
Statistical Bug Isolation for Consensus Systems

Levin N. Winter1

Supervisor(s): Burcu Kulahcioglu Ozkan1, Ege Berkay Gülcan1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Levin N. Winter
Final project course: CSE3000 Research Project
Thesis committee: Burcu Kulahcioglu Ozkan, Ege Berkay Gülcan, Johan Pouwelse

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
The testing of consensus systems has received
growing attention and recent testing tools generate
many faulty executions. However, there is a lack of
methods that automatically analyze these outputs to
identify the root causes of the bugs they found.
This paper presents ISOLATION, a statistical bug
isolation algorithm that uses message-based pred-
icates to discriminate between different faults. We
applied our method to executions of the XRP
Ledger blockchain and evaluated its performance.
Our comparison shows that ISOLATION correctly
separates bugs by their root cause and consis-
tently outperforms the state-of-the-art with higher
F-scores.

1 Introduction
The security of consensus algorithms is becoming increas-
ingly important as blockchain applications rise in popularity.
They are pivotal to the guarantees that blockchains make and
are trusted financial assets by individuals worldwide. Bugs
in said consensus algorithms can have catastrophic effects on
the funds of all participants, hence, utmost care is taken to
ensure the correctness of these systems [2].

In recent work, automated testing tools for implementa-
tions of consensus algorithms have been proposed [1; 3; 7; 11;
17; 23; 27] which explore different executions of the system
under test to detect bugs. They aim to find scenarios in which
the guarantees of the given consensus algorithm do not hold
anymore, e.g. by violating a safety or liveness property. The
testing tools use oracles that continuously monitor a given ex-
ecution and check said properties to determine whether a run
was successful or not. When a bug is found, the developer is
presented with the inputs of the algorithm, a log of the sys-
tem’s execution, and an overview of the violated properties.

However, finding buggy executions is only the first step in
the process of testing consensus algorithm implementations.
To fix a bug its root cause must be identified. This task is often
carried out manually by inspecting the sequence of messages
exchanged between the processes and requires the developer
to have a thorough understanding of the system’s inner work-
ings. While root causing a fault is already difficult for sim-
ple programs, the nondeterminism and concurrency that is in-
herent to consensus algorithms significantly adds to the com-
plexity of the operation.

In the past, different algorithms have been proposed that
support the process of root causing [10]. When executing
them on a set of successful and failed program runs, they iso-
late a set of conditions that correlate with buggy behavior.
These methods e.g. the field of statistical debugging [18] or
data mining [26] have been shown to be effective on ordinary
programs and simple message protocols.

These methods do not directly apply to isolating bugs in
the executions of consensus systems, which is difficult due to
the vast concurrency and nondeterminism they exhibit. That
is because they either do not exploit properties intrinsic to
consensus algorithms or fail to scale to more sophisticated
protocols with complex bug triggering conditions.

To address this, we propose a new bug isolation algorithm,
called ISOLATION, that is specific to consensus algorithms. It
coarsens the existing model with additional insights of con-
sensus systems to augment traces which the testing tools gen-
erate. To motivate and evaluate this research, we will answer
the following research questions.

1. How well do existing methods identify bugs in consen-
sus systems?

2. Which predicates effectively identify bugs in consensus
systems?
(a) Are multiple bugs correctly discriminated?
(b) Do the predicates help to identify the underlying

bug?
First, we motivate and introduce the ISOLATION algorithm in
Section 3. We then describe our method in Section 4. The
empirical evaluation in Section 5 begins by discussing the re-
sults of applying the existing method to traces of the XRP
Ledger [6] which is subsequently compared to the results of
ISOLATION.

2 Background
In this section, we provide the relevant background infor-
mation for our ISOLATION algorithm. Section 2.1 gives a
brief introduction to consensus algorithms and Section 2.2
describes the XRP Ledger. In Section 2.3, we explain what
statistical bug isolation is.

2.1 Consensus Algorithms
Consensus algorithms play an important role in the field of
distributed systems and are essential for ensuring agreement
between a set of decentralized processes. Consensus systems
are resistant to a limited number of crash or Byzantine, i.e.
malicious, faults, depending on the specific protocol.

These systems ensure consensus by running several rounds
of communication during which the participating processes
exchange messages. These messages contain the type of the
message, often referred to as the message’s verb, and a body,
containing the contents of the message. During each com-
munication round, a process handles the messages it received
in the previous round, updates its local state, and sends new
messages to its peers.

The exact rules of communication depend on the particular
protocol and, in the past, many different protocols have been
proposed. While they each have their distinct guarantees, ad-
vantages, and disadvantages, they all ensure the correct repli-
cation of state in a distributed environment.

2.2 XRP Ledger
The XRP Ledger [6; 25] is a blockchain that enables global
payments to settle within seconds. A network of 5f + 1 of
its validators is resilient to up to f Byzantine failures. This
is achieved using a subjective trust assumptions for which
each process maintains a list of other trusted processes, the
so-called Unique Node List (UNL). During voting, a process
only considers the votes of its trusted peers.

Figure 1 shows the normal execution of the XRP Ledger
for two different ledgers i and i + 1. In our example, p3

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6
TX VALi PRPi+1PRPi VALi+1

Figure 1: The normal case execution of the XRP Ledger. The image
is taken from our recent work [27].

receives a transaction and disseminates it to its peers (blue ar-
rows, TX). Subsequently, the processes enter into one or more
PROPOSAL rounds, during which they establish consensus on
the set of transactions to include in the next ledger. Figure 1
depicts a single round during which all processes propose the
previously received transaction (blue arrows, PRPi). If a pro-
cess sees an agreement of less than 80%, it will update its vote
and repeat the procedure. Once a quorum has been reached
or a timer runs out, the processes move to the VALIDATION
round. Here, a single VALIDATION message is sent, confirm-
ing the intent to validate the proposed ledger i (blue arrows,
VALi). If a process receives matching VALIDATIONs from at
least 80% of its trusted peers, it fully validates the ledger and
permanently commits its transactions. Since no new trans-
actions were submitted before the following round, the pro-
cesses first propose an empty ledger (gray arrows, PRPi+1)
and subsequently validate it (gray arrows, VALi+1).

