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Notation 

X,Y 
Ii 
EI 
P 
A 
Ae 
Au 
Al 
A: 
At> A2'" 
uy(x) 
Ui 

M(x) 

Fi 
Ni 
()i 

PE, 

Mi 
E 
W 
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co-ordinates 
length of member i 
flexural rigidity 
numerical value for external force 
load factor 
load factor at which elastic buckling occurs 
upper bound for Ae 
lower bound for Ae 
upper bound for Au 
load factor first, second ... buckling mode 
displacement in y-direction 
displacement at joint i 
bending moment 
non-linear load at joint i 
normal force in member i 
rotation of member i 
"pin-ended Euler load" for member i 
elongation of member i 
elastic energy 
work done by external forces 
amplification factor 



LOWER BOUND APPROXIMATION FOR ELASTIC BUCKLING LOADS 

Summary 

An approximate method for the elastic buckling analysis of two-dimensional frames 
is introduced. The method can conveniently be explained with reference to a physical 
interpretation: In the frame every member is replaced by two new members: 

- a flexural member without extensional rigidity to transmit the shear force and the 
bending moments; 

- a pin-ended rigid rocker member to transmit the normal force. 

The buckling load of such a model can be calculated in a relatively simple manner. 
It is shown that, if no tensile forces occur in the frame, the buckling load of the model 
is an upper bound for the buckling load of the actual structure. By means of a simple 
formula a lower bound for the buckling load can then be determined. The method 
is more particularly of educational value. By means of this convenient and systematic 
method engineering students can fairly quickly gain an insight into the buckling 
behaviour of framed structures. 
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Lower bound approximation for elastic 
buckling loads 

1. Introduction 

The elastic buckling bad may play an important part in the assessment of the load
carrying capacity of a structure. 

A good illustration of this is provided by the Rankine type formula proposed by 
Merchant (ref. [1], [2], [4]). In this formula the maximum force that the structure 
can support is estimated from the elementary c::>llap3e load and the elastic buckling 
load: 

where: 

Ap = load factor for which the structure collapses according to a geometri
cally linear analysis; 

Ae = load factor for which the structure buckles elastically; 
Ac = load factor for which the maximum carrying capacity of the structure 

is reached under the influence of plastification and second-order effects. 

The accuracy of this estimate for Ac will of course depend to a great extent on circum
stances. For obtaining an approximate preliminary indication the formula is very 
suitable, however. 

A mathematically exact determination of the buckling load by solving differential 
equations soon becomes very complicated if a structure comprising more than two 
or three members is dealt with. Over the years a considerable number of approximate 
methods have therefore been developed [3], [5], [6], [7], among which the computer
oriented methods nowadays predominate [8]. Cases may arise, however, in which it 
is undesirable (e.g., for educational reasons) to perform a complete computer analysis. 
The need for a simple and systematic approximate method then exists [9]. 

In this publication such a method will be explained with reference to a number of 
examples (Part I). The origin of the method is based on [7]. In the first instance upper 
bound solutions are obtained. By a simple procedure, however, lower bounds can 
also be established. It is important to remark that for practical cases it is not necessary 
to calculate Ae with great accuracy. In general Ae is 3 a 10 times larger in magnitude 
than Ap. So a small deviation (lO a 20%) in Ae has only a minor influence on Ac. 

Finally, in Part II the proof for the validity of the method is presented. 
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PART ONE: EXPOSITION OF THE METHOD 

2. Fixed-end member, one degree of freedom 

A member with length I and flexural rigidity EI, fixed (rigidly gripped) at the base, is 
loaded in compression by a vertical force AP (fig. 1). P represents a given load, e.g., 
corresponding to the estimated working load; A is a load factor. Find the value of 
the load factor A = Ae for which this strut buckles elastically. 

The equilibrium method will be used to solve this problem, i.e., a load factor Ae 
and a deflected shape uy(x) f= 0 will be sought for which the strut is in a state of 
equilibrium. 

Fig. 1. Fixed-end member (strut). 

