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Deep reinforcement learning for active flow
control in a turbulent separation bubble

Bernat Font 1,2 , Francisco Alcántara-Ávila 3, Jean Rabault 4,
Ricardo Vinuesa 3 & Oriol Lehmkuhl 2

The control efficacy of deep reinforcement learning (DRL) compared with
classical periodic forcing is numerically assessed for a turbulent separation
bubble (TSB). We show that a control strategy learned on a coarse grid works
on afine grid as long as the coarse grid capturesmainflow features. This allows
to significantly reduce the computational cost of DRL training in a turbulent-
flow environment. On the fine grid, the periodic control is able to reduce the
TSB area by 6.8%, while the DRL-based control achieves 9.0% reduction. Fur-
thermore, the DRL agent provides a smoother control strategy while conser-
ving momentum instantaneously. The physical analysis of the DRL control
strategy reveals the production of large-scale counter-rotating vortices by
adjacent actuator pairs. It is shown that the DRL agent acts on a wide range of
frequencies to sustain these vortices in time. Last, we also introduce our
computational fluid dynamics and DRL open-source framework suited for the
next generation of exascale computing machines.

Turbulence plays a key role in a wide range of applications, as turbulent
flows are present in almost all industrial processes. While significant
advances have been made in the theoretical aspects of turbulence
during the past half century, there are still numerous open questions
regarding these flows. Evidence of the complexity of turbulence is the
fact that the proof of a unique and smooth solution of theNavier–Stokes
equations, which govern the behavior of turbulent flows, was selected as
one of the Millennium Prize Problems by the Clay Mathematics Institute
in 20001. Turbulence has practical implications for the energy costs of
the transport industry. For example, with an increasing number of
flights, the aviation sector has a major impact on total CO2 emissions.
According toOwen et al.2, aviation is responsible for 12% of the total CO2

emissions in the transport sector. A significant fraction of the energy
consumption associated with aviation is used to overcome turbulent
drag. Similar conclusions can be drawn for other types of vehicles from
automotive tomaritime transport. Therefore, even a small improvement
in the aerodynamic efficiency of these vehicles can have a great impact
on the reduction of global CO2 emissions.

In the case of aircrafts, significant aerodynamic losses arise when
the flow detaches from the wing surface, leading to an increase in drag

and fuel consumption. This phenomenon occurs especially in critical
situations such as takeoff, landing, or due to large-scale turbulence in
the free-stream flow during cruise conditions. Being able to optimize
the flow around aerodynamic surfaces can help to reduce drag and
increase aerodynamic efficiency. Flow control (FC) aims at finding
adequate strategies to modify certain flow properties, for example,
enhancing/reducing turbulence or heat transfer, reducing the aero-
dynamic drag or improving the maneuverability of vehicles. Tradi-
tionally there are two different branches in the FC field: passive flow
control (PFC) and active flow control (AFC). While PFC usually focuses
on geometry modifications, AFC allows a closed-loop interaction with
the flow. Returning to the aircraft example, the wing suction side
exhibits an adverse pressure gradient (APG) that can induce flow
separation at high angles of attack. In such cases, the flow can separate
and then reattach to the surfacecreating a turbulent separationbubble
(TSB). AFC can have a great impact on the wing aerodynamic perfor-
mance under these circumstances by employing a proper control
strategy which can reduce the TSB area. There are countless applica-
tions of FC documented in the literature, and the reader is referred to
refs. 3–5 for comprehensive reviews.
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Using computation fluid dynamics (CFD) to study theoretical
aspects of FC in a wing with a TSB is computationally challenging. A
first approach to the problem is the use of a turbulent boundary layer
(TBL) subjected to an APG that generates the TSB. This canonical
domain resembles the suction side of the wing in a simplified manner.
TBLs under an APG are characterized by a wider parametric space
compared to zero-pressure gradient (ZPG) TBLs. According to the
parametric study performed by Monty et al.6, the most influential
parameters are: a) the Rotta–Clauser pressure-gradient parameter
β = (δ*/τw)dxP, where τw is thewall-shear stress, P is the static pressure,
x is the streamwise direction coordinate, and δ* is the displacement
thickness. This parameter represents the pressure-to-viscous force
ratio. b) The friction Reynolds number Reτ = δ*uτ/ν, where uτ =

ffiffiffiffiffiffiffiffiffiffiffi
τw=ρ

p
is the friction velocity, ρ is the fluid density, and ν is the kinematic
viscosity. This parameter represents the ratio between the large and
the small scales of the flow, i.e., how turbulent the flow is. c) the
acceleration parameter K = ðν=u2

1Þdxu1, where u∞ is the local free-
streamvelocity. This parameter represents the equilibrium state of the
boundary layer. Several studies in the literature have investigated TBLs
exposed to an APG under various parametric conditions, employing
both numerical and experimental approaches. These examples include
direct numerical simulations (DNS)7–11, well-resolved large-eddy simu-
lation (LES)12–14, and applying control in actual experiments6,15,16.

AFChas been the focus of numerous TSB studies for both canonical
and practical flows. The latter refers to wing-like configurations, where
the surface curvature and/or angle of attack induce flow separation.
Although it might be possible to prevent flow separation rather than
reducing it, this is not always feasible. Therefore, numerous attempts
and approaches have been used to tackle the reduction of flow separa-
tion as reflected in the extensive literature on this topic. Some examples
of the different methods used are the injection of high streamwise
momentum near the wall3,17, the use of near-wall flow disturbers18, the
use of plasma actuators19, periodic excitation20, vortex generators21, or
the use of blowing and suction resembling synthetic jets22,23, among
others. The latter is the method used in this work. A typical strategy
when applying blowing and suction is to set the wall-normal velocity of
the control jets to a sinusoidal function determinedby the control signal
amplitude and frequency. In this way, the resulting mass flow through
the jets is zero after an actuation period ends. This is known as the zero-
net-mass-flux (ZNMF) periodic control. You and Moin24 applied ZNMF
periodic forcing by connecting the pressure and suction sides of aNACA
0015 airfoil. Using harmonic blowing and suction, they found that this
control effectively delayed the separation of the boundary layer at high
angles of attack. Atzori et al.25 focused on uniform blowing and uniform
suction applied to the suction side of a NACA 4412 airfoil, finding that
AFC had a larger impact on the APG TBL compared to ZPG TBL. Lehm-
kuhl et al.26 used LES to investigate periodic forcing applied on the
suction side of an SD7003 airfoil wing and the JAXA standard model.
They found that the periodic forcing successfully eliminates the recir-
culation bubble in both cases. The parameter that describes the fre-
quency of the actuation is the Strouhal number, St = fLb/U∞, where f is
the actuation frequency, Lb is, in this context, the length of the uncon-
trolled TSB and U∞ is the free-streamwise velocity. While most of the
works have demonstrated that St � Oð1Þ usually provides an effective
control23,27, different conclusions are drawn when actuating at higher
values of St depending on the problem28–30. On the other hand, applying
periodic blowing and suction at lower frequencies has been demon-
strated to be an efficient control strategy for TBL separation control31,32.

