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An automated formal-based approach for reducing undetected faults
in ISO 26262 hardware compliant designs

Felipe Augusto da Silva∗† Ahmet Cagri Bagbaba∗ Said Hamdioui† Christian Sauer∗

∗Cadence Design Systems †Delft University of Technology
Munich, Germany Delft, The Netherlands

Abstract—The current demands for developing safe automotive
applications require extensive analysis and evaluation of potential
random hardware faults. In general, part of this analysis is
manually performed by experts, resulting in an expensive, time-
consuming, and error-prone process. This paper proposes an
automated approach to classify faults overlooked by traditional
methods. Our methodology deploys code coverage and formal to
identify nodes that do not disrupt safety-critical functionalities,
enabling the classification of additional faults. The approach
is validated based on an Automotive CPU, according to ISO
26262 guidelines. The results show an improvement in Diagnostic
Coverage of 1.15%, increasing the Single Point Fault Metric
(SPFM) to 97.3%, enabling ASIL C compliance without any
hardware redundancy.

Keywords - ISO 26262; Safe Faults; Fault Injection; Formal
Methods; Simulation; Functional Safety; Verification.

I. INTRODUCTION

The increasing complexity in automotive applications is
causing an escalation in the demands for electronic devices.
An Integrated Circuit (IC) that implements safety-critical
applications, such as autonomous driving, must incorporate
mechanisms to reduce the risk of failures resulting in life-
threatening situations. For such applications, engineers must
analyze a huge fault space and demonstrate they cannot affect
safety-critical functionalities. In the most advanced automotive
ICs, where the fault space is related to millions of design
components, this process becomes challenging. Fault analysis
and classification according to safety standards is an arduous
task that requires extensive knowledge of the design function-
alities. Therefore, there is a high demand for methodologies
that can speed up fault classification reducing time to market
and verification costs.

Fault Injection (FI) Simulation is the state-of-the-art method
to evaluate the fault effects in the operation of Automotive
ICs. The simulation of the design behavior during fault injec-
tion allows monitoring the impact of such fault on intended
functionalities and the activation of Safety Mechanisms when
needed; each fault is then classified depending on its influence
on the design functionality. Simulation and optimization of FI
campaigns are demanded research topics [1]. In general, it
is not possible to evaluate the design to all possible inputs;
therefore, not all faults can be classified. Hence, alternative
methodologies are needed to prove whether these could dis-
turb safety-critical functionalities. Formal Methods can be
employed to leverage the classification of faults. The ability
of formal techniques in analyzing the design behavior for all

possible combinations of inputs contributes to the fault space
analysis [2]. The combination of FI Simulation and Formal
techniques was also examined [3]; such a hybrid approach
makes use of the strengths of both technologies. Nevertheless,
even with such an approach, there will be residual unclassified
faults. In [4], the authors proposed a methodology to reduce
the subset of unclassified faults further and identify, e.g., those
that cannot affect safety-critical functionalities. Even though
the presented results are promising, part of the process relies
on manual analysis by experts. Consequently, an automated
and reliable methodology that decreases manual efforts while
fulfilling ISO 26262 requirements is needed.

Our work advances state-of-the-art by setting steps toward
fully automated fault space analysis for ISO 26262. Our focus
is on identifying the nature of each fault in the fault space.
Suppose the effect of a fault does not affect safety-related
functionalities. In that case, the fault can be classified as a Safe
fault, increasing compliance to safety standards. Initially, we
deploy code coverage techniques to identify design elements
that are not operated during functional verification. The code
coverage reports are examined by an automated tool that gen-
erates formal properties to reproduce the observed behavior.
Finally, we configure all the properties in a Formal analysis
tool, improving the tool’s efficiency. The additional classifi-
cation causes an immediate increase in the Safety Metrics,
enabling compliance with ISO 26262. The main contributions
of this work are:

• An automated approach for identifying the nature of each
fault in the fault space, i.e., faults not affecting safety-
critical outputs;

• Validation of the proposed methodology following ISO
26262 Functional Safety requirements (including an
FMEDA, Failure Rate analysis, and Safety Metrics cal-
culation) in an Automotive CPU;

• Evidence of the methodology efficiency by detailing
how the increase of 1.15% in the Diagnostic Coverage
supports a Single Point Fault Metric (SPFM) of 97.3%,
enabling ASIL C compliance without hardware redun-
dancy.