Exact solution 
The usual exact procedure for solving the problem is as follows [5]: 

The deflection uy(x) and the load AP will cause second-order moments to develop 
in the strut, namely: 

(1) 

where Ut = uy(x = 0). The value of the internal bending moments associated with the 
deflection uy(x) is determined through the moment-curvature relation: 

M(x) = Eluy,xix) (2) 

Combination of (1) and (2) gives a differential equation for uy: 

E1 uy,xx + APUy = APU 1 (3) 

Together with the boundary conditions uy(l) = uy,x(l) = 0, and uy(O) = Ut> this equa
tion yields, by the familiar procedure, the following expressions for the buckling 
load and the buckled shape (buckling curve): 

Ae = 7[2 EI = 2.47 EI 
4Pl 2 Pl 2 

(4) 

with u t = indeterminate 
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Approximation 

Many approximate methods for dealing with buckling problems are based on the 
advance estimation of uy(x) in formula (1) [5], [6], [7]. The estimate may comprise 
one or more parameters. Next, a function uy(x) can be calculated with the aid of the 
differential equation. By comparing the estimated uy with calculated uy a buckling 
load can be determined. The accuracy of this approximate method depends on: 

- the extent to which the estimated function uy satisfies the boundary conditions; 
- the number of parameters or degrees of freedom that is introduced; 
- the manner in which the estimated and the calculated deflection functions uy are 

compared with each other. 

The approximation in the present paper will be based on a linear estimation formula 
with one parameter: 

'( (,') _ '/ {l x ( 
l'i,A - I 1 - TJ (5) 

The boundary condition uy,x(l) = 0 is therefore not satisfied. In conjunction with (1) 
and (2) expression (5) leads to the differential equation: 

On twice integrating and making use of the boundary conditions uy(l) = uy,x(l) = 0 
we obtain: 

,1,P u 1 (1 3 1 : I 3 
11 = --_·-x -"1(l +-l \ 

Y EI I (6 2 3 J 

Equating the two functions uy given by (5) and (6) at x = 0 yields: 

AP[?'U r 

III = 3ET 

Solutions with Ul '# 0 are possible only if: 

;, = X, = ~l 
. PI" 

(6) 

(7) 

The approximation gives an over-estimation of 20% with respect to the exact 

solution (4). 

PhYSical model of the approximation 

The approximation method described in the foregoing can be interpreted quite 
simply in physical terms [7]. Suppose the member under consideration (vertically 
loaded strut) to be split up into: 
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Fig. 2. Physical model of the approximation. 

- a rigid rocker member (i.e., pin-jointed at both ends) which has to transmit the 
normal (direct) force; 

- a flexural member, without extensional rigidity, which resists the bending moments 
and shear forces. 

The actual structure is thus represented by a model as shown in fig. 2. For convenience 
of presentation the rocker member and the flexural member are shown side by side. 

The exact buckling analysis for the model substituted for the actual structure 
proceeds as follows: 

In the inclined position the normal force N acting in the rocker member and the 
vertical load are not in equilibrium with each other. As a result, a horizontal force 
of the following magnitude acts at the top of the flexural member: 

(8) 

This horizontal force Fl can be conceived as a "non-linear load" in analogy with 
d'Alembert's "inertia load". In consequence of the load Fl the top of the flexural 
member undergoes a horizontal displacement: 

(9) 

On substituting (8) into (9) and equating uy(0) and Ul we obtain: 

APe 
Ul = 3E1 U 1 

whence we find the critical load factor: 

(7) 

It can readily be seen that the model is entirely in agreement with the approximate 
method described earlier on. The rocker member performs the role of the estimated 
linear deflection function uy as expressed by (5). 
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In the further treatment of the subject the model will always be adopted as the 
basis. The advantages are that extension of the procedure to more complex structures 
is simpler and that also the application of energy methods (Part II) is directly possible. 

3. Fixed-end member, two degrees of freedom 

An improvement in accuracy is to be expected if the member is subdivided into 
several elements. Here the case where it is subdivided into two elements will be 
considered. The physical model is shown in fig. 3. 

EI 

Fig. 3. Fixed-end member, model with two degrees of freedom. 

