
 
 

Delft University of Technology

Supporting Spreadsheet Maintenance with Dependency Notification

Roy, Sohon; Hermans, Felienne; van Deursen, Arie

Publication date
2017
Document Version
Accepted author manuscript
Published in
IS-EUD 2017 6th International Symposium on End-User Development

Citation (APA)
Roy, S., Hermans, F., & van Deursen, A. (2017). Supporting Spreadsheet Maintenance with Dependency
Notification. In J. V. Khan, & I. Soute (Eds.), IS-EUD 2017 6th International Symposium on End-User
Development: Extended Abstracts (pp. 88-93). Technische Universiteit Eindhoven.
https://pure.tue.nl/ws/files/69763287/IS_EUD2017_extended_abstracts.pdf#page=89
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://pure.tue.nl/ws/files/69763287/IS_EUD2017_extended_abstracts.pdf#page=89


Supporting Spreadsheet Maintenance with
Dependency Notification

Sohon Roy, Felienne Hermans, and Arie van Deursen

Delft University of Technology, Delft, The Netherlands,
{S.Roy-1, F.F.J.Hermans, Arie.vanDeursen}@tudelft.nl

Abstract. Spreadsheets in the industry are used by multiple employees
in organizations, and they remain in use for several years. Maintenance
of existing spreadsheets is thus common. One of the issues in maintain-
ing spreadsheets is the fact that formulas create cell dependencies, and
these dependencies are invisible to users. To address this, dependence
tracing techniques have been developed, both commercially and in re-
search. However, these techniques are effort consuming, and are designed
as separate activities that force the users to leave the context of edit-
ing spreadsheets. As such, these techniques are not suitably supportive
for usual spreadsheet maintenance tasks. In this extended abstract, we
present our work in progress on a novel approach for notifying users of
cell dependencies, integrated into the context of editing spreadsheets.
We present a preliminary evaluation of the approach in the form of an
exploratory user-study with seven employees of a financial modeling com-
pany. Results show that the approach has the potential to support in-
dustrial spreadsheet users in the context of spreadsheet maintenance, as
indicated by the responses of six out of seven participants.

Keywords: Spreadsheets, End-user Software Maintenance

1 Introduction

Spreadsheets are popular end-user computing tools, but their use is not without
issues. Hermans et al. found that spreadsheets can have a long life span, and they
are often used by several users in an organization [3]. This makes spreadsheet
maintenance a difficult task, software maintenance alike. One reason hampering
the maintenance of spreadsheets is the fact that the cell dependency graph—the
network of cells which refer to each other—is not visible directly. Users who are
not familiar with the dependency structure of a given spreadsheet might find it
difficult to grasp the entire structure of the spreadsheet. This can even result in
a fear of further modification of the spreadsheet [2].

The problem of analyzing dependencies within spreadsheets is by no means
new. Both in research and in practice, tools have been developed to support
spreadsheet users in the activity of dependence tracing. We refer to our previous
work [7] for a study of such tools [4, 8, 1, 3]. However, one important issue with
existing tools is that they aim to support dependence tracing as a separate



2

task; meaning that the user, while making changes to a formula, has to click
buttons or use hot keys. As such, these tools support activities like auditing
a spreadsheet, in which the users wants to deeply understand the dependency
graph of a spreadsheet, but they do not support a user in making simple changes
to formulas.

In summary, existing tools and techniques are not designed with the focus
on supporting spreadsheet maintenance. Therefore, currently, the maintenance
of legacy spreadsheets is not supported adequately, with users having to use
dependence tracing tools which pose extra effort, and also force them to leave
the context of spreadsheet editing. This latter deserves particular attention as
context switching has been associated with cognitive difficulties faced during
software maintenance [5, 9, 6].

The goal of this work therefore is to support users in editing formulas or
values within a spreadsheet, whose underlying dependencies they might be un-
familiar with, without the need for them to leave the context of editing the
spreadsheets. In this extended abstract, we introduce our tool Aragorn. Once
enabled, Aragorn shows spreadsheet users the existence of dependents on every
selected cell, ensuring the user is aware of them, and does not overlook making
necessary changes to the dependents.

We conduct a preliminary evaluation of Aragorn, through an exploratory
user-study with seven employees of a financial modeling company. Our findings
show that Aragorn has a clear potential to help industrial spreadsheet users
in the context of spreadsheet maintenance, by addressing the issue of hidden
dependencies.

2 Background and Related Work

2.1 Cell Dependencies in Spreadsheets and Dependence Tracing

Formulas in spreadsheets can simply use values, like =12+7, but they may also
refer to other cells within the spreadsheets. For this, spreadsheet users use cell
references.

