using the Whitham rule. These results support the

application of local equilibrium quantities and the Hugo-

niot relations for shock wave propagation through a bubbly

mixture with a ,given density and pressure distribution.
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APPENDIX le

In chapter Swe founda third order differential equation

for the front part and the back side of the shock. In this

Appendix we determine the solutions.

For the front part we have the following differential eAu-
ation

d3yr d2y1 dyr
+ a #a -- + a3yr = 0,

c101 dnZ 2 dri

A

+ a m

1+4a0

a -

o(1 -M -2)

1#4ao

R; (6w')So
(3ao

18vZ
1

VRo (3ao)4

-71171,

+ a/ T2 + c T 4 di3T = -
2-

1(A1.1.)

(AL 3)j

We seek solutions in the form of y'r.e". This gives, with

(A1.11,

Now the zeros of this cubic equation are determined. For

this the magnitude of the coefficients a1., and
a3

is of

interest for simplification of the rather complicated roots

of (A/.4). For the magnitude of
a1 a2 and a3 we consider

different cases such as high viscosity, v=0(10-4), normal

viscosity, v=0(/0-5), weak shocks, M2-1=0(10-1), and mode-

rate shocks, n-1=0(1). The different orders of magnitude

1(AI.°

11-M-2-2a M-200
a21

1#4ao

[At. 2)

1

where

and

)

T3 0

a
1



for
a1' a2

and i as are given in Table A-1,
-

TABLE A-1

Me further define

= 1-q/2 + a4113,.

E2 = -11q/2 + 44r.

-1172-

define the and byquantities 8 q a

'In' Table A-2 the orders of magnitude of d, q and a are given,

TABLE A-2

v=0( 0-5) v=0(10-4)

22-1=0(10-1)
.>

M2,-1=0(1) 14-1=0(10-1) Me2,-1= 0(1)

>0 N >0 >0 >0

1 0(10-11
.

0(10-1 ) 0(10-1) 0(10-1 )

m2c2.2a
1

3,224-217 1

0 _P.
I >0 1 <0 <0 >I 1 .co <0 i

0(io-1) l0(10-2) 0(2)1 0(10-1) 10(20-2) o(1)
o 0 >0 ).0

a3 0.(10-3) 1 0(10 ).
_

0(10 2) 0(10_ 2J

. v-0 10-51 =0(1 1
1

Mc2,-1=0( 0-') I M2,-1=0(1) Mel-1=0(10- ) 1 Mi2-1=0(1) 1

1.1;(1+2a0
I

m2<1+2a
I

1

a >0 ' <0 1 <0 >0 <0 <0

0(a2) 0(a2) I 0(a.2) 0(a2) 0(a2) I 0(a2)

<0 1 >0 >0 >0 >0 >0
q ajar) ajLait) ala2 1 al a2 ala 2ala2 ,0(

0(
3 3 3 3 I 3 3

a3)

I #a3) ! *as)i

>0 <0 i Co' I >0 ' <0 <0
a .

83
0(1;11 0(1;1 vv.) OlVJ 0( --)27

A

p = - a1/3 y

q = 2a3/27 - =1(22/3 + a3 , (A1_5)

a = 03/27 + q2/4 .

We

a2

a2

)

o(--)

(A1.6)
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The roots are found by standard methods (Abramowitz & Stegun,

1965). The method is known as the method of Cardanus. The

sign of a, Table A-2, is of importance for determination

of the roots. If a>0, we have one real root and a pair of

complex conjucate roots. If a<0, all roots are real. The
case a=0, all roots real and at least two of them are equal,

is of no practical importance. It indicates the transition
of a SB shock into a S shock.

First we discuss a>0 and accordingly lid<1+2a0.
The roots of (41.4) are

45.7 = El + E2 - al/3 ,
and

T2,3 =-(EI+E2)/2 - a1/3 ± ivT(E1-E2)/2 .

The solution for y' is

T2n T31
Tn

Y' =Die + D2e + D3e

Considering the magnitude of the different quantities as

given in the Tables A-1 and A-2 we find for the real part

of the complex roots in (Al.?), with E2+E2 approximated
by -q/a2,

- 6/1/2 + a3/(2a2) . (41.9)

For M2<1+2a0 the quantity represented by (42.9) is negative.
Thus

D2 and D3 as given in (41.8) are equal to zero.

T1 becomes

- a3/a2 '
and this quantity exceeds zero for 111.<1+2a0. The solution
for yr is

ion (11/2-/) Iy' cc exp
f,

1+2a -M2
o o

Secondly we have a<0 and accordingly Mc27>1+2a0.

(Al. 8)

(A1.10)



The solutions are

T = 2(- 2-.)cos(11) -1/33 3

R r

T2
= 2(-cos( 27 - a1/33 3 3

T3 = 2(- 1.)icos(+11) - a1/33 3 3
where

-174-

(A1.11)

q/2cosR =(A1.12)
(-s3/27) a

From the Tables A-1 and A-2 it follows that

cosa = - 0(10_i)
.

With this the roots and T3
as given in (A1.11) can

be approximated.

The solution for y' is

T n
T2n T3n1y' = L e + L2e + L3e

1

TI
becomes

a1a2-3a3
TI = (-a2) +

61a21
a1/3

which is a positive quantity.

For we have

T2 = -(-a2)35 - a1/3

which is a negative quantity.

T3
becomes

a3
T = < 0 .

3 1a21

(A1.13)

(A1.14)

Thus £2 and £3 as given in (A1.13) are equal to zero and

y' becomes



y'

where

d3y" d2y" dy"
+ b + b + b y = 0

dn3 I dn2 2
din

3

dA
b

/
1

=
1+4a M-2 o

00
A

M3(1-M-2+2a M-2)00
b2 =

1+4a M-200

b3

ridA*n(1-M-2-2a M-2 )00
2 1+2ao

The differential equation for the back side of the shock is

a(M2-1)

1+4a M-200
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(6w ')B 1=
1 (3a0)

We seek solutions for y", as given in (A1.15), in the form
of

yu= ;Yin .

We obtain for Y

Y3 + b1 T2 + b2 + b3 = 0 .

The different orders of magnitude of bl, b2 and b3 are

given in Table A-3.

TABLE A-3

(A1.15)

(A1.16)

(A1.17)

(A1.18)

v=0 10-5) v=0 10-9)
M2-1=0(10-1)o M2-1=0(2)

o
M2-2=0(10-1)o M2-1=0(1)

o

b >0 >0 >0 >0

0(10) 0(10) 0(101) 0(10)
b o >0 >0 >0 >0
' 0(10_I) 0(1) 0(l0) 0(1)

>0 >0 >0 >0

0(10-3) 000-2) 0(10-2) 0(10-2)

s

+



In Table A-4 the orders of magnitude of s,q and a are given..

TABLE A-4

-176-

With the help of (A1.146) this finally yields

2

Mi(M2-1P
o

M2-1+2ao0

This root represents the smooth part of y",.,

W1-E2
is approximated by

At i
2(a2)

E1-E2 =

(A1.291

With this we find for the roots T2 and as given ini

(A1.7),

T2,3 - (b1 -b3/b2)/2 = l(b2)i (Al . 20U

Using, (4.1016) we find for T2,3 as given in (A1.20)

2

21 0 a2, M-3 1 ir 214-1+2a0 ii
. (A1.219'1 o o

+ 1

212+4a M-2 M2-1+2amTi/+ M-4a 2)00 0 o
L

o 00
This represents the attenuated wavy behaviour of ym,.

v=a 10-31 v=0 10 i) 111

MO2-1=0(10-11 M2-1=0(1) I-1=0(10-11 MO2-1=0(1)

a
>0 >0 >0 >0

or4, ork) II ork) or/'2?

<0 <0 >0 ' >0

q 44 4/2
6 dr ii120( 0( I) o r- 2,0)1 or

3 3

01
3 " .3

>0 >0 ->4 >0
il

° . 3°chi. 31

o(E- 41i,27 orb' )
RW 1

0(n-1

This Table shows that a exceeds zero and we expect a wavy

behaviour of y"..,

TI becomes
1- b3

b2

T1

)

=
2,3



APPENDIX 2.

Here we present the linearization scheme to find the

equation which describes wave propagation in one direction.

We summarize the pertinent equations

-177-

p = p1(1 _a)

ap ap au-- U p = - -- IP,VV-U)/21 j
at ax ax ax

au au ap a

P PU = -4)0(VU)/21
at ax ax at

a a av(p (3) + v (p 6) + p a = 0
at ax ax

a as ap( + T-1)1s(v-ud = -
at P ax

R2p [a2s as0 0 + 6, --],Pg P =
3a202 43,9 at00

where
6' = (y) 6 .