As a result of the displacements U1 and U2 of the joints 1 and 2 the forces F1 and F2 
are exerted on the flexural member: 

Fl = APsin81 

F2 = AP(sin82 -sin81) 

8 1 and 82 are the angles between the rocker members and the vertical. Expressed 
in terms of U 1 and U2: 

(10) 

The displacements U 1 and U 2 of the flexural member in consequence of the non
linear load are, according to the linear theory of elasticity: 

F1 13 5F2 13 

U 1 = 3EI + 48EI 
(11) 

5F113 F2e 
U2 = 48EI + 24EI 
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On substitution of (10) into (11): 

2),P(u 1 - Li 2)12 lO..1.P(2u 2 - u: )[2 
U =------ +-------

I 3EI 48E[ 

1O..1.P(u 1 -U ZW 2AP(2uz -u l )i 2 

U z = -- 48EI ~ + -- 24EI --

Rearrangement: 

This set of linear homogeneous equations in U l and U2 has non-zero solutions only if 
the determinant of the set is zero: 

The solutions of this second-degree equation are: 

A = 2.59 E1 
1 p[2 

and A? = 31.6 E1 
- Pi" 

(12) 

The lower of these two values is the desired approximation for Ae. The error is now 4%. 
The associated buckled shape is given by: 

~ = 3.40 
Ll2 

For the exact solution the corresponding value is: 

It can be concluded that the buckling problem of the fixed-end member can be solved 
with fair accuracy even with just two elements. 

4. Simple frame 

The frame shown in fig. 4a (all its members have flexural rigidity E1) is loaded at 
joint 3 by a vertical force AP. Determine the elastic buckling load with the aid of the 
approximation model. 

In fig. 4b the frame is shown in a deflected position. The horizontal displacement 
of the top member is U3( = U2)' The rocker members in the physical model are re
presented by dotted lines. 
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Fig. 4 Frame with one degree of freedom. 

In the vertical (undeflected) position a normal force N = - AP is acting in the rocker 
member 3-4; all other internal forces are zero. In the deflected position the normal 
force in the rocker member 3-4 is no longer in equilibrium with the load. As a result, 
a non-linear load acts on the frame, namely, a horizontal force F3 acting at joint 3: 

(13) 

With the aid of the linear elastic theory it can readily be shown that the displacement 
U3 caused by F3 is expressed by: 

F [3 
U 3 = 0.080 ~T 

Substitution of (13) into (14) gives: 

AP[2 
U 3 = 0.080 E1 U3 

From this we obtain as the approximation for Ae: 

E1 
Ae = 12.5-2 

Pi 

2 3 

5 

Fig. 5. Frame with two degrees of freedom. 

(14) 

(15) 
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This result can probably be improved by subdividing the long vertical member of 
the frame into two elements. In that case an analysis involving two degrees of freedom 
must be performed (see fig. 5). 

The non-linear load due to the inclined (deflected) position of the frame is, in 
analogy with the formula (10) for the problem of the fixed-end member, expressed by: 

F3 = 2AP{ U3-U4}jl 

F 4 = 2AP{2U4 -u3}/1 

Analysis in accordance with the linear elastic theory gives: 

U3 = {O.080F 3 +O.054F4}ejEI 

U4 = {O.054F 3 +O.050F4}ejEI 

On substitution of (16) into (17): 

U3 = {O.080(2u3-2u4)+O.054(4u4-2u3)}AP[2jEI 

U4 = {O.054(2u 3 -2u4) +O.050(4u4 -2u3)}AP/2jEI 

(16) 

(17) 

Rearrangement again yields two homogeneous linear equations in U 3 and u4 • On 
equating the determinant to zero we obtain: 

A = 9.9 EI and A = 22.2 EI 
1 pf 2 PZ2 

(18) 

The lower value is the desired approximation for Ae. The buckled shape is given by 
(see fig. 6): 

The model with one degree of freedom gives as the approximation for the buckling 
load: 

A = 12.5 EI 
PZ2 

The exact analysis gives: 

The relative errors are therefore: 

- model with one degree of freedom: + 42% 
- model with two degrees of freedom: + 11 %. 