For example, if cell A12 contains the formula =B25+C25+K100, then the value
of A12 depends on the values of B25,C25 and K100; consequently A12 is as a de-
pendent of B25,C25 and K100. Conversely, B25,C25 and K100 are the precedents
of A12.

If a spreadsheet user wants to know the precedents of a cell, the user can sim-
ply read them from the formula. In the example =B25+C25+K100, the precedents
are B25,C25 and K100.

However, the converse is not true: when a spreadsheet user wants to know
which are the dependents of a cell, i.e. which cells use its value, this is not pos-
sible without extra effort. The dependencies are hidden from spreadsheet users’
(direct) view. To obtain an understanding of the dependencies in a spreadsheet,
a user needs to use dependence tracing techniques. These are techniques for
finding, visualizing, and navigating between dependents [7].



3

These techniques can be provided both as built-in features of spreadsheet
applications, or as separate plug-in tools. For example, Microsoft Excel, has the
Audit toolbar which provides an overlaid graph with the cells as nodes, and
graph-edges shown with blue arrows depicting the cell dependencies.

2.2 Dependence Tracing Research

In addition to the built-in graph overlay feature of Excel, a number of techniques
for dependence tracing have been proposed by researchers. For a summary, see
our previous work [7]. While such proposed approaches all have their strengths
and weaknesses, they share one important issue: they view dependence tracing
as a separate activity. The spreadsheet user needs to navigate to a special menu
created by the plugin [8, 1, 3], or enable a feature (Microsoft Excel, [4]) to start
dependence tracing. While using such tools, users often find themselves spending
dedicated time and effort solely for the purpose of understanding the dependen-
cies inside a spreadsheet, making it an additional task on top of their normal
work. This might be a reason why many of the dependence tracing techniques,
have not found widespread adoption in industry yet [7].

The goal of this work, therefore, is to develop a technique that is specifically
designed to support finding dependents in the context of spreadsheet maintenance.

3 The Aragorn Approach

Aragorn supports spreadsheet users in maintaining spreadsheets whose depen-
dency structures might be (partly) unfamiliar to them. It is simple and entirely
integrated into the spreadsheet environment, to support dependence tracing as
effortlessly as possible.

Aragorn notifies the spreadsheet users of the existence of dependents for the
currently selected cell, by showing the users a popup. Figure 1 shows the user
interface of Aragorn, with three features. Before a user can use Aragorn, they
need to process the workbook, during which Aragorn constructs the dependence
graph and keeps it in memory. The other two options the user has are to turn
‘Dependence Notification’ on and off. Figure 1 furthermore shows the popup
shown to the user, once the ‘Dependence Notification’ is enabled, upon clicking
C4 in worksheet ‘Finances’. Dependents on the same worksheet are shown with-
out a prefix (K4, G5), while dependents outside the worksheet are shown with
their worksheet name prefixed (for example Weekly!F6). Apart from enabling
the feature once, the user does not have to perform any other action. Aragorn
shows the popups conveying dependence information about every cell that is
selected, as the user navigates from cell to cell inside the spreadsheet.

In the popup, the user finds relevant information about dependents of the
selected cell. It firstly shows the total number of direct dependents of the selected
cell, which helps the user to obtain an idea how critical the selected cell might
be. Secondly, it shows the locations of all direct dependents, both those that are
in the same worksheet and those that are in a different worksheet; it displays



4

Fig. 1. The popup and the ribbon tab, showing dependents information when user
clicks on cell C4 in the worksheet ‘Finances’

the worksheet name and cell addresses. In addition to showing the dependence
information in the popup, we also place it in the ribbon, as spreadsheet users
are commonly used to obtaining information from the ribbon. Aragorn shows all
of the above information for every cell the user selects, automatically. As such,
the user does not have to perform any additional tasks, unlike other available
dependence tracing techniques.

We have implemented the Aragorn approach in a .NET 4.5 based Microsoft
Excel add-in written in C#. It is compatible with Office 2010 and 2013, and
Windows 7 and 10. It uses the Infotron core engine to analyze the spreadsheets
and obtain the list of dependents of all cells. The Infotron core engine is a com-
mercialization of its predecessor Breviz— the spreadsheet analysis framework
developed by Hermans et al. [3].

4 Preliminary Evaluation

4.1 Setup

In order to evaluate the usefulness of Aragorn, we conduct an exploratory user
study with 7 professionals employed at F1F9— a financial modeling company
based out of the UK. The main operations of F1F9 consists of analysis, devel-
opment, auditing, and re-building of Excel based financial models.



5

We provide all the participants with the latest version of the Aragorn proto-
type, to install on their computers before the evaluation starts. They could then
use the tool for a period of two weeks. After this period, we ask the participants
to respond to a survey.

In the survey, we first provide the description of a scenario that sets up the
spreadsheet maintenance context in which we intend to evaluate Aragorn. We
subsequently ask six questions with one for identifying the participants, and the
rest for evaluating Aragorn in the context of the described maintenance scenario.