The rest of the paper is organized as follows: Fault classifi-
cation methodologies are introduced in Section II. Section III
describes the proposed methodology. Section IV explains the
validation process and results. Section V concludes.
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Fig. 1. Fault Classification Flow

II. FAULT CLASSIFICATION AND EXISTING
METHODS

This section first defines the faults as seen by ISO 26262
and, after that, briefly describes the commonly known two
methods for fault classification, namely Fault Injection, and
Formal Methods.

A. Fault Classification

According to ISO 26262, the safety analysis of a Hardware
device must consider the classification of the effect of faults
on the circuit’s functional behavior. The fault space for this
analysis includes Stuck-At-0 (SA0) and Stuck-At-1 (SA1)
faults at all inputs and outputs of the design gates. The
philosophy behind the fault classification is to identify three
fault sub-classes through the analysis of their behavior:

• Safe faults: these are faults that do not cause any distur-
bance of safety-critical functionalities.

• Detected faults: these are faults that can disturb the
safety-critical functionalities; hence Safety Mechanisms
(SMs) are deployed to correct them and ensure that they
become innocent.

• Undetected: these are faults for which the effect is
unknown; they can be either safe, detected, or even
dangerous faults without associated safety mechanisms.

Figure 1 illustrates the process of fault classification and
analysis for ISO 26262. The process starts with the definition
of the fault space; all faults are classified then as Unknown.
Next, Formal Methods are deployed for the identification of
Safe faults. After that, FI Simulation is applied to the remain-
ing faults to evaluate the efficiency of Safety Mechanisms
(SM); the FI Simulation classifies the faults as Detected when
SM covers them and as Undetected otherwise. This initial
assessment allows the calculation of the Diagnostic Coverage
(DC); it represents the efficiency of Safety Mechanisms, and
it is essential for ISO 26262 compliance. If the desired DC is
achieved, the process ends. Otherwise, an alternative method-
ology is necessary to classify the Undetected residual faults.
The reduction in the number of Undetected faults contributes
to improving the DC, hence, to ISO 26262 compliance. The
DC is calculated according to the equation 1:

DC = (Detected)/(Total − Safe) (1)

where Detected presents the number of faults classified
as Detected by FI Simulation, Total is the size of the fault
space, and Safe the number of faults that cannot disturb

safety-critical functionalities. The following sections detail the
implementation of the lead technologies for fault classification.

B. Fault Injection Simulation
Fault Injection (FI) Simulation is widely used and available

in a variety of tools. These tools can analyze a Register
Transfer Level (RTL) or Gate-Level (GTL) descriptions of an
IC by simulating the IC behavior for a given test input. The
effect of a fault is determined by comparing the behavior of
the design with and without faults. The flow implemented by
FI Simulation Tools is as follows:

1) Elaboration of RTL/GTL design description.
2) Fault list generation and optimization.
3) Fault-free simulation: fault-free behavior of design is

simulated for recording the observation points reference
values. The observation points, defined by the user, are
(1) functional strobes, which store information related
to functional outputs, and (2) checker strobes, which
indicates how the Safety Mechanisms react.

4) Fault injection simulation: For each fault, the faulty
design behavior is simulated. The observation points are
then compared to the reference values; the differences
in the values determine the design behavior under fault.

5) Fault classification: If the fault effect is perceived in a
checker strobe, then the fault is classified as Detected.
Otherwise, the fault is classified as Undetected.

C. Formal Methods
Formal tools can verify a circuit in the global scope, consid-

ering every evaluation context and test stimuli. Consequently,
these tools can exhaustively prove that a fault can never
produce any failure.

The method consists of creating a representation of the
boolean function implemented by the design under test, where
formal proves can be deployed. Formal tools can automat-
ically generate properties to determine the Activation and
Propagation of faults. Activation analysis indicates whether
any combination of inputs can functionally activate a fault.
Propagation analysis verifies if there is a combination of input
values that provoke fault propagation to an output. In addition,
the tools can analyze the physical characteristics of the design
to identify faults that cannot reach the functional strobes.
Faults that are recognized by these analyses cannot cause
failures; consequently, they are safe.