To clarify the difference between the two answers, let us have another look at fig. 6. 
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Fig. 6. Buckling shapes of both models. 

In the first model (one degree of freedom) the rocker member of the right column 
prescribes the value of U3!U4 at 2. 

In the second model this value is 1.1. This gives rise to the conclusion that only a 
good approximation can be obtained when the rocker members do permit a shape 
which is fairly close to the real buckling model. 

5. Lower bound approximation 

The approximations so far presented have in all cases over-estimated the actual 
buckling load. This is obvious, because the rocker members can be regarded as extra 
stiffening members associated with the structure. A formal proof of this is presented 
in Part II. It emerges that the condition for the existence of the upper bound is that 
there must be no tensile forces in the structure. Subject to the same restriction it 
proves possible also to establish a lower bound for the buckling load. The actual 
buckling load can therefore be enclosed between two values. This clearly enhances 
the value of the approximate method. 

The formula for the lower bound is: 

where: 

where: 

1 1 [-N.] 
~ = Au + P E" max 

Au = upper bound associated with a particular model 
Al = lower bound associated with the same model 
Ni = normal force in member i for A = 1 (tension is positive) 

p = n2E1i 
E, [2 , 

Eli = flexural rigidity of element i 
Ii = length of element i 

(19) 
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The proof of the lower bound formula will be given in Part II. At this moment we will 
suffice to make the formula plausible. 

First of all there is a need for a sharp definition of the normal force. In the follow
ing the normal force will be understood as a force transmitted by the frame-member 
and whose line of action passes through the member end joints. The definition holds 
in the undeformed state as well as in the deformed state. 

In the model the normal force is transmitted by the rocker member. In reality of 
course, this rocker member does not exist and the frame member itself has to transmit 
the normal force. From this some non-linear effects result, which have not been 
taken into account yet. 

It is a well known phenomena that the bending rigidity of a frame member is 
reduced if normal pressure forces are present. 

Consider the beam of fig. 7. According to the elementary second order theory the 
member end rotation can be calculated from: 

where 

M 
<p = 2EI (no normal force present) 

M 
<p ~ f 2EI (at presence of normal force N) 

f = P E~ N = so called amplification factor 

n2EI 
PE = -2- = elementary Euler load 

I 

Fig. 7. Beam loaded by equal end moments and normal force. 

From the above expressions it can be concluded that approximately the bending 
stiffness E1 is reduced to EIIJ. This provides a very simple way of taking into account 
the non-linear effects produced by N: we just divide the member stiffness by f. There 
is only one problem: in the actual structure the ratio of the end moments may differ 
from 1; this ratio may become 0 or even -1. Especially when the ratio is close to - 1 
the proposed approximation will not be very accurate. However, in general the 
approximation underestimates the stiffness properties of the member. So in looking 
for a lower bound it still will be usable. 

To simplify matters further we should like to have one and the same reduction 
factor for all members. This reduction factor of course has to be the largest number 
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f present; let us call this number fmax. All member stiffnesses being reduced in the same 
proportion, we can calculate the lower bound directly from the upper bound through: 

Su bstituting: 

fmax = [P:: N lax 
A _ A.(PE+N) _' AuN 
1- PE - Au + PE 

The reference for the heaviest loaded member is omitted here. 
Dividing by AI' Au leads to: 

From this it is a small step to (19). 

We will proceed now by applying the lower bound formula to the foregoing 
problems: 

Fixed-end member, one degree of freedom (fig. 2): 

Calculated value for the upper bound (formula (7)): 

A =3~ 
u Pl2 

There is only one element, with: 

Nt =-P 

n2 E1 
PEl = -2-

I 

Employing the lower bound formula (19): 

~ =~ [~l2] + ~ [Pl 2
] 

Al 3 E1 n2 E1 

E1 
Al = 2.31-2 

PI 

Fixed-end member, two degrees of freedom (fig. 3, formula (12)): 
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For the two elements: 

Ni =-P 

PE , = n2Elj(tl)2 

The lower bound: 

Portal frame, one degree of freedom (fig. 4): 

Upper bound according to (15) 

A = 12.5 El 
u P12 

The structure is subdivided into three elements. In the short vertical member and in 
the horizontal member the normal force is zero. For the lower bound formula the 
long vertical member is therefore determinative, with: 

N =-P 

PE = n2Eljl2 

Employing the lower bound formula: 

The great difference between the upper and the lower bound is an indication that the 
buckling behaviour is very imperfectly described by an approximation model com
prising only one degree of freedom. 

