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GENERAL INTRODUCTION.

In this thesis one-dimensional propagation of waves with
finite amplitude is studied. Especially shock waves, in
mixtures of randomly distributed gas bubbles in a liquid.
We have limited ourselves to mixtures with air bubbles,
almost all of the same size, with a radius of order of
20"%n and a gas volume fraction of a few percent. This type
of flow is characterised by Kosterin (1949) as froth flow
or strongly dispersed flow. Therefore the experiments are
carried out in the range given in the right-hand side of
the diagram in Figure 1.

100
vol.$% r | ﬁ N annular
gas a0 ; i : flow
80 ?II *
stratified / N | slug
70 flow 7 t L flow /
/ | plug-slug ] ,
60 flow I
| |
50 / " L /
, plug I | I _1/ froth
40 flow | fIow —r—
30 1 |
|
20 |
10
|
.2 .4 .6 .8 1 2 4 6 8 10 20

velocity of the mixture m/sec

FIGURE 1.Distribution of the gas-liquid flow regions with different topologies
for a 1"horizontal pipe, from Kosterin (1949).

To allow a tractable theoretical analysis we restrict our-
selves to circumstances where bubbles do not break up under
the influence of a pressure gradient. Also no mass-transfer
occurs between the two phases in time intervals in which
pertinent quantities such as pressure, density, etc. change.
Further the bubbles are assumed to remain spherical. From
an experimental point of view we restrict ourselves to weak

and moderate shocks with pressure ratio's across the shock
to about 6.
Even with these restrictions the flow of a heterogeneous
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mixture of liquid and bubbles remains complicated. Therefore
we employ a model which makes it possible to predict theore-
tically those quantities which can be measured.

We consider, as described in Van Wijngaarden (1968) and
Batchelor (1969), wave propagation through a mixture of
bubbles and liquid from the point of view of continuum
theory and not as a multiple scattering problem (Foldy,1945).
In the continuum theory we start with averaging and intro-
duce average pressure, velocity and density. The averages
are over a volume element containing many bubbles, but of
linear dimensions small compared with the characteristic
length of motion. Thus changes in pertinent quantities

occur in distances large with respect to the inter-bubble
distance and bubble radius. We therefore describe wave
propagation in a fictitious, single phase compressible
medium.

The mixture is a compressible medium with compressibility
due to the gas phase and density due to the liquid. In most
cases a rather low sound speed, as defined later on, can
therefore be expected. Furthermore the mixture is considered,
in equilibrium state, as a uniform medium. This assumption
does not hold completely since in our experiments we are
faced with a space-wise density distribution following from
gravity. It will appear that this non-uniformity does not
invalidate the analysis.

In the analysis of wave propagation through the mixture
several types of steady shocks are studied. Some of them
have been observed earlier by different investigators. For
these shocks, normal shock relations are formulated similar
to those in gasdynamics, socalled Rankine - Hugoniot re-
lations. It can be expected that the description of wave
propagation in a mixture is, to a large extent, similar to
wave propagation in single phase compressible fluids. How-
ever, the leading mechanism in formation of a shock wave,
non-linear steepening, originates in the case of a mixture
for the greater part in the compression phenomenon, whereas
in gases this steepening follows from convection.
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The other effects which distinguish shocks in mixtures from
shocks in ordinary gases, are effects due to the relative
motion of the bubbles with respect to the surrounding liquid.
This relative motion consists of two types of motion: radial
motion of the liquid near an expanding or compressed bubble
and relative translational motion of the bubble with respect
to the liquid. Both types of flow cause dissipation.
Furthermore there is dispersion of waves caused by the
inertia of the radial flow associated with an oscillating
bubble.

In ordinary gases steepening of a compression wave by con-
vection can be balanced by viscous diffusion, leading to

a steady shock. The thickness of a shock in gases is there-
fore of the order of the mean molecular path (Lighthill,
1956).

For a mixture it is shown to be evident that the bubble

size determines the shock thickness. In mixtures several
types of shocks can be expected. One is based on the balance
of non-linear compression and dissipation due to radial
motion of a bubble. A second is based on the equilibrium

of non-linear compression, dispersion and the associated
dissipation. A third is based on the balance of non-linear
compression and dissipation due to relative translational
motion.

The first one was not encountered in our experiments. For
weak shocks, when the pressure ratio is below a certain
critical value, the third type of shock can appear. As

for the second type of shock it was noticed that the dis-
sipation associated with radial motion dominates the dis-
sipation associated with relative translational motion.

This is in the case of not too weak shocks in mixtures

with a volumetric gas content of a few precent. This leads
to shocks where the overall thickness is determined by the
dispersion effect. These shocks are governed by equations

of the same type as those for long gravity waves on water

of finite depth. Therefore the pressure profile in a steady
shock should look like the surface elevation in an undular
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bore. This type of shock, a socalled SA shock, was found
in the experiments and shown in Figure 2.

FIGURE 2. A pressure profile typical for a S, shock, a steep rise in
pressure at the front side and waves at the back side.

We observed a gradual change of the shock structure during
its passage through a tube of some length. These changes

are attributed to the mechanism of relative translational
motion between the bubbles and liquid. Therefore we developed
a theory, taking in account this relative motion. It will be
shown that its effect on the shock structure is similar to
the effects of thermal relaxation on gasdynamic waves. The
pertinent relaxation time in the present case is the time

it takes a bubble to adjust to the liquid velocity through
viscous forces. From the theory it follows that this relax-
ation affects the speed of the wave as well as its structure.
In the experiments no verification of this influence on

wave speed could be made, it being too small to be measured
in dilute mixtures. Comparison of the experimental results
concerning the wave structure, with theory, supports our
conclusion that the observed changes are due to relative
motion indeed. In Figure 3 a pressure profile affected by
relaxation is presented.



FIGURE 3. A Sy shock.

There is still a steep pressure rise at the front part, but
the pressure does not no longer rise to equilibrium pressure
at the back side. This takes place in a region, which is
much thicker than the front shock, and in which the pressure
slowly oscillating reaches its final value. This type of
shock will be called a Sy shock.

For weak shocks and where dissipation due to radial motion
is smaller than dissipation due to relative translational
motion the shock thickness can be much larger than of a Sa
shock. It is even possible, as already mentioned that a
steady shock appears, of which the structure follows from

a balance of non-linear steepening and resisted relative
translational motion. This we call a SC shock.The front
shock as well as the oscillations have disappeared. The
pressure profile is almost completely smooth and covers a
region which is at least an order of magnitude larger than
the thickness of a SA shock. A typical pressure recording

is shown in Figure 4.



FIGURE 4. A SC shock.

Having discussed the topics of this thesis it is of inte-
rest to survey previous work on shock waves in liquid-
bubble mixtures.

One of the earliest theoretical and experimental investi-
gations on shock waves in two-phase flow were done by
Ackeret (1930) who studied cavitating water flow in Laval
nozzles. Ackeret formulated Hugoniot relations for the
mixture similar to the relations for shocks in gases. From
these normal shock relations he derived expressions between
the pertinent quantities far in front and far behind the
shock. The structure of the shock and especially the shock
thickness, was estimated from dynamic bubble behaviour.

An extension of the experimental work of Ackeret was re-
ported by Campbell & Pitcher (1958). They illustrated their
theoretical discussion on the Hugoniot relations with ex-
periments on a short gas-liquid shocktube. The bubble beha-
viour of the gas phase was left out of account in their
analysis and accordingly the structure of the shock was not
discussed. They found that the temperature rise accross the
shock was very small for a very large range of conditions.
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This leads to simple relations for the shock wave propa-
gation speed. Campbell & Pitcher showed from entropy con-
siderations, that a rarefaction wave cannot propagate with-
out change of form and they argued that a compression wave
can be expected to steepen into a shock wave. Their measured
shock velocities come close to the predicted values. The
bubbles in these experiments have a radius of about 10—4m,
an order of magnitude smaller than the bubbles in our expe-
riments. As will be discussed later on the magnitude of the
bubble size is important from a thermal point of view.
Bubbles of the size of 10 %m are assumed to be in thermal
equilibrium with the liquid, whereas larger bubbles can be
regarded as thermally insulated. More theoretical work on
shock waves in bubbly fluid was reported by Parkin, e.a.
(1961). They formulated Hugoniot relations for normal shock
waves in cases where the bubbles can be considered as ther-
mally insulated. Also other aspects of air-water mixtures
were discussed. They payed attention to dissolving of air
bubbles, effects of surface tension and heat conduction
between the bubbles and the liquid. Parkin e.a. also pointed
to the importance of the inertia effects following from
radial motion on the structure of the shock. Their qualita-
tively predicted shock structure is not supported by our
theory, because their discussion on the SB shock was based
on thermal relaxation. They did not present experiments.
Eddington (1970) also performed experiments on normal shocks
and concluded that there is a good correspondence between
the experiments and the results following from Hugoniot re-
lations. The shock structure, as found in his experiments
may be quite different from the shock in bubble-liquid
mixtures, because the topology of the air-water mixture
varied during these experiments. More detailed investigations
on the structure of shock waves were reported by Crespo
(1969) and Van Wijngaarden (1970). Crespo discussed propaga-
tion of a plane shock wave through a mixture with equal
temperatures on both sides of the shock. He found a structure
which is similar to the profile of Figure 2. However the
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waves behind the shock were stronger attenuated than one
might conclude from the attenuation in our experiments.
This was due to the fact that Crespo assumed that the heat
flow, through which attenuation is largely determined, is
dominated by the heat resistance at the liquid side of the
bubble. Noordzij (1971) showed with experimental results
that heat flow from bubble to liquid is dominated by heat
resistance at the gas side and the contribution to attenua-
tion was found large enough to account for the experimen-
tally observed attenuation. Van Wijngaarden (1970) indepen-
dently formulated the equation describing the structure of
the shock. He dropped relative translational motion and
found an estimate for the shock thickness and the wave length
of the waves behind the shock. Experiments on SA type of
shocks are reported in Noordzij (1971) and Van Wijngaarden
(1972b). Theory and experiments on the SA-—SC shocks and espe-
cially theory concerning relaxation is reported by Noordzij
and Van Wijngaarden (1973).

The theory for the SA'SC shocks is presented together with
a large number of experimental results. For this we first
discuss, in chapter 1, the dynamic behaviour of am indivi-
dual bubble immersed in a liquid. In chapter 2 gemeral
properties and the equations of motion for a liquid-bubble
mixture are discussed. In chapters 3-5 different types of
shock profiles will be analysed.

The influence of relative motion on the development of the
shock is discussed in chapter 6 in terms of relaxation,
introduced in the complete set of equations.

Gravity plays a role in our experiments according to the
experimental set up, resulting in a small relative velocity
of the bubbles. But this velocity can be neglected with re-
spect to the shock induced velocity. Due to gravity there
is a pressure and a density distribution in the equilibrium
state. Actually when we are discussing shocks, we consider
shocks propagating through a non-uniform medium. It will
appear, as discussed in chapter 7, that effects following
from this non-uniformity are sufficiently accounted for,
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if we introduce local quantities for describing the struc-
ture of the shock. As a matter of fact this non-uniform
medium enables us to study propagation of waves through
mixtures where density is a slowly changing function of
the space-wise coordinate. Using the socalled Whitham rule
as described in Whitham (1958), we are able to present the
change in propagation velocity as a functicn of the equili-
brium quantities.

In chapter 8 the experimental set up is described and the
experiments are compared with theory.

For the sake of simplicity we assumed isothermal behaviour
of the gas phase. Where necessary corresponding relations
following from adiabatic behaviour were summarized.




CHAPTER 1.

THE MOTION OF A SINGLE BUBBLE IMMERSED IN AN INFINITE
INCOMPRESSIBLE LIQUID.

§1. INTRODUCTION.

For describing wave propagation in a liquid-bubble mixture
it is necessary to know the equations governing the motion
of an individual bubble relative to the liquid.

Two types of bubble motion are of importance for our model
of the mixture flow. The first one is radial motion of the
bubble surface. Due to liquid inertia and gas compressibi-
lity an individual bubble is capable to execute radially
symmetrical oscillations. In a mixture this inertia causes
a dispersion effect on waves. The other motion is the rela-
tive translational motion of a bubble. Viscous friction
associated with relative motion causes a relaxation effect
on a wave. We assume in our theoretical model that this
relative motion does not disturb the spherical symmetry of
the bubble.

§2. RADIAL MOTION OF THE BUBBLE SURFACE.

In this section we describe briefly the motion of liquid
surrounding a contracting or expanding bubble. An equation
will be derived for the bubble radius R=R(t), t denoting
time. This equation describing volume oscillations of a
bubbhle is well-known in literature, see a.o. Lamb (1932).
The liquid is assumed to be incompressible and the gas in
the bubble homogeneous. From a velocity potential ¢

dR/dt
» (1.1)

»

by applying Bernoulli's law between a point on the bubble
surface and a point far away in the liquid, we find that
the compression or expansion of the bubble is governed by
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d2R 3 dR 2|
- Pp =0y {R— +—(— )2} . (1.3)
z { dt? 2 dt

Py

Surface tension, vapour pressure and effects of the radial
viscous stress are left out of account. The various quan-
tities in (1.2) are given in Figure §5; Py is the density
of the liquid.

FIGURE 5. An individual bubble in a mixture. At the bubble radius
r = R the pressure is Py Far away (» » r_) the pressure is p-

A physical interpretation of (1.2) is that the difference
between Py and p_ is brought about by the inertia of the
liquid being accelerated with respect to the interface in
radial direction. This imnertia is the cause of a dispersion
effect on pressure waves through bubbly mixtures.

Assuming the gas to be isothermal we find for the angular
frequency wp of free volume oscillations (with small ampli-
tude) c*out the equilibrium radius R, from (2. 2)

1 3p
E Ol (1.3)
Ro P1

“p
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For our experimental circumstances with Rozla-3

m, p,=10° 0/m’
and pZ=103kg/m3, wpg is of order 104. It can be expected that
for waves at frequencies w below 10% sec.”™! a bubbly fluid
can be treated as a homogeneous medium in which the bubbly
character of the gas phase may be ignored. When the gas

phase behaves adiabatically W becomes, as derived by

Minnaert (1933),

P =

1 3yp
B =)¥

—_——
Ro ¥
y is the ratio between the specific heat at constant pres-
sure and the specific heat at constant density. Whether
the gas phase behaves either isothermally or adiabatically

w , (1.4)

has been investigated by Plesset (1964) for bubble oscil-
lations at arbitrary frequencies. Plesset discussed results
in terms of the characteristic lengths Ro, D /uHo, the scale
associated with the heat penetration depth in the bubble,
and the acoustic wave length in the gas phase A _. As long
as the latter is large with respect to the bubble radius

R, and D /(wRoJ, pressure and temperature within the
bubble are uniform and the bubble oscillations are isother-
mal when D /m>>R02 and adiabatic when Dg/m<<302. At very
high frequencies with Ag<Ho the oscillations are again iso-
thermal; the surrounding liquid is no longer significant
for the bubble interior. In general the oscillations of a
bubble are therefore isothermal both for low and high fre-
quencies and adiabatic in an intermediate range. A complete
description of the heat processes would require an energy
equation both for the liquid and the gas phase with proper
boundary conditions. However, for our analysis the following
approximations are sufficient. In our experiments for the
air bubbles, having a radius of order 10_3m, the typical
frequencies are just in the intermediate range. This is
shown as follows:

Consider the case for shock waves with velocity of order
102m/sec and thickness of order 10 %m. This leads to frequ-
encies typical for our experiments of order ro¥,




s

The associated wave length Ag in air is of order 20 %m

which is an order of magnitude larger than the bubble
size. Hence acoustical variations of temperature and pres-
sure within a bubble may be neglected. The thermal pene-
tration depth in the bubble is of order (Dg/u)*. With a

1 and a thermal diffusivity

frequency of order 10%sec”
Dg=ISXI0_6m2
10" %m, which is negligible small with respect to the bubble

size. Adiabatic behaviour of the air bubble during the pas-

/sec for air, the penetration depth becomes

sage of the shock is therefore a realistic assumption.
(0f course ultimately the bubble adjusts to the temperature
of the liquid).
Hitherto we left out of account in equation (1.2) effects
of viscosity, surface tension etc.
The full equation incorparating the various effects, reads:
20 d?R 3 dR i ' dR

pg+ Py~ R_ = ik DZ{R ;—t—; + ;(Z) ¥ 6mBH ;— o (2.5)
with o the coefficient of surface tension, i the vapour
pressure, ¢ a damping constant incorporating effects follo-
wing from normal viscous stress etc. and wg defined by (1.4).
In the next section, we discuss the damping coefficient &.
Equation (1.5) applies to bubbles noving with the liquid.
Actually the liquid velocity differs from the bubble velo-
city. The contribution of this to (1.5) is ¢. order pz(v-u)z,
with (v-u) the relative velocity of the bubble,with respect
to the liquid).This quantity is of order Josﬁ/mz,and can
therefore be neglected.
For our experimental circumstances we can further neglect
the influence of vapour pressure with respect to pngOSN/mz

p, v 10° N/m2 .

The influence of surface tension is of no importance:

(o}
— ~ 10% wym? .
2R
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The equation to be used, describing damped volume oscil-
lations of a bubble, reduces to

d’R 3 dR dR
“ Do = Pp (B — * ~(—)2+ SufR —} . (1.6)

p
dt? 2 dt dt

g

Later on equation (1.6) will be substituted in the equations
describing the hydrodynamics of a liquid-bubble mixture.

It is reasonable to suppose (Van Wijngaarden, 1964), when
the bubbles are sufficiently far apart, that the ambient
pressure for one bubble p_ is the local pressure in the
continuum theory, as will be discussed in the following
chapter.

§3. THE ATTENUATION OF THE VOLUME OSCILLATIONS; 6&.

There are various mechanisms which cause attenuation of

the volume oscillations of a bubble. If the liquid sur-
rounding a bubble were incompressible and the gas phase
behaved purely isothermally or adibatically the most im-
portant contribution to attenuation would follow from vis-
cous dissipation associated with the radial motion near an
expanding or contracting bubble. In this case the last term
in the right-hand side of equation (1.6) is determined by
normal viscous stress and equals

320
2u S 3
L ap2
with My the dynamic viscosity of the liquid.
The equation for the bubble oscillations becomes, using (1.1)

p_pm—__pz[ﬁ__{,_(_Jz.‘;—-—-——}_' (1-?)

with vy the kinematic viscosity of the liquid.
However the liquid is not purely incompressible and a
bubble executing volume oscillations expends a portiomn
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of its energy by radiating spherical sound waves. Also

the gas does not behave purely isothermally or adiabati-
cally. It will appear that the most important damping
mechanism stems from this thermal process in the gas phase.
During expansion and compression heat is conducted from

the liquid to the bubble and visa versa, causing a phase
difference between the pressure in the bubble and the
external pressure. This can be described in terms of a
damping coefficient. Several authors discussed the attenu-
ation associated both with acoustical radiation and ther-
mal conduction. For this the reader is referred to a survey
in Van Wijngaarden (1972a).

In equation (1.6) the term including the factor & repre-
sents the various damping effects in a formal way, since
only for small amplitude oscillations and small values of

§ the various effects can simply be added. However for our
purposes we find a sufficiently satisfactory damping constant
if we assume & to be the sum of the different effects:

§ = 6§ _+ aac+ Gt (1.8)

vy h*

with : = the contribution due to normal viscous stress

[
v
éac the contribution due to acoustic radiation
Gth the contribution due to thermal conduction.

8 has been discussed already and becomes

vr
r
" _ 4uZwB
vr -
3yp
or
4vz
(4] = » ¥
- TR (1.9)
B o

The contribution B becomes (Devin,1959)

§ = g (1.10)

with ey the sound velocity in the liquid. In general -
is a function of the forced frequency (Meyer&Skudrzyk,1953).




-1 6~

We assume §,0 tO be constant and take its value at reso-
nance as a first approximation. &, is found from calcula-
tions in which the bubble is treated as a simple sound source
and the bubble radius is considered small with respect to
the wave length of the radiated sound.

An expression for §,5 can be approximated from calculations
of Pfriem (1940) and becomes

3(y=-1) 2D
- (—)¥ (2.11)
2R0 ué

Also we took Gth under resonance conditions. For air bubbles

Sin

this expression is

5, = 1.7 x10 fap)¥® . (1.12)
These approximations of the thermal contribution are based
on linearizations of the dynamic equation for the bubble
and of its heat equation, using proper boundary conditions.
Due to its great heat capacity the liquid is assumed to be
isothermal in this approximation.

In most of our experiments thermal dissipation dominates
other dissipation mechanisms discussed so far. Other
mechanisms leading to thermal adjustment are: forced and
free convection in the bubble. These effects and also those
following from vaporization and condensation are left out

of account because they are beyond the scope of this thesis.

§4, THE RELATIVE TRANSLATIONAL MOTION OF A BUBBLE.

In general there is no evidence that a body immersed in a
liquid will move at the same local liquid velocity under

the influence of a pressure gradient in the liquid. There-
fore the equation of motion describing relative trans-
lational motion is of interest. With an ultimately vanishing
pressure gradient the bubble velocity equals eventually the
liquid velocity, because of viscocity.

Batchelor (1969) has shown the importance of dissipation
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associated with relative motion for pressure waves in bubble-
liquid mixtures. Crespo (1969) and Van Wijngaarden (1970)
introduced the equation of motion in the context of basic
equations from which the structure of the shock can be found.
For derivation of this equation it is necessary to know the
different forces on a bubble.

Due to the negligible inertia of the gas, the gas in the
bubble can freely move about so there is hardly no constraint
on the tangential velocity of the liquid at the boundary

of a bubble (Levich, 1962). There are only the constraints
of continuity of tangential stress and the vanishing of
relative normal velocity in this case. The only boundary
layer of importance is a boundary layer for the velocity
gradient, the neglect of which is, in a first approximation,
legitimate (see e.g. Levich, 1962). Therefore the motion

of a bubble can be determined from potential theory.

Knowing the potential of translational motion of a sphere
the dissipation associated with this motion can be calcu-
lated. Since velocity gradients are not of larger order

of magnitude within the boundary layer than outside of it,
the rate of energy dissipation per unit volume is of the
same order throughout the liquid. So the total rate of dis-
sipation is dominated by the contribution of the considerable
larger region of irrotational flow outside the layer in
contrast with a rigid body. From the dissipation through

the whole of the liquid coupled with relative motion we can
find an expression for the frictional force exerted on

the bubble.

By equating the rate of dissipation in the liquid to a
frictional force times the relative velocity, we find for
the frictional force F,

F = 12nqu(v-u) F (1.13)

where v is the velocity of the bubble and u of the sur-
rounding liquid (Levich, 1949).
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Note that this force is just twice the Stokes resistance
for a solid sphere at small Reynolds numbers. Here, in
contrast with Stokes flow, the Reynolds number must be
large enough for inertia forces to dominate over viscous
forces.
The validity of (1.13) is according to Levich (1962) res-
tricted to Reynolds numbers of about 800, because at larger
numbers the bubbles are significantly deformed. It is of
interest for a discussion of the experimental results to
give for these oblate bubbles an approximate resistance
based on Levich's model.
According to Levich (1962) this drag becomes:
S
F' = 12mp,~(v-u) (1.14)
h

where S is the area and h the thickness of the deformed
bubble in the direction of motion. In the following theo-
retical analysis we assume the bubble to remain spherical.
When the liquid contains surface active agents and contains
only a few bubbles Levich's model ceases to be valid. The
presence of surface active agents leads to an apparent no
slip condition at the interface. In suspensions as we will
use, Levich's model for a bubble is realistic (Levich 1962,
p-448), because for not too low gas concentrations the con-
centration of agents divided by the total gas-liquid inter-
face is low enough.
The other force on the bubble follows from the ambient
pressure gradient ap/3x and equals -V 3p/dx. Associated
with this each bubble represents an impulse as defined by
Kelvin (Lamb 1932, §119). This is the impulse of the system
bubble and liquid. Kelvin introduced this impulse to solve
the problem connected with the momentum of the liquid. The
momentum of the liquid depends on the shape of the surface
at infinity and is therefore indeterminate. The socalled
Kelvin impulse for a bubble is, relative to the liquid, of
magnitude 1

- plv(v-uJ s (2.18)
9 4
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corresponding with the inertia of the mass of the liquid
occupying a volume half that of the bubble, usually called
the added or virtual mass, times the relative velocity.
Since the bubble is considered as massless, the rate of
change of its Kelvin impulse equals the external forces,
which are the force due to the ambient pressure gradient
and the friction exerted by the liquid.

The equation of motion for the bubble is, taking these
forces together,

1 d ap
- p; —{Vlv-w)} + 12mu R(v-u) = -V— . (1.16)
2 dt dx

Initially the volume of the bubble can be taken as constant
(Woo & Paslay, 1967). In that case and for low viscosity
(1.16) reduces, using the equation of motion for the liquid

du ap
pz—+"—:01
dt ax
ke du  dv
3 — =, (2..27)
dt dt

In a situation where u and » are initially zero, as in our
experimental circumstances when a shock wave propagates in

a mixture at rest, we find

Of course the viscosity is not zero and with a vanishing
pressure gradient the bubble velocity ultimately equals
the liquid velocity. We describe this process in a mix-
ture in more detail in the chapters 5 and 6.

Associated with the relative motion of the bubble there
appears liquid motion which is called drift. Darwin (1953)
showed that in potential flow associated with the motion
of a sphere through a liquid at rest, a mass of liquid is
displaced equal to the hydrodynamic or virtual mass
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of the sphere. This displacement, drift, equal to 1/2 pZV
is in the direction of motion. We must account for this
effect in the equations of motion and mass conservation
in mixtures of liquid and bubbles.

§5. THE RATE OF DISSIPATION ASSOCIATED WITH BOTH RELATIVE
TRANSLATIONAL AND RADIAL MOTION OF THE BUBBLE.

It is of interest to find the leading mechanism of wave
attenuation in mixtures. For this we compare the rate of
dissipation associated with relative translational and
radial motion.

The rate of dissipation associated with translational motion
of a bubble with a socalled free boundary is found to be,
(Batchelor, 1967),

B, = 12wuZR(v-u)2 g (1.18)
The rate of dissipation associated with radial motion is
found from the attenuation term in (1.5)

dR

ﬁwéﬁ —

p
L dt

The rate of dissipation becomes, (Batchelor,1967),

dR
B = Sw!R4mR2(—)2 . (1.19)

[+]
r 1B @
This is of course an approximation because § contains con-
tributions from linearized equations.
The ratio between B, and E, is
E sw! R2  dR

o2 g, (1.20)

E, vy(v-u)? dt
"To find the magnitude of this ratio we introduce a time
scale relevant for the change in pertinent quantities.

This scale is based on the shock propagation velocity U,

which is of order 102m/sec and the shock thickness d,




which is of order 10_2m.

The scale is

d

w = - =00107%)sec .

U
Accordingly dR/dt is approximated by wR.
Also we need an estimate for v-u . For that we use a re-
lation which will be derived later on in this thesis. v-u
becomes approximately for not too weak shocks

v=u = UB ,

with g the gas volume fraction of the mixture. 8=0(10"%).

Using the just derived expressions, the ratio Er/Et becomes

SméRz R?

v, 8 Bd2
For the moderate shocks in our experiments, this quantity
is of order 10°. So dissipation is largely governed by
radial motion. Only in the case of weak shocks this no
longer holds and the ratio becomes of order unity. Then
the suggestion of Batchelor (1969), that relative trans-
lational motion is important, is supported.

§6. CONCLUSIONS.

In this chapter we discussed the motion of a single bubble
immersed in a liquid. As will appear later on the different
aspects of this motion, radial as well as translational,
will be of importance in analysing waves of small and finite
amplitude through mixtures.

We conclude that dissipation associated with radial motion
plays an important rdle in attenuation of waves. Further-
more radial motion will be important for dispersion effects
on waves in these mixtures.

In this chapter we adopted Levich's model for the frictional
force. From experiments discussed in chapter 8 we will
verify the reliability of this model.



CHAPTER 2.

GENERAL PROPERTIES AND EQUATIONS OF MOTION FOR A MIXTURE
OF LIQUID AND GAS BUBBLES.

§1. INTRODUCTION.

In (his chapter we cons.ider wave propagation through mixtures
of bubbles and liquid. For many purposes it is sufficient

to consider the mixture as a homogeneous fluid. Provided

the length scale of motion is sufficiently large compared
with the average distance between the randomlv distributed
bubbles. In this the simplest model the pressure in the
bubble equals the pressure in the liquid. For low frequen-
cies this .odel is supported by experiments (Silberman,1957).
At higher frequencies wave propagation becomes more and

more complicated, because of bubble oscillations. One
approach is to adopt a model where wave propagation is
considered ~s a multiple scattering problem. However this
approach is beyond the scope of this thesis. For a review
on this subject the reader is referred to Van Wijngaarden
(1972a).

In this thesis we adopt the model in which a continuum
theory can be constructed. In this theory we start by intro-
ducing average quantities. These are average pressure,
velocity and density, where the averaging is over a volume
element of the mixture containing many bubble, but of

linear dimensions small with respect to the characteristic
length of motion.

At higher frequencies the bubble behaviour of the gas phase
becomes important and the equality of the pressure in the
bubble and the pressure in the liquid is lost. We assume
that the relation between the local pressure in the liquid
p and the pressure in the bubble p_is the same as for an
isolated bubble as given in the foregoing chapter where p_
is replaced by p.

This model enables us to write down simple equations for
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wave propagations in mixtures of bubbles and liquid.

For convenience some assumptions for these mixtures are
repeated. We assume that the bubbles are all of the same
size and they execute volume oscillations. Further the
bubbles are considered as gas filled cavities, which do

not break up or cluster together. Mass transfer between

the two phases is let out of account, because desolution
times are much larger than a characteristic time related
with wave motion (Parkin e.a., 1961). As already mentioned
in the general introduction gravity plays a rdle in our
experiments. However its influence on wave propagation is
discussed elsewhere in this thesis. Also induced relative
translational motion is left out of account in the analysis
of this chapter.

In the following section we derive the equation of state of
the mixture.

§2. THE EQUATION OF STATE.

Throughout the analysis the liquid is assumed to be incom-
pressible except for the damping effect associated with
sound radiation from a bubble.

A modification of the equations caused by compressibility
can be found in Batchelor (1969). In the following we de-
note quantities belonging to the gas phase with subscript
g; those belonging to the liquid with Z. In most of the
practical cases and also in our experiments the gas volume
fraction B is not larger than a few percent. It is defined
as the volume occupied by the gas in a unit volume of the
mixture,

B =n —aR3 = nv , 2. 19

where n is the number density of the bubbles.

The mass density p of the mixture follows from the density
of the liquid, P75 and the density of the gas, Py For small
values of g we may neglect the contribution of the gas, pr,



and we find for o

p = pz(l - B8) . (2.2)

When the bubbles move with the liquid the mass of the gas
in a unit mass of the mixture is constant

d
_[_gﬁ_] .

dt pl(l—B)

k-

o = constant . (2.3)

~

™

In a homogeneous mixture where p = Py and for isothermal
circumstances (2.3) changes into

pPB
—— = econstant , (2..4)
I-8

and for adiabatic circumstances

8 Y
p(—) " = constant . (28]
I-8

(2.4) and (2.5) are the equations of state.

§3. THE SOUND VELOCITY.

For the isothermal sound velocity c:{dp/dp}% we find from
(2.2) and (2.4)
r

(.‘2: e . {2.6)

The adiabatic speed of sound becomes, with (2.2) and (2.5)

YP
Ty A — (2. 7)
pzpli-ﬂ)
We see from (2.6) and (2.7) that for g+0 we have to account
for the conpressibility of the liquid and for g+1 the con-
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tribution of the density of the gas phase to the density

of the mixture.

In most of the practical cases we are dealing with B8 neither
very close to zero nor to unity. So the relations (2.6) and
(2.7) are used throughout this thesis. In our experiments

e is of order Jozm/sec.

The results for the speed of sound waves of low frequency
were already found by Mallock (1910).

For a survey on sound velocities in a bubbly fluid the reader
is referred to Van Wijngaarden (1972a).

In the case of a homogeneous theory with disappearing bubble
radius or large wave length, Hsieh & Plesset (1961) found
that wave propagation is isothermal. This is also supported
by the experiments of Silberman (1957).

As follows from the investigations in the foregoing chapter
the adiabatic speed of propagation is of importance for
short wave length. In that case we are also dealing with
effects following from dispersion.

§54. EQUATIONS OF MOTION.

In this section we pay attention to the hydrodynamics of
the mixture for the homogeneous case.
The homogeneous theory is defined through stating PP,
However, in our theory we allow for a difference between
p and p_ which is associated with radial viscous stress
near the bubble.
Using (1.7), the relation between p and pg becomes

4uz dR

P, ™ P S e—m — (2.8)
g R dt

The equation of mass conservation becomes
ap/ot + A(pul)/dx = 0 , (2.8)

where ¢ is the time-wise variable, z the space-wise variable
and u the mixture velocity.
The equation of motion for the mixture is

pdu/dt = -ap/dx . (2.10)
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The equation of continuity for the number density = is

an 9
— i —(nu)= 0 (2.17)
9t ax

or with Vpg=constant and (2.1)
3 9
—(Bp )+ —(Bp u)= 0 .
it 9 sz 9

With (2.9) and the fact that the mass of the bubble is
constant we find from (2.11)

—d = constant ,

or
Bp
—a - constant

3

as already presented in eqation (2.3).
With Vpg =—econstant We obtain
n
—— = constant . (2. 12)
T=g

With (2.1) and (2.12), (2.8) yields

P, — P == g In— . (2.13)

p.-p==-—=-—=— . (2.14)

From the equations (2.9), (2.10) and (2.14) we finally
obtain the equation of motion which will be subject of
further discussion in the next section

qu qu 1 3p 13 4u, 3u
= e ol g e il Sl (2.15)
3t ax p 9x p 9xr 38 a3z



-27-

The last term in the right-hand side of (2.15) describes

the effect of radial viscous stress near the bubbles in a
mixture. This term can be interpreted as the contribution

of the socalled volume viscosity 4“Z/38' The derivation of
volume viscosity for a suspension of bubbles in liquid based
on dissipation in the mixture is already given by Taylor
(1954). The term shows that effects of shear stress in the
liquid can be neglected safely when 850(10-2).This being

50 in our experiments.

§6. WAVE PROPAGATION IN A MIXTURE OF GAS BUBBLES AND LIQUID.

In this section we discuss acoustical wave propagation. The
equations are completely similar to those in gasdynamics.
For this the reader is referred to a survey in Lighthill
(1956). First we drop the term representing dissipation

in (2.15). Using e?=(dp/dp), we find from a linearization
of (2.9) and (2.15) the well-known wave equation for waves
of small amplitude

22y 32y
—_—= %2 — (2.16)
ax?

where subscript o refers to equilibrium circumstances.

cg is defined through (2.6).

1f we consider the infuence of viscosity as represented
in the last term of the right-hand side of (2.15), the

equation describing waves of small amplitude becomes

32y 32y du, 33u

—_— - —_— T pé —=

at?2 O ax2 ° 3p, ataz?

. (2.17)

The term in the right-hand side represents attenuation of
the sound wave by diffusion. The factor (4uz/3poJc3 is
usually called the diffusivity and we denote this factor
with I'. We now briefly illustrate the diffusion. Looking
for solutions proportional to exp(iwt) (2.17) changes
into:



a2y
rcg + Tiw)— +wlu = 0 . (2.18)
ax?

