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Abstract

In this thesis we focus on implicit coordination for multi-agent planning problems.
In such problems, agents are not able or willing to cooperate with each other and hence
we need to perform pre-planning coordination in order to ensure that merging all their
plans always results in a feasible joint plan. More specifically, we are interested in
finding a minimal cardinality set of constraints such that when add this set to the multi-
agent planning problem, no infeasible joint plan can be constructed, whatever local
plan each agent develops. Finding such a minimal cardinality set is known as the PLAN
COORDINATION PROBLEM (PC) which has been proven to be ∑

p
2 -complete [44].

Previous work has focussed on approximation and special cases for PC, however
some scenarios require or allow for exact solutions. Also, smaller instances might be
solvable in reasonable time.

This thesis discusses several exact solving methods and combines them into one
exact algorithm that is able to solve instances with task sizes up to 50 planarcs within
the hour.
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Introduction

Many of today’s real life problems consist of complex interactions between different
parties, of which each is responsible for only a part of the total set of tasks involved. In
addition, these task sets are usually interdependent. Consider for instance the construc-
tion of a house in which we have a mason that is solely responsible for construction of
all the brick walls. Although the mason can independently lay his bricks, he is depen-
dent on the supply of these bricks by a supplier. This supplier should have delivered
enough bricks before the mason starts his work, otherwise delays occur which incur
certain costs. But these are not the only two tasks in the construction of a house and
this is certainly not the only dependency. Planning all the tasks involved, while still
respecting all dependencies, is a very complex problem [43] and is virtually impossi-
ble to solve by hand, therefore several algorithms have been developed to tackle this
problem centralised [28, 30, 33].

The planning problem as described above is already very hard, but the real chal-
lenge arises when we allow the agents to come up with their own schedules and try to
combine them into a feasible plan. A feasible plan in this context is a plan that never
results in deadlock when executed. Based on the level of collaboration between the
various agents, we can identify three main strategies for plan coordination mechanisms
[40]. When agents are willing to collaborate intensively we let the agents come up with
a joint plan simply by communicating about the planning choices made and updating
their plans accordingly as in [14]. In other cases, agents are not able to or do not want
to communicate about all their planning choices but are willing to modify their plans
if required. In such a scenario we let each agent come up with its own plan, resolve
all conflicts globally and let agents update their own plans to reflect the changes made
globally. An example of this is given in [12].

Both of the approaches mentioned above are based on the assumption that agents
are collaborating or at least willing to adapt their individual plans. However in sev-
eral situations this is not the case, because either the agent is purely self-interested or
simply because there are no possibilities to collaborate, as in emergency situations for
example [23]. Although this makes planning very hard [44], such situations do occur
in practice and hence we need a method to deal with this type of planning problem
as well. Because agents do not cooperate we need to prevent infeasible plans from
being constructed at all, whatever plan each agent comes up with for its own task set.
Thus we still allow each agent to make its planning individually, however we constrain
its choices such that any planning that would result in a possible conflict globally can
never be produced. We can achieve this by plan decoupling.
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This research focuses on the latter type of planning problem, in which agents are
either unable or not willing to cooperate in constructing a global plan. In this thesis we
refer to such agents as autonomous agents.

Autonomous agent planning requires a pre-emptive plan decoupling approach, dis-
allowing any infeasible plans to be constructed. In the literature this is referred to as
pre-planning coordination or implicit coordination. Plan decoupling comes down to
finding a coordination set that prevents planning conflicts and checking whether the
instance is indeed plan coordinated, i.e. no infeasible plan can be constructed. It turns
out that just verifying the plan coordination property is already co-NP-complete and
finding a minimal coordination set is ∑

p
2 -complete [44] (see appendix A.3 for a more

detailed explanation on the polynomial hierarchy).
The above results seem to offer not much hope of solving plan coordination effi-

ciently, unless P = NP, and so previous work [47, 38] has only focussed on identifying
‘easier’ special cases or approximation algorithms to come up with a good enough
solution in a short amount of time. Nevertheless some practical situations require or
allow for exact solutions, no matter what time it takes. Moreover, as modern day com-
puters increasingly gain in computational power, more complex problems such as plan
coordination become more interesting to experiment with.

The main purpose of this thesis is to study several exact algorithms for the plan
coordination problem and compare them. Through this study we hope to gain insight
into the very complex plan coordination problem, which hopefully leads towards an
algorithm that is able to solve moderately sized instances (10 to 50 planarcs) within
reasonable time. In addition, this research also provides insight into a more difficult
class of problems, higher in polynomial hierarchy. These insights might also be bene-
ficial in solving other, perhaps similar, ∑

p
2 -complete problem.

This thesis is divided in three parts. The first part is meant as an introduction to the
plan coordination problem (chapter 1) and it summarises previous work (chapter 2).

The main part of this thesis consists of the exact algorithms we propose. We have
studied several algorithmic approaches to tackle the plan coordination problem. In
chapter 3 we begin with enumeration, primarily meant as a basis for further research.
In chapter 4 we introduce a dynamic programming approach to solve the coordination
verification sub problem. We study the possibilities of kernelisation in chapter 5. As
a last solving method, we also provide an encoding of the plan coordination problem
as a QUANTIFIED BOOLEAN FORMULA PROBLEM in section 6, allowing us to benefit
from thoroughly researched and highly optimised solvers. All experiments have been
summarised in chapter 7.

The last part is the discussion part in which we look back on the thesis. We discuss
the experimental results and draw our conclusions in chapter 8. In chapter 9 we iden-
tify interesting leads for future research, resulting from our work. Finally, chapter 10
summarises the entire thesis.

Contribution

The main contribution of this thesis is an exact algorithm for the PLAN COORDINA-
TION PROBLEM that combines all three techniques discussed in this thesis into one
algorithm. This algorithm uses enumeration with the enumeration strategy optimisa-

2



tion from chapter 3 to find possible coordination sets. Then a novel dynamic pro-
gramming approach which relies on the summary constraints introduced in chapter 4
is used to verify whether the coordination set indeed allows for autonomous planning.
In addition, we can improve on the overall performance of our solver by applying the
kernelisation proposed in chapter 5. The result of this is a solver that is able to solve
almost all moderately sized instances within the hour.
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Part I: The Plan Coordination Problem

Chapter 1

The Plan Coordination Problem

In the introduction we have informally introduced the plan coordination problem in
the context of autonomous multi-agent planning. In this problem we want to find a set
of additional restrictions for the agents such that they are able to plan their own ac-
tivities autonomously, i.e. without having to cooperate with other agents. This chapter
formalises the problem and using a framework proposed by several authors from the lit-
erature [39, 45]. This framework captures all the notions relevant to the (exact) solving
of plan coordination problems and provides us a tool to reason about the theoretical
aspects of the problem. However, before we can go into the details of coordinating
planning problems, we will first need some knowledge about the multi-agent planning
problem itself. Although we do not study the actual planning problem in this thesis,
it is important to study the problem we want to coordinate and understand the need of
coordination.

In section 1.1 we discuss the planning problem that we deal with in this study.
Next we introduce a framework to capture the plan coordination problem in section
1.2. Using this framework, we work towards a formal definition of the plan coordina-
tion problem in section 1.3. Finally, in section 1.4 we comment on the computational
complexity involved in the solving of plan coordination problems.

1.1 Multi-agent planning
Planning, and more specifically classical planning, is one of the best known and well
studied PSPACE-complete problems in computer science. The problem is conceptually
very simple but computationally very challenging [10]. Basically the problem is about
reaching some specified goal state, from some given start state using a limited number
of different operations. Many different formalisms of this simple informal definition
exist, however the differences are mostly notational. We have adopted the definition
from [43] given in definition 1.1.

7



1.1. MULTI-AGENT PLANNING

Definition 1.1: CLASSICAL PLANNING PROBLEM (Kleinberg and Tardos, [43])

Given: A planning instance consisting of a set of initial constraints C0,
a set of desired goal conditions Ĉ and a non-empty set of al-
lowed operators O.

Problem: Does there exist a sequence of operators Ô = {o1,o2, . . . ,ok} ⊆
O such that when we start from initial conditions C0 and se-
quentially perform operations Ô we satisfy goal conditions Ĉ?

When looking at this definition for planning problems, one can intuitively see that
finding such a sequence Ô is very complex. This is because of the exponential num-
ber of possible sequences that can be generated in the search for the correct sequence
for which no intelligent selection procedure can be devised. Hence in the worst case
we have to explore the entire exponential size search space to find such a sequence.
Classical planning as defined in definition 1.1 is therefore considered intractable.

In this thesis we will study a different, less complex type of planning problem
known as task-based planning. In task based planning we are given some complex
task, comprised of several elementary or atomic sub tasks which must all be performed
in order to complete the complex task. Task based planning as we study here only
requires us to come up with a valid ordering of all these sub tasks, which can be found
within polynomial time using for instance the topological ordering algorithm from [24].

Although we are not interested in the complexity of the the planning problem each
agent faces individually, we do require the task assignment to be known in advance.
This is why we study task-based planning as the underlying problem in this research. In
addition, the concepts of task-based planning can be naturally extended to a framework
for the plan coordination problem as we will do in section 1.2. However, the plan
coordination problem itself is not dependent on the underlying planning problem and
can be adapted to work with any type of planning problem, assuming that the task
assignment is known in advance.

In definition 1.2 we introduce the task-based planning problem more formally.

Definition 1.2: TASK-BASED PLANNING PROBLEM

Given: A complex task T consisting of the set T = {t1, t2, . . . , ti} of el-
ementary sub tasks that need to be performed in order to com-
plete the complex task, a set of precedence constraints ≺ and a
set of equality constraints ≡.

Problem: Find a strict partial ordering of the set T such that all con-
straints in ≺ ∪≡ are satisfied.

Task based planning can be easily extended to multi-agent scenarios by specifying
some task assignment of all the sub tasks in T over the set of participating agents A .
We can solve such a multi-agent planning problem by making a topological ordering of
all tasks, using for instance the algorithm from [24]. Nevertheless, as the introduction

8



Part I: The Plan Coordination Problem

has already noted, finding such an ordering of all tasks requires one central authority to
solve the planning problem. In some situations this is not desired or simply impossible
and we would like to allow all agents to make their own plans. In other words: we want
each agent to solve their sub part of the planning individually. Then we can obtain the
joint plan by merging all the plans the agents have come up with. The problem with
this, however, is that we do not always end up with a feasible plan this way. Agents are
not independent and these dependencies between agents must be considered in solving
the planning problem. To allow for independent planning we need some mechanism
that coordinates all the agents.

Plan coordination is such a coordination mechanism. Basically it tries to decouple
all inter-agent dependencies by making them explicit in each agent’s own planning
problem. It does so by finding additional constraints that, when adhered to, guarantee
the validity of the joint plan. This way agents are able to plan autonomously without
having to cooperate with other agents. This type of coordination is known as implicit
or pre-planning coordination.

In this thesis we will from now on only focus on the coordination of task-based
planning problems and no longer on the planning problem itself. Planning is performed
by each agent individually, using their own preferred planning tool, after imposing the
coordination set found by solving the plan coordination problem.

1.2 Plan Coordination Framework

The previous section has introduced us to the task-based planning problem, in which
we try to find a valid ordering of all elementary sub tasks that adheres to the given
set of constraints. This type of planning problem is easily solvable when we agree on
having one central authority that finds such an ordering. However when faced with
multiple agents that do not wish to or are not able to cooperate, we need a coordination
mechanism to make sure we always obtain a feasible joint plan. Solving the plan co-
ordination problem is such a mechanism to decouple agents in way that they no longer
have to cooperate. In the plan coordination problem we identify possible causes for
infeasibility and ‘coordinate’ these by imposing additional constraints on the planning
problem. This set of additional constraints then prevents any possible infeasible joint
plan from being constructed at all, i.e. we can only obtain valid joint plans whatever
the planning choices of each agent. However to make any such claims, we need a
formalism that allows us to prove such properties.

Several authors [39, 40, 45] have proposed frameworks for the plan coordination
problem. These frameworks are based on the formalism of the underlying task-based
planning problem and incorporate new concepts relevant to plan coordination. Note
again that although we formalise the plan coordination problem using task-based plan-
ning, we can adapt plan coordination to work with any planning problem, assuming the
task assignment is known in advance. In this remainder of this section we will deliber-
ate on a combined framework for plan coordination by providing a definition for all of
the concepts involved.
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1.2. PLAN COORDINATION FRAMEWORK

Complex task

The complex task is the main part of the multi-agent planning problem1 we wish to
coordinate. As we have said before, a complex task consists of a set of elementary sub
tasks, of which every sub task needs to be performed in order to complete the complex
task. These elementary tasks (definition 1.3) represent exactly one unit of work and
must be performed by exactly one agent. Which agent is responsible for what set of
sub tasks is defined by the task assignment. In this thesis we assume that the task
assignment is provided in advance, although this does not hold for planning problems
in general. Indeed finding such a task distribution can be a very challenging problem
in itself [27].

Definition 1.3: Elementary Task
An elementary task is a simple task that:

(i). must be executed exactly once

(ii). must be executed by exactly one agent

These elementary tasks are the work units that make up the complex task and they
all need to be completed in order to complete it. This seems to be a very trivial problem:
we can simply pick a random sub task, perform it and mark it complete until we have
no more uncompleted tasks. Indeed this is true if the sub tasks are independent, but in
practice we seldom encounter a planning problem instance without task dependencies.
In most planning instances certain relations between sub tasks exist in the form of
qualitative temporal constraints such as before, overlaps, during, meets, starts,
finishes and equals [2]. These constraints capture most of the dependencies we
encounter in planning problems and have the convenient property that they can all be
written using only precedence and equality constraints [13]. This allows for a compact
and comprehensive notation of the task dependencies in the form of these two types of
constraints.

In complex tasks we express the relations between elementary sub tasks hence as
combinations of precedence and equality constraints. Both constraints are defined in
definition 1.4.

1We sometimes omit the term multi-agent from now on, however keep in mind that the plan coordination
is only applicable to multi-agent planning problems.
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Part I: The Plan Coordination Problem

Definition 1.4: Precedence and Equality
Let ti and t j be two distinct elementary sub tasks of some complex task, then we denote
the precedence relation ‘ti must be completed before t j begins’ by

ti ≺ t j

Furthermore we denote the equality relation ‘ti and t j must both begin and end at
the same time’ by

ti ≡ t j

Together the set of elementary sub tasks and the sets of precedence and equality
constraints make up the complex task. We have captured this in definition 1.5. Note that
we have also included the notion of triviality in this definition. Of course if we would
have a complex task consisting of only one task or without any task dependencies, we
do not have to coordinate anything and hence the associated plan coordination problem
is trivial to solve. This is also true if all the sub tasks of the complex task can be
completed by a single agent. In this thesis we will omit the notion of triviality from
now on and assume we are dealing with non-trivial complex tasks.

Definition 1.5: Complex Task
A non-trivial complex task T is a task consisting of at least two sub tasks, which
are interdependent and cannot be completed by one single agent, a set of precedence
constraints and a set of equality constraints. We denote a complex task as the tuple
T = 〈T,≺,≡〉 in which T = {t1, t2, . . . , ti} denotes the set of elementary subtasks, ≺
the set of precedence constraints and ≡ the set of equality constraints.

Both the precedence and equality constraint sets are binary relations containing
only sub tasks of T , i.e. ≺,≡ ⊆ (T ×T ). In the precedence constraint set we repre-
sent precedence relations in the form ti ≺ t j as ordered pairs (ti, t j). For the equality
constraint set we also use a pair (ti, t j) to denote the constraint, however the equality
relation is of course commutative as ti ≡ t j ⇔ t j ≡ ti. In one complex task we must
have that both sets are disjoint, i.e. no pair (ti, t j) occurs in both sets otherwise we can
never satisfy the set of constraints.

Because both the precedence and the equality sets have been specified as a part of
the instance description, we often refer to these sets as the sets of original constraints.
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1.2. PLAN COORDINATION FRAMEWORK

Plans

In task-based planning we are given some complex task, as defined above, and we are to
find some feasible plan for it. Such a feasible plan is simply a strict partial ordering2 of
all elementary sub tasks of the complex task. This strict partial ordering is enforced by
additional constraints, captured in an abstract plan. More specifically, these additional
constraints are included in the ‘refinement’ sets ≺∗ and ≡∗. These sets are known as
‘refinement’ sets because they, by adding constraints, refine the original constraint sets
to impose a strict partial ordering. Hence we must have ≺ ⊆ ≺∗ and ≡ ⊆ ≡∗ and all
elementary sub tasks of the complex tasks must be included in at least one constraint.
Definition 1.6 formally defines the notion of an abstract plan.

Definition 1.6: Abstract Plan
An abstract plan P for some complex task T imposes a strict partial ordering on the
elementary sub tasks of T . We represent P by a tuple 〈T,≺∗,≡∗〉 in which T is the set
of elementary sub tasks and ≺∗ and ≡∗ denote the precedence and equality refinement
sets respectively. These sets are said to ‘refine’ the original constraint sets, because
≺⊆≺∗ and ≡⊆≡∗.

The abstract plan, sometimes known as extension or refinement [44], is an extension
of the original problem that partially orders the set of sub tasks. We call this plan
abstract because it consists only of qualitative temporal constraints, which only capture
sub task dependencies and no actual time values. We are solely interested in how the
sub tasks relate to each other, not at what time they are actually performed. The latter
is captured in a concrete plan or schedule, however in this thesis we are not interested
in such quantitative information.

Agents

Up to now we have considered all concepts of the task-based planning problem mostly
from a single agent perspective. In this thesis, however, we are studying the plan co-
ordination problem which is solely applicable to multi-agent planning problems. If we
would have only one agent, there would not be much need for coordination. Therefore
we extend the previous concepts in the context of multi-agent planning.

In multi-agent planning problems we are also dealing with a complex task, consist-
ing of a set of elementary sub tasks and two constraints sets, for which we want to find
an abstract plan. In addition we have the set of agents and some task assignment func-
tion f : T → A that associates each task with an agent. In this thesis we assume that
such a task assignment is already known in advance, for this is the case in various real
life problems. In many cases we already know which agent is responsible for which set
of tasks, but we simply want to know in what order to execute the tasks. Nonetheless
there do exist problems in which the task assignment is not known in advance; for in-
stance when agents are equally capable of performing some sub task, we could decide

2See appendix A.2 for a recapitulation on set ordering theory.
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Part I: The Plan Coordination Problem

to assign tasks during the planning in order to optimise the resulting plan.
Based on the task assignment we have been given, we can partition the task set

T of the complex task such that for each agent we have a set of sub tasks for which
it is responsible. Let A denote the set of agents involved in the problem and f some
given task distribution function, then for each agent Ai ∈ A we have the task set Ti =
{ti | f (ti) = i}. For the task assignment to be correct we must have that

⋃n
i=1 Ti = T

and
⋂n

i=1 Ti = /0. Note that because of definition 1.5 we must have that Ti ⊂ T for all Ti,
otherwise the complex task is trivial.

Using the task partition defined above we can also partition the constraint sets
≺ and ≡. Moreover, we distinguish between intra-agent and inter-agent constraints.
Intra-agent constraints are constraints that consist of two different tasks belonging to
the same agent, while the inter-agent constraints denote dependencies between two task
belonging to two different agents. Note that we can have only one inter-agent set and
as much intra-agent sets as there are agents for each type of constraint.

Definition 1.7: Intra-agent and Inter-agent Constraints
The intra-agent constraint sets≺i and≡i for agent Ai in a complex task T = 〈T,≺,≡〉
are given by

≺i = {(ta, tb) ∈ ≺ | ta, tb ∈ Ti}
≡i = {(ta, tb) ∈ ≡ | ta, tb ∈ Ti}

The inter-agent sets ≺inter and ≡inter are defined by

≺inter = {(ta, tb) ∈ ≺ | ta ∈ Ti, tb ∈ Tj,Ti 6= Tj}
≡inter = {(ta, tb) ∈ ≡ | ta ∈ Ti, tb ∈ Tj,Ti 6= Tj}

We summarise the above into a representation for the agents involved in the plan-
ning problem in definition 1.8. Note that if we would take the union of all agent tuples
and the inter-agent constraint sets, we would obtain the original complex task tuple, i.e.
(
⋃n

i=1 Ti,(
⋃n

i=1 ≺i) ∪ ≺inter,(
⋃n

i=1 ≡i) ∪ ≡inter) = 〈T,≺,≡〉= T .

Definition 1.8: Agent
An agent Ai is an autonomous actor responsible for at least one sub task of some
complex task T = 〈T,≺,≡〉 and is represented by the tuple 〈Ti,≺i,≡i〉. In this tuple the
set Ti denotes the set of sub tasks from T assigned to this agent by some task distribution
function f . The sets ≺i and ≡i denote the intra-agent constraint sets for this agent
(definition 1.7).
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1.2. PLAN COORDINATION FRAMEWORK

Planning arcs

The notion of planning arcs, or planarcs for short, is simply a convenient term for
planning choices that can still be made. When solving their local planning problem,
agents can add only arcs between their own tasks. The planarcs represent the degree of
freedom each agent still has and also directly relate to the complexity of any instance of
the plan coordination problem. The more planarcs any instance has, the more difficult
it becomes to coordinate.3

In defining the set of planarcs, we only consider the set of planning choices that can
actually lead to an inter-agent cycle. The rest of the planning choices are not relevant
in solving the plan coordination problem and hence are omitted as planarcs. The only
arcs that can ever contribute to an inter-agent cycle have to contain two tasks that are
part of two different inter-agent constraints [44]. Other planning choices might still
lead to a inter-agent cycle through a longer path, but they are subsumed by just those
arcs, see for example figure 1.1. 4

agent
ti

tk

t j

Figure 1.1: We can create an inter-agent cycle by either planning ti ≺ t j or ti ≺ tk and
tk ≺ t j. Note however that when we add coordination constraint t j ≺ ti both cycles are
automatically coordinated.

In figure 1.1 we see that we can create a cycle in two different ways, assuming that
there is some inter-agent path that connects t j to ti. Either by adding ti ≺ t j or by adding
both ti ≺ tk and tk ≺ t j we would obtain an inter-agent cycle in our precedence graph.
We can coordinate this agent by adding the constraint t j ≺ ti and both cycles are no
longer possible. The first cycle is obvious: we cannot have both ti ≺ t j and t j ≺ ti in
our constraint set. In addition, the second and longer cycle can also never be created
because adding it would result in an intra-agent cycle, also known as a local cycle.
Any solution for the agent’s local planning problem containing a cycle implies that no
partial order exists and hence is an invalid solution by the definition of the problem.
Because of all the above, we always have to consider as planarcs only those planning
choices that consist of two tasks that are both part of some possibly different inter-agent
constraint.

We give the definition of planarcs below in definition 1.9. Note that although we
use the term arc, which indicates a certain direction, we are store only pairs of tasks as
planarcs. What actual constraint we might add to the coordination set, e.g. ti≺ t j, t j ≺ ti
or ti ≡ t j, is not imposed by the planarc. The name planarc is somewhat misleading,
however it has been introduced as such in the literature [44] and hence we will adopt
this convention.

3This is confirmed in section 7.3, although the number of agents is also an important factor.
4See the next sub section for an explanation of this precedence graph.
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Part I: The Plan Coordination Problem

Definition 1.9: Planning arcs
Given an instance 〈T ,A , f 〉 of the planning problem, we define the set of planning
arcs or planarcs Ê to be the set of possible planning choices we have to consider to
coordinate the instance. This set is given by:

Ê = {{ti, t j} | {ti, t j} /∈ ≺ ∪ ≡, f (ti) = f (t j), ∃tk, tl : {ti, tk},{t j, tl} ∈ ≺inter ∪ ≡inter}

In words, definition 1.9 captures the set of pairs of tasks within the same agent
which do not occur together in some precedence or equality constraints, however both
tasks are part of an inter-agent constraint.

Precedence Graph

We can visualise an instance of the multi-agent planning using a precedence graph.
Such a graph consists of all the agents, their tasks and all dependencies between the
tasks. See figure 1.2 for an example dependency graph.

A1

A2

A3
t5 t6 t7

t1

t2

t3 t4

Figure 1.2: An example dependency graph with three agents. The tasks are depicted
by white circles. Their relations, i.e. precedence constraints, are depicted by the black
arrows. An arrow from ti to t j means that t j depends on ti or ti ≺ t j.

In this figure we see three agents, illustrated by the rounded rectangles. The tasks
assigned to the agents are contained within them and are depicted as white circles. For
example we can see that f (t1) = A1 and f (t6) = A3. All precedence constraints, both
intra- and inter-agent, are displayed as ‘depends on’ arrows. If some task ti precedes
another task t j, we say that t j depends on ti, hence the direction of the arrow.

For each task we define its in- and out-degree as in definition 1.10.

Definition 1.10: Task In- and Out-degree
The in-degree of any task t is defined as the total number of different tasks t ′ 6= t ∈ T
for which ∃(t ′ ≺ t) ∈ ≺. Analogous we define the out-degree as the total number of
different tasks t ′ 6= t ∈ T for which ∃(t ≺ t ′) ∈ ≺.
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Instance Tightness

In the sub sections above we have discussed several planning problem concepts using
tightly coupled instances introduced below. However other types of instances do also
exist. In [48] Zlot and Stentz introduce three types of coordination instances.