2.3 Statistical Bug Isolation
Statistical bug isolation, a method from the field of statistical
debugging, uses runtime data to identify certain predicates
that correlate with different bugs. It relies on statistics and
machine learning to isolate these bug-predicting conditions.
When applying such a method to a data set containing both
successful and failing executions of a program, the output can
aid the developer in understanding the underlying root causes
of the different bugs.

3 The ISOLATION Algorithm
In this section, we present ISOLATION, our novel bug isola-
tion algorithm for consensus systems. In Section 3.1 we first
discuss four key concepts that motivate our approach. Then,
we introduce our predicates and formally describe them in
Sections 3.2 and 3.3. Lastly, Section 3.4 outlines the under-
lying statistical framework.

3.1 Overview
ISOLATION is motivated by the four key ideas that (i) consen-
sus algorithms communicate using message passing, (ii) they
are stateful, (iii) a quorum is required to decide upon a client
request, and (iv) they are resilient to a fraction of faulty pro-
cesses. In the following paragraphs, we will provide some

i× VERBL
for more than f processes−−−−−−−−−−−−−−−−−−→
time(l)< time(r)

senders(l)⊆ senders(r)

VERBR

Figure 2: Example of a predicate used in ISOLATION.

background on each of these ideas and explain their impor-
tance for ISOLATION.

Message Passing. Consensus systems mostly rely on mes-
sage passing for communication because they are distributed
systems for which shared-memory models are impracti-
cal [9]. The messages they exchange and their interleaving
largely captures the state of the system. We therefore hy-
pothesize that message-based predicates are sufficient to dis-
criminate between consensus bugs. Because the ordering of
messages from different senders is important, ISOLATION’s
predicates respect happened-before relations [14].

Stateful Systems. All consensus algorithms require a se-
quence of communication rounds to decide on a value. Dur-
ing each round, they process the newly received messages,
update their local state, and send zero or more messages to
other processes. The decisions taken in one round depend
on the messages sent and received in the earlier rounds [5;
15; 22]. Thus, we designed the ISOLATION algorithm to also
aggregate the messages received during a round and use the
collected information during the evaluation of a predicate.

Quorums and Thresholds. To guarantee that the system
agrees on a single value and no conflicting decisions are
made, a quorum must be formed. Usually, a process deter-
mines that a quorum has been reached when it received a
confirmation message from a certain number of other pro-
cesses. Besides the quorum, there are other thresholds that,
when being exceeded, affect the behavior of the process, e.g.
because it changes its vote. ISOLATION’s predicates capture
these thresholds by requiring the receipt of i equal messages,
which could cause the process to cross a threshold, before the
receipt of another message.

Fault Tolerance. Consensus systems are resilient to a cer-
tain number of processes either crashing or diverging arbitrar-
ily from the protocol, depending on the specific algorithm.
The number of failures a system can tolerate is denoted by f
and usually depends on the total number of processes n. If a
bug only manifests in at most f processes, it might not im-
pact the system. We model this in the ISOLATION algorithm
by annotating the predicates with a tolerance. Only if the
number of processes for which the predicate holds exceeds
the threshold, we consider the predicate to be true.

3.2 Predicates
The aim of this work is to isolate different bugs in the set of
faulty executions. For this, ISOLATION finds predictors that
correlate with certain bugs. These predicates can help the
developer to identify the underlying root cause of the bug.

Figure 2 shows an example of our predicates. Here, VERBL
and VERBR are placeholders for two, possibly equal, message

Input: n, the number of processes
Input: verbs, the set of message verbs
Input: amax, the maximum number of assertions per predicate

1 Procedure GeneratePredicates:
2 predicates← ∅
3 for (tolerance, threshold, a) ∈ [1, . . . , n]× [1, . . . , n]× [0, . . . , amax] do
4 for (vl, vr) ∈ verbs× verbs do

// find fields that can be compared
5 comparable← ∅
6 for (fl, fr) ∈ fields(vl)× fields(vr) do
7 if comparisons(fl, fr) ̸= ∅ then // a comparison operator exists
8 comparable← comparable ∪ {(fl, fr)}
9 for ((fl1 , fr1), . . . , (fla , fra)) ∈ subsetsOfSize(comparable, a) do

// for each combination of comparison operators
10 for (∗1, . . . , ∗a) ∈ comparisons(fl1 , fr1)× · · · × comparisons(fla , fra) do
11 assertions← {(fl1 , ∗1, fr1), . . . , (fla , ∗a, fra)}
12 predicates← predicates ∪ {(tolerance, threshold, vl, vr, assertions)}

13 return predicates

Algorithm 1: Exhaustive generation of predicates which are input to the ISOLATION algorithm.

verbs. The arrow denotes the happened-before relation be-
tween the left and right side and i is the predicate’s threshold.
Above the arrow, we denote its tolerance f and a list of as-
sertions that must all hold. We use them to capture complex
relations between the bodies of the messages. The variables l
and r represent the message bodies of VERBL and VERBR.

For a single process, a predicate P can evaluate the three
following possible results: observed, observed to be true, or
not observed. The predicate is said to be observed if the pro-
cess received messages of VERBL, all having the same body,
from at least i different senders followed by at least one oc-
currence of VERBR. The messages are allowed to be inter-
leaved with other messages, as long as the left-hand side
happened-before the right-hand side. Otherwise, P is not ob-
served. If a predicate is observed and all of its assertions hold,
it can additionally be observed to be true.