From equation (2.18) we see that a progressive wave is of
the form

U = exp[tm{t = ——;:;:—jg}] (2.18)

With c§>>rw, (2.19) becomes

Tw? »
U = exp[— ——— xl ezp[im(t- / ), . (2.20)
2¢3 o
o
The first factor shows that an initial sinusoidal wave is
unaltered by diffusion. Now we consider a general signal
with a given frequency spectrum u({w) for z=0,

= u(t) = [ KL WY (2.21)
and for xz#0 we find with (2.20)

® lw
@) = [ exp{— —_ xl exp{iu(t—x/ Jlu(m)dm . (3.22)
—0 203 co
o
Using the transform of exp(-Tw?z/2¢}) we find from inverse
transformation of (2.22),

co - (t-8- /c )2]
u = ] u (8) e:np[— 1 ds , (2.23)
(2nrx/c0)E da % 2rz/c

u is the time mean of %, (s) welghted according to a Gaus-
sion d15tr1but10n centred on s=t- /c with standard devi-
ation (rz/c J /c . This accentuates the reason for calling
I the dlffu51v1ty of sound since the wave spreads out with
increasing x. For example an initial step function changes
into an error function. Ultimately a wave disappears. We
will show further »n that this spreading of the wave by
diffusion can be altered by non-linearity.
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§6. NON-LINEAR WAVE PROPAGATION.

In this section we discuss plane waves of finite amplitude
travelling in an undisturbed region of the mixture and use
the simple wave analysis of gasdynamics. In particular we
are interested in those cases where non-linearity leads to
formation of a steady shock wave.
In gasdynamics shock waves are formed as a result of a ba-
lance between steepening by convection and the tendency to
spread out by diffusion.
In the case of a bubbly liquid the term producing diffusion
is already discussed and we therefore pay attention to the
process of steepening. For this we use the general approach
of Riemann (1859).
The equations (2.9) and (2.10) can be written in the follo-
wing form, using (2.6),
]
(— + (u+c)——JJ+
9t ax
and (2.24)
9 3

(— + (u-e)—)dJ_
ot X

1
S

I
(=]
w

where J+ and J_ are the Riemann invariants

45

J

u + [(dp/oe)
u - [(dp/pe) .

and (2.25)

From (2.24) it follows that J and J_ remain constant
along each characteristic, respectively

dz/dt = u+te

Cy

and
de/dt = u-c

c

The socalled characteristic directions are well-known
quantities in discussing wave propagation as a result of
hyperbolic differential equations. (Courant & Friedrichs,
1948).

If the waves travel from the left to the right into the
undisturbed region indicated with subscript o we have on
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a "left" characteristic ¢_, with u=0

[tdp/pe) = conetant,
or with (2.6)
J(dp/pe) = e,B, In(B,/B) = constant,

where we neglect B in comparison with unity and used, from
(2.4) and (2.6)

e =c (8,/8B).

From the undisturbed region, where B:Bo' we find therefore

u - [(dp/pe) = 0.
For a C_ characteristic we finally obtain
u = [(dp/pe).

Using the results from a C_ characteristic the speed u+e
in the positive direction is found to be

B_-8

8o
+ Boln——)- (2.26)

ute = [(dp/pe) + ¢ = ¢ (1 +
¢ 8 8

From (2.2%8) it follows that any acoustic wave form will

continually change. This can be seenas follows: the com-

pressed part of the wave, g<g_, travels faster than the

expanding part, B>B,,.

We see from (2.26) that the excess in speed stems from two

effects. The first,
coBo B

3

B
follows from the fact that the sound velocity is larger
in the compressed part than in the expanding part. The
second from a positive value of u in the compressed part
and a negative one in the expanding part. From (2.26) we
see that the latter effect is relatively unimportant in
contrast with a simple wave in ordinary gas.
For a mixture the ratio between the first and the second
effect is:
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=g
1 BO/B

B, ln(Bo/BJ

With B, only a few percent the second effect, usually called
the convective part, is unimportant. Then the change in
wave form stems from the compression part. This process is
called steepening by compression. As already mentioned this
is in contrast with a simple wave in an ordinary gas. In

that case the speed of the wave is, Lighthill (1956),
e=e, 2 e-e,

-

ute = e (1 +
o(

) s

co Yy=1 e

0
and the ratio between the compression part and the convectiv
part becomes (y-1)/2. From this we see that the steepening
in an ordinary gas is governed by convection.
From gasdynamics it is known that this steepening eventually
leads to the formation of a shock wave when the steepening
is balanced by diffusion. Analogous with the theory for
gases we may attempt to predict the structure of the shock
and especially the shock thickness in a mixture of bubbles
and liquid.
For weak shocks in gases the profile of the shock is a
tanh, with argument equal to the running coordinate along
the wave times the ratio of the excess in wave velocity
and the dissipation coefficient resulting from shear vis-
cosity, volume viscosity and heat conduction (see e.g.
Lighthill, 1956). Using this for the mixture, we find that
for a mean compression (30—31)/2, the excess in wave velo-
city becomes

e, Bo BJ |

28,

where 8, is the gas volume fraction for the low pressure
side and 8, for the high pressure sice.
Using (2.€) and (2.17) we find for the dissipation coef-
ficient
2 ~
(éu,/3p Je? ~ (4/3)(v,/8 ) .
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In terms of g the profile of the shock becomes

3 c (B -B,)B
g = -2 d - Zo i tanh|— D—O__I__O.(_-r_y-g)], (2.27)

2 2 8 szvZ

where U is the velocity of the shock which is intermediate
between u+c before and behind the shock. So we find for U

B -8

oo U]+ =22

281
This relation is also found later on where we discuss diffe-
rent types of steady shock waves.
(2.27) can be found by substitution of (3/8t)=U(3/3x) in
the equations (2.4), (2.9)-(2.11) and (2.14) when seeking
a wave of steady form which propagates with velocity U.
This solution is given by Van Wijngaarden (1970).
For an estimate of the shock thickness we use for comple-
teness the total damping constant instead of the partial
contribution év;(4v1/wéﬂg). Using (1.8) and (2.6) the equa-
tion for the shock profile becomes:

¥
B _+8 B -8 B
g = 2L - 2 1 ionp (-2 - 1)(z-Ut)]. (2.28)

2 2 ZROS B4

fSYBoJ

The thickness of the shock is defined as twice the value of
z-Ut for which the tanh in (2.28) assumes the value 0,99.
The argument of the tanh, is about 3 in this case. So the
thickness of the shock wave d becomes:

o8 %4 (2.29)
d=2——¢ .
(8,07 8,~B,

Under the conditions for our experiments, with weak shocks,
defined by (B_-8,)/8,=0(10"%), 8 =0(107%), R =0(107°
-] 0 o o o

§=0(10 “), d is

m) and

dn~n 120 %m .

If we assume that (2.29) also holds for moderate shocks
with {SO-BIJ/Bozorl) and other quantities equal we find
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for d

dn~ 10 % .

In our experiments the measured thicknesses are of order

1071

This suggests that shock waves in a bubbly fluid with Romlo-sm
and 8 ~ 26™%
For this we introduce in the governing equation the inertia
of the liquid near the bubble. This will be discussed in

m and 10”%m for weak and moderate shocks respectively.

, are structured by a different mechanism.

the following section.

§7. WAVES INCLUDING THE INERTIA OF THE LIQUID NEAR THE
BUBBLES.

Again we start by discussing waves of small amplitude. For
this we introduce the difference between p and Py from
(1.6) in the basic set of equations.

By linearization of the equations (1.6), (2.9)-(2.11) and
with é6=0, we obtain

2 52 2 gt
P2 P, % P (2.30)
at2 % 32 (mB)2 ax2at?

where e, and wp are sound velocity and resonance frequency
for isothermal circumstances.

Seeking solutions of (2.30) in the form of a progressive
wave

p « exp{i(kz—wt)} ,

we obtain by substituting this in the equation (2.30) a
relation between w and the wave number k. The relation is
known as the dispersion equation (Van Wijngaarden, 1968),

w e
_ 0
- T%Ter, %
k (1+ 0/”§)
or (.2.381)

w
& (1=f—=p2g%
(o]

Wg

&= |le
n
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From this we see that the phase velocity w/k depends on

the wave number and accordingly each wave travels with its
own velocity, which is large for small values of w and be-
comes zero for wrwg. Only for long waves (k+0) the wave
propagation is non-dispersive. Otherwise dispersion leads
to a continuous change of waves of general (non-sinusoidal)
form. This type of dispersion is usually called frequency
dispersion and its effect is a spreading of the wave. This
spreading can be altered by non-linear steepening.

For a dispersive system as represented by (2.31) the group
velocity dw/dk is smaller than the phase velocity.

When dissipation, characterized by &, is included in equation
(2.30) the dispersion relation becomes

g e, { 1—(2—)]‘- z‘(y)J’ = G}J’ . (2.22)
k wp wp
This equation is also given in van Wijngaarden (1972a),
who mentioned that (2.32) is identical witha similar rela-
tion following from scattering theory.Silberman (1957)
showed for this relation good agreement with experiments.
We therefore conclude that our approach of the hydrody-
namics of the mixture through a continuum theory is sup-
ported by these results.

§8. SHOCK WAVES IN A DISPERSIVE MEDIUM.

The non-linear or compression effect,discussed in §6, leads
to steepening of a given wave profile. This effect is also
called amplitude dispersion. Frequency dispersion however
leads to spreading of this profile. In the case of waves
with moderate amplitude, Van Wijngaarden (1968) showed that
the two effects can be combined in one hydrodynamic equa-
tion. For this we consider a pressure disturbance of mode-
rate strength propagating through the mixture at rest. In
the undisturbed state all quantities have the subscript o.
Moderate strength means in this case that we use an approxim-
ation one order beyond the linear approximation.
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We take the effects following from non-linear steepening,
dissipation and dispersion together, and write p=p0(1+ep'),
S=BDKJ+EB'),pg=pa(1+epé),u=ecosou', e.t.c. with ¢ a small
quantity. This is introduced in the equations (1.68), (2.1)
and (2.9)-(2.11). Terms of order 2 and lower are retained,
terms however of order 2280 are discarded.We omit further
details, for this the reader is referred to the Appendix 2,
and give directly, dropping the primes, for a wave propa-
gating in positive direction:

ap ap ap ed adp (Y)%cgd a2p
—_— - @ — 4+ g lp—-- $ — — - — —_— = 0 . (2-33)
at %3z % az 202 3z3 2wy Ax?

In (2.33) cg/wé and cgﬁ/wB are small quantities.

For e=0,6=0 and w_+~ we have an acoustic wave again. When

§=0 we have an eqﬁation of the type of the Korteweg-De
Vries equation describing the propagation of long gravity
waves on liquid of finite depth. Van Wijngaarden (1968)
discussed this equation for a mixture of gas bubbles and

liquid, where we have

ap ap ap cg 33
— e, + ecop—— P s = ) (2.34)
9% oz Az 2mg 3x3

The third and the fourth term represent amplitude and fre-
quency dispersion respectively. Solutions in which both
tendencies balance each other are well known. One of these
solutions is the solitary wave on which we come back in

the following chapter. We are interested in shock wave

type of solutions of (2.33). Solutions starting at a given
pressure level and asymptotically reaching a higher pres-
sure. Without frequency dispersion we have the case as dis-
cussed in one of the foregoing sections: Solutions where

non-linear steepening is balanced by diffusion. As mentioned

this leads to a shock thickness which is an order of magni-
tude too small in comparison with experimental results for

both weak and moderate shocks. On the other hand, neglecting
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diffusion, no steady shock wave solutions of (2.34) are
known (Van Wijngaarden, 1972a). However, several investi-
gators showed that in the case of water waves unsteady
solutions in the form of a bore, or shock wave as given in
Figure 2, appear in finite time intervals. Here the model
equation without dissipation (8=0) is (2.34).

Peregrine (1966) presented numerical solutions, but whether
or not these solutions become steady for ¢t tending to infi-
nity was not shown. Benjamin e.a. (1972) proved that for
any finite time the equation has a solution with the cha-
racter as shown in Figure 2. However the existence of a
steady profile was not proven.

Steady solutions representing shock waves following from
the balance of non-linear steepening and frequency dis-
persion can not be expected therefore from (2.34).

Looking for steady solutions in the form of a shock wave

we return to the equation (2.33) with 6#0. This equation,

a combination of the Korteweg-De Vries equation and Burger's
equation (Lick, 1970) has solutions of the type of a shock
wave. Several investigators such as Grad & Hu (1967),
Johnson (1970) and Pfrisch & Sudan (1971) discussed an
equation of the type of (2.33).They showed the existence

of steady shock-like solutions of the Korteweg-De Vries
equation with dissipation.

§9. CONCLUSIONS.

In this chapter we considered wave propagation through a
mixture of bubbles and liquid. The mixture was considered

as a continuum and we used results following from conti-

nuum mechanics. The various contributions of the liquid

and the gas phase were accounted for. Especially the bubble
behaviour of the gas phase and the associated radial motion

of the liquid near the bubbles are important for investi-
gation of waves of high frequencies. This motion leads to
socalled frequency dispersion. Another important effect
associated with wave propagation in mixtures is, that the .
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steepening of the wave is governed by compression in stead
of convection.

We found in contrast to what happens in gases, that shock
waves in liquid-bubble mixtures can be structured by the
three mechanisms, steepening by compression,frequency dis-
persion and dissipation associated with radial motion. In
the next chapter we discuss a steady shock wave following
from these effects.
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CHAPTER 3.

STRUCTURE OF A STEADY SHOCK WAVE WHEN THE SPEED OF THE GAS
PHASE EQUALS THE SPEED OF THE LIQUID.

§1. INTRODUCTION.

In this chapter we look at steady shock waves structured
by non-linear steepening, dispersion and dissipation. To
get a first insight in the overall character of the shock
structure, we neglect relative translational motion of the
gas phase with respect to the liquid. For our experimental
circumstances this is unrealistic as will be shown later
on. However, the analysis of this chapter suits to serve
the discussion of some general properties of shock waves
in liquid-bubble mixtures.

Equations already discussed by various investigators such
as Ackeret (1930), Campbell & Pitcher (1958) and Parkin e.a.
(1961), relating quantities far in front and far behind
the shock, are derived. Investigations of Crespo (1969),
Noordzij (1971) and Van Wijngaarden (1972b) on the struc-
ture of the shock are summarized.

To compare this theory with the experiments, parameters

describing the shock structure are derived.

§2. BASIC EQUATIONS.

We consider time dependent flow in =z direction of a liquid-
bubble mixture. The mixture velocity averaged over a small
volume yet containing many bubbles is u. The mixture den-
sity is p. The contribution by the gas phase to p can be
safely neglected. p is therefore related to the liquid
density Py and the gas volume fraction 8 by

p = pl(I*B) " (3.1)

with B<<1.
The equation of mass conservation for the mixture is,




ap ]
— + —(ou)= 0 . (3.2)
at 3x

The equation of conservation of the number density = is

an 3
—_ —(nu)= ' (3.3)
at dx

The equation of motion for the mixture is

du 1 ap
—_— = ——, (3.4)
dt p Ax

The pressure in the bubble Py and the local pressure in the
liquid p are related through

{ d?2r 3 dRr » dR}
P-pP=p; {BR— + —(—)%+ SulR —} . (3.5)
g L dt? 2 dt B as

Assuming that the bubbles are spherical and have locally
all the same radius R, we have
4
B = — wnR3I . (3.8)
3
Using the fact that the mass of the bubble, p ¥V, is an

invariant and for isothermal circumstances also ng, (3.3)
can also be written as

] 3
_ —_— = " el
3t(prV az(pgﬁu) 0 ( )

From (3.2) and (3.7) we find

Z_t(%_:)= 0. (3.8)

In the following section we summarize the steady equations
describing relations between quantities far in front and
far behind the shock, the socalled Hugoniot relations.
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§3. THE HUGONIOT RELATIONS.

We briefly summarize the known results and derive expres-
sions which are used throughout this thesis for describing
shocks.

We consider a shock wave moving with constant speed U in
negative x direction. The situation is illustrated in

Figure 6.
() C) EC) O O o, o0 B = D
(:)<:%:§:)(:) 'O O o0 o |0 = o o
O 07000 0 o ¢ o Paakil
:5:%:>(%é)C) ?) O O 0,0 o o o
O O OOO OOOOO ?o ooo 5w

FIGURE 6. Shock wave in a mixture, travelling with speed U from z==
(side 1) to z=-= (side 0).

The equations (3.1)-(3.8) are written in independent vari-
ables z and #. We transform these into x',t, where z'=z+Ut.
In the new frame the shock wave is steady and so (B/at)x,
is zero. Carrying out this transformation on (3.2), we
obtain, omitting the prime on x',

3

—-(pz(J-BJ(Um)) =0 . (3.9)
0T

Integration gives

pZ(I-Bo) U = pl(I-B)(U+u1) . (3.10)

where upstream quantities are indicated with o and down-

stream quantities with 1I.
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Transformation and integration of the equation of motion,
using mass conservation, gives

- 2 = - 2
pl(J Bo)U *p, pzfl BJJ(U+u1) * Py - (3.11)

In addition we deal with an energy equation for the mix-
ture and accordingly two new variables are introduced:

the temperature of the liquid and that of the gas. Relative
to the huge heat capacity of the liquid, the temperature
rise of the liquid through the shock is small. This was
already suggested by Ackeret (1930) and proved by Campbell
and Pitcher (1958).

We briefly summarize the results of Campbell & Pitcher.

For this we introduce the exact expression for the density
of the mixture

o= pZ(I-BJ + ogB »

and from the equation of state for a perfect gas we find,
using the expression for p

P 1

- B
iy

= eonstant , (3.12)

p—pZ(I-B)

with T the temperature of the gas which was assumed to be
equal to the liquid temperature.
We introduce the small quantity ¢

Bp
¢ = —Z— (3.13)

pZ(J-ﬁ)

where Bp in the denominator is neglected with respect to
pl(I—B). Now we rewrite (3.12). From (2.3) it follows that
¢ is constant. With (3.13), (3.12) yields

1+¢ 1

Po °1

1+¢ 1
= % =i, , (3.14)

Py P2

’z

Po
TO

*4
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The energy relation, which equates the work done on a unit
mass of the mixture to the increase of its internal and
kinetic energies, states that

r h 1 P h 1
i (-——)T +—p2 =Ly (———)TI + —(Uru )? , (3.15)
po I1+¢ 2 pl 1+¢ 2

with h:hz+¢hvg. hl is the specific heat of the liquid and

hvg is the specific heat of the gas at constant density.

From (3.7)-(3.10) we find for the temperature rise AT=T1-TO
across the shock, assuming AT/TO<<1
(p,/p )2-1 8p KT
e —L 0 B e | (3.16)

2p1/p0 Py Ry

where X_is the gas constant, % is replaced by h, and ¢ is
neglected with respect to unity.
For our experimental circumstances (3.16) yields

ar<10”% og |
As Campbell & Pitcher indicated, the expressions relating
pressure, density and velocity on the two sides of the shock
assume a simple form when AT is neglected and the sacrifice
of accuracy in the process is very small indeed.
From (3.5) it follows that far in front and far behind the
shock the pressure in the bubble equals the pressure in
the liquid. (3.8) therefore gives a relation between the
pressure in the liquid and the gas volume fraction, far in
front and far behind the shock

SO s ks (3270

In the course of the analysis we will use besides B, also
the mass concentration. That is the volume of gas in a
unit mass of the mixture and is denoted by a/pl. The rela-
tion between o and g is




v

B
@ = — . (3.18)
1-g
From (3.10),(3.11),(3.17) and (3.18) the following relations
are derived:

for Ug
u a,-a a (1#+a )2
e S ks - PR Oi—po————o—2— , (3.19)
U 1+ao 1+uo pZuOU

for the pressure ratio plfpo

2
2
P, po(1+uo)

Using
A2 ___fEL___
o
9130(1"304’
or in terms of a:
P
2 - o 2
el = (1+ua) (3.21)
P40
i e

we find for the Machnumber M, defined as the ratio between
the shock speed U and the sound velocity in the undisturbed
state e,s from (3.20) and (3.21)

U2 Py
Mg o T = (3.22)

or with (3.17) and (3.18)

2 - 2 ,
MZ = (3.23)

(Note that from (3.22) and (3.23) we get for weak shocks

o I+ 1

U= e (1+ g 1) ,
o

2u1
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giving the excess wave velocity as found in chapter 2, §5).
Now we consider the entropy change across the shock. Since

a shock wave is a spontaneous process, any change in entropy
of a unit mass of the mixture on crossing the shock is an
increase. Therefore the temperature rise across the shock
cannot be neglected.

The entropy change follows from integration of

hl 3
T aT 9/p

where the contribution of the gas phase to k& is neglected.
With p=pgKgT, (3.16) and (3.22) the entropy change AS
becomes

B p M4-1
AS = M("— - lnmg) . (3.24)

2
plTo 2M0

This is a positive quantity for Mo>1.

The relations derived so far do not deal with the interior
of the shock. In the next section the equation describing
the interior region of the shock will be derived.

§4. THE EQUATION DESCRIBING THE STRUCTURE OF THE SHOCK.

Again we consider a shock wave propagating at constant speed
U in negative z direction. We use the transformation given
in §3 of this chapter.

Carrying out this transformation on (3.2), we find

3

x

91(1—8)(U+u) =0 .
Integration gives, upstream condition indicated with o,
01(1-BJ(U+u) = 01(1—80) v . (3.25)

Integration of the equation of motion gives, with (3.2)

pZ(I-BJ(U+uJ2 +p = pzfl-ﬁo) vz +p, . (3.26)
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Substitution of (3.25) into (3.26) gives with (3.18),
(3.22) and e, from (3.21)

P o

— -1 = Mg(z - -—-) . (3.27)

Po %o
For describing the structure of the shock as a function
of the running codrdinate we eliminate either a« or p from
(3.27). This can be done by using the relation between Py
and p as given by (3.5). To this end we integrate (3.8)
and find, with (3.18)

pga S Pk - (3.28)

We express R in terms of o and use (3.28), this yields

P By wm,
4 = = = . (3.29)
P R o

(3.5) becomes with (3.29)
2 1 raz
) DZRO QN d a 1 a,
Pg‘ B = =——ll—= —— e == =
3 \a dt? o 6 o

d /ja
NE.J L
o
)

From transformation of (3.30), taking (a/at)m, zero and

omitting the primes, we obtain with y=(a/uo)

2
pR2 d?y 1+2¢ (1-2y):dy
p-p= L O( ) Uz[{1+2a (y 1)] > 2 _) +
g 3 Yy dx? 6y dz

Gwé dy

—{1%e (y-2)}— | . (3.31)
U dzx

In (3.31) we neglect terms with coefficients of O(ag) and

higher between the square brackets.

Substitution of p from (3.31) in (3.27), elimination of Py

through (3.28), using cg as given by (3.21) and M2 as
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given by (3.22), finally yields

2
" d?y  1-dou y/dy i dy
E] (l+2aoy)——— - — i) * 8 [1+mo(y+1J}—— o
dn? 6y dn dn

(1-y)(y-M7) = 0 , (3.32)

where n=x(3u)%/ﬂo and 6A:Gwéﬁo/ﬂ(3uo)%.

In deriving (3.32) terms with coefficients of O(GS) and
higher between the square brackets were neglected.

Taking into account that for our experimental circumstances

y = 1 at maximum, aa:orzo'z) and 6620(10-1), (3.38)
reduces to
i 2
2|44y 1 sdy 23 »
ys|— - —(— ) + 8"—| + (1-y)(y-M_) = 0 . (3.33)
dn? 6y \dn dn o

From (3.33) or (3.32) the structure of the shock can be
derived in terms of y:a/ao or, with help of (3.27), in
terms of the pressure ratio p/po.

§5. THE STRUCTURE OF THE SHOCK.

We investigate the structure of the shock as described by
(3.32) or (3.33). Different features of the structure are
already known. Crespo (1969) presented numerical solutions
of the full set of equations. He found for the shock struc-
ture an exponential steepening at the front part and waves
at the back side, as schemetically shown in Figure 7.

Crespo did not present explicit expressions for the shock
thickness d and the wave length A as illustrated in Figure 7.
Van Wijngaarden (1970, 1972b) and Noordzij (1971) discus-
sed a simplified version of (3.33). Shock thickness d and
wave length A were estimated. A reasonable agreement with
experimentally obtained results was found. Van Wijngaarden
(1970) considered the following simplified version of (3.33)




o Ly

dzy y Y o
— + & — + (1-y)(y-M) = 0, (3.34)

dan? dn

where only the viscous contribution to s® was considered.
Non-linear derivatives are left out uf account because the
outskirts of the shock were discussed. This equation des-
cribes the balance of dispersion and non-linear steepening
by compression. These are respectively the first and the
third term of (3.34). Somc dissipation is needed for a
steady shock.

-

+n
FIGURE 7. In this Figure the profile of the shock is illustrated in
terms of y as a function of n.
When dispersion is left out of account in (3.34) a solution
in the form of a tank, as discussed in chapter 2, is found.
The thickness of the shock is found to be of order
A
Roﬁvr 1
5p N
(a,) 1/p,-1

" (3.00)

This model for the shock wave, even in the case ofﬁAinstead
of dir, only holds for very small bubbles. This follows from
the following reasoning. During the passage of the shock a

bubble is compressed to a smaller radius. The time required
1

for this is of order “Bm . On the other hand the time of

passage of a shock with thickness d is of order d/co.
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Hence we have (d/co)>m3_1 or using (1.3) and (3.21)

RO

¥
(8,)

d > (3.38)

Only for bubbles much smaller than in our experiments,

(3.35) exceeds d from (3.36).

If we omit the dissipation term in (3.34) we obtain
d2y

-2
_—t (1~ -M =@ 3.87
rY- (1=-y)(y - ) { )

This equation has the form to which the Korteweg - De Vries
equation, as discussed in chapter 2, reduces when we look
for steady solutions. The solution of (3.37) becomes

3 -2 -2 %
y=1-—(1-M_") sechz(n(J-M ) /z) . (3.38)
2 o o
the well-known solitary wave, which is no shock wave type
solution.
Now we consider the outskirts of (3.34), closely following
the analysis of Van Wijngaarden (1970).
From linearization of (3.3¢) for y near I we obtain

1 -y = gxp[—ﬁﬁrn/Z + n{5ﬁ§/4 + (J-M;z)}*] . (3.39)

I this

means that the front part of the shock is mainly deter-

For our experiments, with 63r=0(10“1)and M§—1>10-

mined by the balance of non-linear steepening and disper-
sion. Van Wijngaarden approximated the shock thickness,
on the basis of (3.39), by

constant

- ; ) (3.40)
(J—Moz)
or in dimensional form

Ro congstant
(3.41)

3 ~2,%
(3&0) fl-Mo )
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Noordzij (1971) presented, using this approximation, an
estimate for the constant. This was done as follows, see
Figure 8:

The solution for y from (3.39) which is only valid near
y=1, was continued up till Y=Yy ;-

Y~ ] y=1-.08(1-y )

¥y,

-n

FIGURE 8. The construction of the shock thickness d.

When we define d as the distance between the points where
¥=y, and, of course arbitrary, y:l-.05(1-y1J, we obtain

R ln20

- o
‘- (30,)% (1-u-2)% e

This estimate was in good agreement with the experiments
reported by Noordzij (1971) and Van Wijngaarden (1972b).
Another estimate for the shock thickness can be found,
Noordzij (1971), from an investigation of an equation of
the type of (3.34) by Johnson (1970). Johnson showed that
the front part of the shock closely follows the asymptotic
solution for 53r+0. This solution is the solitary wave as
given by (3.38). Again defining d as the distance between
the points where ¥=y, and y:J—.OS(l—yl), we obtain for the
shock thickness 4 :




d = —2 ;
(3a )% (1-u~2)% e
o o

This is illustrated in Figure 9.

e

SOLITARY WAVE

EXACT SOLUTION

_———

b |

FIGURE 9. Estimate of the shock thickness from the solitary wave.

d from (3.43) is also in good agreement with the experi-
mental results in Noordzij (1971), considering the ob-
tained experimental accuracy of about 10%.

For weak shocks the dissipation term becomes important.
From a perturbation of the solitary wave (Johnson, 1970),
a rather complicated expression arises including e
However, linearization near the front part leads to a

simple expression for the modified shock thickness

Ro in20
d = . (3.44)
¥ _y=2 ’k_ A
(3ao) (1 M ) 50/2

In this thesis we therefore base the discussion of the
shock structure on the method of analysing the outskirts.
The choice of the latter approximation method is also based
on the fact that we want to find out the influence of g
and non-linear effects on both the shock thickness and at
the back side of the shock later on.
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So far we discussed a linearized version of (3.32). Now we
pay attention to the equations (3.32) and (3.33) because
we want to investigate the influence of the quantities
(1+2ao) and y%.

From linearization of (3.32) near the front part of the
shock, the shock thickness is found to be

Ro (1+ao)ln20
d = . (3.45)
E o %’_ A
(3(:.0) (1 MG ) 60/2

In our experiments, 0=0(10"2) and d reduces to (3.44).
Therefore we discuss further details of the shock struc-
ture from (3.33).

We summarize the results for the back side of the shock.
As shown in Figure 7, waves appear at the back side of the
shock. They have the equilibrium value y=y1=M;2, which
follows from (3.33) with disappearing derivatives for n+w.
To analyse the back side of the shock we linearize (3.33)
for y near y, and obtain for y-M;z

y - M;Z « gxp[—nd?/z + n[‘6§)2/4 - (J‘MSZJMg l‘%]: (3.46)

with §8=sin-1,

1 o0
From this expression some important features are obtained.
When (6?/2J>>{1-M;2)%, (3.46) reduces to

(3.47)

(1-M~2)M3
2] [2]
5

- M2 E
7 Mo « ezp[ n 0
1
This also results from the expression for a profile where
dissipation balances compression as shown in chapter 2 by
equation (2.28). However for most of our experiments

(a?ﬁ/q << 1-M72

and the expression under the square root in (3.46) is ne-
gative. Waves appear at the back side of the shock.




=/52=

This wavy behaviour was experimentally verified in Noordzij
(1971) and Van Wijngaarden (1972b).
The associated wave length A becomes

wi=

R 2™
A = 2 L2 T - (3.48)

¥ y2-
(3a,)% (M%-1)

From this we find a frequency w=2nU/A. Inserting A from
(3.48) and using (3.21) and the relation U2/e2=p,/p , we
can write w as

it ¥
. 1 |3p,(1-"1/a)
G e M O
R.‘l Pz
The expression for wy at the high pressure side (c.f. 1.3)
is
53
. :L(ﬁ)
B
Ry \pyg

w becomes with this
_ _a %
i = wB(I l/uo) .

For weak shocks w is always rather below w_. For strong

-
" and wave propagation is

no longer possible as follows from the discussion in §7

shocks, uo/a1+m, w approaches w

of chapter 2.
The damping of the waves is found from the factor

83 (30 )¥
empl——— ———9——] N (3.49)
2 R

(2]

Van Wijngaarden (1970) showed similar equations as (3.48)

and (3.49) with 65 instead of §). This leads to a too

small amount of atteunuation of the waves behind the shock.
Crespo (1969), who also found a relation for the wave

length, introduced a too large amount of attenuation, because

he suggested heat conduction in the liquid near the bubble




to be the leading mechanism.
Noordzij (1971) showed that the contribution of §® to attenu-
ation was large enough to account for the damping observed

in his experiments.

To facilitate the experiments we introduce the number of
waves, N, in which the amplitude decreases by a factor e_l,
say. From (3.48) and (3.49) we find for this number

1 (n2-1)%
N = — _______

i (3.50)
b Mé é

1

Before summarizing some conclusions on the shock wave rela-
tions we present in the following section relations resul-
ting from adiabatic theory.

§6. THE ADIABATIC RELATIONS FOR THE SHOCK.

As already mentioned the gas phase in our experiments does
not behave isothermal. We therefore derive the pertinent
expressions for adiabatic circumstances. First we pay atten-
tion to the Hugoniot relations.

In §2 of this chapter we found that when the bubbles move
with the liquid the mass of the gas in a unit mass of the
mixture is constant:

] (3.51)
dt pz(l g)
Using the adiabatic relation, pgwng, (3.51) yields
g \Y
P —— ] = constant , (3.52)
or p.a' = constant . (3.53)

g

From (3.53) we find the relation for the isentropic sound
speed .ds with Pg*Ps

c;d = dp/dp = Ypofl-}uo)z/plﬂo (3.54)
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and the speed of sound in the adiabatic theory exceeds the
isothermal speed of sound by a factor (YJ%-

From (3.53) it follows that the relation between the pres-
sure and « far in front and far behind the shock becomes

Y = ¥
P,%, = P1%; " (3.55)

For a steady flow field the transition relations concerning
mass and momentum are

91(1-60) u = pz(J-BlJ(U+u1J B (3.56)

and

- 2 = = 2
02(1 BOJ U L g po = DI(J B.I){U“"J) + pJ ] (3-5?)

From (3.55)-(3.57) we find:

for Uy
"k
u a P
“1__ % |, (_") r1+quI " (3.58)
U 1+u0 Py
for the pressure ratio PI/Po
12 _ 2
L Tl - S (3.59)

1_(po/p1) Y p,(1+a,)?

In terms of the Machnumber Mozu/co, where - is defined by
(3.21),(3.58) is rewritten as

Pl/p -1
M2 = ——e g g 9 (3.60)
1—( o/pl)
or Y
&o/ul) -1
M = —m 0 — (3.61)
o 1—“1/uo

Besides the conservation of mass and momentum we have an
energy equation. When the gas phase follows the isentropic
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law, the temperature rise across the shock can simply be
deduced for a given pressure ratio. If we assume no tem-
perature rise for the liquid there will be no increase of
entropy across the shock. However a shock is a spontaneous
process and we therefore expect AS to be larger than zero.
The energy equation for the mixture becomes

h ok 1 p
- | Tyq * - 7 * —(U*ul)z + =L =
1+¢ I+¢ g 2 P
h bh 1 p
—ZTZO+—”£T0+—UZ+—", (3.62)
1+¢ 1+4¢ 7 2 0,
with Tlo:Tgo' 24
Using the relation TgJ=Tgo(p1/po) Y we find from (3.14),
(3.56) and (3.62) for the temperature increase AT=T, =T,
p_¢ p p_\'Iv
AT = —2— —1+JI 1—(—0) . (3.63)
pgozhl Py Py
Using ¢ defined by (3.13), AT becomes
B P P p_\'ly
AT = =22 | 1,9 1~(-—0) l i (3.64)
Zeghy Lo, Ps
This is again a negligible quantity.
The increase in entropy is
h T
88 = —& -l | (3.65)
I+ Tlo
With AT/TZO<<1, (3.65) changes into
B P P P\ IY
A8 = =220 $—d4g 1-(—") ; (3.66)
303850 1B, Py

where ¢ is neglected with respect to unity.
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With the adiabatic relations known, we describe the shock
structure .
For a steady shock we find from the momentum equation

2¢9- = P -
Mi(1-y) = F/p -1 . (3.67)
Substitution of p from (3.31), the relation between p and

Py in (3.67), using (3.53) and the expression for cg as
given by (3.21), equation (3.67) finally yields

. d?y 1-4a _y (dy 2 " dy
i f(osagn IO b ]
dn? 6y \dn dn
yli-y) + M;Zy(l-y-Y) = (3.68)

An estimate for the shock thickness is found from line-
arization of (3.68) near y=1. The differential equation
for 1-y=y'(<<1) is

d2y" dy’

— + 52 == y'(1-yMz2) = 0, (3.69)
n n

where o, is neglected with respect to unity.
The shock thickness is

Ro in2o
d = 2 (3.70)
% -2,%_ A
(3aoJ (l—yMO ) 50/2

Linearization of (3.68) at the back side of the shock, for
y is near Yqo yields, using (3.61),
250
d%y B L AT T ~ .
e B Bl e ——(YMO Y, -yl) =0 , (3.71)
dn? dn yg

with y—y1=y”(<<1J.
From (3.71) a wavy behaviour appears for ¥y, with wave

length Ag
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3
Ro 2ﬂy1

A
% - ¥ -
(3uo) (YM 2y -le

(3.72)

ad =

The number of waves, N, in which the amplitude of these

waves decreases by a factor e %, is

(YMZZy;Y—yl)%
N = S . (3.73)
3
T893

§7. CONCLUSIONS.