As formal analysis is resource hungry and limited due to
the state explosion problem, the Undetected residual faults still
require an alternative classification methodology.
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III. TESTABLE SAFE FAULTS IDENTIFICATION

The ISO 26262 Hardware Architectural Metrics determines
the effectiveness of designs to cope with random hardware
failures [5]. The failures addressed by these metrics are limited
to elements that can contribute to the violation of safety goals;
these define the required mitigation of hazardous events to
avoid unreasonable risks caused by malfunctions. During the
system development phase, safety goals are decomposed into
a Functional Safety Concept that defines the requirements
for the hardware architecture. However, the development of
a hardware design demands additional components that are
not related to the safety concept; these components will
decrease the compliance to Hardware Architectural Metrics,
even though they may not violate safety goals in case of faults.
If that is the case, these components can be identified by
their potential to disrupt safety goals, increasing Safe faults
classification. Safe faults can be divided into two categories:

• Untestable: there is no combination of test stimuli that
induce the fault to affect the functionality of the design.
Also know as redundant in the DfT community.

• Testable: faults that can affect the output of the design
with a suitable test stimulus. Nevertheless, they cannot
affect safety-critical functionalities.

Testable Safe faults are faults that do not cause any deviation
of the safety-related operational mode. Identifying the nature
of faults (being safe or not) typically requires the judgment of
hardware design experts; this is time-consuming and prone to
errors.

Our approach deploys the code coverage to understand the
design operational behavior; this behavior is automatically
translated into formal properties. By reproducing the design
operational behavior in a Formal tool, we decrease the space
exploration, allowing the classification of additional faults.
Next, the main steps of the method will be explained.

A. Code Coverage

Code coverage is a method of assessing to what extent test
cases exercise a design under test. It is essential to notice
that the test cases must be a valid representation of the
design functionalities; at the safety analysis stage, a functional
verification environment is already available and should be
deployed for the code coverage. The flow starts with the
design simulation considering all the available test cases.
Next, verifying the variations in all internal signals makes it
possible to generate reports for block and toggle coverage.
Block coverage determines whether test scenarios exercise
the statements in a block. A block is a series of sequential
statements without delays or control flow statements (if, case,
wait, while, among others). In other words, a block is a
specific state in a state machine. Toggle coverage measures
the activity of the signals in the design during the simulation.
It provides information on untoggled signals or signals that
remain constant during the simulation.

The metrics from the code coverage provide information
regarding design parts that may not be safety-related. For

instance, by recognizing states that are never activated due
to block coverage, we can identify design modes that are not
related to safety functionalities. Similarly, untoggled signals
can highlight important details of the design, like invalid
configurations, not utilized functions, status monitors, among
others. The combination of toggle and block coverage pro-
vides additional information about specific functionalities.
For example, the missing toggle in a control signal may be
responsible for never activating a block in a state machine.
Also, by bypassing a specific state, another signal may not be
toggled.

B. Automated Code Coverage Analysis

The automation process aims to translate the code coverage
behavior into formal properties. Suppose we can replicate the
functional behavior of the design in the formal environment;
this would reduce the space exploration, allowing the identifi-
cation of not safety-relevant nodes. As the formal environment
includes operational constraints, the newly identified faults are
Testable Safe fault.

The automated code coverage analysis tool will translate
design elements from the code coverage report into assume
statements or fault-propagation barriers. Assume statements
enable constraints configuration for formal analysis. When an
expression is assumed, the formal verification tool constrains
the design inputs accordingly. The role of the assume construct
is useful in the confirmation of the design functional con-
figuration. Also, by configuring the expected behavior of the
design, we increase the capacity of Safe faults identification
by limiting the test stimuli space. Fault-propagation barriers
are design elements that can block the propagation of a
fault. Faults that propagate only to certain elements may not
affect safety-critical functionalities. Consequently, these can
be Testable Safe faults.

The automated code coverage analysis must also examine
the design element types and values. Input ports of the design
instances are suitable candidates to assume statements. Output
ports, on the other hand, are better candidates for fault-
propagation barriers. The automated code coverage analysis
tool automatically retrieves the signal types and values by
analyzing the coverage report and source code. The generated
formal properties are compiled in a text report. The output
includes the assume statements, fault-propagation barriers,
and supplementary information that lead to the creation of
the properties.