Pli3o(1-0)
We introduce

U = Ea c u,0 0
v = c v'00
p = po(/.0-ep')

Pg = Po(l+EP)

= 6o(1+66')
t = It'
x =oTX1 .

(A2.1)

(A2.2)

(A2.3)

(A2.4)

(A2.5)

(A2.6)

(A2.7)

(A2.8)

+

+ -

th
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E is chosen so that the maximum of the functions u', etc,

for some given initial value, is of order unity.

(A2.8) is introduced in the equations (A2.1)-(A2.6). Terms

of order E2,
Ef3o

and lower are retained, terms of order

E2f3o and higher are discarded. The terms in (A2.6) repre-

senting dispersion and attenuation are assumed to be small,

at least of 0(c).

a ap' ap'
I-- 11(v'-u') 4- 2 -- = 2a 2a'e
at' ax' o ax' as'

a

e( . (A2.13)
at

Terms in the left-hand side of the equations (A2.9)-(A2.13)
are supposed to be of order one when also po, a , c and T0 0
are properly chosen.

To find a wave propagating in one direction we use a method

(A2.2) becomes

au' aa' 3u' 1 3

as'
= a { - .

at' lo as' 2 ax'
(A2.9)

(A2.3) becomes

ap, Dp.' au, / a

at' ax'
+ -- -- (o'-u')F

as at' 2 at'
(A2.10)

(A2.4) becomes

ap' as' au' a a
+ = -

at'

becomes

+
o ,

3x 3x'
e (p 's')

at g
.(A2.11)

at'

(A2.6)

/
nl n' =rg r

[a2B,
TVW

at'
. (A2.12)

22 at r2
wBT

(A2.5) becomes

+

+ =

(V/u'd

+ --



given in Broer (1964).

When moving in a (xl+t't') frame, it follows from (A2.9)-

(A2.13) that

With the help of (A2.14) we find from (A2.11) and (A2.12),

omitting the primes

ap as ap a 31,2+-- + --(v-u)1 + C+
at at ax ax at

and

B'= 0(80)

pl ur= 0(130)0

= 0(E) .1

p' + sr = 0(13 ,E) .0

a

+ = o(e,s ) .
0at ax

This gives

au au ap ap
+ - - = 0(e2,c80' 82) .

oas at ax at
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fa3p 32p1

waT

+ Td1(1,132 21a t3 at2f

(A2.9) and (A2.15) give

ap au 36 a 3p2
+ 0= --(vu) +

at ax 2 ax at

(A2.14)

. (A2.15)

1 /Op a2p
+ Tdrion ---1 . (A2.16)

wp21.3ta at2

From (112.14) and (112.16) it follows that

p - u = 0(e,60),

(A2.17)

Thus the pertinent equations can be reduced with help of

(112.17). This approach is not uniform valid because we only

--

1

+



know that

ap au
= 0(E, )

0at at

Therefore p-u = 0(et). So the reduced equations cannot be

used for long time intervals.

Substituting (A2.17) into (A2.10) and (A2.16) we obtain

ap Dp ap ap / a 3 a

+ --I =o + - --(v-u) - - --(v-u)I +

at ax ax at 2 at 2 ax

ap2 / ID3p a2p
T6'W ---1 'plea , C32) .at ,,, D2,21at3 at2

"'Er

With (a/at)+(a/ax)=0(e,a0), (A2.18) reduces to

ap ap ap 13

o ,

+ = ep - --I, v -u) +
at as at 2 ax

/ 33p a2p+ iYw.
2w2T2lat3 "at2

We rewrite (A2.13) to
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(A2.18)

(A2.19)

B a a2p
( +1)V = - a + o(cs ,s2) . (A2.20)

0 0at 2 as ° ax2

(A2.19) and (A2.20) give

Dp ap ap 1 133p a2pii
( +1)r + + ep + - TC51)
at at ax as 2w2T21;s3 4B 2as

32p
a

axDt
(A2.21)

The equation for p, the actual pressure, in the laborato-

rium frame becomes

a

--(v

+ +



ERRATA

Contents-Chapter 6-§2

page 26-formula (2.15)

page 60-9th line from top

page 90-6th line from top

page 148-Figure 26

page 149-1st line

Figure 27

page 158-Figure 34

page 176-Table A-4

th i10 lime from top

page 181-1st line

2nd line

read: motion

read: pg

read: (1.16)

read: (5.33a)

read: dA(3ao31)

read: dA/Ro

read: dA/Ro

read: dA/1?o

read: b1' 2)2 and 2)3 in stead of

al' a2
and

a3

read: b2 in stead of
a2

-p, aP
read: ap(---=-)

J Po ax

P-19, aP
read: c (=J-

o
Po ax
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If "ap p p-1a a ap c. 6
___ + __f

1c2
_5_ __f ___Ll 4.c4, # 4- cp

at ' Dx at 4 po ax 2 wL ax3 2wB Dx2 j

ap Dp
T-1 co + + c 19-1 aP +[

ax at

c3 p
o

a3

p
o

3x 2w2 ax3
B

Vc2 a2n]O_
2w2 ax2

= 0

where C -cf o = 8 .
0

co

,°
-



APPENDIX 3.

EXPERIMENTAL RESULTS FOR SA SHOCKS.

TABLE A-5
Experimental results for region A

x Ex P-I U de Ax
1 lexP.

of
-510

B o o
3

10
Po

2
10 102

N
th

N
exp

1 w2
I

num-
ber

m N/m2 % rn m/aec urn C

.26 .3 .967 I1.82 1.14 1.08 100 11 1 24 2 4 113.7817.57 5-3

.2 .04 .928 3.28 1.32 1.09 67 4.9 6.7 2 5 1271 4.32 4-31

.26 .42 .967 3.98 2.26 1.10 61' 7.3 9.1 21 4 I4.92 7.52 5-2
.26 .47 .967 '8.2 1.31 1.10 47 6.6 7.5 2 7 4.81 7.05 5-1
.07 .12 .91T 5.47 1.33 1.71 53 i 4.7 6.3 2 4 3.59 5.84 4-43
.16 .18 .928 :1.05 1.13 1.13 100 10 18 2 5 4.63 9.3 4-2

.19 .18 .921 2.19 1.41 2.13 73 7.2 8.7 2 4 3.73 $.09I4-2
-29 -22 .921 13.9 1.50 1.13 57 4.5 7.4 2 5 2.9 5.651 4-3

.27 .05 .924 5.03 2.47 1.13 57 9.1 1.4 3 4 6.77 6.5 5-22

.27 .45 .934 1.46 2.29 1.13 53 4.2 6.3 2 4 3.33 5.87 5-5

.27 .38 .934 2.12 1.17 7.1311 76 6.1 8.4 2 3 3.78 4.54 5-6

.27 .05 .924 1.88 1.18 2.24 78 9.4 9.4 2 4 5.61 6.28 5-23

.20 .04 .861 3.30 1.38 2.17 63 6.3 8.9 3 4 4.67 7.43 4-29

.06 .12 .85 6.18 2.32 1.18 47 3.3 3.7 3 4 3.39 4.68 4-46

.18 .27 .852 4.29 1.351 1.18 52 3.1 3.6 Z 5 2.73 3.68T-7 '

.21 .16 .855 2.8 1.47 1.29 75 6 6.7 3 5 3.31 4.17 4-5
i

.2 .28 .854 3.6 1.37 1.19 53 3.7 5.8 3 5 3.06 5.49 4-4

.27 .39 .866 1.4 I'109 1.2 94 4.7 6.6 3 5 3.22 5.07 5-8

.26 .09 .855 5.2 1.30 1.22 63 8.8 10 3 $ 9.52 12.7 5-24
.26 .46 .865 4.15 1.28 1.22 56 4.5'. 3 4 ,4.56 5.26 5-8
.26 .53 .865 7.12 1.30' 1.22 42 I 2.51 - - - 13.05 - 5-9

.26 .05 .855 1.78 1.18 2.23 75 7.51 7.5 3 7 15.55 6.24 5-25

.2 .04 .793 3.45 1.39 2.24 67 5 5.3 3 5 4.45 5.41 4-331

.08 .1 .785 3,84 1.41 1.26 63 4.411 5.1 3 4 4.22 5.55 4-48'
.14 .23 .78 4.36 1.35 1.28! $1 2.61 2.6 3 5 2.77 3.21,4-?
.19 .25 .785 3.7 1.37 1.29 60 2.7 4.8 3 5 2.74 5.61114-8

21 .25 .788 12.6 1.41 1.30 75 3.4 4.5 3 5 2.82 4.2814-9
.27 .47 .798 4.43 2.29 1.31 54 3.3 3.8 3 5 3.9 5.3 9-21