As suggested at the end of chapter 2 we found in this chapter
a shock wave structured by compression, dispersion and
dissipation. The front part of the shock is mainly deter-
mined by the balance of compression and dispersion. Only
for very weak shocks dissipation becomes important. However
for weak shocks another mechanism needs to be included as
we will see in the following chapters. At the back side of
the shock waves appear, which are damped in 10 wave lengths
at most.

We conclude further that for strong shocks, Méww, the fre-
quency of the waves approaches the resonant frequency of
the bubbles wp. From the analysis of chapter 2 it follows
that these waves are no longer possible. Other effects such
as breaking up of the bubbles become important. However
this type of shocks are beyond the scope of this thesis.

In this chapter we discussed shock waves in mixtures where
the bubbles are assumed to move with the liquid everywhere.
In terms of the equation of motion of a bubble (1.17) this
means that the viscosity of the liquid is very high . For
our experiments this is unrealistic. We therefore discuss
in the following chapter the other extreme, where the bubble
translation with respect to the liquid is not resisted by

a viscous force.
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CHAPTER 4.

STRUCTURE OF A STEADY SHOCK WAVE IN THE CASE WHERE THE
BUBBLE TRANSLATION WITH RESPECT TO THE LIQUID IS NOT
RESISTED BY VISCOSITY.

§1. INTRODUCTION.

We now include the relative translational velocity of the
bubble in the discussion of steady shock waves. The extreme,
where the bubble velocity is not resisted by viscosity,

is considered.

From the equations of motion describing this flow, diffe-
rent important expressions are derived such as sound velo-
city, etc. From the governing equations it will appear that
the shock structure is completely similar to the structure
as found in the foregoing chapter. However, the structure
will be based on an other sound velocity and consequently

on an other Machnumber. When the gas volume fraction is
sufficiently small,sozo(lo_z), there is practically no dif-
ference between the relations derived in this and those of
the foregoing chapter.

We derive Hugoniot relations, shock thickness, etc. At the
end of this chapter the corresponding adiabatic relations

are summarized.

§2. EQUATIONS OF MOTION INCLUDING RELATIVE TRANSLATIONAL
VELOCITY OF THE BUBBLE.

In this section some already known relations are repeated
for convenience. We consider time dependent flow in =z
direction. The liquid velocity, averaged over a small volume
of the mixture containing many bubbles, is u, the gas velo-
city v and the mixture density is p.

The density is found from

p = pI(J—BJ " (4.1)

®

Parts of the results of this chapter and the following chapters will
be published in Noordzij & Van Wijngaarden (1973).
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The concentration by mass, u/pl, is given by

B
a = — . (4.2)
1-8

Now we include relative translational velocity v-u in the
governing equations.
As described in chapter 1 we adopt Levich's model for the
bubble translation. Darwin (1953) showed that in potential
flow of a sphere through a liquid at rest, a mass of liquid
is displaced equal to the virtual or hydrodynamic mass,
pZV/z, of the sphere. ¥ is the volume of the sphere. This
is sometimes called drift (Darwin). The liquid displace-
ment is in the direction of the sphere's motion. We will
understand by u the liquid velocity which locally exists
at large distance from a bubble.
The number of bubbles passing through a surface at right
angles with » and moving with u is n(v-u). Therefore the
displaced mass is, using Darwin's results, pZVn(v—u)/z,
or with (2.1),

poB(v-u)/2 . (4.3)
Therefore the equation of mass conservation becomes,

ap ]
— + —lpu + DZB(U-M)/z =0 . (4.4)
ot dx

The equation of conservation of the number density » is

an 3
— 4+ —(nv) = 0 . (4.5)
ot 9T

Associated with the motion of the bubble in potential flow,
each bubble represents an impulse, as defined by Kelvin
(Lamb 1932, §119), relative to the liquid of magnitude

pZVf‘D-u)/Z .
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The number of bubbles passing through a unit surface at
rest, normal to the flow, is nv. The associated Kelvin
impulse is, (Van Wijngaarden, 1970),

pla(v-u)

The momentum equation for the mixture is, including this
Kelvin impulse,

] 2
—lputp Blv-u)/2\+ —{p+pul+p Bv(v-u)/2} = 0 . (4.6)
9t Z 9z z

The equation describing unresisted bubble translation is
found from (1.1f) with ”1:0’

1 d ap
- p1 —V(v-u) = -V— . (4.7)
2 dt Az

The equation relating the pressure in the bubble to the
pressure in the liquid is

( D2R 3 DR i DR
p.= P = pagfR — # —(—)%+ SwgR —} » (4.8)
g LY pe2 2 pe B Dt}
with
D 3 3
—_=—tp — .,
Dt It 3z

The effect of relative translational motion in (4.8) is
neglected. This would give an extra term of order pl(v—u)2
which can be ignored as shown in chapter 1.

In the following section we derive equations relating the
quantities far in front and far behind the shock.

§3. THE HUGONIOT RELATIONS.

We consider a shock wave moving with constant speed in
negative z direction. The equations (4.1)-(4.8) are trans-
formed from the z,t frame into the z',t frame,with z'=z+Ut.
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In this new frame the shock is assumed to be steady and
therefore (a/at)x, is zero. Transformation of (4.4) and
(4.6) and integration of the resulting relations gives:

for the mass conservation
pg(1=B U = p,(1-B ) (Utu,) + o B, (v, ~u, V2 (4.9)
for the momentum equation
P, * 01(1—80)02 =p; * pl(J-Bl)(U+u1)2 +
DZBZU(vl_uI) . (4.10)

The constant of integration follows from the assumption
v=u=0 ahead of the shock (z+-=). Because we have uj/U=D(BO),
it follows from (4.6) and (4.7) that (vz—ul)/uzo(eo). We
will use approximate forms of the equations, in which terms
of order Bg are left out of account. Therefore Utv, is
taken equal to U in the third term of the right-hand side
of (4.10).

Transformation and integration of (4.5) gives, using the
constancy of mass of a bubble,

spg(U+v} = Bo”goU . (4.11)

Using the isothermal relation pgupg, (4.11) yields

P B U v-u
-4 -2 ———( - —-) + 0(a2) . (4.12)
j2) U

Considering the order of approximation in (4.12), U/(U+u)
can be replaced through (1—8)/(1-80) as can be seen from
(4.9). Then, with (4.2), (4.12) becomes

P o« v-u
—£=—-(1 ——). (4.13)
p o
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Using (4.13), the pressure ratio pl/po is,

vV,=u
z 1} (4.14)

Po g v

An expression for the relative velocity v-u is found from
transformation and integration of (4.7). First we formu-
late (4.7) in terms of B. With (4.5), (4.7) yields

D 28 ¥p a
—{B(v-u)}= = — — = Blo-u)— . (4.15)
Dt pl 3z 2z

Substitution of ap/3dx from (4.6) into (4.15), transforma-
tion and integration finally gives, with help of (4.1) and

(4.4),
2

a
(—1) - 1] . (4.16)
Q

o

vl-ul _ %o
a

U

9 a
1

pl/po from (4.14) changes with (4.16) into

o 2
J-Cﬁ)l. (4.17)
o

1

o
o

This relation indicates the difference with the case where
the bubbles move with the liquid. In the latter case the
pressure ratio is found to be

Py %

Pp %
With uOZO(IO_Z)
from (4.17) is small.
Substitution of (4.9) into (4.10) gives

p a p,U2 o
d.3s= ——2-3;————( - —1) ' (4.18)
P, po(1+uo)2 @,

, the difference between this and pl/po

Using the definition of Mé from (3.22) we find from (4.18)




-63-

and (3.20)
r a
_1:1 +M2(1.__1.) N
o
pO q'C’
or with (4.17)
P p
M2 ==L ¢ g (—i + 1) : (4.19)
o o
P, P,

So far we did not introduce the sound velocity in the re-
lations between quantities far in front and far behind the
shock. For later purposes we derive the sound velocity for
a mixture in which the bubble is free to move with respect
to the liquid.

§4. THE SOUND VELOCITY.

The sound velocity for a mixture in which bubble motion is

not resisted by viscosity, is given by Crespo (1969). This

velocity, cf, is
P
c% = 2 (1+da,) , (4.20)
P1%
. B
or cf = co(1+2ao) . {(4..21)

The relation for e, is found from an equation of state.
(chapter 2). We investigate whether such an equation can

be derived for the unresisted case.

First we derive the relation for cp in a steady frame of
motion. From pg=p, (4.13) and (4.16), omitting subscript 1,

we obtain for p

P o a [,o \2
— = —QIJ - a —3‘(——) -1
o

P, o a @,

(uo—u)/m is assumed to be small with respect to unity in

] . (4.22)

the case of acoustical wave propagation.
With e%2=(dp/dp) and ara , We find from (4.22)
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8 p2
cf - co(1+2ao) . (4.23)

The speed of sound e, in a mixture, in which relative motion
is not resisted by viscous forces, is larger by a factor
I+a, or I1+8, than in a mixture in which the bubbles move
with the liquid. The physical reason is that due to relative
motion the gas concentration is locally less than it would
have been with bubbles moving with the liquid. This gives
the mixture a greater stiffness and accordingly a higher
sound velocity.

Secondly, for small disturbances, an equation for e, can

be derived from instationary theory.From (4.5) we find,
using pg:p, the homogeneous theory,

d qu 3
—(p8)+* pB — + —(pBlv-u))= 0 . (4.24)
dt 9x ax

Note that d 3 3
—_—T — Yy — . (4.25}
dt 3t oz

(4.4) changes, with help of (4.25), into

d du 19
—(3=8) # [(I=B)— # — —(B(D-))= 0 (4.26)
dt ax 2 ax

From a combination of (4.24) and (4.26) we find

d pg d 3
—(pB)= —— —(1-g) + —|(pB(v—u))-
dt I-g dt ax
pB8 3
—— —(B(v-u))= 0 . (4.27)
2(1-8) a3z

In the following we omit the last term in the left-hand
side of (4.27), which is 0(g) times the third term.
From (4.5) and (4.25), (4.7) becomes




(4.6) becomes

du 7
(1-B)— + —
o1 iz gt

d ap
—(Blv-u))= = — .
dt dx

Combination of (4.28) and (4.29) gives

d

Using the fact that small quantities are considered,

can be integrated to

B(v-u)

pB(v—u)

From substitution of (4.31)

d pg d

—(pB)- — —(1-8) + —(2pBu)= 0 .

dt 1-8 dt

When small disturbances are considered,

dg

dt
2pR dB 3

1-g dt dx

(1-

(4.30)

(4.30)

= 2Bu ,

2pBu

into (4.27),we obtain

3
(4.
X

(4.28) reduces
au

B)_‘ £l

ax

= —|(2pBu).

Substitution of (4.33) into (4.32) finally yields

pB
( 3):6’
oZ(I—B)

d
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or P8
—_——— = constant . (4.34)
pz(J-BJ3
From this we find for the sound velocity cf,
2 P
eé = —(1+28) . (4.35)

Using a=B/(1-B8), (4.35) changes into (4.20). A simple rela-
tion between p and B, as given by (4.34), could not be found
for the general case.

Now we return to the Hugoniot relations as given in §2.
Defining M2=U2/e2, we find for the relation between M, and

I
M, s using (4.2) and (4.35),
g - 2
Mf = (2 2a0)MO . (4.386)
With (4.36), (4.18) becomes
P p
uZ = Ll1-a (1- -2} . (4.37)
Py P

For a given pressure ratio pl/po and given &, (4.19) or
(4.37) specifies the speed of propagation of the wave.
Note that for values of pl/po near unity, (4.37) reduces
to

Comparison with (U/co)2=p1/po shows that weak shock waves
propagate at a velocity near cf, when relative motion is
not resisted by friction, and at a velocity near e, when
resisted.

§5. THE EQUATIONS DESCRIBING THE STRUCTURE OF THE SHOCK.

We consider a shock wave which propagates at constant speed
U in negative z direction. Transformation of equation (4.4)
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from the z,t into the z’,t frame yields, omitting the pri-

me on z',

3
— pZ(J—B)(U+u) # pzﬁ(v*u)/z =0 . (4.38)
dx

Integration gives, upstream quantities indicated with sub-
script o

pl(I-B)(U+uJ + pZB(v-u)/Z = pz(I—BoJU . (4.39)

This equation can be written down directly by formulating
the constancy of mass flow in the moving frame of reference.
The complication, caused by relative motion, makes a for-
mal derivation useful. The shock induced velocity u is,

as follows from (4.39),

a5 = u - (v-u)
1-8 2(1-8)

Here the use of o as defined by (4.2) gives a simpler expres-
sion. u becomes

a
B BOU(——-— ) - afv-u)/2 . (4.40)

(+]
o

The momentum gained by mass flow pZ(J-BO)U during the pas-
sage of the shock is, at station =z, pZ(I-BOJUu. The Kelvin
impulse of the bubbles, to order g3, is p78U(v-u). Whence
the momentum equation is

P, =B ¥ pZ(J-BO)Uu + pZBU(U-u)/z . (4.41)

This equation results also from a transformation in z',¢
of equation (4.6) thereby using (4.39). (Writing down the
equation of conservation of momentum directly, one might
be inclined to put
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d
—ip + py(1-8)(U+u)? + o BU(v-u)/2 1 = 0 ,
dx

counting pz(l—s)(U+uJ2 as the momentum of the mean flow
and adding the Kelvin impulse. This is errcneous because
the mass flow in the moving frame is not pZ(I—B)(U+u) but
larger than this by sz(v—uJ/z .

The correct form is

d
—ip + pz(I-B)(U+u)2 + pyBUfv-=u) | = 0,
dx

from which (¢.41) follows upon using (4.39)).
Substitution of (4.40) into (4.41) gives, with help of
(4.2), (3.20) and (3.22),

<l -1 = Mgrz—y) P (4.42)
Po
where y=u/ao.
In order to find the shock structure we eliminate p or y
from (4.42). For this we use (4.13) and the relation between
7, and p from (4.8). First we transform (4.8). From the
isothermal relation ng:poVo and (4.13) it follows that

v-u
= y(1+ ———) ; (4.43)
U

R3

4
3
Bo Yo

Using (4.43), the transformation of DR/Dt from (4.8) gives

— e —— —— s | s | [ = e

DR R(U+v) V_d [o v-u
0 ( ) + Ofa2) . (4.44)
Dt 3 v dzle, U

For estimating the order of approximation the derivative
d/dx is replaced by (ao/Rg)*, which is connected with the
length scale on which pertinent quantities change, as found
in the foregoing chapter. Substitution of p from (4.8) in
(4.22), using (4.13) and the relation for Mg, equation (4.42)
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finally yields, omitting non-linear derivatives such as
(dy/dn)?,

d2y dy

y (1+da _y)— + e (1-y) (y=M;2) +
dn? dn
V=-u
M2— =g , (4.45)
° v

with n=x(3ma)%/Ro.

In (4.45) we presented an approximative term including
y(v-u)/U. Actually the term would appear to be more com-
plicated. However, we discuss the shock structure with help
of an analysis of the outskirts. Therefore the approximation
does not sacrify the accuracy.

From (4.16) it follows that

ylo-uw)/U = uofyz—l) 2 (4.48)
For M;Z we obtain, using (4.17) and (4.19)

-2 = -
MO = yl ao{1+y1)s (4.47)
where y1=°1/“o'
With (4.46) and (4.47), (4.45) yields

d2y Ady (I-y)(yl-y)(y+ao)

yi|(10da y)— + *—| = . (4.48)
dn? dn y

This second order differential equation describes the shock
structure in the case where bubble translation is not resis-
ted by viscous forces. This equation differs only slightly
from (3.33) because the factor (y+uo)/y does not make much
difference in the region of interest, yliygl.The features

of the solution of (4.45) are the same as those of (3.33):

a sharp decrease of y from I to Yo followed by damped
oscillations around Y=Y e

Again from linearization near the outskirts of the shock,
the structure will be determined. For the front part we
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linearize (4.48) near y=1 and look for solutions which
disappear for n+-«. With y=I1-y' and y'<<l, (4.48) changes
into

d2y! dy'

A te1— =
(1+4u.0)— *8,— - ¥ (1 yl)(1+ao) =0 , (4.49)

dn? dn
or with (4.36) and (4.46)

dzy: dy'
(1440 J— + s8— = yr(1-M72) =0 . (4.50)
dn2  %dn f

From this we obtain for y

A -2 %
(1-M=%2)
). (o.51

1=y = ezp[l— Eg +
2 J+2ao
Accordingly in the expression for the shock thickness as
given by (3.42), Mf will enter in the place of M. However,
the difference between these expressions for the shock
thickness (the one with M;z and the one with M12) is within
the error of the experimentally obtained values. The shock
thickness becomes

R (1+2a J)1ln20 R in20
o o 0

a =

” 2 (4.52)

(3a,)% (1-u72)%-s8/2 (30 )% (1-472)%-50/2
with Mg:pl/pa.

The front part of the shock follows from a balance of dis-
persion and compression.

For the back side of the shock we linearize (4.48) with
respect to the small quantity ¥y, and find for y

g ¥

P

yy; = ea-:p(— —) e:cp[i‘f.n ‘ . (4.53)
2

(l-yl)(y1+ao)

5
yy(1+da y,)

The wave length A, is found to be
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1
2mR (1+230y1)y;
by = £ 5 - T - (4.54)
(3a,) [I—Mf *a (1-y,) /yJ]
Within the experimental error, A, is
R BnM%
£, = 2 = . (4.55)

£ 2_11%
(3ao) (Mo 1)

This is equal to the wave length derived in the foregoing
chapter.

The number of waves,V, in which the amplitude decreases by
a factor e 7 is, using (4.53) and (4.54),

5
(Mg-l)

N = . (4.56)

7

wagmg
In all our experiments, this quantity is smaller than 10.
With shock thickness, wave length and attenuation of the
waves known, we are able to describe the shocks. These
shocks are called S, shocks. A pressure recording of the
shock profile is shown in Figure 10.

FIGURE 10. A pressure recording typical for flow with unresisted
bubble velocity. A SA shock.
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§6. THE ADIABATIC RELATIONS FOR THE SHOCK.

Y we find for the relation

From (4.11) and the relation p_=p
between the pressure in the bubble and the pressure far in

front of the shock

r a \Y V-u
£ = (-—‘1) (1—7 -—) . (24.57)
Po a U

The relation for (v-u)/U is
ylo-u)/U = aofyz—l) : (4.58)

For the homogeneous theory with p+pg, we find from (4.57)
and (4.58) for the sound velocity e

fad
Yp
c?ad = —£ (1+da ) , (4.59)
i)
or c}ad = Yc} = Y(1+2aa)c§ ’ (4.60)

For a steady flow field the relations concerning mass and

momentum are

pZ(I—BOJU = pL(I-Bl)(U+u1) * DZBI(UI—ul)/2 » (4.61)

and

p, * pl(l-so)uz =p;* 01(1—81)(U+u1)2 +
plBIU(vl-uIJ ¥ (4.62)
The pressure ratio across the shock, pl/po, becomes

2] a_\Y v, -u
L - (—o-) (1-1 1 1) ! (4.63)
Po L v

Using (4.58), pl/po is
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%1 %o
l-Tao(—— = ——)’ . (4.64)

a (+]
o 1

o] _.(“_e)"
Po ¥
From (4.61) and (4.62) we find for the pressure ratio

(4.65)

p p,a UZ a
1_,.-._"1%o (1_ 1)
P, po(1+aa)

s ]
o
With help of (4.64) the ratio ao/“l becomes

o Py Py
I (_1) + aolz-(—l) ] : (4.66)
o P P,

1 o

Substitution of uo/uz into (4.65) gives, using Mozu/co,

B nTv
1+(;) ” (4.67)

For convenience we summarize some other relations between
) - "
M%, yl—al/uo and pl/po :

pl/po—l

M; = ;W ll-ﬂxo

o
P a
1 _ =Y O 7ey2

=y, {1+y (1 yl)} . (4.68)

o 1

y7 -1
2 -

M2 = oy + Yuo(1+y1%/;}+lj. (4.69)

With help of the foregoing relations the structure of che
shock can be described.
For a steady shock wave we have, from the momentum equation

14
— -1 = Mgrl-y) - (4.70)

Po

Substitution of p, from (4.8), the relation describing the
volume oscillations of the bubble, into (4.68), using (4.57)
and (4.58) finally yields




i

] d%y 2% =Y 2
¥y |(1+da y)— + 8"—| + y(1-y) + y(1-y JM; +
9" dn2 dn

it IO -2 =
Yo ¥ (y l)Mo g s (4.71)

From linearization near the front part we find for the

: : -2 -2
shock thickness, using Mfad—(1+2a0)yMo o

R, (1+2ao)1n20
d. = . (4.72)
A ¥ (q_nm-2 )5_gb
rsao) (1 Mfad) 60/2

Within the experimental error d‘q becomes

R ln20
d. = .2 Tz . (4.73)

=2 )%_ B
(3GOJ {:d M ) 60/2

In (4.73) Mg is defined through (3.80) .
Within the experimental error the relations for A and ¥
are identical to (3.72) and (3.73) respectively.

§7.CONCLUSIONS.

In this chapter we discussed shock waves, socalled SA shocks,
in mixtures where bubble translational velocity is not re-
sisted by viscous forces. A shock profile is found, prac-
tically identical to that found in chapter 3: a steep front
followed by damped waves at the back side. We did not com-
pute the temperature rise and entropy change across the
shock. The relations (3.16) and (3.24) are hardly affected
by relative velocity.

In this and the foregoing chapter we analysed shock struc-
tures for two extreme circumstances. The first extreme is
that the bubbles move with the liquid. This means that the
viscosity is assumed to be very large. The other extreme

is based on a negligibly small viscosity. Bubble velocity
differs from the liquid velocity.

In the following chapter we discuss the more realistic case
where initially generated relative translation is ultimately
resisted by viscous forces.




CHAPTER 5.

STRUCTURE OF A STEADY SHOCK WAVE WHEN THE SPEED OF THE GAS
PHASE ULTIMATELY EQUALS THE SPEED OF THE LIQUID.

§1. INTRODUCTION.

In this chapter we discuss steady shock waves with ultimately
zero relative translational velocity of the bubble. So the
relations between quantities far in front and far behind the
shock, the Hugoniot relations, are equal to those discussed
in chapter 3. However, the shock structure will be signi-
ficantly modified by viscous effects associated with relative
motion. A typical profile is shown in Figure 11.

FIGURE 11. A pressure recording typical for flow with resisted
bubble velocity. A SB shock.

The shock structure, as shown in Figure 11, depends on both
the gas volume fraction and the pressure ratio. Below a
critical value of the pressure ratio, the steep front of the
Sy shock disappears. The pressure profile is almost entirely
smooth. This we call a SC shock.

In this chapter we summarize the Hugoniot relations. From
the equations of motion, including viscous forces, the rela-
tions which determine the shock structure are derived. At
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the end of this chapter the corresponding adiabatic relations

are summarized.

§52. EQUATIONS OF MOTION.

Most of the equations were already derived in the foregoing
chapters. For convenience we briefly summarize the known
relations. Furthermore we include viscosity in the equation
of motion of a bubble.

We consider time dependent flow. The liquid velocity is u
and the gas velocity is v. Both quantities averaged over a
small volume of the mixture containing many bubbles. The
density of the mixture is defined by

p = pl(l—B), (5. 1)

and the mass concentration, a/pl, by

B
a4 = — ” (5. 21
1-8
The relation between g and the bubble radius R is
4
g = — mRI . (5.3)
3

In the mixture the equation of mass conservation is, inclu-
ding drift effects (chapter 4),

op 3
— + —{pu + plB(v—u)/2| =0 . (5.4)
at ax

The equation of conservation of the number density = is

an 3
—+ —(nv) = 0. (5.5)
ot oz

The momentum equation is, including Kelvin impulse
(chapter 4),




S

] 3
—{ourp ,B(v-u)/2) + —{p+ouZ+p Bv(v-u)/2} = 0 . (5.6)
9t ax

Now the equation describing the translational velocity of
the bubble includes the friction force and is (c.f. I1.16)

1 d op
py —{Vlv-w}+ 12mu R(v-u) = -v— . (5.7)
2 dt dx

Furthermore we have the equation for bubble pressure P,
and liquid pressure p

{ D2R 3 DR g DR}
p-p =p,{R + —(—)%+ Sw!R — |, (5.8)
g LU pe2 2 Dt ¥ o
with D 3 3
—_ = — -, (5.9)
Dt Ot ax

§3. THE HUGONIOT RELATIONS.

The relations between quantities far in front and those

far behind the shock become rather simple. Far in front

and far behind the shock the velocity of the gas phase
equals the liquid velocity. Therefore the Hugoniot rela-
tions are equal to those derived in chapter 3. We summarize
these for convenience. The expression for the liquid velo-

city U, behind the shock is, using (3.21),

2
u o ]
=L = &0 (2- —"). (5.10)
U 1+a U2
For the Machnumber Mo we have
u P, %
M,z — = (-i) , (5.11)
) Py

or M2 = c"o/otl, i (5..12)
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and accordingly

ks o, (§.13)
Pa 2
We also use the equation
P a_p,U2
-1 - o L . {6.14)

P, p0(1+c:o)2

§4. THE EQUATIONS DESCRIBING THE SHOCK STRUCTURE.

We consider a shock wave moving with constant speed U in
negative = direction. The equations (5.1)-(5.8) are trans-
formed from the x,t-frame into the z',t-frame with z'=z+Ut.
In this new frame the shock is steady and so (a/ath, is
zero. Carrying out this transformation on (5.4), we obtain,
omitting the prime on z',

E
p— pzfl-B)(H+u) + DlB(v-u)/Z = 0 « (5.15)
Iz

Integration gives
DZ(J—B)(U+u) + plB(v-u)/Z S pl(l-BOJU s (6.186)

where upstream quantities are indicated with subscript o.
The shock induced velocity u follows from (5.2) and (5.16),

a

= BOU(—— - )* alv-ul/2 . (5..27)
o
o

From transformation and integration of (5.6) we find for
the momentum equation in the moving frame of reference

p, * pZ(I-BOJUZ =p + 91(1-8)(U+u)2+ p,BU(V-u) . (5.18)

Substitution of (5.17) into (5.18), use of the equations
(5.12)-(5.14), gives for the momentum equation
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p
—_— =1 = M§(1~y) + 0(a?) , (5.19)
pO

with y:'ct/oto.

From (5.19) we want to find the equation describing the
shock structure in terms of either p or y. We follow the
method given in §5 of chapter 4. Transformation of (5.8)
by use of (4.44), substitution of p from this new equation
into (5.19), use of the isothermal relation ng:poVO,
finally gives for (5.19), with help of (4.43),

2 d?y Y
y=[(1+4aoy)——~ + 6 — + (1-y)(y-M~2) +
dn? dn g
v-Uu
_ M;?- =@ , (5.30)
U

with n:x{.'zuo);‘/}ao.

Non-linear derivatives are neglected because the outskirts
will be discussed.

For determining the shock structure we need an expression
for (v-u)/U. Therefore we consider the equation of motion
of a single bubble (5.7). With the help of (5.3), (5.5)
and (5.9), (5.7) is changed into

D 2B ap v
—{8(v-u)} + 24mu mR(v-u) = - — — - g(v-u)— . (5.21)
Dt Py T x

Substitution of 3p/dx from (5.6) into (5.21) and trans-
formation of (5.21) finally yields, with help of (5.17),

d v-u o v-u dy
—-(y —-)+—gy——-2aoy——+0(u2) =0 , (5.22)
dn v Y3 U dn
with lavz 1
G 5 ———— (5.23)
URo (3&0)

2 > gy
In some cases y3, in the term containing o, can be taken
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equal to unity. Upon integration of (5.22) we obtain omit-
ting terms of order a2

—— ezxp[-o(n-n")]dn’ . (5.24)

v-u n dy?
:,,I
U °1 ., dn’

In determining the constant of integration it is assumed

that ahead of the shock (n+-=) v=u=0. Actually there is a
small relative velocity caused by buoyancy. Thanks to the
addition of glycerine to the liquid this velocity is only

a few em/see. The shock induced velocity is of order al

and therefore much larger in most of the experiments.

The basic set of equations is given by the system of equations
(5.20) and (5.22) as well by the system (5.20) and (5.24).
With the help of both systems we discuss the outskirts of

the shock. For o+0, shocks as discussed in chapter 4 are
derived and so are shocks, as discussed in chapter 3, for

o+=. Before starting the discussion of the shock structure

we make some remarks regarding to the equation describing
relative motion; (5.22). For most of our experiments o is

of order 10~ %
experiments. On the scale of n=0(1), that is on the scale
of the shock thickness d, as defined by (<4.52), the term
representing the viscous force in (5.22) is unimportant,

and at maximum of order 10‘1 in some of the

because (v-u)/U=0(a). However on the scale on=0(1), vis-
cous effects associated with relative motion plays a domi-
anant réle. These features will largely determine the shock
structure.

For sake of completeness we combine equations (5.20) and
(5.24) to an integro-differential equation

2 dzy de
yi|(144a )— + & —| + (J-y)(y-Maz) +
@ dn? dn
-2 n dyz
& —2- —— exp[-o(n-n')]dn' = 0 . (5.25)

¢ 9 s dn'
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In the next section, where we analyse the shock structure,
we will use the system of equations (5.20) and (5.22) as
well equation (5.25)

§6. THE SHOCK STRUCTURE.

We substitute y(v-u)/U from (5.20) into (5.22) and find a
third order differential equation. Following the procedure
of the foregoing chapters, this equation will be linearized
in order to analyse the shock structure from the outskirts
of the shock.

To investigate the front part of the shock we linearize the
differential equation in this region, where y'(=I-y) is the
small quantity. The resulting equation is

ddy"’ i d2y'  1-M~2-20 M~2 dy'
,,( +c) e e W
1+4a dn? 1+4a dn

(2} o

a

(1—M;2Jy' =0 . (5.28)
1+4u0

For the front part we seek solutions which disappear when
n+-=. To find the solutions we have to solve the third order
differential equation (5.26). To this end a general method
is summarized in Appendix 1. In this section the results
are presented.
In general there are three solutions of (5.26).However, not
all are useful. This depends on the condition that the solu-
tion needs to vanish when n+-«. As follows from the analysis
in Appendix 1, there are two important cases which lead to
different solutions. So we will properly distinguish these
two cases. Their appearance depends on the pressure ratio
across the shock. The first is represented through

Pq
Mg === © Iede,

pO

From Appendix 1 it follows, under this condition, that the
solution for y is
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on(M2-1)
g ] : (5.27)

I-y = exp|————
1+2a =~M2

o o

This solution, which describes the front part, disappears
when n+-w=. From (5.27) a shock thickness d’ can be defined

R 1+2a —-M2
d’' =

e J# ] in20 . (5.28)
o o
This is at least an order of magnitude larger than the shock

thickness derived in the foregoing chapters. In this case

the front part follows from a balance of non-linear compres-

sion with dissipation associated with relative motion. (5.27)
represents the front part of a smooth profile, the Sc shock.

The second case is represented by the condition

M2 > 1+2a
Qo Qo

Under this condition the solution for y is

nég n(l—M;z-zaaung*
1=y = gxpj= — + . (5.29)
2 1+2uo

The shock thickness dA becomes

R (1+2a )In20
lA . 0 o —
¥ -2 -2)2_
(3ao) (1 Mo 2aoMo ) 50/2

s (5.30)

With the help of the definition of MZ%, (4.37), d, can also
be presented in terms of Mf

Ro (1+200J1n20
d, = . (&..81)
A % =2 %_ A
(3a0) (1 Mf ) 50/2

For most of our experiments this is the same as the shock
thickness derived in chapter 4. We already mentioned, on
the scale of dﬂ, that in the front of the shock viscous
effects are unimportant.
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Now we pay attention to the back side of the shock. We
linearize the third order differential equation in this
region, where y"(ry—yl) is the small quantity. The resul-
ting differential equation for y” is

day" dzyrr M2-1+2q dy"
— i (6?1‘0!42’)—- e =] M;%— +
3 2 -2
dn dn 1+4aoMa dn
o(M2-1)
—"—zy"= 9 . (5.32)
1+4quo

For the backside we seek solutions disappearing when n+e.
To this end we use the analysis of Appendix 1. The solution
for y consists of two parts. The first part is proportional

to 2
noM3 (M2-1)
sopll- —22__ I .

2
Mo 1+2a0

(5.33a)

This term originates in the viscous effects associated with
relative translational motion. The pressure changes on the
scale on.

The second part is proportional to

" o2a M3 (M2-1+2a )M}
exp|- — {80+ —22_ exp |tin|————————— .(5.33b)
2 M2-1+2a _ M2+da
o ] o o

This represents damped pressure oscillations. This wavy
behaviour was already found in the foregoing chapter, but
with a slightly different attenuation factor. In this term
the expression containing the factor ¢ becomes important
when Mg-l:O(ao) and accordingly Mj can be taken unity. We
see that the solution for y,or for the pressure ratio, at
the back side of the shock consists of a profile slowly
changing to equilibrium, (5.33a), with damped oscillations
superimposed, (5.33b).

Thus we found two types of shock structure, the appearance
of which depends on a critical value of the pressure ratio.
One type is described by the system of equations (5.27),
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(5.33a) and (5.33b). This we call a S. shock. This shock
will receive more attention in the following section. The
other type is represented through the system of equations
(5.31), (5.33a) and (5.33b). We call this a SB shock, with
which the present section is concerned. A pressure recor-
ding for a Sg shock is shown in Figure 12.

FIGURE 12. A pressure recording typical for a SB shock.

In this Figure we see a profile that considerably differs
from that of a SA shock (c.f. Figure 10). In the Sy shock
there is still a steep rise at the front, but the pressure
does no longer rise to its equilibrium value at the back
side. This takes place in a region which is much larger than
that of the front shock. In this region at the back side

the pressure reaches its final value slowly oscillating.

The wave length A follows from (5.33b) and yields, with

ao=o(10'2), aﬁzo(la'l) and 0:0{10—2) in most of our expe-
riments,
2nRO Mg %
& = 2 . (5.34)
(3a_)* |M2-1+2a
o o o

There is no essential difference with the wave length
represented by (4.55).
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The number of waves, ¥, in which the amplitude decreases
by a factor e_l, is found from (5.33b) and (5.34) and is

1
N o= -

m

2 2.
Mo 1+2ao ¥ Mo 1+2ao

(5.35)

M3 (M2-1+2a ) §2+20
] o o" 1

Besides by the shock thickness dA and wave length A, a Sp
shock is also characterised by two other quantities.