Portal frame, two degrees offreedom (fig. 5, formula (18)): 

A = 9.9 E1 
U pf 

For the two elements of the long vertical member: 

N = -P and PE = n2Elj(tl)2 
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so that: 

1 1 [Pl 2
] 1 [PI 2

] 

;:; = 9.9 E1 + 4n 2 E1 

Al = 7.9 E~ PI 
For this approximation model the lower and the upper bound are much closer 
together. 

Summary of the results obtained 

(Ae = exact value) 

structure degrees of freedom 

fixed-end member 
fixed-end member 
portal frame 
portal frame 

1 
2 
1 
2 

1.21 
1.04 
1.42 
1.12 

0.93 
0.98 
0.63 
0.90 

Finally, a few examples of somewhat larger structures will be presented in the next 
paragraph. 

6. Examples 

Two-storey frame 

\. .1 
all members EI 

Fig. 8. Two-storey frame. 

For the framed structure shown in fig. 8 determine the upper and the lower bound 
for the critical load factor. 

Two degrees of freedom U t and U2 are assigned to the structure. The non-linear 
load according to the rocker member model is: 

17 



Linear elastic calculations yield the following result: 

Ul = (O.25Fl +O.lOF2)P/EI 

U2 = (O.lOFl +O.07F2W/EI 

Elimination of Fl and F2 gives two homogeneous linear equations in U1 and U2. On 
equating the determinant to zero, two roots are obtained: 

E1 E1 
Al = 2.9- and A2 = 5.7-

p[2 PZ2 

The lower value Al is the desired upper bound approximation for Ae• 

The associated buckled shape is characterized by: 

U 1 = 2.1 
U 2 

The lower bound is determined by the two columns of the bottom storey, with: 

N = -2P and PE = n2 E1W 

so that: 

1 1 [Pf] 2 [PI2
] 

i, = 2.9 E1 + n2 E1 

Al = 1.9 E~ PI 
The difference between the upper and the lower bound is arithmetically determined 
entirely by the bottom storey columns. To improve the accuracy of the results the 
obvious thing to do is to subdivide the two bottom storey columns each into two 
elements. 

Three-storey frame 

For this framed structure a model comprising three degrees of freedom (u b U 2 , u3) 

will be adopted. 
The non-linear load according to the rocker member model is: 

)/1 
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AP 

~~--------------~ F, 

I .. 21 
all members CI 

Fig. 9. Three-storey frame. 

With the aid of the linear elastic theory we obtain: 

U1 = (0.452F1 +0.287F2+O.107F3)13/EI 

U2 = (0.287 Fl + 0.238F2 + 0.099F3)13 / EI 

U3 = (O.l07F1 +0.099F2+O.068F3)13/EI 

By applying the usual procedure we arrive at the upper bound approximation: 

E1 
Au = 1.65-

Pl2 

For the lower bound the columns of the bottom storey are again the determining 
members, with: 

so that: 

Arch structure 

Determine the critical load factor Ae for the schematized arch structure shown in 
fig. 10. 
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all members EI 

Fig. 10. Arch structure. 

Fig. 11. Rotations of the rocker member model. 

The structure is subdivided into four elements. The approximation model will then 
likewise comprise four rocker members; the rotations of these members will be 
designated by (J1 to (J4 (see fig. 11). The rotations (Jl and (J4 are chosen as degrees of 
freedom of the structure. The rotations of the rocker members 2 and 3 can be 
expressed in (J 1 and (J 4 by the following simple relations: 

(J2 = -(J1 +-t(J4 

(J3 = -t(Jl -(J4 

The normal forces are: 

N1 = N4 = -1.801lP 

N2 = N3 = -1.121lP 

Now consider an arbitrary member i which transmits a normal force N i• If this 
member undergoes a rotation (Ji' a non-linear loading is produced, as indicated in 
fig. 12. By applying a similar consideration to all the members of the structure we can 
calculate the non-linear load for the structure as a whole, expressed in (Jb (J4 and IlP 
(fig. 13). 