.27 .35 .798 1.15 2.09 1.32 96 3.8 5.8 2 6 2.85 4.87 5-12
.26 .04 .787 5.32 1.58 1.33 , 54 8.1 8.1 4 5 8.82 10.3 5-26
.26 .04 .788 1.871 1.38 1.33 1 86 10.3 11.2 4 5 7.9 9.8 '5-27

09 .1 .718 1.3 1.28 I1.38 108 4.3 6.4 3 3 3.07 5.28 4-50

.09 .13 .718 i3.7 T.43111338 61 3.7 4.41 $ 3 2.33 5.35 4-51

182-

x --- Po'
1

4.92

4.5
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TABLE A-5

(continuatton)
x

Of'
pox

_.5
10

n

" 0 Fox

203
pl
Po

u dAx

202

Ax

102
Nth N

ex p W1 W2
exp.
n um-
bee

in N/ ma % m m/sec in m

.26 .42 .732 1.69 1.13 1.46 96 3.8 5.8 3 5 3.89 6.8 5-15

.21 .04 .658 3.74 1.44 1.47 67 3.7 4.7 4 4 4.32 6.44 4-35
.07 .09 .65 3.15 1.44 1.5 73 3.6 4.3 4 6 4.02 5.68 4-54
.19 .25 .649 4.3 1.54 1.5 52 2.3 2.6 4 4 2.83 3.72 4-10
.09 .09 .65 1.23 1.34 1.51 88 3.1 2.6 4 5 2.33 2.33 4-53
.21 .26 .652 2.69 1.45 1.52 67 3 - - - 3.1 - 4-11
.21 .26 .652 1.12 1.17 1.55 94 3.8 5.2 4 5 3.2 5.18 4-12
.27 .49 .664 1.49 1.05 1.61 85 3.4 5.1 4 5 3.8 6.7 5-18
.19 .05 .665 2.95 1.25 1.62 68 3.4 4.1 4 4 4.5 6.5 5-35
.2 .04 .667 1.96 2.17 1.62 77 3.8 4.6 4 5 4.5 6.4 5-36
.19 .04 .598 3.21 1.33 1.79 66 3.3 3.3 4 4 4.7 5.7 5-37
.2 .04 .599 1.53 1.16 1.79 96 2.9 4.8 4 4 3.3 6.6 5-38
.21 .31 .602 2.31 1.3 1.8 78 3.9 3.8 4 6 3.9 5.6 5-40
.29 .25 .6 5.01 1.65 1.81 51 2.5 2.5 4 4 3.6 4.5 5-39
.13 .25 .508 5.58 1.46 1.85 41 1.8 3 4 5 3.2 4.4 4-15
.21 .35 .516 2.32 1.26 1.9 66 2.3 3.6 4 5 3.1 6 4-13
.18 .32 .513 4 1.47 1.91 54 1.6 3.6 4 4 2.4 5.6 4-14
.21 .04 .522 4.24 1.56 1.91 56 3.1 3.6 5 4 4.4 6.5 4-37
.28 .31 .399 5.83 1.88 2.49 45 2.7 2.3 5 4 4.7 4.8 4-64
.18 .34 .377 5.34 1.54 2.51 47 2.1 2.1 5 5 3.9 5.3 4-28
.2 .05 .386 4.44 1.5 2.55 59 2.4 2.9 5 3 4.2 7 4-39
.16 .32 .376 3.79 2.42 2.62 54 1.9 3.5 5 5 3.4 7.8 4-16
.2 .42 .313 2.34 1.33 3.1 74 1.7 2.6 5 4 2.6 5.7 4-22
.19 .36 .311 4.09 1.55 3.16 55 1.6 1.6 5 4 2.9 4.1 4-20
.14 .27 .306 6 1.66 3.2 48 1.4 1.4 5 4 2.9 4.1 4-19
.22 .43 .331 3.05 1.39 3.34 56 2.2 2.2 5 3 3.9 5.6 5-43
.22 .47 .246 3.27 1.47 4.04 63 1.3 1.4 5 4 2.2 3.7 4-22
.17 .42 .24 5.3 1.54 4.24 48 .7 - - - 1.5 - 4-23
.12 .22 .236 7.05 1.92 4.31 39 .8 - - - 1.6 - 4-24
.21 .64 .178 4.44 1.44 6.16 57 1.1 - - - 2.5 - 4-27
.16 .37 .172 6.32 2.79 6.33 46 .7 - - - 1.5 - 4-26

'

'

,



number

1 2 3 4 5 6 7 8

FIGURE A3-1. Distribution function for MI. The mean value is 3.8 and the

standard deviation is about 1.

number

12

10

12

10

-184-

3.8 - mean value

5.8 - mean value

2 3 4 6 7 8 9 10

W2

FIGURE A3-2. Distribution function of W2. The mean value is 5.8 and the

standard deviation is about /.
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42. EXPERIMENTAL RESULTS FOR SB SHOCKS.

TABLE A-6

Experimental results for 5 shooks 0

II

X
e Po%

20-5 c
o

320

P2
re_'

dA9

2
10

Axl

2
10

,

bil20mI

17acl1
1

ezp ylx
106

exp.
nUM-I
barcfr

in N/m2 % in mine in in

2.5 3.1 1.23 1.39 2.08 1.07 112 16.7 11.1 4.5 6.4 1 2.34 .521 74-70
4.1 5.2 1.36 .97 .94 1.08 143 17.2 - 5.8 - 2.66 .31 7 4-41
2.2 32 1.18 3.4 11 1.38 1.09 63 7.5 - 3.5 - .55 .4., 120 5-31
2.2 2 514 2.77132 1.89 93 23.9 11.1 4.2 5.3 2.38 551 7 4-2
2.21

I

2.4 1.14 3.14, 2.40 1.09 71 10 8.6 1.9 5 1.31 .45 7 4-3
2.3, 3.4 1.12 3.24 1.28 1.09, 71 11.3 - 1.01 - .38 .341 7 5-2
2.2,
4.5

3.4
.7

1.14
1.34

.85
3.46

2.05
1.301

1.101
1-.10

125 112.5
75 29

112.5
1

-

4.1
3.7

5.2
-

2.75
1.12

.63

.4
7

1

4-1
5-22

4.5 .7 1.34 2.3 2.041 2.10 221 21 17 8.2 9.2 2.62 .53 1 5-23
1.2 22 1.06 3.79 2.431 1.11 52 '11.3 9.3 1.5 6.2 , .90 .62 110 5-31
1.2
1.2

1.2,
1.3

1.03
1.03

2.96
3.48

1.36
1.45

2.12
1.12

76 10.8'
68 9.9

9.1,,3.8
6.6 3

4.9
4.5

2.46
1.78

.67
I .64 7

74-2
4-3

2.3 3.5 1.16 3.6 2.20 1.12 63 8.8 2.7 - 1.54 .3 7 5-5
2.33 1.16

11

1.72 1.09 1.12 90 9.9 9 14.4 5.8 2.56 .4 7 5-8
2.2 33 1.10 1.4 1.28 1.1$ 91 7.3 6.4 3 3.6 2.68 .75 110 4-32

14.1 5.6 1.20 2.47 1.01 1.14 119 14.5 - 7.6 - 2.7 .33 7 4'-44
H.1 5.9 1.29 2.43 1.10 1.14 94 15.11 - 7.8 - 2.42 .27 7 4-45
2.5 H.4 1.12 4.69 1.21 1.15 55 8.2 - 3 1.47 .33 7,4-48
2.5 13.9 1.12 2.79 1.15 2.15 73 10.91 7.2 5.8 8.2 2.37 .43 74-45
2.5 3.7 2.12 4.68 1.22 1.25 SS 9.3 - 3.4 - 1.47 .33 7 4-46
2.2 2.0 1.08 2.9 1.27 1.11 89 5.2 6.8 2.5 5.4 , 2.33 .5 7 4-5
2.2
4.5

3.2
1

1.0,
1.27

3.4 11.25
3.47 1 1.14

11.15
1.26

63 5.1
75 25

- 2.4 - r 2.15
2.19

.5

.32
7

2

4-4
5-24

I2.2 1.8 1-4 1.43 1.36 1.16 94 6.6 9.4 3.1 15.1 2.7 .79 7 4-6
2.6 3.7 1.13 1.69 1.06 1.16 86 12.2 9.6 2.81, 6.2 2.67 .47 74-4I
2.339 1.11 13.18 1.35 1.16 81 9.1 - 13.31 - 2.27 .42 21015-32
1.2 19 .984 2.59 1.26 1.17 82 10.7 9.8 14.2 6.3 2.73 .98 120 4-3
2.33 1.09 1.12 1.0 1.18 111 11.1 8.8 0.2 6.1 2.82 .45 7 5-7
.1.2 1.6 .97 3.23 1.31 1.281 57 5.7 4.5 3.2' 3.9 2.36 .62 7 4-6
1.2 1.8 .66 3.79 2.29 1.181 56 6.7 6.6 3.6 5.3 I 8.20 11 .6 I 4-4
4.5 .71.2? 1.2 2.03 1.18 128 17 13 9.2 8.7 2.8 .461 1.5-25
1.2 22 .99 3.56 2.4 1.19 52 8.8 7.2 3.8 6.3 2.32 .54 120 5-32
2.3I
2.'.3