Loosely coupled
The first type is the loosely coupled instance, in which no inter-agent constraints
are allowed. The absence of inter-agent constraints immediately makes all the
local planning problems independent, because agents have no interdependencies
and hence no constraints can be violated when merging all abstract plans. There-
fore there is no need to coordinate the instance and there is no plan coordination
problem for this type of instance.

Moderately coupled
The second type of planning problem, called moderately coupled, does have
inter-agent constraints, but allows only for precedence constraints to be used.

Tightly coupled
The third type of planning problem is known as tightly coupled and allows for
both precedence as well as equality constraints to be used. Although this type
of instance may seem more difficult to coordinate in terms of computational
complexity than their moderately coupled relatives, Steenhuisen et al. prove that
the coordination problem for tightly coupled instances is not substantially more
difficult than the one for moderately coupled instances in [38].

In this thesis we will discuss all theory using a framework that is able to represent
tightly coupled instances, because a framework for this type of instances is also con-
tains the other two. In our research, however, we will focus on moderately coupled
instances because they are conceptually easier and have almost the same coordination
complexity. Note that although Ter Mors et al. report that coordination using simul-
taneity constraints is Π

p
3 -complete [44], they have a different definition of simultaneity.

They define a simultaneity constraint ti ./ t j to enforce that either ti ≺ t j or t j ≺ ti must
hold. This is a different type of constraint than the equality constraint ≡ introduced in
Steenhuisen et al. [38].

1.3 Problem Definition
In the previous section we have introduced the concepts involved in multi-agent task-
based planning. The framework we have discussed up till now is perfectly suited for
solving the planning problem in a centralised fashion, i.e one central authority is able
to solve this problem using our framework. However, as we have mentioned before,
letting one central authority come up with a plan is not always desired or possible. But
if we would allow each agent to develop its plan individually, one can imagine that the
joint plan will not always be feasible. We need a coordination mechanism to ensure the
feasibility of the joint plan. In this thesis we study plan coordination, a pre-planning
mechanism that coordinates the multi-agent planning problem by adding additional
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constraints. These additional constraints, known as the coordination set, make sure the
joint plan is always feasible, whatever planning choices each agent makes. Still, we
have not defined what makes a plan feasible. Definition 1.11 defines the notion of a
feasible plan in the context of a joint plan.

Definition 1.11: Feasible and Infeasible Joint Plan
We define the joint plan P to be the union of all the abstract plans P1,P2, . . . ,Pn devel-
oped by the agents and the inter-agent constraints, or

P = 〈
n⋃

i=1

Ti,(
n⋃

i=1

≺∗i ) ∪ ≺inter,(
n⋃

i=1

≡∗i ) ∪ ≡inter〉

We say that a (joint) plan is feasible if and only if defines a strict partial ordering
on its tasks, i.e. the union of the constraint sets is acyclic. A joint plan is said to be
infeasible if the union of its constraints is contains a cycle.

From definition 1.11 we see that in order to obtain a feasible joint plan, we need
to make sure that the combination of all local plans5 results in a strict partial ordering
of all tasks. The plan coordination problem provides this guarantee by disallowing any
infeasible joint plans to be constructed at all. When no such infeasible plan can ever be
constructed for a given planning instance, we say that the instance is plan coordinated
(definition 1.12).

Definition 1.12: Plan Coordinated
We say that an instance of the planning problem is plan coordinated if and only if no
infeasible joint plan (definition 1.11) can be constructed. In other words, whatever
abstract plan each agent develops for its own set of tasks, the joint plan again must be
strict partially ordered, i.e. an abstract plan.

The purpose of the plan coordination problem is to, by adding coordination con-
straints, obtain this plan coordinated property for the given instance. If the plan co-
ordinated property holds, we can safely allow for autonomous planning because no
infeasible joint plan can ever be constructed. Therefore we would like to be able to
verify whether for any given planning problem instance this property holds and, if not,
modify the instance such that it becomes plan coordinated, without changing the se-
mantics of the instance. First we discuss the problem of verifying the plan coordinated
property. This problem is known as the COORDINATION VERIFICATION PROBLEM,
defined in definition 1.13.

5We use the term local plan to denote the plan developed by one individual agent. After plan coordination
an agent only has to consider its own set of tasks and constraints in its planning problem, hence the term
local.
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Definition 1.13: COORDINATION VERIFICATION PROBLEM (CVP)

Given: A multi-agent planning instance, represented by a complex task
T = 〈T,≺,≡〉, a set of agents A and some task distribution
function f .

Problem: Does the construction of a joint plan P = 〈
⋃n

i=1 Ti,(
⋃n

i=1 ≺∗i
) ∪ ≺inter,(

⋃n
i=1 ≡∗i ) ∪ ≡inter〉 always result in a feasible plan,

whatever abstract plans the agents come up with? In other
words, is the given instance plan coordinated?

The COORDINATION VERIFICATION PROBLEM or CVP verifies whether any given
planning problem instance is plan coordinated. It simply answers with yes or no, based
on the constraints in the instance. The actual finding of a constraint set which enforces
the plan coordinated property holds is known as the PLAN COORDINATION PROBLEM,
which has CVP as a sub problem.

The set of constraints that enforces the plan coordinated property is known as the
coordination set and is defined in definition 1.14. Note that we denote the multi-agent
planning problem instance with the tuple 〈T ,A , f 〉, consisting of the complex task T ,
the agent set A and some task assignment function f .

Definition 1.14: Coordination Set
A coordination set ∆ = 〈∆≺,∆≡〉 for a given instance 〈T ,A , f 〉 of the multi-agent plan-
ning problem is a set of constraints that, when added to the planning instance, enforces
the plan coordinated property. Or in other words, the resulting instance

〈T,≺ ∪ ∆
≺,≡ ∪ ∆

≡〉

is plan coordinated.

In the PLAN COORDINATION PROBLEM we are interested in finding a coordination
set ∆ for the complex task T = 〈T,≺,≡〉. Moreover, we are interested in finding the
coordination set ∆ of minimal cardinality. In our research we define the cardinality for
any coordination set as |∆|= |∆≺|+ |∆≡|. In definition 1.15, we define the problem of
finding such a minimal coordination set.
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Definition 1.15: PLAN COORDINATION PROBLEM (PC)

Given: A multi-agent planning instance 〈T ,A , f 〉 and some positive
integer K.

Problem: Does there exist a coordination set ∆ = 〈∆≺,∆≡〉 with |∆| ≤ K
for which the resulting instance 〈T,≺ ∪ ∆≺,≡ ∪ ∆≡〉 is plan
coordinated?

The whole point of the PLAN COORDINATION PROBLEM is to find constraints that
effectively decouple the planning problem instance into multiple independent planning
problems, one for each agent. This allows them to make their own plans individually,
without having to communicate with other agents. In addition, we are interested in
the coordination set with the smallest cardinality. Although this does not one-to-one
translate to the largest degree of planning freedom for all agents, we want to impose a
minimum number of additional restrictions on the local planning problems.

1.4 Coordination Complexity

In the introduction we have already mentioned that the PLAN COORDINATION PROB-
LEM is a ∑

p
2 -complete problem6 and therefore highly intractable. In this section we

will demonstrate the complexity of both the COORDINATION VERIFICATION PROB-
LEM and the PLAN COORDINATION PROBLEM by providing a reduction from two
known difficult problems, namely the PATH WITH FORBIDDEN PAIRS PROBLEM and
the NO PATH WITH FORBIDDEN EXCLUSIVE ARC SETS PROBLEM. Both reduc-
tions have been obtained from [44]. Note that Ter Mors et al. only discuss moderately
coupled instances (see section 1.2). The reductions are extended to tightly coupled in-
stances in [38]. We will discuss both reductions for moderately coupled instances in
the remainder of this section. For a formal proof of both we refer the reader to [45] and
[38].

Coordination Verification

The COORDINATION VERIFICATION PROBLEM is the basis for plan coordination, be-
cause it verifies whether we have found a correct coordination set that plan coordinates
a given planning instance. In [45] Valk proves that for moderately coupled instances
the CVP is a co-NP-complete problem. This means that even simply checking whether
a given instance is plan coordinated is already very hard. It is not hard to image that this
is indeed the case: we have to check that for every possible combination of planning
choices the agents make, no infeasible plan can be constructed. If one has some ex-
perience with algorithmics, this intuitively sounds like a NP-complete problem. More
specifically, because we can easily verify a no certificate for this problem, using a sim-
ple cycle detection algorithm, we are dealing with a co-NP-complete problem.

6For a refresher on the polynomial hierarchy, see appendix A.3.
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The formal proof for the co-NP-completeness of the COORDINATION VERIFICA-
TION PROBLEM can be given by a reduction from the PATH WITH FORBIDDEN PAIRS
PROBLEM to the complement of CVP: the COORDINATION FAILURE DETECTION
PROBLEM. In definition 1.16 we first introduce the PATH WITH FORBIDDEN PAIRS
PROBLEM used by Ter Mors et al. in [44].

Definition 1.16: PATH WITH FORBIDDEN PAIRS PROBLEM (PWFP) (Ter Mors et al.,
[44])

Given: A tuple 〈G0,C,s, t〉 in which G0 = 〈V,E0〉 is a directed graph,
C = {c1,c2, . . .cn} is a set of forbidden pairs of arcs in E0 and
s and t are two distinct vertices from V .

Problem: Does there exist a path from s to t using at most one arc from
every c j ∈C?

In words the PWFP problem asks whether there exists a path from s to t such that for
each two arcs from one forbidden pair c j ∈C they never occur both in the same path.
This problem is a known NP-complete problem, which has been proven by Gabow et
al. in [20]. Now to prove that CVP is co-NP-complete, we reduce PWFP to its comple-
ment. This problem is known as the COORDINATION FAILURE DETECTION PROB-
LEM, stated in definition 1.17. The CFD asks whether an infeasible plan can be created
given a planning instance.

Definition 1.17: COORDINATION FAILURE DETECTION PROBLEM (CFD)

Given: A planning instance 〈T ,A , f 〉.

Problem: Does there exist any combination of abstract plans
P1,P2, . . . ,Pn developed by the agents A1,A2, . . .An ∈ A
respectively such that the joint plan P is infeasible?

For the reduction of PWFP to CFD we need some special construction to model
forbidden pairs of the first problem as planning choices in the latter. We do this using
path blocking gadgets, illustrated in figure 1.3.

These path blocking gadgets are constructed for every forbidden pair of PWFP. In
the PWFP problem, we can choose to include either zero or one arc from each forbidden
pair c j = {(x,y),(u,v)} but not both. The path blocking gadget enforces the same
choice in the multi-agent planning problem. When solving the planning problem, we
can choose to include (x j,y j) or (u j,v j) or neither of them. Including both of them
would result in an intra-agent cycle (also known as a local cycle) x j ≺ y j ≺ u j ≺ v j ≺ x j

and therefore is not a legal solution to the planning problem.
In his thesis, Valk [45] discusses the complete reduction from a PWFP instance

〈G0,C,s, t〉 to a CFD instance 〈T,G = 〈V,E〉〉. Note that Valk uses a slightly different
notation for the CFD problem, however we can easily obtain the graph based notation
Valk has used from any planning instance 〈T ,A , f 〉. We model each agent Ai ∈ A
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agent

x y

uv

x j y j

u jv j

Figure 1.3: A path blocking gadget that models the forbidden pair {(x,y),(u,v)} as a
planning choice. We can plan either (x j,y j) or (u j,v j) but not both.

as some shape containing its assigned tasks Ti as a vertices and for each precedence
relation (ti, t j) ∈≺ we add a directed edge from ti to t j.

Now that we have overcome the notational differences, we can go into the actual
reduction, given below:

(i). (Tasks) Let n = |T | then for i = 1, . . . ,n: Ti = {vi}; for j = 1, . . . ,k (k = |C|) set
Tn+ j = {x j,y j,u j,v j | {(x,y),(u,v)} ∈ C} and Tn+k+1 = {s0, t0}, where both s0

and t0 do not occur in V . We set T =
⋃n+k+1

i=1 Ti.

(ii). (Arcs) E is the smallest set of constraints satisfying the following conditions:

(a) For every arc e = (u,v) ∈ E0 not occurring in a pair of arcs in C, e occurs
in E.

(b) For every constraint pair of arcs c j = {(x,y),(u,v)} ∈ C, E contains the
directed arcs:

(x,x j),(y j,y),(u,u j),(v j,v),(y j,u j),(v j,x j)

which together make up a path blocking gadget.

(c) Finally, E contains the arcs (t, t0) and (s0,s).

The correctness of this reduction is proven in [45] and will not discussed here, we
will only summarise the result of this reduction. Theorem 1.18 is the result of the
reduction given before.
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Theorem 1.18: PWFP ≤P CFD

The PATH WITH FORBIDDEN PAIRS PROBLEM is polynomial time reducible to the
COORDINATION FAILURE DETECTION PROBLEM.

Proof. Valk, [45].

Now it remains to prove that CVP is intractable because its complement, CFD, is
also intractable. We have done this is theorem 1.19.

Theorem 1.19: co-NP-completeness of CVP

The COORDINATION VERIFICATION PROBLEM is a co-NP-complete problem.

Proof. From theorem 1.18 we have that PWFP ≤P CFD and therefore CFD is at least
as hard as PWFP. In [20] PWFP has been proven to be NP-complete and hence so is
CFD. We know that CFD is the complement of CVP, or CFD = CVP. By definition of
the complexity classes we have that for all Π ∈ NP-complete it must hold that Π ∈
co-NP-complete, hence CVP is co-NP-complete.

Plan Coordination

Theorem 1.19 proves that CVP is indeed a co-NP-complete problem and hence in-
tractable. From section 1.3 we know that CVP is a sub problem of PC and therefore
we have not much hope of PC being efficiently solvable. We will see that indeed CVP
is a very complex problem, much harder than the CVP. Intuitively this seems correct:
we can non-deterministically guess some coordination set and then verify it using an
algorithm for the co-NP-complete CVP.

In his thesis, Valk [45] proves that the PLAN COORDINATION PROBLEM indeed
has a ∑

p
2 -complete complexity7 and hence is highly intractable. The proof again has

only been given for moderately coupled instances and is extended in [38].
The complexity proof for PC requires a reduction from the ∑

p
2 -complete problem

NO PATH WITH FORBIDDEN EXCLUSIVE ARC SETS PROBLEM, defined in definition
1.20,

7The polynomial hierarchy theory can be found in appendix A.3.
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Definition 1.20: NO PATH WITH FORBIDDEN EXCLUSIVE ARC SETS PROBLEM
(∃∀¬PWFP) (Ter Mors et al., [44])

Given: A ∃∀¬PWFP instance 〈G0,C,s, t〉 with G0 = 〈V,E0〉 a directed
acyclic graph and some partitioning {C1,C2} of the forbidden
pair set C such that C1∪C2 =C and C1∩C2 = /0.

Problem: Does there exist an exclusive choice set X1 from C1, i.e. a set
X1 that contains exactly one arc from each forbidden pair in C1
such that for every exclusive choice set X2 from C2 there does
not exist a path from s to t in the arc set E ′0 = (E0\C)∪X1∪X2?
In this definition E0 \C denotes the set of arcs from E0 that do
not occur in any forbidden pair.

The definition of the NO PATH WITH FORBIDDEN EXCLUSIVE ARC SETS PROB-
LEM seems rather complicated, but can be stated simply in words. We want to find a
set of arcs X1 consisting of one arc of each pair from C1 such that no set X2 can be
found that still allows a path from s to t to be constructed.

Again we have to model this exclusive arc choice as some planning choice con-
struction in order to reduce ∃∀¬PWFP to PC. In this reduction we use forced choice
gadget to model this exclusive choice. The forced choice gadget is depicted in figure
1.4.

s t
x y

uv

x j y j

u jv j

a j b j

c j d j

Figure 1.4: A forced choice gadget for the forbidden pair c j = {(x,y),(u,v)} from the
set C1. This gadget enforces that either one or two from {(a j,b j),(c j,d j)} or exactly
one arc from {(x j,y j),(u j,v j)} can be chosen when solving the planning problem. Any
other choice would introduce an intra-agent cycle which implies that no strict partial
ordering exists for the agent’s tasks.

The complete reduction from any ∃∀¬PWFP instance 〈G0,C,s, t〉 and some parti-
tioning {C1,C2} to a PC instance 〈T,G = 〈V,E〉〉 can also be found in [45]. Note again
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the notational differences, which can be overcome using the method discussed for the
CVP reduction.

The reduction can be done as follows:

(i). (Tasks) For every vi ∈ V , Ti = {vi}. For every forbidden pair {(x,y),(u,v)}
of C, we add nodes x j,y j,u j and v j to Tn+ j. Moreover, for every forbidden
pair {(x,y),(u,v)} ∈C1 we add four additional nodes to Tn+ j: a j,b j,c j and d j.
Finally, Tn+m+1 (with m= |C|) contains the node s0 and the K+1 nodes t0, . . . , tK ,
with K = |C1|.

(ii). (Arcs) The set of arcs E contains the following:

(a) For every arc e = (u,v) ∈ E0 not occurring in a pair of arcs in C, add e to
E.

(b) For every pair of arcs c j = {(x,y),(u,v)} ∈C, E contains the arcs:

(x,x j),(y j,y),(u,u j),(v j,v),(y j,u j),(v j,x j)

(c) For every forbidden pair {(x,y),(u,v)} ∈C1, E contains the additional arcs:

(v j,a j),(v j,c j),(y j,a j),(y j,c j),(b j,x j),(b j,u j),

(d j,x j),(d j,u j),(s,a j),(s,c j),(b j, t),(d j, t)

(d) Finally, E contains the arcs {(t, t0), . . . ,(t, tk)} and (s0,s)

The result of this reduction is a correct mapping from any ∃∀¬PWFP instance to an
PC instance. Theorem 1.21 summarises this result, of which the proof can be found in
[45].

Theorem 1.21: ∃∀¬PWFP ≤P PC

The NO PATH WITH FORBIDDEN EXCLUSIVE ARC SETS PROBLEM is polynomial
time reducible to the PLAN COORDINATION PROBLEM.

Proof. Valk, [45]

From this theorem we regretfully have to conclude that the PLAN COORDINATION
PROBLEM is a ∑

p
2 -complete problem and therefore highly intractable, unless P = NP.

Solving instances of this type of complexity scales very badly, much worse than the
known intractable NP-complete problems. Because of this, all previous work in the
field of PC solving has focussed on approximation methods. In the next chapter we
will discuss two of these approximation methods, Depth Partitioning and Intra-free
coordination. We will see that using these algorithms we are able to solve the problem
in polynomial time, although the quality (i.e. coordination set size) of the solution
might be far from optimal.
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Chapter 2

Previous Work

In the literature there have been several authors who studied the problem of autonomous
multi-agent planning in different ways. We can identify three main strategies to coordi-
nate multi-agent planning from the research, based on the extent that agents are willing
(or able) to collaborate.

In situations where agents are cooperative we can coordinate the joint plan by com-
municating each planning choice that is made. Then agents can either modify their
plans accordingly or respond that the proposed planning action is accepted or infeasi-
ble. Such an approach has been taken in for instance [14].

A second strategy is conflict based coordination, used in for example [12]. In this
method we allow agents to make their own plans and we try to merge all these plans
into one joint plan. This joint plan will then most likely contain one or more infeasible
parts and such conflicts need to be resolved. At this point we need some communication
and negotiation procedure that informs agents about conflicts so that they can come up
with an updated solution to deal with the specified conflict. This approach requires
less collaboration, however agents must be willing to modify their plans to make the
joint plan feasible. Moreover, conflict driven coordination might require an extensive
amount of iterations before all planning conflicts are resolved.

The third approach, which we study in this thesis, is a non-collaborative approach.
We want to decouple the multi-agent planning problem such that agents are able to
autonomously plan their own part of the joint plan, without having to communicate
about their planning choices. This coordination approach is known as pre-planning
coordination and has been studied by various authors in, amongst others, [8, 40, 44, 45].

Although much research has been performed into the PLAN COORDINATION PROB-
LEM, there has been no attempt to solve it exact. In [38], Steenhuisen et al. propose
an approximation algorithm, known as the Depth Partitioning algorithm, that uses the
precedence and equality constraint depths to coordinate the PC. Other research, such as
the study by Yadati et al. [47], considers a special case only for which the PC is ‘only’
NP-complete and its CVP can be solved in polynomial time.

With PC being an ∑
p
2 -complete problem, approximation seems the more promising

approach in solving PC. Nevertheless, because of the complexity of the problem, we
do not have much hope for efficient approximation. Indeed Ter Mors et al. have proven
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that PC is an APX-hard problem and therefore it is very unlikely that a constant ratio
approximation algorithm exists, unless P = NP.1 Still, both these approaches aim
to solve the PLAN COORDINATION PROBLEM and have been the basis of this thesis
research, hence we discuss both methods in more detail in this chapter. Section 2.1
explains the Depth Partitioning algorithm by Steenhuisen et al. In section 2.2 we cover
the Intra-Free coordination approach by Yadati et al.

2.1 Depth Partitioning
Depth Partitioning is a very intuitive approach to coordinating PC instances and is based
on the prerequisite levels of each task. We have seen in chapter 1 that a coordination
set must ensure that the joint plan is always feasible or, in other words, planning the
tasks will never result in an inter-agent cycle. Depth Partitioning ensures this by mak-
ing precedence levels, known as task depths, explicit in the form of coordination con-
straints. In [39] Steenhuisen et al. discuss Depth Partitioning for moderately coupled
instances and they extend their algorithm for tightly coupled instances in [38].

The Depth Partitioning algorithm makes sure that plans stay acyclic by enforcing
a set based order of tasks. Because of the definition of PC, we must have an acyclic
constraint set and hence there must exist at least one task that has no other task preced-
ing it. Now if we make sure in our planning that all such tasks are executed first, the
set of tasks preceded by one task will become prerequisite free. Then, if we make sure
that these tasks are the next to be executed, the set of tasks with two preceding tasks
becomes prerequisite free. The Depth Partitioning algorithm continues this procedure
until finally the last tasks that do not precede any other task are coordinated.

Basically the Depth Partition method makes sure that tasks from different depth
levels are planned sequentially. The notion of depth is formalised in definition 2.1.
Note that after the Depth Partitioning algorithm has been performed agents are still
required to plan tasks within each task depth set. Adding constraints between two
different depth sets would have no result when we add some constraint ti ≺ t j with
depth(ti) < depth(t j), because this is already implied by the Depth Partitioning set.
On the other hand, adding a constraint ti ≺ t j with depth(ti) > depth(t j) would result
in an intra-agent cycle and hence is not allowed.

Definition 2.1: Task Depth
The task depth of a task t is defined as the greater of the number of tasks that precede
task t and the depth of equal tasks. It is defined by the recursive formula

depth(t) =


0 if no task precedes t
max{1+max{depth(ti)},

max{depth(t j)}} ∀(ti, t) ∈ ≺, ∀(t j, t) ∈ ≡

1Approximation classes and approximation ratio are summarised in appendix A.1.
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Using the definition we can partition all tasks into depth sets T d in which d denotes
the depth. Computing task depth is easily performed by a depth first search of the
precedence graph. After having found all task depths we want to partition these tasks
per agent. Hence we make partition sets T d

i which contain all those tasks of depth d
that are assigned to agent i. Note that such a set could be empty because there might
not exist a task of such depth for the specified agent. For each agent Ai ∈ A we order
the partitions as {T 0

i ,T
1

i , . . . ,T
d

i } and remove the empty sets from this ordering. Then
for each neighbouring pair in this ordering we add coordination constraint making
this partitions explicit. Also, we enforce planning all equality constraints in the same
depth partition by adding equality constraints to the coordination set. This procedure is
summarised in algorithm 2.1. For a proof on the correctness of this algorithm we refer
the reader to [38].

Algorithm 2.1 Depth Partitioning algorithm

Require: A CVP instance 〈T ,A , f 〉.
Ensure: The algorithm returns a coordination set for the instance.

depth-partitioning ( 〈T ,A , f 〉 ):

1. Create agent depth partitions T d
i = {t | t ∈ Ti,depth(t) = d}.

2. For each agent Ai ∈ A create ordering T̂i = {T 0
i ,T

1
i , . . . ,T

d
i } and remove empty

sets.

3. For each pair (ti, t j) ∈ T̂ j
i × T̂ j+1

i and (ti, t j) /∈ ≺, with j = 1,2, . . . , |T̂ −1| being
the index of the set T̂ j

i in T̂i, add constraint ti ≺ t j to ∆≺.

4. For each inter-agent constraint (ti, t j) ∈ ≡ we add ti ≡ t ′ to ∆≡ for all t ′ with
f (t ′) = f (ti) and depth(ti) = depth(t ′). For t j we add constraints in a similar
fashion.