For canonical flows, i.e., TBL, there are different possibilities to
generate a TSB. A common approach in CFD is to set a vertical velocity
at the top boundary of the domain to create the APG. Two different
options are usually employed: suction-blowing (SB) or suction-only
(SO). The SB approach has the advantage of instantaneously conser-
ving mass flux across the domain boundaries and yields a more stable
recirculation bubble caused by the favorable pressure gradient (FPG)

that follows the APG. For the SO case, the flow is naturally reattached
by the turbulent diffusion ofmomentum, so it can better resemble the
separation type found in wings32. Cho et al.31 focused on a TSB gener-
ated by SB on the top boundary of the domain. Using periodic forcing
as described above, and sweeping across a range of characteristic
frequencies St, they found that low frequencies St <0.5 tend to reduce
the separation bubble and high frequencies St > 1.56 induce an inter-
mittent separation/reattachmentpattern.Wuet al.32 investigated aTSB
generated by SO and the effect of periodic forcing for a range of St. It
was found that the frequency St = 0.45 as well as a higher frequency
St = 1.125 yield a 50% reduction of the TSB. On the other hand, amuch
higher frequency of St = 4.5 did not affect the TSB.

Over the last decade, following the increase of computational
power available, artificial intelligence has emerged as a substitute of
classical methods to solve different problems, as reported in ref. 33.
There are numerous examples where machine learning (ML) has been
successfully applied to solve experimental and numerical closed-loop
FC problems5. Some of these cases are based on genetic programming
for broad-band frequency turbulence34, or the method employed in
this study, i.e., reinforcement learning (RL). RL stands out as a subset of
ML that operates without the requirement of a-priori data for the
training of a neural network (NN). When employing a deep neural
network (DNN) in RL, the approach is referred to as deep reinforce-
ment learning (DRL). DRL has proven to be a very effective approach
for developing AFC strategies in many scenarios where the training
data is generated on the fly while the control is happening. Therefore,
one of the main goals of this study is to compare the performance of
the classical periodic controlwith thatobtainedbyDRLand investigate
how ML techniques can improve upon classical control theory. The
mainmotivationbehind the useofDRL is to allow the controlling agent
freedom in selecting themost appropriate action for a given flow state,
instead of using a single frequency as in classical periodic control.
Therefore, DRL allows for an unconstrained closed-loop control
strategy that can adapt to the system dynamics based on previously
learned experiences. The typical DRL setup consists of two main
entities: an agent, which is composed by DNNs and accompanying
optimization algorithms, and an environment, which in this case cor-
responds to the flow simulator. These two entities interact through
three communication channels: a) the state s(t), which is sent from the
environment to the agent. The state can be a total or partial observa-
tion of the environment at a given time t. In the case of a numerical
simulation, s is usually the value of a set of probes distributed in the
domain regions of interest, e.g., velocity or pressure around and in the
TSB. b) the action a(t), which is sent from the agent to the environ-
ment. The action is a modification to the environment, e.g., a new
boundary condition which is related with the control strategy. For
example, the actioncanbe themassflow rate of synthetic jet actuators,
a modulation of the temperature profile in a wall, among others. c) the
reward r(t), which is sent from the environment to the agent. The
reward is the parameter that represents the environment fitness with
respect to an optimization goal, e.g., the drag coefficient, or the size of
the TSB. Therefore, the agent will try to optimize a reward r through
the useof an action awhich is selected based on a state s, i.e., the agent
will use a policy π(a∣s) to optimize the reward. The policy defines a
probabilistic mapping from the current state s to the action a. During
training, the agent works in the so-called exploration mode by adding
noise to the action sampling process. In this way, new dynamics can be
explored and learned by the algorithm. During a training episode, a
collection of s, r,að Þ triplets is generated, also known as a trajectory.
After an episode is finalized, the resulting trajectory is used to update
the NN weights so that the accumulated reward expectation is max-
imized. Once the training is finalized, the agent is used in the so-called
deterministicmode, where themost probable actions are selected, i.e.,
the maximum of the policy distribution π(a∣s). A general overview on
the choice of policy is given in the “Methods” section.
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In recent years, the application of DRL to AFC problems has grown
exponentially as shown in the increasing amount of literature on the
topic. A wide overview of the most relevant works is presented by
Vignon et al.35, where the main advances, tendencies, and types of
problems addressed by DRL for AFC are discussed. Some of the most
characteristic cases studied in the literature include drag reduction of a
cylinder, both in two dimensions (2D)36–41 and three dimensions
(3D)42–44, noting that Fan et al.43 and Amico et al.44 showed successful
DRL-based control for highly turbulent flows in experiments; con-
vective heat reduction in Rayleigh-Bénard convection problems45,46;
reduction of the skin-friction coefficient in turbulent channels47,48; and
turbulencemodeling49–51. Currently, the community is working towards
expanding the use ofDRL tohigher complexity andmore realistic cases.
We note that the implementation of DRL-defined control functions for
real-world applications is more challenging than traditional periodic
forcing. However, new experimental frameworks such as Dong et al.52

are now emerging. For realistic applications, where the non-ideal
transfer functionof thephysical systemcan introducedelays and inertia
in the actual control values, we expect that the DRL agent will be able,
with proper learning against the full system including imperfect
actuators, to anticipate these additional challenges. Indeed, the actua-
tors’ transfer function will then be part, from the DRL agent viewpoint,
of the transfer function of the whole system to control. As a con-
sequence, the DRL agent can learn to compensate for the imperfect
behavior of real-world actuators through online training in the labora-
tory, as demonstrated in studies such as Fan et al.43 and Dong et al.52.