The first is the length of the region where the pressure
slowly reaches its equilibrium value as shown in Figure 12.
The second is the pressure p* located at the point of inter-
section of the steep front part and the smooth back side

of the shock. The different quantities for a SB shock are

once more illustrated in Figure 13.

pt

Py

FIGURE 13. In this Figure the pressure profile of the shock wave is
shown. Important quantities such as dA’ A, p* and dB are marked.

The region of length dB is determined by viscous effects,

as can be seen from (5.33a). By stretching the n scale
through the factor o, to

£ = on, (5.36)
(5.22) becomes
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d v-u v-u dy
—(y _)+ gy — - 20y —=0. (5.37)
dE v U de

For the investigations of the back side of the shock, y%
in (5.37) can be taken equal to unity. Then we obtain from
(5.24) and (5.36)

v-u g dy?
y — = a, [ — exp[-(e-£"*I)]dE" - (5.38)
U -~ dE’

To find p* and dﬂ the following approach is chosen:

On £ scale the front shock can be considered as a discon-
tinuity. In front of this discontinuity the pressure is P,
and behind it p*. At the back side, a region where steepen-
ing is balanced by dispersion goes over into a region where
it is balanced by viscous effects. In the transition region
therefore, the three mechanisms, non-linear compression,
dispersion and viscous effects are of equal importance. A
detailed study can only be made by analysis of the full
equation (5.20). An estimate for p*,however, can be made

in various ways. One of them is the following:

In the front shock, on n scale, viscous effects associated
with relative motion are small and the propagation velocity
must obey (4.19)

*

= E—{l+ao(1+5%)|

P, P

Q|QZ
X3

on

However, Uz/cg follows from conservation of mass and of
momentum in the whole wave and is, (eq.5.11),

whence

. (5.39)




= b

The pressure recordings from the experiments give p-p,
relative to the pressure jump P;7P,- For this we introduce
¥ which is defined through
*
P =
/p,~1

= -

Fis
pl/po—l

From this and (5.39) we have at p=p*

(5.40)

It is easily verified that p* becomes equal to zero, to
order ag, when
P =
1/p0 1+2a .

Which is the threshold for the existence of a smooth pro-
file, the SC shock. For strong shocks p* is practically
equal to Py

The value of y associated with p*, y* is, using (5.11),
(5.18) and (5.40),

\

y© = y1+u0(1+y1) " (5.41)

From this value of y* or with p* and the relation for the
smooth profile at the back side of the shock, (5.33a), the
length of the smooth region, dB, can be estimated. dg follows
from the distance in which y changes from y* to y1+.05(y*—y1),
say. From (5.33a) and (5.41) we obtain

d 2ao Iln20
B _ (1+ ) =, (5.42)
Ut M2-1/ M3
o o
with R2
v = =2, (5.43)
18uZ

Experimentally, it is beyond the accuracy of the measured
profile, for us to locate the distance where y-y is a small
fraction, 5%, say, of y*-yl. It is only possible to indicate
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y-y, as a small fraction of P;7P,-
With the help of (5.33a), (5.40) and (5.41) we find for dg

d
—B: (1+
Ut

Miij)M;%Zn{.?O(J—Fia)} ; (5.44)
o
The equation for the thickness of the front shock, dA, also
needs some modification. Actually dA follows from the dis-
tance in which y changes from 1 to y* instead of to y,.The
latter value gives (5.29). For dA we have the same comment
on the accuracy of the approximation as we had for dg. From
(5.28) and (5.40) we find for dA, the distance in which y
changes from 1-.05(1-y,) to g™

Ro (1+2ao)ln(20F£8)
T . (5.45)

d. =
A
-60/2

A

3 y=2
(3&0) (1 Mf )

So far we discussed the structure of a SB shock, which will
appear for pl/po>1+2ao. Before starting the discussion of
steady shocks with pl/po<1+2ao, we first analyse a SB shock
in a slightly different way. This may serve the insight of
the Sg shock.

In the region y*<y<l relative motion is not resisted by
viscous friction and we may take here o=0 in the system of
equations (5.20) and (5.22) and equation (5.25). From these

equations we find, using (5.41),

(1-y) (y*-y) (y+a ) . d2y 29y
= yf |(1+40 y)— + s —| . (5.46)

Y dn? dn

This equation is similar to equation (4.48) with y* instead
of Yqs valid for a SA shock, as could be expected. This
shock is discussed in chapter 4 and (5.46) needs no further
discussion here. The equilibrium points are at y=1 and at
y=y*. Linearization at the front, near y=1, gives

nﬁg n{l-y1(1+2qo)]*
I-y « ezp[- — . (5.47)
2 1+2a0
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Since here yJ:pa/pJ:M;2 and cgrc}(l-zaoi, this may be writ-
ten as (4.51), which emphasizes that both the front part
of a SA shock and that of a Sg shock are of the same type.
At the beginning of this section we already discussed the
front part of a SB shock as represented by equation (5.28).
This equation shows the influence of viscous friction by
the factor o. The neglect of o is justified for most of
our experiments and accordingly this results in equation
(5.47).

The back side, excluding the oscillations, is governed by
the balance between non-linear steepening and the effects
following from viscous friction connected with relative
translational motion. For this purpose the n scale of the
equation (5.25) is stretched by the factor o. We obtain

M-2 2 dyZ
(1-y) (M~2-y) - a L[ — ezp[-re-g*)] dg" =

o o "
Y - dE

4 d2y A4y

y:[02(1+4a0)——— # g8 = i (5.48)
dg? dg
with E=gn.

The pertinent equation for the back side is (5.48) with
o+0. On g scale the front shock is a discontinuity and
taking £=0 at this discontinuity, we write

¥ =3 +{(y1—1)+f(5)}3(£) s (5.49)
where # is Heaviside's unit step function.
With a view on (5.41) f(E) is of order @ - When we neglect,

in inserting (5.49) into (5.48), terms of order ag the inte-
gral reduces to

0
[ (y3-1)6(5 " )eap[-(E-E ] dE" ,

where 6(£) is the Dirac delta function.
The integral equals
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(y?—l)exp-g -
From (5.48) we obtain for f
= ao(1+y1)emp—g
Together with (5.49) this gives for £>0

y =y, + n0(1+y1)€zp—5 ) (5.50)
o -
This relation for Y=Y, is similar to (5.336. The latter
represents the smooth profile at the back side of the shock
when
MA(M2-1)

M2-1+20
(o] o

is taken unity.

At £=0, the location of the discontinuity, (5.50) gives
*—

¥y o=yt mof1+y1)

which supports the independently obtained estimate (5.41)

for y*. With help of (5.11) and (5.19), we deduce from
(5.50) that the pressure profile at the back side is

P/p,1 P1/p,+1
=1 -

—_— ¢ =———— exp-E . (5.51)
pl/po-l e pl/po~1

At E=0 Fis as given by (5.40) is recovered.

§6. THE STRUCTURE OF A SMOOTH SHOCK; A SC SHOCK.

In this section we investigate shocks without the steep
front part. This occurs when the pressure ratio is below
a certain critical value. A pressure recording of a SC
shock is shown in Figure 14.
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shock.

FIGURE 14. A pressure recording typical for a SC

In the foregoing section we described already the front
part and the backside of this profile. For a Sc shock the
viscous forces are important throughout the profile. The
scale on which quantities change is the ¢ scale instead

of the n scale. The pertinent equation describing SC shocks
is equation (5.48). For o+0 the right-hand side vanishes
and the equation describes a transition in which non-linear
steepening is resisted by effects connected with relative
motion. In §5 we found that this is only possible for

2 - P
. = 1/po < I+za .
Since y lies between unity and M;z, 1-y and M;z-y are of

order o  in these waves. Then, to order ag, (5.48) can be

simplified to

£ g

Y

(1-y)(M~2-y) - 2a ‘[ — exp[-(e-£')]de" =0 . (:§.52)
o 0le gg

When we introduce the quantities y and A by
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y ={(1+M 2) + w(1-M 2)} /2 , (5.53)
2&0

Mz =—t (5.54)
M2-1

and require that y=0, half way between y=1 and y:M;Z, is
at £=0, we obtain

=X r149) ¥ = exp-t . (5.55)

(1-y)
For 1-A<0, which amounts to pl/po<1+2ao, as follows from
(5.54), this represents a wave profile in which y decreases
smoothly from 1 to -1, y accordingly from I to M;z. The
dimensionless pressure p/po is related with ¢y, from (5.19)
and (5.53), by

P = 2 M2
/p, = {(1+M2) + y(1 M2)}/2 , (5.56)
- 2P
or, with ¥2="1/p , by

P/p,-1

 a—— (1-y)/2 . (5.57)
1/p,-1

From (5.55) and (5.56) it follows that the dimensionless
pressure rises from I to (M§+1)/2 over a distance which is,
in terms of £, a few times, 3 say, A-1. Using (5.54) and
remembering that 2a  can be written as (c.£.2.21) (cf/co)z—l
we derive

a2-y2

s(A-1)= § =L — .
UZ_CZ
[}

The rise of (M§+1)/2 to Mg takes place over a distance
3(x+1) or

e2+U2-3c2

' by

3
UZ_C:Z
(]
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This shows that the front part of the shock is much thin-
ner than the back side. The overall shock thickness is
found from the distance in which y changes from +I to -1.
Using the expressions for ¢, A and £, we find from (5.55)
for the thickness dc

—_— = ln20 . (5.58)

For convenience we give the profile for a SC shock once

more in terms of y,

1= 2J1+7(

y(i=-y) (y-M; = exp-E . (5.59)

§7. THE ADIABATIC THEORY.

The Hugoniot relations are already given in chapter 3.
For the pressure ratio we have

Pafp, = (uo/al)Y ) (5.60)

The Machnumber is related with pl/pa by

’ pl/po-l ;
Mé = —— | 5.61)
fe] (P Wy
1 ( o/pl)
The sound velocity, e q> 1s
2z = 2
esy = vpo(1+uo) /(plaa) ‘ (5.62)

Furthermore we summarize the quantities such as shock
thickness, wave length and the length of the smooth pro-
file. The relation between the pressure in the bubble and
the pressure far in front of the shock is, (c.f.4.57),

p @ \Y v-u
—9-:(—0) (1 -y——). (5.63)
p, o U
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For a steady shock wave the momentum equation is
Prp -1 = M2(1-y) (5.64)
o o ’ :

Transformation of (5.8) by use of (4.44), substitution of
p from the resulting equation into (§.64) and use of (5.63),
gives

2 d%y Ady L
¥ (1+da Yy )—— + & — +y(1‘.y) o+ M—Zy(l_y YJ +
o 2 o
dn dn

v-u .
Y ———-YMgzy Y=u9. (5.65)
U

With the equation for y(v-uw)/U, (5.22), we find for the
equation describing the front part of the shock

d3y’ d2y' 1-yM~2-2a yM~2 dy'
—-+(52+0)-—— 2 o o -
dn? dn? 1+4u0 dn
of1-yM~2)
—_— Yyt =0, (5.66)
1+4uo

with y'=1-y.
-2 -2
(1+2ao)1Mo can be taken equal to Mfad'
Using the results of Appendix 1, we obtain from (§.66),
when pl/pc is smaller than the critical value

dya
1+ 2, (5.67)
1+y
for y
on(Mg-YJ
1-y = exp[————————;] . (5.68)
2007+Y-M0

This represents the front part of a SC shock.

For

Pi/p, > 1 + Y sitysl) (5.69)




2
Mo > Y(1+2ao) 3
the solution for y becomes

n(1-u 2 )%
I-y « exp|=-né /2 4 —tad’ (5.70)

1+2a

With help of (5.22) and (5.65) we find for y*

—h 2
* My

y+1

(6.71)
—szl‘

To express this in terms of the pressure ratio p*/po, we
introduce ¥ i which is defined through

*
s
B SO

ad pl/po-I
From this and (5.71) we have at p=p*

p P Ea

1/p0{1+( O/pl) }
o .p -(P Y 2
Y 1/p,~(Forp,) " u2

(5.72)

The thickness of the front shock dA’ based on y* and using
the comment on the experimental accuracy, is estimated from
the distance in which y changes from 1-.05(1—91) to y*.From
(5.70) we obtain

R (1+2a J)In(20F d)
d, = < 2 02 T A“ . (5.73)
(3u0) (I-Mfad) —60/2

The profile at the back side is found from a linearization
of the equations (5.22) and (5.65). The resulting differen-
tial equation for y"(:y—yl) is

d3yrr
—_
dn?

o
6 +—

2
¥

d?_yrr Gl dy " 0’G2y "
— s (e __——:0_, (5.74)

dn? y;(1+4aay1} dn i‘(1‘1‘4::: o1 J
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with
-y 1=
- 2 : &
G, = G, + 2uoyM0 ¥y § (5.75)
and
M2
G2 = = - ¥g - (5.76)
Y1

From (5.74) it follows that the function describing the
smooth profile in this region is proportional to

anZ
exp,- i] . (5.27)
Ga¥7
The thickness of this region, dB, is found to be
d G
_B_ 41 -
- v in{20(1-F 4 )}, (5.78)
T G
2
The expression for the wave length is
2nR_ y3(1+2a y,)
A = o L = £ . (5.79)
(3&0) 63

The attenuation of the waves is found from the factor

exp[-n(85+c,)/2] , (5.80)
with
~ 2aoya
G3 = “-'2-—7_:: . (5.81)
3
MG ¥ 3

The number of waves in which the amplitude decreases by a
factor e %, is

G

. (5.82)

¥
1
W= A
1

yiﬂ(ﬁ +G3)
Now we return to the smooth profile or SC shock. The re-
sulting equation is found from (5.65) and is
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v-u -
y(1-y) + M>2y(1-y" V) + y — w>2y™Y =0 . (5.83)
U

From this equation and (5.22) we find for y

y(l—y)l_z (y—y1)1+£ = exp-f , (5.84)
20 ¥
with g = 20
MO—Y

For #2<1, which amounts to the critical value for the pres-
sure ratio, (5.84) represents the profile of a SC shock
for adiabatic circumstances.

The expression for the thickness of the SC shock is found
to be

< - 201n20 . (5.85)

§58. CONCLUSIONS.

In this chapter we investigated shock waves, where, in
contrast to chapter 4, relative velocity of the bubbles

is resisted by viscous friction. These are SB and SC shocks.
We found that the profiles are considerably modified by
these viscous effects. The modification was found in two
ways:

The first is that the pressure oscillations at the back
side of the shock no longer take place around the equili-
brium value Pye The oscillations start already near p*,
which is between P, and p,- This modification is very small
for large pressure ratio's as follows from (5.40). For weak
shocks however p* clearly differs from p,; as will be shown
in the experiments. The front part of this SB shock is
similar to that of a SA shock.

The second is that when the pressure ratio is smaller than
a certain critical value the profile is entirely smooth.
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The steep front part as well as the oscillations no longer
appear. This we called a SC shock.



CHAPTER 6.

RELAXATION EFFECTS ON SHOCK WAVES IN LIQUID-BUBBLE MIXTURES.

§1. INTRODUCTION.

In the foregoing chapters several shocks, such as SA’ SB
and SC shocks were investigated. In experiments by Noordzij
(1971) and Van Wijngaarden (1972b) SA shocks were observed.
These experiments were carried out in a shock tube of one
meter length. After a longer distance viscous forces con-
nected with relative translational motion become effective.

Then the profiles of S, and Sc shocks as discussed in chap-

B
ter 5 can be observed. The shock tube, in which these shocks

are observed, is schematically drawn in Figure 15.
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FIGURE 15. Experimental setup for measurements on shock waves.
(A description will be given in chapter 8).

During its passage along the tube the profile of a pres-
sure wave was recorded at three stations marked A, B and
C in Figure 15. A is about .2m from the top of the tube,

B at 2.5m and C is at 4m. At A a SA shock appears, at B

a SB shock and finally at C a SC shock. To illustrate the
changing form, the pressure recordings are shown in




Figure 16.

A B 1
FIGURE 16. Several shock profiles recorded at the stations A, B and
C along the tube as indicated in Figure 15.

This change in profile cannot be explained with the sta-
tionary theory in the foregoing chapters. To gain insight
in the change in profile of the wave we consider the com-
plete set of unsteady equations in this chapter.

§2. EQUATIONS OF MOTION.

We consider time dependent flow. The liquid velocity is u
and the gas velocity is v, both quantities averaged over
a small volume.

The mixture density p is defined through

p = pZ(I-B) . (6.1)

The mass concentration, a/pz, is defined through

]
@ = — . (6.2)
1-8
In the following we will take advantage of the fact that

in our experiments g and a« are small, of order 1673,
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Further we have
B = 4wnR3/3 . (6.3)

The equation of mass conservation is

ap 9
—_ ——{pu + pzﬂ(v-u)/Z} =0 . (6.4)
at 3x

The momentum equation is

a ]
——{pu+sz(v-u)/2} + ——{p+pu2+918v(v-u)/2} =@ . (6.5)
9t dx

The equation of motion for a bubble is

1 d ap
-0y —{V(v-u)}+ 12wy R(v-u) = -V— . (6.6)
2 dt x

To express this in terms of 8, we note that

Dn v
—_— - —, (6.7)
Dt ax
where D 3 9
—_ = —F p — ,
Dt at ax

We combine this with (6.6) to

D ap
CP) —{B(v-u)/2} + 12y nR(v-u) = -8 — -
Dt iz
pZ v
— Blv-u)— . (6.8)
2 dx

From (6.4) it follows that u is of order g. (6.5) and (6.6)
show also that v-u and 3p/a3x are of order g. The leading
terms in (6.8) are of order B2 and the last term on the
right-hand side is of order g3. Since g is small we discard
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this term, which reduces (6.8) to

3 18v, 28 ap
—{plv-u)} + Blo-u) = = — — , (6.9)
ot Rg py %

where we reduced the material derivative to the local deri-
vative 3/3t, since u(du/3z) and v(2u/d3x) are of order g2.

To the order of approximation in g, considered here, it is
permitted to take R in the coefficient of the viscous term

in (6.8) constant. We choose for this the value R in the
undisturbed state.

Since, with a view on (6.5), -3p/3x in the right-hand side

of (6.9) may be replaced by plrau/at) in the present "approxim-
ation, an alternative form of (6.9) is

3 lavz du
—{8(v-u)} + B(v-u) = 28 — . (6.120)
at R2 at

This equation describes a relaxation process with charac-
teristic time 1, given by
R2
T = —2 (6.11)
18\J1 :

For times t<<t relative motion is not resisted by friction.
Friction becomes effective at large times and, provided
su/%t tends to zero at large time, relative motion ceases
eventually. Similar "rate" processes occur in gasdynamic
shocks. Their socalled relaxation effects on shocks are
well understood in gasdynamics (Lighthill 1956, Whitham
1959, Ockendon&Spence 1969). Once the analogy is recognized,
the application of this theory to shocks in bubbly suspen-
sions can be made.

For most of our experiments, with bubbles of radius 10-3m
and vz=10-5m2/sec, r is about 10 Zsec.

For isothermal circumstances we have, with ng as an

invariant of the motion,
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3 3
—(p B) + —(p Bv) = 0 . (6.12)
at 9 ax 7

A difference between p and pg is brought about by both the
inertia of the liquid and various damping mechanisms. In
an expression for PP, all these effects are represented
by strongly non-linear terms. However, both the coefficients
involved and the bubble radii are small. So, as shown in
the foregoing chapters (c.f.3.34), the leading contributions
in the difference between p and P, are represented by the
right-hand side of

p-p 3% R 3 R

;.:R_g = ;;(R_) + Su! ;(;0-) . (8.13)

Terms neglected in the right-hand side of (6.13) are of
O(a) and of higher order.

In the dispersion equation (6.13) we also neglect the small
effect of relative motion. When v-u=0, the mass of the gas
in a unit mass of the mixture is constant. Since B this
means that p a is constant and equal to P8, - Together with

pgR3:poRg and the expression for the speed of sound

po(1+2uo)
cg = —_—, (6.14)
P19,
we write for (6.13)
pP_-p R2 (32g da
4 - Q o Suf —1 . (6.15)
P, JaZellat? ot

For convenience we summarize the equations here obtained,
thereby slightly rearranging the terms in (6.4) and (6.5),
and neglecting in (6.5) terms of order 83

p = pZ(I—BJ & (6.16)

B
o = — = B(I+8) , (6.17)
1-8
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3p dp du 3
—ty —+p —=- ——{sz(v—u)/Z} s
at 2z 9T 3z
qu ou ap 3
p— + pu — + — = = —{p B(v-u)/2},
3t 9x Az at
—(p B) + v —(p B) +p B8 — =20
3t g ox g g ax
] 2B 9p
(—- + r'l)s(u-u) S ——
at pg 3%
= RZ 32 2
pg e = L e + Sw/! 'i 2
22 2
po 3u0co 9t 3t
p
e2 = —2(1+2a ) .
re) o
P1%

(6.18)

(6.19)

(6.20)

(&.21)

(6.22)

(6.23)

§3. THE EFFECTS OF RELATIVE TRANSLATIONAL MOTION ON WAVE

PROPAGATION.

The new aspect, we wish to investigate, is the relative
motion. To obtain some insight, we first disregard all
other effects and consider small amplitude waves with

Linearization of (6.18)-(6.21) leads to:

2 du B, 2
—(1-8) + (1-8 )— = = == —(v-u)
at ax 2 3z
N

qu ap B 2

— S = £ —(v-u) ,

at Q0 i 2 at
B ap 9 au
— + B =+ —(v-u) + —} =0,
at °lat oz azx

>

(6.24)

(6.25)

(6.26)



—(v-u) + v (v-u) = - —= — | (6.27)
9T p1 X

where p-p

Addition of (6.24) and (6.26) gives

u ap 382
—+ 8 — = - —2 —(v-u)
o at 2 3z

Elimination of u between this equation and (6.25) gives
with use of (6.27)

32y a2p

3 p p
—(v-u) = - 1 c% —_— ), (6.28)
dx ax? at2
where
e? = e2(1+28 ) . (6.28)
- o o

e is discussed in chapter 4.
Substitution of (6.28) into (6.27) yields finally

a2p alp

2 22p P P 2
——(02 _— ———) + 171 e2 — - ———) =0 . (6.30)
st VT az2 ge2 © ax?2  at2

For times ¢<<t the solutions of (6.30) are waves propaga-
ting with speed e, as defined by (6.29). Eventually the
waves given by (6.30) travel with velocity e,. We find for
a wave travelling to the right, c.f. Appendix 2,

2 ap  op p  ap
_(cf_+—)+ 1'1((3 —+—)‘—' o . (6.31)
at ix at ax ot

This equation, resembling relaxation, is extensively studied
by Whitham (1959).

In the following sections we discuss general aspects of

this equation. Much is based on investigations by Lighthill
(1956) and Whitham (1959). They discussed relaxation in
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gasdynamics and magneto-hydrodynamics respectively.

§4. A GENERAL DISCUSSION ON RELAXATION.

Our main attention will be given to linear wave propaga-
tion because non-linear wave propagation can be inferred
from the corresponding linear equations. The equation of
interest is (€.81).

First we present some general properties of the solutions
of (6.31). A more detailed analysis is given in the fol-
lowing section.

If t"1<0, p increases indefinitely. If 1 !>0, the solution
remains finite when ¢ lies between ¢, and 0.

For t/t>>1, (6.31) can be reduced to

] ] a "
—(—-—+cf —-)p=0 F (6.32)
at \at 3z
and for t/t<<l to
3 3
(—— +e, —) p =0 . (6.33)
ot T

How the solutions of these approximate equations are matched
to the boundary conditions is extensively discussed in a
survey by Whitham (1959).

The question to be answered is, how do the lower order terms
modify the solution of (6.32) and how do the higher order
terms modify (6.33).

For t~1>0 and cf>co>0, the effects of the lower order terms
on the waves given by (6.32) produce an exponential decay
of amplitude. Therefore the main part of the wave moves
ultimately according to (6.33). The higher order terms pro-
duce a diffusion of this wave. So, for long enough time,

the signal diffuses ultimately. For a non-linear problem
where e, itselfs depends on B, this diffusion can be balan-
ced by non-linear effects leading to a steady shock pro-
file.
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§5. EXACT SOLUTIONS OF THE LINEARIZED EQUATIONS.
In this section we present a more detailed discussion on
the effects mentioned in the foregoing section.
The conditions for solutions which remain finite, are de-
rived from periodic solutions of the linearized equation
(6.31). The solutions periodic in z are

v 2

p = exp(tkz=-0t) .
Substitution of this into (6.31) gives

rikcf-eue - T—](ikco—e) =0 . (6.34)

For kcfr>>1, relatively short waves, we find for o

e -
0, = tkey + 71 o ol (6.35)
e
[}
and
0, = 17} 2, (6.36)
o ;

These solutions increase indefinitely unless 1t~ !>0 and
cf>co>o. Further we see that the short waves correspond
to the higher order wave speed e and they are exponent-
ially damped.

For kcfr<<1, relatively long waves, we find

0, = tke + k2t(e ~e e , (6.37)
3 o Ff "o o
and

0, = 171 + ik(e (6.38)

4 f-co) .

The solution given by (6.37) corresponds to the lower order
waves with speed e, the k2-factor in the real part indi-
cates diffusion (c.f. §5, chapter 2). The solution given
by (6.38) rapidly damps out through the factor exp(-t/t).
Solutions periodic in ¢ give similar results (Whitham,
1959) which will not be discussed here.
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Now we investigate the more general signalling problem,

for the linear case, starting from zero initial disturbance
with data prescribed on z=0. Then all possible types of
waves occur and the development in dependence on x and t

is discussed.

The boundary conditions are

at
(6.39)

p=p(t), =0, t>0
We use Laplace transformation defined by

-3t v

pls,x) =[ e pdt. (6.40)

0

Inserting this in (6.31), we obtain

I s(g+1"1)
p = pyexp|- — *| » (6.41)
e 8+e 171
f o
with o
= -8t v
P, -L e podt :

The solution for 3 is found to be

N 1 B els+t~1)
P [ P ezp,st- — zx|ds , (6.42)
2ni /L ° este 171

i
where L is the path, Re p =constant, to the right of all

singularities.
With help of tables of Laplace transforms (Erdelyi, 1954)
we obtain from (6.42)

-1 e ap e z
o g e
cf cf o0 9F cf cf

-1 x %
emp[‘ —(t-E= —) IOI2T'1|(t E~- ——)w— o | ]dE >
cf c
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where L, is the modified Bessel function of the second
kind.

However, relevant properties of the solution can be shown
in a more direct and clear way by using approximative
methods. For this we return to (6.41).

Near the wave front x:cft, we use for (6.41) an expansion
for large values of s. This changes (6.41) into

_ 171 e ~e _ sx
p(s) = exp[— —_— = flpo exp’— — . (6.43)
r °r °r
The solution for 5 is
71l e e
p = ezp[- — (t— ——) . (6.44)
Sl °f

This just represents the higher order wave which is exponent-
ially damped near the wave front. Thus the main part of the
disturbance is away from the wave front. Therefore we use

an approximation for large values of t. An asymptotic ex-
pansion for large ¢ is found by using the method of the
steepest descents (Morse & Feshbach, 1953). We write the
exponent in (6.42) as

s(g+t~1l) =x
2 e e (6.45)
afa'*co'r'l t
The main contribution to the integral in (6.42) stems from
the region where

af
-_= 0, (6.46)
ds
with
a(s+t”1l) = z
f=8- -z g - - fz . (6.47)
e 8+e 1) ¢ t
i o

The saddle point, at 88, is determined by (6.46), which
becomes, with help of (6.47),
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28 +1=! =z 8 (g +1"V)e, =
1 I 2 £ -
1 - - -= 0 . (6.48)
cf31+cor'1 t (cf31+car'1)2 &
The zeros of (6.48) are
epC, " t
3' i _T_l -m_l _i / )¥}
1 c f- /t (6.49)
and 3 i o /t % £
g il = g =l @ B AN
1 a e ¢ -:/t
b F

This represents two saddle points.

The path L in (6.42) is completed to a closed contour with

a path through the saddle points. We assume that Eo possesses
no singularities within the contour.

From the method of the steepest descents it can be found

that the main contribution to the integral becomes

emp[t(sl-flfal)x/t)]

p (s . (6.50)
o1 ront|aerds?| __ )%
8—31
where (dzf z 172 (e ~c )
_) = e O L O
de? 8=8, t cf31+cor'1

From comparison with (6.49) it follows that the exponential
in (6.50) takes its maximum from the saddle point at 3:85’
as represented by the first line in (6.49). Evaluation of
this expression yields that this maximum occurs when s§=0
and we see from (6.48) or (6.489) that
x
- =2 . (6.51)
t
Therefore the maximum in the disturbance moves with the
speed of the lower order waves, e,.
Using 8,=0, (6.50) ,which represents the maximum, becomes

po(0)

(4nx(cf—c0)/(cgr'1))%

(6.52)
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or
(<]

Yo _: )m}%[ B (tidt , (6.53)
f o 0

where we assume the integral to be finite.

We see that the maximum value decreases with x-%, which

is typical for diffusion. Thus the diffusive effect of the

higher order derivatives is demonstrated.

In the following section we will discuss the foregoing

effects once more from a direct approximation of (6.31).

56. APPROXIMATE SOLUTIONS OF THE LINEARIZED EQUATION.

For t/v<<1 we use the approximation

c.f. Appendix 2.
With this, (6.31) can be approximated by

3 3 35 & =a 85
(_+c _)_+T-1_.f__0_:a. (6.54)
8t f dx/ dx cf ax

The solution of which is

% x ‘I.'_l c —eo
p = gl(t— —) ezpl— x]. (6.55)
°r B
This result is similar to (6.44).
For the lower order waves corresponding to e, (6.31)
may be approximated by using

for the higher order derivatives.
This gives
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e e, 32p  ap ap
_.t____co_=_+co—. (6.56)
! ax? 3t 3z

The left-hand side represents diffusion of the waves propa-
gating with speed e, This can be examined by Laplace trans-
formation of (6.56). Using the definition (6.40) and the
boundary conditions (6.39) for (6.56), we obtain for p

Expanding the square root for small s, p becomes

- sx
p = poezp[- — exp[s2 —-L . (6.57)
e c <
o o
With help of tables of Laplace transforms (Campbell &
Forster, 1948) 5 becomes

(6.58)

t x
e (t-E-"/e )2
P = < 2 ]dg

f r (E)expl
{4w1(cf—c )x}% 4(cf—ca)rz/c2

This represents a time mean value of p welghted according
to a Gaussian distribution centred on E t= /c , with
standard deviation

2t(ec ~c Jz|%
|———-1%;J2-l . (6.59)

Here the diffusion effect is once more indicated. Since

the effect of diffusion is to smear out a wave according

to a spatial standard deviation as given by (6.58). As
extreme case, a "step-function" wave would with this theory
become an error 1ntegral wave form as the wave progresses.
When {4(c ¢ )1z/az} is much smaller than a typical time
scale in p (t), (6 58) is approximated by

P = p,(t="/e,) .
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This is only possible for finite ¢ and x. On the other
hand, when {alrcf.--c-g)-r::t:/c;};E is much larger than that time
scale, (6.58) is approximated by (6.53).

§7. NON-LINEAR WAVE PROPAGATION; SHOCK WAVES.

The non-linear equation, now including the effects of dis-
persion and dissipation, is, c.f. Appendix 2,

3
= -1 -
{Sg(cf)} + 1715 (e ) =0, (6.60)
at
where
ap  ap . ed 335 (y)¥sc2 a2p
Syle) = e —+ — + cp — + — S ——— —— . (6. 61)
ax At Iz 2up ax3 2ug a2

The non-linear contribution is represented by cS(aB/am).
First some general remarks about (6.60) are made.

For times t<<r the second term in (6.60) can be left out
of account and the wave is governed by

SArcf =0 . (6.62)
This equation is the same as (2.33) with c¢. instead of e,
As mentioned in chapter 2, this equation has a stationary
solution in which the pressure profile has the form as
shown in Figure 16-A. The results for these steady solutions
are summarized in chapter 3 for t+0 and in chapter 4 for
t+=. To this class of solutions belongs the profile obser-
ved in section A of the shock tube. This shock, a SA shock,
is determined by the highest order derivatives. The non-
linear term must be balanced with the dispersion term,
which gives for the shock thickness dA

Ro 1
d, ~ “ (6.63)
A ¥ p 1%
(Bo) ( J/po 7))
dA amounts to a few centimeters for not too weak shocks.
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Since t is of order 10'25ec in most of our experiments and
cf of order 102m/sec, the relaxation process becomes effec-
tive after the wave has travelled the distance of the order
of one meter. Numerical computations on equation (6.62)
showed that the solution does not change appreciably after
travelling a couple of centimeters. Therefore we may assume
that the wave form as observed at station A, represents the
steady solution of (6.62).
For times t>t, after the wave has propagated over a distance
gty the relaxation mechanism becomes important. Its effect
on a wave is, as we have seen, diffusive. In an acoustic
wave this diffusion is not resisted and the wave diffuses
out ultimately. In a non-linear wave however, this dif-
fusion is resisted by non-linear steepening. Thus a steady
profile is possible in which the mechanisms are balanced.
This only occurs when the shock strength is less than a
certain critical value. To find these shocks we return to
equation (6.60) and present a more detailed discussion on
this equation.
The lowest order approximation of (6.60) is given by t+0,
or more precisely when t/t>>1. This approximation is

3p ap ” ap

e — +—+ep—=20. (6.64)
2z Bt 3z

When the continuous solutions of this equation break down,
the solutions contain discontinuities in pressure and ve-
locity. This is what we usually call a shock. To find the
structure of the shock, or the continuous solution, higher
order terms need to be introduced in (6.64). This leads to

3 ap ap . P
—_tle, — + — + ¢ — )
ot ! 3z at ax
4"} " 4"
o, B ¥ o By
T e == B + e p = il . (6.65)
ox 9t o
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The highest order derivatives represent the diffusion effect
on the lower order ones. Stationary solutions from (6.85)
were discussed in chapter 5; we call the resulting profile
a SC shock. The appearance of such a shock can be expected
when the disturbance velocity U satisfies the condition

8, © U< e (6.66)

f 3
because for a smooth profile, the wavelets at the front
travel at maximum at the speed Cps related to e, by

ep = co(1+Bo) ) (6.67)
Furthermore the wave travels at the speed which is, for
our waves (c.f. chapter 5), related to e, by

14
= (L)% |

¢ p

o o

Since the wave is steady, the speed of the front equals U,
whence

Py

— < 1+2BO . (6.68)

pO
This critical value for the pressure ratio was also given
in chapter 5, where steady shock profiles are investigated.
To the class of profiles, which appear under the condition
as given in (6.68), belongs the one observed at station C
of the shock tube. It is shown in Figure 16.
The threshold for adiabatic circumstances is

p_1<1+iy_s.

o

P, y+1

The thickness dC of a Sc shock can be estimated with help
of the non-linear ternm cogfag/ax) and the diffusion term
tco(cf—co)(azg/axz) from (6.56), which must be of equal
magnitude in these waves. It follows that
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Te (c%/cz—l)
dy ™ —-g'z—/——'_;— s (6.69)
pO

which, with a view on (6.67) and (6.68), is of order of a
meter. dc as given by (6.69) is of the same order as dc
given by (5.58).
When the speed of a SC shock, U, exceeds the wave front
speed, ep of the higher order terms in (6.65), a new dis-
continuity appears, since the only disturbance which can
move with a velocity larger than e, is an other shock wave.
To find the structure of this shock, higher order terms
need to be introduced in (6.65). The equation describing
these shocks is represented by (6.60). So when pl/po ex-
ceeds 1+28, mo entirely smooth profile or SC shock is
possible and the diffusion resisted wave is preceeded by
a thin shock of the SA type. The strength of this front
shock, p*/po, is given in chapter 5. This is the type of
wave shown in Figure 16, a socalled SB shock, where the
thin region of order of magnitude given by (6.63) is fol-
lowed by a much thicker region with thickness as given in
(6.69).
When t<<t, the structure of the shock is, as we have shown,
described by the highest order derivatives in (6.60). This
solution, a SA shock, occurs only in a finite time interval.
Ultimately the shock is described by the second term in
(6.60) and smeared out by diffusion following from the
highest order derivatives.
In this section we discussed the types of shocks and the
influence of relaxation qualitatively. Quantitave results
incorporating effects from relaxation can be found from the
steady solutions. For this the reader is referred to the
chapters 4 and 5.