5. Return ∆≺∪∆≡

The algorithm given in algorithm 2.1 is a polynomial approximation algorithm for
the PLAN COORDINATION PROBLEM, however we have no guarantees on the solution
quality. Indeed we can show by worst case analysis that on a specific type of instance
the Depth Partitioning algorithm produces a coordination set of size |Ê| while the min-
imal coordination set consists of only one constraint. This instance class is shown in
figure 2.1.
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A1

A2 A3

A4

A5A6

An+1

Figure 2.1: A class of PC instances on which the Depth Partitioning algorithm performs
very poor compared to the optimal solution. Only the constraint in agent An+1 is re-
quired to coordinate this instance, however because of the depths of the other tasks the
Depth Partitioning algorithm adds all constraints depicted in blue.
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2.2 Intra-free Coordination

Intra-free coordination, as discussed by Yadati et al. in [47], solves a special case of
the PLAN COORDINATION PROBLEM identified by Ter Mors et al. in [44]. In intra-free
coordination we only consider instances that do not contain any intra-agent constraints.
Such instances are much easier to verify, because we do not have to worry about lo-
cal cycles. We only have to make a dependency graph of the agents involved in the
problem. Verifying that the instance is plan coordinated then comes down to checking
whether the dependency graph contains a cycle or not. One can imagine that check-
ing whether a graph contains a cycle is computationally much easier than verifying
that no cycle can ever exist. Indeed, we can perform cycle detection in polynomial
time using for instance the topological sort algorithm from [24]. Moreover, because
the COORDINATION VERIFICATION PROBLEM can be solved in polynomial time for
this class of instances, the complexity of coordinating intra-free instances is reduced to
NP-complete.

Intra-free coordination instances are often encountered in logistic scenarios, in for
example supply-chain management [11]. In these type of planning problems agents
such as corporations, employees or other resources are only interested in the flow of
goods and information between the agents. They do not impose restrictions on their
own activities.

Still, although having a practical application, the problem of coordinating intra-
free instances remains NP-complete and therefore intractable. Verifying the plan co-
ordinated property for any given instance only requires a cycle detection on the agent
dependency graph; for coordination, however, we need to identify which agents cause
such a cycle and coordinate them. Hence we want to find the minimum set of nodes in
the agent dependency graph that, when removed, makes the graph acyclic. This prob-
lem is known as the DIRECTED FEEDBACK VERTEX SET, see definition 2.2, and is a
well known NP-complete problem [26].

Definition 2.2: DIRECTED FEEDBACK VERTEX SET (DFVS) (Karp, [26])

Given: A directed graph G = (V,E) and some positive integer K.

Problem: Does there exist a set F ⊆ V of size K such that F contains
exactly one node from every unique directed cycle in G?

In [47], Yadati et al. propose an approximation algorithm that tackles intra-free in-
stances by reducing the instance to an DIRECTED FEEDBACK VERTEX SET instance
and solve them using a well known approximation algorithm by Even et al. [19]. Hav-
ing found the minimum set of agents that need te be ‘removed’ from the agent depen-
dency graph to make it acyclic, we coordinate these agents such that they cannot be
part of any inter-agent cycle. To see how this algorithm approximates the PC, we first
introduce intra-free instances in definition 2.3. Note that Yadati et al. define intra-free
instances only for the moderately coupled case is discussed in [47].

29



2.2. INTRA-FREE COORDINATION

Definition 2.3: (Strict) Intra-Free Instances (Moderately Couples)
Given an instance 〈T ,A , f 〉 of the PLAN COORDINATION PROBLEM, we say that it is
intra-free if and only if it does not contain any intra-agent constraint.

In addition, we say that an intra-free instance is strict if we can for each agent
separate its tasks in two disjoint sets Ti = In(Ti)∪Out(Ti) such that In(Ti) contains
all nodes with zero out degree and Out(Ti) contains all nodes with zero in degree (see
definition 1.10).

From the definition of strict intra-free instances we can see how to coordinate such
a problem. If an agent Ai is part of a cycle, e.g. it is part of the set that the DFVS
algorithm returned, then we can make sure no inter-agent cycle can be constructed
by letting all tasks in Out(Ti) precede all tasks in In(Ti). Observe that we must have
strict intra-free instances to coordinate the instance as such. Nonetheless, in [47] a
reduction from intra-free instances to strict intra-free instances is also introduced. In
this reduction each violating task, i.e. with both in degree and out degree more than
zero, is split up into two tasks. One of these tasks has in degree 0 while the other has
out degree 0. Continuously applying this splitting of tasks will eventually result in a
strict intra-free instance. For more details see [47].

Coordinating strict intra-free instances requires construction of an agent depen-
dency graph. This graph captures the precedence relations between various agents im-
posed by inter-agent constraints. The agent dependency graph can be looked upon as
an abstraction or meta graph of the precedence graph. Formally the agent dependency
graph for moderately coupled instances is given by definition 2.4.

Definition 2.4: Agent Dependency Graph (ADG)
Given an instance 〈T ,A , f 〉 of the PLAN COORDINATION PROBLEM, we construct the
agent dependency graph as follows:

1. For each Ai ∈ A we construct vertex Ai.

2. If there exists any ti ≺ t j with ti ∈ Ai, t j ∈ A j and Ai 6= A2 we add a constraint
A1 ≺ A2.

As we have mentioned before, we can transform this ADG to an instance of the
DIRECTED FEEDBACK VERTEX SET to determine what agents should be coordinated.
Then we coordinate each of these agents by making sure all sources precede all sinks
within the agent. Hence the coordination set for the PC instance consist of all possible
source-sink pairs for each agent returned by the DFVS algorithm. For a proof on the
correctness of this coordination set we refer the reader to [47], however it is fairly easy
to see that the found coordination set is indeed a valid solution.
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Using all observations we have made above we introduce the intra-free approxi-
mation algorithm by Yadati et al. in algorithm 2.2. Note that the algorithm makes use
of an DFVS approximation sub routine to compute the set of agents that need to be
coordinated.

Algorithm 2.2 Intra-Free Approximation algorithm

Require: A CVP instance 〈T ,A , f 〉.
Ensure: The algorithm returns a coordination set for the instance.

intrafree ( 〈T ,A , f 〉 ):

1. Transform to strict intra-free if required

2. Construct the ADG for this instance

3. F = DFVS(ADG) for each Ai ∈ F :

for each tin ∈ In(Ti) :

for each tout ∈ Out(Ti) :
∆ = ∆∪ (tout ≺ tin)

4. Return ∆
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Part II: Solving the Plan Coordination Problem

The previous chapters have introduced the PLAN COORDINATION PROBLEM using
a framework that captures all aspects of it. Also we have seen in section 1.4 that PC is
highly intractable and previous work has therefore mainly focussed on approximating
the solution (section 2.1) or a special case of the problem (section 2.2). However in
practice there exist some situations in which we are interested in exact solutions for
the PC. Although PC may be a ∑

p
2 -complete problem, some instances are still solvable

within reasonable time. For example smaller instances might lend themselves perfectly
for exact solving.

In addition, in solving other ∑
p
2 -complete problems exactly, such as the solving of

the QUANTIFIED BOOLEAN FORMULA PROBLEM (QBF), some very promising results
have been made [4, 31]. Hence there is some hope in solving PC exactly, especially if
we manage to exploit the problem structure to a great extent. This way we may be able
to quickly identify a large part of the solution set, only having to actually solve a small
part of the original problem. This technique is known as kernelisation and is discussed
in chapter 5.

Some instances, on the other hand, might not be reduced to smaller kernels, but
there might simply be the need or desire for exact solving. In some situations we are
not really interested in how much time it takes to come up with a good solution, as
long as one is found within ‘reasonable time’. In such cases, exact solving might be
worthwhile.

This part discusses the exact solving methods we have applied on the PLAN COOR-
DINATION PROBLEM. All theory and experiments have been performed on moderately
coupled instances (see section 1.2) because moderately coupled instances are concep-
tually easier and their coordination problem is at least as hard at the one for tightly
coupled instances [38]. As we have discussed in section 1.2, the equality constraints ≡
introduced by Steenhuisen et al. are easier to deal with than the simultaneity constraints
introduced by Ter Mors et al. in [44]. If we would consider the latter type of constraints,
the complexity of PC would increases another step in the polynomial hierarchy to Π

p
3 .

In our experiments, we started with a simple exact algorithm based on enumeration
to get a feel of the problem and its difficulties. This enumeration technique and simple
optimisations for it are discussed in Chapter 3. Next, in chapter 4, we focus on on
Dynamic Programming, a more advanced technique for exact solving. In chapter 5
we investigate possible kernelisation of the problem so as to reduce the size of the
exponential search space we have to explore. The last exact solving method we study
in chapter 6 is encoding of the PC as a Quantified Boolean Formula, which can be
solved by current state of the art solvers such as sKiZZo [6] or Qube++ [22]. This QBF
encoding allows us to compare the competitiveness of our algorithms against already
existing solver for a ∑

p
2 -complete problem.

All the experiments and their results are included in chapter 7.
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Chapter 3

Enumeration

Enumeration is one of the simplest techniques in exact solving. Basically, in enumera-
tion we simply generate all possibilities and then verify whether the current possibility
is the best so far. If so, the solution will be stored as the new best and the algorithm
continues. Finally, after all configurations have been generated and verified, the algo-
rithm concludes that the last stored best solution is indeed the optimal solution and it
is returned as such.

Because of its conceptual simplicity and ease of implementation, we have decided
to start with enumeration as an exact solving technique. The advantage of this is that
we can quickly develop a correct algorithm for the PC. From there on, we can identify
the difficulties in solving PC instances and try and improve the algorithm to deal with
those more efficiently. On the downside, the enumeration strategy (unless optimised) in
effect searches the entire search space of the problem. Nonetheless it provides a good
basis for further research. Indeed, as we will see later on, many ideas have originated
from our simple enumeration algorithm.

This chapter discusses the enumeration algorithm and its optimisations we have
developed for the PLAN COORDINATION PROBLEM and its sub problem COORDINA-
TION VERIFICATION PROBLEM. We start by introducing the basic enumeration algo-
rithm in section 3.1 and we will go into the complexity of this algorithm in terms of
the number of configurations we have to inspect in section 3.2. In section 3.3 we will
outline several optimisations we have found and the impact of those on the run time of
the algorithm.

3.1 Enumeration algorithm
The first implementation of this thesis research is a simple enumeration algorithm for
both the PLAN COORDINATION PROBLEM and the COORDINATION VERIFICATION
PROBLEM. In subsequent chapters we will introduce more advanced techniques to
solve both problems, however we have started with a simple recursive enumeration
procedure for both problems. In this section we will discuss both the PC and the CVP
algorithm and also the complexity involved in solving these problems by enumeration.
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PC algorithm

As we have mentioned before, the enumeration algorithm is conceptually very easy to
understand and also simple to implement. The algorithm only has to be able to generate
all possible configurations and then verify each of them. The basic algorithm we have
implemented for PC is given in pseudo code in algorithm 3.1.

Algorithm 3.1 Enumeration algorithm for the PLAN COORDINATION PROBLEM.

Require: A PC instance 〈T ,A , f 〉.
Ensure: The algorithm returns the minimal coordination set ∆min.

pcpenum ( 〈T ,A , f 〉 ):

1. ∆min = /0

2. Generate the set of planarcs Ê from 〈T ,A , f 〉

3. enumerate(〈T ,A , f 〉, Ê,∆)

4. Return ∆min

enumerate ( 〈T ,A , f 〉, Ê,∆ ) ):

1. if Ê = /0:

if CVP(〈T ,A , f 〉, Ê,∆) returns COORDINATED and |∆|< |∆min|:
∆min = ∆

else

Return

2. Let e = (ti, t j) be the first planarc from Ê.

3. enumerate(〈T ,A , f 〉, Ê \ e,∆)

4. enumerate(〈T ,A , f 〉, Ê \ e,∆∪ (ti ≺ ti)

5. enumerate(〈T ,A , f 〉, Ê \ e,∆∪ (t j ≺ ti)

In this algorithm we define |∆min|= ∞ for ∆min = /0.
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The algorithm starts by setting the best found solution to /0, indicating that no solu-
tion has been found yet. Then we use some sub routine that generates the set of planarcs
from the problem instance, using definition 1.9. With all the required information we
start the enumeration process. Note that we use the set of planarcs to enumerate over
by considering three options for each planarc (ti, t j): not in the coordination set, in the
set as ti ≺ t j or in the set as t j ≺ ti.

This recursive enumeration routine first checks whether there are still arcs to add to
the coordination set. If this is not the case, the current coordination set is verified using
some sub routine that solves the CVP. We will discuss the CVP sub routine in more
detail later on in this section. If the verification returns true, then the instance is plan
coordinated and we store the coordination set if it is the smallest seen so far. Note that
we define | /0|= ∞ so that the solution set is correctly updated when the first solution is
found.

When the planarcs set Ê is not yet empty, we do not perform verification but recurse
on all three possibilities for the current planarc e = (ti, t j). Either we chose to include
the constraint ti ≺ t j, the constraint t j ≺ ti or no constraint at all for the current planarc
e. The enumeration algorithm indeed recurses on all three possible choices for the
current planarc.

From algorithm 3.1 we quickly see that we are dealing with a recursive algorithm
that has a fan-out of 3. Thus we exactly generate 3|Ê| configurations and we have to
solve an equal number of CVP problems. This is of course not very scalable, as the
CVP is already NP-complete, however keep in mind that this algorithm is a very naive
implementation. A lot of optimisation can be done to reduce the size of the search
space that is actually explored, which we will discuss in section 3.3.

CVP algorithm

The enumeration algorithm for the COORDINATION VERIFICATION PROBLEM is very
similar to the one for PC in structure. However, it also requires actual verification of
the coordination set. While the PC algorithm simply makes a call to the CVP and stores
the result, the CVP algorithm has to incorporate a verification algorithm to check the
coordination set generated by the PC algorithm.

Remember from section 1.3, more specifically definition 1.11 and definition 1.12,
that in order for any instance to be plan coordinated, the construction of an infeasible
plan is impossible. The CVP algorithm uses the converse of this definition to verify this
property. When an infeasible joint plan is encountered during the enumeration process
of possible joint plans, the algorithm returns NOT COORDINATED. Finally when it has
checked all configurations of joint plans and no infeasible plan has been encountered, it
is able to conclude that this instance is plan coordinated and it returns COORDINATED.

The detection of infeasible joint plans is based on definition 1.6 and definition 1.11.
For a plan to be feasible, it must be an abstract plan. Or in other words, it must define
some strict partial ordering on the set of tasks specified by the instance. By the defi-
nition of strict partial ordering, such a set must be acyclic. Again we use the converse
of this to detect infeasibility of a plan: if during the enumeration some joint plan is
generated that contains a cycle, the plan is not partially ordered and hence not an ab-
stract plan. Therefore we can immediately conclude that there exists a joint plan that is
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infeasible and hence the CVP algorithm can safely return NOT COORDINATED.
The above may suggest that a simple polynomial cycle detection algorithm might

suffice in solving the CVP. We could make a graph of the instance (like we did in sec-
tion 1.4), add for each planarc (ti, t j) both constraints ti ≺ t j and t j ≺ ti and perform a
simple Depth First Search (DFS) cycle detection which disallows going backwards on
the same edge (otherwise we would find a cycle ti ≺ t j ≺ ti for each planarc we added).
Using a counter that is increased every time we traverse an inter-agent constraint, we
can distinguish intra-agent from inter-agent cycles. We need to distinguish these be-
cause intra-agent cycles can, by definition of the planning problem, never be created
when solving the planning problem and should therefore not cause the plan to be con-
sidered infeasible. Inter-agent cycles should be the only cycle to indicate infeasibility.

The problem with the simple cycle detection is that it does not account for inter-
agent cycles that contain intra-agent cycles as well. When the cycle detection algorithm
suggested above encounters any inter-agent cycle, it returns NOT COORDINATED.
Sometimes this results in an instance being falsely declared as NOT COORDINATED,
as for example in figure 3.1.

t1

t2

t3

t4

Figure 3.1: This CVP instance contains a inter-agent cycle that consists of an intra-agent
cycle as well. The simple cycle detection algorithm would for this reason falsely de-
clare this instance NOT COORDINATED. Nonetheless, this inter-agent cycle can never
be constructed, because the intra-agent cycle is forbidden as a planning choice in the
planning problem and can never be added.

In figure 3.1, the red constraint arc indicates the possible abstract plan of the left-
most agent. Indeed we now have a inter-agent cycle, namely t1 ≺ t3 ≺ t4 ≺ t1. We
also have an intra-agent cycle t1 ≺ t3 ≺ t2 ≺ t1. Although the instance does have an
inter-agent cycle, this scenario can never occur because it contains an intra-agent cycle
forbidden by the planning problem itself. The cycle detection algorithm is not able to
tackle this problem adequately and regretfully we are forced to implement an exponen-
tial algorithm. This exponential enumeration algorithm for CVP is given in algorithm
3.2. Note that we use Ê \∆ to denote the set of planarcs that is not already part of the
coordination set. This notation is not entirely exact, because we can have for each pla-
narc (ti, t j) ∈ Ê that either (ti, t j) or (t j, ti) is in the coordination set. In this algorithm
the constraint (ti, t j) is removed, regardless which of the two possible constraints is in
the coordination set.
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Algorithm 3.2 is a very simple recursive enumeration algorithm with a mechanism
to quickly propagate the finding of a cycle upwards. As with CVP, all possible config-
urations are generated and tested for the existence of cycles. The moment we find a
cycle we know that the instance is not plan coordinated and the algorithm hence propa-
gates NOT COORDINATED. Thus when a cycle is found, the algorithm will not test any
more configurations. Concluding that an instance is coordinated, on the other hand,
requires all configurations to be tested. Running the CVP algorithm on a plan coordi-
nated instance therefore requires exactly 3|Ê\∆| configurations to be verified for a given
coordination set ∆.

Algorithm 3.2 Enumeration algorithm for the COORDINATION VERIFICATION PROB-
LEM.

Require: A CVP instance 〈T ,A , f 〉, the set of planarcs Ê and the current coordination
set ∆ to verify.

Ensure: The algorithm returns COORDINATED if and only if the instance is plan co-
ordinated. It will return NOT COORDINATED otherwise.

CVP ( 〈T ,A , f 〉, Ê, ∆ ):

1. if Ê \∆ = /0:

if containscycle(〈T ,A , f 〉,∆):
Return NOT COORDINATED

2. Let e = (ti, t j) be the first planarc from Ê \∆.

3. if CVP(〈T ,A , f 〉, Ê \ e,∆) = NOT COORDINATED or
CVP(〈T ,A , f 〉, Ê \ e,∆ ∪ (ti ≺ t j)) = NOT COORDINATED or
CVP(〈T ,A , f 〉, Ê \ e,∆ ∪ (t j ≺ ti)) = NOT COORDINATED:

Return NOT COORDINATED

4. Return COORDINATED

In algorithm 3.3 the cycle existence detection algorithm is outlined.
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Algorithm 3.3 Cycle existence detection algorithm

Require: A CVP instance 〈T ,A , f 〉 and the set of additional arcs E.
Ensure: The algorithm returns true if and only if the set E contains an inter-agent

cycle and no intra-agent cycle.

containscycle ( 〈T ,A , f 〉, E ):

1. Create an array tag of length |T | and initialise values to NOT VISITED.

2. for each t ∈ T with tag[t] = NOT VISITED:

if intracycle(〈T ,A , f 〉,E, tag, t):

Return f alse

3. Reset values of tag to NOT VISITED.

4. for each t ∈ T with tag[t] = NOT VISITED:

if intercycle(〈T ,A , f 〉,E, tag, t):

Return true

5. Return f alse

intracycle ( 〈T ,A , f 〉, E, tag, t ):

1. tag[t] = VISITED

2. for each t ′ ∈ T with f (t ′) = f (t) and (t ′ ≺ t) ∈ E:

if tag[t ′] = VISITED:

Return true

else

if tag[t ′] 6= INTRA DEAD END and intracycle(〈T ,A , f 〉,E, tag, t ′):
Return true

3. tag[t] = INTRA DEAD END

4. Return f alse
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intercycle ( 〈T ,A , f 〉, E, tag, e ):

1. tag[t] = Visited

2. for each t ′ ∈ T with (t ′ ≺ t) ∈ E and tag[t ′] 6= INTER DEAD END:

if tag[t ′] = VISITED:

Return true

else

if f (t ′) 6= f (t):
if intercycle(〈T ,A , f 〉,E, tag, t ′):

Return true

3. tag[t] = INTER DEAD END

4. Return f alse

The algorithm for cycle existence detection first checks for local cycles and if none
are found, it looks for inter-agent cycles. If the first is found, we conclude that this is
an invalid configuration and return f alse. If the latter is found we know the instance is
not plan coordinated and we return true. Only after we have checked all configurations
and no infeasible plan is encountered we say that the instance indeed is coordinated
and we return f alse.

In this algorithm we use an array to tag all tasks during the detection. We need to
keep track of all the nodes we have already visited in order to detect possible cycles.
In the intra-agent cycle detection it suffices to check whether or not a node is already
visited during this recursion. We start from some task t and try to visit as many other
tasks within the same agent as we can reach. If we visit some task twice, we have found
an intra-agent cycle. If no task is traversed twice during the search, we trace back our
recursion to mark all visited tasks as dead ends for future searches starting from other
tasks. Note that this is correct, for if some task t marked a dead end would have been
part of some intra-agent cycle we would have detected this cycle, no matter from which
other task t ′ we reached t.

The inter-agent cycle detection uses a similar strategy to mark parts of the prece-
dence graph (see again section 1.2) that are no longer of interest. Note that the cycle
detection does not try to identify what type of cycle we are dealing with, i.e. intra-agent
or inter-agent. Because the intra-agent cycle detection has already been performed, we
know that no intra-agent cycle exists and hence any cycle we would now detect must
be an inter-agent cycle.
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3.2 Complexity of Enumeration
The enumeration algorithms for both PC and CVP we have discussed in the previous
section are naive implementations that do not exploit problem specific characteristics.
When we combine both algorithms we simply generate all possible solutions and verify
them by enumerating all possible outcomes. This on the one hand makes enumeration
algorithms easy to develop but, on the other hand, not suited for practical use.

We have seen that the enumeration algorithm for PC generates exactly 3|Ê| coordi-
nation sets, which have to be verified by the CVP algorithm. The CVP algorithm then
has to verify all possible configurations of remaining planarcs for each coordination set.
Although we also have a fan-out of 3 branches for every planarc in the CVP algorithm,
we do not have to verify 3|Ê| possibilities in CVP every time. This is because some of
these planarcs have been included in the coordination set by the PC algorithm en hence
are no longer available as free planarcs to enumerate in the CVP. We need a more ac-
curate analysis to determine the actual total number of instances that are generated and
verified in the combined algorithm.

First we need to determine the number of generated coordination sets per coor-
dination set size. Let n = |Ê| and k = |∆|, then we want to know how many unique
configurations of k arcs we can make out of a total of n. For each planarc we can
choose to either exclude the arc, include it as ti ≺ t j or include it as t j ≺ ti. We can
model this using the sum over the product of two binomial coefficients that denote our
choices for the remaining planarcs.

For each set of size k we can choose 0 planarcs to be included as ti ≺ t j arcs and
k included as t j ≺ ti arcs, then 1 of the first and k− 1 of the latter, and so on. If we
have included m arcs of the first type, we must choose k−m arcs of the latter type over
the n−m remaining possible positions. Equation 3.1 can be used to compute Φ(k), the
number of configurations possible for each set size k.

Φ(k) =

(
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)
=

k

∑
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(
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)(
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k−m

)
(3.1)

For each coordination set of size k, we must solve Φ(k) different CVP instances
in which the remaining set of planarcs of size n− k is enumerated. We can construct
exactly 3n−k different configurations of these n− k planarcs per coordination set size.
This is summarised in equation 3.2.

#con f = Φ(0) ·3n +Φ(1) ·3n−1 + . . .+Φ(n−1) ·3n−(n−1)+Φ(n) ·3n−n

=
n

∑
k=0

Φ(k) ·3n−k

= 5n (3.2)
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Figure 3.2: The area between the two lines contains the possible number of configura-
tions for each set size k.

The total number of instances that is verified by the combined algorithm is equal to
∑

n
k=0 Φ(k) ·3n−k which we verified numerically to be equal to 5n. Keep in mind though

that the number of generated and verified coordination sets does not correspond exactly
to the time taken to solve the plan coordination. The hardest instances for the CVP to
verify are the ones with the smallest coordination set size: because of the large degree
of freedom in planarcs, we have to analyse a large number of configurations in order to
find a possible cycle. The easiest CVP instances, on the other hand, are the ones with
a large coordination set. However, as the coordination sets are binomially distributed
over the size, we do not have a lot of such very difficult and easy CVP instances. The
bulk of the coordination sets generated have set sizes around 1

2 |Ê|.
Note that 5n is the worst case number of configurations in the enumeration algo-

rithm. The CVP algorithm uses an upwards propagation method that, when a cycle
has been found, concludes this instance can not be plan coordinated and no further
CVP configurations for this coordination set are generated. For example consider an
instance with 20 planarcs for which we test a coordination set of size 1. It could be
the case that, although we can generate 3n−k = 319 = 1,162,261,467 possible con-
figurations, the first one already contains a cycle. This would save us from checking
1,162,261,467−1 more instances for the current coordination set.

In the best case we would always immediately find a cycle, which requires checking
∑

n
k=0 Φ(k) = 3n configurations. This is exactly the number of nodes in the PC search

tree, because for each planarc three different possibilities are enumerated. Figure 3.2
shows the possible number of configurations for set sizes k up to 100.
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3.3 Enumeration Optimisations
We have seen that simple enumeration of n = |Ê| planarcs requires at least 3n and at
most 5n configurations. This means that the enumeration algorithm scales very badly
in terms of input size: even if we would always have the best case, we still need to solve
3n instances. This is because we always enumerate all possible coordination sets in the
PC enumeration part. In this section we introduce some improvements over the naive
enumeration algorithm that, in various cases, might greatly increase the performance.