From the computational standpoint, several novel DRL techni-
ques that can accelerate the training process of a control strategy have
been adopted. A first approach is to simulatemultiple environments in
parallel, also knownasmulti-environmentDRL.With this approach, the
agent trains faster by generating multiple experiences in parallel. This
method has an almost perfect scaling as shown by Rabault and
Kuhnle53. A second approach, orthogonal to the multi-environment
DRL, is to use a multi-agent reinforcement learning (MARL) method.
First introduced by Belus et al.54 and later named by Vignon et al.46, the
MARL method exploits the domain spatial invariants so that the
dimensionality of the actuation space is reduced. For example, con-
sider a set of multiple synthetic jets placed along the span of a circular
cylinder. Since the flow is statistically invariant along the spanwise
direction, every individual jet can be treated separately within its own
span subdomain (or MARL pseudo-environment). In this approach,
rather than predicting multiple actions simultaneously, individual
agents are dedicated to each MARL pseudo-environment, each
responsible for predicting a single action. The key is that all these
agents share the same policy so that every individual learning experi-
ence is shared among all the agents. The advantage of this approach is
the reduction in the number of combinations that yield an overall
positive action, hence avoiding the curse of dimensionality. As repor-
ted in Suárez et al.42 and Vignon et al.46, usingMARL allows the agent to
effectively learn the system dynamics and provide a positive control
strategy even when multiple actuators are used. Defining the number
of parallel environments as Ne and the number of parallel MARL
pseudo-environments within each environment asNpe, a total ofNeNpe

trajectories can be sampled in parallel, and the training time of an
agent can be greatly reduced. Last, the computational cost of DRL
training can be reduced by performing transfer learning, as demon-
strated in refs. 41,55, where training a DRL agent at a low-Reynolds-
numberflowcan still yield successful control at (more computationally
expensive) higher-Reynolds-number flows.

From a CFD perspective, there has been increasing interest in
utilizing graphics processing units (GPUs) for conducting computa-
tionally intensive simulations. In this context, we developed the
SmartSOD2D framework, originally a fork of RELEXI51,56. This frame-
work enables CFD simulations, which constitute the primary compu-
tational workload, to be executed on GPUs, while the DRL algorithm,

which has a lower computational cost, runs on the central processing
unit (CPU). The high-order spectral-element-method solver SOD2D57 is
used to run the CFD simulations on the GPUs, and the TF-agents
libraries58 are used for the DRL model part in the CPU. Furthermore,
this framework uses the SmartSim59 library to allow communications
between the agent and the environment through an in-memory data-
base, reducing the writing/reading time into/from disk compared to,
e.g., ref. 42. Owing to the scalability of the CFD simulation on GPUs,
SmartSOD2D is suited for the next generation of exascale computing
machines. We make the whole SmartSOD2D framework open source
together with the present work.

Results
Periodic control
The results using the classical periodic forcing are presented next, and
serve as reference for the DRL control. First, a non-actuated simula-
tion, defined as the baseline, is run for 5000 convective time units
(CTU), corresponding to the simulation time normalized by δ*

0, the
boundary layer displacement thickness at the inlet, and U∞, the free-
stream velocity. We note that δ*

0 and U∞ are used to respectively nor-
malize length and velocity (and hence time) quantities throughout this
work. This baseline is run until the flow is statistically stationary and
serves as an initialization for the open-loop periodic control. Then,
statistics are recorded during 15000 CTU for both a coarse and a fine
grid applying the aforementioned periodic control. While the main
objective is to successfully control the fine-grid case, which captures a
wider range of scales thus being more representative of the physical
system, training the DRL agent on this grid is computationally prohi-
bitive. Hence, we train the agent on a coarse grid which still captures
the main physics of the problem and significantly reduces the com-
putational cost of training, as previously used in e.g., refs. 41,47,55,60.
Afterwards, the model can be trained further on the fine grid via
transfer learning, i.e., using the optimizedNNweights already available
as the training starting point on the fine grid. Or, alternatively, given
that similar dynamics are captured in both coarse and fine grids, the
controlling agent can be directly applied to the fine-grid simulation
without further training.

Figure 1 shows in black shade the time-averaged recirculation
region, defined as the region where u<0 on the xz-plane of the first off-
wall node (y1) for the fine (y1 = 0.0635) and coarse (y1 = 0.0864) grids,
respectively. The non-actuated fine-grid case (top left) exhibits a
recirculation bubble generated by the SB top-boundary condition that
qualitatively spans from x = 225 to x = 350. On the other hand, the
bubble undergoing periodic control (top middle) qualitatively spans a
smaller region of the domain and new separation bubbles are visible
near the actuators. The reduction of the TSB in the downstream region
under periodic control is a phenomenon also observed by Cho et al.31

in a similar SB APGTBL setup. The bubble area canbe better quantified
by the time-averaged characteristic recirculation length lx , which
estimates the normalized recirculation area and is formally defined in
the “methods” section. As presented in Table 1, a reduction of 6.8% in lx
is obtained for the fine grid when using the periodic control. We also
note that thenormalized standarddeviationof lx , i.e.,σðlxÞ, is similar to
the root-mean-square (RMS) value of the forcing signal, i.e.,
σðlxÞ=lx � Aac=

ffiffiffi
2

p
. This implies that the periodic-forcing-control effect

dominates the TSB dynamics. This phenomenon is visible in Fig. 2,
where we show the temporal signals of lx on the non-actuated and
controlled cases. Since the wall-normal velocity profile imposed at the
topof thedomain generates a FPGduring theblowing sectionof the SB
setup, the reattachment point of the TSB has less freedom compared
to a SOsetup. In the latter case, a reduction of theTSBup to 50%canbe
observed when using periodic forcing under the correct actuation
frequency, as reported by Wu et al.32.

The instantaneous flow field of the TSB actuatedwith the periodic
control is depicted in Fig. 3b. A large-scale spanwise vortical structure
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is observed as a result of the actuation. The interaction of these
structures with the TSB effectively reduces the size of the bubble.
Additionally, the power spectra of the streamwise velocity component
(u) at witness points located inside the TSB and on the reattaching
shear layer are displayed in Fig. 4. The actuation is clearly visible
through the peak arising precisely at fac = 0.0025, while a harmonic
peak is also present at a higher frequency. The selected periodic-
control frequency and amplitude are justified in the “Methods”
section.