We define the procedures observed(P,ml, sl,mr, sr) and
observedTrue(P,ml, sl,mr, sr) which evaluate a predicate
for a single process according to the aforementioned rules.
They take as input the predicate P , the message ml that cor-
responds to VERBL and its senders sl, as well as the message
mr that corresponds to VERBR and its senders sr.

Because an execution of a consensus system involves more
than one process, we define how to evaluate a predicate
against the full execution, as opposed to the previous defi-
nition for a single process. P is observed to be true for a
run if the number of processes for which it is observed to be
true exceeds P ’s tolerance f . If it is observed for at least one
process, it is observed for the entire run. Otherwise, it is not
observed. In the following, we use tolerance(P) to refer to
P ’s tolerance.

3.3 Pseudocode
We now describe how we generate the predicates for a con-
sensus algorithm under analysis and evaluate them.

Generating Predicates
We present Algorithm 1 to generate the set of all predicates.
For this, the list of all message verbs verbs, the number of

processes in the consensus system n, and an upper bound on
the number of assertions per predicate amax must be sup-
plied. Further, the algorithm relies on the following three
subroutines. For a given verb, fields(verb) returns a set of
all fields that the verb’s body contains. comparisons(fl, fr)
evaluates to the set of binary operators which can compare the
two fields. All subsets of a given set that have a cardinality of
a are returned by subsetsOfSize({. . . }, a).

The algorithm exhaustively generates all predicates using a
number of Cartesian products and nested loops. For all com-
binations of the possible tolerances, thresholds, and amounts
of assertions a, the following procedure is repeated (ln. 3).
Each pair of message verbs is considered (ln. 4) and their
pairs of comparable fields are determined (ln. 7). Then, for
every subset of the matching fields that has size a (ln. 9), pred-
icates are generated. This is done by considering each unique
way in which the fields can be compared (ln. 10) and adding
a new predicate for each of these.

The parameters n, the size of verbs verbs, and amax, as
well as the number of message fields, the number of compati-
ble other fields, and the amount of operators that can compare
them, all determine the number of possible predicates. An
effective way to ensure the number of predicates does not ex-
plode is to keep the domains of the different parameters small
and only compare message fields of the same datatype if they
share similar semantics.

Evaluating Predicates
Algorithm 2 is used to evaluate a predicate P for a given
execution of the consensus system. Besides P , the proce-
dure takes the number of processes n as input. We use a set
of helper functions where inbox(i) returns an ordered list of
all messages the specified process received. messages(seen)
extracts all messages from the seen set and ignores their
senders, whereas senders(m, seen) returns the set of senders
it has previously observed to send the given message m. For
the definitions of tolerance(P), observed(P,m′, s′,m, s)
and observedTrue(P,m′, s′,m, s) we refer to Section 3.2.

For each process, the algorithm determines whether the

Input: P , the predicate to evaluate
Input: n, the number of processes
Input: inbox(i), the messages process i received

1 Procedure EvaluatePredicate:
2 observed← false
3 observedtrue ← ∅
4 for i← 1 to n do
5 seen← ∅
6 for (m, sender) ∈ inbox(i) do
7 for m′ ∈ messages(seen) do
8 s← senders(m, seen) ∪ {sender}
9 s′ ← senders(m′, seen)

10 if observed(P,m′, s′,m, s) then
11 observed← true
12 if observedTrue(P,m′, s′,m, s) then
13 observedtrue ← observedtrue ∪ {i}
14 seen← seen ∪ {(m, sender)}
15 if tolerance(P) < |observedtrue| then
16 return P is observed to be true
17 if observed then
18 return P is observed
19 return P is not observed

Algorithm 2: Evaluation of a given predicate P for a run.

predicate P was not observed, observed, or observed to be
true. This is achieved by iterating over the messages in a pro-
cess’ inbox in the order in which they were received (ln. 6).
Every message m is compared to each previously received
message m′ (ln. 7). The senders of m′ are directly determined
from the seen set, whereas for m we augment this informa-
tion with the new sender of m (lns. 8, 9). If P is observed,
we update the observed variable, which is shared for all pro-
cesses, to true (ln. 11). If P is observed to be true, we add the
process’ identifier to the observedtrue set (ln. 13). Finally,
we add m and its sender to the seen set (ln. 14).

If the number of processes that observed P to be true ex-
ceeds P ’s tolerance, P is observed to be true for the entire
run (ln. 15). If at least one process observed P , P is said to
be observed in the run (ln. 17). Otherwise, P is not observed
in the run (ln. 19).

3.4 Statistics
The last step of our algorithm is the isolation of the most im-
portant predicates. For this, we use a simplified version of
the statistical framework proposed in Scalable Statistical Bug
Isolation [18]. In their work, they use code-based predicates
that are randomly sampled throughout a program’s execution.
In contrast, ISOLATION evaluates every predicate for every
run, allowing us to elide the parts related to the uncertainty
introduced by the sampling. In the following, let F(P) be the
number of failing runs in which P is observed to be true. We
will now briefly summarize the most important steps.

To determine whether a predicate has predictive power,
we calculate how much the probability of a failure increases
when P is observed to be true compared to when P is sim-
ply observed. If the increase score is positive, it means that a
fault becomes more likely when P is observed to be true. All
predicates that have a negative increase are disregarded.

In a second step, the predicate with the highest importance

is identified. For this, both the predicate’s sensitivity, i.e.
fraction of faults retrieved over total number of faults numF ,
and specificity, in this case the increase score, are combined
using the harmonic mean. The score is computed as follows.