By means of the linear elastic theory the displacements due to this load can be 
determined. We obtain: 

20 



Fig. 12. Non-linear load on an arbitrary member. 

Fig. 13. Non-linear load due to ()l and () •. 

(Jl = {O.38(;tP(Jl)+O.l9(;tP(J4)}12/EI 

(J4 = {O.l9(;tP(Jl)+O.38(;tP(J4)}f2/EI 

whence the buckling values are obtained: 

;t = 1.75 EI and 
1 PZ 2 

. ~ 25 EI 
A, =). -- pf 

The buckling modes are respectively: 

(J 
and ~ = -1 

(J4 

The buckled shape associated with the lower buckling mode is shown in fig. 14. 

1.75 El2 
~ 

Fig. 14. Buckled shape associated with the smallest buckling load. 
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Lower bound analysis 

F or determining the lower bound the members 1 and 4 must be compared with 2 and 3. 

Members 1 and 4: 

N; = -I.SOP 

P = ~2E1 
Ei (0.91)2 

-N. PI 2 T = +0.147 E1 
Ei 

Members 2 and 3: 

N; = -1.12P 

n2 E1 P =_.-
Ei (1.121)2 

-N; = 0.142P12 
PEi E1 

The members 1 and 4 are the deciding ones; the lower bound thus becomes: 

1 1 [PI 2
] [P1 2

] Iz"" = 1.75 E1 + 0.147 E1 

E1 
AI = 1.4~2 

PI 

7. Concluding remarks 

It is possible, with relatively little arithmetical effort, to obtain an upper and a lower 
bound for the elastic buckling load of two dimensional frames. 

Adopting a reasonable subdivision of the structure into elements for the purpose 
of analysis, the order of magnitude of the difference between the upper and the lower 
bound is found to be between 5% and 25% of the buckling load. 

For reasons already mentioned in the introduction there will be, in general, no 
need for higher accuracy. 

If nevertheless for any particular structure a closer approximation is desired, clear 
indications for a suitable subdivision into elements can be obtained. 

PART TWO: PROOF OF VALIDITY 

Starting points 

Consider a framed structure which is so loaded that only normal forces are developed 
in it. These normal forces are assumed to be compressive forces. This assumption 
will be used a number of times in giving the proof required. Strictly speaking, the 
results are therefore applicable only to those cases. It is furthermore assumed that the 
deformation due to normal force plays no part. 
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8. Rayleigh's principle 

By means of Rayleigh's principle the buckling problem can be formulated as a 
minimalization problem (see, inter alia, ref. [3]). Determine the kinematicly permissible 
state of deformation of the frame for which the value of A in the equation: 

E=A·W 

is a minimum. In this expression: 

E = internal strain energy of the frame; 
A = a scale factor for the load; 
W = external work done by the load in the case of a unit load (A = 1). 

The value found for A is the buckling load factor Ae• 

The state of deformation for which A = Ae is the associated buckled shape. 

(20) 

The internal strain energy E can be written as a summation comprising all the 
members. An arbitrary member in the deformed and in the non-deformed state is 
shown in fig. 15. 

Ni~ 

N'I~OO-------oO ~N' 

I, -l i .\ I 

Fig. 15. Member i in the deformed and the non-deformed state. 

The rigid translatory displacements of the member are not of importance; but the 
following are important: 

() = rigid rotation of the member; 
u = function of x which described the deflection curve of the member in 

relation to the straight line connecting the displaced nodes (joints of 
the frame). 

The strain energy can then be written as: 

I 

E = Lj'±El(uv,xx)2dx (21) 
u 

The summation comprises all the members (subscripts relating to the members have 
been omitted for convenience). The formula is meaningful only within the context 
of a linear or second-order theory. 