The main objective of the coarse–fine grid comparison is to
assess whether the main flow features and the general physics are
preserved so that the coarse grid can be used for training the DRL
model. Once the DRL model is obtained, it is then directly tested in
the fine grid. Coarse-grid results depicting the time-averaged recir-
culation region are displayed in Fig. 1 (bottom). In general, we observe
a very similar flow structure compared with the fine-grid results. Also,
the TSB is slightly larger in the coarse grid case, as quantified in
Table 1. The characteristic recirculation length is reduced by 15.7%
when applying the periodic control on the coarse grid. Similarly to the
fine grid, the standard deviation of this metric is significantly
increased as a result of the periodic forcing. Spectra of the coarse-grid
simulation are also shown in Fig. 4. While the general trend is in good
agreement with the fine-grid results, the spectrum of the probe
located on the reattaching shear layer region presents some dis-
crepancies. This can be expected since the stretching of the coarse
grid significantly reduces the resolution far from the wall. Never-
theless, the main flow features of the fine-grid simulation are pre-
served, and we conclude that the coarse grid is adequate for training
the DRL model.

DRL control
The training metrics are presented in the “Methods” section. Once the
DRL agent has been trained, we test the learnt control strategy under
deterministic behavior, i.e., selecting the best possible action from the

action probability distribution, or in other words, the mean of π(a∣s).
First we focus on the results of applying the agent in the coarse grid.
The DRL model is run in deterministic mode for 20000 CTU using a
baseline (non-actuated) snapshot as initial condition. Table 1 shows the
time-averaged characteristic recirculation length of the periodic con-
trol and DRL control cases for the last 15000 CTU and the percentage
reduction of the TSB compared with the non-actuated case. The DRL
control provides a larger reduction of the TSB compared to the clas-
sical periodic forcing, respectively 25.3% and 15.7%. The temporal sig-
nal lx resulting from the DRL-controlled TSB is plotted in Fig. 2 (right),
where it can be observed that the DRL control quickly reduces the TSB
length. Importantly, the DRL control presents much better stability in
time than the periodic control, hence the recirculation bubble evolves
smoothly and no sudden oscillations are present. While the periodic
control also displays a reduction of the bubble, spurious peaks can be
observed in the signal. This can arise from the fact that the DRL control
strategy is forced to conserve mass in space, i.e., instantaneously (and
therefore in time too), while the periodic forcing is only conserving
mass over each period of actuation. The instantaneous conservationof
mass in incompressible flows is important not only from the physical
point of view, but also numerically in the pressure solver. Since our
numerical scheme does not correct for the instantaneous mass
imbalance of the periodic forcing, the aforementioned spurious
oscillations arise, which are visible by the lx signal for the periodic
control.

The time-averaged recirculation regions for both periodic control
and DRL control are shown in Fig. 1. The DRL control yields a different
flow-field structure. A strong recirculation region located at x = 180, on
top of the actuators, is observed. Since DRL actuators are spanwise-
paired with equally positive and negative mass flow rates, this can
eventually generate streamwise structures that interact with the TBL
resulting in these small separation bubbles. The time signals of the
actions set by the DRL control agent are shown in Fig. 5. The coarse-
grid case shows that actuators oscillate between the maximum and
minimum allowed values (jvacjmax =0:3), i.e., the amplitude used in the
periodic-control signal, resulting in a bang–bang control, while short
transitional phases arise as well. This is consistent with previous
results, in example47, whichobserved thatDRL control tends to include
bang-bang-like features when controlling turbulent flows. Note that
despite the actuation signal resembling a bang–bang control, the
actual values imposedon the control surfaces are smoothed over time,
as explained later in the “Methods” section. This results in a more
realistic and applicable control signal.

The agent obtained by training on the coarse grid is used in
deterministic mode on the fine grid without further training. The DRL
control is applied for 20000 CTU and the recirculation bubble char-
acteristic length is averaged over the last 15000 CTU. Table 1 shows
that the agent trained in the coarse grid is capable of reducing the

Fig. 1 | Time-averaged recirculation region (u<0) at the xz-plane of the first off-wall node for the fine grid (top) and coarse grid (bottom). From left to right: non-
actuated, periodic control, DRL control.

Table 1 | Time-averaged characteristic length lx and standard
deviation for the non-actuated (baseline), periodic-control
and DRL-control cases for both fine and coarse grids

l*x lx 1� lx=l
*
x

Case Baseline Periodic DRL Periodic DRL

Fine 143.0 ± 8.6 133.3 ± 27.2 130.0 ± 9.9 6.8% 9.0%

Coarse 153.6 ± 8.3 129.5 ± 33.4 114.7 ± 6.7 15.7% 25.3%

The reduction of the characteristic recirculation length with respect to the baseline case is also
shown. Note that the DRL control on the fine grid is obtained using the agent trained on the
coarse grid, and no further training is performed on the fine grid.
The average is computed for 15000 CTU after discarding the initial transient 5000 CTU.
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bubble of recirculation by 9.0%, improving the 6.8% reduction
achieved using the periodic control. Furthermore, from a qualitative
point of view, the temporal evolution of lx is more stable when using
the DRL agent than with the periodic control, where there is a clear
influence of the phase of the actuation. It is worth noting that the
control agentwas never trained on the fine grid. Therefore, the control
strategy on the fine grid may be possibly improved with transfer

learning, i.e., using the agent trained on the coarse grid and train it
further in the fine grid. The control strategy found in this case
resembles a two-step control, where two actuators are saturated, and
the third one oscillates between the two allowed maxima. Unlike the
coarse-grid case, when the agent is applied on the fine grid, the MARL
pseudo-environment performing the two-step oscillations is always
the same. However, despite this difference, the invariance in the

Fig. 2 | Temporal signal of the characteristic recirculation length the fine-grid
cases (top), coarse-grid cases (bottom). From left to right: baseline, periodic
control, DRL control. The dashed gray line indicates the time averaged value as

reported in Table 1. Note that the DRL-control on the fine grid is obtained using the
agent trained on the coarse grid.