4.411.09
S'.71.09

5.7
3.3

1.21
1.16

1.19
,2.19

50 6

88 8

-
1 - 1

2.6
$'.s

-
-

1.47 il

2.41
.2

4 .351,
7

75-8
6-9

W3 W4 Fexp

-

-

- 8.5 -

7
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TABLE A-6 (continuation 1)

x p ox I

0°

8 x1 Pl,
dAx

Ax

94
/4t5209 F asp v1x

exp.

num-el 101 103 P° 102, 142 8ad) 610 hem

rn Nina % rn m/aec 8 rn
m2

89C

it 1 b. 3H1. 22 , 3.6 1.29 1.2 75 11.9 - 17.2 - 1 2.34 .23 74-471

4.15 1.22 2.98 1.22 1.2 86 13.8 - '8.6 - 112.61 .68 7 4-48

2.2 32 11.04 1.75 1.32 1.2 1 86 8.6 8.6 4.3 5.9 2.79 .88 110 4-39
1.2 1 11 .97 1.59 1.41 1.21 81 8.1 6.5 4 4 2.78 .64 7 4-6

19.1 4.911.22 .69 .91 1.21 167 16.7 13.3 9.2 8.7 2.91 .46 74-49
2.2 90 1.04 2.82 1.31 1.22 62 6.8 - 3.7 - 2.59 .51 11015-33
2..5 3.4 1.05 4.18 1.36 1.22 57 8.5 - H.5.3 - 2.29 .38 714-47

2.5 3.3 1.06 2.85 1.28 1.22 66 8.6 - 5.5 1 - 2.57 .48 74-48
2.1 3.3 1 3.4 1.24 1.22 82 4.3 8.2 3 6.4 2.06 .95 7'4-7
2.2 3 1.01 2.9 1.26 1.23 69 9.8 - 3.3 - 2.58 .52 7 4-8
2.2 2.4 1.01 2.04 1.3 1.23 77 5.9 - 8.3 - 2.72 .62 7 9-9 1

2.5 3.3 1.06 .81 .95 1.23 119 11.9 8.3 6.9 5.1 1

1

2.9 .64 7 9-49
9.5 7 2.27 2.79 1.11 1.23 74 11.8 - 9.2 - 1 2.61 .22 7 5-11
4.5 5.2 2.27 .7$1 .93 1.23 134 13.4 10.8 7.6 7.2 2.91 .91, 75-12
4.5 .7 1.2 3.41.37 1.24 75 11 II 7.6 20.32.51 .92 1 5-26
1.218 .921 1.98 1.37 1.26 91 11.8 10.9 6.3 8.6 .2.77 .82 110 4-34
1.1 1.8 .89 3.8 1.29 1.28 57 4.5 4.5 3.4 5.2 2.48 .55 7 4-7
4.5 .6 1.2 1.23 2.2 1.26 122 12 la 7.3 8.7 2.86 .52 1 5-27
1.2 1.7 .9 3.29 1.31 1.27 80 5.91 4.2 9.1 4.5 2.6 .61 74-8
2.3 3.7 1.02 3.47 1.1 1.27 83 8.1 - 6.8 - 2.57 .37 75-11
4.1 8.3 1.15 3.52 1.19 1.27 89 5.8 - 4.7 H - 2.56 .3 7 4-52
14.1 5 1.16 2.29 1.22 1.28 85 6.81 6.8 5.2 6_9 2.75 .38 74-51
12.3 4.1 1.02 16.12 1.28 1.28 47 5. 7, - 4.3 1

- 2.08 .19 25-201
12.3 2.8 1.02 .9 1 1.28 115 9.2 8 5.9 6.1 2.9 .53 7 5-12
1.2 1.4 .9 2.29 1.35 1.29 70 5.6 4.9 3.9 4.5 2.75 .67 7 4-9
1.2 23 .92 3.18 1.36 1.29 51 7.7 8.2 5 8.6 2.64 .52 220 5-33
4.1 3.7 1.16 1.09 1.29 139 8.3 11.4 4.7 7.5 2.92 .46 H 7 9-50
2.5 4.1 .99 4.12111.25 1.32 58 6.9 - 6.2 - 2.59 .9 7 9-52
2.2 44 .98 2.95 1.28 1.31 60 5.4 7.1 3.8 7.9 2.69 .51 210 5-39
2.6 3.3 .99 2.681 1.29 11.32 74 7.4 5.1 2.1 5.9 2.73 .48 7114-51

4.58 1.02 1.031 .96 11.33 128 '12.8
1

7.7 9.8 17.1 2.9 .95
711

'

5-15

4.5 6.8 1.02 2.58'1.12 1.34 77 7.7 5.4 7.3 6.7 2.73 .3 7 5-14
19.2 SI .9 2.04 1.32 1.34 88 7.9 8.8 5.6 8.3 2.81 .78 110 4-36
14-2 13.5 1-09 .7411.1311.37 128 6.4 20.3 3.8 lI7.2 :12.94 .51 '14-53
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4.11 4.7 11.09 1.88 1.21 2.371 89 7.1 8 6.9 8.3 [ 2.84 1 .46 7 4-54'
4.114.3 1.09 2.57 1.37 1.37 86 6.8 - 5.6 - 2.78 1 .42 7 4-55
2.3 4.4 .95 6.4 1.28 1.37 46 5.51 - 5.6 - 2.32 .23 7 5-13
2.3 3.3 .953 1.3 1.03 1.37 109 6.61 6.6 5.4 8.6 2.89 .58 7 5-15
2.33.1 1 9t ' 1.21 1.38 65 6.5 - 7.6 - 2.72 .42 7 5-14
2.2 2.8 ' .87 3.2 1.39H1.39 59 4.0 4.7 3.7 5.6 2.73 .62 7 4-10
2.2 25 .86 3.36 2.34 2.4 52 8.2 5.2 6.8 6.5 2.72 .52 110115 -34
1.2 2.5 .87 2.01' 1.31119 .41 76 5.3 5.7 4.3 5.8 2.84 .6 7' 4-11
2.6 2.3 .92 .87 1.29 1.41 116 9.3 9.3 5.8 7 2.03 .7 74-531
2.5 3.1 .92 2.2 1.28 11.41 85 8.5 6.8 7.4 7.5 , 2.23 .57 7 4-541
'2.5 2.8 .92 3.04 1.45 1.42 69 8.2 - 7.2 - 2.78 .52 7 4-55
2.2 2.6 .87 .83 1.06 2.42 129

I

9.5 8.3 6,8 ,,7 2.94 .76 7 4-12
4.5 9 1.13 5.28, 1.15 1.43 52 1 e'3 - 7'9 11 - 2.56 .23 7 5-16

'4.57 1.13 2.6 1.12 1.43 76 7.6 6.8 8.1 9.5 2.8 H .4 , 7 5-17
'4.5 6.8 1.13 .87 .88 2.43 126 6.3 7.6 5.5 7.9 2.9 1 .47 7,5-18
1.2 22 .783 2.36 1.39 1.48 66 4.9 5.9 3.9 6.7 2.84 .8 120 4-361
2.2 1.6, .76 1 3.68,1.96 1.48 54 4.9 3.3 4.8 4.3 1 2.74 .62 74-10
2.3 4.8 .88 6.8 4.25' 1.5 )1 44 4.4 - 5.6 - 2.47 .22 75-16
2.3 3.8 .89 3.34 1.21 1.51 63 4.4 4.4 5.1 6.8 2.77 441 75-172.3 3.7 .89 2.12 .95 2.52 109 5.41 5.4 5.2 6.4 2.93 .61 75-181.2 1.5 .76 .96 1.12'1.51 116 7 5.8 5.4 5.4 2.24 .831 74-12
2.2 1.4 .76 2.3 1.37 1.53 70 4.9 4.9 9.6 5.8 2.86 .7 7 4-112.246 .766 1.99 1.22 1.54 91 7.3 8.2 '5.3 0.2 2.88 .74 110 4-38
4.1 4.9 954H .88 1.03 1.6 243 7.7 7.1 6.1 7.4 2.95 .57 7 4-61