Importance(P) =
2

1
Increase(P) +

1
log(F(P))/ log(numF)

After returning the most important predicate to the devel-
oper, all runs for which this predicate was observed to be true
are removed from the data set. This simulates how a human
would fix the bug and hence remove all of its occurrences.
The procedure is then applied recursively until all failing runs
are clustered.

4 Method
This section outlines our method for the empirical evaluation.
Section 4.1 describes how we generated the benchmark data
set and Section 4.2 explains the baseline we selected. In Sec-
tion 4.3 we state the metrics our evaluation utilizes and Sec-
tion 4.4 gives details on the implementation.

4.1 Benchmark Data Set
To ensure a fair comparison between ISOLATION and the ex-
isting baseline algorithm, a common benchmark data set was
generated. For this, we used our recent testing algorithm
BYZZFUZZ [27]. By randomly mutating or dropping the
messages sent between the processes, it introduces process
and network faults into the consensus system’s runtime to
simulate Byzantine behavior. Compared to other testing algo-
rithms, which e.g. only explore message reorderings [4], net-
work partitions [13], or mimic loss of local state [3], BYZZ-
FUZZ generates traces that have more diverse message con-
tents, making it well suited for the evaluation of ISOLATION.

We chose the XRP Ledger for this benchmark because it is
a widely used blockchain system. Recent works have exposed
several bugs which we can use to measure ISOLATION’s per-
formance. For this, we have reintroduced a previously fixed
vulnerability [27] and use a UNL configuration that is known
to have insufficient overlap [2; 6].

4.2 Baseline Algorithm
For the baseline, we selected the method proposed by Libit
et al. [18] as it has been shown to effectively isolate bugs
in complex software systems. In our evaluation, we use a
slightly modified version that only instruments branches and
not scalar pairs and return values. This is supported by a
quantitative analysis which indicated that there are relatively
little scalar variables, because most of the logic is encapsu-
lated in objects. Further, we hypothesize that the nondeter-
ministic behavior is mostly determined by the branches and
hence sufficiently captures the observable state.

4.3 Metrics
The two most important metrics to answer our research ques-
tions are a predicate’s precision and recall. Here, the pre-
cision describes the percentage of runs that contain a specific
bug, out of all of the runs associated with a predicate. It quan-
tifies the discrimination ability of a given predicate.

Table 1: Distribution of bugs in the benchmark data set.

Bug #Runs Mixed

Correct Execution 1055 —
Incompatible Ledger 51 22
Insufficient Support 116 23
Agreement Violation 2 2

Total 1200 23

𝑝0

UNL1

UNL2

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6

Figure 3: Schematic representation of the UNL setup.

However, it is not sufficient for a full evaluation. Every
predicate that retrieves exactly one faulty run has a precision
of 100.0% for at least one bug category. Thus, we addition-
ally consider a predicate’s recall, i.e. the number of bugs that
were retrieved over the total number of bugs in that category.
Together, these scores measure a predicate’s performance.

F-scores are a standard way to combine both precision and
recall into a single value. Throughout the evaluation, we re-
port both the unbiased F1 score, as well as the F0.5 score that
favors precision over recall. This is because having two sim-
ilar predicates that split one bug into two sub-predictors is
more favorable than having one predicate that combines two
unrelated bugs.

4.4 Implementation
To implement the baseline algorithm, we developed a source-
to-source compiler that automatically instruments the XRP
Ledger’s code. First, it uses the Clang compiler front-end
[16] to parse the source code into an abstract syntax tree
(AST). Then it traverses the AST to identify the locations
of all if statements, while loops, and their respective condi-
tions. Lastly, the source code is manipulated to insert logging
statements at these locations to track the decisions taken.

The implementation of ISOLATION closely resembles Al-
gorithms 1 and 2. We slightly modified the method to only
consider the consensus-relevant PROPOSAL and VALIDATION
messages as well as evaluate the predicates for each UNL sep-
arately. Both methods share a single implementation of the
statistical framework.

5 Empirical Evaluation
This section presents the results of our empirical evaluation.
We will first introduce the different bugs in our benchmark
data set in Section 5.1. Following that, we explain the find-
ings of the baseline method and our ISOLATION algorithm in
Sections 5.2 and 5.3, respectively.

5.1 Benchmark Bugs
We generate the benchmark data set of executions by testing
the XRP Ledger using the BYZZFUZZ testing algorithm, as

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6
TX VAL VALPRP

(hashi, i) (hashi, i + 1)

Figure 4: Example of the incompatible ledger bug.

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

TX VALPRP

Insufficient Support
Agreement Violation

Figure 5: Example of insufficient support and agreement bug.

described in Section 4.1. The private XRP test network con-
sists of seven so-called validators. The system makes use of
two different UNLs: UNL1 includes p0 to p4, whereas UNL2

comprises p2 to p6. The first four processes trust UNL1and
the last three processes trust UNL2, as shown in Figure 3.

Table 1 outlines the distribution of the three bug types in
the data set. While a majority of the 145 faulty runs had a
single root cause, 23 of them failed because of a combination
of different errors. For each bug, we report the number of
runs which include that fault in the #Runs column. Addition-
ally, the Mixed column contains the number of runs which
contained the indicated bug as well as at least one other bug.

We continue to briefly describe the three bugs. For a more
detailed description, we refer to our BYZZFUZZ paper [27].

Incompatible Ledger
The incompatible ledger bug, recently discovered by our
BYZZFUZZ testing algorithm and visualized in Figure 4, ex-
poses due to the mishandling of certain Byzantine, i.e. mali-
cious, validation messages. In the XRP Ledger, each process
maintains a record of the hash and sequence number of the
last fully validated ledger. When a process has fully validated
a ledger with sequence i and hash hashi, the pair (hashi, i)

Table 2: The results of applying the scalable statistical bug isolation method to the XRP Ledger.