Fig. 3 | Flow visualization. Instantaneous snapshot of the fine-grid cases for (a)
non-actuated, (b) periodic control.For each subfigure, top: xy-plane at z = Lz/2
displaying the vortical structures captured by the Q criterion82 and colored by
velocity magnitude, and bottom: xz-plane of the first off-wall node displaying the

streamwise u velocity component. For the periodic control, the actuators are found
within x 2 150, 195½ �. The locations of the witness points which capture the flow
state during the DRL control are also displayed in subfigure (a).
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spanwise direction makes both results equivalent. These results show
that it is possible to achieve excellent control results on the fine gridby
using the agent trained on the coarse one.

The physical interpretation of the DRL control is derived from
figures 5b, c and 6. The cross-correlation analysis of the control
signals exhibits a large temporal scale, where significant correlation
values (R ≳0.5) are found for temporal correlation intervals up to
ξ ≃ 2500 CTU. This hints that the actuators might be generating a
lasting time-sustained structure in the flow. Furthermore, the power
spectrum of the control signals shows that a wide frequency range is
explored, and a peak is found near the natural TSB breathing

frequency (f ≈0.002) for the vac,3 signal. It can also be noted that the
spectral distributions of signal energy decay following a −5/3 power
law, which is the analytical and experimental rate found in the inertial
subrange of turbulence (also noted in Fig. 4). Moreover, the time-
averaged flow fields in Fig. 6, which better capture the coherent
turbulent flow structures, confirm the presence of streamwise vor-
tices generated by the actuator pairs; these vortices tilted by the top
SB condition creating oblique coherent structures. Note that the low-
frequency vortices positively interact with the TSB causing its
attenuation, while being constantly sustained by the mid- and high-
frequency adjustments made by the DRL agent. Interestingly, the use

Fig. 4 | Power spectrum (PS) of the streamwise velocity component u of the
periodic-control case sampled at two different locations: (x, y) = (324, 15) (left)
and (x, y) = (372, 55) (right) for thefine-grid (blue) and coarse-grid (black) cases.
The PS is computed using theWelchmethod for a temporal signal of 15000CTU in

total, split into 6 segments with 50% overlap and uses Hann windowing. Addi-
tionally, 6 PS are computed along z for each (x, y) location which are then averaged
and result in the displayed spectra. The black-dashed line shows a −5/3 power law.

Fig. 5 |Analysis ofactuation signals. aTemporal signal of theDRL-based actuators
for the fine-grid (left) and coarse-grid (right) cases.The exponential smoothing
between two discrete actions that sets the instantaneous mass-flow rate of the
actuators is also displayed. Note that actuators 1 and 3 overlap on the fine-grid case.

b Normalized cross-correlation between actuation signals of the coarse-grid case,
where ξ is the correlation interval. c Power spectrum of the actuation signals of the
coarse-grid case computed with the Welchmethod using 6 splits with 50% overlap
and no windowing.
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of streamwise vortices for flow reattachment and flow-separation
mitigation is a known control technique that has been discussed and
used for many decades (see e.g., refs. 20,61,62 and references
therein). This can be achieved either by using micro-vortex gen-
erators, as pointed in ref. 61, by using jets63, or even plasma
actuators64–66. At a low Reynolds number, DRL control of plasma
actuators was successfully applied in ref. 67 to reduce flow-induced
forces on a 2D square cylinder. In the present study, we observe
that the DRL agent is able to re-discover the large-scale streamwise
vortices strategy on its own for this high-Reynolds-number 3D
flow, while also learning to adjust the wall-normal jets to sustain
the vortices for long time periods and obtain effective flow
reattachment.

Discussion
In the present work, we investigate the efficacy of classical periodic
control and deep reinforcement learning (DRL) control in reducing a
turbulent separation bubble (TSB) generated by a suction and
blowing (SB) boundary condition in a turbulent boundary layer
(TBL) flow.

The classical periodic control, relying on harmonic forcing in
time, reduces the TSB area by approximately 6.8% and 15.7% on a fine
and a coarse grid, respectively. This corresponds well to previous
literature of similar configurations. Additionally, a spectral analysis
highlights the impact of the actuators on the flow, with clear peaks at
the actuation frequency and harmonics. The coarse-grid results
demonstrate the preservation of the main flow features, validating
the use of the coarse grid for the subsequent training of the DRL
model. This classical control configuration was selected based on the
recommendations in the literature, e.g.,32, as described in the
methods.

The DRL control demonstrated successful learning of a control
strategy that can effectively reduce the TSB area by 25.3% and 9.0% in
the coarse and fine grid cases, respectively. Compared with the peri-
odic control, theDRLhas the freedom to set the optimalmassflow rate
of the actuators for a given environment state, hence constructing a
complex control signal that can embed multiple frequencies. The
training was performed using 24 parallel MARL pseudo-environments
running on 8 GPUs and took 144 hours (6 days) in total, equivalent to
1152 GPU-hours on the coarse grid. The robustness of the DRLmethod
allows performing less expensive training of the agent on the coarse

grid with still good performance on the fine grid. The physical analysis
of the control strategy shows that each DRL-controlled actuator pair
generates a streamwise vortical structure which is sustained for a long
time period, resembling classical separation-control techniques based
on streamwise vortices such as vortex-generator jets or plasma
actuators. Remarkably, the DRL controller is able to re-discover this
control strategy independently, and to stabilize the vortices generated
by including complex high-frequency features in the control signals.
To the best of our knowledge, the current numerical results present a
successful application of DRL-based control at one of the highest
Reynolds numbers to this date in a completely turbulent flow.

In order to make this work possible, we have developed a new
open-source framework, SmartSOD2D, that couples DRL libraries and
the CFD solver. More specifically, SmartSOD2D integrates the SOD2D
CFD solver (a novel multi-GPU spectral element solver developed at
Barcelona Supercomputing Center) with the DRLmodel via SmartSim,
which allows a fast communication between the agent and the envir-
onment through memory. Up to the knowledge of the authors,
SmartSOD2D is the first framework in DRL for AFC that fully leverages
GPUs for simulating the CFD environments. Since the CFD simulation,
where most of the computational cost lies, is conducted in the GPUs,
SmartSOD2D has an excellent scalability suited for the next generation
of exascale computing machines, opening the possibility of using DRL
for AFC for high-Reynolds-number flows and complex geometries.
Also, SmartSOD2D incorporates the MARL approach which is key for
problems with spatial invariance and to obtain successful learning on
distributed-input distributed-output systems. Links to the different
components of the open-source CFD-DRL framework are given in the
“Methods” section.