4.7 .955 2.76 1.38 1.61 88 6.3 6.7 5.5 4.4 2.84 .56 7 4-59
[4.12.2 2.7 .82 3.66 1.49 1.62 59 4.7 4.4 5.1 0.5 2.79 .66 7115-392.23 .32 1.69 1.1711.62 93 5.6 5.6 5.6 7.7 2.91 .65 75-404.5 5.9 .999 .88 .96 1.65 134 4.7 5.3 4.5 6.1 2.95 63, 7 5-214.5 8.2 .997 2.47 2.22 1.67 78 4.7 3.9 5.5 6 2.87 .48' 76-202.6 3.2 .79 2.31 1.33 2.69 89 8 5.4 8.5 7.3 I 2.83 .8 ' 7 -602.6 3.2 .78611.07 1.2 1.69 100 6 '5 5.5 ,5.7l 2.94 .48 7 4-8112.5 3.1 .72 I3.35 1.47 1.72 62 6.2 3.7 16.9 '15.8 2.83 .62' 7 4-594.5 8.3 .997 4.6$ 1.21 1.72 56 3.9 3.4 5.8 17.12.75 .40 7 5-19,2.2,3.4: .74 1.6 h2.12 1.74 81 3.2 5.61 3.6 17.9 1 2.92 11 .72I1 7,4-13.
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2.1 3.7 .73 3.89 1.3 11.74 56 1
2.8 3.4 3.8' 6.311 2.81 .6 1 7' 4-15

2.2 3.2 .73 2.8 1.31 1.77 60 3.3 3.6 4 5.8 2.87 .65 7 4-14

2.3 3.4 .749,,3.18 1.34 1.77 64 2.6 2.6 3.2 4.3 2.84 .55 75-20.
2.3 3.3 .75

1,

1.17 1.07 1.81 108 4.3 4.3 4.5 5.7 2.95 .62 7 5-22
1.227 .647 2.36 1.3 1.81 75 6 6 6.3 9.1 2.89 .75 110 4-38
,2.3 4.5 .75 6.2 2.33 2.82 46 2.7 2.7 4.3 6.4 2.7 .48 7 5-19

11.6 2 H .63 1.92 1.28 1.83 86 4.3 4.3 5.2 6.6 2.91 i .72 7 4-13

1.2 1.8 .62 3.3 1.38 1.83 57 2.8 2.3 3.8 3.9 2.85 .71 7 4-14

1.2 2.2 .58 1.92 1.15 1.85 78 4.7 4.7 5.7 7.41 2..91 1 .62 7,5-40
1.2 1.9 .58 4.14 1.46 2.871 52 4.1 3.9 5.4 7.1' 2.8 : .53 7 5-39

1.1 2.1 .62 4.58 1.37 1.92 50 3 - 4.4 - 2.8 .62 7 4-15

2.2 52 .63 I 1.91 1.2 1.93 86 4.3 6 4.7 9.5 2.92 .79 110 4-40
4.2 4.7 .8181 2.19 2.36 1.98 100 5 s I 5.7 7.5 2.9 .69 7 4-63
4.1 4.4 .814 2.86 1.48 1.97 79 4 4.4 4.6 6.9 2.88 .43 7 4-64
2.2 3.3 .69 1.87li 19 1.99 88 3.5 3.5 4.3 5.7 2.92 .68 7 5-42
2.2 3 .69 3.911.48 2 62 3.1 3.1 4.1 5.81 2.84 .6 7 5-41
2.6 3.6 .65 ,1.4 ' 1.27 2.08 88 3.5 3.5 4 11 5.211 2.95 .73 74-82
2.5 2.9 .65 3.6 I1.6 2.12 58 2.9 2.9 3.6 5 , 2.9 .6 74-64
2.23 .6 1.04 1.13 2.13 122 4.9 5.5 5 7.4 2.96 .8 ?417
2.5 3.1 1 .65 2.75 1.45 2.27 66 2.6,1 2.6 3.2 4.5 2.6 .63 ' 71 14-83

2.2 3.8 .6 2.39 1.21 2.2 69' 3.4 4.1 4.8 8 2.92 .76 7 4-16
2.2 3.8 .6 3.37 1.32 2.25 60 3 3 4.5 6.4 2.88 .731 7 4-18
1.230 .522 2.36 2.26 2.33 77 3.8 4.6 4.8 8.7 2.92 .94 110 4-40
1.2 2.2 .49 4.23 1.41 2.33

I

53 2.6 2.4 4.2 5.4 2.86 .83 7 4-18
1.2 2.2 .49 2.93 1.29 2.34' 62 3.7 3.1 5.5 6.5 2.0 .79 7 4-26
1.2 2.60 .44 2.19 1.17 2.38 70 3.5 2.8 5.5 5.7 2.93 .64 7 5-42
11.6 1.8 .49 1.28 1.21 2.38 88 3.9 3.9 4.4 6 2.96 .8 74-1?
1

11.2 2.3 .443 4.56 1.45 2.46 49 2 2.5 3.2 5.9 2.85 .57 7 5-411

12.2 3.1 .53 1.43 1.11 2.51 93, 2.8 2.8 3.6'S
1

2.95 .74 7 4-21
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FIGURE A3-3. Distribution function for The mean values are indicated.
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1.1 2.1 .42 4.41 1.5 2.72 48 2.4 2.4 3.8 5.9 2.87 .83 7 4-19
1.2 2.1 .42 1.8 1.2 2.9 85 3 3.3 4.2 6.9 2.92 .74 7 4-22
1.2 2.1 .42 3.02 1.4 2.91 65 3.2 2.6 4.9 5.9 2.87 .78 7 4-20
2.2 4.5 .46 2.77 1.24 3.04 70 2.8 2.1 4.7 5.3 2.93 .79 7 4-23
2.2 4 .39 2.77 1.36 3.47 67 2 2.7 3.3 7 2.95 .81 7 4-26
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43. EXPERIMENTAL RESULTS FOR Sc SHOCKS..

TABLE A-7

Experimental results for Sc shocks

FIGURE A3-5. Distribution function of Ws for v1.-4.7x20-5m2/aeo and
v1=1.15(10-4m2/sec. The mean value for Ws. W5=.88. is indicated For
v1...7x10-Sm2/aeo.

x E. P0;
'oxis
10

1

0
0 1

ROwl
3

10

P1

P o

1+250
1+

4y52
14.-y

V dc
d
-2k
u

103

uZx

10e
Tx

102

exp.

nu-
ber

eft

in N/M2 m/sec in ego
2

--m- secsee
I

4./ 8 1.39 3.77 1.29 1.06 1.08 2.09 - 23 .69 7 1.2 4-68
4.1 6.6 1.39 12.58 1.13 1.06 1.05 1.06 - - 18 .93 7 1 4-69
2.2 37 1.21 3.02 1.33 1.07 1.06 1.07 66 .68' 9 4.5 110 .2 5-30
2.5 3.9 1.23 4.29 1.24 1.07 1.09 2.1 59 1 13 .5 7 1.2 4-68
2.5 3.6 1.23 2.94 1.18 1.07 2.06 2.07 70 .98 12 .54 7 1.1 4-69
4.5 7.4 1.44 4.17 1.25 1.07 1.08 1.1 65 2.1 33 1.22 7 I 5-1
4.1 6.1 1.36 3.67 1.17 1.08 1.07 2.09 - - 20 .93 7 1.1 4-43
4.1 6.2 1.36 3.7 1.17 1.08 2.07 1.09 - - 20 .88 7 1 14-41
1.2 21 1.09 3.35 1.37 1.08 1.07 1.08 53 .8 13 6.88 110 .1 4-30
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S4. EXPERIMENTAL ,RESULTS FOR THE SMOOTH HACK SIDE OF BB SHOCKS.
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7.2 4.5 1.22 1.4 1.33 1.05 114 1.02' 91 2.81 30 .33) .68 6-1
1

2.5 3.1 1.23 1.39 1.08 2.07 111 1 1 91 .93 7 .92 .52 4-70

4.1 5.1 2.36 .97 .94 1.08 143 2.43 10 1.3 7 .72 .31 4-42

'2.2 32 1.19 3.4 1.38 1.09 63 .73 12 7.2 110 .11 .4 5-31
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2.3 3.4 1.19 3.24 1.18'2.09 71 .78 11 .64 7 1.1 .34 5-2

4.5 .7 1.34 3.46 1.3 1.1 75 2.26 30 .23 1 9.4 .9 5-22

4.5 .7 2.34 1.3 1.04 1.1 121 1.2 10 .17 1 6 .53 5-23

2.2H .4 1.12 112.9 1.23 1.1 821 .48 8 .07 2 6.5 .7 4-29

11.2 22 1.06 ,3.79 11.43 1.11 52 .62 121 9 110 .11. .62 5-32
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2.3 3.5 1.16 3.6 1.2 11.12 63 .88 14 .84 7 2.1 .3 15-5