Enumeration strategy

One of the major factors in the enumeration complexity is of course the number of
generated coordination sets by the PC enumeration part. Because of its naive imple-
mentation, it always generates exactly 3n configurations which all have to be verified
by the CVP algorithm. This is because the simple enumeration algorithm can only con-
clude that some coordination set is optimal once it has verified that no better set exists.
To verify this, it has to check all possible coordination sets.

We have made two simple observations about coordination set optimality that al-
lows the algorithm to discard large parts of the search space. Remember that we are
interested in the minimal coordination set for the PLAN COORDINATION PROBLEM in
terms of set cardinality, i.e. we are looking for the smallest set ∆ that still coordinates
the PC instance. We can use this to greatly reduce the search space of the enumera-
tion algorithm. As soon as we find some coordination set ∆ that does coordinate the
instance, we can immediately discard all coordination sets with a size larger than |∆|.
These sets can never be optimal because we have already verified the existence of a
smaller set. Moreover we can also discard all other coordination sets with an equal
size, because we have already found one (currently) optimal set. Other sets of equal
cardinality are also optimal an because we are not interested in what set is returned we
do not have to search for other sets.

In addition to the first observation, we also know that when no coordination set of
some given size exists, there also does not exist any coordination set of a smaller size.
This statement is easy to prove although not trivial for our research, see theorem 3.1.
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Theorem 3.1: Coordination Set Existence
If for any given PC instance there does not exist any coordination set of size k ≤ |Ê|,
then no coordination set with size m < k exists.

Proof. We prove this by contra positive. Lets assume there does exist some set ∆m
of size m < k that coordinates the given PC instance and no coordination set of size k
exists.

To the set ∆m we can always add either ti ≺ t j or t j ≺ ti from one of the remaining
planarcs e ∈ (Ê \∆m) and obtain a new coordination set ∆m+1 of size m+1. This must
be true because, if no cycle could have been created while considering ∆m ∪ (Ê \ e),
either the set ∆m∪ (ti ≺ t j)∪ (Ê \∆m∪ e) or ∆m∪ (t j ≺ ti)∪ (Ê \∆m∪ e) or both must
again be acyclic.

So we can always extend our original set ∆m of size m to ∆m+1 of size m+1, until
m = |Ê|. This way we can always obtain a coordination set of size |Ê| however no
coordination set of size m < k ≤ |Ê| can exists; a contradiction!

Based on the two observations above we have implemented three enumeration
strategies that exploit them in a different way: binary, decreasing size and increas-
ing size. Both the latter strategies are iterative improvement techniques, as we will see
below.

Binary
The binary enumeration strategy reduces the remaining search space in each co-
ordination set size iteration by using both observations. In this strategy we first
initialise a lower bound lb to 0 and an upper bound ub to |Ê|. Then in each iter-
ation we try to find a coordination set of size k = d ub−lb−1

2 e+ lb. If one such a
set exist, we know that the optimal solution can no longer be in the search space
half with coordination set sizes equal to or larger than k, therefore we update our
upper bound to k. If no such set exists we use theorem 3.1 to know that also no
smaller set can exist and we update our lower bound to k. Continuing this way,
we can reduce the search space each time we find a coordination set.

Although we have named the strategy binary search, it is not true that it indeed
halves the search space in each time as binary search commonly does. In the PC
enumeration algorithm, we cannot halve the search space in each step because
of the binomial distribution of coordination set configurations. Only the first it-
eration exactly halves the search space, after that it depends on the set sizes tried
and found in the enumeration. If the optimal solution has a set size around 1

2 |Ê|,
we still have a large PC search space when using the binary strategy. On the other
hand, if the optimal coordination set size is close to 0 or |Ê|, the PC search space
is greatly reduced. Note that, although the PC search space is greatly reduced
when the optimal solution size is close to 0, the CVP enumeration algorithm’s
complexity increases because more possibilities arise for the introduction of cy-
cles.
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Decreasing size
The second strategy, named decreasing size enumeration, tries coordination sets
of decreasing set sizes. We begin by trying to find a coordination set of size
k = |Ê|. If we cannot find such a set, we must conclude that no coordination
set can exist for this instance and we quit. If we do find a set of size k, we start
the next iteration in which we try to find a coordination set of size k− 1. This
process is continued until either k = 0 and we know that the instance was already
coordinated by itself, or for some size m we can no longer find a coordination
set. Because of theorem 3.1 we now know that no coordination set exists with a
size equal to or smaller than m and hence we conclude that the last coordination
set we found, of size m+1, must be optimal.

Increasing size
The third strategy is increasing size enumeration in which we keep increasing
the size of possible coordination sets. We start with a coordination set of size
k = 0 and if the instance is now plan coordinated, we return that no coordination
set is required for this instance. Then in the next iteration, we try all coordination
sets of size k+ 1. If no generated set coordinates the instance, we increase the
set size again. This is continued until either k = |Ê|+ 1 and we know that no
coordination set exists, or we find a coordination set of some size m. The first
set that coordinates the instance, automatically is one of the optimal sets and is
therefore immediately returned.

These three strategies all browse through the search space in different ways and are
hence very effective on some instances, but do not perform well on others. In theory,
the decreasing size strategy performs well if the optimal solution has a set size larger
than 1

2 |Ê|, otherwise it would have to search through the large number of coordination
sets centred around the size 1

2 |Ê|. In general one would expect that the increasing size
strategy is most effective when the solution is very close to 0. Remember that there are
not many different coordination sets with small sizes, but the verification problem is
very complex when the coordination set is small. As coordination set size k decreases,
the number of distinct CVP configurations 3n−k increases. The binary strategy is likely
to be the most effective when the optimal solution size is close to half the number of
planarcs.

All these observations on the performance of all the strategies are however also
influenced by the solution density. The binary search algorithm is most likely to profit
most from an instance with a high solution density, because then it can quickly prove
the existence of sets of various sizes. However, when there are not many sets that
coordinate the instance in comparison to the number of sets one can generate, the binary
strategy can be seen as finding a needle in a haystack: it needs to inspect a very large
number of configurations without result.
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Solution Minimisation

The idea of solution minimisation is loosely based on the proof of theorem 3.1. We
know that the optimal coordination set is subsumed by all other sets that contain the
same arcs. Solution minimisation tries to obtain the optimal set from the currently
found solution set by removing arcs from it. This way we might be able to find better
solutions of smaller set sizes quickly and eliminate large parts of the search tree very
fast.

Solution minimisation can be applied every time we find a coordination set for the
PC instance. We recurse on the sub sets of the coordination set and try to improve
the solution quality in terms of coordination set size. If, by removing some arc from
the coordination set, a sub set looses the coordinated property, its recursion branch
is abandoned and another arc is recursed on. When the sub set still coordinates the
instance, we store this as the best solution so far and we recurse further.

Solution minimisation indeed does commonly eliminate large parts of the search
space, however if we would try all possible sub sets of any found solution, it is in
itself again an enumeration algorithm. We need to restrict the number of sub sets
that the minimisation technique considers. To realise this, we have implemented a
minimisation depth parameter. The minimisation algorithm will try to find some better
solution that has a size at least depth less than the coordination set ∆ given at the start
of the algorithm. Once a branch has resulted in a coordination set of size |∆|− depth
the algorithm will continue the current branch but will not try another branch. This
way we will in the worst case check at most |∆| × 2depth−1 sub sets. This worst case
only occurs when each branch of the original set has sub sets of size |∆|− depth+ 1
that still coordinate the instance, but none of those sets has a sub set of size |∆|−depth
that coordinates the instance.
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Chapter 4

Dynamic Programming

Dynamic programming, or DP, is a technique that tries to solve a large problem by
solving easier sub problems and combining the results. The technique as we use it in
algorithmics was introduced by Bellman in [5] and has proven its worth on various
computational problems, of which computation of the Fibonacci series [46] and the
Knapsack problem [34] are two famous examples.

Dynamic programming is very effective when it is easier to solve multiple sub
problems than solving the entire problem at once. Commonly it is implemented as a
recursive function that combines the results obtained from computing its sub problems.
It seeks to profit from the fact that it is easier to compute m sub problems of size cn/m

than solving the entire problem of size cn.

In addition, dynamic programming can also be used very effectively when there
is a large overlap in sub problems and we can efficiently remember the solutions to
these sub problems. Overlap in this context means that some sub problems are en-
countered more than once in the recursion tree. When we are able to store and retrieve
the solutions for these sub problems, we only have to compute their solution once.
For each equivalent sub problem we simply retrieve the previously computed solution.
This memoization can prevent a lot of redundant computations. Computation of the
Fibonacci series is a prime example of memoization, see [46].

Memoization for NP-complete problems usually has a worst case space complexity
that is exponential in the size of the input. Nevertheless, with space being a resource
often in plenty, such a space-for-time trade-off is acceptable in most cases. For instance
there is an algorithm for the Knapsack problem that uses O(2n) space with memoiza-
tion, but does allow for pseudo-polynomial solving [46].

In this chapter we will discuss using dynamic programming in solving the PLAN
COORDINATION PROBLEM. As we will see in section 4.1, DP can not be used to
solve PC. Nonetheless, section 4.2 discusses a DP approach for CVP that does indeed
contribute to exact solving. Moreover we also comment on a possible optimisation that
should improve performance of the DP algorithm in section 4.3.
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4.1 DP and Plan Coordination

In the introduction of this chapter we have mentioned that dynamic programming is ef-
fective when we can recursively split up the problem into smaller, more easily solvable
sub problems, solve them and combine the results to form the solution for the larger
problem. Also, DP can be very effective when the same sub problems are encountered
often in the search and we can reuse the solution computed the first time for all sub-
sequent times. However, as we will see, the PLAN COORDINATION PROBLEM does
not allow for dynamic programming solutions more efficient than simple enumeration.
Whether we base our recursion on agents or planarcs, we can not guarantee optimality
when combining sub problems.

Agent sub problems

The dynamic programming approach requires some method to split up problems into
smaller sub problems. The first approach we have taken is based on splitting the set of
agents in each iteration, until only one-agent sub problems remain. In order to split up
the agent set, we have to find for both halves some way to remove the other half while
still preserving its information. To this end we introduce summary constraints, given
in definition 4.1.

Definition 4.1: Summary Constraint
A summary constraint tout - tin denotes a possible inter-agent cycle between tasks tin
and tout . A possible cycle is a path P of arcs from tout to tin, such that ∀(p ∈ P) : p ∈ (≺
∪ Ê) and at least two arcs are inter-agent arcs, i.e. |P ∩ ≺inter | ≥ 2.

A summary constraint ti - t j simply states that an inter-agent path from ti to t j
through the other half of agents is possible and therefore if we are able to create a path
from t j to ti in this half, the instance is not plan coordinated. Continuously splitting up
the problem replacing the other half by summary constraints eventually results in one-
agent problems in which we know about all possible inter-agent cycles. Simply put,
summary constraints allow the agent to remain aware of its ‘context’ within the entire
problem, although this context is represented in a much more compact way. In each
next recursion we do not have to go over the other half again, the summary constraints
provide the same information about possible cycles.

In order to split the set of agents A into two sets A1 and A2, we need to check for
each task ti ∈A1 that precedes some other task t j ∈A2 which tasks T ′ ∈A1 it can reach
with a path through the set A2. For each of these tasks t ′ ∈ T ′ we then add a summary
constraint ti - t ′, then we remove the inter-agent constraint ti ≺ t j and all inter-agent
constraints ∃tk : tk ≺ t ′. See figure 4.1 for an example of this.

In the figure we have the agent set A which we want to split in two sets: A1 and
A2. To this end we have added two summary constraints: t1 - t7 and t2 - t7. The
first summarises the direct path t1 ≺ t3 ≺ t5 ≺ t7, whilst the second captures a possible
path that can only exist when the arc t4 ≺ t5 is planned. The dashed inter-agent arcs
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will be removed after adding the summary constraints. Note that both paths will never
lead to a cycle, because task t7 is not connected to t1 or t2. In the next DP recursion,
these summary constraints will be treated as new inter-agent constraints between the
half containing only A1 and the half containing only A2 and because no task in A1 can
be reached with a path through A2 both will be removed. If a path were possible, these
summary constraints would have been replaced as before.

A1 A2

A1

A2

A3

t1

t2 t3

t4

t5

t6

t7

Figure 4.1: An example of summary constraints. The dashed inter-agents constraints
depict the constraints that are removed after adding the summary constraints, illustrated
by the green lines.

In figure 4.1 we see that each possible inter-agent cycle can be replaced by a sum-
mary constraint. A summary constraint between two tasks tout and tin tells the agent
that a path starting at tout and ending at tin might be created and hence we can introduce
a cycle by connecting tout to tin. To prevent this possible cycle from being constructed,
we can decide to add the constraint tout ≺ tin. This way the cycle can never be con-
structed and we seem to have a working strategy to coordinate.

Using summary constraints we can indeed implement dynamic programming as a
strategy to find coordination sets, however not minimal: consider as an example the
instance given in figure 4.2. Using summaries to solve this instance would coordinate
the instance, however the result will be a coordination set of size 2 if we halve the agent
set in each step of the recurrence, whilst a size of 1 is minimal.

One can see why by going through the recurrence step by step. In the root of
our recurrence we have all three agents in the set A . Then we halve this set into two
new sub problems, one containing A1 and A2, the other only containing A3. Again we
recurse the first one level, because our first set still consists of multiple agents. Now
we have three sub problems and its corresponding recurrence tree is given in figure 4.3.
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A1 A2 A3

t1

t2

t3

t4

t5

t6

Figure 4.2: The dynamic programming algorithm using summaries would find co-
ordination set ∆ = {(t1, t2),(t4, t3)} or ∆ = {(t4, t3),(t5, t6)} while only the constraint
t4 ≺ t3 is sufficient to coordinate this instance because all possible cycles include the
arc t3 ≺ t4.

A

{A1,A2} {A3}

{A1} {A2}

Figure 4.3: The recurrence tree corresponding to the sub problems created in agent
based dynamic programming. Each leave represents an actual sub problem of just one
agent. All those sub problem solutions have to be combined in each sub tree’s root.
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Given the sub problems for A1,A2 and A3, we can solve each of them independently,
resulting in three coordination sets, each of size 1 (depicted as blue arrows in figure 4.2.
Now we want to combine these results and obtain the total coordination set. Hence
we recurse back until we have merged all the solutions up to the root. First consider
merging the solutions for A1 and A2. At this point we can select a coordination set
from either sub problem, as they both coordinate the possible cycles present in the
joint problem. In the next step we want to merge the joint solution of A1 and A2 with
the coordination set for A3, however this depends on what choice we have made for the
first merge. We can obtain the optimal coordination set only when we have chosen the
coordination set t4 ≺ t3 (see figure 4.2) and not the other. Nonetheless, at the point of
merger, both were equally good and so the algorithm has had no incentive to actually
choose that one. It might just as well have chosen the other. This is why we cannot
guarantee optimality using agent based recursion.

Planarc sub problems

Instead of using the agent set as the base for dynamic programming, we can also create
sub problems by considering planarcs. There are several ways to recurse on planarcs,
however for dynamic programming to be of any use we need to be able to easily solve
sub problems and merge them optimally. In order to guarantee this optimality the sub
problems need to be independent so that every root in the search tree is able to find an
optimal solution for its own sub tree. Then, by merging all sub trees upwards, we get
an optimal solution at the root of the search tree.

We have considered two such dynamic programming approaches that guarantee op-
timality for the PLAN COORDINATION PROBLEM. Both base their recursive function
on the planarcs of the problem, either bottom-up or top-down. The bottom-up algo-
rithm starts with an empty coordination set and tries to find the minimal coordination
set by considering all possibilities for each planarc. Its cost function OPT is given in
equation 4.1. In this function PV P is used to denote the result of the corresponding
CVP instance that has to be solved, i.e. PV P means the instance is plan coordinated
while ¬PV P denotes its opposite. The set Ê is the set of all available planarcs, which is
used as the iterator in this recursion. The set ∆min is the solution set that is constructed
during the recursion and is empty at the start.

OPT (∆min,e ∈ Ê) =



∞, if Ê = /0∧¬PV P
0, if Ê = /0∧PV P
min{OPT (∆min, Ê \ e),
1+OPT (∆min∪ (ti, t j), Ê \ e),
1+OPT (∆min∪ (t j, ti), Ê \ e)}, otherwise

(4.1)

We can see from the cost function for bottom-up recursion that in fact we are doing
the same as in the enumeration algorithm. Indeed this DP approach for PC requires ver-
ifying exactly O(3n) configurations: for each planarc we explore all three possibilities.
Still, this algorithm might outperform the enumeration algorithm if we have a lot of
overlapping sub problems and we can find some memoization function that enables us
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to exploits this. However if we again look at the cost function of our recursion we can
see that there is no overlap: we generate exactly 3n unique sub problems. Bottom-up
recursion of our planarcs therefore performs as bad as simple enumeration.

The other type of recursion based on planarcs is a top-down approach that starts
with a coordination set of size |Ê| and in each recursion tries removing one planarc of
the problem. This recursion can be implemented using the function defined in equation
4.2.

OPT (∆min,c ∈ ∆) =


∞, if ∆ = /0∧¬PV P
|∆min|, if ∆ = /0∧PV P
min{OPT (∆min \ c,∆\ c),
1+OPT (∆min,∆\ c)}, otherwise

(4.2)

Again we denote the solution set as ∆min, however this time it is initialised differ-
ently. We would like to start this recursion with the complete coordination set given
by ∆∗ = {{ti, t j} ∈ Ê}, however this poses some implementation difficulties. The com-
plete set includes all possible constraints that can be part of the coordination set and
therefore has to include an arc for both directions of each planarc of Ê. Thus for each
(ti, t j) ∈ Ê the set ∆ contains both ti ≺ t j and t j ≺ ti and the set is therefore cyclic. To
overcome this problem we do not generate the complete coordination set as a whole,
however we generate all 2n (see below) possible coordination sets of size |Ê| that are
acyclic and evaluate all of them using our recursive cost function. Each evaluation
starts with both ∆min and ∆ equal to this initial configuration set. We can find the opti-
mal coordination set for the original PC instance by performing a min operation on all
evaluations.

Each evaluation starts with two sets including all possible coordination constraints
and for each constraint in ∆ it checks whether it is better to keep the constraint in
the coordination set or remove it from the set. Basically we try to remove as many
constraints as possible while preserving the plan coordinated property of the instance.
If we do violate it, i.e. CVP returns NOT COORDINATED then we incur a penalty of
infinite cost and discontinue this branch. The penalty cost makes sure that the branch
is not considered as a possible solution when evaluating the min function. Note that
again ∆min keeps track of the solution and we now use ∆ to iterate over the constraints
of the coordination set we started with.

Using this approach we again have independent sub problems and therefore we can
solve the PLAN COORDINATION PROBLEM exact. However, in terms of computational
complexity, this technique performs even worse than enumeration. To see this we
require a number of observations on the number of configurations we have to verify.
First we evaluate this function for every possible configuration of constraints from |Ê|
such that the set of constraints is still acyclic. Hence, for each planarc (ti, t j) ∈ Ê we
can choose to either include ti ≺ t j or t j ≺ ti in our constraint set. Let n = |Ê| then we
can make exactly 2n unique acyclic sets and we have to evaluate our recursive function
for all of them.

The recursive function branches on two possibilities for each constraint of the set
∆. Either the constraint is kept in the minimal coordination set ∆min, increasing the set
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size of the found solution by 1, or the constraint is not included in the minimal set.
Hence we have to evaluate 2|∆| possible configurations and because |∆|= |Ê|, we must
again check 2n configurations. In total we need to verify 2n×2n = 4n configurations in
order to solve PC using top-down recursion as such and is therefore outperformed by
the O(3n) configurations of the simple enumeration algorithm.

There is one improvement we can make, however, that reduces the number of con-
figurations we have to solve by the CVP algorithm. For the top-down approach we can
apply memoization in order to exploit the overlap in the sub problems. To illustrate this
overlap, consider two coordination sets ∆1 = {(ti, t j),(tk, tl)} and ∆2 = {(ti, t j),(tl , tk)},
both belonging to different sub problems. During evaluation of the OPT function on
these coordination sets, they will both try the coordination set ∆min = {(ti, t j)} in order
to compute the optimum solution. If we are able to store the result of running the CVP
algorithm on this coordination set, we do not have to solve the (NP-complete) CVP
again on the same coordination set the second time. We can simply reuse the answer
we have computed earlier.

Memoization would indeed reduce the number of CVP instances we need to solve,
however keep in mind that in our evaluation function we need to check all unique con-
figurations at least once. Memoization would reduce the cost of checking each configu-
ration more than once to some polynomial (usually linear) time complexity introduced
by looking up the value computed before, but we still need to check all 3n unique
configurations. Therefore memoization would reduce the complexity in terms of CVP
instances we have to solve from O(4n) to O(3n) but this is again no improvement over
the simple enumeration algorithm.

For the PLAN COORDINATION PROBLEM we have not found any DP approach that
could perform better than simple enumeration. The agent based approach we have seen
in the beginning of this section is not able to guarantee optimality of the found coor-
dination set and is therefore unusable for exact solving. Recursing on planarcs does
not have this problem, but both the bottom-up as well as the top-down approach do not
offer any better complexities than simple enumeration. Hence dynamic programming
is most likely not the right algorithmic technique in solving the PC, although we have
not studied all possible ways to implement DP. There might exist a recursive function
for the PC for which a dynamic programming algorithm exists that does decrease solv-
ing complexity, however based on our research we are sceptic towards application of
dynamic programming on PC solving.
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4.2 DP and Coordination Verification
The dynamic programming approach does not seem to provide better results than the
enumeration algorithm for solving the PLAN COORDINATION PROBLEM exactly. Re-
cursion on the set of agents yields easier sub problems, however the solutions resulting
after merging sub problem solutions are not guaranteed to be optimal. Recursion on
planarcs does not have this problem but now we have to solve approximately as many
CVP instances as with enumeration discussed in chapter 3. Hence DP is most likely not
suitable to solve the PC exactly. The COORDINATION VERIFICATION PROBLEM, on
the other hand, does allow for a dynamic programming approach that performs better
than its enumerative counterpart.

In solving CVP, we are not interested in optimising some specified criteria, we want
to know whether any cycle can be introduced when merging all individual agent plans.
In addition it does not matter exactly which planarcs are involved in any possible cycle.
Intuitively this seems to make CVP a lot easier to divide into smaller sub problems than
the PC.

In our research we have implemented a dynamic programming algorithm that re-
curses on the set of agents to construct sub problems. In each recursion we halve the
set of agents until only one agent remains. We halve this set using summary constraints
(see definition 4.1) to capture inter-set agent dependencies. This recursion is contin-
ued until we have sub problems with only one agent. These sub problems are solved
independently, resulting in either true if no cycle can be created in this sub problem,
or f alse otherwise. We combine the results in each sub tree root by a simple AND
function. If the result in the root node of the search tree is true, then we know that the
instance is plan coordinated. The DP algorithm for CVP is given in algorithm 4.1.
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Algorithm 4.1 Dynamic Programming algorithm for the COORDINATION VERIFICA-
TION PROBLEM.

Require: A CVP instance 〈T ,A , f 〉, the set of planarcs Ê and the current coordination
set ∆ to verify.

Ensure: The algorithm returns COORDINATED if and only if the instance is plan co-
ordinated. It will return NOT COORDINATED otherwise.

CVP ( 〈T ,A , f 〉, Ê,∆ ):

1. ≺inter = {c = (ti, t j) | c ∈≺, f (ti) 6= f (t j)}

2. ≺′ = (≺ ∪ ∆) \ ≺inter

3. E = {(ti, t j) ∈ Ê | (ti, t j) /∈ ∆∧ (t j, ti) /∈ ∆}

4. Return pvpd p(A , f ,≺′,E,≺inter)

pvpdp ( Â, f ,≺′,E,≺inter ):

1. if |Â|> 1 :

A1 = first half of Â

A2 = last half of Â

〈E1,≺′1,-1〉= splitagent(A1, f ,≺′,E,≺inter

〈E2,≺′2,-2〉= splitagent(A2, f ,≺′,E,≺inter

≺inter =≺inter \ {(ti, t j) | (ti, t j) ∈ ≺inter, f (ti) 6= f (t j)} ∪-1 ∪-2

if pvpd p(A1, f ,≺′1,E1,≺inter) = NOT COORDINATED :

Return NOT COORDINATED

else

if pvpd p(A2, f ,≺′2,E2,≺inter) = NOT COORDINATED :
Return NOT COORDINATED

Return COORDINATED

2. else

if E ∪ ≺inter ∪ ≺′ contains an inter-agent cycle :

Return NOT COORDINATED

else

Return COORDINATED
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splitagent ( A, f ,≺′,E,≺inter ):

1. EA = {(ti, t j) ∈ E | f (ti) = A}

2. ≺′A= {(ti, t j) ∈≺′ | f (ti) = A}

3. -A= makesummary(A,≺′,E,≺inter)

4. Return 〈EA,≺′A,-A〉

As we can see in algorithm 4.1 we start by initialising sets required for computa-
tions further along the algorithm. First the set of inter-agent constraints is retrieved
from the original problem constraint set. In the second step we construct the set of all
imposed intra-agent constraints, either by the original constraints or by the coordination
set. From this set we remove all inter-agent constraints that were part of the original
constraint set ≺. Finally we also obtain the set of planarcs that are still available after
application of this coordination set. Having done all the necessary initialisations we
can now start the dynamic programming recursion.