Methods
CFD setup
In this work, a LES of a TBL with a TSB is conducted. Following the LES
method, the spatially filtered incompressible non-dimensional
Navier–Stokes (NS) equations

∇ � ~u=0 ð1Þ

∂t ~u+ ~u � ∇� �
~u = � ∇~p+Re�1∇2~u� ∇ � τ, ð2Þ

Fig. 6 | Time-averaged coarse-grid flow fields for the DRL control (top) and
uncontrolled (bottom). The x-axis is aligned with the streamwise flow direc-
tion. The first and second columns show the time-averaged streamwise and wall-
normal velocity components, respectively. The third column shows the iso-surface

of the time-averaged spanwise velocity jwj=0:02 (red for positive), while the wall
and the periodicplane are colored by u. The fourth column shows the iso-surfaceof
the time-averaged vorticity magnitude jωj=0:04, while the wall and the periodic
plane are colored by u.
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are solved numerically on a discrete domain. Here, ~u= ð~u, ~v, ~wÞ is the
filtered velocity vector field, ~p= ~P=ρ is the density-scaled filtered
pressure, and τ = gu� u� ~u� ~u is the sub-grid scale (SGS) stress tensor.

The deviatoric part of the SGS tensor is modeled using the
Boussinesq hypothesis

τd = τ � 2
3
kδ = � 2νsgs~S, ð3Þ

where k = trðτÞ=2 is the turbulent kinetic energy, δ is the Kronecker
delta, and ~S = ∇� ~u+ ~u� ∇

� �
=2 is the rate-of-strain tensor. The SGS

viscosity is finally closed with the Vreman model68. The tilde notation
of the LES filtering operation for instantaneous flow-field quantities is
thereafter implied.

The high-order spectral-element-method solver SOD2D57 is used
to simulate an incompressible APG TBL in a computational domain
with dimensions Lx × Ly × Lz = 1100 × 120 × 125, where x corresponds
to the streamwise, y to the wall-normal, and z to the spanwise direc-
tions, respectively. A coarse grid and a well-resolved (fine) grid com-
prising 4th-order hexahedral elements are considered, and details are
given in the table of Fig. 7b. The idea of using both a fine and a coarse
grid is to perform a cheaper training on the latter which is capable of
preserving the main features of the flow so that the trained agent can
be effectively applied to the fine-grid case, similar to previous
studies47,60.

The flow solver implements an implicit-explicit Adams–Bransford
Crank–Nicolson scheme used together with the fractional-step
method to solve the governing equations. In addition, a matrix-free
conjugate gradient solver preconditioned by the diagonal is used to
solve the linear part of the NS equations and the pressure equation.
The computational domain includes a buffer zone of 50 length units in
the x direction at the inlet and at the outlet, yielding an effective
streamwise domain of 1000 length units (x∈ [ −50, 950]). Dimensions
are normalized by the displacement thickness at the inlet δ*

0, and the
velocity field is normalized by the streamwise velocity imposed at the
top of the domain, U∞. The flow is initialized using a Blasius boundary
layer at Reδ*

0
= 450, where Reδ*

0
=U1δ*

0=ν is the Reynolds number
based on the displacement thickness. The inlet boundary condition
retains the Blasius profile used as initial condition. At x = −40, the
laminar boundary layer is tripped using the method explained in refs.
69,70 to accelerate the transition to turbulence. On top the domain,

the APG is defined using SB similar to refs. 8,11 as

vtop = vmax

ffiffiffi
2

p xc � x
σ

� �
exp ψ� xc � x

σ

� �2
� �

,

ð4Þ

where vmax =0:4, xc = 306.64, σ = 110.49, andψ = 0.95.We note that vmax

is 20% larger than the value selected by Wu et al.11 so that the TSB is still
formed when using the coarse LES grid. Moreover, at the top of the
domain we apply a zero spanwise vorticity condition (ωz = 0) and a
homogeneous Neumann condition for the spanwise velocity (∂yw = 0). A
periodic boundary condition is imposed in the spanwise direction, and a
convectiveoutlet is seton the streamwiseendof thedomain.On thewall,
the lower part of the domain, a classical non-slip boundary condition is
imposed. Finally, in the outlet, a pressure-based boundary condition is
applied together with the sponge zone. In the fine grid, the a-posteriori
computation of the wall-shear stress yields an approximate friction
Reynolds number of Reτ = 180 and Reτ = 750 at x = 150 and x = 900,
hence rightupstreamof theTSBand rightbefore theconvectiveoutletof
the domain, respectively. A schematic representation of the computa-
tional domain which summarizes the setup is shown in Fig. 7, where
vortical structures represented with the Q criterion are depicted too.

Once the flow is initialized, the simulation is run until the TSB is
formed and the flow has fully developed. Afterwards, the control sur-
faces start acting on the flow. There are Nac = 6 rectangular actuators
located at x ∈ [150, 195], right upstream of the separation bubble, and
each actuator has a spanwise width of dac = 10.42 which is also the
length between adjacent actuators. A classical control strategy similar
to those reported in refs. 31,32 is considered as a benchmark. Classical
control is implemented as a harmonic time-forcing of the wall-normal
velocity, following

vac =Aac sin 2πf act
� �

, ð5Þ

where the free parameters in periodic control are the actuation ampli-
tude Aac and the actuation frequency fac. Depending on the APG top-
boundary condition type, the actuation amplitudeneeds tobe adjusted.
For example, the SB APG setup requires a larger actuation amplitude
because of the forced reattachment arising from the FPG that follows
theAPG.After aparametric searchof anoptimal amplitudeof actuation,
we useAac = 0.3U∞, which corresponds to amomentum-flux coefficient
of Cμ = ðvac, rms=U1Þ2Nacdac=Lz =2:25%, where ‘rms’ stands for root-
mean-square, which is within the effective range 0.01% <Cμ < 3%20,31.
We note thatWu et al.32 used Cμ = 0.0625% in a SO APG setup, and Cho
et al.31 used Cμ = 1.4% in a SB APG setup, even though the top wall-
normal velocity profile spanned the entire streamwise length of the
domain in the latter case. On the other hand, sizing of the control
surfaces is based on the objective of effectively modulating the low-
frequency motion inherent in the uncontrolled flow, as performed in
Wu et al.32. These motions are closely associated with the Görtler
instability, as reported byWu et al.11, which have a spanwise wavelength

Fig. 7 | Simulation setup. Top: schematic representation of the computational
domain together with an instantaneous snapshot of vortical structures cap-
tured by the Q criterion and colored by velocity magnitude. Bottom: grid

details. Δ refers to grid spacing, the ⋅ + notation refers to viscous units (scaling with
uτ and ν), andDOFs stands fordegreesof freedom, i.e., the total number of nodes in
the spectral-element domain discretization.
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of the same order of magnitude as the boundary-layer thickness and
extends by more than 10 times the boundary-layer thickness in the
streamwise direction. More details and comparisons with other control
surface implementations can be read in refs. 23,71–75.