Predicate #Runs Bug Precision Recall F1 F0.5

if (seq != (ledger.seq() - 1))
hashOfSeq(ledger, seq, journal)
ledger/impl/View.cpp:655

142

Incompatible 34.5% 96.1% 50.8% 39.6%

Insufficient 81.0% 99.1% 89.1% 84.1%

Agreement 1.4% 100.0% 2.8% 1.8%

if (newPeerProp.prevLedger() != prevLedgerID)
peerProposalInternal(now, newPeerPos)
consensus/Consensus.h:732

2

Incompatible 50.0% 2.0% 3.8% 8.5%

Insufficient 50.0% 0.9% 1.7% 4.0%

Agreement 0.0% 0.0% 0.0% 0.0%

if (!prevAgree || (seq % Seq{interval} != Seq{0}))
getNextLedgerTimeResolution(prevRes, prevAgree, seq)
consensus/LedgerTiming.h:110

1

Incompatible 100.0% 2.0% 3.8% 9.1%

Insufficient 0.0% 0.0% 0.0% 0.0%

Agreement 0.0% 0.0% 0.0% 0.0%

is stored in an internal variable. If it now receives a valida-
tion for hashi but sequence j, where i < j, it will incorrectly
overwrite the internal variable to (hashi, j), containing the
hash of the ledger with a mismatched sequence number.

From now on, internal consistency checks fail when at-
tempting to validate because the new ledger hashk with se-
quence k is not a valid descendant of, i.e. compatible with,
the pair (hashi, j). As this check also fails for any future
ledger, the process will not be able to send validation mes-
sages anymore. If this fault manifests in more than f pro-
cesses, the network does not make progress anymore.

Insufficient Support
A process of the XRP Ledger ensures that it does not diverge
from its peers by checking that the ledger it is currently work-
ing on has support from a majority of the network. Because
the UNLs of our test network only have an overlap of 80%,
it is possible for the network to diverge and stall as shown in
Figure 5.

Suppose that the first three processes work on ledger A
while the last three processes work on ledger B. Both in
UNL1 and UNL2, the processes will see a majority of at least
60% for the ledger they are working on. Because the fraction
of processes in their UNL that works on a different ledger is
less than 50% they will not switch to a different ledger, i.e.
there is insufficient support and the two UNLs will not con-
verge without manual intervention.

Agreement Violation
A stricter version of the insufficient support bug does not only
lead to the processes diverging in the preferred ledger and
stalling the network, but results in a fork where the two UNLs
fully validate different ledgers as can also be seen in Figure 5.

If in a system where there is already a condition of insuf-
ficient support, a Byzantine process that is trusted by both
UNLs sends conflicting validation messages, both UNLs can
see a quorum of validations for their ledger. They receive
two matching validations from their peers in their own UNL,
receive one vote from the Byzantine process and count their
own vote as well. Since they see four out of five processes
agreeing, they fully validate conflicting ledgers.

5.2 Baseline Method
To answer RQ1, we implemented and applied the state-of-
the-art statistical bug isolation algorithm [18] as a baseline
method to isolate consensus violations in the XRP Ledger and
present its output in Table 2. We describe the three identified
predicates in order of decreasing importance. First, we ex-
plain the context and meaning of the predicate’s condition,
followed by an evaluation of its expressiveness.

Super-Bug Predictor
The first predicate that was identified is located inside the
hashOfSeq() function, which, for a given ledger ledger and
sequence number seq, either returns ledger’s hash or one of
its ancestors’ hashes, depending on the value of seq. From
the predicate’s condition and its context, we can infer that the
predicate is observed true when the requested seq is at least
two less than ledger’s sequence number.

Out of the total 145 faulty runs, 142 are attributed to this
predicate. The predicate can only discriminate between faulty
and successful runs, but not between the underlying bugs.
Therefore, we refer to it as a super-bug predictor. While these
predictors can be useful to detect the presence of faults, they
do not help the developer to debug an execution and identify
the underlying root cause.

Non-Predictors
We report the last two predicates as non-predictors because
they have no predictive power. Their recall scores do not ex-
ceed 2.0% for any bug, meaning that per class of bug, no
significant amount of runs is retrieved.

The second-last predicate only has a precision of at most
50.0%, further supporting it being a non-predictor. Neither
do the two executions it isolated overlap in their root causes,
nor is the condition of the identified if statement related to a
bug. The last predicate only isolated a single run and had an
importance of zero, making it another non-predictor a priori.

We hypothesize that these two predicates are a by-product
of the recursive redundancy elimination. After removing all
failing runs for which the first predicate was observed to be
true, the recursive procedure is left with only three other fail-
ing runs. The statistics used to isolate a predicate become

inaccurate when a few failing runs are observed, hence, the
output towards the end of the algorithm is noisy.

5.3 ISOLATION Algorithm
To answer RQ2, we evaluate our new ISOLATION algorithm
against the benchmark data set. Table 3 shows six out of the
eight identified predicates. In the following, we will describe
and evaluate the different predictors and discuss their perfor-
mance compared to the baseline method.

Predictor for Insufficient Support Bug
The first predicate returned by ISOLATION is a predictor for
the insufficient support bug. All of the 101 executions, for
which the predicate is observed to be true, share this bug as
one of their root causes, giving the predicate a precision of
100.0%. Combined with its high recall of 87.1%, the F1 and
F0.5 scores of 93.1% and 97.1% outperform the baseline with
89.1% and 84.1%, respectively.

Further, the predicate’s tolerance, threshold, and assertions
match Figure 3 and the description in Section 5.1. In this ex-
ample, the three processes that cause the predicate to exceed
its threshold are p4, p5, and p6. Because the two UNLs di-
verge in their votes, they receive two trusted validations with
different ledger hashes for the same sequence number from
p2 and p3. The assertion that the signing times of the ledger
are different maps to the fact that the two UNLs progress in-
dependently and are not synchronized anymore. We note that
the predicate also holds for other scenarios of the bug, e.g.
where p3 agrees with UNL2 instead of UNL1.