In this recursion, we halve the agent set and split up the remaining planarc set
accordingly in the sub routine splitagent. In this sub routine we find for both agent sets
the set of imposed constraints, remaining planarcs and summary constraints; we will
discuss the latter in more detail in the next sub section. Using the summary constraints
we found, we replace all inter-agent constraints between the two sets, i.e. all constraints
such that either ti ∈ A1, t j ∈ A2 or ti ∈ A2, t j ∈ A1, by their summary counterparts. See
figure 4.1 in section 4.1 again to recall how these summary constraints are obtained.
For each pair of outgoing and incoming inter-agent constraints (definition 4.2) we have
exactly one summary constraint. Note that although we can make summary constraints
for all pairs of tasks, it suffices to capture possible cycles only involving planarcs that
are connected to both an incoming and an outgoing constraint.

Definition 4.2: Incoming and Outgoing Inter-Agent Constraints and Tasks
Given two disjunct sets of agents A1 and A2. We say that an inter-agent constraint
ti ≺ t j is incoming for set A1 iff ti ∈ A2 and t j ∈ A1. Analogue we have that an inter-
agent constraint is said to be outgoing for set A1 iff ti ∈ A1 and t j ∈ A2. Moreover note
that any incoming arc for A1 is an outgoing arc for A2 and vice versa.

We say that a task t is an incoming task there exists some incoming constraint ti ≺ t.
Also, a task is said to be an outgoing task if there exists some outgoing constraint t ≺ ti.

The last step of algorithm 4.1 requires a cycle detection algorithm, that checks the
union of the planarc, imposed constraint and summary constraint sets, all specific to this
agent. For this we have used a slight modification of the simple enumeration algorithm
of section 3.1. This algorithm does still have an exponential run time complexity,
however we have greatly reduced the number of planarcs in this sub problem and hence
enumeration finds solutions a lot faster. Of course we will have to solve more problems
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this way, but each one is a lot easier than solving the entire problem at once. Indeed, as
we will see in chapter 7, the total time taken to solve all sub problems is far less than
trying to solve the entire CVP instance at once.

Making Summaries

For dynamic programming to be applicable on a problem, we need to be able to re-
cursively decouple problems into smaller sub problems that are easier to solve. As we
have seen before, the DP algorithm for CVP does just this and its decoupling is based on
summary constraints (see definition 4.1). The summary constraints tout - tin indicates
the possibility of a cycle being created if we would plan tin ≺ tout . Keep in mind that a
summary constraint only indicates the possibility of a cycle though these tasks. It does
not have to be the case that planning tin ≺ tout does always result in a cycle: maybe
some other planarc on the path is planned such that the cycle can no longer be created.

Still, in the COORDINATION VERIFICATION PROBLEM it suffices to know whether
a cycle is possible at all. If this is the case, the PC instance we have been given is
not coordinated by our current coordination set because of definition 1.12. Hence if
we find a summary constraint tout - tin and we are able to add the constraint tin ≺ tout
without introducing a local cycle then we can create a cycle and the instance is not
plan coordinated. As we have discussed in section 3.1, local cycles are disallowed in
the planning problem and therefore adding planarcs that introduce such a cycle makes
the CVP instance invalid (see figure 3.1 for an illustration of this).

These local cycles are also the most difficult part of the summary creation algo-
rithm, shown in algorithm 4.2. We have to take into account that we can not simply
add a planarc in order to detect a possible cycle. Before trying the arc as a part of our
path we must first assure that it does not introduce a local cycle.
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Algorithm 4.2 Summary creation algorithm for the CVP DP algorithm.

Require: The current agent set Â, the set of constraints ≺′ of both agent sets, the
set of remaining planarcs E of both agent sets and the set of remaining inter-agent
constraints ≺inter

Ensure: The algorithm returns a set of summary arcs that contains exactly one sum-
mary arc for each pair of incoming and outgoing constraints of agent A.

makesummary ( Â,≺′,E,≺inter ):

1. -Â= /0

2. for each outgoing constraint (ti, t j) ∈≺inter:

T ′ = /0

≺inter=≺inter \ (ti, t j)

markincoming(Â,≺′,E,≺inter,T ′, t j)

for each tin ∈ T ′:

if (ti - tin) /∈-Â :
-Â =-Â ∪ (ti - tin)

3. Return -Â
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markincoming ( Â,≺′,E,≺inter,T ′, t ):

1. mark t visited

2. for each (ti, t j) ∈≺inter with ti = t :

if t j ∈ Â :

T ′ = T ′∪ t j

≺inter=≺inter \ (ti, t j)

else

if t j has not been marked visited :
markincoming(Â,≺′,E,≺inter,T ′, t j)

3. for each (ti, t j) ∈≺′ with ti = t :

markincoming(Â,≺′,E,≺inter,T ′, t j)

4. for each (ti, t j) ∈ E with (ti, t j) /∈≺′ and (t j, ti) /∈≺′ :

t1 = t

if ti = t :

t2 = t j

else

t2 = ti
if t2 has not been marked visited :

≺′=≺′ ∪ (t1 ≺ t2)
if ≺′ is acyclic :

markincoming(Â,≺′,E,≺inter,T ′, t2)
≺′=≺′ \ (t1 ≺ t2)

The summary creation algorithm seems very complex, however it is not much more
advanced than a simple depth first search algorithm for directed graphs. Basically the
sub routine makesummary identifies all outgoing constraints of this agent set and for
each of them markincoming marks what incoming arcs can be reached by some path
through the other set. For each outgoing constraint in ≺inter we find the set of tasks
T ′ in the same agent set that can be reached through inter-agent constraints. Note that
we immediately remove the outgoing constraint as it will be replaced by one or more
summary constraints after the mark round.

The marking part consists of a recursive depth first search of all reachable tasks by
traversing the currently imposed constraints. For each task in the precedence graph we
try to find a path in three different ways. First, we check the inter-agent constraint sets
to see whether we can reach tasks in other agents by some inter-agent constraint. If a
task in another agent indeed is preceded by our current task we either have found an
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incoming constraint or just an inter-agent constraint in the other halve of Â. In the case
we have found an incoming constraint we store the task that is preceded, i.e. the task
in the set Â, in the set of reachable tasks T ′ and remove the incoming constraint from
the set ≺inter. If the constraint we found is no incoming constraint, we simply continue
depth first search from the preceded task.

The second type of arcs on the path of a possible cycle are the constraint arcs
imposed by the set ≺′. This set contains the original problem constraints and the co-
ordination constraints. These are fixed at the point of running the CVP algorithm (as
are the inter-agent constraints) and we traverse them in the same way as inter-agent
constraints. Hence if we are currently at task ti then we recurse our depth first search
on each other task t j for which a pair (ti, t j) ∈≺′ exists.

Finally we also need to traverse all possible constraints in order to make correct
summary arcs that indicate possible cycles. The set E contains all these possible pairs
of tasks that can still be added as a constraint arc to the current path. Hence for each
pair in E we check whether either of the tasks is the current task and we try to add a
precedence constraint in which our current task precedes the other. Of course we will
only add such a constraint ti ≺ t j if it is not already on our path and its converse t j ≺ ti
is not either. When we are allowed to add the constraint, we do so and continue the
marking from the preceded task.

As we have mentioned before, the depth first search algorithm for marking has to
account for local cycles during the search for a possible inter-agent cycle. In algorithm
4.2 we can see in step 4 of the marking routine that we check the set ≺′ ∩ (ti.t j) for
cycles before actually continuing our marking process. This small part of the algorithm
is very important for the correctness of the summary constraints. It guarantees that
the path we have found that may indeed lead to a possible inter-agent cycle does not
also introduce a local cycle. The latter type of cycle is forbidden by definition of
the planning problem and hence agents can never introduce such a cycle. We have
discussed the need for local cycle detection in section 3.1, however figure 4.4 is a
simple example that shows how summary creation could be wrong if it would not
account for local cycles as well.

4.3 Improving Dynamic Programming
We will see in chapter 7 that the basic DP CVP algorithm we proposed above already
outperforms the enumeration algorithm from chapter 3, however we can do even better.
In this section we will discuss one improvements from which our CVP implementation
will most likely benefit very much.

Data Structure

In our study we have implemented the Dynamic Programming algorithm using a square
matrix M to represent constraints between tasks in the instance. Each constraint (ti, t j)
of our instance is stored at entry Mi, j in our constraint matrix. For enumeration it
suffices to simply flag entry Mi, j when we have a precedence constraint ti ≺ t j, however
we need a slight modification to cope with summary constraints. We modify the matrix
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A1
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t1
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Figure 4.4: An example in which finding summary constraints requires local cycle de-
tection. We want to find the summary arcs for the set A2, hence we trace the constraint
t5 ≺ t1 into the set A1. If we would trace the arc t1 ≺ t3, depicted in green, we would
eventually find that t5 - t4. However this path can never be constructed, because one
of its arcs (t1 ≺ t3) causes a local cycle. Therefore we do not include the summary
constraint t5 - t4. Without local cycle detection, the DP algorithm might incorrectly
conclude that a cycle can be created by adding t4 ≺ t5.

to work with bit flags, telling what type or types of constraints are imposed between
each pair of tasks.

In terms of computational complexity, the constraint matrix is an efficient data
structure for immediate storage and retrieval of constraints, if the task numbers are
known. I.e. checking whether task ti precedes t j requires merely a matrix retrieval
of element Mi, j and maybe a bitwise comparison, depending on whether the type of
constraint matters. Both these operations, as well as storing at given task numbers, can
be done in O(1). However, it has a major drawback: if we want to know what tasks
precede some given task t, we need to iterate through an entire column of the matrix.
Of course, when the matrix gets bigger, such an operation becomes increasingly costly.
Regretfully this operation is very frequently used in both the creation of summaries and
the cycle existence check.

Another issue is that it is very complex to divide such a constraint matrix in the DP
separation step. It does not allow for easy dividing because of the task numbers we
use as the index to this array. Halving constraint matrices results in gaps in the index
numbers and hence inefficient iteration. We can compensate this by some mapping
function, that maps each halves task numbers to their corresponding matrix entries but
this makes it very complex altogether. Nevertheless if we would not split the constraint
matrices then we would have to go through the entire constraint matrix every time,
even if we are solving a one agent sub problem. To exploit the power of Dynamic
Programming even more we must use a different data structure and more efficient way
of accessing than a constraint matrix.

We propose to replace our constraint matrix by an agent based data structure in
which we also make task relations explicit in each task. We store for each agent the
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tasks it controls, the intra-agent constraints and the planarcs it contains. For each task
we store the agent it belongs to, which other tasks it precedes and in which arcs it
occurs. Also we have one container for the CVP instance that contains all the agents,
the inter-agent constraints and the current coordination set.

Each CVP run starts by adding the coordination set constraints to the precedence
lists of the correct tasks. Hence for each constraint ti ≺ t j ∈ ∆ we add t j to the precedes
list of ti. This will enables us to quickly traverse the precedence graph of the instance.

Having added all precedence relations, we begin the recursive division of the prob-
lem. In each step we again halve the agents sets by replacing intra-agent constraints
with their summary counterparts. If we look back at the summary algorithm in algo-
rithm 4.2, we see that the mark algorithm is a depth first scan of the precedence graph.
Using a constraint matrix to perform this would require checking O(|T |) neighbours
each time we have travelled to a new task. In the worst case we would have to scan
|T |−1 other tasks in order to find that we do or do not need to add a summary constraint
for some pair of tasks. Hence we would search O(|T |2) tasks to make a summary for
just one pair of tasks.

Storing the precedence relations in the tasks enables us to immediately identify all
neighbours of the task and we only have to iterate through deg(t) nodes. Although this
can be equal to |T |, this very rarely occurs. More commonly the degree of a task is
very small compared to the total number of tasks. The same holds for the enumeration
algorithm that is used to solve the remaining NP-complete problem of the one agent.
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Chapter 5

Kernelisation

In the previous chapters we have seen exact approaches to solve the PLAN COORDI-
NATION PROBLEM. All algorithms we have proposed solve the problem with a run
time that is exponential in the number of planarcs. The naive enumeration algorithm
for example has a run time complexity of O(5n) in the worst case in which n denotes
the number of possible planarcs. With some improvements we can obtain a best case
complexity of O(3n) (see section 3.3), however this is still an exponential complexity.
Assuming that P 6= NP, as the vast majority of computer scientists believe to be true,
we have no hope of finding an efficient algorithm that solves the PC in polynomial or
even sub-exponential time and other ways of reducing complexity have to be studied.

One such an approach is kernelisation, in which we try to find the smallest possible
subset of the input that needs to be solved exactly, known as the kernel. The key
idea is that some part of the input can be solved in polynomial time using a set of
predetermined rules and that the remaining part has to be solved using an exponential
algorithm. If we can find such a polynomial function, we can reduce the complexity of
solving the problem to O( f (k) · |n|O(1)), with f being an exponential function and k the
size of the kernel, smaller than n. Problems that allow for such an algorithm are known
as Fixed-Parameter Tractable (FPT) problems (see [18]). One of the most famous
examples of a FPT problem that allows for kernelisation is the MINIMUM VERTEX
COVER PROBLEM. By finding structures known as crowns we can reduce the size of
the part that has to be solved by an exponential algorithm [1].

During our research we have identified several structures in PC instances that we
can exploit to reduce the number and possible configurations of planarcs we have to
consider. In section 5.1 we prove that we can reduce the number of arcs we have to
inspect in solving the CVP. Section 5.2 discusses removal of tasks that are irrelevant
for the coordination problem. Then in section 5.3 we introduce an algorithm that uses
both these techniques. We will see in chapter 7 that this kernelisation algorithm indeed
outperforms our previous algorithms.

In the process of finding kernelisation techniques we also investigated fixed con-
straints, which indeed reduce solving time significantly but do not always result in an
optimal coordination set. Section 5.4 discusses these fixed constraints and illustrates
when this technique fails to return an optimal solution.
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5.1 In-Out Pairs

In section 1.2 we have introduced the notion of planarcs (see definition 1.9) and there
we reasoned that we only need to consider task pairs for which both tasks belong to
some inter-agent constraint. This is because all other possible inter-agent cycle paths
are dominated by the planarcs containing two tasks also belonging to inter-agent con-
straints. By dominated we mean that both the creation and prevention of these inter-
agent cycle paths can be realised using only such planarcs. See figure 1.1 again for an
illustration of this.

We can reduce the set of planarcs we have to consider even more, however only
for the COORDINATION VERIFICATION PROBLEM. For any given CVP instance it is
sufficient to consider only in-out pairs, which we define in definition 5.1.

Definition 5.1: In-Out Pairs
A pair of tasks (ti, t j) is called an In-Out pair if f (ti) = f (t j) and there exists at least one
inter-agent constraint ti ≺ t ′ and one inter-agent constraint t ′′ ≺ t j with f (ti) 6= f (t ′)
and f (t ′′) 6= f (t j).

We say that we can connect an in-out pair if we can add the constraint tin ≺ tout
without causing a local cycle.

The main idea behind this kernelisation is that if we cannot connect the task tin to
tout directly then we can also not connect tin to tout through some other path. The proof
for this is given in theorem 5.2.

Theorem 5.2: Inter-agent cycles and In-Out Pairs
Assuming that {tin, tout} is not already in ≺i, if for some agent Ai = 〈Ti,≺i,≡i〉 there
exists an inter-agent path P that exits the agent at tout and enters the agent at tin then
this path can only be cyclic if we can add tin ≺ tout to ≺i without making the set ≺i
acyclic.

Proof. To see that we can have an inter-agent cycle if we can add tin ≺ tout to ≺i we
study both the case in which we (i) can and (ii) cannot add the arc. We need to prove
that there exists a path from tin to tout if and only if we are allowed to add tin ≺ tout to
≺i.

When we want to add the constraint tin ≺ tout we must have that tout ≺ tin /∈≺i,
otherwise adding the constraint is not allowed by the definition of the PLAN COOR-
DINATION PROBLEM. To be precise, the case in which tout ≺ tin is already in ≺i is
subsumed by the case in which adding tin ≺ tout would cause a local cycle (ii).

(i). For the reasons stated above we have tout ≺ tin /∈≺i and hence we are able to add
the constraint. We can now have that adding the constraint either results in a
cyclic or an acyclic set. Note that the set ≺i is acyclic, again by definition.
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The trivial case is when adding the constraint tin≺ tout results in an acyclic set≺i,
because now we already have a path from tin to tout and the path P∪ (tin ≺ tout)
is indeed cyclic.

(ii). In the case that adding tin ≺ tout would cause ≺i to become cyclic, there must
exist some path P′ starting in tout and ending in tin such that P′ ∪ (tin ≺ tout) is
cyclic. And because such a path P′ must exist, we cannot add any path P′′ from
tin to tout to ≺i. Adding such a path would always cause a cycle P′ ∪P′′ within
the set ≺i and hence we can never add such a path to the inter-agent path P and
therefore P can only be acyclic.

Using theorem 5.2 we can reduce the complexity of our CVP algorithm. Prov-
ing that no cycle can be created comes down to testing for each in-out pair (tin, tout)
whether we can connect tin to tout without creating a local cycle. In combination with
summaries, this simple observation can increase performance greatly: not only do we
have to consider fewer arcs, for each arc we now only have to consider one option. We
only have to test whether we can add tin ≺ tout and no longer the other way around.
Moreover we can already test for cycles during the creation of summary constraints.
The moment we have found a summary we can immediately test if we can connect the
in-out pair. Applying this notion to the Dynamic Programming algorithm proposed in
section 4.2 would reduce the complexity of CVP to almost polynomial; only when we
encounter local cycles during summary creation we would have to use a backtracking
approach to find all possible summaries (see section 5.3).

5.2 Task removal
In PC instances we usually encounter a sub set of tasks that are either not part of any
planarc or their associated planarcs can never lead to any cycle at all. Removing these
tasks and their planarcs again might reduce the number of possibilities we have to
consider.

We can identify two different tasks that can be removed immediately from any
PC instance without harming the finding of an optimal solution. First, because of the
definition of planarcs (see definition 1.9), we can remove all tasks that are not part
of any inter-agent constraint. Such tasks are never part of any planarc and hence will
never be included in any coordination constraints. This is because any coordination
path through such a task is dominated by a coordination path staring and ending in two
other tasks that are part of an inter-agent constraint. If such a task t has both in degree
and out degree greater than zero, we can replace all pairs of in constraints ti ≺ t and out
constraints t ≺ t j by a new constraint ti ≺ t j.

Iterative removal of such tasks will eventually result in a PC instance with just those
tasks that are part of some inter-agent constraint. Therefore in the resulting instance we
must have either a constraint or a planarc for each pair of tasks within the same agent.
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Another type of task can be removed from the PC instance with a little more effort.
One can imagine that not all parts of the PC instance have a cyclic dependence that must
be coordinated. There might exists agents, for instance, which only contain incoming
inter-agent agent constraints but no outgoing constraints. Of course we can also have
the other way around. In such a case, this agent can never contribute to any inter-agent
cycle and we can even remove the entire agent from the instance, including all inter-
agent constraints originating from or ending at that agent. Removing an agent results
in a decrease of the number of planarcs in the instance.

Identifying such irrelevant parts of the instance can be done using the agent depen-
dency graph (see definition 2.4) as introduced in [47]. We can run a depth first search
on the ADG to find agents that cannot be part of any agent cycle and remove them from
the instance. Note that we also need to remove the inter-agent constraints that have one
of their tasks in the agent. If removing this inter-agent constraint would cause the task
in another agent to no longer be part of any inter-agent constraint, we can remove that
task as well, as we have discussed previously in this section.

5.3 Kernel based algorithm
We have combined the techniques discussed in this chapter with the dynamic program-
ming algorithm for the COORDINATION VERIFICATION PROBLEM introduced in sec-
tion 4.2 into a new kernel based algorithm. This algorithm first runs a pre-processing
phase in which all irrelevant tasks are removed as we discussed in section 5.2. In
the solve phase we have used the PC enumeration and CVP dynamic programming ap-
proaches.

The PC enumeration algorithm is based on algorithm 3.1, although we have also
implemented the enumeration strategy improvement discussed in section 3.3. This
algorithm enumerates all possible configurations of the coordination set, which are then
verified by a slightly modified dynamic programming algorithm. The overall idea of
the new DP algorithm is similar to algorithm 4.1. It captures possible cycles by making
summaries and then verifies whether we can complete the cycle or not. However, we
have made some improvements that allow for faster verification of coordination sets.

First of all, using theorem 5.2, we can reduce the number of arcs we have to con-
sider when verifying the coordination set. Inter-agent cycles through any in-out pair
can exist if and only if we can connect that in-out pair. Hence we only have to check
these in-out pairs, not all the planarcs in Ê.

In addition we do not have to verify all possible configurations of these in-out
pairs. Again by theorem 5.2 it suffices to check if we can connect those in-out pairs
(tin, tout) that also have a summary cycle tout - tin. This can be done using a very simple
polynomial depth first search that checks whether tin ≺ tout causes a local cycle. If this
indeed causes a local cycle, we know that the inter-agent cycle is not possible. If we
are able to connect tin to tout then we report a cycle possibility and the CVP returns
NOT COORDINATED.

During the creation of summary arcs we can already detect possible cycles if both
the tasks of the summary constraint belong to the same agent. In this case we have
found an in-out pair and we can immediately verify if we can introduce a cycle, i.e.
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if we can connect this in-out pair. When we can indeed connect the pair, we know
that a cycle is possible and we can return NOT COORDINATED instantly, without hav-
ing to summarise the entire instance. Note that immediate cycle detection is always
performed when halving a set means that only one agent remains in that set. This is
because any summary we find for a set consisting of only one agent must have two
tasks belonging to the same agent.

Instead of the dynamic programming summary creation algorithm we could also
implement a pair-wise cycle existence detection algorithm. This algorithm would
check for each in-out pair (tin, tout) whether we can reach tin from tout (i.e. tout - tin) and
if we can connect the pair. This approach would also work, although this means that
for each in-out pair we will have to analyse the entire dependency graph. Moreover,
as we have seen in section 4.2, we need to consider all inter-agent paths without local
cycles, of which an exponential amount might exist in the dependency graph. Using
the pair-wise method we would have to backtrack a lot of possibilities for each in-out
pair and hence we prefer the dynamic programming approach which halves the size of
this ‘hard’ part in each iteration.

5.4 Fixed constraints
In our study into kernelisation we also investigated typical substructures of the PC
that can be coordinated instantly. Using a pre-processing routine we find such fixed
constraints in polynomial time, thus reducing the size of the ‘hard’ part to be solved
exactly. Regretfully we have not been able to identify fixed constraints that can be
added to the instance while preserving solution optimality.

Nonetheless we have found a substructure in PC instances that can be exploited
to reduce solving time significantly while producing near optimal solutions. In some
cases it even produces the optimal solution, although much faster than solving the in-
stance exactly. Exploiting this substructure might be useful in situations where we
want to produce a good, but not necessarily minimal, solution within a (more) reason-
able amount of time.

Our thought was that when we have an in-out pair (tin, tout) for which there already
exists an inter-agent path from tout to tin consisting only of original constraints, we
can immediately add tout ≺ tin to the coordination set. This assumption seems valid,
however in some scenarios we can find an even smaller coordination set that implicitly
enforces tout ≺ tin. Consider for instance figure 5.1, a generated PC instance (see section
7.2) on which the fixed constraints approach fails.

In figure 5.1 we see the coordination set that is proposed by the algorithm in blue
dashed arrows. The size of this coordination set is 5, while an optimal set of size 4
exists (see figure 5.2). The fixed constraints method fails to make use of local cy-
cles in such a way that a smaller coordination set implicitly also coordinates the fixed
constraint arc. To account for this, we would have to generate all other coordination
sets and see whether they (1) prevent the arc from being added and (2) are of a smaller
cardinality. There are exponentially many of such sets to verify before being able to de-
cide on optimality and hence this pre-processing technique itself poses a NP-complete
problem. Therefore it is not of any practical use as a pre-processing step.
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Figure 5.1: The coordination set found by applying the fixed constraint method. The
blue dashed arrows depict the proposed coordination set of size 5.
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Figure 5.2: The optimal coordination found by enumeration is depicted by red dashed
arrows. The size of this set is only 4.
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Chapter 6

QBF Encoding

So far there have been no studies yet into solving the PLAN COORDINATION PROBLEM
exactly; only approximation algorithms have been proposed for the problem. In order
to have some form of comparison to other techniques, we intend to formulate the PC as
a Quantified Boolean Formula (QBF) and solve it using a state-of-the-art solver. This
provides us with some indication about the performance of our algorithms.

The QUANTIFIED BOOLEAN FORMULA PROBLEM (QBF) is a well known ∑
p
2 -

complete problem1 for which many solvers have already been developed; see [31] for a
nice evaluation of current day solvers. QBF is an extension of the classical satisfiability
problem in which we are able to quantify the propositional symbols or variables of the
problem. In classical satisfiability problems we want to know whether there exists an
assignment of its variables such that all clauses of the instance are satisfied, i.e. evaluate
to true. Clauses in these problems are usually disjunctions of variables and the formula
is commonly denoted as a conjunction of all clauses, known as the Conjunctive Normal
Form, or CNF.