In the current setup, we use an actuation frequency of
fac = 0.0025 (normalized by δ*

0 and U∞). This is the same frequency as
identified by Wu et al.32 for both SO-TSB and SB-TSB configurations
(named the “high frequency" in their work). Wu et al.32 also selected
this frequency for the periodic forcing in a SO configuration. In this
direction, we perform a spectral analysis of the streamwise velocity
component at different locations. While the downstream probe
reaches a peak near f = 0.0015, a clear dominant frequency cannot be
detected. Thisprocess is repeated for all theprobes displayed in Fig. 3a
and the u, v, w, p flow fields, yielding a similar conclusion (not shown
here for the sake of brevity). On the other hand, Cho et al.31 observes
that the most effective frequency for the reduction of the TSB in a SB
setup is St = 0.5. In this work, the non-actuated separation bubble has
an approximate length of Lb = 143, which translates our selected
actuation frequency to St = 0.3575, still within the range of effective
actuation frequencies proposed by Cho et al.31.

DRL setup
Beyond classical periodic forcing, we consider DRL control to reduce
the TSB area. As summarized in the introduction, a DRL setup is
composed of two main elements: the environment, i.e., the system on
which we will apply the control actions, and the agent, i.e., the con-
troller in charge of choosing the actions. In our study, the environment
is the simulation performed by the CFD solver, and the agent is a DNN
that produces a probability distribution of possible actions. The soft-
ware used to perform the CFD simulation in the environment is the
SOD2D CFD solver57, and the TF-agents library58 is used for the DRL
model part. A challenge that commonly arises when linking high-
performance physics solvers (typically written in Fortran/C/C++) and
high-level libraries that implement ML models (typically used through
a Python interface) is the communication between the different
executable instances, also known as the two-language problem76.
While this can be accomplished through Unix sockets53,77 or message-
passing interface (MPI)47, in the current setup the SmartSim59 library is
employed. SmartSim allows communication between processes
through an in-memory Redis database with minimal overhead and,
compared to the previously mentioned approaches, it lowers the
software complexity of the coupling task. RELEXI51,56 was the first CFD-
DRL framework that successfully used SmartSim. SmartSOD2D, which
originated as a fork of RELEXI, adapted the framework for the current
AFC problem and for the SOD2D CFD solver, hence enabling DRL
training on a multi-GPU CFD solver.

In our present implementation, the main computational cost
arises from the CFD temporal integration, so the SOD2D solver is run
on several GPUs in parallel. On the other hand, the DRLmodel is based
on a small multi-layer perceptron DNN and this, together with the
reinforcement learning logics around it, can be easily handled by the
CPU part of a cluster node which would remain idle otherwise. A
schematic diagramof our setup is presented in Fig. 8, noting themulti-
environment approach as introduced earlier.

The same actuators as defined for the periodic control are
employed in theDRL framework. To imposemass conservation both in
space and time, we group the actuators into pairs such that the DRL
model sets the action a that represents the mass-flux value on one
actuator, and the opposite value ( − a) is set on the other one. As
discussed in the Introduction, the MARL approach can be used when
the flow is invariant in a certain direction. In this case, the flow is
invariant in the spanwise direction, and a subdomain comprising one
pair of actuators is defined as aMARLpseudo-environment. Therefore,
a total of Npe = 3 MARL pseudo-environments are defined for each
CFD environment, hence generating 3 independent trajectories that

the agent uses during the optimization step. Also, the output dimen-
sionality is reduced from 3 pairs of jets for the channel as a whole, to 1
pair of jets per MARL pseudo-environment, thus reducing the number
of combinations needed to explore all possible control strategies.With
the aim of equating the periodic andDRL controls capabilities in terms
of energy injected, we allow the agent to select actions within a max-
imumabsolute value equal to the amplitude set in theperiodic control,
a = v ∈ [ −vac, vac] = [ −0.3, 0.3]. Furthermore, an exponential
smoothing function in time is applied to the discrete actions predicted
by the agent37, hence forcing a smooth continuous control signal
applied at every time step in the environment.

The environment state s is defined as a set of witness points
(probes) that measure the streamwise velocity u. The witness points
are distributed on a regular grid of size 6 × 6 × 6 points, spanning a
ð240× 50× 104Þδ*

0 subdomain. They capture the non-actuated recir-
culation bubble region and its vicinity, as depicted in Fig. 3a. Each
MARL pseudo-environment local state is composed of 2 planes of
witness points aligned with the actuators in the streamwise direction,
totaling 72 witness points per pseudo-environment.

The reward r is based on the recirculation area of the turbulent
bubble. The DRL optimization process aims to maximize r so that the
recirculation area is reduced. To calculate a characteristic length for
the recirculation bubble (lx), the wall-shear stress value is computed at
each element face of the wall surface. For each MARL subdomain, the
area of those elements with a negative wall-shear stress Aijτw<0

� �
, i.e.,

belonging to a local recirculation area, is integrated and then divided
by the MARL subdomain span (Lz,pe = Lz/Npe)

lx =
1

Lz, pe

X
i

Aijτw<0: ð6Þ

The reward is normalized by the time-averaged non-actuated
characteristic recirculation length l*x , yielding r = � lx=l

*
x (noting that

the overline notation indicates a temporal average).
Additionally, instead of using an instantaneous value, the reward

is averaged during an actuation period so that the overall response of
the system to a given action is more representative. Each MARL
pseudo-environment computes a local reward rl and the global reward
rg is computed as the average of the local rewards. These two reward
components, local and global, are combined into theMARL rewards by
performing a weighted sum, r = αrl + (1 − α)rg, where α is a free
parameter.Weuse α = 0.5 as this corresponds to an equal importance,

Fig. 8 | Communication architecture between the CFD environments run in
parallel on GPUs and the DRL model run on a CPU. The in-memory Redis data-
base handles the communication of state, reward, and actions between the solver
and the model. For the sake of simplicity, only 2 parallel CFD environments are
represented, but we typically run up to 8 parallel CFD environments on the cluster.
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for each MARL pseudo-environment, between both the local and glo-
bal rewards.