Agreement Bug
As stated previously in Section 5.1, the agreement bug is a
stricter version of the insufficient support bug. It requires
an additional round during which a Byzantine process sends
conflicting validation messages to the different UNLs.

The resulting failures for the two bugs are different. The
insufficient support bug manifests as a violation of liveness,
whereas the agreement bug manifests as a violation of safety.
However, the two bugs share an underlying root cause: insuf-
ficient overlap between the two UNLs.

Since ISOLATION’s goal is to discriminate bugs by their
root cause, it is correct to group the insufficient support and
agreement bug. ISOLATION identified that the two bugs share
the same underlying fault and isolated a single predicate for
both.

Predictor for Incompatible Bug
The second predicate relates to the incompatible ledger bug.
It is observed to be true if at least four processes receive at
least three validations for a ledger with sequence i signed at
time t. This must be followed by a validation with a sequence
number j, where j ̸= i, signed at the same time. Additionally,
the predictor correctly captures that the sender of the right-
hand validation cannot have previously sent a validation, as
this would not cause the bug to expose.

Again, this predictor outperforms the baseline method
with F -scores of 58.3% and 77.8% compared to 50.8% and
39.6%, respectively. While the precision is 100.0%, we ob-
serve a lower recall score of only 41.2%. On the one hand,
we attribute this to 19.6% of executions containing both the

insufficient support and incompatible ledger bug, which were
already selected by the first predicate. On the other hand, an-
other 25.4% of runs are retrieved by the next two predicates,
both sub-bug predictors we described in the following.

The third predicate, being very similar in nature to the sec-
ond predictor, also targets the incompatible ledger bug. In-
stead of asserting that the signing time for both validations
is the same, it requires the ledgers to be equal. We hypoth-
esize that these conditions are largely equivalent because of
a high correlation between the signing time and ledger in a
validation. When voting on the contents of a ledger, the pro-
cesses also vote on its signing time. Therefore, two correct
validations for the same ledger share a signing time.

Also, the fourth predicate is similar to the second predictor
and only differs in its lower tolerance. This is also observed
for the third predicate. We speculate that these differences
are a side effect of the recursive redundancy-elimination al-
gorithm. Once a predicate has been removed, the importance
of the remaining predicates changes, and previously insignif-
icant predictors can become important.

Non-Predictors
The last four predicates, two of which are shown in Ta-
ble 3, have little predictive power. Again, this is due to
the redundancy-elimination algorithm, which tends to output
noise towards the end.

5.4 Summary of Results
Our evaluation has shown that the state-of-the-art baseline
method for statistical bug isolation is not capable of discrim-
inating between the consensus bugs in the benchmark data
set. The output it generates does not support the developer in
identifying the root cause.

We have demonstrated the effectiveness of the ISOLATION
algorithm to identify different faults in executions of the XRP
Ledger by showing its increased performance compared to
the baseline. Our algorithm correctly discriminates between
bugs with different root causes. Further, we explained how
the predicates relate to the bug triggering conditions and,
therefore, sufficiently established ISOLATION’s value.

6 Related Work
While, to the best of our knowledge, ISOLATION is the first
algorithm to isolate bugs in consensus systems, there is a vast
number of publications related to our work [8; 12; 19; 20; 21;
24; 28]. In the following, we will discuss the two most re-
lated methods. Scalable Statistical Bug Isolation [18] from
the field of statistical debugging and Exposing Complex Bug-
Triggering Conditions in Distributed Systems via Graph Min-
ing [26] from the field of data mining.

The approach proposed in Scalable Statistical Bug Isola-
tion depends on a source-to-source compiler that significantly
instruments the code to record branching behavior, function’s
return values, and relations between pairs of scalar variables
and values. In comparison, ISOLATION only requires a log of
the exchanged messages, which can be easily created using
a message interception layer or light instrumentation. The
messages sent by the processes sufficiently define the state

Table 3: The results of applying our ISOLATION method to the XRP Ledger. Predicates are ordered by decreasing importance.

Predicate #Runs Bug Precision Recall F1 F0.5

2× VAL for more than 2 processes−−−−−−−−−−−−−−−−−→
ledger(l) ̸= ledger(r)

seq(l) = seq(r)
time(l) ̸= time(r)

VAL
101

Incompatible 9.9% 19.6% 13.2% 11.0%

Insufficient 100.0% 87.1% 93.1% 97.1%

Agreement 2.0% 100.0% 3.9% 2.5%

2× VAL for more than 3 processes−−−−−−−−−−−−−−−−−→
senders(l)∩ senders(r) = ∅

seq(l) ̸=seq(r)
time(l) = time(r)

VAL
21

Incompatible 100.0% 41.2% 58.3% 77.8%

Insufficient 28.6% 5.2% 8.8% 15.0%

Agreement 0.0% 0.0% 0.0% 0.0%

3× VAL for more than 4 processes−−−−−−−−−−−−−−−−−→
senders(l)∩ senders(r) = ∅

ledger(l) = ledger(r)
seq(l) ̸=seq(r)

VAL
4

Incompatible 100.0% 7.8% 14.5% 29.9%

Insufficient 100.0% 3.4% 6.7% 15.2%

Agreement 0.0% 0.0% 0.0% 0.0%

2× VAL for more than 2 processes−−−−−−−−−−−−−−−−−→
senders(l)∩ senders(r) = ∅

seq(l) ̸=seq(r)
time(l) = time(r)