4.2 Results

All seven of the participants agreed that they would be concerned in the de-
scribed scenario, as the changes they make might inject errors into the spread-
sheet, reaffirming the difficulty of spreadsheet modification related tasks.

On a five-point Likert scale, lack of dependency information was rated the
second most important reason, slightly behind lack of familiarity about data, as
probable reasons for the participants’ concern about injecting errors. This result
reaffirms that the problem of dependency is an important factor contributing to
the difficulty of spreadsheet maintenance.

A total of six participants either agreed or strongly agreed that they would
manually check dependencies for each cell they modified. This result points to-
wards the lack of existing automated support for obtaining dependency related
information during spreadsheet maintenance.

We asked if the participants could think of reasons for which they may prefer
to skip checking of dependencies. This was an open question, and on analyz-
ing the answers, we were able to identify five distinct groups of opinions the
participants shared with us. We observe that two groups of opinions related to
revelation of dependencies and time constraints, can be aimed to be addressed
through supports like Aragorn, as Aragorn provides dependency information
consuming minimal additional time. The other opinion groups are dependent on
the type of maintenance or the nature of the spreadsheet to be modified, and as
such are not possible to be addressed through support.

Finally, we asked the participants if they felt Aragorn will help making the
task described in the scenario easier. Six of the participants agreed that Aragorn
can make the task easier, and only one abstained.

From the results above, we can conclude that spreadsheet maintenance is dif-
ficult, and an important contributing factor to the difficulty is lack of dependency
information. Normally, users are compelled to manually check for dependencies
but dependency information being revealed to them or time constraints can be
reasons due to which they may skip checking for dependencies. Addressing such
reasons, Aragorn can help make the task of spreadsheet maintenance easier, as
indicated by six out of the seven study participants.

In summary, we can state that based on responses from a set of seven indus-
trial spreadsheet users, the overall preliminary evaluation of Aragorn, as an aid
for spreadsheet maintenance that addresses the problem due to hidden depen-
dencies, is promising.



6

5 Future Work

Our current work gives rise to several directions for future work. Firstly, there
are some improvements to be made to the tool. For example, the performance of
Aragorn could be improved to make it more feasible to use Aragorn in day to day
spreadsheet use. Participants of our study also indicated a need for the ability to
navigate to displayed dependents via hyperlinks. Secondly, we plan to perform
a broader evaluation within a controlled setting, allowing for both qualitative
as well as quantitative assessment of Aragorn, with the above improvements in
place.

References

1. Ballinger, D., Biddle, R., Noble, J.: Spreadsheet visualisation to im-
prove end-user understanding. In: Proceedings of the Asia-Pacific Sympo-
sium on Information Visualisation - Volume 24. pp. 99–109. APVis ’03,
Australian Computer Society, Inc., Darlinghurst, Australia, Australia (2003),
http://dl.acm.org/citation.cfm?id=857080.857093

2. Hermans, F.: Analyzing and Visualizing Spreadsheets. Ph.D. thesis, Delft University
of Technology (2013)

3. Hermans, F., Pinzger, M., Van Deursen, A.: Supporting professional spreadsheet
users by generating leveled dataflow diagrams. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering. pp. 451–460. ACM (2011)

4. Igarashi, T., Mackinlay, J.D., Chang, B.W., Zellweger, P.T.: Fluid visualization of
spreadsheet structures. In: Visual Languages, 1998. Proceedings. 1998 IEEE Sym-
posium on. pp. 118–125. IEEE (1998)

5. Lethbridge, T.C., Pak, J.: Integrated personal work management in tksee software
exploration tool. In: Proc. of the 2nd Int. Symp. on Constructing Software Engi-
neering Tools (CoSET’2000) (2000)

6. Parnin, C., Gorg, C.: Building usage contexts during program comprehension. In:
14th IEEE International Conference on Program Comprehension (ICPC’06). pp.
13–22. IEEE (2006)

7. Roy, S., Hermans, F.: Dependence tracing techniques for spreadsheets: An investi-
gation. In: Proceedings of the 1st Workshop on Software Engineering Methods in
Spreadsheets. p. 12 (2014)

8. Shiozawa, H., Okada, K.i., Matsushita, Y.: 3d interactive visualization for inter-
cell dependencies of spreadsheets. In: Information Visualization, 1999.(Info Vis’ 99)
Proceedings. 1999 IEEE Symposium on. pp. 79–82. IEEE (1999)

9. Zayour, I., Lethbridge, T.C.: A cognitive and user centric based approach for reverse
engineering tool design. In: Proceedings of the 2000 conference of the Centre for
Advanced Studies on Collaborative research. p. 16. IBM Press (2000)