The only manual step of the process is revising the formal
properties generated by the automated code coverage analysis
tool. The coverage result by itself is not enough to distinguish
the potential Testable Safe faults. To assure the formal property
does not conflict with the expected behavior, engineers must
review the output of the automated code coverage analysis
tool. For that reason, the tool output includes supplementary
information to support the review process. An over-constrained
formal environment would cause false positives, invalidating
the results.
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C. Formal Analysis of Testable Safe Faults

The identification of Testable Safe faults will deploy the
same techniques described in Section II to identify Safe faults.
The difference is that the formal environment will incorporate
the results of the automated code coverage analysis tool. By
constraining the environment, we enable the tool to evaluate
the design in a well-specified configuration, increasing the
potential for the identification of Safe faults. Additional Safe
faults will be classified as Testable Safe, as they are Safe con-
sidering the functional constraints included in the environment.

IV. RESULTS
A. Test Case

To validate the proposed methodology, we targeted a design
that represents the challenges of the automotive industry. The
AutoSoC is an open-source initiative for an automotive SoC
benchmark suite, based on an OpenRISC implementation [6].
The chosen configuration of the AutoSoC includes Error-
Detection-Correction Codes (ECC) protection on the internal
memories and a Software-Based Self-Test (SBST) approach
in the form of a Software Test Libraries (STL). As definite
evidence of our contribution, we intend to improve the Auto-
motive Safety Integrity Level (ASIL) compliance of the target
CPU without hardware redundancy.

As described in [6], the internal memories occupy the
highest area of the AutoSoC physical device, representing
91.3% of the fault space. Based on ISO 26262 standard rec-
ommendations, we can assume the ECC provides a Diagnostic
Coverage of 99% for random hardware faults, representing a
satisfying coverage for the overall CPU.

For verifying the efficiency of the STL, we adopt the
Cadence® Xcelium™ Fault Simulator (XFS). The XFS was
configured to inject SA0 and SA1 faults at every cell port of
the GTL representation of the AutoSoC deploying the STL
as workload. Considering the digital area, the AutoSoC CPU
contains 96,354 fault targets for Simulation. During the FI
Simulation, the STL presents coverage of 52.32% by detecting
50,412 of the faults. Also, by deploying Formal methods,
we can identify 8,020 Untestable Safe faults, resulting in a
Diagnostic Coverage of 57.07%.

In a preliminary analysis of the Safety Mechanisms listed
above, we can conclude that the memory area has sufficient
coverage with the DC provided by ECC. However, the digital
area of the CPU may still require further coverage for achiev-
ing the required Safety Metrics. Even though the deployed
STL achieves significant DC, over 37,000 faults are still Un-
detected. These faults must be classified to allow compliance
with the requirements of ISO 26262. The following section
shows how the proposed methodology impacts the Diagnostic
Coverage of the STL by classifying Undetected faults as
Testable Safe.

B. Classification of Testable Safe Faults

The first step for the identification of the Testable Safe faults
is the code coverage analysis. The AutoSoC code coverage
analysis consisted of the simulation of the 100 workloads

Fig. 2. STL Diagnostic Coverage Analysis

available in the benchmark. The workloads cover a variety of
applications, producing a representative baseline of the CPU
functionalities. Next, the automated code coverage analysis
tool is deployed on the code coverage report to generate the
next step’s formal properties. We investigated the properties
file to avoid over-constraining the formal analysis. The revision
process included inspection of the RTL code and monitoring
of the signals during the simulation. Also, some RTL internal
signals needed to be traced to wires in the Gate level rep-
resentation of the hardware. The final formal properties file
consisted of 3,884 assume statements and 63 fault-propagation
barriers.

Our work applies Cadence® Integrated Metrics Center
(IMC) for code coverage and Cadence® JasperGold (JG)
Formal Verification Platform Functional Safety Verification
(FSV) for Formal Analysis. The identification of Safe faults
consisted of two steps. First, we deploy JG FSV formal
analysis for the identification of Untestable Safe faults. Next,
we load the formal properties file into the Formal Analysis
tool and repeat step one. The additional Safe faults identified
in step two will be listed as Testable Safe.

Figure 2 details the results of the various analysis steps. The
graph illustrates the faults classification contribution achieved
during Fault Injection, Untestable Safe (US), and Testable Safe
(TS) analysis. The process is incremental, always focusing on
faults that were previously Undetected. Also, Figure 2 displays
the calculated Diagnostic Coverage at each step. The proposed
methodology can identify 2,079 additional Safe faults, result-
ing in a 1.38% increase in the Diagnostic Coverage.