VAL
10

Incompatible 90.0% 17.6% 29.5% 49.5%

Insufficient 10.0% 0.9% 1.6% 3.2%

Agreement 0.0% 0.0% 0.0% 0.0%

2× VAL for more than 1 processes−−−−−−−−−−−−−−−−−→
senders(l) = senders(r)

ledger(l) = prev(r)
time(l) = time(r)

PRP
3

Incompatible 66.7% 3.9% 7.4% 15.9%

Insufficient 66.7% 1.7% 3.4% 7.8%

Agreement 0.0% 0.0% 0.0% 0.0%

2× VAL for more than 1 processes−−−−−−−−−−−−−−−−−→
senders(l)∩ senders(r) = ∅

ledger(l) = ledger(r)
seq(l) = seq(r)

VAL
3

Incompatible 100.0% 5.9% 11.1% 23.8%

Insufficient 33.3% 0.9% 1.7% 3.9%

Agreement 0.0% 0.0% 0.0% 0.0%

. two more predicates omitted .

of the system and, in contrast to the source-based predicates,
capture the system’s concurrency and nondeterminism.

Although the message patterns, that the graph mining al-
gorithm in Exposing Complex Bug-Triggering Conditions in
Distributed Systems via Graph Mining generates, specify the
interleaving of the messages, they do not assert relations be-
tween the bodies of the messages. The algorithm only con-
siders the message as a whole and has no introspect into the
individual fields. ISOLATION’s predicates however contain
binary relationships between the fields, allowing it to isolate
more expressive bug predictors for complex protocols.

7 Responsible Research
In conjunction with this paper, we publish our data set and
source code on GitHub1, for other researchers to inspect and
reuse. The repository comprises the version of BYZZFUZZ
that was used to generate the data set as well as the imple-
mentations of the baseline method and our ISOLATION algo-
rithm. While this makes the evaluation of our method fully
reproducible, the generation of the data set is, because of
BYZZFUZZ, not deterministic. Nevertheless, the generated
data tends to show a similar distribution of bugs.

By performing simple validation experiments, we verified
the correctness of the statistical framework’s implementation,
in an effort to limit the risk of bugs in our code. Further, we
manually checked the obtained results for consistency.

1https://github.com/levinwinter/consensus-bug-isolation

To make our research process transparent, we addition-
ally include the few executions we omitted from the data set.
These were removed because they exhibited spurious time-
outs that could not be explained by our bug oracles.

The data we collected is purely synthetic and does not con-
tain any real-world transactions. For this, we created a private
test-network, running the XRP Ledger, and only processes
fabricated transactions. Therefore, the data is free of person-
ally identifiable information.

8 Discussion & Conclusion
Recent testing tools for consensus algorithms return large
numbers of buggy executions. To fix these bugs, developers
require methods to isolate the underlying faults.

We have empirically shown that our ISOLATION algorithm
effectively differentiates different root causes for bugs in con-
sensus systems. The novel predicates we propose success-
fully capture the bug-triggering conditions and provide ex-
plainable predictors for distinct root causes. In addition, we
have shown that our method’s discrimination abilities outper-
form the state-of-the-art with higher F1 and F0.5 scores.

ISOLATION supports the analysis of traces that automated
testing tools for consensus algorithms generate. The cluster-
ing of executions by bug conditions can help developers to
identify the underlying root cause more easily.

Future work can investigate how to eliminate or group
predicates that are redundant or similar to further improve

https://github.com/levinwinter/consensus-bug-isolation

ISOLATION’s output. In addition, we suggest to devise effec-
tive strategies for sampling from the exhaustive set of predi-
cates in an effort to increase ISOLATION’s scalability and per-
formance on even larger data sets.

References
[1] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein.

Lineage-driven fault injection. In Proceedings of the
2015 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’15, page 331–346, New
York, NY, USA, 2015. Association for Computing Ma-
chinery.

[2] Ignacio Amores-Sesar, Christian Cachin, and Jovana
Mićić. Security Analysis of Ripple Consensus. In
Quentin Bramas, Rotem Oshman, and Paolo Romano,
editors, 24th International Conference on Principles
of Distributed Systems (OPODIS 2020), volume 184
of Leibniz International Proceedings in Informatics
(LIPIcs), pages 10:1–10:16, Dagstuhl, Germany, 2021.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[3] Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri
Perelman, Zekun Li, Avery Ching, and Dahlia Malkhi.
Twins: BFT Systems Made Robust. In Quentin Bra-
mas, Vincent Gramoli, and Alessia Milani, editors, 25th
International Conference on Principles of Distributed
Systems (OPODIS 2021), volume 217 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages
7:1–7:29, Dagstuhl, Germany, 2022. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[4] Sebastian Burckhardt, Pravesh Kothari, Madanlal
Musuvathi, and Santosh Nagarakatte. A randomized
scheduler with probabilistic guarantees of finding bugs.
SIGPLAN Not., 45(3):167–178, mar 2010.

[5] Miguel Castro and Barbara Liskov. Practical byzan-
tine fault tolerance. In Proceedings of the Third Sym-
posium on Operating Systems Design and Implementa-
tion, OSDI ’99, page 173–186, USA, 1999. USENIX
Association.

[6] Brad Chase and Ethan MacBrough. Analysis of the
XRP ledger consensus protocol.

[7] Y. Chen, F. Ma, Y. Zhou, Y. Jiang, T. Chen, and J. Sun.
Tyr: Finding consensus failure bugs in blockchain sys-
tem with behaviour divergent model. In 2023 2023
IEEE Symposium on Security and Privacy (SP) (SP),
pages 2517–2532, Los Alamitos, CA, USA, may 2023.
IEEE Computer Society.

[8] Hong Cheng, David Lo, Yang Zhou, Xiaoyin Wang, and
Xifeng Yan. Identifying bug signatures using discrimi-
native graph mining. In Proceedings of the Eighteenth
International Symposium on Software Testing and Anal-
ysis, ISSTA ’09, page 141–152, New York, NY, USA,
2009. Association for Computing Machinery.