2.3 3 1.15 12.72 1.09 1.12 90 .9 10 1.1 7 .95 .4 15-6

2.2 33 1.1 1.4 1.22 1.13 91 .46 5 10.4 120 .06 .78114-32
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2.3 3 1.09 1.12 1 1.18 111 1.22 11 1.63 7 .79 .45 5-7
1.2 1.6 .97 3.23 1.31 1.18 57 .4 7 .56 7 1.4 .62 4-5
4.5 .7 1.27 1.2 1.03 1.18 728 1.4 11 .21 1 5.9 .46 5-25
2.3 .5 2.05 4.2 1.21 1.19 62 .9 15 .17 1 8.7 .48 5-24
1.2 22 .99 3.56 1.4 1.19 52 .62 12 11 110 .11 .54 5-32
2.3 4.4 1.09 5.7 1.21 1.19 50 1.15 23 1.34 7 1.2 .2 5-9
2.3 3.7 1.09 3.3 1.16 1.19 66 1.19 18 1.52 7 1.1 .35 5-8
4.1 5.3 1.22 3.6 1.29 1.2 75 1.34 18 1.09 7 1.3 .23 4-47
4.1 5 1.22 2.46 1.22 1.2 86 1.12 13 1.05 7 1.2 .31 4-48
2.2 32 1.04 1.75 1.32 1.2 86 .52 6 9 110 .1 .68 4-34
1.2 5.7 .98 3.6 1.52 1.2 61 .61 10 2.45 30 .43 .56 8-8
1.2 4.3 .98 2.71 1.45 1.2 73 .65 8 2.46 30 .38 .61 6-9
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2.2 .4 .99 2.8 1.29 1.23 83 .42 10 .11 1 9 .64 4-33
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2.2 2.4 2.01 2.04 1.3 1.23 77 .54 7 .69 7 1.3 .62 4-9
2.5 3.3 2.06 .81 .95 1.23 119 .95 8 1.7 7 .72 .64 4-49
4.5 7 1.27 2.79 1.11 1.23 74 1.47 20 1.91 7 1 .22 5-11
4.5 .7 1.2 3.48 1.37 1.24 75 1.2 76 .16 1 10.5 .42 5-26
1.2 18 .92 2.98 1.37 1.26 91 .55 6 12.5 110 .1 .82 4-34
1.1 1.8 .89 3.8 1.29 1.28 57 .4 7 .59 7 1.3 .55 4-7
4.5 .6 1.2 1.23 1.2 1.26 122 2.1 10 .18 1 8 .52 5-27
1.2 1.7 .9 3.24 1.31 1.27 60 .36 6 .56 7 1.4 .61 4-8
2.3 3.7 1.0 3.47 1.1 1.27 63 .94 15 1.31 7 1.1 .37 5-11
4.1 6.3 1.) 3.52 1.19 1.27 69 .83 12 1.03 7 1.2 .3 4-52
4.1 5 1.1 2.29 1.22 2.28 85 .68 8 .75 7 1.2 .38 4-51
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TABLE A-8 (continuation 2)
I

Pox' R x 122
U

d
ex '2' Tx

I

P
-fr

-5
10

80 o

103

w-
4o

dB

103

iv,

106 2
10

"P num-1
bee I

in is/m2 % m/sec sec
m2-m2--sec sec

1

2.3 4.1 1.02 6.12 1.28 1.28 47 11.04 22 1.33 7 2.3 .29 5-20.

2.3 2.8 1.02 .9 2 1.28 115 .92 8 1.37 7 .8 .53 5-12
2.3 .4 .98 4.26 1.47 1.2911 60 .9 15 .13 112 .46 5-26
1.2 1.4 .9 2.29 1.34 1.29 70 .42 6 .62 7 1.4 .6? 4-9
2.2 23 .92 3.18 1.36 1.29.: 52 .51 10 22.4 210 .1 .52 5-33
4.1 J.? 1.16 .81 1.09 1.291 239 .97 7 .97 7U .95 .46 4-50
2.3 .3 .98 11.5 1.28 1.3 102 1.5 10 .17 1 9.1 .87 5-27
2.5 4.1 .99 4.12 1.25 1.31 58 .4 7 .58 7 1.21 .4 4-52

2.2 44 .98 2.95 1.28 1.31 60 .42 7 9.42 110, .09 .51 5-34
1

'I2.6 33 .99 2.68 1.24 I.1.32 74 .37 5 .44 71 1.3 .48 4-51
I4.5 6 2.02 1.031 .96 1.33 128 1.28 10 1.83 7 .73 .45 5-15

4.5 8.8 1.02 2.58 1.12 1.34 77 2.23 16 1.75 7 1 .3 5-14

2.2 31 .9 2.04 1.32 1.34 88 .44 5 20.4 110 .78 4-36
4.1 3.5 1.09 .74 1.13 1.37 128 .84 51 .72 7 1 .5 4-53

4.1 4.7 1.09 1.88 1.21 1.37 89 .71 81 .89 7 1.2 .46 4-54
4.1 4.3 1.09 2.57 1.37 1.37 85 .68 81 .65 7 1.5 .42 4-55
2.3 4.4 .95 16.4 1.28 1.37 46 .6 131 .89 7 1.3 .23 5-13
2.3 3.3 .953 1.3 1.03 1.37: 109 .76 I 7 1.24 7 .15 .68 5-15
2.3 3.1 .952 3.3 1.21 1.381 65 .52 8 .8 7 1.2 .41 5-14
12.2 2.8 .87 3.2 1.39 1.39 59 .4 7 .57 7 1.5 .52 4-10
1.2 25 .86 3.36 1.34h1.4 52 .41 8: 0.3 110 .1 .52:5-34
2.2 2.5 .87 2.01 1.311:1.41 76 .38 5 .55 7 1.4 .6 4-11

2.6 2.3 .92 .87 2.19 1.42 116 .47 4 .07 7 2.1 .7 4-53

2.5 3.1 .92 2.2 1.2811.42 85 .51 8 .67 7 1.3 .57 4-54
2.3 2.8 .92 3.04 1.451 2.42 69 .34 5 .4 7 1.7 .52 4-55
2.2 2.6 .87 .83 1.06 1.42 119 .36 3 .73 7 .9 .78 4-12
4.5 9 1.13 5.88 1.15 1.43 52 1.26 24 2.23 7 1.1 .23 5-16
,4.5 7 1.13 2.6 2.12 1.43 76 .91 22 2.48 7 1 .4 5-17

4.5 6.8 1.13 .87 .88 1.43 126 1.26 20 2.34 7 .61 .47 5-28
2.2 .4 .85 2.9 1.32 1.44 71 .4131 el .1 1 9.7 .7 4-35

1.

1.21122

1.2,1.6
1

.783

.76
2.36
3.68

1.39
1.46

1.48
1.48

66
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.26

.38
4

7
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.59
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: 7