The external work W (work done by the outside forces) can also be written as a 
summation comprising all the members. 
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The load on the structure is of such a kind that nothing but normal forces are 
produced in it. Such a load can quite simply be replaced by a load scheme in which 
two equal but opposite axial forces act upon each member of the structure. 

These forces are of such magnitude that the same pattern of normal forces is 
produced as is produced by the original load. 

The external work can now simply be written as (see fig. 15): 

where 

I 

illi = J -tCO+uy,x)2dx 
o 

Ni = normal force in member i 

Formula (23) can be worked out: 

I I I 

-illi = J t02 dx + J tU;,xdx + J OUy,x dx 
000 

Since 0 is not a function of x: 

I I 

- Llli = t021 + J tu2 y,xdx + 0 J uy,xdx 
o 0 

The last integral: 

I I 

OJ uy,xdx = 0 J du = O{u(l)-u(O)} = 0 
o 0 

(22) 

(23) 

The external work W for unit load A = 1 can therefore finally be written as follows: 

(24) 

Summation comprises all the members; subscripts for I, 0 and U have been omitted. 
With the aid of (20), (21) and (24) the buckling problem can be formulated as 

follows: 

For each member: so determine a compatible value of 0 and a compatible deflec
tion function U that A in the equation: 

(25) 

is a minimum. 

On the assumption - as has been made here - that all Ni are negative, a positive value 
will always be obtained for A. If there are also tensile forces acting in a structure, the 
problem becomes much more complicated. In such a case we may particularly wish 
to determine the smallest positive buckling load or to determine the smallest buckling 
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load in the absolute sense. What is set forth below concerning upper and lower bounds 
will then no longer be strictly applicable. Yet even in those cases the upper bound 
approximation and the lower bound formula will usually be serviceable. 

With the aid of formula (25) it is possible to find approximations for Ae. On sub
stituting an arbitrary state of displacement into (25) we find an upper bound for Ae. 
In proportion as the state of displacement is in closer agreement with the actual 
buckled shape the value of A will achieve a closer approximation to the buckling load. 

9. Upper bound approximation 

The approximate method presented in Part I can alternatively be written as a mini
malization problem in accordance with Rayleigh's principle. For that purpose the 
simplest procedure is to base oneself on the physical model. The expression for the 
elastic energy of tne model is the same as expression (21) for the original structure. 
The expression for the external work W is reduced, because of the rocker members, to: 

From this it follows at once that the approximation is an upper bound, because on 
the right-hand side of (25), since all Ni < 0, positive terms are cancelled and too large 
a value for A will be found. 

10. Maximum over-estimation by the upper bound approximation 

Suppose that the exact buckled shape of the original structure is known. Substitution 
of this exact buckled shape into equation (25) will of course give the exact buckling 
load Ae as the result: 

(25) 

with u and () associated with the exact buckled shape. 
Now substitute the same buckled shape into the Rayleigh equation for the model: 

(26) 

The resulting value A: is naturally larger than the "exact" buckling load of the 
model Au: 

A: > Au where Au = upper bound approximation 

From (25) and (26) we obtain: 

1 _ LS -tNiU;,xdx 

~ - ;.: - L S tElu;.xxdx 

(27) 

(28) 
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On applying Rayleigh's principle to a single member pin-jointed at both ends, we 
find: 

I I 

J tEJu;,xxdx ;::: pd t(uy,x)2dx 
o 0 

where 

(the equality sign is valid only if uy is a half sine wave). 
Summation of this inequality comprising all the members: 

I.HEJu;,xxdx;::: I. PE,H(uv,x)2dx 

(In the last two steps all Ni are assumed to be nonzero. This however is not essential). 
Combining with (28): 

;e - i: ~ [ -~,l"x 
and because of (27): 

(29) 

Formula (29) indicates the maximum over-estimation by the upper bound approxima
tion. The lower bound formula (19) can then easily be proved with the aid thereof. 

11. Proof of lower bound formula 

The lower bound formula is: 

1 1 [ NO] 
~ = Au + - P E: max 

With the aid of (29) we can eliminate Au from this formula, so that the following 
inequality is obtained for AZ: 

or Al ~ Ae , which constitutes the required proof. 
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