QBF formulation allows for a larger degree of freedom in expressing computational
problems. By applying combined quantifiers on the variables of a satisfiability problem
we can model more difficult problems quite naturally. Finding a planning of a fixed
length k, for example, can be modelled directly as a QBF formula [35]. Also QBF is
commonly studied in the field of adversarial game theory in which we want to find a
dominating strategy for the player. An example of this can be found in [3].

Encoding and solving the minimal PC as a QBF requires an iterative approach.
Although we can model finding an assignment of coordination constraints such that no
cycle can be created as a QBF, we can impose no restrictions on its size. The QBF
solver would simply return the first assignment it finds that does not allow for any
inter-agent cycle. In order to solve the PC minimally, we need to encode it such that
we model the finding of a coordination set of size K in QBF. Then we iterate until we
have found a smallest set, i.e. no set with size K−1 coordinates the instance. For this
we can apply similar strategies to those discussed in section 3.3.

1The actual complexity of QBF is determined by the number of quantifiers used in the formula and can
be arbitrarily hard. Most research, however, has focussed on the class of ∑

p
2 -complete formulas.
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Analogue to [3], we develop our QBF encoding in different phases. First we design
the variables and axioms associated to the PLAN COORDINATION PROBLEM section
6.1. Then in section 6.2 we formulate our PC encoding as a QBF and in section 6.3 we
transform the instance into CNF, as is the proposed standard in [32]. In our encoding
we exploit the kernelisation techniques discussed in chapter 5 to minimise the size of
the encoding.

6.1 Phase I: Designing the model
Encoding a problem as a QBF requires choosing variables that represent possible
choices in the problem and incorporating rules to state legal options and goal con-
ditions. The goal of the QBF solver then is to find an assignment of our variables such
that no rule is violated and the goal condition is achieved. Therefore we need to model
our rule such that they immediately make the QBF instance unsatisfiable when vio-
lated. Also the QBF instance should be satisfiable if and only if the goal condition is
met, however this modelling will be discussed in the second phase.

In this phase we will introduce the variables to model the PC and the encodings of
the rules of the PC. As we have discussed before, we cannot impose any restrictions
on the coordination set size using QBF encoding. Hence the encoding we propose is
dependent on some integer k that denotes the size of the coordination set to be found.
Recall that we are given a PC instance 〈T ,A , f 〉.

Variables
As basic variables in our encoding we have the planning options for each planarc
and coordination set inclusion variables. Hence for every ex = (ti, t j) ∈ Ê we
include four variables ei, j and e j,i. If we choose to plan arc ti ≺ t j we have
ei, j = true, the case for e j,i being analogous. If we add ei, j to the coordination
set, we set δi, j = true, again the case for δ j,i is similar. Note that we need rules to
prevent illegal combinations of planarcs such as both ei, j = true and e j,i = true
or ei, j = f alse and δi, j = true at the same time.

Our variable sets are given by

E = {ei, j,e j,i | e = (ti, t j) ∈ Ê}

and

∆ = {δi, j,δ j,i | e = (ti, t j) ∈ Ê}
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Planarc exclusion
For each combination of planarc variables ei, j and e j,i we add a mutual exclusion
clause (¬ei, j ∨¬e j,i) so that we cannot have both constraints at the same time.
There will be |Ê| of such clauses. We represent all the mutual exclusion clauses
by the set ME, defined as

ME =
∧

(ti,t j)∈Ê

(¬ei, j ∨¬e j,i)

Coordination set
If we want to add a constraint ei, j to the coordination set we set its correspond-
ing coordination set variable δi, j to true. However, this can only be done if ei, j
is added in the first place. We need to prevent δi, j from being added to the co-
ordination set when its associated arc is not. Therefore we introduce the set of
coordination set clauses as

CS =
∧

ei, j ,δi, j

(δi, j→ ei, j)

Note that we do not have to add another mutual exclusion constraint for these
coordination set variables, because this already enforced by the mutual exclusion
constraints for their associated arcs.

Intra-agent Cycles
There are two possible causes for intra-agent cycles to occur, both the choice of
planarcs and the choice of coordination set constraints may lead to local cycle.
Planarcs might cause a local cycle, however this should not result in an unsatis-
fiable formula. In practice such cycles can never be created by the agents and we
only need to detect them to make sure that inter-agent cycles do not also cause
local cycles. Inter-agent cycles that also introduce local agent cycles have been
created by illegally adding planarcs (i.e. those that cause a local cycle) and can
therefore never exist in practice.

The latter type of local cycle, introduced by the choice of coordination con-
straints, should cause the formula to become unsatisfiable however. The purpose
of a coordination set is to enforce that the multi-agent planning problem will
always remain acyclic. Choosing a coordination set such that it introduces a cy-
cle itself should therefore be forbidden. We do this by copying the intra-agent
cycle clauses for the planarcs and replace all arc choice variables ei, j by their
associated coordination set variable δi, j.

The detection of intra-agent cycles requires an exhaustive enumeration of all
possible cycles within the agent. From [42] we know that this enumeration is
exponential in the number of cycles and hence we will obtain an exponential
amount of clauses. We can perform cycle enumeration using the algorithm from
[29], slightly adapted to deal with planarcs.
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Using this adapted algorithm we find all possible cycles and for each cycle in the
form C = {ex,ey, . . . ,ez}we create two clauses that are falsified if the cycle exists
because of the current assignment. The first clause detects intra-agent cycles for
all planning choices while the second clause only involves the coordination set
variables. Hence for each cycle C we have clauses

CÊ = ¬(ex∧ ey∧ . . .∧ ez)

and

C∆ = ¬(δx∧δy∧ . . .∧δz)

The union of all these cycle detection clauses evaluates to true if and only if
all clauses are satisfied and hence when no intra-agent cycles occur. We take
the union of both constraint types separately because the first type of cycles is
allowed in general and is only used to mark illegal inter-agent cycle whilst the
second constitutes an illegal choice for the coordination set. These unions are
given by

IntraÊ =
∧

CÊ

and

Intra∆ =
∧

C∆

Inter-agent Cycles
For inter agent-cycles we use almost the same approach as with intra-agent cy-
cles, however because of the observation in section 5.1 we do not have to con-
sider all possible cycles in the precedence graph. Using this observation we can
conclude that inter-agent cycles only consist of inter-agent constraints and con-
nected in-out pairs. Therefore we only have to enumerate all cycles that can exist
consisting only such constraints. This prevents us from enumerating through all
intra-agent paths; instead we only have to consider in-out pairs. Again we can
use a modified version of the cycle enumeration algorithm from [29] to find all
such cycles. Note that verifying whether we can connect an in-out pair is already
covered by the intra-agent cycle detection clauses and hence we do not have to
encode extra rules for this.

In this set of inter-agent clauses there might be again some overlap. Consider for
instance two inter-agent cycles that enter and leave some agent Ai in the points
tin and tout , respectively. The first cycle can be created by directly connecting
tin to tout , while the second cycle exits the agent through some other task, enters
it again through yet another task t ′ and can then be created when we connect t ′

to tout . This latter cycle is subsumed by the first and hence we can remove the
larger of these two from our set of clauses. This notion is important also for the
transformation to CNF we dicuss in section 6.3.

We use the set Inter to denote all inter-agent cycle detection clauses.
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Goal condition
The goal condition is the only part of the QBF encoding that depends on the
parameter k. To reduce the number of clauses we require to represent the goal
condition, we introduce an auxiliary variable δ̂i, j for each planarc e=(ti, t j). This
variable is true if the planarc is in the coordination set, i.e. (δi, j ∨δ j,i)→ δ̂i, j.

Using these auxiliary variables we can formulate the goal as finding a permu-
tation of these variables such that k variables have the value true and the rest
f alse. We can generate exactly

(|Ê|
k

)
of such clauses. An example for k = 3 and

|Ê|= 5 is given below:

(δ̂1,2 ∨ δ̂2,3 ∨ δ̂3,5 ∨¬δ̂4,5 ∨¬δ̂5,8) ∧ (δ̂1,2 ∨ δ̂2,3 ∨¬δ̂3,5 ∨ δ̂4,5 ∨¬δ̂5,8) ∧ (δ̂1,2 ∨
δ̂2,3∨¬δ̂3,5∨¬δ̂45∨ δ̂,58) ∧ . . . ∧ (¬δ̂1,2∨¬δ̂2,3∨ δ̂3,5∨ δ̂4,5∨ δ̂5,8)

We denote the set of auxiliary variables by ∆̂ and the goal condition clauses for
constraint set size k by the set Gk.

6.2 Phase II: Formulating the QBF

Now that we have designed our QBF encoding in terms of variables and clauses, we
must formulate the problem using existential qualifiers. As we have discussed previ-
ously in this chapter, we want the QBF encoding to be satisfiable if and only if we have
a coordination set of size k. Recall from chapter 1 that when we add the coordination
set to any PC instance, the resulting constraint set must remain acyclic. Also it must
prevent the creation of cycles for all valid choices of possible planning choices of each
agent.

In terms of Quantified Boolean Formula we are looking for an assignment of each
of the coordination set variables δi, j such that for all assignments of planarcs ei, j the
resulting formula is satisfiable. Moreover, to enforce a coordination set of specific
size, this assignment can only be valid if it in addition also satisfies the goal condition
clauses. The QBF encoding that corresponds to this is given in equation 6.1.

∃∆∀E : CS∧ Intra∆∧ (Intra∧ME→ Inter)∧Gk (6.1)

This formula asks whether there does exist an assignment of variables in ∆ such
that for all variables in E it holds that (1) each arc associated with the coordination set
constraint is included in the instance, (2) the coordination set does not introduce a local
cycle itself, (3) if no intra-agent cycles occur and mutual exclusion is respected then
no inter-agent cycle should exist and (4) only k constraints have been used. We discuss
the clauses below in more detail.

(1) CS
The clauses in CS make sure that whenever we select an arc i ≺ j as a coordi-
nation constraint, by setting δi, j, the associated arc variable ei, j is also set. If
this is not implied then we might select coordination constraints without actually
enforcing them on the instance.
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(2) Intra∆

In order to produce a valid coordination set we must make sure that the set itself
does not impose any local cycles when added to the instance. In the QBF en-
coding we allow local cycles, because they can only result from making illegal
planning choices and hence cannot exist in practice. Agents will not create such
cycles when solving their local planning problem. Coordination sets, however,
are imposed by solving the PC and may introduce local cycles if chosen badly. A
set that makes the instance cyclic after adding it to the original constraints is not
a valid coordination set and hence should be forbidden. The clauses in Intra∆

prevents the coordination set from introducing local cycles.

(3) Intra∧ME→ Inter
This part of the formula ‘tests’ the correctness of the coordination set we are
trying as our current assignment. When valid planning choices have been made
then no inter-agent should possibly exits, otherwise our coordination set does
not coordinate the instance. The validity of planning choices is tested by Intra
and ME. The first is satisfied if and only no inter-agent cycle occurs, while the
later is satisfied if and only if no mutual exclusion is violated. Note that we are
not interested whether an inter agent-cycle exists or not when invalid planning
choices have been made, hence only the single implication.

(4) Gk

The goal clauses are rather trivial, however we must make sure that we choose a
coordination set with exactly k coordination constraints. Otherwise we may find
a coordination set of random size and we can never work towards an optimal
(minimal) set size.

6.3 Phase III: Transforming to CNF
In order to solve our QBF encoding of the PLAN COORDINATION PROBLEM by any
of the state-of-the-art solvers currently around, it remains to transform our formula
into Quantified CNF, using the QDIMACS format. This format has been proposed in
[32] and has been adhered by almost all state-of-the-art QBF solvers. Hence it seems
worthwhile to transform our encoding into that format.

Variables of the our encoding need no transformation; we only have to transform
our rules into a conjunction of clauses which consist only of disjunctions of variables.
This, however, is not straightforward for our problem: encoding the implication Intra∧
ME → Inter naively would require an enormous amount of clauses. This is because
transforming an implication into CNF naively results in a Cartesian product of the sets
on both sides of the implication. To prevent this, we introduce auxiliary indicator
variables as done in [3].

To each clause in all of the aforementioned sets we add an indicator variable that
must evaluate2 to true if and only if that clause is satisfied. Then we combine the

2Although we use the term ‘evaluate’ here, it is not true than a QBF solver indeed sets the indicator
variable the moment a monitored clause is falsified. Only because there is no other satisfying assignment for
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indicator variables for each set into one additional set indicator variable that evaluates
to true if and only if no indicator variable for that set is assigned true. The implication
of the three sets can then be replaced by a three variable implication only containing the
set indicator variables, which requires only 3 clauses. First we will demonstrate how
we can monitor clauses and sets then after that we will discuss the cost of monitoring
clauses.

By monitoring a clause, we want to assign an indicator variable to it such that it
evaluates to true if and only if that clause is satisfied. Hence for any random clause
Ci = (x1∨ x2∨ . . .∨ xm) we want to assign a indicator variable ci such that:

(x1∨ x2∨ . . .∨ xm) ⇐⇒ ci (6.2)

We obtain the clauses to add by rewriting both implications of equation 6.2 into
boolean logic:

(x1∨ x2∨ . . .∨ xm)→ ci = ¬(x1∨ x2∨ . . .∨ xm)∨ ci

= (¬x1∧¬x2∧ . . .∧¬xm)∨ ci (DeMorgan)
= (¬x1∨ c)∧ (¬x2∨ ci)∧ . . .∧ (¬xm∨ xc) (6.3)

(x1∨ x2∨ . . .∨ xm)← ci = ci→ (x1∨ x2∨ . . .∨ xm)

= ¬ci∨ (x1∨ x2∨ . . .∨ xm)

= (¬ci∨ x1∨ x2∨ . . .∨ xm) (6.4)

We do not make any assumptions on the sign of each of the literals in the original
clause C, i.e. each variable xi can either denote xi or ¬xi. Note that it does not mat-
ter whether clause C is a disjunction or conjunction of literals, in the latter case we
would obtain the same clauses although the sign of each of the variables x1,x2, . . . ,xm
is inverted. This is because

We can combine all indicator variables into a set indicator variable in a similar
fashion. We generate one clause that should result in the set indicator variable assigned
to true if and only if at least indicator value is true, resulting in clauses alike the results
of equation 6.3 and equation 6.4. Of course, we can also let it evaluate to f alse by
inverting the set indicator literal or we can force all indicator values need to be true
by inverting the indicator variable signs. For the purpose of demonstration we assume
that we want the set indicator variable to evaluate to true if and only if all indicator
variables evaluate to true. This is the case with our mutual exclusion set indicator for
instance.3 This results in the following clauses for the set indicator over n indicator
variables:

that clause, the QBF solver will eventually conclude that the formula can only be satisfied when setting the
indicator variable.

3And it also demonstrates that we obtain a similar set of clauses when adding an indicator variable to a
conjunctive clause.
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(c1∧ c2∧ . . .∧ cn)→ c∗ = ¬(c1∧ c2∧ . . .∧ cn)∨ c∗
= (¬c1∨¬c2∨¬ . . .∨¬cn)∨ c∗ (DeMorgan)
= (¬c1∨¬c2∨¬ . . .∨¬cn∨ c∗) (6.5)

(c1∧ c2∧ . . .∧ cn)← c∗ = c∗→ (c1∧ c2∧ . . .∧ cn)

= ¬c∗∨(c1∧ c2∧ . . .∧ cn)

= (¬c∗∨c1)∧ (¬c∗∨c2)∧ . . .∧ (¬c∗∨cn) (6.6)

Although using indicator variable and set indicator variable we can easier encode
our implication, we still need to encode these additional variables and clauses for them
given by equation 6.3, equation 6.4, equation 6.5 and equation 6.6. We have seen that
in order to monitor any clause of size m we require m additional clauses in order to
correctly set or unset the indicator variable. Also, in order to combine the result of all
n monitored clauses, we need another n+ 1 clauses. To compare with the Cartesian
product we need to analyse the resulting sets more carefully. We analyse set sizes in
terms of planarcs n, number of unique intra-agent cycles Cintra and number of unique
inter-agent cycles Cinter.

Mutual exclusion
Encoding the mutual exclusion constraints requires exactly n clauses without
monitoring. By adding indicator variables to these clause we would require 2
additional clauses per planarc. The set indicator variable requires another n+
1 clauses, hence we obtain a total of 3n+ n+ 1 = 4n+ 1 clauses for mutual
exclusion.

Cycle clauses
To encode all Cintra intra-agent cycles into QBF we need to add exactly Cintra
clauses, however of various length. Let l1 denote the average cycle length in arcs
of these cycles, then we require l1×Cintra additional indicator clauses. Combin-
ing the indicator variables into a set indicator variable requires Cintra + 1 more
clauses. This results in a total of (l1 +2)×Cintra +1 clauses.

For the inter-agent cycles the number of clauses is computed similar to the intra-
agent clauses, however with a different average cycle length l2. Therefore we
obtain a total of (l2 +2)×Cinter +1 clauses.

Set indicator implication
If we use set indicator variables, we can enforce our implication Intra∧ME →
Inter with just three variables: Intra∗,ME∗ and Inter∗. This results in just one
clause (¬Intra∗∨¬ME ∨ Inter).

Combining the total number of clauses required for this encoding we obtain 4n+
(l1 +2)×Cintra +(l2 +2)×Cinter +4. Bounding the average cycle length to the
maximum cycle length of n, we get 4n+(n+2)×Cintra +(n+2)×Cinter +4.
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Cartesian Product
Generating the Cartesian product of Intra∧ME → Inter requires a substantial
amount of clauses. Recall that we generate n clauses for mutual exclusion Cintra
inter-agent cycle clauses and Cinter agent cycle clauses. Although for the real
number of generated clauses we also need to know the lengths of the clauses
in the Cartesian product, in order to show the exponential blow up it suffices to
assume all clauses to be of length 1.

The number of clauses we generate with the Cartesian product is, assuming a
clause length of 1, equal to (clauses(Intra) + clauses(ME))× clauses(Inter).
We have analysed the required number of clauses for each set before, resulting
in a total of (n+Cintra)×Cinter. As the number of cycles in a directed graph can
be exponential in terms of its tasks [7], the number of resulting clauses rapidly
grows. This growth is exponentially larger than that of the monitoring approach.

Indeed using the indicator variables we end up with a much smaller encoding, al-
ready when assuming that the clause lengths in the Cartesian product all equal 1. Larger
clause lengths result in an even worse growth rate of Cartesian product clauses. There-
fore we encode our planning problem using indicator variables.

Conditional Variables in QBF

During experiments with our encoding we have seen that already for very small PC
encodings, the QBF solver we used had great difficulty in determining whether the
formula is satisfiable. In [3], Anóstegui et al. identify a pitfall of many modern QBF
solvers. Almost all current day solvers use a top-down approach to tackle QBF for-
mulas, which does not work very well with indicator variable. To benefit more from
indicator variables, they propose to make the QBF solver aware of such conditional
variables. This could allow a solver to immediately backtrack when a conditional vari-
able is falsified, to prevent searching large irrelevant areas of the search space. As the
bulk of our encoding consists of such conditional variables, we expect to see enormous
performance improvements when using a solver that accounts for them equal to the
result obtained in [3].
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Chapter 7

Experiments

In this thesis we have proposed several approaches to solve the PLAN COORDINATION
PROBLEM. Our research has focussed mainly on exact solving of the problem, however
also previously developed approximation methods by others have been discussed. In
order to get insight into the performance of the various algorithm, we will experimen-
tally verify and compare them. In these experiments we will focus both on the time
required to solve instances of the PC, as well as the obtained coordination set size.

As we have stated before, there has not yet been any attempt to solve the PC exact.
As a consequence, our experiments will be mostly of an exploratory nature. Never-
theless we also study the influence of various characteristics of PC instances to gain
more knowledge about the complexity and scaling of the problem. We have developed
several hypotheses concerning the PC that we wish to verify experimentally.

This chapter starts with a discussion of all PC instance characteristics to understand
all variables that are involved in our experiments. Using these variables we have formu-
lated several hypotheses that we wish to study in our experiments. Both are discussed
in section 7.1 Then, before we go into the experiments themselves, we describe our test
set and experimental set-up in detail in section 7.2. Section 7.3 discusses the results we
have obtained from our experiments.

7.1 Experimental Goals

In order to do perform useful experiments not only of exploratory nature, we have de-
vised a set of test goals in advance to allow for concise testing. This section discusses
those experimental goals that, from our perspective, are the most relevant in the context
of this thesis. Each sub section presents an important aspect to verify experimentally
and introduces hypotheses underlying our tests. The validity of each of these hypothe-
ses will be discussed using our experimental results in section 7.3.
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Previous work

We have mentioned a few times that previous work has only focussed on approximation
or special cases (see chapter 2), however these methods have not yet been tested in
practice. In [47] only a theoretical comparison of the coordination set sizes is done.
This analysis has never been verified experimentally.

In this thesis we compare the coordination sets produced by both methods and try
to verify the claim made in Yadati et al. in [47] about the produced coordination set
sizes. Moreover, we also relate the set sizes of approximation with the set size of the
exact solution. For these tests we have the following two hypotheses:

Hypothesis H 1: Depth Partitioning versus Intra-free Coordination
Based on the theoretical analysis from [47] we expect the Intra-free coordination
method to produce smaller coordination sets on average than the Depth Partitioning
method for the same instances. Hence want to verify the null hypothesis H0 : µIF < µDP.
In addition, it is likely that the depth partitioning algorithm is more effective on in-
stances with smaller instance depths (see definition 2.1).

Hypothesis H 2: Approximation versus optimal
Both the Depth Partitioning and Intra-free Coordination methods produce will most
likely produce much larger coordination sets compared to the exact solvers. More-
over we expect the ratio |∆apx|/|∆opt | to become increasingly large when the number of
planarcs increases. This is because the number of coordination possibilities greatly in-
creases for each additional planarc, while requiring only a small amount of additional
coordination constraints in most cases.

Solver comparison

We have developed three different solvers to tackle the PC exact, based on three dif-
ferent algorithmic techniques. Our first solver is the pcpenum solver and is based
on simple enumeration as introduced in chapter 3. This solver uses enumeration to
generate configurations for both the PC and the CVP problems.

The pvpdyna solver from chapter 4 aims to tackle the CVP sub problem more
efficiently by applying the dynamic programming technique to split up the problem in
smaller, more easily solvable sub problems. It still relies on the enumeration procedure
to generate PC configurations.

Finally the pvpkern solver extends our pvpdyna solver with the kernelisation dis-
cussed in chapter 5. This solver treats planarcs slightly different to reduce the number
of options that do actually have to be considered in solving the instance. By focussing
only on the so called In-Out pairs, we can eliminate several possibilities that will never
lead to any coordination constraint in advance. Also, it uses pre-processing to remove
tasks and sometimes even agents that can never be part of the optimal solution anyway.

As each subsequent solver has been developed from the previous one by extending
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it with more enhanced search space elimination methods, we expect to see that our
pvpkern solver will outperform the pvpdyna solver, which on its turn outperforms
the pcpenum solver. This is formulated in hypothesis H 3. Although verifying this
hypothesis seems unnecessary, we are still interested to see how they compare.

Hypothesis H 3: Solver comparison
We expect the pvpkern solver to perform best of our three solvers. Also, the pvpdyna
solver is expected to perform better than the pcpenum solver.

Complexity causes

One can immediately see that the complexity of such an instance does not depend on
just one factor. Several instance characteristics affect the run time of solving a PC
instance. One of the main goals in our research, and hence our experiments, is to study
these characteristics and their influence on the solving hardness. Ideally, we would
like to find a good estimator for the ‘difficulty’ of any given PC instance, so that we
can a priori determine what instances are hard and what instances are easy to solve.
In addition, we are also interested in finding a heuristic for the enumeration strategy
(chapter 3) to use. This allows us to apply the, in most cases, right strategy on each
instance.

In order to obtain any such an estimator or heuristic, we need to study all the in-
dividual factors in detail. In PC instances we can immediately identify a few of such
contributors. Recall from chapter 1 that a PC instance can be represented by a complex
task T = 〈T,≺,≡〉, a set of agents A and a task distribution function f . In our experi-
ments we have focussed on the agent set size and the number of planarcs, because the
task set and constraint set sizes themselves will not affect performance much. Increas-
ing the task or constraint set size while keeping both the agent set size and planarc set
size the same will only incur a relatively very small additional cost because of the way
our solvers are implemented.

In the results section (section 7.3) we will see that the pvpkern solver outperforms
our other solvers on all instances. Therefore we have studied the complexity contribu-
tion of each variable using only the pvpkern solver. Note that the variables are most
likely to affect each type of solver differently, hence the hypotheses and conclusions
we present only apply to our pvpkern solver.

In hypothesis H 4 and hypothesis H 5 we formulated our expectations concerning
the influence of the agent set size and number of planarcs.