C. Functional Safety Analysis

The calculation of the Diagnostic Coverage is an indication
of the efficiency of each Safety Mechanism. However, to as-
sure compliance with ISO 26262, a comprehensive Functional
Safety Analysis must be performed. The analysis intends to
confirm that the probability of failures in a safety-relevant
system is reduced to acceptable levels. The primary methodol-
ogy for the Functional Safety Analysis of hardware devices is
the Failure Modes Effects and Diagnostic Analysis (FMEDA).
The FMEDA correlates IC components (Gates, Flops, and
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Fig. 3. Safety Metrics Analysis

Memory cells) to Failure Modes (FM). Also, considering the
base Failure In Time (FIT) rate of individual IC components,
the Diagnostic Coverage of Safety Mechanisms, and the Safe
faults, we can determine the Residual FIT contribution of each
FM.

The FMEDA starts with the definition of the FMs and
the mapping of design components. For the AutoSoC, we
considered ten subparts, one for each sub-block of the CPU.
Each subpart includes the FMs for Data Corruption, Dead-
lock, Modified Execution, Exceptions, and Performance. After
mapping each FM to the appropriate design components, we
can incorporate the percentage of Safe faults and coverage
of Safety Mechanisms (Diagnostic Coverage). The AutoSoC
FMEDA comprises 75 Failure Modes mapped to 28,956 Gates,
1,983 Flops, and 316,672 Memory cells.

The Safety Metrics calculation is based on the contribution
of each FM to the FIT Rate (λ). The λ of each FM can
be classified according to the ISO 26262 definition of fault
classes. The λSPF represents Single-Point faults that SMs
do not cover. Residual (λR) describes faults Undetected by
SMs. Detected faults, which could only violate a safety goal
combined with a second fault, are called Multi-Point faults
(λMPF). λS represents the contribution of Safe faults. The
sum of the fault classes is equal to the total λ.

The classification of the λ classes is necessary for determin-
ing ASIL compliance. The ASIL requirements are expressed
as target values in the form of metrics. These metrics are
calculated based on the fault classes’ contribution to the total
λ. The metrics defined by ISO 26262 are the Single-Point
Fault Metric (SPFM), the Latent Fault Metric (LFM), and the
Probabilistic Metric for Random Hardware Faults (PMHF).

Figure 3 details the result of the Functional Safety Analysis
of the AutoSoC considering three FMEDAs: Safety Mecha-
nisms only (ECC+STL); Safety Mechanisms and Untestable
Safe results; and Safety Mechanisms and Testable Safe results.
The left axis presents the classification of the different λ
classes in FIT. As the AutoSoC includes SMs in all FM, the
λSPF is 0. The sum of the other λ classes represents the Total
λ of the AutoSoC.

The right axis highlights the SPFM coverage. The graph
illustrates how the increase in the λS, achieved by the proposed

methodology, directly impacts the SPFM. The additional λS
causes a decrease in λR, and therefore, an increase in the
SPFM.

The additional coverage provided by the Testable Safe
faults enabled an SPFM of 97.3%, achieving the minimum
requirement for an ASIL C design. It is crucial noting that, as
seen in Figure 3, our results allowed an immediate increase
from ASIL B to C on the AutoSoC design.

Even with the increased fault classification, there is still a
considerable contribution from λR (Undetected faults), which
decreases the coverage restricting ASIL D compliance. The
classification of the Undetected faults could be achieved
by improving the STL coverage, including additional Safety
Mechanisms, or adjusting the design analysis to increase the
number of Safe faults. In complex designs, it is challenging
to achieve 99% of SPFM without hardware redundancies.

V. CONCLUSIONS
The severe demands for tolerance to random faults are a

hurdle for ICs targeting ISO 26262 safety-critical applications.
As part of this process, fault analysis methods are still driven
by experts, requiring manual analysis that are very expensive,
time-consuming, and prone to errors. We propose an auto-
mated methodology that combines code coverage and Formal
verification techniques for Safe fault identification. First, we
identify design elements where a fault cannot disturb safety-
critical functionalities. Next, those elements are automatically
translated into formal rules, enabling the identification of
Testable Safe faults. We validate our methodology on an Auto-
motive CPU, including an FMEDA, Failure Rate analysis, and
Safety Metrics calculation, according to ISO 26262 guidelines.
Our approach improves the Diagnostic Coverage by 1.15%;
such a coverage enables a SPFM of 97.3%, permitting ASIL
C compliance. Our automated approach reduces the constraints
of manual expert-based analysis, reducing the verification
costs and time to market; also, it enables an accurate safety
evaluation, allowing compliance to ISO 26262 without hard-
ware redundancy.
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