[9] Miguel Correia, Giuliana Santos Veronese, Nuno Fer-
reira Neves, and Paulo Verissimo. Byzantine consen-
sus in asynchronous message-passing systems: a sur-

vey. International Journal of Critical Computer-Based
Systems, 2(2):141–161, 2011.

[10] Higor A de Souza, Marcos L Chaim, and Fabio Kon.
Spectrum-based software fault localization: A survey of
techniques, advances, and challenges. arXiv preprint
arXiv:1607.04347, 2016.

[11] Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu
Ozkan, Rupak Majumdar, and Filip Niksic. Testing con-
sensus implementations using communication closure.
Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.

[12] Mohammad Maifi Hasan Khan, Hieu Khac Le, Hossein
Ahmadi, Tarek F. Abdelzaher, and Jiawei Han. Dust-
miner: Troubleshooting interactive complexity bugs in
sensor networks. In Proceedings of the 6th ACM Con-
ference on Embedded Network Sensor Systems, SenSys
’08, page 99–112, New York, NY, USA, 2008. Associ-
ation for Computing Machinery.

[13] Kyle Kingsbury and Kit Patella. GitHub - jepsen-
io/jepsen: A framework for distributed systems verifica-
tion, with fault injection — github.com. https://github.
com/jepsen-io/jepsen.

[14] Leslie Lamport. Time, clocks, and the ordering
of events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[15] Leslie Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems 16, 2 (May 1998), 133-
169. Also appeared as SRC Research Report 49. This
paper was first submitted in 1990, setting a personal
record for publication delay that has since been broken
by [60]., May 1998. ACM SIGOPS Hall of Fame Award
in 2012.

[16] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, CGO ’04, page 75, USA,
2004. IEEE Computer Society.

[17] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi
Joshi, Jeffrey F. Lukman, and Haryadi S. Gunawi.
Samc: Semantic-aware model checking for fast discov-
ery of deep bugs in cloud systems. In Proceedings of the
11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, page 399–414, USA,
2014. USENIX Association.

[18] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken,
and Michael I. Jordan. Scalable statistical bug isola-
tion. In Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, PLDI ’05, page 15–26, New York, NY, USA,
2005. Association for Computing Machinery.

[19] Haopeng Liu, Guangpu Li, Jeffrey F Lukman, Jiaxin Li,
Shan Lu, Haryadi S Gunawi, and Chen Tian. Dcatch:
Automatically detecting distributed concurrency bugs in
cloud systems. ACM SIGARCH Computer Architecture
News, 45(1):677–691, 2017.

https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen

[20] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xi-
aochen Lian, Jian Tang, Ming Wu, M. Frans Kaashoek,
and Zheng Zhang. D3s: Debugging deployed dis-
tributed systems. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Im-
plementation, NSDI’08, page 423–437, USA, 2008.
USENIX Association.

[21] Alexander V Mirgorodskiy and Barton P Miller. Di-
agnosing distributed systems with self-propelled instru-
mentation. In Middleware 2008: ACM/IFIP/USENIX
9th International Middleware Conference Leuven, Bel-
gium, December 1-5, 2008 Proceedings 9, pages 82–
103. Springer, 2008.

[22] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, Philadelphia, PA, June 2014. USENIX Asso-
ciation.

[23] Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip
Niksic, Mitra Tabaei Befrouei, and Georg Weis-
senbacher. Randomized testing of distributed systems
with probabilistic guarantees. Proc. ACM Program.
Lang., 2(OOPSLA), oct 2018.

[24] Sangmin Park, Richard W. Vuduc, and Mary Jean Har-
rold. Falcon: Fault localization in concurrent programs.
In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE
’10, page 245–254, New York, NY, USA, 2010. Associ-
ation for Computing Machinery.

[25] David Schwartz, Noah Youngs, Arthur Britto, et al. The
Ripple Protocol Consensus Algorithm. Ripple Labs Inc
White Paper, 5(8):151, 2014.

[26] Eunsoo Seo, Mohammad Maifi Hasan Khan, Prasant
Mohapatra, Jiawei Han, and Tarek Abdelzaher. Ex-
posing complex bug-triggering conditions in distributed
systems via graph mining. In 2011 International Con-
ference on Parallel Processing, pages 186–195, Sep.
2011.

[27] Levin N. Winter, Florena Buse, Daan de Graaf, Klaus
von Gleissenthall, and Burcu Kulahcioglu Ozkan. Ran-
domized testing of byzantine fault tolerant algorithms.
Proc. ACM Program. Lang., 7(OOPSLA1), apr 2023.

[28] Maysam Yabandeh, Abhishek Anand, Marco Canini,
and Dejan Kostic. Finding almost-invariants in dis-
tributed systems. In 2011 IEEE 30th International Sym-
posium on Reliable Distributed Systems, pages 177–
182, 2011.

	Introduction
	Background
	Consensus Algorithms
	XRP Ledger
	Statistical Bug Isolation

	The Isolation Algorithm
	Overview
	Predicates
	Pseudocode
	Generating Predicates
	Evaluating Predicates

	Statistics

	Method
	Benchmark Data Set
	Baseline Algorithm
	Metrics
	Implementation

	Empirical Evaluation
	Benchmark Bugs
	Incompatible Ledger
	Insufficient Support
	Agreement Violation

	Baseline Method
	Super-Bug Predictor
	Non-Predictors

	Isolation Algorithm
	Predictor for Insufficient Support Bug
	Agreement Bug
	Predictor for Incompatible Bug
	Non-Predictors

	Summary of Results

	Related Work
	Responsible Research
	Discussion & Conclusion