Hypothesis H 4: Agent set size
The size of the agent set will most likely have a great impact on the run time required
to solve an instance. Increasing the number of agents while keeping all other variables
fixed will allow the solver to benefit more from the dynamic programming approach
used to solve the CVP. Smaller sub problems can be created that can be solved more
easily.
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Hypothesis H 5: Planarcs
Together with the agent set size, we expect the number of planarcs to be one of the
most important factors in the run time complexity. Each additional planarc causes a
multiplication of the number of planning possibilities by at least a factor 2. Hence the
run time complexity is expected to be exponentially dependent on the planarc set size.

In addition to these characteristics, the set size of the optimal solution is also most
likely to affect the run time required to solve PC instances. However, the extend to
which the optimal size will affect the run time is greatly dependent on the enumeration
strategy we use (see next sub section). For example, a relative small optimal size
compared to the number of planarcs will most likely cause the increasing size strategy
to perform more effective, while the binary and decreasing size strategies will probably
have a harder time solving such an instance. Because this property is correlated to the
strategy we use, we study this using hypothesis H 6 introduced in the next sub section.

Optimisations

For each different technique we have proposed optimisations to increase its effective-
ness. In our experiments we want to investigate how much each optimisation affects
the run time required to solve PC instances. In addition we would like to gain some
insight into the type of instances for which each optimisation is best applicable.

In chapter 3 we have introduced the strategy optimisation for the PC enumeration
procedure. In theorem 3.1 we have already proven that we can indeed greatly reduce
the size of the remaining search space using this optimisation, however we do not
know how effective this reduction is in practise. Also, as we have stated in section
3.3, the choice of strategy depends greatly on the size of the optimal coordination set
∆ compared to the number of planarcs |Ê|.

We can be certain that using the enumeration strategy always outperforms simple
enumeration. Only in the worst case, the enumeration strategy requires checking all
possible configurations, which the simple enumeration always has to. Hence we do not
have to verify that the optimisation is useful. Our experiments therefore focus on the
type of strategy to apply based on the instance properties, see hypothesis H 6.
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Hypothesis H 6: Enumeration strategy
As discussed in section 3.3 the effectiveness of the enumeration strategy is expected to
depend on the ratio between the optimal coordination set size and the number of pla-
narcs r = |∆|/|Ê|. When r is small, the increasing size strategy is expected to perform
best. When r is close to .5, the binary strategy is to be preferred. For values of r from
.75, the decreasing size strategy will most likely do best. Although this seems promis-
ing, we think it is unlikely there exists a heuristic based on predetermined instance
characteristics that is able to indicate the best strategy. This is because instances with
the same properties can have varying optimal set sizes.

In addition to the enumeration strategy we also study the minimisation introduced
in section 3.3. Solution minimisation quickly tries to improve any currently best opti-
mal solution by iteratively removing planarcs constraints from it, while ensuring that
the coordinated property is preserved by the coordination set. To prevent the solution
minimisation from exhaustively searching all possible sub sets of the current best so-
lution we included a minimisation depth level. This level corresponds to the minimum
improvement the solution minimisation has to achieve before abandoning the search.

Our experiments concerning the depth parameter will be focussed on finding a
‘good’ value, if such a value exists. We state this in hypothesis H 7.

Hypothesis H 7: Solution minimisation
The solution minimisation parameter depth controls the minimum required improve-
ment of the currently best solution before abandoning the improvement search. For
large values of the parameter, the minimisation optimisation will more resemble an ex-
haustive enumeration of all possible sub sets of the currently best solution and hence
such a value for the depth parameter is not desired. We expect that for a value of 2 or
3 the solution minimisation performs best, as we expect this to be a good trade-off be-
tween the improvement the solution and the time required to find such an improvement.

Chapter 5 about kernelisation introduces a task removal pre-processing optimisa-
tion, exploiting the fact that some tasks and their corresponding planarcs can never
introduce inter-agent cycles. Such tasks and their associated planarcs can therefore be
removed in advance in polynomial time, before starting the exponential PC algorithm.
As we will see in section 7.3, our solvers benefit much from a reduction in the number
of planarcs.

In our experiments we want to gain knowledge about the actual performance of this
pre-processing approach in terms of the instance characteristics. In hypothesis H 8 we
have summarised our expectations concerning the pre-processing of PC instances.
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Hypothesis H 8: Pre-processing
We expect the pre-processing introduced in section 5.2 to be dependent on both the
number of planarcs and the number of agent of an instance. When the number of
planarcs becomes larger, more tasks will be part of interesting constraints and hence
we expect the pre-processing effectiveness to decrease for larger numbers of planarcs.
Moreover, when the number of agent increases and the number of planarcs is kept
constant, the pre-processing will most likely perform better. This is because with more
agents, the probability of an agent not participating in any possible inter-agent cycle
increases and hence it can be removed from the instance.

QBF Encoding

In chapter 6 we introduce a QBF encoding for the PC that enables us to solve the prob-
lem using highly optimised state-of-the-art solves from one of the most actively studied
fields of computer science. This way we can obtain a benchmark to compare our exact
solvers to. Moreover, we want to verify that for the PC a specialised solver is able to do
better than a generalised solver using an encoding of the PC, stated in hypothesis H 9.

Hypothesis H 9: QBF encoding
The QBF encoding proposed in chapter 6 is expected to be outperformed by our spe-
cialised pvpkern solver. This assumption is based on the fact that our specialised solver
is designed to exploit the problem structure, whilst the generalised solved QBF simply
performs an exhaustive search through the entire search space of encoding variables.

7.2 Experimental Set-up
For our experiments we have both developed an instance generator, discussed in detail
below, and a script to enable automatic testing. The test script simply iterates through
all generated instances and stores the results in an output file, such that we can extract
results from it later.

We have also included a time limit in our experiments. When solving any instance
takes more than this time limit, we abandon the process and report that it has been
exceeded. This has been done to prevent waiting for ours or even several days before
obtaining a coordination set for some instances and allow us to test a lot of different
instances. Also, when solving an instance takes a lot of time we can question its ap-
plicability in practice, although this depends on the situation in which the algorithm is
used.

Instance generator

In order to obtain a large test set we have implemented a simple generator that is able
to produce PC instances randomly, based on the supplied parameters. To generate an
instance we have to specify the number of agents, tasks, constraints and planarcs we
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would like to have. In addition, we specify the number of instances to create with these
properties.

The generator simply creates the number of tasks specified and distributes them
randomly over all agents. After that, it will randomly create constraints and add them
to the instance, however a little care has to be taken when adding constraints. Any
constraint that would cause the constraint set to become cyclic is rejected and a new
constraint is generated for it. To prevent the generator from looping infinitely, we
impose a maximum number of rejections before giving up. If the solver does give up,
we simply try generating an instance again, albeit with a different seed for its random
function. Hence we use a Monte Carlo method to generate our instances.

When the generator has succeeded in creating an instance, we verify that is has
the required number of planarcs. If this is not the case, again the generator starts
over with a different seed. This way we are sure that the resulting instance has all
the requested characteristics. The generation is terminated when either the required
number of instances is generated or the maximum seed value is reached. In the latter
case, less instances are generated than we would have liked, however this occurs only
when the number of planarcs is relatively high in comparison to the number of tasks
and constraints. When such is the case, the number of instances becomes rare and it is
hard to generate such an instance.

Using our generator we have built a substantial test set with instances of different
characteristics, as we will discuss in the next sub section.

Test set

Our test set used with our own algorithms consists of 13.187 different instances, all
with varying combinations of characteristics. The number of agents varies between 2
and 6, for the task set size we have chosen the values 8, 10 and 12. The constraint
set sizes are chosen between 4 and 20. Then for each combination of these values, we
have generated 10 instances for each choice of planarc size between 1 and 40. Hence
the set we have generated represents more or less a Cartesian product of all values
for the different variables and hence allows us to study the influence of each variable
individually.

For the comparison of Depth Partitioning and Intra-free coordination we require a
special class of instances. We have slightly adapted our generator to also be able to
generate such intra-free instances. This special test set contains instances with much
larger agent, task, constraint and planarc sizes because both Depth Partitioning and
Intra-free Coordination can polynomially solve the problem. We have run both algo-
rithms over a very large set of instances varying from 2 to 10 agents, 10 to 250 tasks
and 10 to 250 constraints. The intra-free set contains a total of 4.527 instances.
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7.3 Results
In this section we present the results of running our experiments on the test set de-
scribed in section 7.2. All experiments have been performed on a Intel c© i7 Quad-
coreTM processor with a clock rate of 2.66 GHz and a machine with 6 GB of RAM.
The time limit in our experiments has been chosen 15 minutes (900 seconds) in order
to test as many instances as possible, solvable within ‘reasonable’ time.

Previous work

Before discussing our own algorithms we first go into the Depth Partitioning [38] and
Intra-free coordination [47] algorithms proposed in previous work. Remember that,
although both methods are able to approximate a coordination set for the PC, intra-free
coordination is only applicable to intra-free instances. We have used the intra-free
instance set, as discussed in section 7.2.

For the DFVS part of the intra-free coordination algorithm, we have used the O(mn)
algorithm from [16], in which m and n denote the number of arcs and agents in the
Agent Dependency Graph respectively. Note that better DFVS approximation algo-
rithms exist, such as the O(log |F∗| log log |F∗|) algorithm by Even et al. [19], however
they rely on very complex implementations. For our purposes, the simple O(mn) algo-
rithm suffices.

In figure 7.1 we have made a scatter plot of the coordination set size produced by
the Depth Partitioning versus the Intra-free coordination set size. The points of this
graph are determined by the pair (|∆DP|, |∆IF |) for each distinct instance.

Looking at figure 7.1 it seems that the Depth Partitioning algorithm generally pro-
duces larger coordination sets, because the most points are below the line |∆DP|= |∆IF |.
Using the Student’s t-test [15] we test the likelihood of our null hypothesis µIF < µDP,
as introduced in hypothesis H 1, to be true.1 Using a statistical tool we computed that
the hypothesis µIF < µDP is true with a probability of 99.997% and hence we can safely
accept it.

As for hypothesis H 2, we have plotted the coordination size found by depth parti-
tioning and the optimal coordination set for all 13.187 instances in our regular test set.
This is depicted in figure 7.2.

In the figure we have made a plot of both the Depth Partitioning and optimal co-
ordination set sizes, for various numbers of planarcs. Also, to test hypothesis H 2, we
have computed the linear regressions of both data sets, illustrated by the lines in the
figure. From the figure it is not very clear to see that the linear regression for the Depth
Partitioning data set has a larger slope value. Using a mathematical tool we found that
the linear regression of the DP data set is given by y = 16.812+ 0.262x and for the
optimal set by y = 0.213+0.211x.

This evidence is not very convincing that indeed the ratio |∆apx|/|∆OPT | becomes
larger when the number of planarcs increases, for the slopes of both linear regressions
do not differ much. We can conclude that indeed the Depth Partitioning method pro-
duces much larger coordination sets, however our expectations concerning the ratio of
this set have not been verified.

1The Student’s t-test is included as an appendix in appendix A.4.
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Figure 7.3: The different run times required for each solver against the number of
planarcs. The top figure is for instances with 2 agents, the bottom figure shows run
times for three agent instances.

Solver comparison

In this thesis we have studied three different algorithmic approaches to tackle the PC.
We have developed three solvers using these techniques: the pcpenum solver uses
enumeration to solve both the PC and the CVP, the pvpdyna solver is an enhancement
of pcpenum using dynamic programming to deal with the CVP sub problem and fi-
nally our pvpkern solver is extended to also exploit kernelisation. Because of this
sequential development of solvers in our work, it seems trivial to verify hypothesis H
3 experimentally. It is almost certain that each subsequent solver will outperform its
predecessor.

For the reason stated above we focus more on the limits of each solver and the
characteristics that makes a solver more effective than another. In figure 7.3 we have
two figures illustrating the time each solver needed to solve an instance with the given
number of planarcs. For each number of planarcs the solvers all solved the same ten
different instances. The top figure illustrates the run times for instances with two agents
and the run times for three agent instances are displayed in the bottom figure.

From the figure we see that indeed the pvpkern solver dominates the other two:
nearly all instances are solved within the second, while the other solvers require more
time. According to our expectations in hypothesis H 3, the pvpdyna solver should also
outperform the pcpenum solver. This does not seem to be the case, at least not with
the two agent instances. Especially for smaller planarcs sizes, the pcpenum solver
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performs better.
We believe this to be caused by the additional overhead required by the pvpdyna

solver to split up the CVP problem. While the pcpenum solver tries to find solutions in
a brute-force manner right away, the pvpdyna solver first splits up the two agents and
then performs the brute-force enumeration approach on each individual agent. With
only two agents, the pvpdyna solver can not benefit much by solving smaller sub
problems.

Indeed, looking at the bottom figure, we see that when dealing with three agents,
the pvpdyna solvers already performs much better than the pcpenum solver. With
larger agent set sizes, solving the entire problem at once becomes more complex and
the pcpenum solver has a harder time solving such instances. The pvpdyna solver, on
the other hand, has to solve three smaller and easier sub problems and hence performs
much better now. For instances with four or five agents, this pattern continues and the
pvpdyna solver performs increasingly better compared to pcpenum.

It is safe to say that hypothesis H 3 is true for the case |A |> 2. When |A |= 2, the
pcpenum solver is able to outperform pvpdyna.

Complexity causes

Now that we have established that the pvpkern solver is by far the most effective in
solving PC instances, we use this solver to try and determine what makes the PC so
complex. In section 7.1 we have identified the two most significant characteristics
that might affect the run time required to solve PC instances: the number of agents
and the number of planarcs. As stated in hypothesis H 4, we expect the run time to
decrease when the number of agents increases while keeping the number of planarcs
constant. This is because the solver can more effectively use the dynamic programming
routine for CVP. In addition, hypothesis H 5 states that the run time is expected to be
exponential in the number of planarcs.

We have have a three dimensional plot of agent set size and planarcs versus the
required time to solve an PC instance using the pvpkern solver. In order to compare
run times fairly, we have averaged the run times of all three different strategies for each
instance. This plot is shown in figure 7.4.

Looking at figure 7.4 it seems that both hypothesis H 4 and hypothesis H 5 seem
to be true. We can see that indeed the run times seem to decrease when the number
of agent increases. The run time increases when the number of planarcs increases,
however each line has a peak at the end of it after which the run time seems to decrease.
This effect is due to the fact that unsolved instances have not been included and the
pvpkern solver has only been able to solve one or two instances with a high number of
planarcs within the given time limit. Most likely these one or two instances have been
more or less ‘lucky’ hits by the solver: it was able to conclude quickly on the existence
of a coordination set for each size it tried. The cases for which the solver has not been
so lucky took more than 15 minutes and hence it abandoned the search.

Note that due to the assignment of tasks and constraints over the agents, the number
of instances with large planarc sets decrease as the number of agents increases. When
the number of tasks per agent decreases, the set of possible planarcs becomes smaller
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Figure 7.4: The three dimensional plot depicts the run times of the pvpkern solver for
various agent set sizes and planarcs.

because of definition 1.9 and hence our generator is not able to produce sets with large
amounts of planarcs for these instances.

Optimisations

In our thesis we have proposed several optimisations for our solvers, which we have
experimented with to study the actual benefit from each optimisation. In this sub
section we study all three optimisations: enumeration strategy, minimisation and pre-
processing.

Enumeration strategy
The first optimisation we proposed is the enumeration strategy, see section 3.3.
The enumeration strategy uses theorem 3.1 to quickly prune large parts of the
search space. We introduced three different strategies: binary enumeration, in-
creasing size enumeration and decreasing size enumeration. Our expectation is
that the choice of strategy is greatly dependent on the instance we are dealing
with, as we state in hypothesis H 6.

More specifically, let r denote the ratio between the optimal coordination set size
and the number of planarcs, i.e. r = |∆|/|Ê|. For the reasons stated in section 3.3
we believe that the increasing size strategy is to be most efficient for small r, the
binary strategy for r around .5 and the decreasing size for larger r.

In figure 7.5, figure 7.6 and figure 7.7 we have plotted the number of agents and
planarc versus the required run time for all three strategies with r < .5, .25 < r <
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Figure 7.5: Agents and planarcs versus the run time required to solve the instances for
each strategy. In this figure we have used instances with r < .5.

.75 and r > .5 respectively.

The figures indeed seem to provide some evidence for hypothesis H 6, however
the decreasing size strategy performs much better in practice than we would
have expected. We see that it indeed performs best on instances with r > .5,
but in addition it seems to be also effective on smaller r, although it is not the
strategy to be preferred. We believe this is because although the decreasing size
strategy starts its search on the ‘wrong side’ of the search space, it is able to
draw conclusions about coordination set existence quickly and hence it rapidly
decreases towards the optimal set size. While one would expect the binary search
strategy to perform better for the case r < .5, binary search also tries coordination
sets smaller than the optimal coordination set and has to inspect all possible
configurations of these sizes to conclude that no such set exists. This could cause
the binary enumeration strategy to require more time to solve such instances.

In figure 7.6 we see that indeed the binary search strategy is able to solve in-
stances faster overall, although again the decreasing size strategy performs well.
Here the increasing size strategy is clearly outperformed by both others. For
larger values of r, illustrated in figure 7.7, we see that indeed the decreasing size
strategy is to be preferred.

The evidence provided by our experiments are not convincing enough to accept
hypothesis H 6 to be true. The binary search strategy performs not as well as
we would have expected from our theoretical analysis and the decreasing size
strategy performs much better than we assumed.
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Run times per strategy, .25 < r < .75
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Figure 7.6: Agents and planarcs versus the run time required to solve the instances for
each strategy. In this figure we have used instances with r < .5.

Run times per strategy, r > .5
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Figure 7.7: Agents and planarcs versus the run time required to solve the instances for
each strategy. In this figure we have used instances with r < .5.
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Solution minimisation

Solution minimisation, as proposed in section 3.3, tries to make quick improve-
ments on any coordination set found during the PC solve process. It tries to
reduce the size of the coordination set by removing constraints from the set and
testing whether they are still plan coordination. This way we can rapidly estab-
lish existence of coordination sets of smaller sizes and we hope to reduce the
number of exhaustive searches performed by the PC enumeration algorithm. For
instance, if the solution minimisation establishes within a few tries that the cur-
rent optimal set of size K has a sub set of size K− 1 it would save checking a
potentially very large number of possible configurations in the PC algorithm.

In order to prevent the solution minimisation technique from searching the entire
search space of sub sets, we have included the depth parameter that controls the
minimum improvement to be made. When we have found an improvement of
the specified depth, the minimisation procedure abandons its further searches.
This way we can make a trade-off between improvement quality and the time
required to find such an improvement. Moreover, for some coordination sets no
improvement can be made without violating the coordinated property. The depth
parameter prevents the sub routine from inspecting all possible sub sets of such
a coordination set.

In our experiments we have used various settings for the depth parameter, vary-
ing between 1 and 10. In figure 7.8 and figure 7.9 only the run times for the depth
values 1, 2 and 3 rare illustrated. This is for the simple reason that for the case
depth > 3 the run time rapidly increases and is always outperformed by running
the solver without solution minimisation. We have depicted the run times per
planarc and agent for both the binary and decreasing size enumeration strategies.
Note that solution minimisation is not applicable to increasing size enumeration,
for the first coordination set that is encountered in increasing size enumeration is
also the optimal one.

In hypothesis H 7 we assumed that a set size of about 2 or 3 is to be preferred. A
depth of 1 will not make substantial progress, while depth values larger require
to much time to be of any use. Indeed this claim seems to be supported by both
figures, although we should account for the strategy we use.

In figure 7.8 we have used the binary enumeration strategy to solve the instances.
Here we see that minimisation does indeed prove to be effective. Although it
cannot be observed from the figure clearly, we established using a data analysis
tool that the binary strategy performs best on average with a minimisation depth
of 3.

The decreasing size enumeration, displayed in figure 7.9, does not perform well
with a minimisation depth of 3. For this strategy, the value 1 provides the best
overall results, which we did not expect in advance. The most likely reason
for this is that the decreasing size enumeration strategy is able to quickly find
coordination sets, especially when the size it searches for is large. This enables
it to conclude on the existence of such a coordination set fast, while the solution
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Figure 7.8: Run times for various planarc and agent set sizes while using the binary
enumeration strategy.
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Figure 7.9: Run times for various planarc and agent set sizes while using the decreasing
size enumeration strategy.
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minimisation routine searches a much larger space before reaching a conclusion
about a possible improvement when using larger values for the depth parameter.

The results show that the solution minimisation technique is effective in prac-
tice, although the choice for the value of depth depends on the strategy to use.
Therefore our expectations in hypothesis H 7 are partially true. For the binary
enumeration strategy a depth of 3 is preferable, while decreasing size performs
better with a depth value of 1.

Pre-processing

In section 5.2 we propose task removal as a pre-processing approach in solving
the PC. This optimisation exploits the fact that some tasks can never be part of
any coordination set constraint, because no inter-agent cycle can ever be con-
structed through that task. Such tasks can be removed from the instance and
hence we have less tasks to consider in solving.

Removing tasks itself is not very interesting; as we have mentioned in section
7.1 this will not affect solver performance much. Nonetheless, removal of tasks
can sometimes result in removal of planarcs, which is very interesting. Recall
that the PC complexity is exponential in the number of planarcs and therefore
reducing this set size is very beneficial.

We have illustrated the number of planarcs pre-processed for various agent set
sizes in figure 7.10. Note in each figure the ‘line’ |Ê| = |preprocessed|. Points
on this line are caused by instances that have been pre-processed entirely. Such
instances have no cycle in their agent dependency graph (ADG, see definition
2.4) and hence no inter-agent cycle can ever exist at all. For these instances the
optimal coordination set is the empty set.

Our expectation in hypothesis H 8 concerning the number of planarcs does not
seem to be verified by the results presented in figure 7.10. Although the number
of pre-processed planarcs seems to decrease, it is not substantially proven by
these results that there indeed exists such a correlation.

The size of the agent set, on the other hand, does seem to influence the number
of planarcs that can be pre-processed. Indeed, for larger agent set sizes, more
planarcs can be pre-processed, as we expected in hypothesis H 8. The most likely
reason for this is that in instances with the same number of planarcs and larger
agent set sizes, the chance of an agent not being part of any cycle in the ADG
increases. Looking at the middle figure, we can see that a lot of instances allow
a large number of planarcs to be pre-processed. In the bottom figure, however,
most points are located on the x axis. This is because the number of agents
is relatively large compared to the number of tasks and constraints, hence the
probability of an agent not involved in any inter-agent cycle decreases.
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Figure 7.10: Pre-processed number of planarcs for different agent set sizes.
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QBF encoding

We have implemented a small program that transforms PC instances into QBF encod-
ings, using the transformation described in chapter 6. Basically it enumerates on coor-
dination set sizes and for each set k it transforms the PC instance into a QBF formula
that is satisfiable if and only if for some choices (∃) of k coordination set variables and
all choices (∀) for the arcs no cycle can occur. We have used two QBF solvers to test
satisfiability: QuBE7.0 and sKizzo. However, it quickly seemed that sKizzo was not
able to cope with even small instances of our problem and hence we abandoned that
solver.

Regretfully even with QuBE7.0 we have not been able to obtain any good qual-
ity results to which we can compare our own algorithms. Very small instances have
been solved using QuBE7.0, however it already took 15 minutes to solve encodings
of instances with only 10 tasks. Even our pcpenum solver was able to resolve them
faster, mostly within a single minute. Hence with our approach we have to conclude
hypothesis H 9 indeed holds: our specialised solver is able to tackle PC instances more
effectively.

In chapter 6 we propose the incorporation of conditional variables in QBF solvers
as discussed in [3], with which QBF solvers might be able to tackle PC alike instance a
great deal faster. However in our thesis we do not further investigate this. Conditional
variable might be a good subject for future research, as a lot of other QBF encoding
might profit from such a modification.
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Part III: Discussion

Chapter 8

Conclusions

Our research has focussed on the exact solving of the PLAN COORDINATION PROB-
LEM, a ∑

p
2 -complete problem that is has to be solved when implicit coordination of

multi-agent problems is possible. In chapter 3 to chapter 6 we have discussed several
techniques to solve the PC exactly and we have compared them in chapter 7. There
we also discussed the results we obtained from our experiments. In this chapter we
continue this discussion by drawing conclusions on our work.

The combined solver works reasonably well

As we can see from the results, our combined solver is able to produce exact solutions
to moderate size instances (10 to 50 planarcs) typically within the hour. Because the
PC is a ∑

p
2 -complete problem, we know that run times scale very badly in terms of the

input; planarcs in our case. As its computational complexity is given by the product of
two exponential problems, solving instances of such size can be seen as an achievement
on its own.

Solving the PC exact is forbiddingly complex

Although we knew in advance that the PLAN COORDINATION PROBLEM was such a
highly intractable problem, we did not expect it to scale this badly. Solving instances
with more than 50 planarcs quickly requires the solver several days to come up with
an exact answer. We therefore consider studying exact PC solving only valid from
a theoretical point of view; it is very unlikely that such a complex problem also has
practical applications, besides solving very small instances.

The complexity of PC instances depends most on the agent and planarc set sizes

From our experiments on hypothesis H 4 and hypothesis H 5 we have seen that the
complexity of a PC instance mainly depends on the agent and planarc set sizes. For
our solvers, the complexity increases exponentially for larger planarc sets while on the
other hand the complexity decreases when the number of agents increases. The latter
is caused by the dynamic programming approach of our CVP routine. The more agents
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we have (while keeping the number of planarcs constant), the smaller the sub problems
become and therefore we can solve them much easier.