§8. DISCUSSION ON RELAXATION.

The theory predicts effects of relaxation on the speed of
propagation of the wave and the form of the pressure profile.
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In our opinion the change in pressure profile as demonstra-
ted in Figure 16 and amply discussed in chapter 8 is caused
by relaxation. It might be asked whether this relaxation

must be necessarily due to the dynamics of the relative
motion, and not due to a gradual transition from adiabatic
to isothermal behaviour. There is a strong argument against
this. Without a complete theory at hand, it is clear that
the two velocities of sound occuring in a thermal relaxation
theory are the isothermal sound speed e, and the adiabatic
sound speed (YJ¥co. The argument is:

When a steady state of the shock has been reached, involving
no further steepening, the weak sound wavelets in the front
of the shock travel at the same speed as the main part of
the shock. The wavelets at the front travel at maximum at
the speed (YJ%CO' So the condition is

v < (v)¥ .

For the whole wave we have

p; U?
L= —
pO cO

So the condition becomes

Pq
= Y =Tl (6.70)
Py
This was noticed also by Crespo (1969).
Our measurements clearly show as will be demonstrated later
on, that smooth profiles do appear only at a much smaller
pressure ratio, corresponding with:

Py 4dya
— < 1 ¥

Po I+y

o

following from relaxation of relative motion as given in
chapter 5. Another, though weaker, argument is that the
time necessary for thermal adjustment of the bubble, abcut
0.3R§/Dg,Dg being thermal diffusivity in air, is conside-
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rably larger than the relaxation time associated with
resisted relative motion. The latter is estimated, as we
have shown, as Rg/ISv, which is with uzla_smz/aec and
Dg:l&xlo-s
In the following we present, as an illustration, thermal

mz/sec one third of the thermal relaxation time.

relaxation in the same way as we did for relative motion.
For this we have to introduce the energy equation for a
bubble and the gas in the bubble can no longer be treated
as homogeneous (Chapman & Plesset, 1971). When we consider
wave propagation the connected set of equations, including
the energy equation can not be rearranged easily into a
relaxation equation. To discuss this relaxation we there-
fore use a rather rough approximation based on a mean heat
transfer coefficient. This coefficient depends on the gas
properties and we consider the gas in the bubble to be
homogeneous.From a heat balance for the bubble and the
penetration thickness we find for the transfer coefficient «

D_ wR3p h
gk = § 4 — 224 (6.71)

3
Rg 3mR2

where hv is the specific heat at constant density. The
factor 3 before Dg/Rgis of course arbitary. This approximate
heat transfer coefficient is used in the energy equation

for a bubble to estimate the heat flow.

We first disregard effects following from dispersion, atte-
nuation and relative motion of the bubble. We use the system
of equations as given at the end of section 2, completed
with the energy equation for the bubble

4wR3p (1 dp yp., dp
4nR?(T,~T ) = —i 4. £ : (6.72)

3(y-1 dt 2 dt
y=21) Py Pg
T, is the temperature of the liquid, which is assumed to
behave isothermal, as long as no entropy changes are consi-
dered. Using P=Pg and v=u, then linearization of (6.18),
(6.17)-(6.19) and (6.20) leads to, omitting details,



? 228 a2p 3D 320 a2y
i eo—-—+—9-lc2—-——:a. (6.73)
It ax2  at2 R2 O ax2 32

The linearization scheme for finding (6.73) is completely
similar to that used for deriving (6.31).

For times t<<R§/3Dg the solutions of (6.73) are waves propa-
gating with speed (T)%co, the speed for insulated bubbles.
Ultimately the waves given by (6.73) travel with e, the
speed for which the bubbles are in thermal equilibrium
with the liquid. As already mentioned the time necassary
for thermal adjustment exceeds the time connected with re-
lative motion by a factor 3.

Merely for curiosity we give the equation where both relax-
ation mechanisms are combined in one equation:

22 228 a2p 3 325 a2p
—_ c-}-————-fr‘l—{cz—-——-r
at2? ax2  at2 at O az?2 g2
L , < a2p 325’ . ﬂ . 225 a2p ] ,
Top —f1es — - —31+ t3drle2 |- s (6.7¢4
Bh ap | F az2  gp2 th % ax2 g2
3 2 2
with RZ R2
and Tug= — =
18v 3D

(6.74) will not further be discussed.

The argument for the appearance of a thermal relaxation shock
profile can also be illustrated from the stationary solution.
Using continuity and momentum equations for the mixture and
continuity for the gas phase, completed with the energy
equation, we find in a frame moving with the shock velocity

v for y:“/aa

Y(M;2+1J -y (1+y) dy 3D
—_= - i (6.78)
(1-y) (y—M;ZJ dz Uﬁg

The solution for y becomes




(1-y) T (y-u=21% = exp[-— st (6.76)
o 2
UR
Q
where M2-vy
T = -2
M2+1
(]
2.
and - Iyo 1
1-M-2
]

For M§<Y, or U((Y)$ca, this represents a wave profile in
which y decreases smoothly from 1 to M;Z.

When M2>y a discontinuity appears and higher order deri-
vatives need to be involved. The equation describing a
steady shock wave becomes, including effects of dispersion
and dissipation, omitting non-linear derivatives:

d3y d?y I-y M-2 dy
—_t 80— +{ Y — —1|——~+
dn3 dn? Y y dn
M-2 d2y dy
°th[1'y*"’52' o, — Y g0 _-_]: 0,  (6.77)
Y dn? dn
where 3D R
Oy = e 4 —__2“§ ;
2
UR? (3&0)
6°=6$r+éic. The solution for the front part of the shock

becomes for M§>y
e il
y = exp[n(I-Mad) ] -

with Médzug/Y‘ In the front part the gas phase behaves
adiabatically.

For M§<y the smooth profile represented by (6.76) is re-
covered and approximated through

M2-1
o

1-y = exp[d n ].
th Y_Mg
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The back side of the shock is governed by the balance of
non-linear steepening and thermal relaxation. By stretching
n with LI the smooth profile at the back side can be found.
On this new scale the front shock can be treated as a dis-
continuity. In front of the discontinuity (c.f. Figure 17)
the pressure is p,. at the back side p;d, say.

+n
FIGURE 17. A shock profile typical for thermal relaxation.

An estimate for the value of p;d can be found from the

same argument as that for the estimate of p* in §5 of chap-
ter 5. In the front shock, on n scale, thermal effects are
unimportant and the bubbles behave insulated. From the adia-
batic theory it follows that the propagation velocity must
obey equation (3.60), so

*
= pad/p"_l (6.78)
1-(Bo/p% )Y ’

[+) ‘ L]
oMN N

However for the whole wave UZ/cg must obey the isothermal
relation (3.22)

U2
(4

Xy = Pap
o po
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From this relation and (6.78), p_, is found to be

p*

ad/p -1
L = = *0 o (6.79)
P 1-( o/padJ Y

b~}

o

and we see that pad/p only depends on pl/p For relax-
ation connected with relatlve motion, p /p depends on the
gas fraction B, and on Pl/po, which would appear to be the
correct relation. This is again an argument against thermal
relaxation.

0f course a weakness in the analysis on thermal relaxation
is the rather rough approximation for the heat exchange
between the bubble and the liquid. However, a more complete
analysis is beyond the scope of this thesis.

For completeness we present the system of equations with
thermal relaxation, without relative motion:

The continuity equation

ap ]
— + —(pu) = 0
ot ax

The momentum equation

ou du ap

g P TS
9T 9z ox

Conservation of the number density

n ]
— + —(nu) = 0 .
at Iz

The equations for the gas in the bubble, allowing radial
motion in the bubble, in terms of a radial coordinate »,
with »=R at the bubble surface, are:

Continuity

12
—41 + — —(p r? Vo } =0
9t r? ar g
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Momentum

v 3w 1 ap
—_— oy __rl:__.__...i_
»
9t 3 }
r Py BT
Energy
k_ 3 T aT v_ 3 p 2
L —{p2 —Z} = o 1 {—£ + L —(r27 )} + — ——rrzur) "
r? ar ar g Y9 3¢ r2 3r g r? ar

with kg as the coefficient of thermal conductivity of the
gas. The gas is assumed to be perfect

= T K /m
Pg Pg ge s
where K, is the universal gas constant and m its molecular
weight.
The boundary conditions are

for r=0 : vr:O and T remains finite,

for r=R : p(m,t):pg(ﬁ,x,t) =
where we assumed dispersion effects to be small, otherwise

for r=R

d?R dR

p (Ryx,t)-pl(x,t) = p,{R — + §'w! ——}
g o dt? B gt

6" is compounded of effects following from viscous dissi-
pation and acoustic radiation associated with radial motion.
The condition for the temperature can be simplified by the
assumption that the liquid remains at the equilibrium tem-
perature. This approximation is justified by the fact that
the liquid has a much higher conductivity and a much lower
diffusivity than the gas. The condition for the temperature
becomes therefore

T (Ryz,t) = T = constant.
g o

Furthermore we have
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R
] 4wr2pgdr = constant ,

a
and 3B

47R3

§9. CONCLUSIONS.

Finally we conclude that a theory is developed which takes
into account the relative motion between bubbles and liquid.
The theory predicts effects both on wave speed and wave
profile. The effect on wave speed is small, (cf—co)/co=0(BaJ.
This effect could hardly be measured as will be shown in
chapter 8, where the experiments are discussed. The effects
on the profile could be measured as shown at the beginning
of this chapter in Figure 16. It will be demonstrated later
on, from comparison of the experiments with theory, that
there is a fair support for stating that the observed changes
in wave profile are caused by the relaxation mechanism con-
nected with relative translational motion.
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CHAPTER 7.

ONE DIMENSIONAL WAVE PROPAGATION THROUGH A NON-UNIFORM
MEDIUM.

§1. INTRODUCTION.

This chapter deals with wave propagation through a non-
uniform mixture of bubbles and liquid. In the foregoing
chapters we treated this mixture as a uniform medium.
However, in our experiments we are faced with non-uni-
formity due to gravity.

In this chapter we want to investigate the influence of
gravity on the relations describing several types of shocks.
To get some insight we first discuss the propagation of
small amplitude waves. From this analysis we investigate
how an initial disturbance is distorted through the non-
uniformity.

Propagation of finite amplitude waves can be inferred from
the linear theory. It will be shown that no significant
modification of the shock structure needs to be carried
through. The propagation velocity of these waves depends
on the space-wise coordinate. To find how Machnumber and
pressure ratio change along this coordinate we use the
analysis of Whitham (1958).

§2. LINEAR THEORY; WAVES OF SMALL AMPLITUDE.

We omit dispersion, dissipation and relaxation effects.

We describe wave propagation in terms of the small pressure
disturbance P. This disturbance propagates into an undis-
turbed region with a hydrostatic pressure distribution.

The disturbance is defined as the difference between the
actual local pressure and the undisturbed one

P = p-p,, Where E/po wel! .

We assume the gas phase to behave isothermally. For con-
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venience we recapitulate the continuity equation:

9p 3

— + —(pu) =0 , {12

ot iz
the momentum equation:

qu du ap

p = # Ppu = = = — = pag , (7

ot oz 3z

where g is the acceleration of gravity.
Continuity of the gas phase gives

9 3

—(pB) + —(pBu) = 0 . s

at ax

When Bo<<1, convective terms such as pu(du/dz) in (7.2)

can be neglected (c.f. chapter 2).

From (7.2) and (7.3) we find
d ,pB pBe
)
dt‘1-8 -8

The sound velocity cs(dp/dp)* is found from (7.4)

p

e? = —— . (7.

013(1-5)
From (7.4) and (7.5) it follows that

pe

(cp)?2 = ———— = constant , (7

throughout the region of interest.
Combining (7.1), (7.2) and (7.5) we obtain

e ]

1 3<p 3p 2 (1 ) a2p

e? at? at ot ‘e? ax?

or — = constant , (7.

= — . (7.

1)

2)

3)

4)

5)

6)

7)
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Introducing the small disturbance 5 in (7.7), using
dp,/dz==p,g, the hydrostatic pressure distribution,
linearization of (7.7) with respect to p finally yields

22p 22p
—_— cg(x) —_— (7.8)
at2 3x2
where
p
R L S
9150(1-30)

From (7.8) we see that the signal which propagates is the
difference between the actual and the undisturbed pressure.
For not too large wave length a socalled short wave ap-
proximation for P can be found, when the disturbance is
periodic in z.

The equation for ﬁ becomes with

; = expl(iwt) ¢ ,

d’Zw w2
—_— =0 . (7.8)
dx? cg(x)

Using the W.K.B.J. approximation (Morse & Fesbach, 1953)
with the condition that

1 de w
el G e
e, dax e,
we find for P
. e, (x) % e,
P = exp(iut) explii ]-——dx] . (7.10)
w w

To a sufficient level of accuracy (7.6) can also be written
as
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With this we see that the amplitude of ; changes with P,
as
¥

Py

>

and the wave number as P,
For a characteristic length of about 2m these variations
are negligible.

§3. NON-LINEAR WAVE PROPAGATION.

Using E:p—po and c2=c2(1+25/p0), (7.7) becomes

228 2 3 , o a2p
—t e _( _) = cg _ (7.22)
3t p, ¥t at 3x2

The second term in the left-hand side is the leading non-
linear term of the steepening of the wave by compression
(c.f. chapter 2). (7.12)once more shows that the signal
which propagates is the difference between the actual and
the undisturbed pressure. However we want to find out in
what way a disturbance, propagating in one direction, is
distorted by gravity.

For this we write

p = PO(I-FEP'), with spop' = 5 =
B = B,(1+cB'), with eg 8’ = ¥ ,
k r
u = ec B u' , (7.18)
z = x'cor -
t =g

P, and 8 are given functions of z connected with the undis-
turbed hydrostatic pressure distribution.
From (7.13) it follows that

3 1 z Qe ]
—:—{1—_-_0}___

r
¢, o 3z
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With help of (7.6), this can be written as

3 1 plg(1-2ﬁo)m 3
— = {J-ﬂ- —-——} —_— (7.14a)
1
oz B P, ox
Further we define
919(1—2Ba)x 3 3
{11‘- }—E——. (7.14b)
po ax '’ 30

(7.18), (7.14a) and (7.14b) are introduced in the equations
(7.1)-(7.3). Terms of order €2 and lower are retained,
terms of order soez are discarded. The transformed set of
equations becomes,

du ' 8" du's

i 7 vt 2., (7.15)

a0 at!’ a6

r r
qu ap Prge,T

m—— ] — ] i (7.16)
I

ot 28 P,

3p’ R’ du' op 'R

—+—*:—Bo—-—+e . (\PaZ)

agd at’! a8 at!

From (7.17) we see that p'+B'=0(s,Bo) and with this we find
from (7.15) and (7.17)

du’ ap’ au's, u' ap'?
+ — = -30——""5—— . (7.18)
20 at ' EL] 20 at !

The right-hand side of (7.16) is assumed to be small, of
O(e,so). From Appendix 2 it follows that

ou' du’ ap ' ap '
+ - - = a(eg,ez,sa ) s (7.18)
30 at' a8 at ! =

Substituting (7.19) into (7.16) and (7.18) we obtain
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ap'! ap ' pyge,T ap’
—_—t — = —_—p' - gp' — . (7.20)

at' 2@ 2p, 20

(7.20) becomes in the laboratorium frame

n N N N

ap ap P 3 pgdc, .,

— R &, === + ———p =0 . .22
ot ax P, 9x 2p0

The influence of gravity on the signal is given by a e,
dependent on z and the last term in the left-hand side of

(7.21). The ratio of this term and the non-linear term is

P19
2(ap/ax)

(7.22)

the ratio between the acceleration due to gravity and the
local acceleration. When we use as a characteristic length
the thickness of a SC shock, (7.22) becomes
L (7.23)
2(p1-p0)

With deUT, the magnitude of (7.23), for our experimental
circumstances, is one third at maximum. Thus (7.21) reduces
to

op 2p P o

s e gl g, o . (7.24)

ot 2 p. oz
As mentioned before, this equation shows that the signal
which propagates is the difference between the actual and
undisturbed pressure. Addition of a diffusion term in the
right-hand side of (7.24) would permit a steady solution,
a SC shock, if e, and p_ were constants, as in the equations
of chapter 6 (c.f. equation 6.64). Our analysis of shock
waves sofar was based on the existence of steady profiles
propagating with velocity U not dependent on z. In our ex-
periments we measured 5 as a function of time. With the
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transformation t=xz/U, where U is the propagation velocity
averaged over a couple of centimeters, we were able to
interprete the time depen’ent profile in terms of shock
thickness and wave length. However, as can be seen from
(7.21), the propagation velocity depends on z and in fact
steady solutions can no longer be found. So the question
is raised: when using the transformation t=z/U for inter-
pretation of the experiments, how large is the introduced
in accuracy? For this we return to equation (7.20). When
we neglect the first term in the right-hand side, we have

apl apl Bpl
— + — + gp! — = ¢ , (7.28)
at! a0 90

Adding a diffusion term of the type §(92p'/362) to (7.25)

gives

sp'  op! ap' a%p’
+ — + gp! — = § (7.26)
at! 36 20 362

Steady shock-type solutions of (7.26) can be found in a
frame (X,¢t'), where

X =90 - (I+x)t' .

X is a constant which follows from the conditions ahead
and behind the shock.

With this a profile measured in terms of ¢' can be trans-
formed in the e-plane by

de
dt' = — , (7272
J+x

6 is a known function of z (c.f. 7.I4a and 7.14b). So, with
t'=t/t, a time-wise measured profile can be transformed in
a space-wise dependent profile.

Using de:dz/cor, we obtain from (7.27)




dx
t = [—“-— (7.28)
(1+Xx)e
o

From €,%P,» the dependence of e, on z is given by

P Zg-‘L‘

¥, = cooii - } s Lo, (?.289)
Poo

where quantities with subscript oo are defined at z=0,
located at the back side of the shock.
Substitution of (7.29) into (7.28) gives

@ P p,gT
t = = Zn{l— s l»] : (7.30)
(1+x)e, pg% p

T 00

Thus the accuracy of the transformation t=x/U, with U=
constant,’ can be approximated by the magnitude of the
quantity between the square brackets in (7.30). For values
of z of the order of the thickness of a S, shock this
quantity can be approximated by

('1 " plgx) ) (7.31)

) 2p00

(7.31) represents the correction factor of the transform-
ation t=z/U. This correction would lead to a slightly
stretching of a z-dependent profile for a constant value
of U. Neglecting this stretching or taking (7.31) equal

to unity we introduce an error which is not larger than
the accuracy obtained in the experiments. From this we
conclude that no correction for gravity on the structure
of the shock needs to be carried through. For comparison
with the experiments it is sufficient to use local values
for p, and 8.

Due to the length of the shock tube we were able to measure
U as a function of z. From the Whitham rule we will derive
equations describing the dependence of the propagation

velocity on =x.
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§4. THE WHITHAM RULE.

In this section we investigate the dependence of the shock
wave velocity U on the coordinate along the shock tube.
Shock wave propagation through a non-uniform medium is
recently studied by Strachan e.a. (1970) and Nunzatio &
Walsh (1972), who extent the theory of Whitham. However,
with a view to the accuracy of our experiments we base our
analysis on the rather simple relations following from the
Whitham rule. This rule gives U as a function of z. In the
present theory we are not dealing with the structure of
the shock. Effects of relative translational motion on the
propagation velocity are small. Thus relative translational
motion is left out of account in the pertinent equations.
For convenience we recapitulate these equations, which
will be written in the characteristic form.

The =quations are

ap ]
— + —(pu)= 0 , (7.32)
At ax
u du op
P — + pU — = - — = pg , (7.33)
ot ax ax
ap ap ap dp
_+u___c2_—c2u-——=o, (7.34}
ot ox ot ax

(7.33) and (7.34) are taken together to

ap ap du du
— i — (uie) tpo {——-+ (uze) ——} tpeg = 0 , (7.35)
9t 3x 3t ax
or
p/at ap du/dt du peg
{ + ——] tpe {————— + “—} t — =20 (7.38)
ute ax ute ax ute
And in characteristic form
peg dx
dp + pedu + dz = 0 on — = y+e , (7.37a)

u+e dt




peg dx
dp - pedu = — dz = 0 on — = u-e . (7.37b)
u-c dt

The Whitham rule states that when the relevant equations

are written first in the characteristic form, the different-
ial relations, which must be satisfied along a characteristic,
can be applied to the flow quantities just behind the shock
wave. Together with the shock relations this rule determines
the motion of the shock wave. The shock is treated as a dis-
continuity in this theory. For S, and Sy shocks this is a
reasonable approximation because pertinent quantities changes
on a scale, dA‘ which is much smaller than the scale where
undisturbed quantities change due to gravity. So the Hugoniot
relations, relating quantities far in front and far behind
the shock, still apply. For a SC shock, being much thicker,
we assume the Hugoniot relations to hold, of course within
the order of approximation determined by a constant value

of U.

The differential equation of interest is, (7.37b),

il 4

dp; = plcldul = dz , (7.38)

ul-cj
where subscript 1 indicates quantities just behind the shock.
With the Whitham rule we apply the differential relation
(7.38) along a characteristic just behind the shock wave.
Together with the Hugoniot relations we are able to describe
U or related quantities in terms of the equilibrium quanti-
ties P, and By First we present the analysis for isothermal
circumstances and summarize afterwards the relations for
the adiabatic theory. We use the relations as derived in
chapter 3.
For u,, as given in (3.19)

ug = - BOU(I-M;ZJ . (7.39)

For Py, as given in (3.22)
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p M2
p; = p M2 = 22 2 (a-a.J , (7.40)

1—60 BO

where poso/(l—ﬂo) can be treated as a constant. For small
enough values of By P,B, is approximately a constant.
Using (2.6), (3.23) and (7.40) we find for P12

dp \& P; ¥
pgeq = 01(1—51)(—) ~ 01(1-81){———*} =

dp 9151(1"31)
p.B ¥ 1-8
pl{ 28 } M2 2 5 (7.41)
pl(l-Bo) g,

With the help of (3.21) and (3.22), U becomes

r ¥ M pB ¥
Us=Me, = Mo{——o—} = —2{——-—9—?———} . (7.42)
p;8,(1-8,) B, loy(2-8 )

Substitution of (7.39)-(7.42) in (7.38) gives, using
GO=BO/(1-BOJ,

2 M2 i
o o gl
Pooy 4(=) + Py, — d(”o_;“) -
o ) o
M, p ng:

(7.43)

>
2 = 2
MO+uO(M0+M‘O IJ/MO

where P2, is a constant and @, is a known function of =z.

With a, <<l and dpo/dxz—ng, (7.43) reduces to

M _+1 dM a
o 2 - 2 pP1g = 0 . (7.44)
Mo—l dzx P

%o
We obtain for the relation between M, and P,:

1
(Mo—l)2 exp[Molu ;— R (7.45)

o
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and for Mg—1<<0(10-1).

1 .\%
Mg-J « (—) . (7.46)

Po

(7.46) is similar to Chisnell's result for a weak shock
moving in a duct with changing area (Chisnell, 1955).
Using B defined at =z=o, (7.45) and (7.46) become

MO-J B peg% -1
{ } exp(M -M__) = {1 - } (7.47)
M -1 o oo B
oo oo
and Mg—l P 197 ) _g
: = {1— } . (7.48)
Mool Poo

To find relations for adiabatic circumstances we use
equations, which can be found at the end of chapter 3:

Py = aI-YpaaoY

(7.48)

’
0 —(y+1)/2 [YPo% |*
DIGI - Dl ﬁl —————

p
1
Y ¥
(®o/a;)Y-1|% u_(y+1)/2{vpoua }?

o (@)
- o/ml Py

Ul = —{uo—u1(1+ao)}
Substitution of (7.48) into (7.38) gives, using po“oYz
constant, a first-order equation for uo/ulrx). The solution
of which will require a numerical integration.

However in the case of weak shocks, ao/a1-1=0(10-1), we
finally obtain

a - p= /2
o/ul 1 Bo z (7.50)
With 5
( o/ulJY—l
M2 = ———=——
o 1- ao/al

(7.50) can also be written as



) . (7.51)

Using M, defined at z=o, (7.51) becomes

(7.52)

2_ =

M-y ~ ngx} %
-

Moo™Y Poo

§5. CONCLUSIONS.

In this chapter we investigated wave propagation in a non-
uniform mixture of liquid and bubbles. We found that the
quantity which propagates is the difference between the
actual and equilibrium pressure. Effects of gravity on the
shock structure are sufficiently incorporated by using
local quantities determined by the equilibrium pressure
distribution. By using a steady frame of reference we in-
troduced an error, the neglect of which is justified with
a view at the experimental accuracy.

From the Whitham rule we found the dependence of the shock
propagation velocity on the coordinate along the shock
tube.




CHAPTER 8.

EXPERIMENTS; COMPARISON WITH THEORY.

§1. INTRODUCTION.

In this chapter we present experimental results and compare
these with theoretical predictions. First a description of
the experimental set up is given. Then the shock propagation
velocity is investigated. The various shock structures such
as SA’ Sy and SC shocks are compared with theory. Finally
the relations following from the Whitham rule are discussed.

§2. EXPERIMENTAL SET UP.

The experiments were carried out in a vertically mounted
cilindrical shock tube with an inner diameter of 5.5x10_2m
and an outer diameter of 6.5x10_2m. Two types of these shock
tubes are used. One has a length of about ¢.5m and consists
of a stainless steel part in which the pressure transducers
are mounted. The upper part of the tube consists of perspex
for determining the gas fraction. The lower part also con-
sists of perspex for photographing the bubbles. The choice
of the stainless steel part was done for minor purposes

such as a reliably mounting of the pressure transducers. The
other shock tube has a length of about 2.5m and consists com-
pletely of perspex. Both shock tubes are shown in Figure 18A

atr region
diaphragm

Jo vacuum pump

Y alle

B S
1-piezo-eleetric
pressure transducer
oo
N gection for photo-
graphing the bubbles

A . ’air supply B

FIGURE 18. A-Experimental set up. B-Photograph of the short shock tube.
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where the important dimensions are given. The distance
from the top of the mixture to the first pressure trans-
ducer is only approximative, it serves to indicate where
the different stations are located. The exact values will
be given later on. In Figure 18B a photograph of the short
shock tube is shown.

The experiments were done as follows. The tube is almost
completely filled with an aqueous solution of glycerine
leaving a small air occupied region at the top. An aqueous
solution was used to keep effects from buoyancy as small
as possible. The bulk of the experiments was carried out
with an aqueous solution of 50% glycerine with a kinematic
viscosity of .7x20"°m2/sec and a density of 1126 kg/m3. In
such a solution the velocity of a free rising bubble with
a radius of 10 °m is about Io_lm/sec (See also Haberman &
Morton 1953). Subsequently the tube is sealed at the top
with a diaphragm as shown in Figure 19A.

A B

FIGURE 19. A- The top of the tube sealed with a diaphragm. B- Equip-
ment for puncturing the diaphragm by a hot wire.

A plastic diaphragm with a thickness of about 2.5x10 ®m

is used. The pressure below the diaphragm is, by evacu-
ating the air occupied region, decreased below atmosphe-
ric pressure. Bubbles are supplied through a system of

many capillary tubes at the bottom of the shock tube as




shown in Figure 20.

T

‘\, _:\‘5',{‘]‘.\,‘ |

"1

A

FIGURE 20. A- The bottom of the shock tube. The cone enables the moun-
ting of the bottom plate with a number of capillary tubes. B- Detail
of the bottom plate. The capillary tubes have an inner diameter of

-4 3 -3 -2
10 “m, an outer diameter of 5x70 "m and a length of 2.5x10 “m.

The device by which the bubbles are supplied guarantees

that in one experiment the bubbles have locally almost all
the same size. When the mixture is stationary the mean volu-
metric gas content is determined by measuring the increase

in length of the liquid column as a result of the air supply.
From this mean gas content, Eo, the local value of B, can

be determined from the equilibrium hydrostatic pressure
distribution®. Also a photograph of the mixture is taken

at a station marked in Figure 18. From this photograph the
bubble size is determinedg.

®
The gas phase is assumed to behave isothermal. With B <<l we have p 8,

is constant. The equilibrium pressure p,, as a function of =z, is:
Pp=P oo P 19%» where z<0 and p_, is at z=0, the top of the mixture. Then

the mean gas content Eo becomes

1+
PLHL Poo

= P8 pyaL
P,:—o—oln IIJ

where L is the length of the mixture column.
The local value of R, follows from the isothermal relation

R, = R 2hote|"

"
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In Figure 21 such a photograph is shown.

FIGURE 21. Photograph of a liquid-bubble mixture before the passage of

a shock wave. :1.06x10_3m, §o=3.22.

Bohoto
After determination of the gas content and the bubble size,

a shock wave is produced by puncturing the diaphragm covering
the top of the tube there by admitting air of atmospheric
pressure. The device for puncturing the diaphragm is shown

in Figure 19B. The profile of the shock wave was at its
passage along the tube recorded at several stations as indi-
cated in Figure 18. The pressure was recorded by means of
piezo-electric pressure transducers. Two of them, mounted

in the shock tube wall, are shown in Figure 22.

FIGURE 22. Piezo-electric pressure transducers, 5*10_3m apart, mounted
in the wall of the shock tube.
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The sensitivity of a pressure transducer is about 150x10" 12

Coulomb/atm with a resolution of 2x10-4
3

atm and an accele-

ration sensitivity of 2x10 ° atm/g. The natural frequency

of the transducers is about 5x10¢ sec™’.
the transducers was amplified in an adapted charge ampli-

fier and afterwards visualized on a storage oscilloscope.

The signal from

Typical pressure recordings were shown in foregoing chapters.
To find out which part of the signal was due to the accele-
ration of the tube wall, we measured the tube wall accele-
ration by means of an accelerometer with a sensitivity of
20x10” 12 Coulomb/g. A typical acceleration recording is
shown in Figure 23.

FIGURE 23. An acceleration recording of the tube wall. The peak-peak
-12

value represents 8§0x10 Coulomb.

From the recorded peak-peak value and the known acceleration
sensivity of the pressure transducers it follows that for
pressure ratio's smaller than 5, effects from acceleration
can be neglected.

To investigate the influence of relaxation associated with
resisted translational motion the viscosity of the liquid
is changed by using different aqueous solutions. Besides
the mentioned solution we used tap water with vlzla'smz/sec
and pzzzaaokg/ma, a solution of 70% glycerine with vz:3XI0_
m2/gec and pz=11?okg/m3 and a solution of 85% glycerine
with v1=1.1x10'4m2/sec and 91=1215kg/m3.

During the experiments it was noticed using the 70% and

5
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85% solutions, that in the tube with a length of ¢.5m the
free rising bubbles clustered together after a distance of
about 3m. This is the reason for using also a short shock
tube with a length of about 2.5m. The socalled high vis-
cosity experiments were carried out in the shorter tube.

§3. PROPAGATION VELOCITY; U.

This velocity is detected at the various stations along

the tube. U is determined from the time interval between
the passage of the first and the second transducer as shown
in Figure 22. These transducers are 5x10"%m apart. In some
experiments the distance between these transducers was
.25m. As follows from the analysis in chapter 7 variation
of U within this distance can be neglected.

From the theory it was found that relaxation predicts ef-
fects on the speed of the shock wave and on its structure.
The effects on the structure will be discussed in following
sections. In this section we pay attention to relaxation
effects on the propagation velocity. Because of this it is
of interest with which relation for Uz/cg the experiments
agree.

The theoretical expressions for Uz/cg are, c.f. chapters

4 and 5,

isothermal
not resisted

v: p P
—zz—lf1+co(1+—°l)] s (8.1)
€2 Py Pi
resisted
2
T.h (8.2)
2 » ’
cO pO
adiabatic

not resisted




2 p -
U J/po 1

— = 1+a_(1+(p_/p, 0N . (8.3)
o2 1-(Pafp, 1% 0 o’P1
0 1
resisted
y? Pi/p -1 o
—_— — 8.4

2 P Wy
c2 1-( o/pl)
The value for e, is given by

2
- Boli%3,) (8.5)
PZCI-

2
o
o
The different theoretical and experimental values for
Uz/eg are collected in Figure 24, for the isothermal and .

adiabatic theory respectively.

2. /02 212
(v /cojﬂlp (v /cajamp
3.54 3.5
o o
o‘* oe ?
3 - 3 .
oe ce
2.64 2.5 4
& o
o
o8 o %j; oe
2 J’cn;a,o 2 o = oe
o
1.5 ‘”&f. 1.5 4 .
T T T T T T Y T
1.5 2 2.5 3 3.8 1.5 2 2.6 3 3.6
I-Iscothermal (UZ/cg)th 1I-Adiabatic (UZ/cSJ

FIGURE 24. In this Figure the different theoretical and experimen-
tal values for uz/cé are collected for region A. When either the
isothermal (resisted, not resisted) or adiabatic (resisted, not
resisted) theory fits reasonably in with the experiments, the marks
representing that theory would be close to the solid line.

e exp - not resisted, o exp - resisted.

The experimental values were obtained in region A of the
shock tube (Figure 18) where, for not too large values of
the viscosity, z is sufficiently small with respect to CpTe
This is the distance, as indicated in chapter 6, in which
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relaxation becomes effective. In Table A-5, Appendix 3, the
values for pl/po_. P> 9,
the top of the mixture to the station where these quantities

and U are given. The distance from

and the pressure profile were obtained is indicated by =z.
For each experiment the measured value of U2, divided by
cg,
different values for the quantity Uz/cg, as given by (8.1)
and (8.2) or by (8.3) and (8.4) are registered along the

horizontal axis in Figure 24-1 and Figure 24-II respecti-

is found as (UZ/cg)e:p along the vertical axis. The two

vely. When either the isothermal(resisted, not resisted)
or adiabatic(resisted, not resisted) theory would fit in
with the experiments the marks representing the pertinent
theory would be close to the solid line. The conclusion we
draw from Figure 24 is that the adiabatic marks are defi-
nitely more close to the solid line than the isothermal
ones. The difference between the values for Uz/cg of waves
resisted by friction and waves not resisted by friction
is, as follows from inspection of Figure 24, of the order
of magnitude of the scatter. Thus in this respect the ex-
periments provide no verification.

§4. THE STRUCTURE OF SA SHOCKS.

In Figure 25 a typical pressure recording for region A is
shown.

FIGURE 25. A pressure recording typical for region A. pI/pQ:I.?S,
B,=8.21%, R =1.33x10"°m, U=g6m/sec, 4,=5.3%10"m and A=3.3x10" %m.
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This record, and other records to be shown as well, repre-
sent the pressure as a function of time at a given station.
Comparison with theory, where the pressure is given in
terms of a space-wise variable, is possible by the trans-
formation #=xz/U. U is for each record the propagation velo-
city. From records as shown in Figure 25 shock thickness
dA,
strength Pl/po are determined. Here the expressions for

wave length A, attenuation of the waves and the shock

these quantities are summarized. With a view to the dis-
cussion of the foregoing section, the expressions for re-
sisted bubble velocity are presented.