.11
1.7
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TABLE A-8 (continuation 3)
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2.3 3.8 .89 3.34 1.22 1.51 63 .63 10 1.1 7 1.2 .44 5-17
2.3 5.7 .89 1.12 .95 1.51 109 1.09 10 2.3 7 .72 .61 5-18
1.2 1.5 .76 .96 1.11 1.51 116 .51 4 1.3 7 .97 .83 4-12
1.2 1.4 .76 2.3 1.37 1.53 70 .32 5 .55 7 1.5 .7 4-11
2.2 .4 .86 1.5 1.08 1.53 102 .41 4 .11 1 6.4 .64 5-36
2.2 46 .766 1.99 1.22 1.54 91 .27 3 7.4 110 .08 .74 4-38
2.2 .5 .86 2.3 1.15 1.55 86 .43 5 .11 I 7.3 .62 5-35
4.1 4.9 .954 .88 1.03 1.6 143 .57 4 .79 7 .84 .57 4-61
4.1 4.7 .953 2.76 1.38 1.61 88 .53 6 .62 7 1.5 .56 4-59
2.2 2.7 .82 3.66 1.49 1.62 59 .35 6 .51 7 1.8 .56 5-39
2.2 3 .82 1.69 1.17 1.62 93 .57 4 .66 7 1.1 .65 5-40
2.2 .4 .79 1.2 1.06 1.62 106 .32 4 .1 1 6.2 .73 5-38
4.5 5.9 .999 .88 .97 1.65 134 .67 5 1.22 7 .75 .63 5-21
4.5 6.2 .997 2.47 1.22 1.67 78 .39 5 .62 7 1.2 .48 5-20
2.2 .5 .97 2.4 1.21 1.67 71 .29 4 .08 1 8.1 .54 5-37
2.6 3.2 .79 2.31 1.33 1.68 89 .36 5 .5 7 1.4 .6 4-60
2.6 3.2 .786 1.07 1.1 1.69 100 .4 4 .63 7 .96 .48 4-61
2.5 3.1 .79 3.35 1.47 1.72 62 .31 5 .5 7 7.7 .62 4-59
4.5 8.3 .997 4.63 1.21 1.72 56 .67 12 1.37 7 1.2 .4 5-19
2.2 3.4 .74 1.6 1.12 1.74 81 .24 3 .63 7 1 .72 4-13
2.1 3.7 .73 3.89 1.3 1.74 56 .17 3 .37 7 1.3 .6 4-15
2.2 3.2 .73 2.8 1.31 1.77 60 .18 3 .42 7 2.4 .65 4-14
2.3 3.4 .749 3.28 1.34 1.77 64 .32 5 .56 7 1.4 .55 5-20
2.3 3.3 .75 1.17 1.07 1.81 108 .54 5 1.05 7 .91 .61 5-21
1.2 27 .647 2.36 1.3 1.81 75 .3 4 9.7 110 .09 .75 4-38
2.3 4.5 .75 6.2 1.33 1.81 46 .36 8 .8 7 1.4 .48 5-19
1.2 2 .63 1.91 1.18 1.83 86 .22 3 .58 7 1.1 .79 4-13
1.2 1.8 .62 3.3 1.38 1.83 57 .17 3 .41 7 1.5 .71 4-14
1.2 2.2 .58 1.92 1.15 1.85 78 .31 4 .71 7 1 .62 5-40
1.2 1.9 .58 4.14 1.46 1.87 52 .31 6 .56 7 1.7 .53 5-39
1.1 2.1 .62 4.58 1.37 1.91 50 .15 3 .35 7 1.5 .62 4-15
2.2 52 .63 1.91 1.2 1.93 86 .26 3 10.2 110 .08 .79 4-40
4.1 4.7 .818 2.19 1.36 1.96 100 .5 5 .73 7 1.5 .69 4-63
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4.1'4.4[1 i .814 2.86 1.48 1.97 79 11 .4 51 .5 I 7 1.7 .43 4-64
1

2.2 3.3 .69 1.87 1.19 1.99 68 .26 2 .57 7 1.2 .68 5-421
2.2 3 .69 3.91 1.48 2 I, 62 .25 4 .42 7 1.7 .6 5-41

2.6 3.6 .65 1.4 1.17 2.08 88 .35 4 .91 7 7.1 173 4-62
2.5 2.9 .65 3.6 1.6 2.11' 58 .23 4 .37 7 2 .6 4-64

2.23 .6 1.0411.13 2.13 122 .31 5 .5 7 1 .8 4-17

2.5 3.1 .60 2.75111.45 2.17 66 .28 4 .48 7 127 .63 4-631

2.2 3.6 .6 2.39 1.21 2.2 69 .14 4 .5 71 1.2 .76 4-16
2.2 3.8 .6 3.37 1.32 2.25 60 .18 4 .53 7 1.4 .73 4-28
5.21 30 .511 2.36 1.29 2.33 77 .32 4 16 110 :09 .64 4-40
1.2 2.2 .49 4.13 1.41 2.33 53 .11 2, .42 7 1.6 .83 4-18

11.2 2.2 .49 2.93 1.29 2.34 62 .12 2 .44 7 2.3 .79 4-16
2.2 2.6 .44 2.19 1.17 2.38 70 .14 2 .41 7 1.1 .64 5-42
1.2 1.8 .49 1.28 1.21 2.38 86 .18 2 .56 7 1.2 1 .8 4-17

1.2 2.3 .443 4.56 1.45 2.46 49 .2 4 .47 7 1.7 .57 5-41
2.2 3.8 . 1.43 1.11 2.51 93 .19. 5

1

.57 7 .981 .74 4-21
2.2 3 .53 2.39 1.29 2.54 79 .12 51 .44 71 1.3 .82 4-20
2.2 3.6 .53 3.49 1.39 2.56 58 .12 4 .36 7 1.5 .76 4-19
2.2 3.4 .55 3.76 2.47 2.63 57 '.27 3 .44 7 1.7 .7 5-43

1

2.2 4.5 .46 2.77 124 04113
70 .09 4 .33 7 1.2 .79 4-22

2.2 4 .39 2.77 1.36 3.27 67 .1 4 .42 7 1.5 .81 4-26
3.2 3.3 .31 2.26 1.141,3.671 75 .15 2 .52 74 1 .62 5-44
/..2 2..8 -31 14.651'1.43'2.71 53 .16 si .48/ 7,i 1.6 .57 5-43
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FIGURE A3-6. Distribution functions for W6 from (8.25) for different

viscosities of the liquid. The mean values are also indicated.
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APPENDIX 4.

THE SHOCK STRUCTURE FOR A CONSTANT VALUE OF CD.

The equations are:

equation of motion for a bubble

v-uv-u v-u dy

HnY +
d

3CD

4(3a )o41Y Y = 2ao d;

momentum equation for the mixture

d2y dy

o

A
261(.7+4a y)--- 6 --I + (1-y)(y-M-2) +

d712
dri

v-14
M2 , 0

The resulting equation for the smooth profile is

3CD
--A(1-y)(y-M;2)] + (1 y)2(y-m-2)2 =
dn 4(3a 0)0

dy
-2a --
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(A3.1)

(A3.2)

(A3.3)
dr;

where yM;2 is taken equal to unity. The derivatives in

(A3.2) are left out of account, since we consider changes

on the scale of the smooth profile.

We obtain from (A3.3)

M-2-(1-2a) 111-2-1-2 m-2
00

(1-M-2)2(1-y) (1-M-2)2(y-M-2)

2, (m-24.1) y-m-2
SCD .(A3.4)o Id ° F =

(1-M-2)3 1-y 4(3ao)

For M2<1+2ao this represents a wave profile in which y de-

creases smoothly from 1 to M;2.

+

0



Thy shock thickness d becomes

16R a00dc 1o_,
3C(1-M-2)3'0

-1.99-

With
CD

R =10-3m, et=0(10-2) and M2-I=0(10-14 dc
amounts to a couple of meters.

The length of the smooth region of a SB shock cannot be

approximated so easily- A rough estimate is found from

replacing

VU VU
FY by

ao(I7Y2)Y

where we used the unresisted bubble velocity as a first

approximation- In that case dB is

1n204R 1n20

3C a (1-M-41
D o o

For our experiments dB as given in (143..6) is of the order
°of one meter.

(A3.5fi

es,

rA3.

---

dB
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OVERZICHt.

Met doel van het onderzoek was de bestudering van de ver-

schillende schokgolfstructuren bij een dimensionale stro-

ming van eon mengsel van vloeistof en gasbellen.

Beschouwd is eon mengsel met een gasfractie van enkele pio-

centen. De gasbellen hebben plaatselijk alien dezelfde

meter. Deze bedroeg ongeveer 10-3m. We zijn or vanuit ge-. 11

gaan dat de bellen niet opbreken ten gevolge van een druk-

golf. Ook is er geen massatransport tussen bellen en vloei-.

stof. Verder wordt voor de bellen aangenomen dat deze bol-

vormig blijven.

Voor de beschrijving van golfverschijnselen in dergelijke

mengsels kiezen we een model dat een beschrijving met be-

hulp van de continuums theorie mogelijk maakt. Hierbij

gaan we uit van een gemiddelde druk, snelheid en dichtheid:

De middeling wordt uitgevoerd over eon volume element van

het mengsel. Dit volume element bevat veel bellen, maar

heeft afmetingen die klein zijn ten opzichte van eon karak-,

teristieke lengte voor de golfverschijnselen.

We gaan er bij de beschrijving vanuit dat in rust toestand

druk en dichtheid uniform zijn. Doze aanname is met betrek-

king tot de experimentele omstandigheden niet juist omdat

we een druk- en dichtheidsverdeling hebben ten gevolge van

de zwaartekracht.