Approximation yields restrictive coordination sets

The theory in chapter 2 already mentions that the coordination set sizes return by ap-
proximation can be arbitrarily bad and this is confirmed by the results in chapter 7.
Although approximation might seem the best way to go for the PC in terms of run time,
the produced coordination is always much larger than the optimal coordination set size.
Although we expected the approximated coordination set to become increasingly worse
as the the number of planarcs increases (hypothesis H 2) we have not been able to find
evidence to back up this claim.

Specialised solving outperforms generalised solving

In the last decade it has become increasingly popular to encode problems as a satisfi-
ability problem and solve these encodings with highly optimised SAT solvers. Two of
the many examples are temporal reasoning [36], and planing [17]. Because SAT solvers
have been researched exhaustively, they incorporate some of the most innovative and
effective strategies in NP-complete problem solving. Hence it might be worthwhile to
encode a problem as a satisfiability problem to benefit from this.

As we have seen in section 7.3 this does not (yet) apply to our ∑
p
2 -complete solver.

Our specialised solver obtains far better results than the QBF encoding we introduced.
Note however that with the modifications from [3] this might no longer be the case,
however that might be subject of further study.
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Chapter 9

Future Work

During our research we have encountered several leads for possible future studies,
originating from the work we have performed. Some of them have been left out because
there is simply not enough time to them include all in our study, others might be causes
for additional detailed research. Below we have made a list of these subjects.

Experimental verification in practice

Aside from some manually constructed test instances, all of our experiments have been
performed on randomly generated instances using a custom generator (see section 7.2).
This generator did allow us to run the algorithms on instances of various numbers of
agents, tasks, constraints and planarcs, however these generated instances are purely ar-
tificial. We are very interested to see how our solver performs on instances originating
from practice, however this requires some method to transform multi-agent planning
problems into the PC instances required in our solver.

Conditional QBF solving

From the experiments in chapter 7 we can see that verifying satisfiability of the QBF
encoding we propose poses a difficult task for the QuBE7.0 solver [21] we used in our
research. However we feel that the modification Anóstegui et al. discuss in [3] might
greatly affect the QBF solvers run time.

In our encoding we used indicator variables that monitor the satisfiability of clauses.
Combining all indicator variables into one set indicator variable can drastically reduce
the number of clauses required in an encoding. Its drawback, however, is that the QBF
solver is easily lead astray by such variables and spends a lot of time searching through
the uninteresting part of the search space with indicator variables. If we would model
these indicator variables as conditional variables as proposed in [3], we can prevent this
from occurring. Considering that for n planarcs our encoding contains only 4n normal
variables and an exponential number of indicator constraints, it is most likely that QBF
profits enormously from such a modification. It would be worthwhile to compare such
an adapted QBF solver against our combined solver.
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Chapter 10

Summary

In this thesis we have studied solving the PLAN COORDINATION PROBLEM (PC) ex-
actly using enumeration, dynamic programming, kernelisation and a QBF encoding of
the problem. Our research has lead to a PC solver that combines the three first men-
tioned techniques to tackle moderately size instances within reasonable time. Moderate
instances have tasks sizes between 10 and 50 planarcs, most of which our solver is able
to tackle within at most one hour. For an intrinsically complex problem as PC, being a
∑

p
2 -complete problem, we consider this a fairly good result. Indeed, compared to solv-

ing a QBF encoding of the problem, our solver performs several orders of magnitude
better.

Below we will give a quick recapitulation on our study, chapter by chapter.
Chapter 1 introduces the PLAN COORDINATION PROBLEM and proposes a frame-

work that we use to capture the problem formally. We introduce several important
concepts that are assumed as preliminaries in the remainder of the thesis.

Chapter 2 provides us with a short overview of related work on the PC. Several
authors [44, 39, 47, 45, 9] have studied the problem and acknowledged its intractability.
Therefore only approximation algorithms have been proposed, of which we discuss the
Depth Partitioning algorithm by Steenhuisen et al. [38] and Intra-free Coordination by
Yadati et al. [47].

After these introductory chapters, we discuss the first exact solving method in chap-
ter 3. In this chapter we study simple enumeration as a starting point for our further
research. As we see later in the thesis, enumeration is indeed not very effective at
solving PC instances. Nevertheless by using a search strategy optimisation, we can
make enumeration more competitive. Indeed, our combined solver still relies on the
optimised enumeration algorithm for the PC proposed in this chapter.

In chapter 4 we explain our second algorithmic approach, dynamic programming,
to solve the PC exact. Although the dynamic programming method cannot be used to
improve the PC part of the problem, the COORDINATION VERIFICATION PROBLEM
sub part benefits greatly from this technique. In our approach we halve the set of
agents until only one-agent problems remain, which can be solved easily. To this end
we introduce summary constraints that, for each time we halve the agent set, capture
the creation possible inter-agent cycles through the other half. This enables us to split
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up the agent set and preserve the context of the agent within the entire problem.
From the research and experiments with the two techniques mentioned above, we

have been able to identify several kernelisation possibilities. In chapter 5 we summarise
these and discuss how they can be combined with previous techniques to obtain a very
promising solver for PC. We also describe the identification of fixed constraints, which
eventually lead to near optimal solutions.

As we are the first to study exact solving of the PC, there are no means of comparing
our results. Chapter 6 therefore introduces an encoding of the PC as a QUANTIFIED
BOOLEAN FORMULA PROBLEM. This way we can use any QBF solver, such as for
example Qube++ [22] or sKizzo [6], to solve PC instances and we can compare our
work against solvers originating from the vast literature of satisfiability solving. A test
which our solver has passed with flying colours.

Chapter 7 discusses our experiments and the results we have obtained. From these
experiments we see that our combined solver is able to tackle moderately sized in-
stances within reasonable time. Regretfully the encoding we proposed for QBF solving
proved to give both the QuBE7.0 [21] and sKizzo [6] a hard time and we were not able
to reasonably compare this to our own solver.

In chapter 8 we draw conclusions from our work also based on the experiments
from the chapter before. Our conclusions are that although we have developed a PC
solver that performs reasonably well, solving the PC exact is forbiddingly complex and
thus time consuming. On the other hand, approximation results in very restrictive co-
ordination sets for the problem. In addition, our specialised algorithm for PC performs
better than a generated encoding for QBF, which for now votes against generalised
problem solving using QBF as is done often for SAT.

Finally chapter 9 lists some open questions for future research that originated from
our work.
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Appendix A

Background Knowledge

This appendix provides the reader with a refresher of some important concepts en-
countered in solving the plan cooridnation problem. These sections are not meant as
a comprehensive summary of the entire theory; only the subjects required for the un-
derstanding of this thesis are included. For further reading on the discussed topics, we
refer to the cited articles.

A.1 Approximation Classes
As with time and space complexities, we can also identify several distinct classes of
approximability. These approximation classes define levels of ‘quality’ of approximat-
ing a problem. The class NPO is the class of polynomially approximable problems,
i.e. for all problems in NPO there exists an algorithm that approximates the problem in
polynomial time. For any problem in NPO we do not necesarily have any guarantees
on the quality of the approximated solution. These guaratees are provided by the sub
classes of NPO in terms of the approximation ratio, defined in definition A.1

Definition A.1: Approximation Ratio (Kann [25])
The approximation ratio for any given problem Π provides a bound on the relative error
of any solution δ for Π in respect to the optimal solution OPTΠ for that problem. This
ratio r is defined as:

r =

{
OPTΠ/δ, if Π is a minimisation problem
δ/OPTΠ, if Π is a maximisation problem

We say that an r-approximation algorithm for a given minimisation problem ap-
proximates the problem with an error of at most r times the optimal solution. This
error is at most 1/r when dealing with a maximisation problem.

Based on this approximation ratio we can identify several sub classes of NPO.
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The most important classes are APX and its sub classes PTAS and FPTAS. The class
APX is the class of problems that allow for constant factor approximation algorithms,
but not necesarily an integer constant. Problems in this class might as well have an
approximation ratio that is relative to the size of the input.

The problems in PTAS (Polynomial-Time Approximation Scheme) provide even
better guarantees. A minimisation problem in PTAS can be approximated with a ratio
of 1+ ε (1− ε for maximisation problems) for any ε > 0, nevertheless the exponent of
its polynomial complexity profile depends on ε and might be intractable for small ε.

The easiest known approximation algorithms with a guaranteed error bound are
in FPTAS (Fully Polynomial-Time Approximation Scheme). The approximation ratio
for such minimisation problems is also given by 1+ ε (again 1− ε for maximisation)
for any ε > 0, however now the time complexity only depends on 1/ε. This latter
class hence provides the same freedom in choosing approximation ratio but its time
complexity does not increase as quickly as PTAS when selecting smaller values for ε.

The classes is NPO are related in the following way:

FPTAS⊆ PTAS⊆ APX ⊆ NPO

These relations are strict if P 6= NP, however this is still an open problem. In
chapter 2 we mention that the minimal PLAN COORDINATION PROBLEM is an APX-
hard problem. This means that the problem is a member of the APX class but not of any
of its sub classes and hence there exists no integer constant approximation algorithm
for the minimal PC unless P = NP. As a consequence we can only find approximation
algorithms that bound the relative error in terms of the input size n.

As an example of this lets assume that we have an O(logn)-approximation algo-
rithm for the PC. The larger n becomes, the more inacurate the results of our approx-
imation algorithm will be. For an instance of size 8, the algorithm will find a solution
that is at most log8 = 3 times as large as the optimum. But when the size goes up to 16
we already have that the algorithm might produce a solution that is log16 = 4 times as
large as the optimum. This is why we prefer approximation algorithms with a integer
constant, however as Ter Mors et al. prove in [44] none such an algorithm exist for the
PLAN COORDINATION PROBLEM unless P = NP.

A.2 Ordered Sets

In the context of this thesis only two concepts of set theory are of importance: partially
and totally ordered sets. A partially ordered set is a set that is ordered by some binary
operator. The term partially is used to indicate that not all pairs of elements need to
be related by this binary operator. When this is the case, we speak of a totally ordered
set. Moreover, we are only interested in the strict sets for which the irreflexive property
holds. The formal definition of both sets are given in definition A.2.

Definition A.2: Strict Partially and Totally Ordered Set (Schröder [37])
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A.3. POLYNOMIAL HIERARCHY

A strict partially ordered set (or strict poset) is an ordered pair (P,◦) of a set P and a
binary relation ◦ contained in P×P, called the order on P, such that:

(i). The relation ◦ is irreflexive, that is for every p ∈ P we have ¬(p◦ p).

(ii). The relation ◦ is antisymmetric, that is for every p,q ∈ P we have (p ◦ q) =⇒
¬(p◦q).

(iii). The relation ◦ is transitive, that is for every p,q,r ∈ P we have (p ◦ q)∧ (q ◦
r) =⇒ (p◦ r).

The set P is called strict totally ordered if in addition to the above we have that for
all p,q ∈ P either p◦q or q◦ p holds.

A plan for the task based planning problem is such a partially ordered set, ordered
by the binary relation ≺.

A.3 Polynomial Hierarchy
The polynomial-time hierarchy, or polynomial hierarchy in short, is a recursive gener-
alisation of the complexity classes P, NP and co-NP in terms of oracle machines. For
a very detailed discussion on this subject we refer the reader to the article by Stock-
meyer [41]. This appendix only discusses the basics required for comprehension of the
polynomial hierarchy and its consequences for problem complexity. The polynomial
hierarchy is defined in definition A.3.

Definition A.3: Polynomial Hierarchy (Stockmeyer [41])
We define ∆P

0 = ∑
P
0 = ∏

P
0 = P, where P is the set of problems solvable in polynomial

time. Then the polynomial hierarchy for any natural number i≥ 0 is defined by:

(i). ∆P
i+1 = P∑

P
i

(ii). ∑
P
i+1 = NP∑

P
i

(iii). ∏
P
i+1 = co-NP∑

P
i

in which AB denotes the set of problems in complexity class A augmented by an
oracle of class B.

In this report we only encounter the class ∑
p
2 -complete. According to the poly-

nomial hierarchy ∑
p
2 equals NPNP. Thus ∑

p
2 -complete problems are non-deterministic

solvable with the use of an non-deterministic oracle. This is the case when we have
an NP-complete algorithm that uses another NP-complete algorithm as a sub routine in
each iteration. In terms of problem solving this means that such problems are highly
intractable even for very small instances. In NP-complete problems we can sometimes
still solve exactly when the problem size is small, however solving ∑

p
2 -complete prob-

lems exactly is prohibiting due to its complexity.
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A.4 Student’s t-test
In order to make any claims about differences between two distinct variables we need
to prove that such a claim is indeed statistically valid to make. In this thesis we use
the Student’s t-test [15] to support or reject null hypotheses concerning the relation
between two independent variables.

Using the Student’s t-test, we can determine whether some correlation between two
variables is caused by a mere coincidence or is likely to exist. In the former case, we
must reject our null hypothesis because ther is not enough statistical evidence for it. In
the latter case we can say that a correlation exists with high probability.

To perform a t-test on two different data sets A and B we first compute the means
and sum of squared deviations using the formulas below. In these formulas we have
data set X = x1,x2, . . . ,xn of size nx, µX represents the mean and SSX the sum of squared
deviation of X .

µX =
∑xi

nx

SSX = ∑(xi−µX )
2

We can perform a t-test over the combination of data sets A and B by estimating the
combined mean and standard deviation using the formulas:

µ̂ = µA−µB

s2
p =

SSA +SSB

(nA−1)+(nB−1)

σ̂ =

√
s2

p

nA
+

s2
p

nB

Using these combined mean and standard deviation we can compute the t ratio and
the sampling size n̂:

t =
µ̂
σ̂

n̂ = (nA−1)+(nB−1)

Having computed the values of t and n̂ we can use a statistical tool to compute ei-
ther the left tail probability (µA < µB), right tail probability (µA > µB) or non-directional
probability (µA = µB) for various significance levels α, depending on our null hypoth-
esis. We can accept a null hypothesis if t is smaller than the corresponding probability,
i.e. left tail, right tail or non-directional, we find at significance level α. In our thesis
we have used a significance level α = 0.5.

113



List of Algorithms

Depth Partitioning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Intra-Free Approximation algorithm . . . . . . . . . . . . . . . . . . . . . . . 31
Enumeration algorithm for the PLAN COORDINATION PROBLEM. . . . . . . . 37
Enumeration algorithm for the COORDINATION VERIFICATION PROBLEM. . . 40
Cycle existence detection algorithm . . . . . . . . . . . . . . . . . . . . . . . 41
Dynamic Programming algorithm for the COORDINATION VERIFICATION PROB-

LEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Summary creation algorithm for the CVP DP algorithm. . . . . . . . . . . . . . 60



List of Figures

1.1 Planarcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Example dependency graph . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Path blocking gadget . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Forced choice gadget . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Depth Partitioning worst case . . . . . . . . . . . . . . . . . . . . . . 28

3.1 CVP instance falsely declared Not Coordinated. . . . . . . . . . . . . 39
3.2 Possible configurations in enumeration . . . . . . . . . . . . . . . . . 44

4.1 Summary constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Example of non-optimal DP solution. . . . . . . . . . . . . . . . . . 52
4.3 Recurrence tree for agent based DP . . . . . . . . . . . . . . . . . . . 52
4.4 Local cycle during summary creation . . . . . . . . . . . . . . . . . . 63

5.1 Coordination of fixed constraints is not optimal . . . . . . . . . . . . 70
5.2 Optimal set for the same instance . . . . . . . . . . . . . . . . . . . . 70

7.1 Depth partitioning versus Intra-free coordination . . . . . . . . . . . 88
7.2 Approximation coordination set size versus optimal. . . . . . . . . . . 88
7.3 Solver run time comparison . . . . . . . . . . . . . . . . . . . . . . . 89
7.4 Agents and planarc versus run time . . . . . . . . . . . . . . . . . . . 91
7.5 Run times per strategy, r < .5 . . . . . . . . . . . . . . . . . . . . . . 92
7.6 Run times per strategy, .25 < r < .75 . . . . . . . . . . . . . . . . . . 93
7.7 Run times per strategy, r > .5 . . . . . . . . . . . . . . . . . . . . . . 93
7.8 Minimisation depth for binary enumeration . . . . . . . . . . . . . . 95
7.9 Minimisation depth for decreasing size enumeration . . . . . . . . . . 95
7.10 Pre-processed number of planarcs . . . . . . . . . . . . . . . . . . . 97



Bibliography

[1] F.N. Abu-Khzam, R.L. Collins, M.R. Fellows, M.A. Langston, W.H. Suters, and
C.T. Symons. Kernelization algorithms for the vertex cover problem: Theory and
experiments. Citeseer.

[2] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

[3] C. Ansótegui, C.P. Gomes, and B. Selman. The Achilles’ heel of QBF. In
PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTEL-
LIGENCE, volume 20, page 275. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2005.

[4] B. Becker and T. Schubert. SAT, SMT, and QBF Solving in a Multi-Core Envi-
ronment. 2009.

[5] R. Bellman. The theory of dynamic programming. Proceedings of the National
Academy of Sciences of the United States of America, 38(8):716–719, 1952.

[6] M. Benedetti. sKizzo: a suite to evaluate and certify QBFs. Automated
Deduction–CADE-20, pages 369–376.

[7] JC Bermond and C. Thomassen. Cycles in digraphs-a survey. Journal of Graph
Theory, 5(1):1–43, 2006.

[8] Pieter Buzing, Adriaan ter Mors, Jeroen Valk, and Cees Witteveen. Task co-
ordination for non-cooperative planning agents. In C. Ghidini, P. Giorgini, and
W. van der Hoek, editors, Proceedings of the 2nd European Workshop on Multi-
Agent Systems (EUMAS 2004), pages 87–98, dec 2004.

[9] Pieter Buzing, Adriaan ter Mors, Jeroen Valk, and Cees Witteveen. Coordinating
self-interested planning agents. Autonomous Agents and Multi-Agent Systems,
12:199–218(20), March 2006.

[10] T. Bylander. Complexity results for planning. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, volume 1, pages 274–
279. Citeseer, 1991.



Part III: Discussion

[11] M.C. Cooper, D.M. Lambert, and J.D. Pagh. Supply chain management: more
than a new name for logistics. The International Journal of Logistics Manage-
ment, 8(1):1–14, 1997.

[12] J.S. Cox and E.H. Durfee. Efficient mechanisms for multiagent plan merging. In
Proceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems-Volume 3, pages 1342–1343. IEEE Computer Society
Washington, DC, USA, 2004.

[13] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[14] K.S. Decker and V.R. Lesser. Designing a family of coordination algorithms.
In Proceedings of the First International Conference on Multi-Agent Systems,
volume 73, page 80, 1995.

[15] M. Dekking, C. Kraaikamp, and HP Lopuhaa. A modern introduction to proba-
bility and statistics: understanding why and how. Springer Verlag, 2005.

[16] C. Demetrescu and I. Finocchi. Combinatorial algorithms for feedback problems
in directed graphs* 1. Information Processing Letters, 86(3):129–136, 2003.

[17] M. Do, B. Srivastava, and S. Kambhampati. Investigating the effect of relevance
and reachability constraints on SAT encodings of planning. In Proc. 5th Interna-
tional Conference on AI Planning and Scheduling, page 982, 2000.

[18] R.G. Downey and M.R. Fellows. Parameterized complexity. Springer New York,
1999.

[19] G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback
sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.

[20] HN Gabow, SN Maheshwari, and LJ Osterweil. On two problems in the gener-
ation of program test paths. IEEE Transactions on Software Engineering, pages
227–231, 1976.

[21] E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A system for deciding
quantified boolean formulas satisfiability. Automated Reasoning, pages 364–369.

[22] E. Giunchiglia, M. Narizzano, and A. Tacchella. Qube++: An efficient qbf solver.
In Formal Methods in Computer-Aided Design, pages 201–213. Springer.

[23] JR Harrald. Supporting agility and discipline when preparing for and responding
to extreme events. Proc. of the 2nd ISCRAM, 2005.

[24] AB Kahn. Topological sorting of large networks. 1962.

[25] V. Kann. On the approximability of NP-complete optimization problems. Citeseer.

[26] R.M. Karp. Reducibility among combinatorial problems. Complexity of computer
computations, 43:85–103, 1972.

117



BIBLIOGRAPHY

[27] S. Kraus and T. Plotkin. Algorithms of distributed task allocation for cooperative
agents. Theoretical Computer Science, 242(1-2):1–27, 2000.

[28] J. Kvarnström and P. Doherty. TALplanner: A temporal logic based forward
chaining planner. Annals of Mathematics and Artificial Intelligence, 30(1):119–
169, 2000.

[29] G. Loizou and P. Thanisch. Enumerating the cycles of a digraph: A new prepro-
cessing strategy. Information Sciences, 27(3):163–182, 1982.

[30] D. McAllester and D. Rosenblitt. Systematic nonlinear planning, 1991.

[31] M. Narizzano, C. Peschiera, L. Pulina, and A. Tacchella. Evaluating and cer-
tifying QBFs: A comparison of state-of-the-art tools. AI Communications,
22(4):191–210, 2009.

[32] M. Narizzano and A. Tacchella. QDIMACS prenex CNF standard ver. 1.1, 2005.
Available on-line from http://www.qbflib.org/qdimacs.html.

[33] D. Nau, Y. Cao, A. Lotem, and H. Muftoz-Avila. SHOP: Simple hierarchical
ordered planner. In Proceedings of the 16th international joint conference on
Artificial intelligence-Volume 2, pages 968–973. Morgan Kaufmann Publishers
Inc., 1999.

[34] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. Wiley
New York, 1999.

[35] C. Otwell, A. Remshagen, and K. Truemper. An effective QBF solver for plan-
ning problems. Proc. MSV/AMCS, pages 311–316.

[36] D. Pham, J. Thornton, and A. Sattar. Towards an efficient SAT encoding for tem-
poral reasoning. Principles and Practice of Constraint Programming-CP 2006,
pages 421–436, 2006.

[37] B.S.W. Schröder. Ordered sets: an introduction. Birkhauser, 2002.

[38] J. Renze Steenhuisen and Cees Witteveen. Plan decoupling of agents with quali-
tatively constrained tasks. Multiagent and Grid Systems, 5(4), dec 2009.

[39] J. Renze Steenhuisen, Cees Witteveen, Adriaan ter Mors, and Jeroen Valk. Frame-
work and Complexity Results for Coordinating Non-cooperative Planning Agents,
pages 98–109. Springer Berlin / Heidelberg, 2006.

[40] J. Renze Steenhuisen, Cees Witteveen, and Yingqian Zhang. Plan-coordination
mechanisms and the price of autonomy. Computational Logic in Multi-Agent
Systems, 5056/2008:1–21, 2008.

[41] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Sci-
ence, 3(1):1 – 22, 1976.

118



Part III: Discussion

[42] O. Strichman, S.A. Seshia, and R.E. Bryant. Deciding Separation Formulas with
SAT.

[43] E. Tardos and J. Kleinberg. Algorithm Design. Reading (MA): Addison-Wesley,
2006.

[44] Adriaan ter Mors, Cees Witteveen, and Jeroen Valk. Complexity of coordinating
autonomous planning agents. Technical Report 2004-002, Delft University of
Technology, 2004.

[45] J.M. Valk. Coordination among Autonomous Planners. PhD thesis, Delft Uni-
versity of Technology, 2005.

[46] D.B. Wagner. Dynamic programming. The Mathematica Journal, 5(4):42–51,
1995.

[47] Chetan Yadati, Cees Witteveen, and Yingqian Zhang. Coordinating agents: An
analysis of coordination in supply-chain management like tasks. In The 2nd In-
ternational Conference on Agents and Artificial Intelligence (ICAART), 2010. To
appear.

[48] Robert Zlot and Anthony Stentz. Market-based multirobot coordination for com-
plex tasks. The International Journal of Robotics Research, 25(1):73–101, Jan-
uary 2006.

119


	Introduction
	I The Plan Coordination Problem
	1 The Plan Coordination Problem
	1.1 Multi-agent planning
	1.2 Plan Coordination Framework
	1.3 Problem Definition
	1.4 Coordination Complexity

	2 Previous Work
	2.1 Depth Partitioning
	2.2 Intra-free Coordination


	II Solving the Plan Coordination Problem
	3 Enumeration
	3.1 Enumeration algorithm
	3.2 Complexity of Enumeration
	3.3 Enumeration Optimisations

	4 Dynamic Programming
	4.1 DP and Plan Coordination
	4.2 DP and Coordination Verification
	4.3 Improving Dynamic Programming

	5 Kernelisation
	5.1 In-Out Pairs
	5.2 Task removal
	5.3 Kernel based algorithm
	5.4 Fixed constraints

	6 QBF Encoding
	6.1 Phase I: Designing the model
	6.2 Phase II: Formulating the QBF
	6.3 Phase III: Transforming to CNF

	7 Experiments
	7.1 Experimental Goals
	7.2 Experimental Set-up
	7.3 Results


	III Discussion
	8 Conclusions
	9 Future Work
	10 Summary

	Appendices
	A Background Knowledge
	A.1 Approximation Classes
	A.2 Ordered Sets
	A.3 Polynomial Hierarchy
	A.4 Student's t-test

	List of Algorithms
	List of Figures
	Bibliography