The expression for the shock thickness is

Ro In20
d, = (8.6)
A X o _ooonk A, "
(3uo) (1 YMO ) 60/2
where , pl/po—l
ME S —— (8.7)
o 1_(p1/p0)‘/Y
For the wave length A we have
i
R 2y
p = —2 2 (8.8)

% -2, =Y ¥ °
(3aoJ (yMo Yq -yl)

where

The number of waves, ¥, after which the amplitude of the
waves decreases by a factor et is

(*”323;1‘31)15
v = 1 : (8.9)
ny? 8
I T
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The shock strength pl/po follows from the sum of the pres-
sure jump across the shock and Pys divided by Pye

The choise of expressions following from the adiabatic
theory is based on the fact that for region A the propa-
gation velocity is close to the one following from adiabatic
theory. Further we define

%
d,(3a )
= A (2] s -2 %_ A
WJ = ———;———— (1 YMO ) 60/2 & (8.10)
)
and % -2, =Y ¥
A(3a )* (yM“ %y "=y.)
W, 2 0 0 ; 1 . (8.11)
3
Ro yl

It follows from (8.6) and (8.8) that W, and W, must be con-
stants. In Appendix 3, Table A-5, the experimental values

for BO, P,s RO, dA’ A, pJ/po, WJ and W2 are given. The values
of WI and W2 averaged over all experiments are 3.8 and 5.8
respectively. The standard deviation in both quatities is
about 1. The magnitude of this deviation is for the greater
part restricted to the error in the determination of R .

This error is about 20%. In the Figures A3-1 and A3-2,
Appendix 3, the distribution functions for Wi and Wg are
given respectively. The mean values are indicated. The
theoretical value for VI is In20 (c.f. eq. 8.6). This value
follows from the definition of dA' dA is defined as the
distance between the points where the pressure starts to
rise, p=p0+.05(p1-po), and the equilibrium pressure p=p,

at the back side of the shock. In the experiments the point
where the pressure starts to rise was taken more close to
P, So the mean value of WI exceeds In20. The experimental
values of N agree reasonably well with the theoretical pre-
dicted values.

To test the influence of some parameters in (8.6) we selec-

ted some experiments for which Ro is constant.
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In Figure 26 dA(Sao)% is drawn as a function of

o

o m-2 ) %_gb g’
("1 YMOZJ 60/2

for constant values of Ro‘

b T L T ¥ T

.6 2 2.5 3 3.8 4 -29%_s0
- 3.8RD/[(I—yM0 ) —50/2]

FIGURE 26. d(sau)# is given as a function of 3.8/ (J—TM521¥—63/2 with R,

as parameter.

----- theory; ® exp: RO:J.JBxIa'sm.

theory; o exp: RO:J.SS!IU_am.

For W, we took the experimentally obtained value of Wi
which is about 2.8. In this Figure the experimentally
obtained values for dA(sao)% are plotted against

5.8R /[ (1-yu3?)¥-65/2]. Considering the inaccuracy in &,

it follows from Figure 26 that the experimental points

fit reasonably in with the theoretical curve. The constant

values for R, are taken from Table A-5 allowing for a

spreading of 5%.
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In Figure 27 the lines for %/Ro as a function of 1/(3«0)*
are drawn.

o5
kA

12 3 4 5 6 e K
o
FIGURE 27. d/R, is given as a function of KSuDJ-& with p,/p_ as a para-
meter.
————— theory; o exp: pJ/pa:I.s.
theory; e exp: pj/po-:t.j'z.

This is done for different constant values of
3.8/ [(1-71452)*—52/2] .

In most of the experiments we have 63/2<<(1-7M;2)%, so the
curves are drawn for constant values of Mg, or with (8.7),
for constant values of pz/po. The experimentally obtained
values are also given.

Considering the inaccuracy in the experimental results it
follows from Figure 27 that the experimental points follow
the theoretical curve quite satisfactory. In conclusion we
may say that equation (8.6) is by the experiments confirmed
within the experimental accuracy.

Now the experimental results for the back side of the shock,
especially the wavy behaviour of the pressure, are investi-
gated. To test the influence of different quantities on the
wave length A, as given in (8.8), some experiments for which
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R, is a constant are selected. In Figure 28 we draw Ar3“o)¥

: % -2 =Y_, ¥
as a function of W oy 1 /(YMO Yy "yg) "

30 +
s
A(Eanl’x g
10° T 20 ]
10 ]
T bl T L T
2 3 4 %

—_—5. Ey; Ro/(yMszyI'Y—yI)&

FIGURE 28. !n’.'iuaJJi is given as a function of 5.83’1’" /(yM;zy;Y-yIJ& with

Ro as parameter.

“““““ theory; ® exp: RO:I.Ib‘xmwam.

—— theory; 0 eaxp. R, =1.5 x10™%m.

For W2
is used instead of the theoretical value 2v. However, the

the mean experimental value of g, which equals 5.8,

difference is small.

Also the experimental values for A(3“o)% are given. It
follows from Figure 28 that these values reasonably fit in
with the theoretical curve. In Figure 29 the lines for A/R
as a function of t’3mﬁ)”Ef are drawn.

1 2 3 4 § 6 -%
—— I'Suo)

FIGURE 29. A/R, is given as a function of rsqu'* with p,/p, as
parameter.

————— theory; o ezxp: pl/Po:I"M
—— theory; e exp: p:l/pa=1‘13‘
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This is done for different constant values of the pressure
ratio. From Figure 29 we see a reasonable correspondence
between theory and experiment. We may say that equation
(8.8) is by the experiments confirmed within the experi-
mental accuracy.

Finally we conclude that the theoretical predicted depen-
dence of the shock thickness and the wave length on Ro,
pl/po and a, is recovered in the experiments.

§5. THE STRUCTURE OF A SB SHOCK.

In Figure 30 a typical pressure recording for region B is
shown.

FIGURE 30. A pressure recording typical for region B.
-3 _ -2
pz/pozi.sl, B,71.17%, R, =1.07%10 “m, U=108m/see, €4—4.3¥10 m,

A=4.3%10"%m, d_=.54m and P61

B xp

First we are interested in which relation for Uz/cg agrees
with the experiments. Resisted relations are considered
2/02 =
U/CO—PI/POJ
and y2 pl/po-l (8.12)

22 _(P Yy ©
el 1-( o/pl)

This is done because, as shown in Figure 24, the difference
between the resisted and not resisted results is of the
order of the scatter. On the other hand, following from the
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discussion in chapter 6, about region B, when m/cft exceeds
unity, the theory in which non-linear steepening is resisted
by relaxation can be expected to hold. For these reasons in
Figure 31 the isothermal and adiabatic resisted values for
Uz/cg according to (8.12) are registered.

vz, 3
f;;.?i o
o
exp. o
8 C, z=dm
2 o
o
T & . 1 2 3
- —=3 2 42
(u /co)th (v /co)th
s %4 e & 2 5
cgf o’ % o/ 0%
ax 7 oo ex T b 00 %
Z o B and B, P o B and B,
o
24 © =2 2 o o =2m
o8 o z=2m &P ° z
] - C-)
283
v 1 N T bl N T . 1 i 1
1 2 B o b 2 B ey gl
— (D /cthh — (U /cthh
2 ] 2
22) o r%zﬁ1 °
-]
4
exp
5 8
5 4 B, =Im
| P
o
2 4 o ®
o
- o
2L
T ————— -
1 2 3 4 o 1 2 3 4 s 25
I-isothermal (v /co)tk II-adiabatic (v /co)th

FIGURE 31. In this Figure the different theoretical and experimental
values for Uz/cg as determined at different stations along the shock tube
(Figure 18) are collected for SB shocks. When either the isothermal or
adiabatic theory fits in with the experiments, the pertinent marks would
be close to the solid line.

0 - experiments.
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The experimental values are determined at the stations B
and C for the long shock tube and at B1 and B2 for the
short tube. We presented the results for the different
stations seperately in Figure 31 to find out whetheror
not thermal relaxation might become effective. This is
expected to occur after the shock wave has travelled a
distance about 3 times larger than that for translational
relaxation (chapter 6). When either the isothermal or adia-
batic theory would fit in with the experiments, the marks
representing the pertinent theory would fit in with the
experiments. However, from Figure 31 no clear conclusion
can be drawn which of both theories applies for the pro-
pagation velocity. From comparison with Figure 24 we
conclude that thermal relaxation is noticeable.

With a view to the disccussion in §8 of chapter 6 one
might ask whether the relaxation profile as shown in Figure
30 chiefly follows from thermal or translational relax-
ation. An important quantity for relaxation is p*, the
point of intersection between the steep front part and the
smooth back side of a Sg shock. p* is found from the follo-
wing relations, with Fs(p*/po—J)/(pl/po-lj,

translational relaxation:

tsothermal
F. =1 e )
ia = @, pl/po-l § (8.13
adiabatie Pl/po(1+(Po/p1)‘/YJ
Fad = J—Yuo B > Trus * (8.14)
Y"1/p,~(Fo/p,) Mz
and
thermal relaxation
* —
2 ol ¥y (8.15)

1_(po/p*adjtly po

where the subscript ad for p* indicates the thermal relax-
ation profile.
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In Figure 32 the theoretical values from (8.13) and (8.14)
are compared with the corresponding experimental data. The
experimental values are collected at B and C for the long
tube and at B, and B2 for the short shock tube. The meaning
of the solid line is the same as in Figure 31.

1 ¢, x=4m 1 4 C,o=dm
%WT. %m1_
: o 1 o
3 - s
5. o 8 5 o
4 o o o o
] ° aobh 1 o , o
4 o ® 1 o %o
e - R 5
==y Fin
1— B and Bz 14 B and B2
z=2m F x=2m
exp’ 7 0 expt 1 0, &
] = o
J & (]
] o ¢ ‘90@% e °fa8 %
4 o @f% 40 90%00
o o%0 o 0
T T T i I
.5 —=F 1
7 —=Fyp 1 4 ek
y [+] 1 o
F
oo & . 4
| | 5
1 oo B ° ésbéf ! ° o oogboé?
o8 9 goo .5} 0 co0
BI’ x=1m BI' x=1m
——— e e
I-isothermal %= F 2 1I-adiabatic ‘5—r,, 1
th th

FIGURE 32. In this Figure the different theoretical and experimental
values for F:(p’/po-)/(pl/pa-lJ as determined at different stations along
the shock tube are given. When either the isothermal or adiabatic theory
fits in with the experiments, the pertinent marks would be close to the
solid line.

0 - gaperiments.
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The experimental values for F, F » given in Table A-6,

Appendix 3, are registered alongeige vertical axis. The
two different values for the quantity F, as given in (8.13)
and (8.14), at given p,/P, and o, (Table A-6), are regis-
tered along the horizontal axis in Figure 32 I and II res-
pectively.

From comparison of the upper graphs in Figure 32 with the
others it follows that deep down the tube, at station C,
the marks clearly deviate from the solid line. This indi-
cates that thermal relaxation becomes noticeably as will
be explained later on in this section. However, we conclude
from Figure 32 that the bulk of the experimental marks are
close to the solid line, which indicates translational re-
laxation. As a support for this conclusion another presen-
tation of F will be given. In Figure 33 F, as given in
(8.14), is drawn as a function of pl/po at constant B,-

Ba=3.543
1 —
] 8 A
— FT- .« a.—
y— &
g— ] = .. "—f‘
e i
.
i
Vi
— - - g :
2.5 3 1.8 2 2.5 3
_"‘DI/Po _.-pJ/po

FIGURE 33. F:(p'/pa—JJ/(pJ/po-IJ from (8.14)(—) is given as a function
of pz/po with 8, as parameter. Also the curve for (p*ad/pa-l)/(plfpo-l)
from (8.15)(~-—) is given. exp: O-x=lIm, e-x=2m and W-z=dm.

For investigation of thermal relaxation we also draw in
this Figure (p*ad/po—lj/(plfpo—l) from (8.15) as a function
of pz/po. This represents the thermal relaxation curve. As
discussed in chapter 6, when z/c.t>1 translational relax-
ation can be expected. For the bulk of the experiments

with cfral, this type of relaxation occurs for z>1. Only
for tap water we have x>10. Thermal relaxation can be
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expected when z/cadrth>1. From the calculations in chap-
ter 6 it follows that this occurs for x>3m. So it is rea-
sonable to suppose that deep down the tube the structure

of the shock is affected by thermal relaxation. This might
explain that in the Figures 32 and 33 the marks for region
C, z=4m, are lower distributed with respect to the curves
following from translational relaxation theory. A further
support for this relaxation is found from the fact that

for pl/po<1.4, the threshold for thermal relaxationm, Fexp
clearly differs from zero as follows from Figure 33. As

can be seen in this Figure both relaxation curves approach
each other with increasing pl/pa and accordingly the ex-
perimental results are less conclusive. Considering the
deviation of the experiments from theory one should keep

in mind that F is based on a rough estimate, obtained by
matching a dispersion dominated shock with a relaxation
dominated one. In the transition region between these,

p* is located and the matching which ignores this transi-
tion region, necessarily provides only an approximate value
for p*.With a view to this, the experimental results may

be considered as a support for the theory. p* indicates

the transition between the dispersion dominated front shock
with unresisted bubble motion and the back side of the
shock determined by resisted relative translational motion.
So another quantity of interest is the length dB of this
part of the shock. This part of the wave is called the re-
laxation dominated part of the wave. The experimental values
of dB provide verification of the adopted resistance model
for a bubble. We will pay attention to this part of SB shocks
when SC shocks will be investigated in the following section.
Further quantities which determine SB shocks are the thick-
ness dA and the wave length A. Though the difference be-
tween the results for the isothermal and for the adiabatic
theory is small we present results following from the
adiabatic theory since we assume no thermal relaxation.

The expression for the shock thickness dA is, ic.f. chap-
ter 5i,
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R in(20F ,)
dy = 2 T - ad e . (8.16)
(3&0) (J—YM; (1+2ao)) -60/2

where Fod is defined by (8.14).
For the wave length A we have

3
Ro 2ﬂy1
A = (8.17)

-y = I=Y e 2
(3uo)% (YMOZyIY—y1+2aony YMOZJ%

Further we define

¥
d,(3a )
¥y & 40 (1-yM=2(1+2a ) )%-s8/2) (8.18)
RO
- 1— g
and ) A{Sao)% (YMSzyJY—y1+2007y1 YMoz)%
WV, = —_— . (8.19)
4 R y%
1°] 1

It follows from (8.16) that W3 is not a constant. We find

for WS

Wy = 1n (20Fad) = (8.20)

Wg4s as follows from (8.19), must be a constant and equal

to 2n. In Table A-6, Appendix 3, the experimental results
for Bos Bys Pl/po‘ dA’ Ay Wg and W, are given. Also the
theoretical value for W3 and points along the tube where
the results were obtained are given. In the Figures A3-3
and A3-4, Appendix 3, the distribution functions for W

and W, are given respectively. The values of W, are col-
lected for ln(zoFad) between 2.5 and 3. The mean values

of W and W, are also indicated. From these it follows

that with increasing =z, Vs/ln(ZOFad) is an increasing
quantity. For large z(v4m) the deviation is large. This
once more supports the conclusion that for large x thermal
relaxation becomes important. Especially when pl/po<1.4

we should have, when thermal relaxation was completely ef-
fective, a smooth profile with a considerably larger thick-
ness. This qualitatively explains the larger values of W

3
for large x. About the deviation of W4 with respect to 2w,
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for zv4m, no conclusion can be drawn, since we have only a
few experiments. As for Sa shocks we give a graphical pre-
sentation for dA and A. For this presentation we took those
experiments, considering the deviation of W5 from the theo-
retical value, for which xz<¢m. For dA we selected some ex-
periments for which pl/p is constant and zn(zarad) is
between 2.5 and 3. In Figure 34 d /R is drawn as a func-
tion iof (3a ) %. This is done for dlfferent values of

W /1(1 M 2{1+2a ))%—65/2] To draw these curves a mean
value for Was from Flgure A3-3, Appendix 3, is taken as
obtained from the stations located at zvIm and znv2m. We
used W3m4.5.
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FIGURE 34. d/R, is given as a function of rSuD)'* with p,/p, as parameter.
—-===- theory; o exp: P3/pP,=2.35.
theory; e exp: py/p,=1.42.

In most of the experiments 62/2<<(1—yM;2(1+2u0)J¥. So the
curves are drawn for constant values of M52(1+2aoJ, o,

for not too small values of pl/po for a constant value of
pl/po. It follows from Figure 34 that the experiments reaso-
nably fit in with the theory.

For investigation of the experimental results for the wave
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length A some experiments for a constant value of pl/po are
selected. In Figure 35 curves are drawn for A/R as a func-
tion of (Su ) & according to (8.17) with pl/p as parameter.
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FIGURE 35. A/R is given as a function of (3a,) | with p,/p, as parameter.
----- theory; o exp: pJ/p =2.365.
theory; e exp: P,/p,=1.42.

For Wy the mean value as obtained from the values at zvim
and xv2m (Figure A3-4, Appendix 3) is used. From Figure 35
we see a good correspondence between theory and experiment.
Curves for d and A with a constant value of R are not
presented s1nce the variation in R, is con51derab1y less
than the variation in p /p Further the selected experi-
ments for graphical presentat1on are those for which W

and W4 are within 20% of the mean value of both quantltles.
Finally we conclude that the experiments for d and A of
the SB shocks, given by (8.16) and (8.17) respectlvely,
confirm the theory quite satisfactory.
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§6. THE STRUCTURE OF SC SHOCKS AND THE LENGTH dB OF SE SHOCKS.

In Figure 36 a typical pressure recording of a Sc shock is
shown.

FIGURE 36. A pressure recording typical for a S, shock.
py/p,=1.07, B,=4.17%, Rarl.lsxlﬂ-sm, y=65m/sec, d,=3.1m and
1+ 4«07/”*1) =1.3 .

The equation describing the structure of the shock is,
adiabatic theory,

E
y(J—y)J z(y-le1+£ = emp - — (8.21)
Ut
where
a0 ZcOY -
2
M':J Y

The thickness dc of the SC shock is given by

dc
— = 201ln20 . (8.22)
Ut
Further we define dc
VS B = (8.23)
Uttt

A SC shock occurs when the pressure ratio is below a cer-
tain critical value

P da Y
pro < 1+ o /(Y+1) .
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In Table A-7, Appendix 3, the experimental results for Sc
shocks are collected. There we also summarized the values
for 1+250, the corresponding isothermal threshold. If we
compare the isothermal as well as the adiabatic threshold
with the pressure ratio in Table A-7, it is found that the
appearance of Sc shocks answers to the adiabatic relation.
For some experiments the propagation velocity U is not given,
because the steepness of the profile was too small to permit
the measurement of U. One should notice that d /Ur does not
depend on U; 4 /U is directly measured, since the experiments
give the pressure as function of the time-wise variable z/U.
From (8.22) and (8.23) it follws that W5 is a constant. The
values of W. are also given in Table A-7. In Figure A3-5,
Appendix 3, we give the distribution function for W In
this Figure we presented results for two viscosities:
vz:.?xlo_smz/sec and leI.JXJO_4m2/sec. The results indica-
te a strong dependence of W on the viscosity. Since we
have only a few experiments for SC shocks we will take a
Close look to effects of viscosity on the length of the
relaxation profile when we investigate the back side of SB
shocks. First we want to inspect for SC shocks whether the
measured profile is shaped in the way as predicted by the
relaxation theory. For this we draw in Figure 37 (d /UT)x

(Mz/y -1) as a function of a, . We selected those
.25 4

£¢2 -1

dM2 1
Ut y

—_—a %
o

FIGURE 37. (d /U-rJ {MZ/T ~-1) as a function of a, with A«‘S:.M.

0 - ezpertments




=16:2-

experiments with vz=.?x10-5m2/sec.(There are only two
experimental values for vZ=1.1u10-4m2/aec). W e is taken

equal to .88, the experimentally obtained mean value (see
Figure A3-5), which is about one third of the theoretical
value In20. From Figure 37 we conclude that the dependence

of dC(Mg-y)/UT on a is in the way as predicted by the theory.
In Figure 38 a pressure recording for a SC shock (thick

line) is presented, the theoretical relation (thin line)
according to (8.21) is also given.

p/

p,~1
pl/pa-I

FIGURE 38. (p/po-IJ/(pl/po-I) as a function of ¢ (thick line).
p,/p,71.08, 8,73.7%, R =1.17x10"°m, d;=2.04m and I+éva /(y+1)=1.085.

The thin line is the theoretical curve with 1:10'2sac, according to the

adiabatic,theory (8.21), Using the transformation t=xz/U, (p/pO-IJx
(p:/pa-IJ-z can be found as a function of the time wise variable and be
compared with the experiments. o-Theoretical values for the pressure if
1 is one third of the calculated one.

This theoretical relation is found from (8.21) using the
transformation t=z/U. We see that the theoretical change

in pressure takes place in aconsiderably longer distance
than the experimental change in pressure. However, from
changing the time wise variable in the theoretical obtained
pressure profile, this curve appears to fit in with the
experimental curve, though with a relaxation time t about
one third of the theoretical value Ri/lavl. Thus the mea-
sured profile is shaped in a way predicted by relaxation
theory. Apparently the actual value of t is less than fol-
lows from the adopted theoretical model. Explanation of this
discrepancy is postponed to the discussion on the length
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dB of SB shocks.

In Figure 39 another record of a smooth profile is shown.

Prp,-1

‘Pz/pa-l

PO TP I |
6 & 10
3

— tx10"gec

FIGURE 39. A pressure recording (thick line) as in Figure 38. The
theoretical curve, thin line, turns back and therefore indicates the
occurence of a thin front shock. This could not be observed in

the experiments. P3/P,=1.13 and I+dya /(y+1)=1.1.

According to the theory a thin front shock should appear
since the pressure ratio exceeds 1+ 4yuo/(y+1). However,
here it is hard to decide from the Figure whether a front
shock is present or not.

Now we will pay attention to our model for the resistance
of a translating bubble. As indicated the length dc is a
measure for this. We found a discrepancy between theory and
experiment. The length dB of the back side of a SB shock is
also a measure for the bubble resistance. Since we have
much more experiments for SB shocks than for SC shocks we
will discuss relaxation from the experiments for SB shocks.
The theoretical expression for dg is, c.f. chapter 5,

-2 ¥ L=y -2
dB - 2 YMo yl y1+2aoyy1 Ma
Ut - ¥ M'i e Vo

YWo'¥1 7Y,

inf20(1-F )] . (8.24)

For not too weak shocks (8.24) can be written as

Y
@_ %
Ut ln[20(1~FadJ]

=1. (8.25)
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For comparison with W, we multiply both sides of (8.25)

with In20 and we define W, as

6
d y¥.,iln20
We : B 1 . (8.26)
Ut In 20(1-Fexp)
In (8.26) Fexp in stead of Fad is taken. This is done since

we are faced with the inaccuracy in the estimate of p* re-
presented by F.a In table A-8, Appendix 3, the experimental
results for the back side of Sy shocks are given. In Figure
A3-6 of this Appendix the different distribution functions
for W, are given for different values of the viscosity of
the liquid. Also the mean values are indicated. No distinc-
tion is made for the stations where the results are obtained.
From Figure A3-6 it follows that for vZ:.?xla_smz/sec the
mean value of Wg is close to the corresponding value of W s
(=.88) for SC shocks. Further it can be seen that W g changes
considerably when we change viscosity. This differs from
what the theory predicts in this respect. From the theory
we found that Wg is a constant and approximately equal to
in(20). Only for a viscosity of 3x10"°m2/sec We is in the
neighbourhood of this constant. What could be the cause of
the discrepancy between theory and experiment?

OQur theoretical model for the bubble resistance from which
we found the relaxation time t is based on Levich's resis-
tance for a bubble. This leads to a relaxation time
T:Rg/lgvz- Only for viscosities of about 3x10_5m2/aea and
Romlo_sm we get near this relaxation time. Levich's resis-
tance for a bubble applies when inertia forces exceed the
viscous forces, so for Reynolds numbers sufficiently larger
than unity. According to Levich (1962) the validity of his
model is restricted to Reynolds numbers up to 800, because
at larger numbers the bubbles are significantly deformed.
From our experiments we may conclude that Levich's model
applies for a small range of Reynolds numbers. In the
following we will base the discussion for the bubble re-
sistance on the Reynolds number. Of course the Reynolds
number is no where a constant in the relaxation profile
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because, except for a small resulting velocity following
from buoyancy, relative velocity ultimately vanishes. How-
ever, in the front part of the relaxation profile where
the pressure changes significantly, we assume in a certain
range of Reynolds numbers a typical resistance model to
hold. To explain the experimental results qualitatively,
we first investigate the range of Reynolds numbers asso-
ciated with the different viscosities. To find an estimate
for the magnitude of the Reynolds numbers we assume unre-
sisted bubble motion in the front part of the relaxation
profile. The relative velocity, v-u, is in this case ap-
proximated by, c.f. chapter 4,

V=u = EUBO(I-po/pl) . (8.27)

With B, a few percent, U about 100m/seec and pz/po of the
order of unity in most of our experiments we find for the
various Reynolds numbers

iy = 10"%m2/se0 : Re ~ 4000,
_ =5 2 ’
vy = .7x1€5 m</sec : Re ~ 600, (8.28)
vy = 3x10 m/seec : Re ~ 200,
v; = 1.1x10"%m?/sec : Re ~  s50.

From (8.28) we see that for tap water, uzzla_smzfsec, the
Reynolds number largely exceeds the upper value of 800 as
indicated by Levich. The bubbles are stronglydeformed and
behave as small discs. From Haberman & Morton (1953) we

czn approrimate the bubble resistance with a constant value
for the drag coefficient Cp of about 1.5. The drag corifi-
cient based on Levich's model, Cp=48/Re, amounts to 16" 2

in this case. Even for a free rising bubble in water Cp,=48/Re
is unrealistic. From Appendix 4 it follows that for Cp=1.5
the length of the smooth region is about Im. This is in
good correspondence with the experimental results for dp
with uzzza 2/aec as follows from Table A-8. For this model
of the resistance the free boundary of the bubble surface is
of no importance. Cprl.s is also found for a solid disc.

Though we cannot indicate a relaxation time for this resis-
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tance model, it explains the length of dB quite satisfactory.
For vZ:.7x10_5m2/see we found for S, shocks a relaxation
time which is about one third of the theoretical one. From
Figure A3-6 and Table A-8 a relaxation time of this magnitude
for Sy shocks can be found. (8.28) gives a Reynolds number
of about 600. If we suppose that Levich's model still holds,
a reasonable explanation for this lower relaxation time is
found in the bubble deformation. In our opion an important
effect in this connection is that during the acceleration,
relative to the liquid, the bubbles do not remain spherical
as assumed in the calculations. The bubbles adopt an oblate
shape, which increases the resistance in comparison with a
sphere as follows from equation (I.14) in chapter 1. We mea-
sured the velocity of bubbles of Imm effective radius rising
in the mixture under the influence of gravity. We found a
resistance force which was about 1.5 times Levich's friction
force. Since during acceleration by the passing pressure
wave the bubbles are considerably more deformed than when
rising in a hydrostatic pressure field the actual value of

t could be easily 2 or 3 times smaller than the calculated
one based on a spherical shape. A larger drag coefficient
and accordingly a smaller value of d, can be found if we
assume solidification of the bubble surface by surface ac-
tive agents. However for gas fractions as in our experiments
a significant influence of surface active agents is not rea-
listic (Levich 1962, p.448).

For ul=3XIO_5m2/sec, which corresponds with Reynolds numbers
of about 200 we see from Figure A3-6 a good correspondence
with the theoretical value for W6(:Zn20J. This indicates
that for these Reynolds numbers Levich's model and the
connected relaxation time correspond with the experimen-

tal results.

For vl=1.1x10-4m2/sec, which corresponds with Reynolds num-
bers of about 50 we found, as can be seen from Figure A3-6,
a value for W g which is about 3 times the theoretical value
Rg/JBvZ. What could be the cause of this larger relaxation
time or a lower resistance? For Reynolds numbers smaller
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than unity this factor 3 could be explained by using
Hadamard-Rybczynski (1911) formula for a fluid sphere.
This formula gives a drag coefficient equal to 16/Re or
exactly 1/3 of Levich's drag coefficient. However the
Reynolds number still exceeds unity even for this large
viscosity. A possible explanation for this lower resis-
tance can be found from an improved estimate of the drag
of a bubble with a free surface. This is given in Moore
(1963). Moore calculated also the dissipation of energy
in the boundary larger at the bubble surface and found
for the drag coefficient

CD = —ql= =t . (8.29)

For 10<Re<100, the fraction between brackets varies from

.3 to .8. With this lower drag coefficient it can be ex-
pected that the length of the smooth back side will be
larger than dp from (8.25). In Figure 40 we illustrate

the different relations for Cp as a function of the Reynolds
number.

1;-
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FIGURE 40. Cp for various models of a bubble as a function of the Reynolds
number.
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For low Reynolds number, or high viscosity, the length of
the profile is explained by the ¢, as given in (8.29).
With increasing Reynolds numbers the bubble resistance
come close to Levich's model. For large Reynolds numbers
the bubble deformation becomes important and Cp changes to
a constant value of I.S5.

§7. THE WHITHAM RULE.

We found in chapter 7 that the Machnumber changes along
the shock tube as given by

l M -1|2 1
exp[(Mo-MooJ]: _—, (8.30)
L W 1-p19%/P o,
for isothermal circumstances.
For adiabatic circumstances we have, for Mg/7-1=0(10-1),
MZ-y 2 i
! = ] = : (8.31)
B -
Moo ¥ 3 ngx/poa
_p,0%
!1/(1 P1%%p, 0
1 I T T T T
-1 -2 -3 -4 -5
i 23

FIGURE 41. In this Figure we draw (1_°ng/poo)_1 as a function of « for
different values of -

theory ; 0 exp - isothermal poo=.934XJ05N/m2.
x exp - adiabatie.

————— theory ; ® exp - isothermal pooz.sssxzasﬂ/mz.
—+— theory ; W exp - isothermal pao=.2¢sxlasﬁ/m2.
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In Figure 41 we draw (I-ngx/poo)_l as a function of z for
different values of - Also the experimental values for
the left-hand side of (8.30) and (8.31) are given. Since

we only measured at three stations along the shock tube,
where one of them is at zvo, this Figure is less conclusive.
However it follows from this Figure that the few marks rea-
sonably fit in with the theoretical curve.

§8. CONCLUSIONS;

We found in the experiments shocks, structured as predicted
by the theory. A reasonably good agreement with theory was
found for the dispersion dominated shock, S, shocks, and

the dispersion dominated part of Sp shocks. Especially with
respect to the thickness of the steep front shock and the
waves at the back side of the shocks.

Furthermore the relaxation theory for explaining the gradual
change in wave profile from S, into SB or S, shocks, when a
shock passes a bubbly mixture is supported by the experiments.
The theory predicts effects both on wave speed and wave
profile. The effect on wave speed is so small that it was

not possible to measure this. The effect on the profile

could be measured. Comparison with theory shows, however

for a small range of viscosities that the observed changes

in profile are caused by the relaxation mechanism associ-
ated with, initially generated and finally resisted relative
motion between bubbles and liquid. We found Sc shocks shaped
in a way predicted by relaxation theory, for vZ:.?xlo-smz/sec,
however with a smaller relaxation time. The length of the
smooth part of SB shocks fits in with the theory in a small
range of viscosities near vZ:3XJ0°5m2/sec. Without a complete
theory at hand we indicated, qualitatively, that for much
smaller and larger values of the viscosity the experimental
profiles can be expected. A detailed discussion on i.e.the
influence of bubble deformation on the shock structure is
beyond the scope of this thesis.

Finally we conclude that the shock propagation velocity can
be predicted as a function of the coordinate along the shock
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tube by using the Whitham rule. These results support the
application of local equilibrium quantities and the Hugo-
niot relations for shock wave propagation through a bubbly
mixture with a given density and pressure distribution.
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APPENDIX 1.

In chapter 5we found a third order differential equation
for the front part and the back side of the shock. In this
Appendix we determine the solutions.

For the front part we have the following differential equ-

ation
day' dzyr dy'
—ta, —+a, —+ay' =0, (A1.1)
dn? 1 an2 2 an .
where 6A
a; = 2 + g,
1+4ao
1—M;2—2qu;2
a2 S — (42 2)
1+4a
o
M2
~ ol MO ]
By 5 - ——
1+4uo
r
- Ro (GwB)o
o % =
(330) U
(A1.3)
and 18v, 1
a = ﬁ -
UR_ (3w )
o o
We seek solutions in the form of y’=e'". This gives, with
(A1.1),
3 2 =
¥ o+ a, ¥ + ap¥ + agliv 0 . (A1.4)

Now the zeros of this cubic equation are determined. For

10 Gy and a, is of
interest for simplification of the rather complicated roots
of (A41.4). For the magnitude of @y a, and a; we consider
different cases such as high viscosity, v=0(10"%
5), weak shocks, M§—1=0(10-1J, and mode-

rate shocks, Mg—1=0(1). The different orders of magnitude

this the magnitude of the coefficients a

), normal
viscosity, v=0(10"
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for a,s a, and a, are given in Table A-1.
TABLE A-1
v=0(107%) v=0(10"%)
2_ 7= -1 . 2 =1 e
w2-1=0(10"") wi-1=0(1) | M2-2=0r20"") N2-1= 0(1)
>0 >0 >0 >0
B1 ac107%) ot10”2) ot10”%) ot10”)
M2<1+2a | Mz¢1+2ug|
S5 a s <0
asboc107%) loczo™h)| oc1) ot10™%) |otzo™)| ocw)
<0 >0 >0 >0
a3 0(10”%) ot10”%) oc10"%) 0(10"%)

We define the quantities s, g and a by

- w2
a, a1/3 "
2a§/2? -

s3/27 + q2/4 .

a1a2/3 *ag o,

In Table A-2 the orders of magnitude of s, ¢ and a are given.
TABLE A-2
v=0(10"%) y=0(1 4y
2 7 = 2.1= 2-1= i 2.4
¥2-1=0(10"") M2-1=0(1) | M2-1=0(10"") N2-1=0(1)
2 2
M°<1+Baa M0<1+2ua
” >0 <0 <0 >0 <0 <0
D(az) OlagJ O(uz) O(as) O(az) G(aEJ
q <0 >0 >0 >0 >0 >0
a.,a a.a a.a a.a a.a a.a
ot-122)|0¢-—122) or—-L2) |or-—22 |or-—LE|or-—L2 +ay)
3 3 3 3 3 3
+ag) +a3)
>0 <0 <0 >0 <0 <0
a
al g3 g3 g3 g3 gl
O(EF) 0(3;) O(EFJ O{E?J 0(§$J sz;)
We further define

E

1 ‘—q/z + a

by
I

g = —Iq/z + a

¥

¥

s
>

(A1.5)

(A1.6)
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The roots are found by standard methods (Abramowitz & Stegun,
1965). The method is known as the method of Cardanus. The
sign of a, Table A-2, is of importance for determination

of the roots. If a>0, we have one real root and a pair of
complex conjucate roots. If a<¢, all roots are real. The
case a=0, all roots real and at least two of them are equal,
is of no practical importance. It indicates the transition
of a SB shock into a SC shock.