An important aspect of the DRL setup is the choice of the policy. A
first division is made according to whether the policy is model-based
or model-free. While model-based policies rely on a model of the
dynamics of the environment,model-freemethodsoptimize thepolicy
through a trial-an-error process in the form of episodes. Model-free
policies, such as the one employed in this study, can be further sub-
divided into policy-gradient, value-function, and actor-critic algo-
rithms, which is a combination of policy-gradient and value-function
algorithms. A policy-gradient algorithm is based on the parametriza-
tion of the policy and its optimization to maximize cumulative
rewards. On the other hand, value-function algorithms try to estimate
the cumulative reward given a state (state value function Vπ(s)) or a
state-action couple (action value functionQπ(s, a)). Note that Vπ(s) and
Qπ(s, a) are defined as

VπðsÞ=Eπ ½rjs� ð7Þ

Qπðs,aÞ=Eπ ½rjs,a�, ð8Þ

where Eπ ½π� denotes the expectation of the reward. An additional
subdivision of model-based policies is whether the algorithm is on-
policy or off-policy. For on-policy methods, the optimization and
policy update are based on the learning generated with that exact
same policy. On the other hand, off-policy algorithms use a replay
buffer in order to store experiences generated with previous policies
which is also used to perform the policy update. Therefore, on-policy
algorithms are usually less sample-efficient due to the limited number
of experiences used for every policy updated, but they aremore stable
and simpler to implement. The approach used in this study to optimize
the policy is the proximal-policy optimization (PPO)78. This is a model-
free, actor-critic and on-policy algorithm. The key feature of actor-
critic algorithms is that they incorporate two different networks: the
actor, which is responsible for interacting with the environment and
updating the policy (policy-gradient part), and the critic, which uses a
value function, given by the equations (7) or (8), in order to estimate
how good the action taken by the actor was (value-function part).
Some reasons for choosing PPO over other algorithms like deep
deterministic policy gradient (DDPG), twin-delayed DDPG (TD3), or
soft actor-critic (SAC), among others, are its small number of tunable
parameters, and its suitability for continuous control problems37,79.
Also, despite being an on-policy algorithm, PPO has been optimized to
improve the sample efficiency78.

Weemploy aDNNconsistingof 2 layerswith 128neuronsper layer.
An episode duration of Te = 4/fac = 1600 is used (corresponding to 4
periods of the periodic forcing frequency) so that the low frequencies
of the system are captured. The initial condition for each episode is
basedon a randomchoicebetween a fully developeduncontrolledflow
field and the flow field resulting from a previous episode, hence max-
imizing the exploration space of themodel. The actuation frequency of
the DRLmodel is set to fac,DRL = 10fac, yielding 40 actions per episode,
which we considered a trade-off between actuating too often (the flow
does not have enough time to develop after a new actuation), and
actuating too seldom (the flow is not acted on when required).
Actuating every 10% of the system’s lowest frequency is within the
order of magnitude that can be found in the literature53.

In Fig. 9,weshow themetricsduring the trainingof theDRLmodel
in the coarse grid. We observe that the loss correctly decreases with
increasing number of episodes until it stagnates. The average reward
metric is a function of the average value of the time-averaged char-
acteristic recirculation lengths provided by the MARL pseudo-
environments after an episode, f ðlxÞ. It is observed that the average
reward improves with training (note that, during training, exploration

noise is added to the agent, a fact that increases the reward variability)
and converges to an average reward lower than − 1, hence, reducing
the TSB characteristic lengthwith respect to the non-actuated baseline
case. An improvement is also observed for themaximum reward, while
the minimum reward remains approximately stable.

During training, a total of 8CFD simulations are run in parallel, i.e.,
Ne = 8, hence 24 trajectories are sampled in parallel (since 3 MARL
pseudo-environments are used) and a batched optimization step is
performed thereafter. This process is repeated 96 times, i.e., a total of
768 CFD episodes are simulated, hence accumulating a total of 2304
MARL episodes. Noting that simulating one episode of single CFD
environment takes 1.5 hours on an A100 NVIDIA GPU, the overall
training wall time is 1.5 × 96 = 144 hours (6 days) when running 8 CFD
environments in parallel (one per GPU). This results in a total of 1152
GPU-hours of training.

Regarding the metaparameters of the PPO algorithm, we use the
Adam optimizer with a learning rate of 5 × 10−4, a discount factor of
0.99, an importance ratio clipping of 0.2, the entropy regularization is
set to 0, a lambda value of 0.95 and the rest of themetaparameters are
left as default according to the libraries used from TF-Agents58. We
note that these metaparameter values are typically used in PPO, hence
they did not require extensive tuning. More information about these
metaparameters can be found in ref. 78 and in the documentation of
the libraries in https://github.com/tensorflow/agents.

Data availability
The data generated in this study have been deposited in the Font et al.80

database together with the scripts to reproduce the figures in the paper.

Code availability
The software used in this work is open-source, and the main packages
that compose our CFD–DRL framework are listed below. • SOD2D: the
multi-GPUCFDsolver basedon the spectral elementmethod. Available
in https://gitlab.com/bsc_sod2d/sod2d_gitlab • SmartSOD2D: the
communications package for SOD2D based on SmartSim. It allows
online training of MLmodels among other co-processing possibilities.
Available in https://github.com/b-fg/SmartSOD2D81. • SmartSim: the
workflow library to deploy ML on HPC applications. Available in
https://github.com/CrayLabs/SmartSim • TF-Agents: the

Fig. 9 | DRL-training metrics. The average, maximum, and minimum reward sig-
nals are extracted from the 24 MARL pseudo-environments running in parallel.
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reinforcement learning library based on TensorFlow. Available in
https://github.com/tensorflow/agents.
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