Met mengsel is eon compressibel medium met.eenucompressibf-

liteit overeenkomstig aan die van de gasfase on eon dicht-

heid overeenkomstig aan die van de vloeistof. De resulte-

rende geluidssnelheid in mengsels met eon gasfractie van

enkele procenten is dan ook laag, lager dan die in lucht-

In genoemde mengsels beschouwen we verschillende typen

schokken. Voor doze schokken worden, net als in de gas-

dynamica, relaties geformuleerd tussen grootheden ver voor

en ver achter de schok, gebaseerd op behoud van massa

impuls en energie. Met behulp van deze zogenaamde Hugoniot

relaties kunnen we de voortplantingssnelheid van de schok

in termen van bekende grootheden voorspellen. Ook wordt de

structuur, i.e. de druk als functie van bijvoorbeeld de
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plaatscoardinaat, van deze schokken bepaald. Bij het ont-

staan van een stationaire schok speelt de relatieve bewe-

ging van de gasbellen een belangrijke rol. We kunnen twee

relatieve bewegingen onderscheiden en wel de radiale be-

weging van het gasbel oppervlak en de translatie van een

gasbel ten opzichte van de vloeistof. De eerste veroorzaakt

een zogenaamd dispersie effect op een golf en de tweede

veroorzaakt een relaxatie effect. Verschillende typen schok-

ken kunnen gevonden worden uit evenwicht van de verschillende

effecten. Er is een schok waarbij de structuur volgt uit de

vergelijking voor het evenwicht van niet lineaire compressie,

het belangrijkste niet lineaire effect, en de dissipatie

samenhangende met de volume oscillaties van een gashed. Dit

resulteert in een schok waarvan de structuur gelijk is aan

de Taylor schok in de gasdynamica. Er is verder een schok

gebaseerd op evenwicht van niet lineaire compressie, dis-

persie en de bijbehorende dissipatie. Bit noemen we een SA

schok. Het dispersie verschijnsel hangt samen met de traag-

heid van de radiaal bewegende vloeistof bij een pulserende

gasbel. Tenslotte kan een schokstructuur gevonden warden

uit een evenwicht van niet lineaire compressie en de dis-

sipatie samenhangend met de relatieve translatie van eon

gasbel.

De eerste schok kon niet experimented l aangetoond worden.

Voor niet te zwakke schokken geldt dat voor een SA schok,

bij verwaarlozing van viskeuze effecten samenhangend met

de relatieve translatie, de structuur hoofdzakelijk bepaald

wordt door evenwicht van niet lineaire compressie en dis-

persie. Enige dissipatie is noodzakelijk voor het verkrijgen

van een stationaire schok. De verwaarlozing van viskeuze

effecten samenhangend met de relatieve translatie is gerecht-

vaardigd gedurende een zekere tijd nadat de schok opgewekt

is. Gedurende de experimenten bleek dan ook dat de struc-

tuur van de SA schok veranderde bij voortplanting door een

schokbuis van enige lengte. Deze verandering hangt samen

met de genoemde viskeuze effecten welke na enige tijd ef-

fectief worden. Dit verschijnsel kan beschreven warden in
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termen van relaxatie, overeenkomstig thermische relaxatie

bij schokgolven in gassen. De relaxatietijd behorende bij

de relatieve translatie is de tijd waarin een gasbel met

een beginsnelheid ten opzichte van de vloeistof door vis-

keuze krachten afgeremd wordt tot de vloeistof snelheid.

Len schok waarvan de SA-structuur veranderd is door relaxatie
noemen we eon S schok. Doze schokken treden op wanneer de

drukverhouding van de drukken achter en voor de schok boven

eon zekere kritische waarde ligt. Beneden doze waarde ver-
andert de SA schok op den duur in een S schok waarvan de

structuur bepaald wordt door niet lineaire compressie en
relaxatie.

Ott de theorie volgt dat de relaxatie de golfsnelheid on

de structuur van de golf beinvloedt. Experimenteel was de

invloed van de relaxatie op de golfsnelheid niet to bepalen,,

omdat het effect klein is voor mengsels met enkele volume

procenten gas. De relaxatie effecten op de structuur waren
good to meten.

Na eon algemene inleiding wordt in Hoofdstuk ii het gedrag

van eon individuele gasbel in vloeistof besproken. In Hoofd-

stuk 2 wordt aandacht besteed aan de algemene eigenschappen

on de bewegingsvergelijkingen voor vloeistof-bellen meng-

sels. In de Hoofdstukken 3 tot on met 5 worden de verschil-

lende schokstructuren beschreven. Op de invloed van relaxatie

op de ontwikkeling van de schok wordt in Hoofdstuk 6 nader

ingegaan. In de experimenten speelt de zwaartekracht een rol

doordat gebruik gemaakt wordt van een verticaal opgestelde

schokbuis. In Hoofdstuk 7 wordt de invloed van de zwaarte-

kracht en de daarmee samenhangende druk- on dichtheidsver-

deling op de golfvoortplanting onderzocht. In Hoofdstuk 8

'wordt de experimentele opstelling beschreven on de experi-

mentele resultaten vergeleken met de theoretisch afgeleide

grootheden.

De algemene conclusie lufdt dat de experlmenten goed mat de

theorie overeenstemmen.
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STELLINGEN

De aanname van Levich dat een gasbel als een bol met een

vrij oppervlak kan worden beschouwd, wordt, voor de door

hem aangegeven begrenzing van het Reynoldsgetal, ondersteund

door de experimentele resultaten voor translatie-relaxatie-

schokken.

Levich, V.G. 1962. Physicochemical Hydrodynamics. Prentice

Hall.

Dit Proefschrift.

De bewering van Ackeret, dat "solange unsere empirische

Kenntnisse nicht grosser sind, hat es meiner Meinung nach

nicht sehr viol Wert, die Rechnungen stronger durchzufuhren"

is met betrekking tot cavitatieschokken nog steeds juist.

Ackeret, J. 1930. Tech. Mech. Therm. 1, 63.

Net door Parkin e.a.beschreven schokprofiel kan alleen dan

optreden, wanneer de drukverhouding tussen de drukken achter

en voor de schok groter is dan y en wanneer translatie-relax-

atie geen rol van betekenis speelt. y is de verhouding tussen

de soortelijke warmte bij constante druk en de soortelijke

warmte bij constante dichtheid van het gas.

Parkin, R., Gilmore, F., Brode, H.L. 1961. Rand Corp. Mem.

R.M.-2795-PR.

Dit Proefschrift.



IV

De door Batchelor in 1969 gemaakte veronderstelling, dat de

translatie van de gasbellen ten opzichte van de vloeistof

een belangrijkc rol kan spelen bij schokgolven in mengsels

van vloeistof en gasbellen is juist.

Batchelor, G.K. 1969. In Fluid Dynamics Transactions, e.d.

W. Fiszdon, P. Kucharczyk, W.J. Prosnak, vol. IV. Warszawa:

Polish Scientific Publishers (PWN).

Dit Proefschrift.

V

In sectie 85 van het boek Fluid Mechanics van Landau en

Lifshitz wordt wel het work van Kontorovich genocmd, maar,

ten onrechte, niet het werk van Burgers.

Landau, L.D., Lifshitz, E.M. 1959. Fluid Mechanics. Vol. VI.

Pergamon Press.

Burgers, J.M. 1946. Proc. Ken. Ned. Akad. v. Wetensch.

Vol. XLIX, 273.

VI

De aanname van Crespo dat de warmteoverdracht tussen de

gasbel en de haar omringende v1oeistof bepaald wordt door

de warmteweerstand aan vloeistofzijde van de gasbel is

onjuist.

Crespo, A. 1969. Phys. Fluids 12, 2274.

VII

De Nederlandse bevolking zal massaal tot actie tegen de

milieuverontreiniging overgaan, wanneer eigendommen, zoals

automobielen, door genoemde verontreiniging beschadigd warden.

VIII

De benaming smartlap voor het levenslied kan in vele gevallen

als geuzennaam opgevat worden.



IX

In een vloeistof-gasbellenschokbuis wordt de toelaatbare

lengte van de luchtkolom boven het mengsel bepaald door de

sterkte van de te produceren schok. Dit verklaart waarom

de luchtkolom voorkomende in de experimenten van Campbell

en Pitcher kort genoeg was.

Campbell, I.J., Pitcher, A.S. 4958. Proc. Roy. Soc. London
Ser. A243, 534.

X

Het is te verwachten dat bij toepassing van turbotreinen

voor railvervoer aanzienlijke kostenbesparingen kunnen war-

den bereikt in vorgelij king met de kosten die gemaakt worden

voor electrische treinen, waarbij energie voor de aandrijving

verkregen wordt uit bovenleidingen.

Guskovski, G.E. 1972. Zeleznodorozny Transport 1, 42,

XI

De auteur J.MLA. Biesheuvel meent dat K. van bet Rove god is.

Dit is minder verontrustend dan wanneer laatstgenoemde zich

als zodanig zou gaan gedragen.

Biesheuvel, 1972 In De Bovenkooi

XII

Ms de bewering van ac columnist N. Scheepmaker, dat een

grate kijkdichtheid een, criterium voor een good televisie-

programma is,, vertaald wordt in termen van journalistiek

en politiek, leidt dit tot de bewering dat de Telegraaf een

igoede krant is en Richard M. Nixon een goed president.

J.M.A.