First we discuss a>0 and accordingly M§<1+2u0.

The roots of (A41.4) are
wl = El + E2 - a1/3 3

and (A1.7)
¥, 5 =(Ej+E,)/2~ a /3 + zvﬁ?sl—yz)/z .

The solution for y' is

yE = Dle + D_e + D e . (A1.8)

Considering the magnitude of the different quantities as
given in the Tables A-1 and A-2 we find for the real part
of the complex roots in (41.7), with E1+E2 approximated
by -q/a,,

- a1/2 + a3/(2a21 : (A1.8)

For M§<I+2ao the quantity represented by (41.9) is negative.
Thus D2 and D, as given in (41.8) are equal to zero.

?1 becomes

- as/ag ”
and this quantity exceeds zero for M2<1+2ao. The solution
for ' dis

on(M2-1)
g (41.10)

y' = exp
1+20 —-M2
o o

Secondly we have a<0 and accordingly M;>1+2ao.




The solutions are

= g By% 2, _
P, = 2( 3) cos(s) al/s P

= of= ¥, 00 (RN _
g = 2 3) cos(s'*3 ) a1/3 5 (A2.11)
¥y, = 2(- E)*cos(&'*il) - a,/3
3 3 3 3 1 -

where
q/2
cosfl = = — % (Az. 12)
(-g3/27)

From the Tables A-1 and A-2 it follows that

cosa = - 0(10”%) .
With this the roots Yoo ¥y and WS as given in (41.11) can
be approximated.
The solution for y' is

?In wzn ?3n
[ -
y' = Lje + Lge + Lge . (A1.13)
¥, becomes
a.a, ~3a
v = P )T o i e i (A1.14)
2 2 1
6|a2|

which is a positive quantity.

For Wz we have

- —fen ¥ _
¥, = ( a2) a1/3 3
which is a negative quantity.
¥, becomes

Thus L, and L, as given in (41.13) are equal to zero and

y ' becomes
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ned n(l-Mgz-ZaoMgz)%
y' = ex;,[_ — ]
L) 1+2ao

The differential equation for the back side of the shock is

d3y" dzy" dy"
—_—— o h — kB — P y" =0 (A1.15)
dn? 1 gn2 2 dn ”
where 6A
1 2
b] e ————— § T & s
I+da M2 i
o 0

4
M3(1-M=2+20 M~2)
o o o o

bg = (A1.18)
1+4a M~2
o o
2.
. o(MO 1) .
S 144a M-2
o o
r
§d = Fo _ [oup) (41.17)
1 - L3 ¥
(360) U

We seek solutions for y”, as given in (41.15), in the form

of
yl": e?n

We obtain for v
3 2 + =
ve o+ blv bzw + bS 0 . (A1.18)

The different orders of magnitude of bl’ b, and b3 are

2
given in Table A-3.

TABLE A-3
v=0(10"%) v=0(10"%)
M2-1=0(20"1) |M2-1=0(1) |M2-1=0010"7) |W2-120¢1)
(] [*] o (2}
b >0 >0 >0 >0
1 ~1 -1 i -1
of10 *) of10 ) o(1e °) or1o °)
b >0 >0 >0 >0
2 o107 or1) or10”™%) or1)
b >0 >0 >0 >0
31 or2079) oc107%) | or107%) or10™2)




-176-

In Table A-4 the orders of magnitude of s,q and a are given.

TABLE A-4
v=0(20"%) v=0(20"%)

2.7= = 2 2_ 7= =1 2=
Hu g=0(20 ") MO 1=0(1) Ma 1=0(10 ~) Mo 1=0(1)

8 >0 >0 >0 >0

ord,) ock,) ock,) otk,)

<0 <0 >0 >0

q 8.8 & & é. &, 4.4
or—1-2) o(—22) lot-224ay) |or-L24ay)

3 3 3 3

>0 >0 >0 >0

g3 gl sl 83

0{2—7) Ofﬁ) 0('&7’) 0(2—7J

This Table shows that a exceeds zero and we expect a wavy

behaviour of y".

?1 becomes

o
(]

=
i
]

o
)

With the help of (41.16) this finally yields

2
M3 (M2-1)
= o (]
¥y, = - g ——
M2-1+2a
o [#]

This root represents the smooth part of y".

E,-E, is approximated by
5,35
2(a,)
g, E, = —X—

™2 T Ty

With this we find for the roots Y, and ¥.,as given in

(A2.7),
v, .= - (b,-Pasb /2 & ith)¥
2,38 1 2 - Bpa "
Using (A1.16) we find for ¥, g as given in (A1.20)
k]
i 88 o2 M3 M2-1+24
v - __“[ 1 " o o ]+ 1‘:[ o o
2,8 -2 2 ' Z -2
# 2 1+4quO Mo 1+2::o M;(l+4quo J

]k
« (AT.21)

This represents the attenuated wavy behaviour of y".
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APPENDIX 2.

Here we present the linearization scheme to find the
equation which describes wave propagation in one direction.
We summarize the pertinent equations

p = pzfiﬁﬂ) » (A2.1)

3p ap Ju
—t+ U — + p —
at dx dx

9
- ——’pZB(v-u)/a' N (A2.2)
2

U du op ]
p — + pu — + — = - — nzB(v-u)/z’ - (A2.3)
ot 3z 3z 9t

3 2 8Y
—(p B) + v —(p B) + p B — = 0 (A2.4)
g ax g g 3x ’

28 3p
(—— + r'l)lsfv—u)l = - —_—, (42.5)
ot Dz ax

R2p [32g 3B
p-p=—2 0[-—— + 8wy, —1, (42.6)
g 3B§c; at2 at

where
§' = (v)¥s

Po

e?2 = ——2 | (42.7)
pZBo(I—Bo)
We introduce

w = sBocou’ ,

v = esocov’ "
= po(1+ep ' L
=B, (14ep ) , (42.8)

= Bo(1+eﬁ')

g

®m " o

Ly
]
A
o
-
-
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¢ is chosen so that the maximum of the functions ', etc,
for some given initial value, is of order unity.

(A2.8) is introduced in the equations (42.1)-(A2.6). Terms
of order e2, €B, and lower are retained, terms of order
ezso and higher are discarded. The terms in (42.6) repre-
senting dispersion and attenuation are assumed to be small,
at least of O(e).

(A2.2) becomes

au’ ap’ dau' 1 9
_—— = Bo —_ - = — (v'-u") (42.9)
ax’ at’ gz’ 2 Bz’
(A2.3) becomes
au' ap' ap’ u' 19
e ) i 8 sa{——+—-~—- (v'-u’)l (42.10)
at’ ax ' ax’ at’ 2 gk

(A2.4) becomes

op!  ap! au'
24— =g = — (v'—u’)l - ¢ — (p'B') .(A2.11)
at' ot 3z’ s> @
(A2.6) becomes
1 [a2g' a8’
Pt - A = - —_— 8! — = A2.12)
Pg = P 2|5z 2 R 3! ¥
(A2.5) becomes
ap’ ap’ ap’
—+1 (v—u')+2—'—"250—-23'e—‘
Bt' axl azl axl‘

c(a—t,u)la'rv'—w] . (42.13)
2

Terms in the left-hand side of the equations (42.9)-(A42.13)
are supposed to be of order one when also p _, 6 , c, and T

are properly chosen.
To find a wave propagating in one direction we use a method



given in Broer (1964).

When moving in a (=z'+t’,t’) frame, it follows from (42.9)-
(A2.13) that
r L
u'+ gl= O(BU) T
p'- u'=s 0(80) 5

(A2.14)
p'- pé = 0(e) ,

p, *+ 8" =0(8,,c) .

With the help of (42.1¢) we find from (42.11) and (42.12),
omitting the primes

ap a8 ap ) ap?
sl P LI (P
3t ot 3x  ox at
1 (3% a2p
{——— +.16'wB ———} « (A42.18)
witZlae3 at2
(A2.9) and (42.15) give
ap qu 360 3 ap?
—t— == —2 (p-u) + e — +
at Az 2 ax at
1 (3% 32p
{~—— + 18wy ———] (42.16)
wir2 a3 at2

From (A2.14) and (42.16) it follows that

i
|
e
]

O(E,BOJ,
and

l
I

= 0(8,80) :

This gives
— i —— — " i = 0(52,580,33) - (A2.17)

Thus the pertinent equations can be reduced with help of
(A2.17). This approach is not uniform valid because we only




know that

ap ou
—_-—= O(E,BOJ-
at at

Therefore p-u = 0(et). So the reduced equations cannot be
used for long time intervals.
Substituting (42.17) into (A42.10) and (A2.16) we obtain

op ap 9p ap 12 é @
2]—-+— = B # = = —fpg) == —fvoul}
3t ez 3x 9t 2 at 2 a3z
ap2 1 (3% 3%p
g — + — i N ==, o(sso,sg) . (A2.18)
at ugrz at3 at2

With (8/9t)+(3/3z)=0(e,8 ), (A2.18) reduces to

ap ap ap B, 2
—+ — = gp — = — —(v-u) +
at Az 3t 2 3z
1 33p 3lp
—_ TG'mB-—— y (A2.19)
2m§t2 at3 at2
We rewrite (A2.13) to
3 B2 3%p
- +1){—°— —(u—uJ} = -8, — + 0(cB,,82) .  (42.20)
at 2 ax?
(42.19) and (A2.20) give
3 3p ap b a%p 3%p
(—— +1) — + — + gp — + — - TG'mB ———]I=
3t 3t 3z 3z 2m§12 azx3 3x2
g %P
o (43.921)
xdt

The equation for p, the actual pressure, in the laborato-
rium frame becomes



ERRATA
Contents-Chapter 6-§2
page 26-formula (2.15)

th .
page 60-9°" line from top

th ..
page 90-6 " line from top
page 148-Figure 26

st .-

page 149-1"" line

-Figure 27

page 158-Figure 34

page 176-Table A-4

th

=10~ line from top

page 181-1°% line

nd

=27 line

read:

read:

read:

read:

read:

read:

read:
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read:

motion

Pg

(1.16)

(5.33a)
%

dA(Sao)

dh/Ro

dﬁ/Ra

dA/Ro
bl’ b2 and bs in stead of
a;s a, and a,

bz in stead of a,

p-p, 9P O

(—2)— \, )
o 3 ‘

|

°F
pp, ¥

e (-
= po ax




2
Bt%f

1-1[%
o

where

p  @p
— 4+ — +
ax at !
ap ap
—_— + — 4+
9z ot

p-1 3p

_—

P, ax

p-1 3p

—_—

-181-

3 3 ra2 2
ey 3°p §'es 3
bl i

2 3
2mB dx 2wB
ed a3p §'a2
2w2 3zl 2w
B

+
dx?




APPENDIX 3.

§1. EXPERIMENTAL RESULTS FOR SA SHOCKS.

TABLE A-5
Experimental results for region A
P x x

g ";T pi; A5 dAz Aa Von| ¥ | ¥z | "2 :::-

10 20°% Py 10%| 20 exp T
m N/m2 | % m m/sec| m m
.28 .3 .867 |1.82|1.14|1.08] 100 |11 14 2 4 [3.78|7.57|565=3
vd .04 .928 |3.28|1.32|1.08 61 4.9| 6.7| 2 5 |12.71|4.32|4-31
.26 .42 .967 |3.88|1.26|1.10 61 7.3 8.1| 2 4 |4.92|7.52|6-2
.28 .47 .967 |6.2 (1.31|1.10 47 6.6| 7.56| 2 7 |4.81|7.05|6-1
07| .12 .919 |5.47|1.33|1.11 53 4.7| 6.3| 2 4 |3.59|5.84|4-43
.168| .18 .918 (1.058|1.13|1.13| 100 |10 18 2 § |4.63|92.3 |4-1
18| .18 .921 |2.18|1.41|2.13 73 7.2 8.7 2 4 |3.73|6.08|4-2
.18| .22 .821 |8.8 |1.50|1.28 57 4.5| 7.4| 2 5 |2.9 |5.65|4-3
871 .08 .924 |5.03|1.47(1,13 57 8.1| 7.4| 3 4 |e.77|6.6 |5-22
27| .45 .934 |1.4611.29]|1.13 53 4.2| 6.3| 2 4 |3.33|5.87|5-6
.27 .38 .934 |2.12|11.27|21.13 78 6.1 6.4| 2 3 |3.78|4.54|5-6
+27| .05 .924 |1.88|1.128|1.14 78 9.4) 9.4| 2 4 |5.61|6.28|56-23
.20 .04 .861 |3.30|1.38|1.17 63 6.3| 8.8| 3 4 |4.687|7.43|4-28
.08 .12 .88 6.18|1.32|1.18 47 3.3 &.7| 8 4 |3.39|4.66|d-46
.18| .27 .852 |4.20|1.35(1.18 52 3.1 3.6] 3 5 |2.73|3.68|4-7
«81| «18 855 (1.8 |1.47]|2.19 75 6 6.7 3 5 |3.31|4.17|4-5
-8 .28 .8564 |3.6 |1.37|1.18 53 3.7| 6.8| & 5 |3.056|5.49|4-4
.287| .39 .866 |1.4 |2.08|1.2 a4 4.7| 6.6| 3 § |3.22(5.07)|5-8
.26| .09 .865 |5.2 |21.30|1.22 &3 8.8|10 3 § |9.52(12.7]|5-24
.26 .46 .865 |4.15|1.26|1.22 56 4.5| 4.5| 3 d |4.56|5.26|5~8
.26 .68 .888 |7.22)|2.30(|1.22 42 2.8 = o= - |3.06] = 5=8
.26 .06 .855 |2.78|1.18|1.23 75 7.5 7.5 3 7 |5.56|6.24|5-25
« 3 .04 .783 |3.45|1.39|1.24 67 § §.3| 3 5 |4.45)|5.41|4-33
+ 08| «d .785 |3.84|1.41]1.26 63 d. 4| §.1| & 4 |4.22|6.55|4-48
.14 .23 .78 4.36(1.35)|1.28 &1 2.6| 2.6| 3 § |2.77|3.21|4-7
.19 .26 785 |3.7 |1.37|1.29 80 2.7| 4.8] 3 5 |2.74|5.61|4-8
.81) .25 .788 |2.6 |1.41(1.30 78 3.4) 4.5] 3 5 |2.82(¢4.28|4-9
37| .47 .788 |4.43|1.20|1.31 54 3.3] 5.8| 3 5 |3.9 |6.3 |8~-11
. 27| .35 .798 |1.15|1.08|1.31 98 3.8| §.8]| 2 6 |2.85|4.87|5-12
.28 .04 .787 |5.32|1.58|1.33 54 8.1| 8.1| ¢ 5 |8.82(10.3|5-26
.26 .04 .788 (1.87(1.38|1.33 8¢ |10.3|11.2| 4 5 |7.9 |8.8 |5-27
08| .21 .718 |1.3 |1.28|1.38| 106 4.3| 6.4| 3 3 |[3.07|5.28|4=50
08| .13 .718 |3.7 |1.43|1.38 61 3.7| 4.3] 3 3 |2.33|5.35]4-51
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TABLE A-5
(eontinuation)

z | Po® |, | FoX| Br| , | %] * Mol # | W, | w, “‘P;

£ 2078 10%| Po 102| 102 Ly o
m N/m? | % m m/sec| m m
28| .42 .732 |2.68|2.13(1.46 g8 3.8| 5.8| 3 5§ (3.89|6.8 |5=15
21| .04 .658 |3.74|1.44|1.47 67 3.7| 4.7 ¢ 4 (4.32|6.44(4-35
.07 .08 .65 3.15(2.44|1.5 73 3.6 4. 4 6 |4.02|5.68|4-54
.18 .86 .649 |4.3 |1.54]|1.6 52 2.3| 2. 4 4 [2.83|3.72|4-10
08| .08 .85 1.23|1.34|21.51 88 3.1| 2. 4 5 |12.33|2.33|4-53
.21 .26 .652 |2.68(1.45(1.52 67 3 - - - |3.1 - 4-11
«21| .28 .668 |1.212(1.17|1.586 84 3.8| 5.2| ¢ § (3.2 |65.18|4-212
27| .49 .664 |1.49|1.05|1.61 85 3.4) 5.1| 4 6§ |3.8 |6.7 |5-18
18| .08 .665 |2.95|1.25|1.62 4] 3.4| 4.1 4 4 |4.5 |6.56 |5~38
.2 .04 .667 |1.96|1.17|1.62 77 3.8| 4.6| 4 5 |4.5 |6.4 |5-38
<19 .04 .588 |13.21|1.33|1.78 66 3.3| 3.3| 4 4 |4.7 |5.7 |5=-37
.2 .04 .589 |1.53|1.18|1.78 ag 2.9| 4.8| 4 4 (3.3 6.6 |5-38
.81 .81 +602 |2.31|1.3 (1.8 78 3.9| 3.8| ¢ 6 |8.9 |5.6 |5-40
18| .28 .6 §.01|1.65|1.81 51 2.5 8.8| ¢4 4 |3.6 |4.5 |6-39
13| .26 .508 |5.58|1.46)11.85 41 1.8| 2 4 6 (3.2 |4.4 |4-15
+81| .38 .516 |(2.32(1.26)1.9 68 2.3| 3.6| ¢ 5§ |8.1 |6 4-13
28] 32 513 |4 1.47]|1.91 54 1.6| 3.8| 4 4 |12.4 |65.6 |4=-14
.21 .04 .522 |4.24|1.56|1.92 56 3.1| 3.6| 5 4 |4.4 |6.5 |4=37
.28] .31 .399 |5.83|1.88|2.49 45 2.7| 8.8| & 4 |4.7 |4.8 |[4-64
.18| .34 .377 |5.34|1.54|2.51 47 2.1| 2.1| § § |3.9 5.3 |[¢-18
-8 .05 .386 |4.44|1.5 |2.55 58 2.4| 2.8| § 3 |4.2 |7 4-39
- 18| .32 .8768 |3.79|1.41|2.82 54 1.8] 3.5] § 5 (5.4 |7.8 |4-16
2 .42 .313 |2.34|1.33|3.1 74 1.7| 2.8| § 4 |2.6 |6.7 |4-21
28| .36 «311 |4.09|1.55|3.1¢6 58 1.6| 1.6| § 4 |2.9 |4.1 |4=-20
~14| .27 .306 |6 1.68|3.2 48 1.4 1.4| § 4 |2.9 |4.1 |4-19
22| .43 .331 |3.05|11.38|3.34 56 2.8| 2.2| § 3 |3.9 |5.8 |[5-43
22| .47 248 |3.27|1.47|4.04 63 1.3 1.4| & 4 |2.2 |3.7 |4-22
«17| .42 .24 5.3 |1.564|4.24 48 .7 - - = |2.§ - 4-23
.12] .28 .238 |7.05|1.902|4.31 38 .8 %= - - 1.6 = 4-24
.21 .64 178 (d4.44|1.44|86.18 57 Sl | - - - |2.5 - 4-27
16| .37 .172 |8.32|1.79|86.33 46 o7 - - - 2.8 - 4=-26
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FIGURE A3-1. Distribution function for Wy The mean value is 3.8 and the

standard deviation is about 1.
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FIGURE A3-2. Distribution function of Hoe The mean value is §.8 and the
standard deviation is about I.



185

§2. EXPERIMENTAL RESULTS FOR SB SHOCKS.

TABLE A-6
Ezperimental resulte for SB shocks
a;_T P,* 6, Ro' i_} u d'Ax Ax Fs In(20x Fe:p :::L
I w? 10%| 10° Fad’ ber
m N/m2| % m m/see| m m
2.5(3.2|1.23 |1.39|1.08)1.07| 111 |16.7|22.1|4.5 2.34 .52 =70
4.1|5.1|1.386 +87| .94(1.08( 143 |17.1 - |6.8 2.66 «81 d=-41
2.2|32 |1.18 |3.4 |1.38|1.08 63 7.6 - 8.8 .66 4 6-31
3.8)2 1.14 |1.77)|21.32|2.89 83 (13.9|11.1)4.2 2.38 85 4-2
2.2|2.¢|1.14 |3.124|2.40|2.009 71 |10 8.611.8 1.31 .45 4-3
2.3|3.4|1.19 |3.24|21.18|1.08 71 |12.3 = 1302 .38 .34 5=-2
2.2(3.4|2.24 .85|1.05|1.10| 125 |12.6|28.5|4.1 2.78 .63 4-1
4.5| .7|1.34 |3.46|1.30|1.120 75 |19 - |3.7 1«18 od §=-22
4.5| .7|1.834 |1.3 |21.04|2.20| 122 |22 17 8.2 2.62 .63 §=23
1.2)|22 |1.06 |3.79|1.43|2.11 62 (11.3]| 9.3|2.5 .80 «82 §=31
1.2)|1.2|1.03 |1.98|1.36|1.12 76 |10.8| 8.1(3.8 2.46 .67 é=2
1.2)11.3|1.03 |3.48|1.45|1.12 6é 2.8) 6.6|3 1.78 .64 4=-3
2.3(3.5|1.16 (3.6 |1.20]|1.12 83 8.8 = &2 1.54 .3 §-6
3 1,25 (1.72)|1.09|1.12 80 2.8| @ 4.4 2.56 .4 5=8
33 |11.10 (1.4 |1.22|1.13 91 7.83| 6.4|3 2.68 .78 4=-32
5.6(21.29 |1.47|1.01|1.14| 119 |14.3 = 7.8 2.7 .33 d-44
5.9|1.29 |2.43(1.20(2.24 84 |15.1 - 7B 2.41 37 d-45
4.4/2.128 |4.69|2.82|2.215 &5 8.2 - |@& 1.47 .33 4-46
5.8|11.12 |2.79)|1.15)|2.15 78 |l0.9| 7.2|5.8 2.87 .43 4=-45
3.7|2.12 |4.68)|1.81|1.15 58 8.3 - |3.4 1.47 .33 4-46
2.0|1.08 |2.9 (1.27|21.15 89 5.2| 6.8|2.5 2.33 .5 -5
3.2|1.0/ |3.4 |2.85|21.15 83 5.1 - |2.4 2.15 .8 4=4
1 1.27 |3.47|1.14|2.18 75 |15 - |8.8 2.18 «32 5=24
2.2(1.8|1.48 |1.43|1.36|1.16 24 6.6 .4(3.1 2.7 .78 -6
2.681|8.7)12.13 |1.689|1.06|2.18 8¢ |11.2 .6)2.81 2.87 .47 d-d4
2.2|39 (1.212 |3.18|1.35|1.1¢8 a1 2.1 - |3.32 2.27 .42 6-32
1.2 |28 .984|1.59(1.26(1.17 82 |10.7) 98.8|4.2 2.78 .88 4-32
2.3|3 1.08 |1.12|2.0 |1.18| 1121 |11.1)| 8.8l6.2 2.82 45 §-7
1.2|1.6( .87 |3.23|21.32|1.18 §7 §5.7| 4.8|3.2 2.38 .82 4-5
1.2)|1.8( .96 |3.79|1.28|1.18 56 6.7 6.8 |3.8 2.20 .8 44
4.5 .7|2.87 |21.2 |1.03|2.28| 228 |17 13 8.2 2.8 .48 §=25
1.2|22 -99 |3.56|1.4 |1.19 52 8.8)| 7.3|3.8 2.32 .54 5-32
2.8|4.4|1.09 |5.7 |1.21|2.19 50 ) - 2.8 1.47 .2 5-9
2.318.7|1.09 |3.3 |1.28]|1.29 66 8 = 15.8 2.41 86 §-8
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TABLE A-6 (continuation 1!

c:r p,* 8, R x ;_1_ v dﬂx Ax 3 ¥, In(20x Fe:cp ke :::_
1 2078 10%| @ 10%| 1202 Fad’ 10% | ber
L
N/m?| % m m/seec| m m )

§.3|2.22 |8.6 |1.28]|1.2 76 |11.9 - 17.2 - 2.34 .28 7|4-47

5 1.22 |2.46]1.22|1.2 86 |13.8 - |8.¢6 — 2.61 .68 7|4-48
32 ||[1.0¢ |2.75|1.32|2.28 ae 8.6| 8.6|4.8 |5.8 2.74 .68|110|4~34

1 .97 |1.69)2.42|2.281 81 8.1| 6.5|4 4 2.78 .64 7| 4=-6
4.9|1.22 .69| .91|21.21| 167 |16.7|13.3|8.2 |8.7 2.91 .46 7|4-48
40 |1.04 |2.82|21.31|1.22 62 6.8 - |87 - 2.59 .611110]|6-33
3.4|1.05 |4.28|21.36|1.22 &7 8.5 - 5.3 - 2.29 .38 714-47
3.8|1.06 |2.85|21.28|1.22 a8 8.6 -~ |&.8 - 2.57 .48 7| 4—48
3.3|1 3.4 |1.24|1.22 82 4.3| 6.2|3 6.4 2.4¢6 +45 7|4=7

3 1.01 |2.92 |1.26]|21.23 68 4.8 - 13.3 - 2.58 .62 7|14-8
2.4|11.01 |2.04|2.3 |1.23 77 S.4 - |8.3 - 2.72 .82 7| ¢4-8
3.3|1.08 .81 .96(2.23| 119 |11.9| 8.3|6.9 |65.7 2.9 .04 7|1 4-49

7 1.27 |2.78|2.11|2.23 74 |11.8 - |8.2 - 2.61 .22 7|5-11
5.2|1.27 73| .93|1.23| 134 |13.4|10.8|7.8 |7.2 2.91 | 7|6-12
o i 8% 3.48)|11.37|1.2¢ 75 |11 22 7.8 10.3 2.51 .42 1|6-26

18 .92 |1.98|1.37|1.2¢6 91 |111.8|10.9]|6.3 |8.8 &l T .82|110|4-34
1.8| .89 |3.8 |1.20|1.28 57 4.5| 4.5|3.4 |5.2 2.48 « 66 7| 4-7
.8]1.2 1.23(21.2 |1.26| 122 |12 12 7.8 ||B.7 2.86 .52 1|56-27
1.7 .8 3.24(1.31|1.27 60 S5.4| 4.2(d.1 |4.5 2.6 .61 714-8
3.7|2.02 |8.47|2.1 |2.27 83 8.1 - 16.8 - 2.57 .87 7|8=-11
6.3|1.316 |8.82]1.19|21.27 69 5.6 - | 4.7 - 2.66 .3 7|4-52

5 1.168 |2.29|1.22|1.28 8s 6.8| 6.8|6.2 |6.9 2.75 .38 7|4=-51
4.1|1.02 |6.12|1.28|1.28 a7 5.7 - |d4.3 - 2.08 18 7| 5=20
2.8|1.02 .8 |1 21.28| 115 89.2| 8 6.8 |6.1 2.9 .53 7]|6=22
«2|1.4]| .9 2.28|1.35|1.28 70 5.6| 4.8|3.9 |4.56 2.78 .67 7|4-9
2123 .92 |3.18|1.36|1.28 51 7.7| 8.2|6 8.8 2.64 .528|110|5-33
«113.7|1.18 .8111.09|1.29]| 139 8.3(11.4|4.7 |7.8 2,92 .48 7|4-60
.5|4.1| .89 |d4.12|1.25|21.31 58 6.8 - |18.2 - 2.54 .4 7|4-562
44 .98 |2.85(1.28|1,31 80 5.4 7.1|83.8 .9 2.69 .61)1110|5-34
3.3| .99 |2.68|1.29)|1.32 74 7.4| 5.112.1 8 3.78 .48 7|4=-561
(] 1.02 |1.08| .96|1.33| 128 |12.8) 7.7]|8.8 od 2.8 .45 7|16=186
§5|6.8|1.02 |2.58|1.12|1.34 77 7.7| 6.4|7.3 7 2.73 .3 7|5=-14
31 .9 2.04|1.32|1.34 88 7.98| 8.8|565.68 |8.3 2.81 .78|110|4-36
1|3.5|1.08 .74]11.13]1.37| 128 6.4110.3]23.8 .8 2.94 .5 "1 4=-53
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TABLE A-6 (continuation 2)

- cmr pox 30 gg_ v Ax V4 In(20x F exp.
E e 10% Fad e
m N/m%| % m/sec m
4.1|4.7|2.09 |1.88 1.37 88 & 8.3 2.84 =54
4.1|14.3|1.08 |2.67 1.37 85 - - 2.78 4=-585
2.3|4.4| .95 |6.4 1.37 48 - - 2.32 §=13
2.3|3.3| .953|1.3 1.37) 109 6.6 6.8 2.89 5=15
2.3|8.1| .962)|3.3 1.38 65 - - 2,72 5=14
2.2(2.8| .87 |3.2 1.38 58 . 5.6 3.78 4-10
1.2|25 .86 |3.36 1.4 52 ol 6.5 2.72 5=34
2.2|2.5| .87 |2.01 1.41 76 - 5.8 2.84 4=11
2.6(2.3| .92 .87 1.42)| 116 . .3 7 2.88 4=-53
2.5|3.1| .92 |2.2 1.41 85 . .8 2.8 2.83 4-54
2.5|2.8| .92 |3.04 1.42 69 8.2 - - 2.78 4-55
2.2|2.6| .87 .83 1.42| 119 9.5| 8.3 7 2.84 4=12
4.5 1.33 |§.38 1.43 52 6.3 - 2.56 5-16
4.5 1.13 |2.6 1.43 76 7.6| 6.8 -l 2.8 5-17
4.5(6.8(1.13 .87 1.43)| 126 6.3 . 7.9 2.8 5-18
1,221 .783|2.3¢6 1.48 66 4.9 - - 2,84 4-36
1.2|2.8| .76 |3.88 1.48 5d 4.8 . . 2.74 4-10
2.3(4.8( .88 |¢6.8 1.6 44 4.4 - 2.47 5=16
2.3|83.8| .89 |3.34 L 63 d.4 6.8 2.77 5=-17
2.3|3.7| .89 |1.12 1.561| 1098 5.4 . 6.4 2.893 5-18
1.2|11.5| .76 .96 1.51| 118 7 . 5.4 2.94 4-12
1.8(1.4| .7¢ |35.38 1.83 70 4.9 4.9|4 5.8 2.886 4=-11
2.2|486 .766|1.89 1.54 81 7.8| 8.2|§ 0.1 2.88 4-38
4.1|14.9| .954| .88 1.6 143 7.1| 7.1|8 7.4 2.85 4=61
4.1|4.7| .953|2.7¢ 1.61 88 §.3| 6.1)|6 8.4 2. 84 4-58
2.2|2.7| .82 |3.88 368 58 4.7 4.4|6 6.5 2.79 5-39
2.2 .82 [1.869 1.62 83 5.8 5.8|8. 7.1 2.91 5=40
4.5(5.9| .999| .88 1.65| 134 4.7 §.3|4 6.1 2.96 5=-21
4.5(16.2| .997|2.47 1.67 78 4.7] 3.9|5 € 2.87 §-20
2.6|3.2| .79 |2.31 1.68 88 8 6.4 7.8 2.83 4-60
2.618.2| .786|1.07 1.69| 100 e 5 5.7 2.94 4-61
2.5|3.1| .78 |3.35 1.72 62 6.2| 3.7 5.8 2.83 4-58
4.5(8.3| .997|4.65 1.72 56 3.9| 3.4 e ¢ 2.75 5-19
2.2(3.4| .74 |1.8 1.74 81 3.2| 5.8 7.8 2.92 4-13
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TABLE A-6 (continuation 3)

;E? P, s, R x F;_J = d,x J\: In(20x r : e=P;
£ o10m P 10%| 10 Faa g::
N/m2| % m m/sec| m m

2.1|8.7| .78 |8.60]|1.3 |1.74 56 2.8| 3.4| 3.8 2.81 .6 4=-15
2.2|8.2| .73 |2.8 |1.32|1.77 60 3.3| 3.8| 4 2.87 .68 =14
2.3|3.¢4| .749)|3.18)|1.34|1.77 64 2.8| 2.68| 3.2 2.84 .56 5-20
2.3|3.8| .76 |2.17|31.07|1.81| 108 4.3| 4.3| 4.6 2.86 .61 5=-21
1.2]27 .647|2.36|1.3 |1.81 75 é & 6.3 2.89 .78 4-38
2.3|4.8| .75 |6.2 |1.33)|1.81 dé 2.7| 2.7| 4.3 &7 .48 §=-18
l.2]|12 .63 |1.91]11.18|1.83 88 4.3 4.8] §.1 2.81 .79 4=-13
1.2(21.8| .62 |3.3 |1.38|1.83 §7 2.8| 2.3| 3.6 2,85 e | 4=-14
1.2(2.2| .§8 |1.82|1.15|1.86 78 4.7 4.7 §.7 2.91 .62 5-40
1.2|1.9| .58 |4.14|1.48|1.87 52 4.1 3.8| 5.4 2.8 .83 6-38
1.1|2.1| .62 |4.58|21.37|1.92 50 3 L 4.4 - 2.8 .62 4-15
2.2|52 .63 |1.81|2.2 |1.838 86 4.3| ¢ 4.7| 8.5| 2.82 - 78 4-40
4.1(¢.7| .818|2.10(1.36|1.96| 100 5 & 5.7 7.8 2.8 .68 4=63
4.1|4.4| .814|2.86|1.48(1.87 789 4 d.4| 4.6 6.8| 2.88 .43 4-64
2.2|3.3]| .69 |1.87)|1.19|1.98 88 3.5| 8.6| 4.3| 6.7| 2.982 .88 5-42
2.2|3 .69 |3.91(1.48|2 g2 3.1| 3.1) 4.1| §.8]| 2.84 .6 5-41
2.8|3.8| .65 (1.4 |21.1712.08 s 3.6 3.5 ¢ §.2| 2.95 .73 4-62
2.5|2.2| .66 |3.6 |1.6 |2.11 658 2.9 2.98| 3.6| § 2.8 .6 4-64
2.2|3 .6 1.04|1.13|2.13| 122 4.9| §.5| § 7.4| 2.8¢6 .8 4=-17
2.5|3.1] .65 |2.76|1.45(2.17 a6 2.6| 2.6| 3.2| 4.5| 2.8 .63 4-63
2.2|3.8| .6 2.38|2.21)2.2 88 3.4 4.1| 4.8| & 2.82 .76 4-16
2.2|8.8| .86 3.37|2.32)|2.25 60 3 3 d4.5| 6.4| 2.88 .73 4-18
1.2)|30 .511|2.36|1.29|2.33 77 3.8| 4.6| 4.8| 8.7| 2.82 .84 d4-40
1.2)|2.2| .49 |4.13|1.41)|2.33 53 2.8 2.4| 4.1| 5.4 2.886 .83 ¢4-18
1.212.2| .49 |2.93|1.28|2.34 62 3.7| 3.1| §.8| 8.5| 2.8 .78 4-16
1.2|2.6] .44 |2.29|21.17|2.38 70 3.5| 8.8| §.5| §.7| 2.83 .64 5=-42
1.2|1.8| .49 |1.28|21.21(2.38 88 3.9| 3.9| 4.4| € 2.8¢6 .8 4-17
1.2|2.3| .443|4.56|1.45]|2.48 49 2 2.5| 3.2| 6.9| 2.85 .57 5-41
2.21|3.8| .5% |2.48|1.11]2.582 93 2.8| 2.8| 3.6| § 2.85 .74 4-21
2.2|8 .53 |2.38(1.29|2.64 78 4 3.6| 5.8| 7.2| 2.93 .82 4-20
2.1|3.6| .53 |3.49|1.39|2.56 58 2.3| 2.9| 3.6| &.6| 2.88 .78 4-19
2.2|3.8| .55 |1.83|1.17|2.62 88 2.6| 2.6| 3.6| §.1| 2.84 g d S=-44
2.2)8. .55 |3.76|1.47]2.863 57 2 2.3] 3 5.2| 2.88 s 5-43
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TABLE A-6 (continuation 4)

P
z EIT P 8, R_x Ei v dﬂ" hx W | W, In(20x ngp vy ¥ |ezp.
f -5 3 o 2 2 F_J) 6 | num=
10 10 10 10 ad 10 3
2 m?

m N/m % m m/aec m m P
1.112.1| .42 |4.41]|1.5 |2.72 48 2.4 3.8| 5.9| 2.87 .83 714-19
1.2|2.1| .42 |1.8 |1.2 |2.9 85 3 3| 4.2| 8.8| 2.92 .7d 7|4=21
1.2|2.1| .42 [3.02]|1.4 |2.92 85 3.2 6| 4.9 5.9 2.87 .78 7|4=-20
2.2(4.5| .46 |2.77|1.24(3.04 70 2.8 . 4.7| 5.3| 2.93 .78 7|4-23
2.2|¢ .38 |2.77|1.36|3.47 67 2 3.8 7 2.86 .81 7|4-26
1.2|2.4| .36 |2.26|21.3 |3.8 66 2 3 3.8 2.8§ .8 7|4-22
1.2|3.3| .31 |2.26|21.24|3.87 75 T8 3.3 7.2 2.85 .62 7|6-44
1.2)12.8( .31 |4.63|21.43|3.71 53 2.4 " 4.5| 7.6| 2.88 .57 7|16-43
1.212.6| .35 |3.64]|2.36|4.05 83 1.8] 1. 3.5] 5.9| 2.92 + 55 7|4-23
number 6.8

|
13_ |
1 v Ee=dm
a-‘ l
4_ .
1 [ 2.7
24
3! . 41 L 51 ?
8-
num- | T=~2m
ber? P
4]
R
2.
T U | R S T . e | [jl*
1 2 3 4 5] ) iz 2 3 4 8 g 7 8 9
-—-.-W's i WJ

FIGURE A3-3. Distribution function for L

The mean values are indicated.
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| A T '

number
6
d
2
6.2
12 |
T '
8.1 num- 10 Ta2m
num- : ber T 1
berT % 8
8- i z=Im g - I
|
4 J 4 - ]
2 - l 2 - i
v i L1 L
3 4 ] 8 P 8 g

10
¥,

FIGURE A3-4. Distribution function for w‘. The mean values are indicated.
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§3. EXPERIMENTAL RESULTS FOR SC SHOCKS.

TABLE A-7

Ezperimental results for Sn shocks

+* d x exp.
ol o IR R B ol E R 7 B I = O e I e
£l 107 10%| "o T+ 10 102 |ber
m N/m%| % m m/see| m |see a2 sec
sac
1|8 1.39 |3.77|1.19|2.08| 1.08|1.09 - - 23| .69 711.1)|4-68
.115.68|2.39 |2.58(1.13|2.08| 21.05|1.08 - = 18| .83 711 4-89
.2187 |1.22 |3.02|1.83|2.07| 1.08|1.07 gé .88 9(4.5 (110 .1|5=-30
2,5|8.9(1.23 (4.29|2.24|2.07]| 1.00]|1.1 §8 |1 16| .§ 7|1.2|4-68
.5|3.6|1.23 |2.84(21.28|1.07| 1.08|1.07 70 .88 12| .54 7|1.1|4-69
«S(7.4|2.44 |¢.17)2,25|2.07| 1.08|1.1 86 |2.1 33(1.22 711 §=1
1|6.1(1.368 |3.67|1.17|2.08| 1.07|1.08 - - 20| .93 711.1|4-43
4.1|6.2|1.36 |3.7 |2.127|1.08| 2.07 1.08 - - 20| .88 7|2 4-43
1.2|21 |1.09 |3.35|1.37|1.08| 1.07|2.08 63 .8 13(6.88(110]| .1|5-30
.3|3.8|2.19 |5.05|21.22|2.08| 2.2 |2.122 56 .81 24| .76 711.2|5=1
4 1.19 |4.19|21.22|1.09| 1.08|1.1 58 29| 15| .61 711.2|4-43
4 1.18 |4.22|1.22|1.09| 1.08|1.1 69 |1 15| .61 7(1.2|4-43
7.7|1.4 d4.48(1.15)|1.1 1.09|1.1 65 |1.85| 30|1.38 712 §5-4
«3|d4.2]11.18 |5.48|1.22|21.22| 2.22|1.123 61 11.53| 30|1.17 711.2]|5-4
num-
ber ’ .88 -5
5} ,/“L='7x10 m2/sec
& 4 H
4- .
2 - uI=1.1x10-‘m2/saa
' [] []

FIGURE A3-5. Distribution function of W, for v,=.7x10 %m?/sec and
vz:1.1x13’4m2/5gc. The mean value for Wes Wg=.88, is indicated for
vzz.?X10_5m2/aea.
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§4. EXPERIMENTAL RESULTS FOR THE SMOOTH BACK SIDE OF SB SHOCKS.

TABLE A-8
Ezperimental results
z p_* R x| P1 dp Vx| Tx exp.
) ? i;"5 30 03 E g dB v Hs 3 2 Fea:p num=
10 10 103 10 10 ber
m N/m2| % m m/esec m |sec _m? sec
gec
1.214.5(21.121 |1.4 |1.33|1.06| 114 |1.02 9| 2.81| 30| .33| .68|6-1
2.6|3.2|2.28 |1.39)2.08|2.07| 111 |1 9 .98 7l .81] .58|&=20
4.1|5.2(1.36 97| .94|2.08| 143 |1.43| 10| 1.3 7l 72| .31|4-41
2.2|32 |1.18 |3.4 |1.38|1.08 83 73| 22| 7.2 |110] .12]| .4 |6-32
1.2|5.5|1.08 |3.63|1.56 |1.09 63 .63 10| 1.89| 30| .42| .59|6-2
1.2|5.4|1.08 |2.64|1.421|21.08 76 .68 9| 2.2 3a| .37] .6 |8=3
1.2|4 1.08 |1.42|21.42|21.08 88 78 8| 2.68| 30| .37| .68|6~4
2.3|3.4|21.19 |3.24|1.18|1.08 71 .78 11 .64 2122 .34 |5-2
4.5| .7|21.34 |3.48|2.3 |1.1 75 |2.26| 30 .23 1(9.4 .4 |6=22
4.6| .7|2.8¢ |2.3 |2.04]|1.1 121 |1.8 10 wd? 1|6 .53|56-23
2.8 .4)2.22 (|2.9 |1.33)]1.2 81 .48 é .07 118.56 .7 |4-28
1.2|22 |1.08 |3.79]|1.45(1.11 52 .62 12| 8 110| 12| ~62|5=-32
1.2|5.8|1.04 |3.63|1.48]1.12 62 .61 10| 2.17| 30| .41| .58|6=5
1.2|5.8|1.04 |2.58|1.36|1.12 78 .64 8| 2.44| 30| .34| .63|6-6
1.2|4.8(2.04 |1.58|2.37|1.12| 104 .63 6| 2.37| 80| .36| .71|6=7
2.3| .4|1.12 |4.15|21.38|2.12 63 |1.88| 30 .24 119.8 .83 6=-22
2.3| .¢|2.12 |1.55|2.22)2.12)| 108 |1.22]| 12 « 33 1|6.8 .68|6-23
2.3|3.5|1.18 |3.6 (1.2 |1.12 83 .88 14 .84 711.1 .3 |§=§
2.3|3 1.15 |1.72|1.08|2.12 80 8 10| 1.1 7| .88| .4 |5-6
2.2133 |1.1 1.4 |21.22|2.13 81 46 5|10.4 |210| .08| .78|4-32
4.215.6|2.20 |2.47|2.02|2.24| 218 |1.55| 13| 1.89 7] .81 .33|d-44
4.1|6.9|2.20 |2.43|2.21 |2.14 94 |2.23| 12| 1.06 7| 98| .27|4-4§
2.5|4.4|2.12 |4.69|2.21|1.18 55 77| 14 .86 7l1.2 .33| 4-48
2.5|8.9|1.12 |2.79|1.16|1.1§ 73 .73 10 .88 711.1 43| 4-45
2.6|3.7|2.12 |4.68)|1.21|1.16§ 56 7] 14 .86 7|1.28 .33 |4=-46
2.2|2.9|2.08 |2.9 |1.27]1.15 68 .48 7 .52 7]11.8 .5 |d=6
2.213.2|2.07 |3.4 |1.25(2.158 63 .44 8 .81 7]12.2 .5 |d=4
2.8 .¢|2.08 |2.7 |2.20|2.28 83 ) 12 o1 l|8.2 .58|4-31
4.5]|1 1.27 |3.47|1.14|1.28 785 [2.213| 15 o g 117.2 .32|6-24
2.2(1.8|1.08 |1.43|1.36|21.18 84 .85 9| 1.16 711.6 .78 |4-6
2.6|3.7|1.123 |1.69|2.06]|1.1¢6 86 .78 8| 1.09 7| .88| .47|4-44
2.2|39 |1.11 |3.18|1.35]1.18 61 .61] 10| 8.4 |210] .1 .42|5=32
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TABLE A-8 (econtinuation 1)

ad
cz'r pf; ar:n Ro; :2 o dB FB_“ "u vl; ! ‘3 FGE‘P :":L
| 10 105 " 10% 10%| 10 et
m2
N/m2| % m m/sec| m |eee sea| %9°

2.3|38 1.08 |1.12]|1 1.18| 211 |1.82| 11|1.83 7 78| .45|5-7
1.2|1.6| .87 |3.23|2.31|1.18 §7 .4 7| .68 7| 1.4 .62]|4=5
é.6( .7|2.27 |21.2 |1.03|1.18| 128 |1.4 11| .82 1| 6.9 .46|5=25
2.3| .6|1.06 |4.2 |2.21|1.18 62 - 18] .17 1| 8.1 .48|565-24
l1.2|22 .99 |3.56(1.4 |1.19 52 .88 12|11 110 .12 .54|5-32
2.3|4.4|1.09 |5.7 (21.21(1.19 50 |21.18| 23|1.34 2 1.3 .2 |5-8
2.3|8.7|1.09 |13.3 |2.16(21.19 66 |21.18| 18|1.562 71 1.1 .35|6-8
4.1|5.3|2.22 |3.6 |1.29|21.2 75 |1.34| 18|1.08 7l 2.3 .23|4-47
4.1|6 1.22 |2.48|2.22|1.2 86 |1.12| 13|1.08 71 2.2 .31|4-48
2.2(32 |1.04 |(1.75(1.32|1.2 86 .52 6| & 110 od .68|4-34
1.2|5.7| .98 |3.8 |1.8%8[2.3 61 .81| 10|2.45| 30 .43| .58|6-8
1.2(4.3| .98 |2.71|1.45|2.2 73 .68 8|2.46| 30 .38| .61|6-8
2.3 4(1.06 |1.458(1.2 (1.2 102 .82 9] .18 Il 8.7 .68)|6-25
1.2(4.3| .98 |21.56|2.44|2.282 83 85 7l2.8 30 .38 .7 |6-10
1.2|1 «-87 |1.58|1.421)2.82 81 .65 8| .78 7] 2.8 .64|4-6
4.21|14.9|1.22 .68 .981|1.21| 187 |1.33 8|1.57 7 85| .46|d4-49
2.2(40 |(1.04 |2.82|1.31|1.22 62 .49 8l8.4 (110 i | .51|6-23
2.5|3.4|11.05 |4.18|1.36|1.282 57 61 8| .55 71 1.8 36| 4-47
2.5|3.3(|1.06 |2.85|1.28|1.22 6é .58 8| .68 7] 1.8 .48|4-48
2.1)13.3|2 3.4 |1.24|2.22 62 .43 7l .58 7l 1.8 +45|4-7
2.2 .4)| .08 |2. 1.29|2.88 83 42| 10| .11 1| 8 64| 4-33
2,2 1.01 |2.9 [(1.26]|2.23 69 .48 7| .68 7] 1.8 .52|4-8
2.2 4|1.01 |2.04|2.3 [1.23 77 54 7| .68 7] 1.3 -62|4-9
2.5 3|1.06 .81 .95|1.28| 219 .85 811.7 7 72| .64|¢-48
4.5 1.87 |2.79|2.22]3.28 74 (1.47| 20(21.92 7l 2 .22|6=-11
4.8 .7|2.2 3.48(2.37|1.24 75 |1.2 16| .16 1110.6 .42|5-26
1.2|18 <82 |1.98|1.37|1.26 a1 .66 6|12.58(110 will .82|4-34
1.1|1.8| .89 |3.8 |1.29|2.26 57 .4 7| .58 7l 1.3 .56 |4=7
4.6 .8)2.2 2.88|2.8 (|2.28) 223 |2.1 10| .16 1| &8 .62|5-27
1.2|1.7| .8 3.24|21.32|121.27 80 .36 g| .58 71 1.4 .61|4-8
2.8(3.7|1.6 3.47|1.1 |1.27 83 ~94| 15]1.381 2l T.X .37|§-112
4.116.3|1.1 3.52|1.19|1.27 89 .83| 12|1.038 rl| I (| .3 |4-62
d4.116 l.1 2.28|1.22]1.28 85 .68 8| .78 21 3.8 .38|4=-51
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TABLE A-8 (continuation 2)
¥ F;T Pf; Bo R"; ? 4 dp i—B" g vz; ”2 Foap exp-
1 20 7l 2P 10°| 10 o
m N/m%| % m m/sec| m |esee Y gee
gec

2.5|4.7|1.02 |6.22|2.28|1.28 47 |1.04| 22| 1.33 2 2 d .19|6-20
2.3|2.8|1.02 .8 |2 1,28| 1158 .02 8| 1.37 7 .8 .53 |6-i2
4| .98 |4.268|1.47|2.28 a0 .8 15 . 1112 .48|5-2¢6

1.4]| .9 2.29(1.35)|1.29 70 .42 (] .62 7] 2«4 «87|4=-8
.2(23 .92 |3.18|1.36|1.29 51 .51 10|11.4 (120 od .52|5-33
3.7|1.16 .81|1.09|2.29| 138 .87 7 .87 7 .95 .46|4-50
.8 .28 |2.6 |2.28)|2.8 102 |1.6 10 2?7 3 eed «87|5—-27
.54.2| .99 |¢.22)|1.25|12.31 58 .4 7 .68 7| 1.3 .4 |4-52
2|dd .88 13.06|1.28|3.31 €0 .42 7| 8.42|110 00| .61|56-3¢
6|3.3| .99 |2.68|1.28]1.32 74 . 1 5 44 721 3.8 .48|4-51

(] 1.02 |2.03| .96|2.38| 128 |1.28| 10| 1.83 7 73| .45|5-15
§|6.8|1.02 |2.58|1.1211.34 77 |1.83| 16| 1.76 7| 1 .8 |6-14
31 8 2.04(1.32]1.34 88 .d4 5|10.4 |110 d .78|4-38
3.5|1.09 o 78 21.28(2.87| 188 .64 5 .72 n 2 .6 |4-563
4.711.09 |1.88|1.21(1.37 89 v bl 8 .89 7l 2.8 .48 | d=-54
4.311.09 |2.87|1.37|1.37 85 .68 8 .68 7l 2l .42)|4-55

4.4 .85 |6.4 |1.28|1.37 a6 .8 13 .88 7] 1.3 +83|86§=13
3|3.3| .963)|1.3 |1.03|2.37| 109 .76 7l 1.2¢ 7 .85| .58|56-15
2.3]|3.1] .952|3.3 |1.2111.38 65 .52 8 o 7] 1.8 .41|6-14
2.2|2.8| .87 |3.2 [1.39|1.38 59 .4 7 87 71 2.6 .52|4=-10
1.2|26 .88 |3.36|1.34|1.4 52 B fo] 8(10.3 |110 i .62|5-34
2. 2.5| .87 |2.01|1.31)|21.41 76 .38 § .56 21 2.4 .8 |4-11
2.6|2.3| .92 | .87|2.20|2.42| 226 | .47| 4«| .87 7| 2.2 | .7 |4-53
.5(3.1| .92 |2.2 |1.28|21.42 85 o« S -] .87 7] 1.& 57 |4~-54
.8|2.8| .92 |3.04|1.45]|1.42 69 .34 5 .4 2l 2o .52|4-865
| 8. 8| 87 .83|1.06|1.42| 118 .36 3 -3 7 .9 .768|4-12
.5|89 1.13 |5.28|1.15(1.43 58 |1.26]| 24| 2.238 il e .23|6-18
6|7 1.13 |2.8 |2.12]|1.43 78 .81 12| 1.48 73 «.4 |§-17
.5|6.8|1.13 .87| .88|1.43| 128 |1.28| 10| 2.34 7 .61| .47|5-18
2| 4| .85 |2.9 |1.32]|1.44 71 .43 (] il 1| 8.7 o7 |4=35
-2]32 .783|2.56|1.39|1.48 é8 .28 d| 8.6 |110 .11 .8 |4-38
.2|1.68| .76 |8.68|1.46|1.48 &4 .36 7 .58 7] 17 .62|4-10
2.3|4.8| .88 |6.8 |1.25|1.6 44 .81] 14] 2.1 7] 1.2 .33|5-16
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TABLE A-8 (continuation 3)
s |35 Pf; bo Ro; z_J Yol ;‘.3;, “6 vz; TM'z Teap :::—-
0 10 10 2 ig® 10%| 10 e
m N/m?| % m m/sec| m |see 2 sec
gac

3 .88 (3.34|1.22|1.51 63 «B88 20| 1.1 71 28 «44)|5=17

3 .88 |1.12| .96|2.61| 108 |1.08| 10| 2.3 7 72| .61|6-18
2|1.5| .78 JH88|2.22|2.61| 116 .81 4| 1.3 7 87| .83|4-12
-2|1.4| .76 (2.3 |1.37)|1.53 70 .32 § .58 7] 1.6 .7 |4-12
+2| .4| .86 |1.5 |1.08|1.53| 102 .41 s vl 1| 6.4 .84|5-386
2|46 .766(2.99(1.22|1.54 81 « 87 3| 7.4 |110 .08| .74|4=-38
2l .&§| .88 |2.3 |2.26)|2.66 86 .48 5 «11 1| 7.3 .82|5=38
4.9| .95¢4| .88|1.03|1.86 143 .57 4 .79 7 .84| .57|4=-61
4.1|14.7| .853|2.76|1.38|1.61 88 .83 ] .62 71 1.5 .56 | 4-58
2.212.7| .82 |3.66|1.49|1.62 59 - 6 .81 | .66)|5-38
2.2|3 .82 |1.69|1.17|21.62 93 37 4 .66 71 1.1 .85|5-40
2.2| .4| .78 |1.2 |l.08|1.68| 108 .32 4 o 1| 8.2 .73|6-38
4.5|65.9| .999| .88| .87)|1.65| 134 .67 6| 1.22 7 75| .63|6-21
4.5|6.2| .997|2.47|1.22|1.67 78 .39 & .82 7l 1.2 .48|6-20
2 «6] .87 |2.4 |1.21|2.87 71 .28 4 .08 1| 8.1 .64|6=-37
.613.2| .78 |2.81|1.33|1.688 88 .36 5 .8 721 1.4 .6 |4=60
3.2| .786|1.07(1.1 |(1.68]| 100 .4 4 .63 7 .96 .48|4=-61
§|3.1| .78 |3.35)|1.47|1.72 62 .31 § .6 7 2.7 .62|4-59
4.518.3| .997|4.63(1.21|1.72 56 .87| 18| 2.37 7l 2.8 .4 |6-18
2.2|8.4| .74 (2.8 |2.212|2.74 81 .24 3 .63 7| 2 72| 4=13
2.2|8.7| .73 |3.88|21.3 |2.74 56 -l 3 .37 7| 1.3 .8 |4=15
2.2|8.2| .73 (2.8 |1.31|1.77 60 18 3 .42 7| 1.4 .85|4-14
2.3|8.4| .749|3.28|1.34|1.77 64 .32 5] .56 7| 1.4 56| 6-20
2.3|3.3| .75 |1.17|1.07|21.82| 108 .54 §| 1.08 7 .81 .681|6=-21
1.2|27 .647|2.36(1.3 |1.81 75 .3 4| 8.7 |110 .08 .75|4=-38
2.3|4.6| .75 |6.2 |1.33|1.812 46 .38 8 .8 7] 1.4 .48|6~-19
1.2|2 .63 |1.91|1.18|1.83 a6 «+223 3 .58 71 1.2 .78 |4=-13
1.2(1.8| .62 |3.3 |1.38|1.83 57 o 4 3 .41 7| 1.8 71| d=14
1.2)8.2] .58 [21.83|1.25|21.85 78 .32 d wZd 7| 1 .682|5-40
1.2)1.9]| .58 |d4.14|1.46|1.87 52 .81 6 .56 2l - .63|6=39
1.1(2.1| .62 |4.58|2.37|1.81 50 .16 3 «35 7 2.8 .62|4-15
2.2|62 .63 |1.81]|1.2 |1.83 88 .28 3|10.2 (110 .08| .78|4-40
4.1|d.7| .818|2.18|1.368|1.86| 100 & 5 - 71 1.6 .60]|4-63
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| P

sz B, Ros é v Wy sz Pemp

10 10 10

N/m2| % m m/sec sec aaa| %€
4.1|4.4| .814]|2.86|1.48|1.87 78 5 .8 radl | A .43
2.2|3.3| .69 |1.87|1.19|1.99 88 3 87 7 .2 .68
2.2|3 .69 |3.91|1.48|2 62 4 .42 7l 2.7 .8
2.613.6| .65 |1.4 |2.217)2.08 88 4 .81 7l 2.2 .73
8.6|2.9| .66 |8.68 |1.6 |3.11 58 4 .87 7] 2 .6
2.2|3 <0 1.0412.23|2.13| 122 5 .8 | .8
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1.2 .49 |4.13|1.41]2.33 53 2 .42 71 1.6 .83
Ba:d .49 |2.83|1.28|2.34 62 2 .44 7l 28 .78
1.2 .44 |2.19|1.1712.38 70 2 « 41 .l B R | .64
1.2 .49 |1.28|1.21|2.38 88 2 .56 7| 1.2 .8
1.2 .443|4.56|1.45|2.46 49 4 .47 a2l Ae? .87
2.2 .83 |1.43|1.11|2.61 a3 5 « 57 7 .8 .74
3.3 .53 |2.39|1.29]|2.5¢4 79 § .44 7l 2.8 .82
2.1 6| .53 |3.49|1.39|2.58 58 4 .38 7| 1.6 .76
2.2 4| .56 |3.76|1.47|2.83 57 3 .44 21 2.7 o7
2.3 5| .46 |(2.77|1.24)|3.04 70 K .33 2] 2 .79
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FIGURE A3-6. Distribution functions for Ha from (8.25) for different

viscosities of the liquid. The mean values are alsc indicated.




APPENDIX 4.

THE SHOCK STRUCTURE FOR A CONSTANT VALUE OF Cp-

The equations are:
equation of motion for a bubble

d V=u 3¢, v-u v-u dy
Zly i ly —I{y —| =209y —.,  (43.1)
dn 7] 4(3QOJ U U dn

momentum equation for the mixture

" d?y A dy
y? (1+4aayi——— + 8 ——I +* (I—y)(y—Mgz) +
dn? dn

v-u 5
—;— MO =0 . (A3.2)

The resulting equation for the smooth profile is

d 3C
— [Ty Cy=M=2)] + —-—-——ED (1-y)2(y-M~2)2 =
dn 2 4(3&0) 3
dy
-2a Y — . (43.3)
dn

where yM;z is taken equal to unity. The derivatives in
(43.2) are left out of account, since we consider changes
on the scale of the smooth profile.

We obtain from (43.3)

-2 = oy -2
MO (1 ZGOJ ) Mo 1 2quo g
—M-2)2(1- —M2)2(y-M"2
(1-M J4(1=-y) (1-M_ »=<ily M7 J

20 (M~2+1)
o' o "

in
(1—M;2)3 1-y

= - D n
4(3a )%
)

.(A3.4)

y—M;Z} 3¢

For M§<1+2uo this represents a wave profile in which y de-
creases smoothly from 1 to M;z.
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The shock thickness dc becomes

IGROua
dC v ———‘—23 18 . (A3.5)
3CD(1-M0 )
With ¢,=1.5, R =10 °m, « =0(10"2) and M2-1=0(10"1), 4
/2 [t * S o il

amounts to a couple of meters.
The length of the smooth region of a SB shock cannot be
approximated so easily. A rough estimate is found from
replacing

v-u vV=u v=u

ly —ly — by a (1-y2)y — ,

U U U
where we used the unresisted bubble velocity as a first
approximation. In that case dy is

4R ln20
o)

d o

B (A3.6)

M)
3CD uO(I Mo )

For our experiments dp as given in (43.6) is of the order

of one meter.
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OVERZICHT.

Het doel van het onderzoek was de bestudering van de ver-
schillende schokgolfstructuren bij &&n dimensionale stro-
ming van een mengsel van vloeistof en gasbellen.

Beschouwd is een mengsel met een gasfractie van enkele pro-
centen. De gasbellen hebben plaatselijk allen dezelfde dia-

meter. Deze bedroeg ongeveer 10 °

m. We zijn er vanuit ge-
gaan dat de bellen niet opbreken ten gevolge van een druk-
golf. Ook is er geen massatransport tussen bellen en vloei-
stof. Verder wordt voor de bellen aangenomen dat deze bol-
vormig blijven.

Voor de beschrijving van golfverschijnselen in dergelijke
mengsels kiezen we een model dat een beschrijving met be-
hulp van de continuums theorie mogelijk maakt. Hierbij

gaan we uit van een gemiddelde druk, snelheid en dichtheid.
De middeling wordt uitgevoerd over een volume element van
het mengsel. Dit volume element bevat veel bellen, maar
heeft afmetingen die klein zijn ten opzichte van een karak-
teristieke lengte voor de golfverschijnselen.

We gaan er bij de beschrijving vanuit dat in rust toestand
druk en dichtheid uniform zijn. Deze aanname is met betrek-
king tot de experimentele omstandigheden niet juist omdat
we een druk- en dichtheidsverdeling hebben ten gevolge van
de zwaartekracht.

Het mengsel is een compressibel medium met een compressibi-
liteit overeenkomstig aan die van de gasfase en een dicht-
heid overeenkomstig aan die van de vloeistof. De resulte-
rende geluidssnelheid in mengsels met een gasfractie van
enkele procenten is dan ook laag, lager dan die in lucht.
In genoemde mengsels beschouwen we verschillende typen
schokken. Voor deze schokken worden, net als in de gas-
dynamica, relaties geformuleerd tussen grootheden ver voor
en ver achter de schok, gebaseerd op behoud van massa,
impuls en energie. Met behulp van deze zogenaamde Hugoniot
relaties kunnen we de voortplantingssnelheid van de schok
in termen van bekende grootheden voorspellen. Ook wordt de
structuur, i.e. de druk als functie van bijvoorbeeld de
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plaatscodrdinaat, van deze schokken bepaald. Bij het ont-
staan van een stationaire schok speelt de relatieve bewe-
ging van de gasbellen een belangrijke rol. We kunnen twee
relatieve bewegingen onderscheiden en wel de radiale be-
weging van het gasbel oppervlak en de translatie van een
gasbel ten opzichte van de vloeistof. De eerste veroorzaakt
een zogenaamd dispersie effect op een golf en de tweede
veroorzaakt een relaxatie effect. Verschillende typen schok-
ken kunnen gevonden worden uit evenwicht van de verschillende
effecten. Er is een schok waarbij de structuur volgt uit de
vergelijking voor het evenwicht van niet lineaire compressie,
het belangrijkste niet lineaire effect, en de dissipatie
samenhangende met de volume oscillaties van een gasbel. Dit
resulteert in een schok waarvan de structuur gelijk is aan
de Taylor schok in de gasdynamica. Er is verder een schok
gebaseerd op evenwicht van niet lineaire compressie, dis-
persie en de bijbehorende dissipatie. Dit noemen we een SA
schok. Het dispersie verschijnsel hangt samen met de traag-
heid van de radiaal bewegende vloeistof bij een pulserende
gasbel. Tenslotte kan een schokstructuur gevonden worden

uit een evenwicht van niet lineaire compressie en de dis-
sipatie samenhangend met de relatieve translatie van een
gashel.

De eerste schok kon niet experimenteel aangetoond worden.
Voor niet te zwakke schokken geldt dat voor een SA schok,
bij verwaarlozing van viskeuze effecten samenhangend met

de relatieve translatie, de structuur hoofdzakelijk bepaald
wordt door evenwicht van niet lineaire compressie en dis-
persie. Enige dissipatie is noodzakelijk voor het verkrijgen
van een stationaire schok. De verwaarlozing van viskeuze
effecten samenhangend met de relatieve translatie is gerecht-
vaardigd gedurende een zekere tijd nadat de schok opgewekt
is. Gedurende de experimenten bleek dan ook dat de struc-
tuur van de SA schok veranderde bij voortplanting door een
schokbuis van enige lengte. Deze verandering hangt samen

met de genoemde viskeuze effecten welke na enige tijd ef-
fectief worden. Dit verschijnsel kan beschreven worden in
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termen van relaxatie, overeenkomstig thermische relaxatie
bij schokgolven in gassen. De relaxatietijd behorende bij
de relatieve translatie is de tijd waarin een gasbel met

een beginsnelheid ten opzichte van de vloeistof door vis-
keuze krachten afgeremd wordt tot de vloeistof snelheid.

Een schok waarvan de SA-structuur veranderd is door relaxatie
noemen we een SB schok. Deze schokken treden op wanneer de
drukverhouding van de drukken achter en voor de schok boven
een zekere kritische waarde ligt. Beneden deze waarde ver-
andert de SA schok op den duur in een SC schok waarvan de
structuur bepaald wordt door niet lineaire compressie en
relaxatie.

Uit de theorie volgt dat de relaxatie de golfsnelheid en

de structuur van de golf beinvloedt. Experimenteel was de
invloed van de relaxatie op de golfsnelheid niet te bepalen,
omdat het effect klein is voor mengsels met enkele volume
procenten gas. De relaxatie effecten op de structuur waren
goed te meten.

Na een algemene inleiding wordt in Hoofdstuk 1 het gedrag
van een individuele gasbel in vloeistof besproken. In Hoofd-
stuk 2 wordt aandacht besteed aan de algemene eigenschappen
en de bewegingsvergelijkingen voor vloeistof-bellen meng-
sels. In de Hoofdstukken 3 tot en met 5 worden de verschil-
lende schokstructuren beschreven. Op de invloed van relaxatie
op de ontwikkeling van de schok wordt in Hoofdstuk 6 nader
ingegaan. In de experimenten speelt de zwaartekracht een rol
doordat gebruik gemaakt wordt van een verticaal opgestelde
schokbuis. In Hoofdstuk 7 wordt de invloed van de zwaarte-
kracht en de daarmee samenhangende druk- en dichtheidsver-
deling op de golfvoortplanting onderzocht. In Hoofdstuk 8
wordt de experimentele opstelling beschreven en de experi-
mentele resultaten vergeleken met de theoretisch afgeleide
grootheden.

De algemene conclusie luidt dat de experimenten goed met de
theorie overeenstemmen.
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STELLINGEN

I
De aanname van Levich dat een gasbel als een bol met een
vrij oppervlak kan worden beschouwd, wordt, voor de door
hem aangegeven begrenzing van het Reynoldsgetal, ondersteund
door de experimentele resultaten voor translatie-relaxatie-
schokken.

Levich, V.G. 1962. Physicochemical Hydrodynamics. Prentice
Hall.
Dit Proefschrift.

II
De bewering van Ackeret, dat "solange unsere empirische
Kenntnisse nicht grdsser sind, hat es meiner Meinung nach
nicht sehr viel Wert, die Rechnungen strenger durchzufiihren"
is met betrekking tot cavitatieschokken nog steeds juist.

Ackeret, J. 1930. Tech. Mech. Therm. 1, 63.

III
Het door Parkin e.a.beschreven schokprofiel kan alleen dan
optreden, wanneer de drukverhouding tussen de drukken achter
en voor de schok groter is dan y en wanneer translatie-relax-
atie geen rol van betekenis speelt. y is de verhouding tussen
de soortelijke warmte bij constante druk en de soortelijke
warmte bij constante dichtheid van het gas.

Parkin, R., Gilmore, F., Brode, H.L. 1961. Rand Corp. Mem.
R.M.-2795-PR.
Dit Proefschrift.




Iv
De door Batchelor in 1969 gemaakte veronderstelling, dat de
translatie van de gasbellen ten opzichte van de vloeistof
een belangrijke rol kan spelen bij schokgolven in mengsels
van vloeistof en gasbellen is juist.

Batchelor, G.K. 1969. In Fluid Dynamics Transactions, e.d.
W. Fiszdon, P. Kucharczyk, W.J. Prosnak, vol. IV. Warszawa:
Polish Scientific Publishers (PWN).

Dit Proefschrift.

Vv
In sectie 85 van het boek Fluid Mechanies van Landau en
Lifshitz wordt wel het werk van Kontorovich genoemd, maar,
ten onrechte, niet het werk van Burgers.

Landau, L.D., Lifshitz, E.M. 1959. Fluid Mechanies. Vol. VI.
Pergamon Press.

Burgers, J.M. 1946. Proc. Kon. Ned. Akad. v. Wetensch.

Vol. XLIX, 273.

VI
De aanname van Crespo dat de warmteoverdracht tussen de
gasbel en de haar omringende vloeistof bepaald wordt door
de warmteweerstand aan vloeistofzijde van de gasbel is
onjuist.

Crespo, A. 1969. Phys. Fluids 12, 2274.

VII
De Nederlandse bevolking zal massaal tot actie tegen de
milieuverontreiniging overgaan, wanneer eigendommen, zoals
automobielen, door genoemde verontreiniging beschadigd worden.

VIII
De benaming smartlap voor het levenslied kan in vele gevallen
als geuzennaam opgevat worden.




IX
In een vloeistof-gasbellenschokbuis wordt de toelaatbare
lengte van de luchtkolom boven het mengsel bepaald door de
sterkte van de te produceren schok. Dit verklaart waarom
de luchtkolom voorkomende in de experimenten van Campbell
en Pitcher kort genoeg was.

Campbell, I.J., Pitcher, A.S. 1958. Proe. Roy. Soe. London
Ser. A243, 534.

X
Het is te verwachten dat bij toepassing van turbotreinen
voor railvervoer aanzienlijke kostenbesparingen kunnen wor-
den bereikt in vergelijking met de kosten die gemaakt worden
voor electrische treinen, waarbij energie voor de aandrijving
verkregen wordt uit bovenleidingen.

Guskovski, G.E. 1972. Zeleznodorozny Transport 1, 42.

XI
De auteur J.M.A. Biesheuvel meent dat K. van het Reve god is.
Dit is minder verontrustend dan wanneer laatstgenoemde zich
als zodanig zou gaan gedragen.

Biesheuvel, J.M.A. 1972. In De Bovenkooz.

XII
Als de bewering van de columnist N. Scheepmaker, dat een
grote kijkdichtheid een criterium voor een goed televisie-

programma is, vertaald wordt in termen van journalistiek
en politiek, leidt dit tot de bewering dat de Telegraaf een
goede krant is en Richard M. Nixon een goed president.



